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Dynamic Topology Optimization for Non-IID Data
in Decentralized Learning

Antreas Ioannou, Bart Cox, Jérémie Decouchant
Delft University of Technology

Abstract—Decentralized learning (DL) enables a set of nodes
to train a model collaboratively without central coordination,
offering benefits for privacy and scalability. However, DL struggles
to train a high accuracy model when the data distribution is
non-independent and identically distributed (non-IID) and when
the communication topology is static. To address these issues,
we propose DissDL, a fully decentralized topology optimization
algorithm for DL where nodes select the peers they exchange
models with based on local model dissimilarity. DissDL maintains
a fixed in-degree while dynamically adapting the communication
graph via gossip-based peer discovery and diversity-driven
neighbor selection, improving robustness to data heterogeneity.
Experiments on CIFAR-10 and FEMNIST show that DissDL
achieves faster convergence, more stable learning, as quantified by
lower inter-node variance across nodes, and higher final accuracy
than with static topologies and state-of-the-art baselines. For
example, on CIFAR-10, DissDL reaches the best accuracy achieved
by its most competitive baseline using 1.34× fewer communication
rounds and 1.34× less communication cost, while maintaining
comparable overhead.

I. INTRODUCTION

Federated Learning (FL) has emerged as an alternative
to traditional centralized machine learning, where data is
aggregated in a central location, to reduce reliance on central
data storage. FL is a common distributed learning paradigm
where a central coordinator orchestrates the training process by
aggregating model updates from participating clients [1–3]. In
addition, FL addresses privacy concerns related to sensitive data
being pooled on a central server [4, 5]. While several variants
of FL have been described, e.g., using several servers [6]
or asynchronous client-server interactions [7], FL always
require central coordination, which can introduce scalability
limitations [8–10] and create a performance bottleneck [11, 12].
Other challenges that FL face include privacy attacks [13–15]
and robustness against poisoning attacks [16].

Decentralized Learning (DL) is a distributed learning scheme
that has been proposed to eliminate FL’s need for central coor-
dinators. In DL, nodes discover each other and communicate
through peer-to-peer (P2P) or gossip-based protocols [17, 18].
While DL mitigates many performance-related FL limitations,
it also introduces challenges in communication efficiency. In
particular, fully connected topologies are impractical in large-
scale networks [19], which force DL to rely on sparsely
connected communication topologies.

The communication topology used in a DL system signifi-
cantly affects its communication cost, convergence rate, scala-
bility, and final accuracy [20], especially under non-independent

and identically distributed (non-IID) data conditions [21–24],
where nodes possess diverse local datasets. Many studies
attempt to address the non-IID challenge using static topologies
and decentralized optimization methods such as decentralized
parallel stochastic gradient descent (D-PSGD) [10]. However,
such static-topology methods often struggle to effectively
handle non-IID data when the network structure lacks sufficient
connectivity or exposes nodes to overly similar local data,
limiting global knowledge exchange [23].

To overcome this, recent research has explored adaptive
topologies, demonstrating the benefits of dynamically adjusting
the communication graph during training [25–27]. However,
many such methods require some form of global knowledge
or lack mechanisms for dynamic adaptation, limiting their
scalability and robustness in heterogeneous settings. It is
therefore still an open issue to design a fully decentralized
approach that explicitly accounts for non-IID data while
enabling intelligent dynamic peer selection.

This work introduces a fully decentralized method, named
Dissimilarity-guided Decentralized Learning (DissDL),
which enables nodes to select communication partners based on
local model dissimilarity, without relying on any form of global
knowledge or central orchestration. Each node dynamically
evaluates and adjusts its incoming connections, from which it
receives others’ models to update its own, while maintaining
a fixed in-degree. Maintaining a fixed in-degree ensures that
every node consistently receives model updates, preventing
any node from becoming isolated or starved of information.
Additionally, DissDL enables nodes to progressively discover
new peers over time, expanding their local view of the network.

As a summary, this work makes the following contributions:
• We propose DissDL, a novel fully decentralized algorithm

that dynamically adjusts the communication topology
based on local model dissimilarity. This allows nodes
to optimize their incoming connections in a fully dis-
tributed manner, without global information or centralized
coordination. DissDL maintains a fixed in-degree per node
by probabilistically selecting diverse peers for incoming,
rather than outgoing, connections. This guarantees that
every node is exposed to external information in every
round, mitigating local overfitting under non-IID data. To
enable peer discovery, nodes exchange information about
their known neighbors during model updates, progressively
expanding their local view of the network. This gossip-
based mechanism, combined with a lightweight asyn-
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chronous handshake protocol for establishing connections,
aligns with practical decentralized environments where
nodes lack global awareness of all peers. DissDL further
allows nodes to infer model similarity with unknown peers
via gossip, enabling informed peer selection even under
partial network knowledge. This enhances adaptability in
sparse and evolving topologies.

• We evaluate DissDL on the CIFAR-10 and FEMNIST
datasets using realistic non-IID data distributions. DissDL
outperforms static and state-of-the-art baselines by achiev-
ing their best top-1 accuracy (i.e., standard accuracy, where
the model’s most confident prediction must match the
label) with up to 1.34× fewer communication rounds and
communication cost on CIFAR-10, and 1.17× fewer on
FEMNIST, while also achieving higher final accuracy and
more consistent performance across nodes, as quantified
by lower inter-node variance.

II. BACKGROUND

A. System Model

A decentralized learning (DL) system consists of a set of dis-
tributed computational nodes, denoted by N = {1, 2, . . . , n},
which collaborate to train a shared model. Each node maintains
access to its own local data and performs computations indepen-
dently, without reliance on a central server. The communication
among nodes occurs over a network topology represented by
a graph G = (V,E), where each node corresponds to a vertex
v ∈ V , and an edge (j, i) ∈ E indicates that node j can send
information directly to node i.

In fully decentralized settings, such as the one assumed in
this work, the communication model is inspired by classical
peer-to-peer (P2P) systems, in which nodes operate as equal
participants, both consuming and supplying information [28,
29]. Randomized gossip protocols are often used to propagate
information efficiently without centralized scheduling [30–32].
In our system, a P2P peer discovery service periodically
provides each node with a set of new potential neighbors,
enabling continuous exploration of the network.

In this work, we consider directed graphs with evolving
topologies, where communication links may change over time.
The out-degree of a node is the number of other nodes it
transmits information to, while its in-degree is the number of
nodes from which it receives information. We assume that the
initial communication graph is connected in the undirected
sense, that is, if edge directions are ignored, there exists a
path between any pair of nodes. While each node initially
communicates only with a subset of neighbors, we assume
that nodes can, in principle, establish connections with any
other node, provided they become aware of its existence (e.g.,
via peer exchanges or broadcasts). These assumptions, or
relaxed variations of them, are standard in prior work and
reflect practical decentralized environments, where partial initial
connectivity and the ability to communicate with any node
over time are common.

B. Decentralized Learning

We consider the standard decentralized learning objective in
which a group of n nodes seeks to collaboratively minimize
a global loss function by performing local updates and
exchanging information with neighbors. Each node i ∈ [1, n]
holds private data that follows a distribution D(i), which may
differ from the one of other nodes, over a data space Z . Let
f : Rd × Z → R be a loss function that evaluates model
performance on a data point. The local loss function at node i
is defined as the expectation over its local distribution:

f (i)(x) := Eξ∼D(i) [f(x, ξ)]. (1)

The goal of the system is to minimize the average loss over
all nodes:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

f (i)(x). (2)

The training process proceeds in rounds, each consisting
of local computation, communication with neighbors, possi-
ble topology adaptation, and aggregation of received model
updates.

III. RELATED WORK

Table I provides a comparative overview of recent topology
aware distributed methods, highlighting their core character-
istics in terms of decentralization, information requirements,
adaptation strategy, and topological flexibility.

A. Fixed Topology Algorithms

Several methods have been proposed to improve the perfor-
mance of decentralized learning (DL), typically assuming a
fixed topology. These approaches either focus on enhancing
the learning algorithm or on designing more effective fixed
topologies to improve convergence under non-IID conditions.

Aketi et al. introduce two related methods tailored to non-
IID environments: NGC and NGM. Neighborhood Gradient
Clustering (NGC) [41] augments local updates by incorporating
self-gradients along with model-variant and data-variant gra-
dients from neighboring nodes. These are clustered based on
similarity to better align updates with the global objective.
Neighborhood Gradient Mean (NGM) [42] simplifies the
approach by averaging local and cross-gradients, making it
more suitable for bandwidth- or memory-constrained scenarios.

Gao et al. [43] employ a pre-trained Graph Neural Network
(GNN) to guide model aggregation over a fixed topology.
Esfandiari et al. [44] propose Cross-Gradient Aggregation
(CGA), which improves model updates under non-IID data
by incorporating gradient information from neighbors into
a constrained quadratic programming (QP) framework. In a
different approach, Song et al. [39] introduce EquiStatic, a
family of communication-efficient topologies with network-size-
independent consensus rates, designed to improve convergence
under non-IID data. However, these approaches do not address
the evolution of the communication topology itself and are
bounded by the initial graph structure.
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TABLE I
COMPARISON OF TOPOLOGY AWARE DISTRIBUTED ALGORITHMS. A METHOD IS CONSIDERED DECENTRALIZED IF IT REQUIRES NO CENTRAL

COORDINATOR; NO GLOBAL INFO MEANS IT DOES NOT RELY ON KNOWLEDGE SUCH AS NODE IDENTITIES OR GLOBAL TOPOLOGY; GUIDED ADAPTATION
USES HEURISTICS TO ADAPT THE TOPOLOGY RATHER THAN RANDOM UPDATES; FLEXIBLE TOPOLOGY MEANS IT CAN EVOLVE BEYOND A FIXED GRAPH.

Method Decentralized No Global Info Guided Adaptation Flexible Topology
Menegatti et al. [27], Lin et al. [25],
Wang et al. (CoCo) [33], Zhou et al. [34],
Tuan et al. (GNN+PSO) [35]

✗ ✗ ✓ ✓

Behera et al. (PFedGame) [36] ✗ ✗ ✗ ✓
Li et al. (L2C/meta-L2C) [37] ✓ ✓ ✓ ✗
Assran et al. (SGP) [38] ✓ ✓ ✗ ✗
Song et al. (EquiDyn) [39] ✓ ✗ ✗ ✗
De Vos et al. (EL-Local) [26] ✓ ✗ ✗ ✓
Bars et al. [22] ✗ ✗ ✓ ✗
Dandi et al. [40] ✓ ✓ ✗ ✗
Ours (DissDL) ✓ ✓ ✓ ✓

B. Topology-Aware Algorithms with Global Coordination
Recent research has increasingly focused on topology-aware

algorithms, often leveraging some form of global knowledge,
such as the overall network structure or global connectivity
patterns, to guide communication or adaptation strategies.
Menegatti et al. [27] propose a centralized energy-aware
topology optimization algorithm that maximizes algebraic
connectivity to accelerate decentralized federated learning.
While effective, their method requires full global knowledge
and static pre-computation.

Behera et al. [36] frame peer interactions as a two-player
cooperative game to determine aggregation strategies. While
their method performs well under heterogeneous data, it is
designed to operate within a given dynamic topology rather
than actively adapting it, and it under-performs in more
homogeneous scenarios.

A more structured approach that adapts the topology is
proposed by Lin et al. [25], who use reinforcement learning
to optimize peer selection based on network properties and
data distributions. However, their method requires a centralized
controller both to construct the initial topology and to operate
a centralized deep reinforcement learning (DRL) agent for
ongoing adaptation.

Likewise, relying on centralized coordination, Wang et
al. [33] introduce CoCo, a topology- and compression-aware
algorithm for decentralized federated learning. CoCo uses
a central coordinator to gather local model and bandwidth
information from all nodes, and then solves a linear program to
assign peer connections and model compression levels tailored
to each node. While the local training remains decentralized,
the topology evolution is centrally controlled each round.

Zhou et al. [34] propose a heuristic algorithm that accelerates
learning by strategically adding a limited number of edges to
the communication graph. Their method aims to maximize the
second smallest eigenvalue of the graph Laplacian, a measure of
connectivity shown to correlate with convergence speed. How-
ever, their approach relies on algebraic connectivity, a global
graph property that cannot be computed locally. Other strategies,
such as combining particle swarm optimization with graph
neural networks to predict globally optimal topologies [35], also
depend on full knowledge of the global graph. While effective

in theory, these methods are unsuitable for fully decentralized
environments where nodes have only access to partial local
information.

C. Decentralized Dynamic Topology Algorithms

Several studies propose methods that leverage dynamic
topologies, using fully decentralized approaches or limited
global knowledge. While these methods are generally decen-
tralized, some assume minimal global information, such as
unique node identities. This implies knowledge of other nodes’
existence, a non-trivial assumption that, in practice, requires
centralized coordination during initialization.

Koloskova et al. [45] establish convergence guarantees
for decentralized stochastic optimization under time-varying
topologies and heterogeneous data. Their results demonstrate
the theoretical feasibility of using dynamic topologies in
decentralized learning by showing that convergence is still
attainable under mild conditions on graph connectivity and
data smoothness.

Even though they do not actively change the topology
throughout the entire training process, Li et al. [37] propose
L2C and meta-L2C, two fully decentralized algorithms that
learn personalized model aggregation weights to enhance
collaboration among peers. Starting from a fully connected
network, they prune connections early based on validation
loss, resulting in a fixed sparse topology. While effective
for personalization and reducing communication, full initial
connectivity is impractical at scale, and the lack of ongoing
adaptation limits responsiveness to changing conditions.

Another fully decentralized algorithm is introduced by
Assran et al. [38], which, employs a dynamic schedule of
pairwise exchanges within a one-peer exponential graph. They
propose decomposing an initial static exponential graph into a
sequence of one-peer graphs, where each node cycles through
its neighbors, communicating with one at each round. Ying et
al. [46] demonstrate that this approach achieves a convergence
rate comparable to that of the static exponential graph, which
has been shown to be empirically effective [19, 38, 47], while
significantly reducing communication overhead. Nevertheless,
this method requires control over the initial network topology,
and its primary benefit lies in minimizing communication, as
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its performance is ultimately bounded by that of the static
exponential graph.

In a similar approach, Song et al. [39] propose EquiDyn, a
dynamic variant of the EquiStatic family. In EquiDyn, each
node communicates with only one neighbor per iteration,
selected randomly from a predefined static graph. This approach
enables EquiDyn to achieve a consensus rate that is independent
of the network size while requiring only a single communication
per node per round. Although the communication pattern varies
over time, it is constrained to this fixed initial topology, meaning
no new connections can be established. Moreover, the algorithm
assumes consistent node indexing and knowledge of the total
network size.

De Vos et al. [26] propose EL-Local, a decentralized topology
adaptation algorithm designed for non-IID settings. At each
iteration, every node selects a random subset of peers from
the full network and broadcasts its model update, promoting
information mixing. While this approach improves convergence,
it lacks guided or adaptive neighbor selection, which may limit
efficiency and early convergence. Additionally, the method
assumes that each node is aware of all other nodes from the
start, enabling peer selection over the full network, which is a
practical limitation in fully decentralized environments.

D. Peer Dissimilarity as a Topology Signal

An important open question in decentralized learning is
how to select communication partners effectively, especially
when data distributions differ significantly across nodes. Recent
work has begun to explore data-aware topology construction
strategies, highlighting the importance of designing topologies
that facilitate information exchange between heterogeneous
nodes. Bars et al. [22] show that communication with dissimilar
nodes, those whose local data distributions differ, helps ensure
that each node’s neighborhood better approximates the global
distribution. Similarly, Dandi et al. [40] report that convergence
improves when communication weights are aligned with the
complementarity of local data, such that nodes with more
diverse data distributions are more strongly connected. These
findings suggest that, particularly under non-IID conditions,
it is advantageous for nodes to communicate with others that
have different data characteristics.

IV. DISSDL

We propose a fully decentralized topology adaptation mech-
anism that dynamically updates each node’s communication
neighborhood based on model dissimilarity. Built on the
standard decentralized parallel SGD (D-PSGD) framework
provided by the DecentralizePy library [48], our implementation
extends it to support dissimilarity-guided neighbor selection
over evolving topologies, without requiring central coordination
or global network information.

A. Connection Management and Peer Discovery

To support dynamic topologies, we extend DecentralizePy
with two decentralized communication mechanisms: passive

Algorithm 1: DissDL at node i

Input: Local model w0, initial neighbors Ni, total
rounds T , evaluation frequency k

1 Initialization: Set known peers Pi ← Ni;
2 Initialize wanted_senders ← outgoing neighbors in
Ni;

3 for t← 1 to T do
4 Process incoming connection requests and complete

handshakes;
5 Perform local training on private data;
6 if t mod k = 0 then
7 Call UpdateWantedSenders() to revise

wanted_senders based on model
dissimilarity and potentially initialize a new
connection;

8 Send DPSGD_REQ messages to all known peers:
mark interest if peer ∈ wanted_senders,
otherwise indicate no interest;

9 Receive DPSGD_REQ messages from peers;
10 Send local model and peer information to peers that

expressed interest;
11 Receive models and peer information from peers in

wanted_senders;
12 Store up to the last 5 similarity estimates for each

peer without a received model, using information
shared by wanted_senders about their known
peers;

13 Update Pi using new peer information received
from wanted_senders;

14 Aggregate received models with local model via
uniform averaging;

metadata exchange for membership discovery, and a decentral-
ized three-way handshake for establishing new connections.

Peer Discovery via Metadata Sharing. During each com-
munication round, nodes include the identifiers of their known
peers in the metadata they share. This implicit, gossip-like
mechanism enables each node to gradually expand its local view
of the network without incurring significant communication or
memory overhead.

Decentralized Connection Establishment. To initiate com-
munication with a newly discovered peer, a node performs an
asynchronous three-way handshake inspired by TCP. It sends
a SYN, receives a SYN-ACK, and completes the connection
with an ACK. This ensures both parties agree on the connection
before any model exchange occurs. To maintain consistency
despite iteration mismatches, nodes defer completing the
handshake until they reach the required round, not earlier than
the round indicated by the peer that initiated the connection.

B. System Overview

Each node in the system is initialized with its own private
dataset, a local model, and a set of outgoing and incoming
neighbors defined by a randomly generated initial graph G0.
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At initialization, a node knows only the identifiers of its
direct neighbors; it has no access to their data or any global
topology information. Communication occurs over a dynamic
peer-to-peer network, and each node independently adapts its
neighborhood over time.

The algorithm has two key parameters: k, which controls
how frequently each node reevaluates its neighbors, and β,
which governs the stochasticity of the peer selection process
via a softmax over model similarity scores.

At each communication round t, the node executes the
steps shown in Algorithm 1. First, it processes any incoming
handshake messages to complete connection requests that were
initiated in earlier rounds by other nodes. These are not new
requests, but finalizations of pending connections.

Next, the node performs local training on its private
dataset. If the round is a multiple of k, it invokes the
UpdateWantedSenders() routine to revise its preferred
incoming neighbors based on model dissimilarity, as detailed
in Section IV-C. Only at this step are new connection requests
initiated.

Crucially, unlike many traditional decentralized learning
algorithms, where nodes decide whom to send updates to, our
approach gives each node control over from whom it receives
updates. This design ensures that each node’s in-degree remains
fixed over time, preventing situations where a node receives
no updates and consequently overfits to its local data.

The node then sends DPSGD_REQ messages to all known
peers, not just to its wanted senders, indicating, for each,
whether it wishes to receive model updates. This is necessary
due to the synchronized communication model offered by
DecentralizePy, which requires mutual awareness of interest
to coordinate message exchanges.

Each node sends its local model to peers that have expressed
interest and receives models from those it has selected as
wanted senders. Along with the models, it also receives
metadata from these senders, specifically: the identifiers of
each sender’s known peers and similarity scores between the
sender and those peers. The former enables the node to discover
previously unknown peers and expand its known peer set Pi,
while the latter supports long-term peer discovery without
incurring high memory overhead. Each node retains up to five
recent similarity scores for peers from whom it has not yet
received model updates, a limit chosen to balance estimation
quality with memory cost, using them to estimate their potential
utility. Finally, the node aggregates all received models with
its own via uniform averaging.

C. Topology Adaptation via Diversity-Driven Peer Selection

We formulate the neighbor selection process as a local opti-
mization problem, where each node independently determines
the set of peers from which it will receive model updates.
To maintain a fixed in-degree for the communication graph,
each node adds one new peer and removes one existing peer
during each adaptation round. The decision is guided by model
dissimilarity, using the peer models’ parameters to evaluate

Algorithm 2: UpdateWantedSenders() at node
i
Input : Current wanted_senders, known peers Pi,

known similarity scores, peer similarity
estimates, dissimilarity temperature β

1 Define current senders S ← wanted_senders;
2 Let candidates for addition: A← Pi \ S;
3 Let candidates for removal: R← S;
4 if |A| = 0 or |R| ≤ 1 then
5 return
// Fallback for unknown peers

6 fdefault ← mean of known similarity scores;
7 foreach peer j ∈ A do
8 if model received from j then
9 dj ← −CosineSim(wi, wj);

10 else
11 dj ← −EstimateSimilarity(j, fdefault);

12 Sample peer j+ from A using softmax over {dj} with
temperature β;

13 foreach peer j ∈ R do
14 if model received from j then
15 sj ← CosineSim(wi, wj);

16 else
17 sj ← EstimateFromHistory(j, fdefault);

18 Sample peer j− from R using softmax over {sj} with
temperature β;

19 wanted_senders ← (S ∪ {j+}) \ {j−};
20 if j+ not in connected peers then
21 Send CONNECT request to j+;

diversity. This topology adaptation occurs every k iterations
according to Algorithm 2.

Peer Evaluation. Each node considers all known peers
(connected and unconnected) as candidates to its incoming
connections.

Score Computation. To quantify model diversity, each node
computes a cosine similarity score between its local model wi

and the model of each candidate peer wj . Instead of flattening
the entire model into a single vector, we compute cosine
similarity separately for each layer, then average the results.
Let θ(i)l and θ

(j)
l denote the parameter tensors for the l-th layer

of node i and peer j, respectively. The similarity for each layer
is computed as:

siml =
θ
(i)
l · θ

(j)
l

∥θ(i)l ∥2 · ∥θ
(j)
l ∥2

(3)

The overall model similarity is then given by averaging across
all L layers:

sim(wi, wj) =
1

L

L∑
l=1

siml (4)
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Layer-wise averaging ensures balanced contributions across
the model, while cosine similarity captures directional align-
ment efficiently, is robust to scale, and communication-efficient
making it well-suited for decentralized settings [49].

When a node i has not directly received a peer z’s model,
it estimates similarity through transitive inference. Specifically,
for each intermediate peer y from which node i has both the
model and a reported similarity to z, the estimate is computed
as:

ˆsim(wi, wz) :=
1

|Hz|
∑

(t,y,σyz)∈Hz

sim(wi, wy) · σyz (5)

where Hz denotes the set of the 5 most recent similarity reports
for peer z. This chaining approach yields grounded estimates
from partial information.

Although cosine similarity is not transitive, it satisfies the
following angular inequality [50]:

arccos(sim(wi, wk)) ≤ arccos(sim(wi, wj))

+ arccos(sim(wj , wk)) (6)

This inequality serves as a one-sided constraint, bounding
the maximum angular difference between models through
an intermediate peer. It provides theoretical justification for
indirect estimation. Furthermore, quasi-transitive reasoning
has been empirically shown to improve selection in noisy
environments [51].

In rare cases where neither the peer’s model nor similarity
reports are available, the similarity is defaulted to the mean
of all available similarity values observed so far. This fallback
enables for peers whose existence is known but whose utility
cannot yet be estimated to be considered in the selection
process, supporting early-stage exploration.

Probabilistic Selection. After calculating or estimating the
similarities scores, nodes use softmax sampling over the scores
to select a peer with low similarity to add, from among peers
that currently send updates, and a peer with high similarity to
remove, from among peers that currently do not send updates.
The probability of selecting peer j to add is given by:

pj =
exp(−β · sim(w,wj))∑

k∈Ca
exp(−β · sim(w,wk))

(7)

where w is the local model, wj is the model of peer j, Ca
is the candidate add set, and β is a positive temperature-like
parameter that controls the sharpness of the distribution.

The probability of selecting peer j to remove is similarly
defined as:

pj =
exp(β · sim(w,wj))∑

k∈Cr
exp(β · sim(w,wk))

(8)

where Cr is the candidate remove set.
This encourages connections with peers that hold models

most probably trained on different or complementary data
distributions, thereby promoting greater representation of global
data during aggregation. We use softmax for guided selection,
since it offers controlled stochasticity, which reduces the risk
of getting stuck in local optima.

Topology Update. The selected peer to add is incorporated
into the wanted_senders set, while the selected peer to
remove is dropped. If the added peer is not already connected,
a handshake (SYN, SYN-ACK, ACK) is initiated to establish
communication.

While each node adapts its neighborhood independently,
the use of model dissimilarity as a selection signal creates a
self-reinforcing mechanism across the network. Nodes with
complementary data distributions become more connected over
time, enhancing the diversity of updates each node receives.
This indirectly aligns local model spaces with the global
data distribution, leading to more representative averaging
during training [22, 40]. As a result, even without centralized
coordination, the overall network topology evolves to better
support convergence under data heterogeneity.

We further support our intuition with two experiments in
Appendix B. The first tracks similarity between each node’s
model and the global model over time. The second, more
indicative experiment, measures how each node’s effective
training distribution, i.e., the combination of its local data and
peer updates, aligns with the true global distribution throughout
rounds. Both indicate that adaptive selection of dissimilar peers,
leads to more diverse updates and improved global alignment.

V. EVALUATION

A. Datasets and Partitioning

CIFAR-10 is a widely-used image classification dataset
consisting of 60,000 32×32 color images across 10 classes [52].
To simulate a non-IID data distribution, we partition the
dataset across clients using a Dirichlet distribution [53] with a
concentration parameter α = 0.1. This results in each client
having a different class distribution.

FEMNIST is a federated version of the Extended MNIST
dataset, containing handwritten characters from 62 classes
written by 3,550 users [54]. We report results on FEMNIST
in Appendix A-A and focus on CIFAR-10 in this section, as
the performance trends on FEMNIST are qualitatively similar.

B. Experimental and Implementation Setup

All experiments are conducted on a virtual machine hosted
on the Google Cloud Platform (GCP), configured with 8
virtual CPUs and 30 GB of system memory (machine type
c4-standard-8, Intel Emerald Rapids platform). The in-
stance does not include a GPU. We simulate a decentralized
system by deploying 16 parallel processes on this VM, each
acting as an individual node in the network. CPU cores and
memory are shared among all processes without isolation. Each
experiment consists of 8,000 communication iterations. A more
detailed overview of the models and parameters used is given
in Table II in Appendix A. To ensure reproducibility, a uniform
seed was employed for all pseudo-random generators within
each node.

For the CIFAR-10 learning task, we conduct two sets of
experiments, each using 16-node communication graphs. In
both sets, we evaluate the performance of our method alongside
baseline approaches across five independent runs with different
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Fig. 1. Performance metrics on CIFAR-10 with 16 nodes in a non-IID setting using degree-7 topologies. The figure presents, from left to right: (1) mean top-1
test accuracy over communication rounds (with shaded areas indicating standard deviation across five runs), (2) mean test loss, and (3) inter-node variance as a
measure of convergence stability. DissDL denotes our method initialized with a 7-regular topology; EL-Local applies the EL-Local algorithm with degree 7;
Fully Connected operates over a fully connected graph; and Static MH uses a static 7-regular topology with Metropolis-Hastings averaging.

random seeds. The first set uses graphs with degree 7, while
the second uses a more realistic degree of 3, which is bounded
by O(log n), where n is the number of nodes.

Our implementation1 is developed using the
DecentralizePy framework and executed in a
Python 3.11.2 environment. The communication topology is
initialized as a random 16-nodes 7-regular or 3-regular graph
and is dynamically updated throughout training. Specifically,
the topology is re-evaluated every k = 5 communication
rounds to adapt to changing contribution dynamics, using
β = 500 for the softmax temperature.

C. Baselines

We compare the performance of our algorithm against three
DL baselines, specifically variants of D-PSGD.

First, we consider a baseline with a fixed 7-regular or 3-
regular random graph, consistent with the initial topology used
in our approach. This baseline employs the Metropolis-Hastings
(MH) averaging scheme provided by the DecentralizePy
framework [48] to mitigate topological bias.

The second baseline uses a fully connected topology, which
serves as an upper bound on achievable performance [38].

The third baseline is EL-Local [26], which employs a
randomly selected k-degree topology at each communication
round. We set k = 7 or k = 3 to match the amount of data
sent in our implementation.

D. Evaluation Metrics

We evaluate each method using four primary metrics: mean
accuracy, mean test loss, inter-node variance, and total commu-
nication cost. All metrics are averaged over five independent
runs with different seeds and reported over communication
rounds.

Mean accuracy and test loss are computed by evaluating
each node’s model on a shared test set every 20 rounds, up to
1000 rounds, and every 40 rounds thereafter, then averaging
across all 16 nodes. Loss is calculated using cross-entropy.

1Code available at: https://gitlab.tudelft.nl/
cse3000-2025-robust-decentralized-learning/cse-3000-antreas-ioannou

Inter-node variance, used as a stability metric, is computed
at the same evaluation rounds by measuring the variance of
test accuracies across nodes, and then averaging across five
independent runs. Total communication cost reflects bandwidth
usage and is measured as the cumulative number of bytes sent
per node throughout training.

In addition to plotting trends over communication rounds,
we also measure the communication and convergence efficiency
of our method by recording how many rounds and how
much communication (in bytes) are needed to match the best
performance achieved by EL-Local.

E. Degree-7 Topologies
Our first set of experiments is conducted on the CIFAR-

10 dataset using topologies of degree 7, except for the fully
connected configuration. The results are visualized in Figure 1,
while detailed numerical values are provided in Table IV in
Appendix A-B.

As expected, the fully connected topology achieves the
highest initial performance but incurs more than twice the com-
munication cost of other methods (see Figure 3, Appendix A-B).
While it outperforms our approach in the early stages, DissDL
catches up in later rounds and ultimately reaches a comparable
top-1 accuracy, only 0.28 percentage points lower. This is
notable, as the fully connected graph is typically considered
an upper bound in decentralized learning scenarios.

Our proposed method converges faster than both EL-Local
and Static MH, reaching a target accuracy earlier, an accuracy
that EL-Local only approaches later in training. Specifically,
DissDL requires 1.34× fewer communication rounds and
communication cost to achieve the best top-1 accuracy of
EL-Local. Although EL-Local continues to improve over time,
it ultimately falls short of the performance reached by our
method by 0.69 percentage points. In contrast, the static
Metropolis-Hastings-based topology performs the worst in both
convergence speed and final accuracy.

In terms of test loss, DissDL closely follows the trend of
the fully connected topology, with only slightly higher values
throughout training. Toward the later stages, both methods
exhibit a mild increase in loss, eventually reaching levels
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Fig. 2. Performance metrics on CIFAR-10 with 16 nodes in a non-IID setting using 3-regular topologies. The figure shows, from left to right: (1) mean top-1
test accuracy over communication rounds (with shaded regions indicating standard deviation), (2) mean test loss, (3) inter-node variance as a measure of
convergence stability. DissDL refers to our dissimilarity-driven approach with a 3-regular initial topology; EL-Local applies the EL-Local algorithm with
degree 3; Fully Connected uses a fully connected graph; and Static MH uses a static random 3-regular topology with Metropolis-Hastings averaging.

comparable to EL-Local. This behavior is expected, as confident
but incorrect predictions in late training can slightly raise cross-
entropy loss, even when accuracy remains high.

Also as expected, the fully connected configuration shows
zero standard deviation across nodes due to uniform global
averaging. Notably, our method achieves lower variance than
EL-Local, indicating greater consistency across the network.
Finally, the three sparse methods transmit approximately the
same amount of data per round, resulting in nearly overlapping
communication curves (see Figure 3 in Appenidx A-B).

F. Degree-3 Topologies
In our second set of experiments, we evaluate the same set

of algorithms on 3-regular graphs, with the fully connected
configuration remaining unchanged. The results are presented
in Figure 2, while detailed numerical values are provided in
Table V in Appendix A-B.

While the overall trends mirror those observed in the 7-
degree setting, accuracy across all sparse methods is lower,
an expected outcome due to reduced connectivity and slower
information propagation in 3-regular topologies. DissDL and
EL-Local exhibit similar convergence dynamics; however,
DissDL consistently achieves higher accuracy throughout
training, with EL-Local only approaching comparable levels
near the end. As in the degree-7 case, DissDL requires 1.34×
fewer communication rounds and communication cost to reach
the best top-1 accuracy of EL-Local. Additionally, DissDL
surpasses EL-Local in best accuracy by 1.44 percentage points.

Once again, the static Metropolis-Hastings baseline lags
behind, demonstrating the slowest convergence and the weakest
final model performance. In terms of stability, DissDL exhibits
significantly lower inter-node variance than the other two
sparse methods, indicating more consistent learning across
the network.

In terms of test loss, DissDL again tracks closely with EL-
Local but maintains lower loss values throughout training,
reflecting its stronger predictive performance. The fully con-
nected topology continues to achieve the lowest loss overall,
while the static MH baseline shows the highest loss and
no improvement. The trends in test loss align well with

those observed in accuracy, further reinforcing the relative
performance of each approach. The communication cost per
round remains similar across the sparse methods, as expected
(see Figure 4 in Appenidx A-B).

These results highlight the effectiveness of DissDL in lower-
connectivity settings, where dynamic peer selection helps
mitigate the limitations imposed by sparse topologies. By
adaptively selecting peers based on model dissimilarity, DissDL
improves information diversity, enabling faster convergence
and more consistent learning across the network, even under
non-IID conditions. This demonstrates the broader utility
of dissimilarity-driven topology adaptation in decentralized
systems.

VI. CONCLUSION

We introduced DissDL, a fully decentralized learning al-
gorithm that dynamically adapts its communication topology
based on local model dissimilarity. By allowing nodes to se-
lectively connect with peers whose models differ meaningfully
from their own, DissDL enhances training robustness under non-
IID data distributions. Our experimental evaluation on CIFAR-
10 and FEMNIST demonstrated that DissDL consistently out-
performs static and randomized baselines in terms of accuracy,
convergence speed, and inter-node variance, while maintaining
comparable communication overhead. Notably, it can approach
the performance of fully connected networks while using
over 2× less communication. These results highlight model
dissimilarity as a promising criterion for adaptive topology
optimization in decentralized learning, especially under non-
IID data. Future work could explore extending these benefits to
even sparser or more heterogeneous environments by refining
the peer scoring mechanism or incorporating additional node-
level features alongside dissimilarity. One potential limitation
of DissDL is that, while the in-degree of each node is fixed,
the out-degree is unconstrained, meaning some nodes might
be selected too frequently as senders. This could lead to
communication imbalance. Future extensions could address
this by penalizing over-selected nodes during peer selection, or
by enforcing hard limits on the number of outgoing messages
per node.
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VII. RESPONSIBLE RESEARCH

Throughout this project, careful consideration was given
to ensuring the reproducibility and integrity of the research.
The study was conducted in accordance with the Netherlands
Code of Conduct for Research Integrity [55]. The methodology
was implemented entirely in Python using the open-source
DecentralizePy framework. All experiments were carried out
in a controlled and consistent virtual environment, with fixed
random seeds and synchronized versioning of all dependencies.
All experiments were conducted on publicly available datasets.
Moreover, the full codebase and detailed documentation, as
well as results from the experiments, have been published,
enabling all results to be replicated under the same conditions.

To uphold research integrity, no data augmentation or cherry-
picking techniques were applied to influence experimental
outcomes. All baselines and comparisons were implemented
faithfully based on existing literature or official repositories.
Standard performance metrics such as accuracy and communi-
cation cost were selected and reported transparently to reflect
both learning effectiveness and system efficiency.

One key reproducibility challenge arose from the inherent
stochasticity of decentralized systems. Peer discovery, model up-
dates, and communication patterns introduce non-determinism,
particularly under dynamic topologies. To mitigate this, we
conducted multiple simulation runs with different seeds and
reported variance across runs and/or nodes in performance
plots.

However, due to the asynchronous and probabilistic nature of
peer discovery in DissDL, even runs with a fixed random seed
can yield slight differences in learning dynamics. This stems
primarily from the timing of decentralized handshakes, limited
by the hardware, which can affect whether a peer participates
in a given averaging step. As a result, model updates may
differ subtly across runs, even if the communication topology
remains unchanged. Therefore, reproducibility in this context
refers to consistent performance trends and statistical behaviors
over multiple runs, rather than exact repeatability of individual
model updates.

Additionally, we openly acknowledge the use of GPT-4o
as a coding assistant for tasks such as code refactoring, text
shortening, and LaTeX editing. The model was not used for
substantive writing, but rather to support through grammar
checks, structural feedback, and efficiency improvements. All
research design, analysis, and interpretation were conducted
independently to maintain academic integrity.
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[18] I. Hegedűs, G. Danner, and M. Jelasity. “Gossip Learning
as a Decentralized Alternative to Federated Learning”. In:
Distributed Applications and Interoperable Systems. Cham:
Springer International Publishing, 2019, pp. 74–90.

9

https://arxiv.org/abs/2111.04287
http://arxiv.org/abs/2111.04287


[19] L. Kong, T. Lin, A. Koloskova, M. Jaggi, and S. Stich.
“Consensus Control for Decentralized Deep Learning”. In:
Proceedings of the 38th International Conference on Machine
Learning. International Conference on Machine Learning.
PMLR, July 1, 2021, pp. 5686–5696.

[20] L. Palmieri, C. Boldrini, L. Valerio, A. Passarella, and M.
Conti. “Impact of Network Topology on the Performance of
Decentralized Federated Learning”. In: Computer Networks
253 (Nov. 1, 2024), p. 110681.

[21] X. Gao, W. Zhang, T. Chen, J. Yu, H. Q. V. Nguyen, and
H. Yin. “Semantic-Aware Node Synthesis for Imbalanced Het-
erogeneous Information Networks”. In: Proceedings of the 32nd
ACM International Conference on Information and Knowledge
Management. CIKM ’23. New York, NY, USA: Association
for Computing Machinery, Oct. 21, 2023, pp. 545–555.

[22] B. L. Bars, A. Bellet, M. Tommasi, E. Lavoie, and A.-M.
Kermarrec. “Refined Convergence and Topology Learning for
Decentralized SGD with Heterogeneous Data”. In: Proceedings
of The 26th International Conference on Artificial Intelligence
and Statistics. International Conference on Artificial Intelli-
gence and Statistics. PMLR, Apr. 11, 2023, pp. 1672–1702.

[23] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons. “The Non-
IID Data Quagmire of Decentralized Machine Learning”. In:
Proceedings of the 37th International Conference on Machine
Learning. International Conference on Machine Learning.
PMLR, Nov. 21, 2020, pp. 4387–4398.

[24] B. Cox, L. Y. Chen, and J. Decouchant. “Aergia: leveraging
heterogeneity in federated learning systems”. In: Proceedings
of the 23rd ACM/IFIP International Middleware Conference.
2022, pp. 107–120.

[25] Y.-C. Lin, J.-J. Kuo, W.-T. Chen, and J.-P. Sheu. “Rein-
forcement Based Communication Topology Construction for
Decentralized Learning with Non-IID Data”. In: 2021 IEEE
Global Communications Conference (GLOBECOM). 2021
IEEE Global Communications Conference (GLOBECOM). Dec.
2021, pp. 1–6.

[26] M. De Vos, S. Farhadkhani, R. Guerraoui, A.-m. Kermarrec,
R. Pires, and R. Sharma. “Epidemic Learning: Boosting
Decentralized Learning with Randomized Communication”.
In: Advances in Neural Information Processing Systems 36
(Dec. 15, 2023), pp. 36132–36164.

[27] D. Menegatti, A. Giuseppi, C. Poli, and A. Pietrabissa. “Dy-
namic Topology Optimization for Efficient and Decentralised
Federated Learning”. In: 2024 IEEE International Conference
on Big Data (BigData). 2024 IEEE International Conference
on Big Data (BigData). Dec. 2024, pp. 7939–7945.

[28] R. Schollmeier. “A Definition of Peer-to-Peer Networking
for the Classification of Peer-to-Peer Architectures and Ap-
plications”. In: Proceedings First International Conference
on Peer-to-Peer Computing. First International Conference on
Peer-to-Peer Computing. Aug. 2001, pp. 101–102.

[29] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.
“A Survey and Comparison of Peer-to-Peer Overlay Network
Schemes”. In: IEEE Communications Surveys & Tutorials 7.2
(Sum. 2005), pp. 72–93.

[30] S. B. Mokhtar, J. Decouchant, and V. Quéma. “Acting: Accurate
freerider tracking in gossip”. In: 2014 IEEE 33rd International
Symposium on Reliable Distributed Systems. IEEE. 2014,
pp. 291–300.

[31] J. Decouchant, S. B. Mokhtar, A. Petit, and V. Quéma.
“PAG: Private and accountable gossip”. In: 2016 IEEE 36th
International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2016, pp. 35–44.

[32] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-Based Com-
putation of Aggregate Information”. In: 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Pro-
ceedings. 44th Annual IEEE Symposium on Foundations of

Computer Science - FOCS 2003. Cambridge, MA, USA: IEEE
Computer. Soc, 2003, pp. 482–491.

[33] L. Wang, Y. Xu, H. Xu, M. Chen, and L. Huang. “Accelerating
Decentralized Federated Learning in Heterogeneous Edge
Computing”. In: IEEE Transactions on Mobile Computing
22.9 (Sept. 2023), pp. 5001–5016.

[34] M. Zhou, G. Liu, K. Lu, R. Mao, and H. Liao. “Accelerating
the Decentralized Federated Learning via Manipulating Edges”.
In: Proceedings of the ACM Web Conference 2024. WWW ’24.
New York, NY, USA: Association for Computing Machinery,
May 13, 2024, pp. 2945–2954.

[35] N. A. Tuan, A. Rizwan, S. J. S. Moe, A. N. Khan, and
D. H. Kim. “DFL Topology Optimization Based on Peer
Weighting Mechanism and Graph Neural Network in Digital
Twin Platform”. In: Complex & Intelligent Systems 11.6
(Apr. 22, 2025), p. 257.

[36] M. R. Behera and S. Chakraborty. “pFedGame - Decentralized
Federated Learning Using Game Theory in Dynamic Topology”.
In: 2024 16th International Conference on COMmunication
Systems & NETworkS (COMSNETS). 2024 16th International
Conference on COMmunication Systems & NETworkS (COM-
SNETS). Jan. 2024, pp. 651–655.

[37] S. Li, T. Zhou, X. Tian, and D. Tao. “Learning to Collab-
orate in Decentralized Learning of Personalized Models”.
In: 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2022,
pp. 9756–9765.

[38] M. Assran, N. Loizou, N. Ballas, and M. Rabbat. “Stochastic
Gradient Push for Distributed Deep Learning”. In: Proceedings
of the 36th International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, May 24,
2019, pp. 344–353.

[39] Z. Song, W. Li, K. Jin, L. Shi, M. Yan, W. Yin, and K.
Yuan. “Communication-Efficient Topologies for Decentralized
Learning with $O(1)$ Consensus Rate”. In: Advances in
Neural Information Processing Systems 35 (Dec. 6, 2022),
pp. 1073–1085.

[40] Y. Dandi, A. Koloskova, M. Jaggi, and S. U. Stich. Data-
Heterogeneity-Aware Mixing for Decentralized Learning.
Apr. 13, 2022. arXiv: 2204.06477 [cs]. URL: http://arxiv.org/
abs/2204.06477 (visited on 06/06/2025). Pre-published.

[41] S. A. Aketi, S. Kodge, and K. Roy. Neighborhood Gradient
Clustering: An Efficient Decentralized Learning Method for
Non-IID Data Distributions. Mar. 20, 2023. arXiv: 2209.14390
[cs]. URL: http : / / arxiv. org / abs / 2209 . 14390 (visited on
04/21/2025). Pre-published.

[42] S. A. Aketi, S. Kodge, and K. Roy. “Neighborhood Gradient
Mean: An Efficient Decentralized Learning Method for Non-
IID Data”. In: Transactions on Machine Learning Research
(Aug. 29, 2023).

[43] H. Gao, M. Lee, G. Yu, and Z. Zhou. “A Graph Neural Network
Based Decentralized Learning Scheme”. In: Sensors 22.3 (3
Jan. 2022), p. 1030.

[44] Y. Esfandiari, S. Y. Tan, Z. Jiang, A. Balu, E. Herron,
C. Hegde, and S. Sarkar. “Cross-Gradient Aggregation for
Decentralized Learning from Non-IID Data”. In: Proceedings
of the 38th International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, July 1,
2021, pp. 3036–3046.

[45] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. “A
Unified Theory of Decentralized SGD with Changing Topology
and Local Updates”. In: Proceedings of the 37th International
Conference on Machine Learning. International Conference on
Machine Learning. PMLR, Nov. 21, 2020, pp. 5381–5393.

[46] B. Ying, K. Yuan, Y. Chen, H. Hu, P. A. N. PAN, and W. Yin.
“Exponential Graph Is Provably Efficient for Decentralized

10

https://arxiv.org/abs/2204.06477
http://arxiv.org/abs/2204.06477
http://arxiv.org/abs/2204.06477
https://arxiv.org/abs/2209.14390
https://arxiv.org/abs/2209.14390
http://arxiv.org/abs/2209.14390


Deep Training”. In: Advances in Neural Information Processing
Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 13975–
13987.

[47] J. Wang, V. Tantia, N. Ballas, and M. Rabbat. “SlowMo:
Improving Communication-Efficient Distributed SGD with
Slow Momentum”. In: International Conference on Learning
Representations. Sept. 25, 2019.

[48] A. Dhasade, A.-M. Kermarrec, R. Pires, R. Sharma, and
M. Vujasinovic. “Decentralized Learning Made Easy with
DecentralizePy”. In: Proceedings of the 3rd Workshop on
Machine Learning and Systems. EuroMLSys ’23: 3rd Workshop
on Machine Learning and Systems. Rome Italy: ACM, May 8,
2023, pp. 34–41.

[49] E. L. Zec, T. Hagander, E. Ihre-Thomason, and S. Girdzijauskas.
“On the Effects of Similarity Metrics in Decentralized Deep
Learning under Distribution Shift”. In: Transactions on Machine
Learning Research (June 28, 2024).

[50] E. Schubert. “A Triangle Inequality for Cosine Similarity”. In:
Similarity Search and Applications. International Conference
on Similarity Search and Applications. Springer, Cham, 2021,
pp. 32–44.

[51] O. Arandjelovic. “Learnt Quasi-Transitive Similarity for Re-
trieval from Large Collections of Faces”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE,
June 2016, pp. 4883–4892.

[52] A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-10 dataset.
2009. URL: %5Curl%7Bhttps://www.cs.toronto.edu/~kriz/cifar.
html%7D (visited on 05/19/2025).

[53] T.-M. H. Hsu, H. Qi, and M. Brown. Measuring the Effects
of Non-Identical Data Distribution for Federated Visual Clas-
sification. Sept. 13, 2019. arXiv: 1909 . 06335 [cs]. URL:
http : / / arxiv. org / abs / 1909 . 06335 (visited on 05/19/2025).
Pre-published.

[54] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B.
McMahan, V. Smith, and A. Talwalkar. LEAF: A Benchmark
for Federated Settings. Dec. 9, 2019. arXiv: 1812.01097 [cs].
URL: http://arxiv.org/abs/1812.01097 (visited on 05/22/2025).
Pre-published.

[55] Netherlands Code Committee. Netherlands Code of Conduct for
Research Integrity. Published by the Association of Universities
in the Netherlands (VSNU). 2018.

11

%5Curl%7Bhttps://www.cs.toronto.edu/~kriz/cifar.html%7D
%5Curl%7Bhttps://www.cs.toronto.edu/~kriz/cifar.html%7D
https://arxiv.org/abs/1909.06335
http://arxiv.org/abs/1909.06335
https://arxiv.org/abs/1812.01097
http://arxiv.org/abs/1812.01097


APPENDIX A
EXPERIMENTAL DETAILS AND FURTHER EVALUATION

TABLE II
OVERVIEW OF DATASETS, MODELS, AND TRAINING CONFIGURATIONS USED
IN OUR EXPERIMENTS. FOR EACH DATASET, WE REPORT THE BATCH SIZE

(B), THE NUMBER OF LOCAL TRAINING STEPS PER COMMUNICATION
ROUND (R), AND THE LIST OF RANDOM SEEDS USED TO ENSURE

REPRODUCIBILITY.

Dataset Model b r Learning Rate Optimizer Random Seeds

CIFAR-10 GN-LeNet 5 10 0.05 SGD 90, 180, 270, 360, 450
FEMNIST CNN 5 10 0.05 SGD 90, 180, 270, 360, 450

A. Experiments on FEMNIST

TABLE III
TOP ACCURACY/LOSS AND EFFORT (IN ROUNDS AND BYTES) TO MATCH

EL-LOCAL’S TOP ACCURACY ON FEMNIST USING DEGREE-3 TOPOLOGIES.

Method Top Acc. Top Loss Rounds to
Match

Bytes to Match
(GB)

DissDL 86.30 0.39 1640 33.22
Epidemic 86.06 0.40 1920 38.94
Fully Connected 86.90 0.38 1000 101.41
Static MH 85.94 0.41 – –

To load the FEMNIST dataset, we use the official LEAF
preprocessing script with the settings -s niid -sf 0.1
-k 0 -t sample, which samples 10% of the data in a non-
IID manner and splits each user’s data into training and test
sets. In this setup, each client corresponds to a unique writer,
resulting in a natural non-IID distribution caused by differences
in handwriting style, character frequency, and writing patterns.

This setup contrasts significantly with the form of hetero-
geneity introduced in CIFAR-10, where we apply Dirichlet-
based partitioning with a concentration parameter α = 0.1.
The Dirichlet distribution induces label (class) heterogeneity,
meaning that each client tends to have samples from a limited
subset of classes, leading to highly imbalanced class distribu-
tions across nodes. In contrast, the LEAF-based partitioning
used in FEMNIST leads to feature heterogeneity, where all
clients may observe most classes, but the underlying input
distributions (e.g., writing styles or character shapes) vary
significantly. Feature heterogeneity is generally more subtle
and less challenging.

For the FEMNIST experiments, we adopt the same experi-
mental setup as in CIFAR-10, with the only difference being
the number of communication rounds, which is reduced to
2000, due to the easier nature of the task.

Figure 5 presents the performance of all methods on
FEMNIST, plotted over communication rounds. The fully
connected topology performs best overall, achieving slightly
higher accuracy and lower test loss than the other methods.
However, it requires more than four times the amount of
communication data, highlighting its inefficiency despite the
performance gain.

DissDL performs slightly better than both EL-Local and
Static MH. As shown in Table III, it requires 1.17× fewer

communication rounds and communication cost to reach the
top-1 accuracy achieved by EL-Local, while surpassing it by
0.24 percentage points in final accuracy. As expected, the static
graph performs the worst, though the differences among the
methods are relatively small in this setting.

The most noticeable difference among the sparse methods
lies in inter-node variance. After some initial communication
rounds, as models begin to converge, EL-Local exhibits higher
standard deviation compared to the other two methods. While
its variance does not increase indefinitely and it still is relatively
small, it remains marginally elevated compared to the near-zero
variance of the other two methods. This suggests that EL-Local
experiences slightly less consistent learning across nodes.

Overall, the narrow performance gap between methods can
be attributed to the relative ease of the FEMNIST task and
the nature of the heterogeneity. Since each client observes
samples from most or all classes, the challenge introduced by
data imbalance is significantly reduced, making it easier for
all topologies to achieve good performance.

B. Detailed Results and Additional Graphs on CIFAR-10

TABLE IV
TOP ACCURACY/LOSS AND EFFORT (IN ROUNDS AND BYTES) TO MATCH

EL-LOCAL’S TOP ACCURACY ON CIFAR-10 USING DEGREE-7 TOPOLOGIES.

Method Top Acc. Top Loss Rounds to
Match

Bytes to Match
(GB)

DissDL 69.58 1.01 5960 15.01
EL-Local 68.89 1.10 8000 20.14
Fully Connected 69.86 0.96 3360 18.12
Static MH 64.56 1.34 – –
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Fig. 3. Total communication cost per node (in bytes) on CIFAR-10 with
16 nodes in a non-IID setting using degree-7 topologies. DissDL refers to
our dissimilarity-driven approach with a 7-regular initial topology; EL-Local
applies the EL-Local algorithm with degree 7; Fully Connected uses a fully
connected graph; and Static MH uses a static random 7-regular topology with
Metropolis-Hastings averaging.
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TABLE V
TOP ACCURACY/LOSS AND EFFORT (IN ROUNDS AND BYTES) TO MATCH

EL-LOCAL’S TOP ACCURACY ON CIFAR-10 USING DEGREE-3 TOPOLOGIES.

Method Top Acc. Top Loss Rounds to
Match

Bytes to Match
(GB)

DissDL 66.24 1.25 5920 6.39
EL-Local 64.80 1.41 7920 8.55
Fully Connected 69.86 0.96 1520 8.20
Static MH 55.47 1.97 – –
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Fig. 4. Total communication cost per node (in bytes) on CIFAR-10 with
16 nodes in a non-IID setting using degree-3 topologies. DissDL refers to
our dissimilarity-driven approach with a 3-regular initial topology; EL-Local
applies the EL-Local algorithm with degree 3; Fully Connected uses a fully
connected graph; and Static MH uses a static random 3-regular topology with
Metropolis-Hastings averaging.

APPENDIX B
EMPIRICAL EVIDENCE OF IMPLICIT GLOBAL OPTIMIZATION

A. Similarity to Global Model Experiment

Measuring similarity to a global model over time helps
quantify how well each node integrates distributed knowledge
from the rest of the network. Higher similarity implies more
effective parameter consensus and global coordination, which
are often desired in decentralized optimization.

We define the global model at a given round as the average
of all node models at that round:

θglobal
t =

1

N

N∑
i=1

θit (9)

where θit is the model of node i at round t, and N is the total
number of nodes.

Each node’s similarity to the global model is then computed
using the average cosine similarity across all model layers:

sim(θit, θ
global
t ) =

1

L

L∑
ℓ=1

cos(θiℓ,t, θ
global
ℓ,t ) (10)

where L denotes the number of layers, and cos(·, ·) represents
the cosine similarity between flattened parameter vectors of a

given layer.
This layer-wise averaging accounts for differences in layer

sizes and ensures that all parts of the model contribute equally
to the overall similarity.

To conduct this experiment, we modify the training loop
to periodically save each node’s model. After each evaluation
round (every 20 rounds for the first 1000 iterations and every
40 rounds thereafter), all local models are collected, and the
global model is computed as their arithmetic mean. Each node’s
similarity to this global model is then calculated and stored.

We run this setup under the same configurations as in the
main experiments: CIFAR-10 with both 7-regular and 3-regular
topologies. Each configuration is executed with five different
random seeds to account for initialization variability. We omit
FEMNIST from this analysis, as its relative ease and the nature
of its feature heterogeneity, being generally more subtle and
less challenging, are unlikely to provide additional insight into
the effects of similarity-based peer selection.

After training, we extract the similarity scores from each
node’s log directory, aggregate them by communication round,
and compute the mean and standard deviation across all nodes
and seeds. This produces a time series showing how the average
similarity evolves, with shaded regions representing inter-node
variability.
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Fig. 6. Cosine similarity to the global model over communication rounds
for CIFAR-10 under degree-3 and degree-7 topologies. Curves show the mean
similarity across five runs per setup; shaded areas indicate standard deviation
across all nodes and runs.

Figure 6 shows the results for CIFAR-10 under both degree-3
and degree-7 topologies. In both cases, the cosine similarity
between each node’s model and the global model starts high
and continues to improve steadily over time. Degree-7 begins
with slightly higher alignment and converges more quickly
due to its denser connectivity. This similarity-to-global metric
provides insights into convergence behavior and network-wide
agreement: higher values typically suggest better coordination
and alignment with global optimization objectives.

However, in our case, the global model is constructed by
aggregating the partial models generated by our own algorithm,
rather than referencing an external target. As a result, while
the high similarity may reflect effective collaboration, it could
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Fig. 5. Performance metrics on FEMNIST with 16 nodes in a non-IID setting using degree-3 topologies. The figure shows, from left to right, top to bottom:
(1) mean test accuracy over communication rounds (with shaded regions indicating standard deviation), (2) mean test loss, (3) inter-node variance as a measure
of convergence stability, and (4) total communication cost per node (in bytes). DissDL refers to our dissimilarity-driven approach with a 3-regular initial
topology; EL-Local applies the EL-Local algorithm with degree 3; Fully Connected uses a fully connected graph; and Static MH uses a static random
3-regular topology with Metropolis-Hastings averaging.

also represent a self-reinforcing artifact of the system itself.
Still, the upward trend and narrowing standard deviation
in both configurations suggest that dissimilarity-based peer
selection promotes stronger convergence and consensus over
time. Nevertheless, this metric is not strong enough on its own
to conclude our intuition.

To address this limitation, we also evaluate whether nodes
are implicitly exposed to the global distribution by tracking
how their indirect exposure to label distributions evolve. This
second experiment uses a static global reference and serves
to validate whether the topological adaptations promote actual
data diversity and global optimization rather than just parameter
alignment.

B. Similarity to Global Data Distribution Experiment

To assess whether local peer selection promotes global
alignment under data heterogeneity, we estimate how closely
each node’s cumulative training exposure reflects the global
data distribution over time.

Let g ∈ RC denote the global data distribution across C
classes, and let di ∈ RC be the static class distribution of node
i. For each round t, we define an effective training distribution

for node i, denoted d̃
(t)
i , as the weighted sum:

d̃
(t)
i = t · di +

∑
j ̸=i

α
(t)
ij · dj , (11)

where α
(t)
ij is the cumulative count of how often node i has

received model updates from peer j up to round t.
We then compute the cosine similarity between each d̃

(t)
i

and the global distribution g at every round:

sim(t)
i = cos

(
d̃
(t)
i ,g

)
. (12)

This similarity serves as a proxy for how globally representative
node i’s training exposure has become by round t.

For this experiment, we focus on the CIFAR-10 dataset with
7- and 3-regular topologies, each run with five different random
seeds. We omit FEMNIST, as its relative simplicity and milder
heterogeneity make it less informative for evaluating global
alignment dynamics.

Table VI quantifies the improvement in alignment with the
global data distribution across five runs on CIFAR-10 using a
degree 3 graph. All runs start with moderate cosine similarity
values and consistently improve by around 0.27–0.31, reaching
high final similarities above 0.91.

Figure 7 visualizes this trend across communication rounds.
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TABLE VI
PER-RUN SIMILARITY IMPROVEMENTS FOR CIFAR-10 WITH DEGREE-3

TOPOLOGY. WE REPORT THE MEAN COSINE SIMILARITY TO THE GLOBAL
DATA DISTRIBUTION AT THE START AND END OF TRAINING, AS WELL AS

THE AVERAGE IMPROVEMENT. MIN FINAL AND MAX FINAL REFER TO THE
LOWEST AND HIGHEST FINAL SIMILARITY ACROSS ALL NODES WITHIN

EACH RUN, INDICATING THE SPREAD OF ALIGNMENT OUTCOMES.

Run ID Start Sim. Final Sim. Avg Impr. Min Final Max Final

run_1 0.632 0.926 0.294 0.806 0.993
run_2 0.619 0.927 0.308 0.828 0.994
run_3 0.642 0.914 0.272 0.812 0.988
run_4 0.624 0.914 0.291 0.794 0.989
run_5 0.656 0.931 0.275 0.802 0.994
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Fig. 7. Average cosine similarity of nodes’ aggregated data distributions to
the global data distribution over time for CIFAR-10 (degree-3). the shaded
area represents standard deviation, capturing both inter-node and inter-run
variability across 5 runs.

The curve shows the mean cosine similarity to the global
distribution, averaged across all nodes and all runs. The shaded
area represents the standard deviation over this set, i.e., how
much individual nodes (across five random seeds) differ from
the average at each round. This variability captures both inter-
node and inter-run divergence, and its relatively narrow range
(≈ ± 0.05) indicates that the alignment process is robust and
consistent across different initializations and data splits. After
less than 1500 rounds, nodes reach an average similarity to
the global distribution of over 0.9, which is relatively high.

TABLE VII
PER-RUN SIMILARITY IMPROVEMENTS FOR CIFAR-10 WITH DEGREE-7

TOPOLOGY. WE REPORT THE MEAN COSINE SIMILARITY TO THE GLOBAL
DATA DISTRIBUTION AT THE START AND END OF TRAINING, AS WELL AS

THE AVERAGE IMPROVEMENT. MIN FINAL AND MAX FINAL REFER TO THE
LOWEST AND HIGHEST FINAL SIMILARITY ACROSS ALL NODES WITHIN

EACH RUN, INDICATING THE SPREAD OF ALIGNMENT OUTCOMES.

Run ID Start Sim. Final Sim. Avg Impr. Min Final Max Final

run_1 0.810 0.986 0.176 0.971 0.996
run_2 0.830 0.986 0.156 0.969 0.998
run_3 0.819 0.985 0.166 0.970 0.995
run_4 0.805 0.982 0.177 0.962 0.993
run_5 0.834 0.986 0.152 0.965 0.997

Table VII summarizes the similarity improvements for
CIFAR-10 with a degree-7 graph. Compared to the degree-3
case, all runs start with relatively high cosine similarity values

0 1000 2000 3000 4000 5000 6000 7000 8000
Round

0.80

0.85

0.90

0.95

1.00

Co
sin

e 
Si

m
ila

rit
y

Average Similarity to Global Distribution Over Time

Average Similarity
±1 Std Dev

Fig. 8. Average cosine similarity of nodes’ aggregated data distributions to
the global data distribution over time for CIFAR-10 (degree-7). The shaded
area represents standard deviation, capturing both inter-node and inter-run
variability across 5 runs.

(≈ 0.81–0.83), reflecting both the increased initial connectivity
and the fact that measurements begin at round 20, after each
node has already selected a few informative peers. Across all
five runs, similarity continues to increase throughout training,
reaching very high final values above 0.99 and approaching
the perfect 1.0. Notably, the lowest final similarity within any
run still exceeds 0.96, indicating that all nodes achieve strong
alignment with the global distribution.

Figure 8 illustrates this progression over time. The curve
depicts the mean similarity to the global distribution, averaged
across all nodes and all runs. The shaded area shows the
standard deviation, reflecting how much individual nodes
diverge from the mean at each round. Despite the already strong
starting alignment, the similarity continues to rise across rounds,
showing that nodes benefit from adaptively selecting dissimilar
peers. Toward the later rounds, the standard deviation narrows
significantly, suggesting stable and consistent convergence
behavior across different runs and nodes.

These results support our intuition that the proposed peer
selection strategy promotes diverse data exposure and better
approximation of the global data distribution. By selectively
receiving models from dissimilar peers, nodes are effectively
exposed to a more representative subset of the global data.
This leads to improved global model quality, approaching
the performance one would expect in a fully connected
network, where each node has indirect access to the entire data
distribution through complete mixing.
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