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Abstract

Recent studies have shown that gesture annotation schemes should account for the multidi-
mensional nature of gestures and define their meaning in terms of referentiality and pragmatic
meaning. However, accurately annotating gesture meaning in densely crowded social settings
using such a coding scheme remains to be accomplished. This study uses the MultiModal Mul-
tiDimensional (M3D) labelling scheme and the EUDICO Linguistic Annotator (ELAN) tool to
annotate video data from the Conference Living Lab (ConfLab) dataset. The ConfLab dataset
contains 8 video recordings of standing conversations at a conference, captured from an overhead
perspective, and low-frequency audio recordings of the conversations. A total of 1119 clips of in-
dividual gesture instances are generated. This data is then fed into a VideoMAE model pre-trained
on the UCF101 dataset. The model achieves an overall accuracy score of 49% on the test set but
shows a significant bias towards one class due to the imbalanced dataset. Due to the small size of
the dataset and the similarities between gestures with different meanings, the model cannot iden-
tify different gesture types. The results demonstrate that high-frequency audio or transcripts of
the conversations are vital to avoid strong and potentially incorrect assumptions when annotating
gesture meaning. Further investigation is required into the annotation and classification of prag-
matic meanings and Machine Learning solutions for multi-class, multi-label video classification
problems.

1 Introduction
Gestures in communicative settings play a significant role in conveying meaning. Not only do they
carry semantic meaning that may not be deciphered directly from speech, but also coordinate with
it to visually assist the listener [19]. Traditionally, gesture meaning has been defined either in terms
of its referentiality, such as McNeill's (1992) functional dimensions (iconicity, metaphoricity, deixis
and beat [18]), or in terms of its pragmatic functions in discourse, which convey information about a
speaker's communicative intent independent of their referentiality [22]. Nevertheless, modern frame-
works for labelling gestures account for their multi-dimensional nature. Rather than being assigned
a single category or function, gestures are classified as having multiple overlapping referential and
pragmatic dimensions.

However, it is unclear whether gestures produced in densely crowded social settings, colloquially
referred to as "in the wild", can be accurately classified. In previous studies, the annotated data was
collected in the lab or in an equally controlled environment. Furthermore, they involved recordings
of just one or two people at a time. As such, it is yet to be explored whether existing gesture labelling
schemes can be used to annotate recordings of multiple, unrestricted interactions.

This study analyses whether VideoMAE [25] and the MultiModal MultiDimensional (M3D) la-
belling scheme [22] can be used to annotate and accurately classify gestures produced in densely
crowded social settings. The initial step involves a literature survey on existing coding schemes for
annotating gestures and Deep Learning models for video classification. After selecting the M3D
labelling system, recordings of people from the ConfLab dataset are annotated via the ELAN an-
notation tool. Finally, a pre-trained VideoMAE model is fine-tuned on a dataset containing 1119
gesture clips. The results show that gesture meaning cannot be properly annotated without record-
ings or transcripts of co-occurring speech. Due to the bias caused by an imbalanced dataset and the
visual similarity of hand gestures despite their different meanings, VideoMAE cannot effectively
distinguish gesture types.
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2 Background and Related Work
This section introduces previous work upon which this study is based. Section 2.1 discusses previ-
ous definitions and conceptions of gesture meaning. Section 2.2 presents various coding schemes
and analyses their main strengths and weaknesses. Finally, Section 2.3 explains why transformer-
based models were considered for the project and compares two state-of-the-art video classification
models: ViViT [2] and VideoMAE [25].

2.1 The Meaning of Gesture
McNeill [18] distinguishes four types of gestures: iconic, metaphorical, deictic and beats (see defi-
nitions in appendix A.1). The first two types are described as ’representational’ and encompass body
movements that express or elaborate on some meaning communicated through co-occurring speech.
Research has shown that this division of functional types needs to be expanded to better encapsulate
the multi-dimensional nature of gesture. The first argument concerns identifying meaning beyond a
gesture’s referentiality—the quality of referring to some external entity. Several annotation schemes
(see subsection 2.2) partially define gesture meaning in terms of its pragmatic function. Although no
clear, widespread conception of ’pragmatic function’ seems to exist within the field, we can under-
stand it as the functional purpose of a gesture in an interactive setting, independent of its referential
value.

Secondly, there is a general misconception concerning ’beat’ or non-referential gestures. In fact,
many studies have described them as basic, ’meaningless’ movements that are rhythmically aligned
with co-occurring speech. For example, Dimitrova et al. (2016) claim that beat gestures "represent
rhythmic nonmeaningful hand movements" [7]. With the introduction of pragmatic functions, beat
gestures can be recognised as carrying pragmatic meaning. Results from Kong et al.’s (2014) study
show that 21.4% of the identified beat gestures guided and controlled the flow of speech, whereas
the remaining 78.6% served to reinforce "intonation or prosody of speech" [16].

Thirdly, many interpret McNeill’s functional types to be mutually exclusive, that is, a gesture can
only be annotated under a single label. This is not representative of the meaning that gestures carry
in real-life scenarios. The MultiModel MultiDimensional (M3D) labeling system manual provides a
clear example [22]. Figure 1 shows a speaker shows a speaker making a series of counting gestures
while pointing to a tree. The manual interprets this instance as having a dimension of iconicity
(represented by the counting) and of deixis (due to the pointing motion)1.

Figure 1: Speaker producing a counting gesture directed towards a tree

1Retrieved from https://www.youtube.com/watch?v=fbGfe78_2jc
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The next Section shows that McNeill’s types constitute the basis for emerging theories and con-
ceptions of gesture meaning. Nonetheless, for a coding scheme to genuinely capture meaning, it
must consider the abovementioned points.

2.2 Gesture Annotation Schemes
Crowder [5] expands on McNeill’s [18] and Crowder and Newman’s [6] work by introducing a
coding scheme that combines both of their divisions of gesture types—one based on the "degree
of representational features" [18] and another based on functional value. The functional value of a
gesture represents the degree to which it extends upon or adds meaning to co-occurring speech. A
gesture is classified as redundant if it adds no new information to what is being verbally expressed,
as enhancing if it extends the meaning of the language in some significant way2, and as content-
carrying if it provides new information not contained in the speech. Although Crowder’s proposal
has not been realised as an actual coding scheme for video annotation, the idea of a dual classification
of gestures based on their representational and functional meanings has influenced emerging coding
schemes. A schematic overview of this scheme can be found in appendix A.2.

Kongb et al.’s study [16], which utilizes the DoSaGE database, examines how age and linguistic
performance relate to the frequency of gesture employment [16]. The annotations are based on
gesture form and function, coupled with linguistic information from speech. These three factors
comprise the meaning of a gesture. The categories of form are the following: iconic, metaphoric,
deictic, emblem, beat and non-identifiable. Once again, this shows a clear influence of McNeill’s
work [18]. The functions of gestures are listed as 1) providing additional information to the message
conveyed, 2) enhancing the speech content, 3) providing alternative means of communication, 4)
guiding and controlling the flow of speech, 5) reinforcing the intonation or prosody of speech, 6)
assisting lexical retrieval, 7) assisting sentence re-construction and 8) no specific function deduced.
This coding scheme provides an elaborate yet easy-to-implement account of meaning. However,
relying on speech transcripts to obtain linguistic information poses a challenge for this project, given
that only low-frequency audio–from which no transcripts can be made–is available in the ConfLab
dataset.

Trujillo et al. [26] suggest that 1) regarding speech and gesture as equally important aspects of
communication and 2) studying their alignment will result in a better understanding of how humans
adapt to contextual interaction requirements. Each gesture is labelled as either representational
(iconic or metaphoric [18]), abstract deictic, pragmatic (beats, emphatics and stance modifiers [15]),
emblem (generally recognised gestures such as a ’thumbs-up’) or interactive (e.g. a deictic that
directly addresses the other speaker). The main pitfall of this scheme is that the categories above are
mutually exclusive, that is, it is assumed that each gesture pertains to a single category.

In contrast, the MultiModal MultiDimensional (M3D) labelling scheme [22] rejects the idea that
gesture types are mutually exclusive. It provides a multidimensional coding annotation framework
where gesture meaning is based on two independent tiers: semantic and pragmatic. See appendix
A.1 for definitions of these terms. These tiers parallel both Crowder’s [5] and Kong et al.’s [16] ap-
proaches. The semantic meaning of a gesture concerns its referentiality3 and its categories (iconicity
metaphoricity, deixis, emblem and beat/non-referential) are once again based on McNeill’s func-
tional dimensions [18]. The pragmatic dimension refers to the function of a gesture with respect to
co-occurring speech. This tier contains five function types: speech act marking, operational marking,

2The definition of this term remains vague throughout Crowder’s paper. It can be understood as an instance where the
gesture supports the spoken content by visually representing some complex concept. For instance, Crowder provides the
example of a child making an o shape with their hand to represent the concentration of rays in the sun [5]

3Referred to as the ’degree of representational features’ by Crowder and as ’form’ by Kong et al.

3



stance-taking marking, discourse organisation, and interactional marking.
The main strength of this scheme is that it is available as a template that can be loaded into the

ELAN annotation tool (see Figure 2). Moreover, there are online tools available such as an in-depth
manual on how the system works [22] and a series of tutorial videos4. Therefore, I believe the M3D
system is the most accessible and comprehensive coding scheme available so far.

2.3 Transformers for Video Classification
Two types of architectures were considered for this project: deep convolutional networks ([10], [4])
and transformer-based architectures ([2], [25]). While convolutional networks have traditionally
been the standard for computer vision tasks, recent research indicates that transformer architectures
can be highly effective for video classification tasks, often surpassing the performance of state-of-
the-art CNN-based methods.

Dosovitskiy et al. show that Vision Transformer (ViT) attains more favourable results than state-
of-the-art CNNs at a lower pre-training cost [8]. They argue that these results can only be achieved
on large-scale datasets because ViT has fewer image-specific inductive biases than convolutional
models. This poses a problem for our video classification task, as it involves an extremely small
dataset of 1.1k clips (see Section 4.2). However, Arnab et al. show that video vision transformers
can be effectively trained on small datasets by leveraging pre-trained image modes and applying
regularisation methods during training [2]. ViViT is a pure-transformer architecture that extracts a
sequence of spatiotemporal tokens from the input video and computes multi-headed self-attention.
Arnab et al. propose multiple model variants with differing approaches for tokenisation and fac-
torisation of the input video’s spatiotemporal dimensions. As such, ViViT provides an adaptable
framework that can be trained on a wide variety of datasets, including smaller-scale ones.

Tong et al. propose another transformer-based model inspired by ImageMAE [13]. Video-
MAE uses a masked autoencoder (MAE) architecture with ViT [8] as a backbone to perform self-
supervised video pre-training [25]. Tong et al. show that VideoMAE yields favourable results with
an extremely high masking ratio5 of around 90% to 95%. Furthermore, VideoMAE achieves rela-
tively good results when trained on small datasets. For instance, it achieved a Top-1 Accuracy score
of 62.6% with 3.5k clips from the HMDB51 dataset [17] and 91.3% with 9.5k clips from the UCF101
dataset [24]. Most importantly, VideoMAE outperforms other state-of-the-art methods—including
ViViT—when trained on Something-Something V2 [12] and Kinetics 400 [14]. Comparison tables
extracted from the original paper can be found in appendix A.3.

3 Approach
This section summarises the approach taken for this study based on three main pillars: selecting the
annotation framework, annotating video data, and fine-tuning a video classification model on the
annotated data.

Selection of annotation framework. Based on the information collected in Section 2.1, gesture
meaning should be multi-dimensional6 and account for both referentiality and pragmatic meaning.
The selected coding scheme should 1) enable us to annotate a gesture’s meaning regardless of the
physicality of its motion, and 2) be reproducible in annotation tools such as Covfee [20] and ELAN
[28]. Ultimately, the M3D coding scheme was chosen as the best fit. Other coding schemes (namely

4Visit https://m3d.upf.edu/home for further information.
5A high masking ratio indicated that a large portion of the input video is masked during training, increasing the difficulty

of video reconstruction.
6In the sense of allowing annotation of a gesture under multiple labels.

4



[5] and [16]) also fulfill the requirements mentioned above. However, the M3D system provides
additional benefits—namely a publicly available manual on how to use M3D for annotation and a
template that can be directly loaded into ELAN—that make it the most optimal choice.

Data annotation. The selected annotation tool (software) and scheme are used to annotate
video data from the Conference Living Lab (ConfLab) dataset [28]. A detailed explanation of this
dataset can be found in Section 4.1. The EUDICO Linguistic Annotator (ELAN) tool was chosen
to perform the annotations. Not only is it the tool most frequently used among the surveyed studies
(see for instance [16] and [22]), but it also contains functionality to load pre-made templates of
coding schemes. This provides a more time-efficient solution than manually creating tiers with their
required internal dependencies.

Model fine-tuning. Section 2.3 shows that transformer-based architectures can be effective
when trained on small datasets. Due to time constraints, it was decided to fine-tune an existing
machine-learning model rather than develop a new one. As it seemingly outperforms its predecessor
ViViT [2], VideoMAE [25] was chosen.

4 Experimental Setup
This section explains how the research was conducted. Section 4.1 focuses on the data annotation
process that was carried out using ELAN [28]. It explains the main challenges encountered in this
process. Section 4.2 shows how the annotated data was pre-processed before fine-tuning the model.

4.1 Data Annotation
ELAN was chosen as the annotation tool, as mentioned in Section 3, allowing the pre-existing M3D
template7 to be loaded. The hierarchical structure of the semantic and pragmatic sub-tiers as they
are shown in the application’s interface can be seen in Figure 2.

(a) Semantic tier (b) Pragmatic tier

Figure 2: Hierarchical structure of the Meaning Dimension in ELAN. The semantic and pragmatic
meanings are annotated independently of each other.

The ConfLab dataset contains 1 hour, 18 minutes and 10 seconds of recorded footage of a con-
ference from an overhead view8 (see Figure 15 from appendix A.5) [28]. Coupled with the fact that
the conference had 48 attendees, annotating the entire dataset was not viable due to the project’s

7This template can be downloaded from https://osf.io/ankdx/.
8Skeleton data of the participants and low-frequency recordings of their conversations are also included.
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time constraints. As such, approximately 40 minutes of footage have been annotated for 23 out of
the 48 attendees. Each annotation file corresponds to a single attendee—if 5 of the chosen attendees
are shown in a video segment, 5 separate annotation files are created.

(a) (b)

Figure 3: The speaker utters "It’s saying that you do some geoengineering for a little while" as
he draws a vertical line with his arm. This line represents the abstract concept of time. Example
retrieved from the M3D manual [22].

The main bottleneck of the annotation process is the lack of clear audio from which to retrieve
the utterances of the speakers. As explained in the M3D manual [22], the meaning of a gesture is
not independent of its co-occurring speech—it is partially constituted by it. For instance, a gesture
is labelled as metaphoric if it illustrates an abstract concept used in speech (see Figure 3). Without
knowing whether a gesture represents an abstract or concrete concept, one must assume it is either
iconic or metaphoric.

Three key factors shaped the annotation process. Firstly, the semantic meaning of gestures is
annotated based on strong assumptions based on their observed form and the overall trajectory of
the associated articulators. Gestures that involve an index finger pointing toward some concrete or
imaginary entity in space are automatically classified as deictic. Moreover, any gesture representing
some form of counting is assumed to be iconic. Similarly, all rotational hand and arm motions are
labelled as metaphoric. This is based upon McNeill’s [18] claim that "rotation is a frequent gestural
metaphor for trying". Secondly, due to time constraints and the lack of high-quality audio, pragmatic
meanings were not annotated in this project. The M3D manual lists a total of 23 pragmatic func-
tions [22], which can be found in appendix A.4. These functions are inherently dependant on speech
content and, unlike semantic meaning, cannot be partially inferred from a gesture’s form and trajec-
tory. In fact, the M3D manual highlights the importance of annotating pragmatic meaning in parallel
with other tiers9 that solely account for verbal content [22]. Further discussion on the ambiguity of
gestures without co-occurring speech and the implications of omitting pragmatic meaning in this
project can be found in Section 5.3. Thirdly, since a single gesture can have multiple dimensions
of semantic meaning [22], this is a multi-class, multi-label classification problem. However, due to
the challenge of annotating gestures without co-occurring speech, it was decided only to annotate
one dimension per gesture. Although this approach does not comply with the criteria established in
Section 2.1, it eased the annotation and model training processes. The VideoMAE model used in
this study is a multi-class classification model that predicts one label per input.

9These kind of tiers, such as Information Structure (IS) marking, are not discussed in this paper. However, they can be
found in the original M3D template and the manual.
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4.2 Data Preprocessing
The final dataset contains 1119 videos of unique gesture units (see definition in appendix A.1).
The original videos from the ConfLab dataset were manually cropped using the video editing pro-
gram PowerDirector (see Figure 16 in appendix A.5). Each cropped video was trimmed to gen-
erate clips for each gesture unit. The start and end times for each gesture unit were retrieved
from the ELAN annotation files. The filenames of these clips follow a specific format, defined
as {annotation}_{clipID}_video_{attendeeID}_{annotation order}. For example, the
filename abstract-deixis_21_video_37_1 can be interpreted as follows:

• abstract-deixis: The semantic meaning annotation of the gesture.

• 21: The unique clip identifier.

• video_37: The video related to attendee 37.

• 1: The first video annotated for attendee 37.

The dataset was split based on the 70-15-15 rule: 70% for the training set, 15% for the test set,
and 15% for the validation set. The rest of the pre-processing was done by following this video clas-
sification task guide. VideoMAE uses an asymmetric encoder-decoder architecture that takes down-
sampled video frames as input [25]. The original clips were resized using the image_processor
associated with the pre-trained model. The duration of each clip is calculated using the following
formula:

clip_duration =
num_frames_to_sample × sample_rate

frames_per_second
where ’num_frames_to_sample’ is a constant value defined in the model’s configuration file,

’sample_rate’ is a constant set to 4, and ’frames_per_second’ is a constant set to 30. This formula is
then applied using the built-in make_clip_sampler function from the PyTorchVideo library.

The training set was transformed using uniform temporal subsampling, pixel normalisation, ran-
dom cropping and random horizontal flipping. These transformation functions are provided by the
PytorchVideo library. Only uniform temporal subsampling and pixel normalisation were applied to
the test and validation sets. This led to a slight augmentation of the test and validation sets, which
increased by 1 and 5 samples respectively (see Figure 4). The model was fine-tuned for 10 epochs,
using a batch size of 8 and a learning rate of 1e-4.

Figure 4: Dataset distribution across the train, validation and test sets.
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5 Results and Discussion
This section presents and analyses the results obtained when fine-tuning the pre-trained VideoMAE
[25] model with the created dataset (see Section 4.2). Section 5.1 includes Figures and tables show-
ing relevant metrics to evaluate the model’s performance, which is analysed in Section 5.2. Section
5.3 explains the limitations of the project that influenced the results. The code for pre-processing
data and fine-tuning the model can be found in the GitLab repository assigned to this project [1].

5.1 Results
The model achieved an overall accuracy of 49% on the test set and 48% on the validation set. Figure
5 shows the accuracy of the model per label on the test set. Different parameter configurations than
those mentioned in Section 4.2 were tested, but they mostly led to similar or slightly worse results.

Figure 5: Accuracy per label on the test set.

The dataset was tested with three baseline classifier model strategies: stratified, most frequent
and uniform (see Figure 6). Even with an accuracy score of only 49%, the fine-tuned model outper-
formed the other baselines.

Figure 6: Comparison of accuracy scores among different baselines.
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Table 1 shows the precision, recall and F1-score metrics computed on the test set. This data was
obtained using scikit-learn’s built-in classification_report method.

Table 1: Classification Report (see Figure 18 in appendix A.6 for the ROC curve).

Class Precision Recall F1-score ROC AUC Support
Abstract deixis 0.00 0.00 0.00 0.59 6
Concrete deixis 0.33 0.08 0.13 0.72 24
Emblem 1.00 0.17 0.29 0.88 6
Iconic 0.77 0.26 0.38 0.81 39
Metaphoric 0.67 0.47 0.55 0.79 34
Non-referential 0.43 0.90 0.58 0.75 62
Accuracy 0.49
Macro average 0.53 0.31 0.32 0.76 169
Weighted average 0.55 0.49 0.44 0.77 169

Figure 7 presents the confusion matrix computed on the results obtained from the test set. Only
41 out of the 169 instances from the test set were classified as categories other than non-referential,
and none were predicted to be abstract deictic.

Figure 7: Confusion matrix on the test set. The numbers in the ’sum_col’ row represent the number
of samples per label in the test, and the percentages in green show the recall scores. The numbers in
the ’sum_lin’ column represent the number of predictions per label made by the model, and the per-
centages in green show the precision scores. Light blue cells indicate fewer number of predictions.
The darker the tone of blue, the more predictions were made for a specific class. Cell colors become
’warmer’—going from dark blue to purple to red—as the number becomes high for the total number
of samples in the test set. When that number corresponds to a significant portion of the dataset, the
’warm’ tone becomes lighter (see the bottom right portion of the matrix).
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5.2 Result Analysis
The overall accuracy, as well as the high accuracy of 90% for the non-referential class (see Figure
5), are misleading. The results indicate that the model fails to identify different gesture types. Ap-
proximately 74% of test samples were incorrectly classified as non-referential, as shown in Figure 7.
The training data is imbalanced (see Figure 4), leading to a strong bias towards the non-referential
category. The precision score for this class (see Table 1) highlights this bias, given that 56.8% of
non-referential predictions are false positives (see Figure 17 in appendix A.6 for reference). Per-
forming data augmentation on the training set could counter the challenge posed by this imbalance.
Although various augmentation techniques such as AutoAugment and RandAugment were applied
to the train set in multiple runs, none led to better results. Due to time constraints, issues concerning
data augmentation could not be further investigated.

(a) Metaphoric gesture (b) Iconic gesture

Figure 8: The gesture in Figure 8a is assumed to represent the abstract concept of distance. In Figure
8b, attendee 21 gradually brings his right hand closer to him, representing the physical motion of
coming closer.

The model’s inability to distinguish gesture types can thus be attributed to two factors: the
bias towards non-referentiality and the similarity between different gestures (see Section 5.3 for a
comparison between abstract and concrete deixis). Two examples of visually similar gestures are
illustrated in Figure 8. One is labeled as metaphoric and the other as iconic, yet both were classified
as non-referential by the model. Therefore, even if high-quality audio recordings or transcripts were
provided for the annotation process, the model could achieve similar results to the ones provided in
Section 5.1.

The VideoMAE model outperforms the three baseline models shown in Figure 6, suggesting that
it generalises better than the baseline classifiers. This likely occurs because the model 1) has already
been pre-trained on a similar dataset (UCF101 [24])10, 2) has been fine-tuned on the gesture dataset
as explained in 4.2, and 3) captures meaningful data patterns that the baseline models do not. The
baseline models are implemented using a DummyClassifier, which ignores the input feature values
of the training data.

10Tong et al. mention that VideoMAE can achieve a 90.8% accuracy score on the UCF101 dataset without using any extra
data.
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5.3 Limitations

(a) He brings his hands together in
front of his chest.

(b) He expands the space between his
hands.

Figure 9: Attendee 4 makes a motion with his hands that could be interpreted as either iconic or
metaphoric, showcasing the ambiguity that gestures acquire with no access to co-occurring speech
content. It was annotated as metaphoric and classified as non-referential.

The lack of high-quality audio or overall availability of verbal content from the recordings impacted
the annotation process and thus performance of the model. In the examples provided by the M3D
manual [22], the tiers corresponding to the meaning dimension are annotated in parallel with the
speaker’s utterances—primarily because intonation and emphasis are important elements for iden-
tifying beat gestures. This is not possible with the ConfLab dataset, leading to the ’Utterance’ tier
from the original M3D template being entirely removed.

Another issue related to the lack of high-quality audio is the ambiguity of gestures. Many strong
assumptions had to be made in the annotation process concerning the types of deixis (concrete and
abstract) and iconic and metaphoric gestures. For instance, if some hand motion were directed
towards a point in space but did not seem to point towards some specific object or entity, it would be
labelled as abstract deictic (see Figure 10a). In the absence of content from co-occurring speech, this
gesture could be interpreted as concrete deictic. The key difference between these two types is that
concrete deictic gestures point to some object in the physical space where the speaker stands, while
abstract deictic gestures "point to imaginary objects in abstract space" [22]—which can only be
inferred from speech. A pointing gesture is displayed in both Figure 10a, which shows an example
of abstract deixis, and Figure 10b, which shows an example of concrete deixis. Without further
contextual data11, they will likely be classified under the same category. Due to the strong bias
towards non-referentiality, the current model predicts both gestures as non-referential. However,
with a larger set of deictic gestures, it may become a problem that abstract deictic gestures are
misclassified as concrete deictic and vice versa.

Attendee 4 makes an ’open and close’ motion with his hands in Figure 9. This gesture could be
interpreted as iconic; for instance, it could represent the width or broadness of some entity. However,
it could also represent the abstract concept of "expansion" or "growth", and thus be labelled as a
metaphoric gesture.

Moreover, the annotation process did not fully adhere to the procedure outlined in the M3D
manual, which explains that the semantic and pragmatic meanings of a gesture correspond only to
its stroke. Instead, they were directly associated with the entirety of the gesture unit. Considering
the limited time allocated for this project, it was unfeasible to annotate gesture phases in addition to
their meaning. This problem could be solved by combining the annotation files used in this project

11In the sense of speech content data or cropping the video such that the target the attendee is pointing towards is shown.
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with annotations of gesture phases. By identifying overlapping gesture units, one can trim each clip
based on the timestamps of the gesture stroke and, by adhering to the format described in Section
4.2, name the file after the semantic meaning associated with the gesture unit.

Additionally, there were no annotations of the pragmatic meaning of gestures. It is crucial to an-
notate the pragmatic meaning to avoid the assumption that non-referential gestures are meaningless
(see Section 2.1). In fact, most of the gestures that accompany our speech are non-referential, as
seen in the distribution from Figure 4.

Finally, the size of the dataset used for training is likely too small to achieve a favourable per-
formance of the model. VideoMAE obtains fairly impressive results on small datasets of around
3k-4k videos [25], but the current gesture-meaning dataset only contains 1124 videos. Doubling
its size, optimally by adding more instances of referential and emblematic gestures, would lead to
better results.

(a) Abstract deixis (b) Concrete deixis

Figure 10: Attendee 4 makes a pointing gesture that is not directed towards any particular element in
his nearby space in Figure 10a. It is assumed that he is pointing to some imaginary object. He makes
a pointing gesture directed toward attendee 33 in Figure 10b. Since attendee 33 is a physical entity
present in the space where the conversation occurs, this gesture is annotated as concrete deictic.
Both were classified as non-referential by the model.

6 Responsible Research
This section reflects on the ethical aspects of this study and the reproducibility of its methods. Sec-
tion 6.1 discusses how data privacy is handled in this project. Section 6.2 describes how Large
Language Models were used for and throughout the research. Section 6.3 discusses the ethical impli-
cations of this research by showing how factors such as gender negatively impact the generalisability
of the results. Section 6.4 analyses how reproducible the methods used in this study are.

6.1 Data Privacy
The ConfLab dataset, owned by the Technical University of Delft, is not publicly available. To en-
sure that the data and privacy of the participants are protected, the model was trained using resources
provided by the university, specifically the DelftBlue supercomputer.

The overhead camera perspective and low-frequency audio recordings from the ConfLab dataset
mitigate the re-identification of attendees [21]. However, the format of the filenames used in the
dataset (see Section 4.2) could pose a threat. Each video filename includes a unique identifier of the
attendee shown in that clip. A folder containing face pictures of the participants along with their
corresponding IDs was provided at the start of the study. If an unauthorized individual were to gain
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access to this folder through malicious means, the filename IDs could be used to trace back and
identify the faces of the attendees.

As for the limitations of the project, it is clear that high-frequency audio or speech transcripts
should be made available for more accurate gesture-meaning annotation. Since access to high-
frequency audio would facilitate re-identification of the participants, generating written transcripts
is a safer alternative. Nonetheless, this approach still requires audio recordings of the conference
that would subsequently be processed into text, raising concerns about the secure storage of this
audio data.

6.2 Use of Large Language Models (LLMs)
Large Language Models, namely ChatGPT, were occasionally used throughout the project to fix code
errors often caused by mismatched versions of Python packages. None of the data from the ConfLab
dataset or the 1119 clips used for fine-tuning were included in the prompts. The information provided
in Section 2 is entirely based on the cited sources. ChatGPT was sometimes used to paraphrase
sentences from the original source and thus avoid plagiarism.

6.3 Ethical Implications
The ConfLab paper explains that "there is an implicit selection bias in the population represented in
the data" because the recordings occurred in a scientific conference and participation was voluntary
[21]. Furthermore, the subset of clips used in this study involves a selected number of participants.
This means the dataset used for model training contains several clips of the same person. Conse-
quently, the results may not generalise well to the rest of the original dataset and, most importantly,
the general population.

Men represent 82% of the total participants in the original ConfLab dataset [21]. Approximately
78% of the attendees in the generated dataset (see Section 4.2) are male. Au et al. argue that gender
differences only affect the hand-grasp speed of manual gestures and do not influence the amplitude
and rhythm of such gestures [3]. Conversely, Skomroch et al. suggest that women perform "gestures
with picturesque content more often" while men perform "movements in which the hands act on
each other significantly more often than women" [23]. The former study was conducted with 39
men and 41 women, whereas the latter involved 49 women and 42 men. Although additional factors
such as age, ethnicity and height might influence hand movement [3], Skomroch et al.’s results
do suggest that an equal balance of male and female attendees might have resulted in a greater
number of iconic and metaphoric gesture samples. As such, the imbalance between non-referential
and pictorial (iconic and metaphoric) gestures in the dataset (see Figure 4) might cause incorrect
assumptions about how women gesticulate.

6.4 Reproducibility of Methods
The ELAN annotation tool and the M3D scheme template are both publicly available and free to use.
The code for pre-processing the data and fine-tuning the model can be found in the GitLab repository
created for this research [1]. No data from the ConfLab dataset is available in this repository due
to privacy concerns. It includes two empty folders: ’conflab-videos’, which originally included
the cropped and trimmed videos (see Section 4.2), and ’conflab-dataset’, which included the train-
validation-test division. The file named ’fine-tuned-model.pt’ is the fine-tuned model that obtained
the results shown in Section 5.1. To preprocess the data and train the model, one must run the jupyter
notebook named ’conflab_videomae.ipynb’.
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Most of the code is directly retrieved from the previously mentioned video classification task
guide. In order to access the VideoMAE model, one must have an account in Hugging Face and
create a private access token with a ’write’ role. The login-in function where this token must be
entered is provided in the abovementioned jupyter notebook.

7 Conclusions and Future Work
This section presents the main conclusions drawn from this study (Section 7.1) and recommenda-
tions for further research (Section 7.2).

7.1 Conclusion
This study shows the feasibility of classifying the meanings of gestures produced in densely crowded
social settings using VideoMAE [25] and the MultiModal MultiDimensional (M3D) labelling scheme
[22]. Previous research on gesture meaning and types demonstrates that McNeill’s division of func-
tional types [18] can be used to define a gesture’s referential or representational value, but that the
definition of gesture meaning should be expanded to account for pragmatic meaning. Both referen-
tial and pragmatic values of gesture are tightly coupled with the verbal content of its co-occurring
speech. However, the ConfLab dataset only provides low-frequency audio recordings to preserve
privacy. The lack of high-quality audio or transcripts and the ambiguous nature of gestures com-
plicated the annotation process, leading to many strong and potentially incorrect assumptions (see
Section 5.3). Therefore, it is not possible to determine whether gestures are correctly annotated.

Due to time constraints and the abovementioned lack of verbal information, gestures were anno-
tated as having a single dimension and solely based on referentiality (see Section 4.1). This violates
the selection criteria specified in Sections 2.1 and 3 since it disregards the multidimensional nature
of gestures and their pragmatic meaning. As such, this study only partially analyses the classification
of gesture meaning.

Most of the gestures retrieved from the ConfLab dataset are annotated as being non-referential
(see Figure 4). The classifier has a strong bias towards non-referentiality due to this imbalance. As
a result, more samples of scarce gesture types (mainly deictic and emblematic gestures) are required
to prevent this bias and better assess the model’s ability to identify gesture types. However, even
if gesture meaning was annotated based on co-occurring speech, the fine-tuned model could still
achieve poor results due to visual similarities between gestures (see Section 5.2). Although Video-
MAE can only be trained on video data, re-annotating the dataset with access to speech content
could change the distribution of the current dataset. Consequently, using high-quality audio or tran-
scripts for annotation could influence the model’s performance by potentially removing, maintaining
or furthering the bias toward non-referentiality.

7.2 Future Work
Future work should explore privacy-preserving approaches to recording high-frequency co-occurring
speech. Low-frequency audio helps prevent re-identification; however, gestures cannot be effectively
annotated and thus classified without access to co-occurring speech. Furthermore, the pragmatic
meaning of gestures should be annotated. Solely considering semantic meaning can lead to the
assumption that non-referential gestures are essentially meaningless, as explained in Section 5.3.
Referentiality only partially constitutes gesture meaning. To accurately evaluate a model’s ability
to classify gesture meanings in various social settings, it is essential to ensure that the annotations
properly account for the full meaning of gestures. Since the semantic and pragmatic tiers of the
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M3D coding scheme are independent of one another [22], a possible solution would be to train two
separate classifiers: one that predicts semantic meaning and one that predicts pragmatic meaning.
Finally, this task should be approached as a multi-class, multi-label classification problem. The
M3D system has already enabled multi-dimensional annotation of gestures, but further research on
multi-class, multi-label video classifiers is required.
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A Appendix

A.1 Definitions and notations
The following concepts are essential for understanding the annotation of meaning in gesture:

• Coding scheme. A coding scheme is a framework that allows for the labeling or annotation
of co-speech gestures.

• Gesture unit. The M3D manual defines a gesture unit as "the span of time from when the
articulators leave a position of rest or relaxation to their return to a state of rest or relaxation"
[22].

• Semantic meaning. The semantic meaning of a gesture is related to its referentiality, that is,
the object or entity that the speaker refers to when enacting the gesture.

• Pragmatic meaning. The pragmatic meaning of a gesture is its function with regard to co-
occurring speech. It is independent of its referential value.

• Iconicity. A gesture is iconic when it represents a physical object or entity described in speech
(see Figure 11).

• Metaphoricity. A gesture is metaphoric when it represents an abstract concept used in speech.

• Deixis. Pointing gestures or gestures that signal some location in the speaker’s (current or
abstract) space are deictic. There are two types of deixis: concrete, when the speaker points to
something located in their immediate space, and abstract when they point to some imaginary
space referred to in the speech.

• Emblem. Emblems are gestures whose meaning has been agreed upon by a specific cul-
ture. For instance, a ’thumbs-up’ gesture generally signals approval from the speaker’s side in
western culture. However, gestures that are emblematic for one culture may mean something
entirely different for others.

• Non-referentiality. According to the M3D labeling manual, "movements that do not clearly
visually reference the propositional content in speech are said to be non-referential" [22].

(a) (b)

Figure 11: The speaker utters "We actually descended the camera and cameraman through" as he
brings his left hand downward. This motion represents the action of descending the camera and
cameraman. Example retrieved from the M3D training website [27]. The original video can be
found here.
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A.2 Overview of Crowder’s coding scheme

Figure 12: Overview of the coding scheme proposed by Crowder [5].

A.3 Performance comparison with state-of-the-art methods

Figure 13: VideoMAE outperforms ViViT and other state-of-the-art methods on Something-
Something V2 [25].
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Figure 14: VideoMAE outperforms ViViT and other state-of-the-art methods on Kinetics 400 [25].

A.4 List of pragmatic functions in M3D
This section summarises the pragmatic functions in section 5.2.1 of the M3D manual [22]. The
following definitions and examples are directly quoted from the manual. It distinguishes five inde-
pendent dimensions of pragmatic meaning: speech act making, operational marking, stance-taking
marking, discourse organisation and interactional marking.

Speech act marking

Gestures that express what the speaker intends to achieve.

• Directives: "commands, requests, challenges, invitations (e.g., ’Can we watch the game?’)".

• Representatives: "assertions, statements, claims, suggestions (e.g., ’My team is the best.’)".

• Expressives: "greetings, apologies, congratulations, condolences, giving thanks (e.g., ’Con-
grats on winning the game!’)".

• Commissives: "promises, oaths, pledges, threats, vows (e.g., ’I bet you 5 dollars that my team
will win.’)".

• Declarations: "blessings, firings, baptisms, arrests (e.g., ’I now pronounce you the official
winners of the competition.’)".

Operational marking

Gestures that express affirmation (e.g. shaking the head up and down) or negation (e.g. wagging the
index finger side-to-side).
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Stance-taking marking

Gestures that express the speaker’s stance in terms of their "personal feelings, attitudes, value judge-
ments, or assessments" [11].

• Affective stance: "positive, negative, neutral".

• Epistemic stance: "certainty, uncertainty, ignorance, approximation, evidentiality".

• Politeness stance: "polite, non-polite, impolite".

• Agreement: "agreement, disagreement, confirmation, incredulity, obviousness".

• Cooperation: "checks for understanding, opinion".

Discourse organisation

Gestures that mark the structure of discourse.

• Anaphoric marking: "gestures produced without the referent in speech".

• Abstract temporal deixis: "pointing to a segment of speech uttered before or to be uttered in
the future".

• Linking: "connecting a sentence with a previous sentence, e.g. ’As I was saying’, ’However’".

• New sequence: "opening of a discourse sequence".

• End sequence: "end of a discourse sequence".

• Parenthetical: "parenthetical digressions, e.g. when giving examples".

• Listing: "punctuating items in a list".

• Sequencing: "description of the order of events (’first’, ’second’, ’third’, etc.)".

Interactional marking

Gestures used to regulate discourse between speakers, particularly in terms of turn-taking.

• Turn-concession: "pointing to the listener, nodding to indicate their ability to take the turn".

• Turn-hold: "holding up a hand to stop the listener from interrupting, asking them to wait".

• Turn-demand: "raising a hand to express the desire to take a turn".
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A.5 Preprocessing data from the ConfLab dataset

Figure 15: Image extracted from a video segment that showcases the top-down view used in ConfLab
[21].

Figure 16: Image showcasing how the original ConfLab videos were cropped to create separate clips
per attendee.
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A.6 Results and Figures

Figure 17: Confusion matrix for multi-class classification [9].

Figure 18: ROC curve for multi-class.
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