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Abstract 
Functional gradients in hard-soft interfaces are abundant in nature, and we often mimic them to create strong 
and tough composites. A powerful tool for the designs and fabrication of biomimetic composites is voxel-
based multi-material 3D printing. Earlier researches mainly focused on using this technique in the creation of 
gradients based on morphology. While this is a great way to create a gradient, the outcome material properties 
are often unknown. In this research, we attempted to create a gradient based on the desired outcome material 
properties rather than morphology. We created a linear gradient in density using a voxel-based 3D printing 
technique and tested it through nanoindentation. Furthermore, we created a Finite Element Model based on 
this sample. Out of the nanoindentation and Finite Element Model results, we extracted the b-value for a 
power-law function in the form of 𝐸(𝑥) = 	𝐸!𝜌(𝑥)" + 𝐸#. With the inverse of this power-law function, we 
designed three different gradients based on the desired material properties: a linear, stepwise, and sigmoid 
gradient. Nanoindentation experiments and Finite Element analyses showed that we achieved the desired 
outcome in material properties with our newly created approach of designing gradients. However, the 
nanoindentation experiments showed that using a machine suitable for the wide range of Young’s moduli 
present in these kinds of composites is crucial. To display the possible applications of our new approach, we 
designed a knee model with graded ligaments and tested it with a tensile test and digital image correlation. 
Results of these tests showed an energy before failure that was twice as high as its non-graded counterpart. 
Furthermore, with the introduction of the gradient, we achieved to change to loading condition on the 
ligaments. Overall, our results show that our new approach can create gradients based on material properties 
rather than morphology and opens many new doors in creating biomimetic composites.  
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1. Introduction 
1.1. Bioinspired approach for an improved mechanical performance  
In artificial composites, strength and toughness often come at the cost of each other. Furthermore, hard-soft 
interfaces in engineered materials are usually susceptible to failure. The reason that strength and toughness 
are mostly mutually exclusive is how a material achieves its properties. Literature defines strength as the 
ability of a material to withstand an applied load and uses different measurement methods for this. Which are 
the applied load before plastic deformation (yield strength) and the applied load before complete failure 
(ultimate load). On the other hand, toughness is the ability of a material to absorb energy without fracture [1]. 
Strong materials are often brittle, while tough materials are compliant. An example of strong material is a steel 
beam, while an extremely tough material would be a rubber band. There are examples of artificial materials 
that have both, such as bulletproof vests [2]. However, these cases are exceptional. Since the combination 
of strength and toughness is challenging to achieve, a decision often has to be made between the two, 
depending on the purpose of the material. In a situation where catastrophic failure is unacceptable, tougher 
materials often have the preference. However, ideally, strength and toughness are combined. Because of 
this, research on combining these material properties is necessary.  
 
In nature, we observe the contrary to artificial materials. Natural materials are evolved and adapted so that 
both strength and toughness are present. Many years of evolution are underlying for these exceptional 
mechanical performances. Over the past millions of years, constant adaptation resulted in strong and tough 
composites. A reason for failure in artificial materials is the presence of high interface stresses. These high 
interface stresses result from a significant mismatch in Young’s moduli of two material phases [3]. Nature 
counteracts this mismatch problem by creating different gradients and hierarchical structures between the 
two material bodies, acting on multiple length scales [4]. The gradients can be smooth, as seen in the muscle-
tendon interface, or discontinuous, as seen in nacre. Both types of gradients reduce the chance of failure by 
reducing the stress concentrations at the interface [5]. 
 
However, we can distinguish between smooth and discontinuous gradients and between one or multiple 
material bodies. In nature, gradients can be present within one material body, such as found in nacre and 
bone (Figure 1A-B) [6]–[8], or between different material bodies, such as seen in the bone-tendon and muscle-
tendon interface (Figure 1C) [9], [10]. Furthermore, the muscle-tendon interface is an example of a smooth 
and nacre of a discontinuous gradient. A high mismatch between Young’s moduli exists in these gradients. A 
great example of this is the bone-tendon interface in the human gastrocnemius. The Young’s modulus of the 
bone is around 35 (GPa), whereas that of the tendon is approximately 1.2 (GPa) [11]–[13]. The increase in 
material properties can be a result of toughening mechanism implemented in a composite. Nature has found 
several ways to do this, and we can find great examples of this inside nacre and bone. In nacre and bone, 
cracks get deflected and arrested due to toughening mechanisms [14], [15]. Because of these mechanisms, 
nacre and bone are significantly stronger than their constituent materials.  
 
Another excellent example of a hard-soft interface found in nature is inside of the bone at the sub-nanoscale. 
At this scale, bone consists of two main constituents: a collagen matrix and hydroxyapatite crystals inside this 
matrix (Figure 1D). There is a significant difference in Young’s modulus between the constituents. Collagen 
has Young’s modulus of around 1-2 (GPa), while the hydroxyapatite crystals have Young’s modulus of about 
100-150 (GPa) [16].  The two constituents have their own mechanical role. The collagen matrix dissipates 
energy under mechanical deformation, while the hydroxyapatite crystals provide the load-bearing capacity 
[17]. The structure of collagen and hydroxyapatite crystals in bone is well understood and inspired plenty of 
biomimetic designs. Among many [18]–[22], studies like Dimas et al. [23] recreated the morphology found in 
bone using 3D printing techniques and showed that this significantly increases the mechanical fracture 
characteristics.  
 
Studies have not only used the hydroxyapatite crystals in biomimetics based on bone. Sedighi et al. [24] used 
hydroxyapatite crystals inside a titanium mixture at different volume ratios to create a dental implant with a 
functional gradient (Figure 1E). Their study showed an optimum ratio between titanium and hydroxyapatite 
crystals, which gives the highest Vickers microhardness. While Sedighi et al. [24] did create a functional 
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gradient inside an implant, they did not investigate the main challenge with dental implants. The mismatch of 
material properties between the dental implant and the biomaterial is a big issue. Osseointegration becomes 
challenging when the mismatch is too big. Sadollah et al. [25] did investigate this problem. In their study, they 
created a dental implant with a gradient. Using different optimization criteria, they showed that the optimal 
gradient design is different for the different criteria. For the ingrowth of bone, a steeper drop in Young’s 
modulus is desirable. However, this is not the best shape for the overall stiffness of the implant, for which a 
less steep drop is desirable. This research showed that a gradient is beneficial for bone ingrowth and implant 
stiffness. Nevertheless, they also showed that it is challenging to find the best gradient for different design 
criteria, and thus, the design criteria should always be kept in mind.  
 
The earlier mentioned examples of materials in which we used gradients are all from the biological side of 
the literature. However, of course, there are examples present where we use gradients that are not biological. 
Gradients, whether or not biomimetic, can be used in many other applications. One of those is graded 
concrete (Figure 1F). Construction workers can use graded concrete while building structures to enhance 
their mechanical behavior. Studies show that tall buildings, whose framework included graded concrete, show 
less sway on the upper floors when placed under a lateral load. This is important because graded concrete 
will introduce a more rigid response to, for example, earthquakes [26]. Another example of a structure where 
we use a gradient to overcome a problem in our daily lives is in the blades of an aircraft turbine (Figure 1G). 
In order to tackle the high thermal impact the blades have to overcome, the blades are made of a combination 
of metal interior and a ceramic outer layer [27]. However, without using a gradient between these two phases, 
the adhesion is insufficient, resulting in failure. Introducing a gradient between the phases performs better 
under several different loading conditions, making it crucial for enhancing the mechanical performances of 
the blade [28]. These two examples show that we can learn from gradients found in nature and implement 
them in a wide variety of applications to enhance their performances. 
 
From these examples, we can conclude that functional gradients and hierarchical structures are crucial for 
combining strength and toughness. We can use these features as an inspiration for creating new composites, 
and doing so is a very modern approach for engineering materials. To understand and apply some of the 
main characteristics of these graded structures, accurate selection of manufacturing method, design 
methodology, and proper testing and analysis are fundamental steps for bringing high-performing structures 
into our daily lives. The examples, such as the turbine blades, show that we use gradients in our daily lives 
for non-biological applications. However, further investigation in gradients can be beneficial for many more, 
ranging from the medical field to daily used materials. We can perform this investigation in several ways, and 
two of them are through additive manufacturing and finite element modeling. We will discuss the state of the 
art of these techniques in the next chapter.  
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Figure 1: A) Several toughening mechanisms found in bone and B) found in nacre. Taken from Libonati & Buehler [8]. C) Gradients 
found inside a muscle-bone-tendon interface. Taken from Bianchi et al. [29]. D) Schematic view of graded concrete. Taken from 

CivilWeb Spreadsheets [30]. E) Schematic view of hydroxyapatite crystals inside the collagen matrix. Adjusted from Sadat-Shojai et 
al. [31]. F) Left: view of a dental implant inside the jaw. Adjusted from Sadollah et al. [25]. And right: schematic view of a titanium 

hydroxyapatite gradient inside the implant. Taken from Sedighi et al. [24]. G) Schematic view of a functional gradient inside a 
turbine blade. Adjusted from Bhavar et al. [27]. 

 
 
 

1.2. State of the art in additive manufacturing and Finite element 
method 

Additive manufacturing (AM) techniques are widely used in the literature to mimic nature’s gradients and 
hierarchical structures. We can use them as an inspiration for creating composites deriving from them. 
Techniques such as 3D printing [19], freeze casting [32], [33], layer-by-layer deposition [34]–[36], 
electrophoretic deposition [37], mechanical assembly [38] and self-assembly [39], [40] have been used to 
create composites based on materials found in nature [41], [42]. With AM, creating more complex structures 
and gradients is possible, which is impossible with traditional manufacturing techniques. Furthermore, with 
AM, it is also possible to print different materials simultaneously to create designs. With this multi-material 3D 
printing, we can use materials with completely different material properties. This technique is especially 
suitable to mimic structures with extreme differences in properties between different materials, such as the 
example of hydroxyapatite crystals inside a collagen matrix.  
A reasonably novel multi-material 3D printing technique is called voxel-based 3D printing. Voxels refer to a 
volumetric pixel, in other words, a 3D pixel. The most common shape of these pixels is a cube or rectangle. 
3D printers can, with the use of a voxel-by-voxel approach of printing, create complex gradients and 
hierarchical structures on multiple length scales within a structure [43]. In contrast to other additive 
manufacturing methods, voxel-based 3D printing uses bitmap files instead of STL files. Because this 
technique uses bitmap files, it can achieve a higher control and accuracy of the deposition of different 
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materials [44]. These properties make this method exceptionally suitable for creating complex gradients and 
structures between different materials while achieving a high resolution.  
 
Another way to study gradients and structures is through Finite Element Modeling (FEM). FEM is widely used 
to analyze and evaluate a structure mechanically. Doing this is fundamental for understanding the mechanical 
influences of the introduction of gradients into structures. With FEM, one can perform complicated calculations 
about the mechanical properties of intricate materials that would be too complex to calculate analytically. 
Besides, with FEM, it is easier to assess in a non-invasive way which design parameters affect the overall 
performances of a designed composite. A researcher can easily adjust separate parameters to investigate 
how they influence the material's behavior without the need for physical prototypes. Besides this, with FEM, 
it is easier to study many intricate designs. Furthermore, better visualization of the mechanical response of 
the structures can be achieved, which would generally be impossible to study in an experimental setup. 
Another advantage is that any design artifacts that the 3D printing process could introduce are not present. 
Finally, researchers can infinitely repeat experiments performed with FEM without needing a 3D printer to 
create new samples. Because the computers used for the FEM are rapidly getting better and more powerful, 
FEM is a fast-growing research field. Over the past years, researchers have been able to design and test 
increasingly more complicated designs. All these properties of FEM make it an excellent tool to use in creating 
and studying gradients and other hierarchical structures. Because of the advantages mentioned above, both 
FEM and AM are widely used to study gradients [45]–[47].  
 
Because AM techniques and FEM are valuable tools to study and mimic graded structures to create strong 
and tough composites, for the next part, we will discuss the literature regarding the state of the art of additive 
manufacturing of bioinspired structures and their Finite Element analysis. Furthermore, we will review other 
techniques to study gradients and ways to predict the mechanical properties of hard-soft gradients.  
 

1.3. State of the art in bioinspired design and voxel-based manufacturing 
In recent years, much research has proven many applications and potential for multi-material AM and 
bioinspired design to work in synergy to improve our architected materials. We know these techniques 
subdivide into graded structures, hierarchical design, crack deflecting structures, suture, or enthesis design 
[6]–[10], [14], [15], [26], [27]. Here some of the most relevant literature will be reviewed that studied these 
structures using AM techniques and FEM. Furthermore, we will also investigate which models are currently 
used to predict the properties of hard-soft composites.  
 
Many gradients and structures found in the literature are based on natural examples. The hard-soft interfaces 
found in nacre are widely studied and implemented in different applications [48], [49]. Studies that created 
bioinspired morphologies found several mechanisms that result in a strong and tough composite. The brick-
and-mortar structure of the nacre introduces these mechanisms. The way a crack propagates through a brick-
and-mortar-like structure is dependent on the hierarchical architecture [23]. Implementing soft layers inside a 
rigid composite can significantly enhance the overall toughness by increasing the crack path [50]. The brick-
and-mortar structure also introduces other mechanisms, such as organic matrix bridging between the 
platelets [51], [52], interlocking of the platelets [4], [7], [14], and crack bridging [53], [54]. We can find the 
same kinds of mechanisms inside the bone. Studies that mimic the hierarchical structure of bone, such as 
that of Dimas et al. [23] and Libonati et al. [55], found several toughening mechanisms introduced by the 
morphology of bone that is somewhat similar to those in nacre. A great example of this is the way a crack 
propagates through a bone-like structure. Different studies on 3D printed samples based on nacre and bone 
show that the cement line in bone acts in the same way as the organic layer in nacre [15], [23], [54]; they both 
deflect a crack, which results in a longer crack path and more energy dissipation. Overall, crack deflection, 
strain delocalization, and bridging are some of the mechanisms that make nacres and bone architectures 
unique. Understanding how nature accomplishes these mechanisms and being able to mimic and implement 
them is crucial in creating tough composites. 
 
More examples in nature show that a gradient between two material bodies is necessary for the material to 
be strong and tough. One of those is the enthesis. The gradient between tendon or ligament and bone can 
be studied and mimicked to investigate its influence. McCorry et al. [56] did this. In their study, they created 
a new method to create a simplified enthesis and test the collagen integration with bone. As they created the 
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enthesis, they either fixated the ends or did not. The collagen formed fibers in the longitudinal direction in the 
fixated samples and created a gradient within the material. As expected, this gradient resulted in five times 
higher elastic modulus in a tensile test than the non-fixated samples. This shows that a gradient between the 
hard bone and soft tendon is crucial for its function inside the body. Furthermore, McCorry et al. [56] showed 
that the direction of the collagen fibers in the gradient is vital for the increase of toughness. When one creates 
an artificial gradient, one should consider this effect. A gradient will only function well if its direction is correct. 
Boys et al. [57] confirmed that this gradient is critical for the tough bone-to-tissue interaction. They 
investigated the structural and mechanical features of the attachment site of the meniscus to the bone. Their 
technique clearly distinguished a stiff region consisting of open and dense trabecular bone, a homogeneous 
compliant region consisting of disorganized fiber bundles, and a heterogeneous compliant region consisting 
of oriented fiber bundles. These different regions create a mechanical gradient within the hard-soft interface, 
and when these regions work together, they successfully dissipate energy without localizing stresses. These 
results again show us that a gradient is necessary to toughen a hard-soft interface and that different 
morphologies of the used materials can introduce such a gradient. Furthermore, they also showed that a 
region with organized fibers is essential for an effective gradient.  
 
Research has discovered many essential effects when designing gradients. This is especially the case for 
studies that have dealt explicitly with functional gradients. One of the main challenges of designing functional 
gradients is the capacity for our multi-material machines to define a continuous spectrum of material 
properties. Kokkinis et al. [58] performed another approach to study the influence of gradients on a material’s 
overall mechanical performances. They created a multi-material 3D printing platform for 3D printing gradients 
by combining two resins in different proportions. This mixing can achieve thirteen different material 
combinations, with a range in Young’s modulus of three orders of magnitude [58]. Although they only looked 
into two relatively simple stepwise gradients (ascending and descending) and a soft layer between a stiff and 
compliant material, they showed that an ascending stepwise from stiff to compliant and a soft layer between 
the materials could significantly improve the failure strain. The ascending stepwise and the soft layer move 
the strain energy density away from the stiff-compliant interface. This increases the material's overall strength 
as the replacement of the strain energy density reduces the stress concentration at the stiff interface. With 
their method, the authors show that they can adjust the strain energy density and create a composite with a 
tunable failure.  
 
The study of Kokkinis et al. [58] used a multi-material approach of 3D printing to investigate gradients. 
However, the resolution they could achieve was much lower than that with a voxel-based approach. They 
printed with a layer thickness of 300 (µm), whereas with voxel-based 3D printing, a layer thickness of 14 (µm) 
is possible. Furthermore, with their setup, they could not print each material pure. To achieve this, they 
needed an extra print nozzle. With a similar approach, while using bitmap printing, the mixture of the materials 
is infinite, rather than stepwise combinations, as seen in their study. Because of this, it is essential to further 
look into the literature for studies where they did use a voxel-based 3D printing approach to investigate 
gradients.  
 
Kaweesa et al. [59] did use a voxel-based 3D printing approach. They used this technique to investigate the 
influence of different gradients on the fatigue life in tensile samples. They created four different gradients 
between a hard and soft polymer: two linear and two stepwise. The authors tested the samples in a loading 
and relaxation cycle until failure. Both gradients showed results that are worse than that of the control 
gradient. As the transition region increased, the fatigue life of the samples decreased. However, the samples 
failed at the soft material region. The authors note that the reason behind this is the way that they designed 
the gradients. In this study, the authors assumed that the material would show an elastic behavior in the 
regions in the gradient where the number of soft material voxels would outnumber that of the hard. However, 
they found that this is not the case, as the elastic region of the linear and stepwise samples is much smaller 
than that of the control samples. This increases the stress concentrations at the soft region and decreases 
the fatigue life. Nevertheless, their study found that the stepwise gradients increased fatigue life compared to 
the linear gradients. This means that considering graded transitions is still fundamental for improving the 
fatigue-life cycle of multi-material structures.  
 
Hasanov et al. [60] further studied the effect of a gradient in a tensile sample on the material’s overall strength. 
Using voxel-based 3D printing, they created a linear gradient inside a sample and compared it to a direct 
transition from hard to soft. The graded sample showed an overall increase in Young’s modulus of 25% and 
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tensile strength that was twice as high. These results show that a gradient can successfully enhance the 
material properties of a composite. Mirzaali et al. [61] found similar results. They found that Young’s modulus 
of graded tensile samples with a continuous gradient was three times higher than that of a no gradient control 
sample. For stepwise gradients, they only found that the Young’s modulus increases with a higher number of 
steps. This suggests that the number of steps greatly influences the material properties of such a gradient. 
However, there is a trade-off to the increase in Young’s modulus, as toughness and elongation decreased in 
the samples. These results show that we can tune the material properties of a composite by introducing 
gradients.  
 
Overall, several studies have explored and mimicked gradients to study their influence on material properties. 
Besides the methods mentioned above, we can find models in the literature to predict the material properties.  
One of them is the Halpin-Tsai model. The Halpin-Tsai model is a classic approach and is mainly used to 
predict the elastic modulus of a composite reinforced with short fibers. The Halpin-Tsai equation is the 
following [62]:  

𝐸$ = 𝐸% )
1 + 𝜁𝜂𝑉&
1 − 𝜂𝑉&

/	 (1) 

 
Wherein 𝐸$ is the elastic modulus of the composite, 𝐸% the elastic modulus of the matrix, 𝜁 is a parameter 
based on the geometry of the fibers, often in the range from 0 to 2 [63], 𝑉& the volume fraction of the fibers 
and 𝜂 is calculated by: 

𝜂 = 	

𝐸&
𝐸%

− 1

𝐸&
𝐸%

+ 𝜁
	 (2) 

In this equation, 𝐸& is the elastic modulus of the fibers.  
In theory, this model should be applicable to simple voxel-based 3D printed structures since we can consider 
the hard voxels as particles distributed inside the composite. However, the Halpin-Tsai model does assume 
that the composite is reinforced with parallel aligned short fibers [64], which is not necessarily the case with 
voxel-based 3D printing. So, further study is necessary to examine if we can use the Halpin-Tsai model in 
this case. 
 
Besides the Halpin-Tsai model, there are other models present to predict the material properties. Another 
section of composites by design is the bone power-law models. In the literature, we can find several models, 
such as that of Morgan et al. [65], Keyak et al. [66], Rice et al. [67], Hvid et al. [68], and Carter and Hayes 
[69]. The different bone power-law functions all have the form of: 
 

𝐸 = 𝑎𝜌"	 (3) 
 
Wherein E is Young’s modulus, ρ the apparent density, and a and b constants that we can characterize from 
physical tests. However, all earlier mentioned studies found different values for a and b, resulting in slightly 
different equations. These power-law functions have the advantage that with most of them, only the bone 
density has to be known, making it easier to use compared to the Halpin-Tsai model. Researchers have used 
power-law functions in other applications than bone. Kantaros et al. [70], for example, used them to predict 
the material properties of lattice structures. They used an equation based on a power-law model created by 
Gibson & Ashby [71] with the following shape: 
 

𝐸'&&
𝐸

= 𝐶( 8
𝜌#$
𝜌)
9
*

(4) 

 
 
Wherein E is the elastic modulus of the solid part, E+,, the elastic modulus of the cellular structure, C( a 
constant related to the structure's geometry, which we can obtain by fitting this formula to experimental data, 
and -!"

-#
 the relative density of the cellular structure. They used a derivate of this formula to describe a 

decreasing trend in mechanical properties seen in porous scaffold structures when porosity increases. A 
comparison between the experimentally gathered data and the ones predicted by the equation showed that 
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the predicted data followed the same pattern as the experimental data, although there was a slight 
underestimation. In theory, we could use these power-law functions to predict the properties of bitmap printed 
structures. However, little exploration on this subject exists.  
 
In the above section, several models were discussed to predict the material properties of composites and 
showed that studies applied them to several applications. However, as said before, they have not yet been 
applied to bitmap 3D printed structures. Because of this, further research is necessary to investigate if these 
models correctly predict the material properties of composites created with this technique. We can do this by 
combining Finite Element models and experimental testing of additive manufactured structures and 
investigating which models work and which do not.  
 
 

1.4. Fundamental next steps 
Overall, gradients have proven to be a fundamental necessity when one introduces structures with extreme 
material phases. From examples found in nature, such as nacre and bone, we know that the hierarchical 
structure of the material can introduce toughening mechanisms. Studies regarding the enthesis show that 
fibers of collagen create a stronger material. Several material phases from bone to tendon are underlying to 
the enthesis’s ability to dissipate energy. From studies on multi-material 3D printing, we know that stepwise 
gradients between a stiff and compliant material can increase a material’s overall strength and fatigue life. 
However, a continuous gradient, such as a linear one, increases Young’s modulus and tensile strength of a 
composite even more than a discontinuous one. Nevertheless, an input morphological gradient would not 
necessarily result in a one-to-one representation of material properties in the printed sample [59]. Just as with 
the other earlier mentioned studies, Kaweesa et al. [59] created a gradient based on morphology and 
investigated if, and in what way, this will result in a tougher composite. An intriguing discussion is whether 
the mechanical properties in materials found in nature result from morphology or the other way around. One 
could conclude that it is more logical to say that the morphology results from the function required of material 
in nature. Therefore, there is a fundamental necessity in designing methodologies that allow us to design 
materials based on property, regardless of the internal architecture that provides the gradients.  
 
Furthermore, most studies focus on the tensile test properties of graded materials. With this approach, it is 
complicated to investigate the local material properties of the gradient and thus what the exact gradient in 
material properties is. Because of this, another measurement method is necessary. A widely used 
measurement method to analyze the local material properties of a heterogeneous material is nanoindentation. 
Through the measurements of the load and displacement, several properties, such as the reduced Young’s 
modulus, can be measured. We can find many examples of measured composites in the literature, such as 
bone and teeth [72] and softer biological materials and polymers [73]. However, the measurements of soft 
biological material or soft polymers can be difficult. Difficult contact detection, the presence of high adhesion 
forces, and strong nonlinear behavior are reasons for this [74], [75]. Despite these challenges with this 
method, nanoindentation is still very well suitable for studying gradients in composite structures.   
 
To create gradients, voxel-based 3D printing is a relatively new method. As said, with this technique, we can 
create gradients on a small length scale. A study has shown that nanoindentation can be applied to 
mechanically test a graded structure created with voxel-based 3D printing [61]. Mirzaali et al. [61] showed 
that a graded sample consisting of a hard and soft photopolymer could be tested through nanoindentation if 
one uses the right approach. However, their results showed that the gradient based on morphology does not 
result in the same gradient in material properties. A new strategy that creates a gradient based on the property 
and testing this through nanoindentation and a finite element analysis could open many new doors for 
designing graded bioinspired structures. 
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1.5. Objective of this research  
As described above, a specific gradient in a hard-soft interface based on morphology does not result in the 
same gradient in material properties. To analyze the possibility of creating gradients based on a property, we 
will take advantage of the freedom allowed by voxel-based 3D printing. With this technique, we can precisely 
control the allocation of different materials within a structure and thus giving us exact control over the designed 
gradient in volume fractions. We base these volume fractions on a later introduced power-law function. This 
power-law function is a tool to obtain the functionality by design directly. We test this for several property 
functions, from which we obtained the initial data from our previous study that we performed in Liège [61]. 
The testing is done through nanoindentation. We will perform nanoindentation experiments to closely 
investigate how a created gradient will translate into the material properties of a graded composite. With this 
technique, we can closely measure the local material properties. This is necessary to determine if we 
achieved the expected functionality. We perform the nanoindentation experiments in two ways, through 
physical experiments as well as experiments through FEM. We will use the FEM to validate the experimental 
data and show that this is an excellent way to perform nanoindentation experiments when a physical 
nanoindenter is unavailable or desirable to test more designs.  
 
The approach proposed here shows some advantages, such as precisely controlling the local outcome 
material properties. In this manner, we can tailor gradients to an expected functionality, which, in this case, 
is Young’s modulus. In this way, we know the mechanical properties as well as the morphology of a gradient 
rather than only its morphology. With this new approach, better research on the toughness of different 
gradients can be performed, which is very useful for creating hard-soft interfaces that are both strong and 
tough. This approach can lead to interfaces that resemble more of those seen in nature, where the material 
is adapted directly to its function. Furthermore, the workflow proposed here uses nanoindentation as a 
parameter to identify the actual function that defines the property transition. This is in contrast with most 
studies, which focus on the tensile properties of graded material. To prove some of the advantages discussed 
here, we will apply our novel method in the design of a bioinspired graded model 
 
Overall, we expect to create material properties by design while still improving overall properties with this 
approach. The algorithms we develop here for designing property-based functional gradients may be applied 
in a wide range of applications, such as soft robotics, flexural mechanism designs, 4D printing, multi-stable 
structures, and scaffold or implant design [76]–[79]. We can improve and tailor these examples to a specific 
applicational need in material properties by implementing the property-based functional gradients, and this 
could further enhance their performances and applications in the biomedical world.  
 
 

1.6. Research questions 
  
To evaluate if our approach has the desired outcome, several steps need to be taken to find answers to 
various research questions.  
 
To create gradients by property designs, we first need to investigate if classic models such as the Halpin-Tsai 
model can correctly predict the material properties of bitmap printed gradients. If this is not the case, another 
approach is necessary. Therefore, we will first fit the Halpin-Tsai model to the earlier published data and 
determine if this model is accurate. We expect the model to be incorrect since it assumes parallel aligned 
fibers in the composite. In our designs, this is not the case because the hard and soft voxels are randomly 
scattered. Therefore, we expect that another approach is necessary. 
 
The following substantial question is if the nanoindenter can successfully measure the whole range of Young’s 
moduli in the gradient. It is necessary for the nanoindenter to correctly measure both the Young’s modulus of 
the hard and soft material, and this can be challenging due to the earlier mentioned obstacles. If the 
nanoindenter is not able to do this, the results will not show the expected gradient. To investigate this, we will 
print a linear gradient in density and perform a nanoindentation experiment. We will then compare these 
results with the published data on a similar gradient [61]. Since, in the previously published study, we were 
able to measure the whole range of material properties, we expect this to be the same in this study. 
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As mentioned earlier, we will create a FEM based on nanoindentation experiments. In order to use this, we 
first have to assess if the FEM-based simulations can correctly predict the experimental data. To do this, we 
will create the FEM and perform an experiment on a linear gradient in density sample based on the earlier 
published data. We will compare the outcomes of this experiment with the earlier published data to determine 
if the model is working correctly. With the different parameters of the model correctly set, we expect that the 
FEM will correctly predict the experimental data.  
 
After we have answered the questions above, we can start investigating our primary goal, which is to create 
gradients based on material properties rather than morphology. So, an important question is whether or not 
our workflow can correctly predict the outcome material properties of a particular gradient. In other words, do 
we see the gradient in material properties as we designed it? We will design different gradients based on the 
inverse of a function and test them through nanoindentation and Finite Element analysis to answer this 
question. Afterward, we will compare the results with the target gradient to assess if our workflow is 
successful. With the correct approach in the prediction model and testing, we expect that our workflow will 
accurately predict the material properties of a particular gradient.  
 
When we have done this, we can look into the applications of our approach. In theory, graded structures will 
improve the material properties of more complex lattices. To investigate this, we will create a bioinspired 
model and test it with a tensile test. If our workflow is indeed correct, the graded sample will outperform its 
non-graded counterpart. If this is the case, we show that our findings are applicable in biomedical applications. 
As seen in literature, graded structures can significantly outperform non-graded ones. We expect this the be 
the same for our approach, possibly better. 
 
Finally, we will draw an overall conclusion of the results to explore whether or not our workflow is complete 
or if something is missing. If something is missing, we can implement this in further research to further improve 
our approach. Although we have carefully prepared the workflow we present here, we expect to find ways to 
improve it further.  
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 2. Methods 
To achieve our objective, we need to follow several procedures. These include dealing with manufacturing 
and design, material characterization, experimental setup, and FE modeling setup. First, we have to create a 
control gradient. After this, we have to characterize our material, after which we can create our other designs, 
specify our way of testing the local material properties, and post-processing the data. Finally, we can create 
the FEM based on the experimental tests and characterize how to post-process the data.  
 
 

2.1. Manufacturing and design 
2.1.1. Stratasys J735 
The printer used for the creation of the gradients is the Stratasys J735 from the company Stratasys. The 
printer has a native resolution of a voxel size of 42x84 (µm) and a layer thickness down to 14 (µm) in high-
quality mode. However, we use the high-speed mode for the samples here, which has a layer thickness of 27 
(µm). The 3D printer can print up to six different materials and two support materials using eight print heads. 
UV light solidifies the printed materials, which takes place after each printed layer. Because the curing 
happens after each printed layer, direct solidification occurs, ensuring continuous printing and firm adhesion 
between the voxels of the different materials [80].  
The materials used for printing are that of the Vero and Agilus family from the company Stratasys. Vero is a 
rigid photopolymer with a Young’s modulus of 2000 – 3000 (MPa) [81]. Agilus is a rubber-like photopolymer 
that is tear-resistant and can withstand repeated flexing and bending. The Young’s modulus of Agilus is 
around 2 (MPa) [82].  
 
 
2.1.2. Bitmap 3D printing 
We used bitmap files as an input to print our designs. Bitmap printing uses images consisting out of black 
and white pixels to print different materials. It is possible to create several types of bitmaps, but we use the 
simplest 1-bit type in our case. This means that the black pixels have a value of 0 and the white pixels of 1. 
This creates a true/false statement for the 3D printer. In this way, the printer knows when to print a particular 
material. Since we use two materials in the designs, two sets of bitmap files are necessary. These two sets 
are the opposite of each other. One bitmap file is necessary for each to be printed layer. All these layers 
combined create the wanted sample (Figure 2). With MATLAB R2020a, we create a target gradient vector. 
Out of this target gradient vector, we create a gradient by calculating the number of hard material voxels per 
column and randomizing the locations of the voxels over this column. This randomization is done for every 
layer, resulting in a different bitmap file for each layer. However, the gradient and volume fraction per column 
are kept equal. All these layers combined create the overall sample.  
 
 
2.1.3. Creation of control gradient 
We created the different graded structures and their bitmap picture output files for the printer using MATLAB. 
These bitmap files are sent to the 3D printer using GrabCAD. The total size of the sample is 2.5 x 2.5 x 2.5 
(cm). The sample consists of a hard border with a gradient inside it. The total size of the gradient is 1.5 x 1.5 
x 2 (cm). These dimensions result in an overall size in voxels of 355 x 178 and 742 layers for the gradient 
and 591 x 296 and 742 layers for the overall sample. Figure 2 shows an example of the creation of a 3D 
printed sample with its dimensions. We designed the rest of the gradients for this study in this sample which 
we will later test through nanoindentation. For the creation of the other designs, we use a particular power-
law function. To do this, we first have to characterize the local material properties of our composite. 
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Figure 2: Schematic view of how the bitmap figures translate in the overall sample. In the first two figures, white represents Vero 
and black Agilus. In the last figure, blue represents Vero and white Agilus. 

 

2.2. Material characterization  
We can define our composite as a particle reinforced composite. In this composite, the particles are randomly 
distributed and printed by a voxel-based approach. Most studies define a gradient based on morphology, 
resulting in difficulties for controlling the local material properties. Because of this setback, we created it as a 
function of mechanical property. In theory, earlier mentioned classical models, such as the Halpin-Tsai [83], 
should work to predict the Young’s modulus of our composites. However, when we use the equation as 
mentioned earlier (equations 1 & 2) to predict the material properties of previously published particle voxel-
based data that we tested using nanoindentation [61], it clearly shows that the prediction is incorrect (Figure 
3). Figure 3 shows that the error between the Halpin-Tsai prediction and the experimental data is too high. 
However, when we make a comparison between the power-law regression in the form of: 

𝐸 = 𝑎𝜌" 
With a simplified b-value of 2, we observe that there is a small preliminary error. Because of the high error in 
the classical model and the power-law regression that shows a much lower error, a more comprehensive 
study on obtaining accurate 𝑎 and 𝑏 parameters is necessary.  
 

 
Figure 3: Left: prediction of elastic modulus based on the Halpin-Tsai model. The blue line represents the average of the previously 

published data [61], the blue shade the standard deviation of this data, and the black line the Halpin-Tsai prediction. Right: 
prediction of the elastic modulus based on the power-law function. The blue line represents the average of the previously published 
data, the blue shade the standard deviation of this data, and the black line the power-law prediction with a preliminary b-value of 2. 
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This research uses a power-law function to relate the hard material volume fraction with Young’s modulus. 
We can use these power-law functions as a design tool for the gradient function. We use the inverse of this 
power-law function, which relates the soft-hard material ratio to specific material properties, as design 
parameters for the transition between two material phases. For these equations, we need the b parameter of 
our composite to design gradients since we know the material properties of the two materials.  
We obtained this b-value in several ways. Three of them are: from experimental data of indentation tests, 
from heterogeneous indentation finite element model in small representative volume elements, and 
heterogeneous periodic boundary condition tensile finite element models in small representative volume 
elements. In this work, the focus lies on the first two.  
The goal is to assess the accuracy of the different methods, which we did using the following steps: first, we 
create a control linear density transition. From this design, we perform the FEM tests and extract the b-value 
of the composite.  
 
We based the control linear density function on a straight descending line (Figure 4B). After printing and 
testing this sample through nanoindentation, we can extract the b-value of our composite. We then 
implemented this b-value in the following equations to create the other designs based on material properties. 
 
In global, for any b-value, we can follow these equations to define any gradient function of Young’s modulus. 
In our study, we create a linear, stepwise, and sigmoid gradient. As we know, we have the power-law equation 
with the following shape: 
 

𝐸(𝑥) = 	𝐸!𝜌(𝑥)" + 𝐸#	 (5) 
 
Wherein E. is the Young’s modulus of the hard material, in our case Vero, E/ the Young’s modulus of the soft 
material, in our case Agilus, b the power-law coefficient, and E(x) and ρ(x) the overall Young’s modulus and 
hard material volume ratio (i.e., the hard material volume over the total volume of the composite) at their 
position x. We add E/ as we do not have a porous structure as happens typically with bone power-law and 
TPMS functions. Therefore, we can invert this to determine which ρ(x) we need to assign given a desired 
E(x) as:  

𝜌(𝑥) = )
𝐸(𝑥) −	𝐸#

𝐸!
/

(
"
	 (6) 

 
Wherein E(x) is any function of Young’s modulus between x = 0	(mm) and x = 15	(mm) as defined 
previously. Besides this, an important side note is that  0!

0$
≈ 0. Therefore, we can completely define any 

design after calculating b from the old exp data and the FE analysis. To corroborate the application of this 
hypothesis, we defined three functions of Young’s modulus. These are a step, a sigmoid, and a linear function. 
Also, as for corroborating our b function from previous data, we reprinted and tested a control sample with a 
linear gradient in density. For the functions in Young’s modulus, we defined them in the following way: 
For the line, as it is a simple shape, we define the Young’s modulus function as:  
 

𝐸123(𝑥) = 	𝐸! −
𝐸!
15
𝑥	 (7) 

 
Therefore: 

𝜌123(𝑥) = 8
15𝐸! −	𝐸!𝑥

15𝐸!
9

(
"
= 8

15 − 	𝑥
15 9

(
"
	 (8) 

We followed the same function of the line sample for the step, but we took steps from the line function and 
repeated them in z number of positions to obtain the desired steps.  

 
For the design of the sigmoid function, we began by the definition of a sigmoid as:  
 

𝐸#24(𝑥) =
𝐸!

1 + 𝑒𝑥𝑝 )𝑑 I𝑥 − 152 J/
	 (9)
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Wherein d defines the slope of the exponential part of the sigmoid. For our design, we chose a value of d =
0.888. So, for the density: 

𝜌#24(𝑥) =

⎝

⎜
⎛ 𝐸!

𝐸! )1 + 𝑒𝑥𝑝)𝑑 I𝑥 −
15
2 J//⎠

⎟
⎞

(
"

(10) 

 
Appendix A shows the lines of code to implement these equations for each of the gradient types in MATLAB. 
 
After post-processing the data gathered from the previously published study [61], we fitted a line through this 
data based on the power-law and extracted the b-value of our composite (Figure 4B). The acquired b-value 
for these data is 2.027, which we rounded to 2.03 and used it for our studies  
We created these designs in a way similar to the control gradient discussed earlier. However, with these 
designs, the target gradient vector is based on the equations explained above. In total, we created three new 
designs, which are a stepwise (Ste-E), linear (Lin-E), and sigmoid (Sig-E) gradient. Examples of the bitmap 
images of these designs and their respective expected Young’s modulus and ρ functions are in Figure 4C. 
We printed these designs and experimentally tested them using a nanoindenter and with a FEM. From these 
results, we evaluate the accuracy of each design.  
 
In the next chapter, we will describe the necessary procedures before the experiments and the experimental 
setup, and the post-processing of the experimental data. Furthermore, we will describe our modeling process 
and the post-processing of the data.  
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Figure 4: A) Schematic view of the dimensions of the design. B) Control linear-gradient, Lin_D, with D denoting a gradient based on 

density percentages. The first column shows an example of a bitmap file, the second column the created design, and the third 
column the measured data and fitted power-law (black line). C) The created stepwise (Ste_E), Linear (Lin_E), and sigmoid (Sig_E) 
gradients based on the power-law function, with E denoting that it is a gradient based on Young’s modulus. The first column shows 

an example of a bitmap file, the second column the created gradient, and the third column the expected outcome gradient in 
Young’s modulus.  
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2.3. Experimental setup 
 
2.3.1. Sample pre-processing 
After we printed the gradients, we polished them to smoothen the surface as much as possible. Studies have 
shown that the roughness of the surface of a sample can have a significant effect on the calculated Young’s 
modulus. The reason behind this is that the roughness of the surface has a significant influence on the contact 
depth, and this contact depth is necessary to correctly calculate the Young’s moduli of the material [84]. We 
made several polishing steps with a decrease in grain size every step to smoothen the sample’s surface. We 
used an adjusted version of the Summet Method for Polymers of the company Beuhler, who makes the 
abrasive disks. In total, there were six steps (Table 1). We performed the polishing under constant hydration 
with a MetaServ 250 of the company Beuhler. After the polishing, we cleaned the samples using an ultrasonic 
bath to remove any diamond particles stuck to the surface, mainly to the Agilus. After this, we dried the 
samples with compressed air. We used compressed air to make sure that we damaged the polished surface 
as little as possible.  
After polishing and cleaning, we inspected the samples with an optical microscope to control the polishing 
and check for any significant defects. Afterward, we stored the polished samples under a protective cover to 
prevent damage and avoid surface attachment.  
 

Table 1: Polishing steps according to the Summet Method for Polymers of the company Beuhler 
(https://www.buehler.com/sumMet.php?material=Polymers). 

 
 

2.3.2 Experimental testing 
We performed the experimental testing with the use of nanoindentation. For the measurements on the control 
gradient to acquire the b-value of our composite, performed in the previous study [61],  we used the Hysitron 
TI 950 Triboindenter. We attempted to use the same setup as described in the previous paper for the 
measurements on the property-based designs; however, now we use the Piuma nanoindenter. There are 
some differences between these two nanoindentation machines, which we will describe in the following 
chapters.  
 
2.3.2.1. Hysitron TI 950 Triboindenter 
The nanoindenter used for the experiments is the Hysitron TI 950 Triboindenter of the company Bruker. The 
machine uses a diamond conospherical tip with a diameter of 20 µm. A diamond tip is necessary to assure 
that the compliance of the tip is less than that of the indented material [72]. A conospherical tip has the 
preference when indenting in polymers to reduce the chance of damaging the material when performing the 
indents [85]. Furthermore, the JKR calculation method used further on assumes a spherical tip [86]. We 
performed the indents in a grid with a spacing of 500 µm, resulting in a grid of 30 x 30 measuring points. Due 
to the adhesion effects present when indenting soft materials, we adopted a displacement-controlled load 
function. This is necessary to capture the whole interaction between the probe and the sample [61]. In this 
load function, the probe starts in contact at the surface, after which it retracts 2 µm above the surface. This is 
necessary to make sure the tip is out of contact with the surface of the sample. Here it is held for 10 seconds 
to ensure that if any adhesion was present, this is no longer the case. After these 10 seconds, it will move 
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downwards for 3 µm, resulting in a 1 µm indent. Here again, it is held for 10 seconds. This waiting time makes 
sure the viscoelastic creep fades out before continuing the indentation [87]. After these 10 seconds, the probe 
retracts 3 µm. This is necessary to make sure the tip finishes the load cycle out of contact with the surface. 
This makes it able to mark the pull-off point. Both the downward and upward movements have a speed of 
100 nm/s. Figure 5 shows a schematic view of this load function. A procedure like this makes it possible to 
quantify the adhesion effect. We do this by determining the jump-to-contact point and the pull-off force from 
the force-displacement data [61]. We further analyzed the force-displacement curves to calculate Young’s 
moduli. 
 
2.3.2.2. Piuma nanoindenter 
The nanoindenter used for the newly created gradients is the Piuma nanoindenter from the company Optics11 
Life in the Netherlands. The indenter uses a cantilever tip which differs from the Hysitron TI 950 Triboindenter, 
which uses a straight tip. Because of the tip shape, the cantilever must have the correct stiffness. If it is too 
stiff, there will be too little cantilever bending. If it is too soft, the indentation depth would be insufficient. The 
tip is a spherical tip made of glass with a size of 8 µm. The stiffness of the cantilever is 261 N/m. The total 
gird measured is 15 x 15 indentation points. We must first calibrate the stiffness of the cantilever to adjust for 
any offset in the cantilever and nonlinear response. This is necessary because the measurement point is not 
at the tip of the cantilever but the attachment site to the machine. After this calibration, we performed the 
measurements.  
For this nanoindenter, we used a slightly different load function (Figure 5). In this load function, the tip moves 
downward for 15 µm, performing a 10 µm indent, where it is held for 7 seconds, after which it retracts 15 µm. 
With this machine, a bigger displacement is necessary to perform the indents. Furthermore, since this 
machine always starts 5 µm above the sample’s surface, no retraction is necessary to ensure the tip is out of 
contact prior to the indentations.  

Figure 5: Displacement-controlled load function used for nanoindentation experiments with the Hysitron TI 950 Triboindenter (left) 
and Piuma nanoindenter (right) 

2.3.2.3. Nanoindentation post-processing 
After creating and preparing the samples according to the procedure mentioned before, we continued to test 
them through nanoindentation.  
We tested the different samples in the following manner: first, we tested the control gradient (Lin-D) using the 
Hysitron TI 950 Triboindenter and the FEM to acquire the b-value of our composite in two different ways. For 
this sample, we measured 600 indentation points spaced in a 30 x 20 grid. From these results, we validated 
our FEM results and created the gradients based on material properties. We created four new gradients: one 
new control gradient (Lin-D) and three gradients based on our power-law function. These gradients are a 
linear (Lin-E), stepwise (Ste-E), and sigmoid (Sig-E). We use the Piuma nanoindenter to test these four 
gradients. Lin-D to validate the Piuma nanoindenter and the other three to test the approach presented in this 
study. For each of these samples, we measured 225 indentation points, spaced in a 15 x 15. The four 
gradients are also tested with the FEM to compare the resulting Young’s moduli with the experimental data, 
which we will discuss later. We post-processed the nanoindentation data according to the following 
procedure.  
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For the calculation of Young’s moduli measured with the nanoindenter, we used MATLAB rather than the 
machine's software. This is because the software of the nanoindenter is not well able to adjust for the 
adhesion forces. First, we visually analyzed all indents to remove any wrongly executed indents before further 
analysis with MATLAB. After this, we used two different calculation methods for the calculation of the local 
Young’s moduli. If the adhesion force is higher than 5% of the maximum measured load, we analyzed the 
load-displacement curves with the Johnson-Kendal-Roberts (JKR) adhesion model [88]. This model uses the 
external force (𝐹), contact radius (𝑎), and indentation depth (𝛿) to calculate the reduced Young’s modulus 
[89]. For the other curves, we used the Oliver-Pharr method [90]. Separation is needed because the adhesion 
force can overestimate the Young’s modulus when the Oliver-Pharr method is used [88]. We zeroed the load-
displacement curves for the load and displacement to capture the whole interaction between the tip and the 
sample, which is necessary to calculate Young’s moduli of both methods correctly.  
 
The JKR-method uses an exponential function, which is in-depth described by Ebenstein and Wahl [91]. We 
used this exponential function to fit the unloading in the force-displacement curve. The JKR-method uses the 
following exponential function [91]:  
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Wherein 𝑅 is the indenter tip radius, 𝑃 the measured force, 𝑃78! the maximum adhesion force (Figure 7), and 
𝑎) the contact radius between the probe and the sample (Figure 6) [91]:  

𝑎) = )
9𝜋𝑅*Δ𝛾
2𝐸;

/

(
:
	 (12) 

 
Wherein Δ𝛾 is the work of adhesion, which measures the energy needed to pull the surfaces apart and 𝐸; the 
reduced Young’s modulus. We calculated Δ𝛾 with the following equation [88]: 

Δ𝛾 =
−2𝑃78!
3𝜋𝑅

	 (13) 
 
And 𝐸; by [91]: 

𝐸; =
−𝑃78!
2𝜋𝑅*

(𝛿) − 𝛿78!)
3.3

<:*
	 (14) 

 
Wherein 𝛿) is the point where the unloading curve in the force-displacement graph crosses the x-axis, and 
𝛿78! the displacement at maximum adhesive force (Figure 7). Equations 12, 13, and 14 can be implemented 
in equation 11 to fit the unloading curve of the indentation data. The variables 𝑎) (equations 12, 13, and 14) 
as well as 𝑃78! (derived from the indentation data), are used as initial parameters for the curve fitting. With 
this fit, we can determine the reduced modulus with [88]: 
 

𝐸; =
−3𝑅𝑃78!

𝑎):
	 (15) 

 
𝑃78! as well as 𝑎) are outcomes from the fit. From this reduced modulus, we finally can acquire the real 
Young’s modulus by [88]: 

𝐸; =
𝐸

(1 − 𝑣*)
(16) 

 
 
We used the Oliver-Pharr method for indentations where the adhesion force is less than 5% of the maximum 
measured force. The Oliver-Pharr method uses another equation to calculate the Young’s modulus, which is 
the following [88]: 
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𝐸; =
𝑆√𝜋

2_𝐴(ℎ$)
	 (17) 

 
Wherein 𝐴(ℎ$) is the area function of the indenter tip restricted to 95% of the peak displacement (ℎ$) [88]:  

𝐴(ℎ$) = 2πRℎ$ − 𝜋ℎ$*	 (18) 
 
In equation 17, we calculated 𝑆 by fitting the load-displacement curve. We used the following equation to fit 
the data [90]: 

𝑃 = 	𝛼ℎ%	 (19) 
 
Wherein 𝑃 is the measured load, ℎ the displacement of the indenter and 𝛼 and 𝑚 constants. We used this 
equation to fit the data starting with initial values of 𝛼, 𝛿) and 𝑚. We used the results of this fit to calculate 𝑆 
using the following equation [92]: 

𝑆 = 𝑚𝛼(ℎ$ − 𝛿))(%<() (20) 
 
 
By implementing the results of equations 18 and 20, we can calculate the reduced modulus for the Oliver-
Pharr method with equation 17. From this, we can calculate the real Young’s modulus using equation 16.  
After we calculated the Young’s moduli for all measurement points with the JKR and Oliver-Pharr method, we 
created a heatmap. After this, we averaged the values over every column to create a mean line of the 
indentation points in the x-direction with its standard deviation. 
 
With the data extracted from the nanoindentation tests, we can generate heatmaps and plots using MATLAB. 
With these figures, we can compare the newly gathered Lin-D data to the previously published data [61] and 
those obtained from FEM for the same gradients. Furthermore, we can compare the data of the samples, with 
gradients based on mechanical properties, with their target gradient and the data gathered through FEM for 
these samples. Finally, we can use an R-squared rule criterion as an accuracy test between these processes 
to assess the reliability of our results.   
 

 
 

Figure 6: Schematic view of a spherical indentation tip wherein 𝑅 is the indenter tip radius, 𝑎 the contact radius, and 𝛿 the contact 
depth. Adjusted from Cheneler et al. [93]. 
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Figure 7: Schematic view of the load-displacement data showing the points used in the JKR calculation method. 𝑃%&' is the 
maximum adhesion force, 𝛿( the displacement where the unloading curve crosses the x-axis, and 𝛿%&' the displacement at the 

maximum adhesion force. Take from Ebenstein [94]. 

 

2.3.3 Finite element model setup 
We created a Finite Element Model of the nanoindentation set up to validate the further gathered experimental 
data. Furthermore, we calculated the b-value of the power-law function for the control linear density transition 
and used it to corroborate the designs. We then compared this b-value with the b-value gathered through 
nanoindentation experiments on the same control linear density transition. 
 
2.3.3.1. Nanoindentation model 
With Abaqus, we created a Finite Element model out of the created gradients. In this model, we performed 
nanoindentation tests based on the experimental nanoindentation tests. We used representative volume 
elements (RVEs) to reduce the computational time. In Abaqus, we created separate models for each RVEs 
and performed a nanoindentation experiment on each. We created a grid of RVEs in the overall gradient with 
15 indentation points in the x-direction and 9 in the y-direction (Figure 8B). Different parameters need to be 
set for these RVEs. These are the overall size of the RVEs and the size of the indenter tip. Besides these, 
we introduced another parameter in the model, which is a subdivision of the voxels. This subdivision is 
necessary to achieve better accuracy in the results since mesh conversion tests showed that the model’s 
results depend on the mesh's size. After a series of conversion tests, which we further discuss in the results 
section (Figure 9), we set the number of subdivisions to 6 and the model's overall size to 6x6x6 voxels.  
We used MATLAB to create the RVEs before they were implemented in the FEM using Python. With 
MATLAB, we separated the whole gradient into small RVEs of the earlier mentioned 6x6x6 voxels. This 
created 135 different files, one for each indentation point, which we then loaded into Abaqus, resulting in 135 
different models.  
The exact size for the voxels is similar to those of the used voxel-based 3D printer, which is 42 x 84 x 27 µm 
(Figure 8C). As said, we divided each voxel six times to increase the accuracy of the model. This gives a total 
of 50653 nodes and 46656 linear hexahedral elements of type C3D8R per model. We modeled the indentation 
tip as a 3D analytic rigid shell with a flat surface (Figure 8D). We performed four repetitions for each model 
to reduce the effect of the location of placement of the indenter. In these four repetitions, we randomized the 
placement of the indenter. However, we ensured that the indenter indents in the center of a voxel, and we 
excluded the outer ring of voxels as possibilities. We performed this exclusion to avoid any possible effects 
of the boundary conditions on the results. Furthermore, we kept the placement of the hard and soft unit cells 
the same. With the use of these repetitions, in total, we gathered 540 indentation points for each gradient.  
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We modeled the materials according to the used materials in the 3D printer. These materials are Vero as the 
hard material and Agilus as the soft. Both these materials are from the company Stratasys. For simplicity, we 
modeled Vero as an elastic material with a Young’s modulus of 2000 (MPa). We measured the Poisson’s 
ratio of Vero with an in-house tensile test and modeled it as 0.4. We modeled Agilus as an isotropic 
hyperelastic material. The model used for this is the Ogden material model. The values for the coefficients 
that we used in this model are µ1=0.2497 (MPa), a1=2.661 and D1 = 0.0602 (MPa-1), where the expansion 
modulus D1 is equivalent to having a Poisson’s ratio value of 0.49.   
At the edges of the model and the bottom surface, there are encastre boundary conditions, which means that 
all displacements degrees of freedom of the model are zero. We modeled the indentation itself as a 
displacement in the z-direction of 1 µm (Figure 8). Out of the model, we extracted the force measured at the 
indenter tip and the displacement of this tip. We further processed this data using MATLAB.  
 

 
Figure 8: Details of the FEM wherein blue represents a hard voxel and white a soft. A) Schematic view of the dimensions of the 
overall design. B) Schematic view of the gradient dimensions, with, in white squares indications of RVE locations. C) View of the 

created RVEs with their dimensions. D) View of the indenter tip and its dimensions. 

 
 
2.4.3.2. Finite element model post-processing 
We further processed the data gathered from the FEM using MATLAB. Both the Oliver-Pharr and JKR 
methods use the force-displacement curve's unloading region to calculate the Young’s modulus. Since the 
model shows an almost elastic behavior, the unloading region is the same as the loading region. Besides 
this, there is no adhesion force present in the FEM. Because of these two reasons, we adopted another 
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calculation method to calculate Young’s moduli for the FEM. For the calculation of the reduced Young’s 
modulus (𝐸;) we used the following equation: 

𝐸; =
1
𝛽
√𝜋
2

𝑆
_𝐴?(ℎ$)

	 (21) 

 
Wherein 𝐴?(ℎ$) is the projected area of the indenter at an indentation depth ℎ$ and  𝛽 is a geometrical 
constant on the order of unity. Since: 

𝑆 =
𝑑𝑃
𝑑ℎ

(22) 

 
Wherein 𝑃 is the measured load and ℎ the measured indentation depth. Furthermore, since we use a flat 
indenter 𝐴?(ℎ$) can be calculated with: 

𝐴?(ℎ$) = 𝜋𝑟238* 	 (23) 
 
Wherein 𝑟238 is the radius of the indenter probe. We can, in this case, rewrite this to: 
 

𝐸; =	
𝑆
2𝑟

= 	
𝑃
2𝑟ℎ

	 (24) 
 
 

From the reduced Young’s modulus, we can calculate the real Young’s modulus with the following equation: 
 

1
𝐸;
=
1 − 𝑣2*

𝐸2
+
1 − 𝑣#*

𝐸#
	 (25) 

 
Wherein the subscript 𝑖 means that it is a property of the indenter and the subscript 𝑠 that it is a property of 
the specimen tested. Since the indenter in the model is rigid, we can rewrite this equation to: 
 

𝐸# = 𝐸;(1 −	𝑣#*)	 (26) 
 
With the use of equations 5 and 7, we can calculate the local Young’s modulus. First, we calculated the 
Young’s moduli for all 540 data points. After this, we averaged the four repetitions per model to calculate the 
Young’s moduli for the 15 x 9 grid. Out of these points, we created a heatmap. After this, we averaged the 
rows for each column to create a mean line of the 15 indentation points in the x-direction, and we calculated 
the standard deviation. With this line, we can make a clear comparison between the theoretical gradient and 
the experimental data.  
 
In the end, we compared the results of the different methods to see if they follow the target gradient line and, 
thus, if our method presented here is correct. We backed this up with an error function and R2 tests. In this 
way, we can validate our models and our way of working. 
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3. Results and discussion 
In this chapter, we will present and discuss the results. First, to validate the obtained b-value gathered through 
nanoindentation experiments performed in our previously published study [61], we ran our FEM based on the 
design used there. Therefore, we need to start this chapter with the convergence tests we performed to set 
the earlier mentioned parameters for the model. After this, we continue with a discussion about validating the 
power-law function of the earlier published data using our FEM. Hereafter, we will present the outcomes of 
the experimental and FEM nanoindentation tests of all the designs. This will be followed by an in-depth 
discussion about these results and an analysis of each design individually for both the experimental and FEM. 
After this, we present a biomimetic example of our property-by-design approach. Inside the ligaments of a 
knee joint 3D printed model, we implement a gradient which we then test and compare to a model without a 
gradient in the ligaments. We will compare the results to show if our approach will positively influence the 
overall material properties. Finally, we will give answers to the research questions presented in the 
introduction. 
 

3.1. Parameterization Finite Element Model 
As said, it is first necessary to perform convergence tests to set the correct parameters of our FEM. Figure 9 
shows the different considerations for the parameters mentioned for the model. We have considered three 
primary parameters: the overall size of the RVEs, the size of the indenter tip (R), and the number of 
subdivisions of the voxels. We investigated the different parameters of the model using a model consisting of 
solely hard voxels with a Young’s modulus of 2000 (MPa). In both figures A and B, it is visible that a model 
with 6x6x6 voxels shows the best results since those values are closest to the desired value of 1. To further 
investigate this, we selected the 6x6x6 voxel model and tested it for the different tip radii and different 
subdivisions (Figure 9C). In the model with a size of 6x6x6 voxels, there are three combinations of parameters 
closest to the desired value of 1. These are 2 subdivisions and a radius of 10 µm, 4 subdivisions and a radius 
of 5 µm, and 6 subdivisions and a radius of 7.5 µm. However, upon closer inspection on the exact values of 
𝐸/𝐸! we can see that these values are 1.03, 0.9716, and 1.009, respectively. Because of this, we chose the 
combination of 6x6x6 voxels with 6 subdivisions and an indenter tip radius of 7.5 µm as parameters for the 
final model.  
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Figure 9: Figures showing the influence of the different design parameters of the FEM. The y-axis shows the measured Young’s 
modulus divided by the Young’s modulus of a hard voxel (2000 MPa). A) the influence of the dimension of the RVE per indenter tip 

size, with a fixed number of six subdivisions. B) Influence of the dimensions of the RVE per number of divisions, with a fixed 
indenter radius (R) of 7.5 (µm). C) Influence of the indenter radius per number of divisions, with a fixed RVE size of 6x6x6 voxels. 

 

3.2. Validation of power-law function 
As mentioned in the method section, we fitted a line through the previously published data and extracted the 
b-value, which was 2.027. However, we also performed a finite element analysis on that sample and similarly 
extracted the b-value for validation. Figure 10 shows the results for both the experimental data and the data 
gathered through FEM. The power-law fit gives a b-value of 2.03 for the FEM. Although the FEM shows an 
underestimation in the softer region and an overestimation in the higher region, and the experimental data 
shows some significant fluctuations, the fitted power-law functions come to almost the same b-value. This 
indicates that the fluctuations in both the FEM and experimental data result from statistical errors rather than 
measurements. Furthermore, since the b-values of the experimental and FEM data are similar, this indicates 
that the nanoindentation FEM is correctly describing the experimental nanoindentation experiment. This 
means that the FEM is working correctly, and we can use it to further investigate if our approach of creating 
property-based functional gradients is correct. 
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Figure 10: Comparison of b-values of the power-law function, for experimental and FEM indentation data, performed on a linear 
control gradient. The black line represents the experimental data gathered in the previous study, the red line FEM data based on 

the experimental data, the blue line the fitted power-law function on the experimental data with a resulting b-value of 2.027, and the 
green dotted line the fitted power-law function on the FEM data with a resulting b-value of 2.03. 

 

3.3. Experimental and Finite Element results and discussion 
After modeling and testing, we post-processed the data for both the experimental testing as well as the FEM 
and compiled the results (Figure 11).  
Before we processed the experimental indentation data to calculate the Young’s moduli, we first visually 
analyzed them to remove any wrongly performed indents. These wrongly performed indents can have several 
causes, for example, a small hole in the sample due to the printing or dust getting attached to the tip. For the 
four samples with a combined number of 540 indentation points, in total, we removed 17. 3 for Lin-D, 7 for 
Lin-E, 5 for Ste-E and 2 for Sig-E. These indentation points are visible as zeros in the heatmap. However, we 
excluded them in the calculation of the average lines in columns four and five of Figure 11.  
After manufacturing and testing the designs, the FEM showed promising results, whereas the experimental 
data was not showing the gradients as expected (Figure 11). The experimental results, including the control 
design, do not follow the target lines (Figure 11E). However, in the lower values of Young’s modulus, it is 
somewhat followed by the measured data. Only the stepwise gradient shows a line that is close to the target 
gradient. This is in contrast with the FEM data. The FEM samples do show gradients that are close to the 
target gradient. The R-squared values of the FEM data are all close to one, indicating that the data closely 
follows the target line, which is contrary to the experimental data. Here only the stepwise gradient shows an 
R-squared value close to one. 
In the next part, we will discuss all the samples individually, and discuss the unexpected experimental 
outcomes and some essential points of the FEM results. Afterward, we will present our biomimetic application 
and give answers to the research questions. 
 
We start by looking at the results of the control design (Figure 11E, Lin-D). The experimental data does not 
match the earlier published experimental data based on a similar sample. Of course, we do not expect that 
this gradient would follow the linear target gradient line, but it should follow the power-law function (black line 
Figure 11E). In the soft region, from around x=8(mm) to x=15(mm), it does follow the same trend as seen in 
the power-law function. Here we also see a very low standard deviation. In the harder region, x=0(mm) to 
x=8(mm), we start to see an increase in standard deviation, with a massive outlying point around x=6(mm). 
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This is also the region where the line starts to deviate from the expected shape. When we look at the, in 
theory, hardest point in the sample at x=0(mm), we see that this is not anywhere near the expected value of 
1 (E/Eh). Overall, the line seems to follow a trend apart from the outlier at x=6(mm). However, this is not the 
trend that we would expect.  
 
A similar problem is visible in the linear sample based on material properties (Figure 11E, Lin-E). Here again, 
in the soft region, x=10(mm) to x=15(mm), the results follow the expected line quite well with a low standard 
deviation. However, the data does not follow the target line in the harder region, x=0(mm) to x=10(mm), and 
the standard deviation increases. We can see three major outlying points. The first is at x=0(mm). Here the 
measured value is not anywhere near what we would expect it to be. The other two points are at x=4(mm) 
and x=8(mm). Here the values are higher than we would expect. The R2-value is also very low for this design, 
indicating that the measured data does not follow the expected gradient.  
 
There is an error in the measured values in the measured indentation data of both the Lin-D and Lin-E 
samples in the harder region of the gradient. This is also visible in the sigmoid gradient (Figure 11E, Sig-E). 
In this sample, in the region from x=6(mm) to x=15(mm), it does follow the target gradient quite well. However, 
there is an increase in standard deviation visible in this region. In the harder region, x=0(mm) to x=6(mm), 
some spikes are again visible, although they are less significant than in the linear samples. In the sigmoid 
gradient, the data does end in the hard region where we would expect it to end, at 1 (E/Eh). Also, the R-
squared value is much closer to one, indicating that the data follows the target line more correctly.  
 
Interestingly, the earlier mentioned problems are much less visible for the stepwise gradient (Figure 11E, Ste-
E). There are some spikes present, but they are less severe. The gradient seems to follow the target gradient, 
although the standard deviation is relatively high throughout the gradient. The steps are not recognizable. 
Only at x=7(mm) and x=9(mm) can we see some stepwise behavior. The R-squared value is, therefore, the 
closest to 1 of all the experimental samples.  
 
For all experimental samples, the heatmaps do not clearly show the created gradient (Figure 11C). This is 
particularly the case for the linear gradient samples. This is mainly a result of a few high outliers that shift the 
colors of the other points to a lighter color.  
 
The issues with the experimental samples can arise from several factors. First, there could have been a 
problem with the printing and pre-processing of the samples. However, this is performed in the exact same 
manner as the previously published data, making it unlikely that this causes the error. Secondly, the load 
function of the indenter could be incorrect. With the Piuma nanoindenter, we used a shorter holding time than 
with the Hysitron TI 950 Triboindenter. Although studies show that it is possible to use a holding time in the 
range of 3 - 120 seconds and that the holding time can influence the measured value, a longer holding time 
would only result in higher measured values and would not explain the massive fluctuations [72], [95]. Thirdly, 
the error could arise from the post-processing of the data. However, we used the same method to post-
process the previous data. Besides, we closely inspected the data gathered here to ensure it was adequately 
post-processed. It is most likely that the errors seen in the data here result from the used nanoindenter. As 
discussed earlier, the Piuma nanoindenter uses a cantilever tip. This type of nanoindenter is designed to 
measure the mechanical properties of soft and biological materials, while the Hysitron TI 950 Triboindenter 
uses a straight tip. For a cantilever tip, stiffness is critical for achieving accurate results. If it is too stiff, there 
will be too little cantilever bending. If it is too soft, the indentation depth would be insufficient. The range in 
Young’s modulus inside our gradient is relatively high (1 – 2000 MPa), meaning that it is challenging and 
possibly impossible, to have a tip with the correct stiffness to measure the whole range. Since the measured 
values are correct in the soft region and start to deviate in the harder regions, we can conclude that the tip 
we used was too compliant. Indenting with a lower indentation depth could enhance the measurements since 
a lower indentation depth expands the stiffness range of the tip. However, a minimum indentation depth is 
necessary to measure the material properties correctly.  
 
The stepwise gradient does not quite follow this reasoning since this sample does seem to follow the gradient. 
However, the standard deviation is high in this sample. This could cause Young’s modulus line to average 
out correctly while the data gathered is not sufficiently accurate. A re-run of these experiments could show 
whether or not this is indeed the case or something else is causing the present issues. 
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The results showed that not all indentation machines are suitable for bitmap gradient testing and possibly 
other applications, especially where a significant difference exists between material properties. A 
nanoindentation machine with a straight tip with a stiffness much higher than the materials is necessary for 
these types of samples. Initially, we would test the samples with the Hysitron TI 950 Triboindenter. However, 
due to a defective machine as well as Covid, this was not possible. The samples will later be tested with this 
machine to prove that the approach presented here is correct.  
 
Fortunately, we also performed a Finite Element analysis. Contrary to the experimental results, the results of 
the FEM do show the target gradient. To start with the linear gradient in density results (Figure 11D, Lin-D), 
we already showed in the validation of the b-value that the FEM results for this design are similar to the 
experimental data gathered through nanoindentation in our previous study. We still see some quite significant 
standard deviations. The reason for this is that the measured Young’s modulus through nanoindentation 
greatly relies on the location of the indent. When, by chance, the indenter hits more soft or more hard voxels 
than expected in a particular column, this will clearly be visible in the results. As said earlier, four randomly 
placed repetitions are used per model to minimize this effect. However, even with these four repetitions in the 
simulations, this effect is still clearly visible. Ideally, one should use more indentation points in the y-direction 
and more repetitions to counteract this problem. However, this would take significantly more computational 
time while, in the end, the required results are already visible.  
 
When we look at the linear gradient in material properties (Figure 11D, Lin-E) of the FEM, we see that the 
data follows the target gradient quite well. The R-squared value of 0.954 confirms this. However, there still 
are some fluctuations visible. Two major ones are at x=5(mm) and x=8(mm). The data follows the target line 
closely in the soft and hard regions, indicating that the algorithm works the best here. This is also visible in 
the stepwise gradient (Figure 11D, Ste-E). The stepwise overall seems to follow the target gradient, but it 
follows the target line the closest in the hard and soft region. However, there seems to be an overall 
overestimation in the middle section, and there are no clearly recognizable steps. Nevertheless, the R-
squared value shows that the overall error is low. 
The sigmoid gradient most closely follows the target gradient of all samples (Figure 11D, Sig-E). The R-
squared value shows that there is almost a perfect fit. There are some minor outlying points visible, which are 
again visible in the middle section. However, they do not really influence the overall observed gradient.  
 
For all gradients, the heatmaps show the created gradient quite well (Figure 11B). This is because, contrary 
to the experimental data, there are no high outliers present that shift the colors of the other points to a lighter 
color. 
 
As said, the results of the stepwise gradient do not quite follow the recognizable steps that we created. It 
follows a more linear-gradient line. This is an artifact of the number of measure points used in the x-direction. 
At least two measure points per step should be used to see the steps clearly. We did this, and this is visible 
in Figure 12. However, the steps are still not fully recognizable. The fluctuations in the data points for the 
30x9 model are even higher than with the 15x9 model. The earlier random placement of the indenter causes 
this. Increasing the measure points in the x-direction does not influence the model's accuracy at a point in x. 
So, the statistical fluctuations are still present, causing the results to not clearly show the created steps. 
Nevertheless, the error function shows that the error is low. This means that the measured points are close 
to the expected ones with the stepwise function. 
 
Overall, we can distinguish some outlying points in all Finite Element samples and a sometimes high standard 
deviation. The random placement of the indenter and the random placement of the hard and soft unit cells 
are the reason behind this. The mean line of Young’s modulus is the result of an average of many significantly 
different data points. In other words, the average is the result of heterogeneous behavior at the mesoscale. 
This is visible in Figure 12C and D. Here, we see the mean line of Young’s modulus, with its standard deviation 
and all the separate measurement points in y-direction for both the FEM (15 points) and the old experimental 
data (30 points). Of course, the experimental has many more data points, but both measurement techniques 
still come to approximately the same outcome. Also, in the FEM graph, we can see that the spike at x=8(mm) 
results from two high outlying data points. This effect is the reason behind the higher fluctuations inside the 
middle regions than the hard and soft regions in all samples. When the unit-cells are more evenly separated 
into hard and soft, the chance that, in the four random repetitions, more hard than soft voxels, or the other 
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way around, are indented is higher. This will result in more outliers and thus more spikes in the mean line. Of 
course, again, this could be solved by adding more points in the y-direction.  
 
The FEM results shown here prove that it is an excellent method to study different gradients within a structure. 
The results already show a good representation of the target gradient, and, as explained, this would only 
improve with more data points. However, this technique is not limited to voxel-based gradients used here; 
one could also use it on reinforced gradients with different shapes and sizes. Right now, our model considers 
simplistic mechanics between the hard and soft materials, but it could be improved with, for example, 
viscoelastic behavior or different failure criteria. Future work should focus on this.  
 
Overall, the results of our approach show that we can use nanoindentation to investigate gradients between 
hard and soft phases. However, one must use adequate machinery. A nanoindentation machine with a tip 
that is stiffer than the sample it has to indent is necessary. Nevertheless, even with a machine that is not well 
suitable for the type of testing performed here, the results of the softer region still show acceptable results, 
and the stepwise samples showed overall good results. The FEM showed much better results than the 
indentation data. When one creates a correct FEM with the correct parameters, it is a very viable method to 
study gradients. However, enough measurement points are necessary to achieve an excellent average result 
of the heterogeneous behavior of the mesoscale samples. Furthermore, the results we gathered show that 
our approach of applying a power-law function to a multi-material voxel-based 3D printed gradient is accurate 
enough to be used as a design tool to create gradients based on mechanical properties rather than 
morphology. For later studies, this design approach can be applied to several optimization methods to 
investigate the optimal design for the increase of toughness of a material. Furthermore, optimization methods 
can be used to only study homogeneous equivalents of these designs, which can be later discretized for 3D 
printing.  
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Figure 11: Results of the experimental and finite element indentation experiments. The first column shows the created designs. The 
first three letters show the created gradient and the last letter if it is created based on density percentage (D) or Young’s modulus 

(E). The second column shows the heatmaps of the FEM data. This heatmap shows the measured Young’s modulus of all the 
performed indentation points with the four repetitions averaged. The third column shows the heatmap of all the experimental data 
points. The fourth column shows the mean values per column compared to the target line (black) with the standard deviation as a 
shade of the FEM data. The fifth column shows the mean values per column compared to the target line (black) with the standard 
deviation as a shade of the experimental data. In both the fourth and the fifth column, the x-axis shows the distance on the sample 

and the y-axis the measured Young’s modulus normalized.  
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Figure 12: A) Stepwise gradient model with 15 measurement points in the x-direction and 9 in the y-direction. B) Stepwise gradient 
model with 30 measurement points in the x-direction and 9 in the y-direction. C), D) Figures of the average Young's modulus (green 
line), standard deviation (green shade), and every measure point in the y-direction (black x) for both the FEM (C) and experimental 

data (D) for Lin-D.  
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3.5. Bioinspired sample  
After validating the earlier models and showing that our methodology works, we applied it to a biological 
example to extend our methodology. An excellent example of this is applying it to the knee's ligaments and 
testing it under tension to explore how much a gradient in the ligaments would increase the toughness. We 
created two 3D printed knee joint models—one without and one with gradients inside the knee's ligaments 
(Figure 13). We included the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial 
collateral ligament (MCL), and the lateral collateral ligament (LCL) in the model. We left the lateral and medial 
meniscus and the patella out since these are irrelevant for our study. We removed the three supports that are 
visible in Figure 13 & 14 before measurements. The total size of the created joint, including parts of the femur, 
tibia, and fibula, is 15cm. The total lengths of the ACL, PCL, MCL, and LCL are 2cm, 1.5cm, 3.5cm, and 3cm, 
respectively. We printed the femur, tibia, and fibula with Vero. We printed the ligaments with a combination 
of Vero and Agilus, based on the gradient from hard to soft material.  
 
We tested the knee joint with a tensile test combined with a digital image correlation (DIC). DIC is an image 
analysis method that uses paint on a sample to measure the displacement and surface strains of a sample 
under tension. It does this in real-time in 3 dimensions. The software correlates the locations of pixels and 
the displacement of these pixels based on dots of paint. We measured the total force and displacement 
required before failure and captured the strains with the DIC. The DIC machine used is the Q-400 of the 
company Dantec Dynamics. Two digital cameras (12MP and CMOS chip) measure the surface strains, and 
two LED panels illuminate the samples. We loaded the samples with a quasistatic loading until failure. In 
order to correctly perform the experiments, we first have to calibrate the machine using a sample with a 
defined grid pattern. After this, we can perform the experiments. To get a high strain accuracy while keeping 
a low absolute strain error, we used a facet size of 33 x 33 pixels and a grid spacing of 11 pixels. The imaging 
frequency is 1 frame/sec. We performed the post-processing of the images and strain calculation with the 
Istra 4D x64 4.6.5 software of the company Dantec Dynamics. We will present the force-displacement and 
measured strain results, as well as a discussion about these results, in the next paragraph. 
 

 
Figure 13: Posterior view of the 3D printed design of the knee joint after applying the black-dot speckle pattern for DIC testing. 

 
 
3.5.1. Results for the bioinspired sample 
Figure 14 shows the results of the DIC tensile test of both created knee designs. The force-displacement 
curves clearly show that the non-graded knee failed with half the energy than the graded one. Furthermore, 
we can also see that the overall maximum force was lower. The DIC images show that right before failure, 
the graded ligaments were loaded to the maximum strain of Agilus, which is reported to be approximately 
95% strain. This is much higher than observed in the non-graded sample. In the force-displacement curves,  
we can also see that there are four drops in the measured forces. Failure of the ligaments causes these 
drops. The early failure in the non-graded knee is caused by the failure of the ACL. The underlying reason 
for this failure is a shear strain concentration in the bone to ligament interface. When adding a gradient to this 
ligament, we reduce this shear strain concentration and thus completely change the loading conditions of this 
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ligament. Because we change this loading condition, the ligament can now act in tension instead of shear, 
leading to a much higher strain before failure. From these results, we can conclude that adding a functional 
gradient on a sample by itself already increases the overall toughness of a structure, which is in line with the 
results of previous research. However, the results also show that we can control the direction and function of 
the loading by adding gradients in different directions. Adding gradients based on a mechanical property 
function instead of morphology might allow future research to also predict stresses directly from image 
correlation results instead of only strains. This is because, by knowing the average value of Young’s modulus 
for a section and having the experimental data of the strains, one can roughly identify the average strain of 
failure for a structure. From this, we can conclude that future research is necessary to explore these failure 
stress estimations and optimization analysis of homogenized models that we can later discretize into real 
properties.  
 
 
 
 

 
Figure 14: Results of the biomimetic knee design. A) The overall design of the knee, including the femur, tibia, fibula, ACL, PCL, 

MCL, and LCL. Blue represents Vero and white Agilus. B) Close-up of the non-graded ligament design and the DIC and FEM 
results showing the measured strain and forces. C) Close-up of the graded ligament design and the DIC and FEM results showing 

the measured strain and forces.  
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4. Conclusions 
 
 
This research presents a new design approach to create gradients on mechanical properties rather than 
morphology. We did this by introducing a power-law function and creating different gradients based on this 
function and earlier gathered data. These newly designed gradients were then tested through nanoindentation 
and FEM to assess if our approach was correct. Finally, we applied our approach to a biomimetic sample to 
show an application of our findings. In the introduction, we have presented several research questions which 
we can now answer.  
 
First, we had to investigate if the Halpin-Tsai model can accurately predict graded structures. Our results 
clearly show that the Halpin-Tsai model cannot correctly predict a bitmap-based 3D-printed composite's 
material properties. One of the main reasons for this is the one discussed earlier: it assumes parallel aligned 
short fibers. Because the Halpin-Tsai model was inaccurate, we had to apply another model in the form of a 
power-law function. This function showed much more accurate results, and we, therefore, used this model in 
the rest of the research. 
 
After this, we had to assess if the nanoindenter could successfully measure the whole range of Young’s 
moduli in our gradient. Contrary to our expectation, the nanoindenter used here was not able to do so. 
However, from the previously published data, combined with the data gathered through FEM, we can 
conclude that there are nanoindentation machines available that are able to measure the whole range. This 
shows that it is essential to choose a suitable machine for indentation experiments on these types of samples.  
 
Fortunately, from comparing the gathered b-values, we can conclude that our FEM can accurately predict the 
experimental data. The b-value found through experimental data and FEM are similar, as well as both the 
average lines. However, the results of the parameterization analysis show that it is crucial to set the correct 
parameters to acquire accurate results. Furthermore, it is necessary to perform an adequate number of 
experiments to achieve a good average result of the heterogeneous behavior of the mesoscale sample.  
 
Mainly from the results of the FEM, but also slightly from the experimental results, we can see that the 
outcome gradient in Young’s modulus follows the target gradient in all of the samples. The experimental data 
did show some unexpected results. However, as discussed, this is caused by a problem with the indentation 
machine rather than an error in the workflow. Several other factors that could have caused the error in the 
results were discussed but are refuted. Using an indentation machine suitable for the type of samples used 
here will prove that the experimental data will also confirm our approach.  
 
The biomimetic sample of the knee joints showed that introducing a gradient increases the energy to failure 
of the sample. Furthermore, we also showed that this introduction of the gradient would change the loading 
condition on the ligaments. From this, we can conclude that introducing a gradient itself will already increase 
the toughness and can also control the direction and function of the loading  
 
Overall, the specimens presented here showed that, with our method, we could create a gradient based on 
material properties rather than morphology. Because of this, we can say that the objective of this research, 
to create a new approach to design gradients based on the precise deposition of hard-soft materials, is 
achieved. We achieved this by creating a FEM and validated this by performing nanoindentation tests. These 
tests showed that our approach was successful and that we can now design arbitrary functions to create 
functionally graded materials solely by controlling the hard volume fraction. This creates another level of 
freedom for the design of materials because we can now control the local stiffnesses. This has not earlier 
been done in the literature but is essential for further research. Applications to which this can be applied are 
numerous, for example, in controlling cell behavior, building in-vitro models, and bio-implants.  
Future research could expand on the chosen approach by acquiring more indentation points for the Finite 
Element analysis, implementing optimization techniques, investigating the possibility to predict stresses 
directly from DIC results, exploring the possibilities to implement these methods of gradient designs in 
biocompatible designs, and applying it to other structures and shapes than voxels.  
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Appendix A 
 
We used the following lines to implement the linear function in MATLAB: 
 
 

xk = linspace(0,15,round(15/voxX)) 
ρk@AB= (1 - X/15 )'.^(1./b) 

 
 

For the step, we used the line function and took steps from it and repeted them in z number of positions to 
obtain the desired steps. We then implemented this in MATLAB in vector shape as:  
 

ρk/C+D= repelem(ρk@AB(1/10: round(15/(voxX*10)): end),10) 
 
We implemented the sigmoid function in MATLAB using the following lines of code: 
 

A = 4 
D = 4 * A / 15 

Z = 1 + exp(D.*(X-15./2)) 
ρk/AE= (1 ./ Z )'.^(1./b) 

 
Wherein A is a parameter based on the desired slope of the sigmoid function. 

 


