

Delft University of Technology

An adaptive parallel arc-length method

Verhelst, H.M.; Den Besten, J.H.; Möller, M.

DOI
10.1016/j.compstruc.2024.107300
Publication date
2024
Document Version
Final published version
Published in
Computers & Structures

Citation (APA)
Verhelst, H. M., Den Besten, J. H., & Möller, M. (2024). An adaptive parallel arc-length method. Computers
& Structures, 296, Article 107300. https://doi.org/10.1016/j.compstruc.2024.107300

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.compstruc.2024.107300
https://doi.org/10.1016/j.compstruc.2024.107300

Computers and Structures 296 (2024) 107300

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier.com/locate/compstruc

An adaptive parallel arc-length method

H.M. Verhelst a,b,∗, J.H. Den Besten a, M. Möller b

a Delft University of Technology, Department of Maritime and Transport Technology, Mekelweg 2, Delft 2628 CD, the Netherlands
b Delft University of Technology, Department of Applied Mathematics, Van Mourik Broekmanweg 6, Delft 2628 XE, the Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Arc-length methods

Parallelisation

Isogeometric analysis

Kirchhoff-Love shell

Post-buckling

Parallel computing is omnipresent in today’s scientific computer landscape, starting at multicore processors in
desktop computers up to massively parallel clusters. While domain decomposition methods have a long tradition
in computational mechanics to decompose spatial problems into multiple subproblems that can be solved in
parallel, advancing solution schemes for dynamics or quasi-statics are inherently serial processes. For quasi-

static simulations, however, there is no accumulating ‘time’ discretization error, hence an alternative approach
is required. In this paper, we present an Adaptive Parallel Arc-Length Method (APALM). By using a domain
parametrization of the arc-length instead of time, the multi-level error for the arc-length parametrization is
formed by the load parameter and the solution norm. Given coarse approximations of arc-length intervals, finer
corrections enable the parallelization of the presented method. This results in an arc-length method that is
parallel within a branch and inherently adaptive. This concept is easily extended for bifurcation problems. The
performance of the method is demonstrated using isogeometric Kirchhoff-Love shells on problems with snap-

through and pitch-fork instabilities and applied to the problem of a snapping meta-material. These results show
that parallel corrections are performed in a fraction of the time of the serial initialization, achievable on desktop
scale.
1. Introduction

Over the last decades, computational power has increased exponen-

tially. In the last year, most improvements were due to an increasing
number of threads per processing unit rather than an increase in single-

thread performance [1]. The trend of increasing logical cores with stag-

nating single-threaded performance calls for parallelization of existing
codes to improve computational efficiency, amongst which numerical
algorithms in computational mechanics. In the field of computational
mechanics, parallelization in the spatial domain is common practice by
using shared-memory assembly routines or distributed-memory paral-

lelization using domain decomposition of meshes. Parallelization can
also be achieved in linear solvers or in the temporal domain using
parallel-in-time solvers [2] in the case of dynamic analyses or using
parallel continuation for quasi-static or continuation problems - the lat-

ter two being sequential by nature.

For quasi-static problems, continuation methods can be used when
the solution of an equation or a system of equations is desired, given
the varying parameters of the system. Such methods, typically referred
to as Arc-Length Methods (ALMs), are widely used for (but not lim-

* Corresponding author at: Delft University of Technology, Department of Maritime and Transport Technology, Mekelweg 2, Delft 2628 CD, the Netherlands.

ited to) the analysis of the stability of structures. The Riks and Crisfield
methods [3,4] are commonly used and in combination with bifurcation
algorithms [5], whereas ALMs provide a valuable tool in the analy-

sis of the collapse and post-buckling behaviour of structures. Recent
developments for ALMs include a new displacement-controlled formula-

tion [6], an improved predictor scheme [7], and automatic exploration
techniques [8,9]. Like time-stepping methods, ALMs are sequential by
nature, meaning that the solution at a point is obtained from the solu-

tion at a previous point obtained previously.

Amongst many parallel time-integration schemes, Parareal is a par-

allel time-integration method proposed by [10] and works with a two-

level parallel correction scheme of time intervals. The method starts
with a series of solutions obtained in serial with a large time step, after
which each sub-interval is computed with a finer time step such that a
new solution is found at the end-point of the time interval. A multi-level
extension of Parareal is proposed in [11] and is referred to as Multi-Grid
Reduced in Time (MGRIT). This method is similar to Parareal but ap-

plies the two-level approach recursively. As a consequence, multi-grid-

like cycles can be used to correct previously computed sub-intervals.
This method has not only been applied to dynamic problems but also to
Available online 10 February 2024
0045-7949/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access

E-mail addresses: h.m.verhelst@tudelft.nl (H.M. Verhelst), henk.denbesten@tude

https://doi.org/10.1016/j.compstruc.2024.107300

Received 20 October 2023; Accepted 24 January 2024
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

lft.nl (J.H. Den Besten), m.moller@tudelft.nl (M. Möller).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/compstruc
mailto:h.m.verhelst@tudelft.nl
mailto:henk.denbesten@tudelft.nl
mailto:m.moller@tudelft.nl
https://doi.org/10.1016/j.compstruc.2024.107300
https://doi.org/10.1016/j.compstruc.2024.107300
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2024.107300&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 1. Load (left), displacement (middle), and arc-length control (right) for structural analysis problems. The question mark (?) indicates the iteration where load
and displacement control encounter a limit point. In these situations, the next point obtained is typically difficult to find.
the training of neural networks [12] and [13]. Alternative methods for
parallel time integration are reviewed in the work of [2].

Compared to temporal parallelization methods, parallelization of
ALMs has received less attention in the academic community. As ALMs
are typically used for explorations of solutions across branches, par-

allel evaluation of branches can be performed as soon as the starting
point (and tangent) of each branch is known. The number of branches
related to a problem, however, depends typically on the problem that
is solved; hence, the parallel scalability of ALMs over branches is not
guaranteed. Parallelization within a branch is enabled by the Parallel
Adaptive Method for Pseudo-Arclength Continuation (PAMPAC) [14].
This method works with multiple predictors (with different step sizes)
and consequently correctors to select an optimal step size, which can
be performed in parallel. The PAMPAC method focuses on selecting a
maximal step size for the ALM for which the method does not converge.

In this paper, a parallelization of the arc-length method is presented
that is independent of the physical nature of the underlying problem.
That is, the method is developed such that the parallelization can be
performed within the branches. In addition to parallelization, the pre-

sented arc-length scheme also provides inherent adaptivity; therefore,
the method is referred to as the Adaptive Parallel Arc Length Method
(APALM). The working principle of the APALM is based on a multi-level
approach – inspired by MGRIT methods – where a coarse serial ap-

proximation of the solution space is refined in parallel until a measure
of convergence is achieved. Contrary to PAMPAC, the present method
does not maximise the step size for convergence of the ALM iterations,
but instead the parallelization is based on convergence of the solution
sub-intervals. Without loss of generality, the method is developed given
a constraint equation for the arc-length method; thus, it is generalised
for the Riks and Crisfield methods, amongst other methods available.

The outline of this paper is as follows: Section 2 provides a back-

ground on arc-length methods. In section 3, the parallelization of arc-

length methods is presented, referred to as the APALM. Thereafter,
section 4 provides algorithms for non-intrusive implementation of the
APALM, given an implementation of an existing ALM. Section 5 pro-

vides numerical benchmark problems and an application to the analysis
of a snapping meta-material, inspired by [15]. Finally, section 6 pro-

vides conclusions on the presented method.

2. Arc-length methods

In this section, the concept of arc-length methods is presented for
the sake of completeness. For a detailed overview, one can consult ref-

erences [3,4,16,17]. Let 𝑮(𝒖, 𝜆) = 𝟎 be a non-linear system of equations
to be solved, with 𝒖 the solution to the system of equations given a
parameter 𝜆. For structural analyses, 𝒖 is typically a vector contain-

ing discrete displacements of the degrees of freedom, and 𝜆 is a factor
scaling the magnitude of an applied load 𝑃 , i.e.
2

𝑮(𝒖, 𝜆) =𝑵(𝒖) − 𝜆𝑷 , (1)
where 𝑵(𝒖) is a vector of internal forces, depending on the defor-

mation 𝒖. For incremental analyses, i.e., quasi-static analyses, a se-

ries of solutions 𝒘𝑖 = (𝒖𝑖, 𝜆𝑖) is obtained by computing increments
Δ𝒘𝑖 = (Δ𝒖𝑖, Δ𝜆𝑖) such that 𝒘𝑖+1 =𝒘𝑖 + Δ𝒘𝑖 and equation (1) is satis-

fied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i)
fixing 𝜆 and finding 𝒖 (load control); ii) fixing some degrees of freedom
in 𝒖 and finding all 𝒖 and 𝜆 (displacement control); or iii) constraining
𝜆 and 𝒖 and solving for both (arc-length control); see Fig. 1. In the case
of arc-length control, the increment Δ𝒘 is measured by an increment
length 𝑑(Δ𝒘)

𝑑(Δ𝒘) = Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷 ⊤𝑷 , (2)

where Ψ is a scaling parameter given in [18,19]. The increment Δ𝒘 is
constrained by the arc-length Δ𝓁 in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘) − Δ𝓁 = 0. (3)

Since 𝑮(𝒖, 𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively,
i.e., Δ𝒘𝑖,𝑘+1 = Δ𝒘𝑖,𝑘 + 𝛿𝒘𝑖 with iteration count 𝑘. The constraint equa-

tion is solved together with equation (1) in every iteration, yielding the
Riks and Crisfield methods [3,4]

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) = Δ𝒖⊤
𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷 ⊤𝑷 −Δ𝓁2 = 0, Riks, (4)

𝑓 (Δ𝒘𝑖,𝑘,Δ𝑙) = Δ𝒖⊤
𝑖,𝑘
Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷 ⊤𝑷 −Δ𝓁2 = 0, Crisfield,

(5)

where Δ𝒘0 is the increment in the first iteration. The Crisfield method
generally performs well with sharp snap-backs but has the disadvantage
that the constraint equation has two intersections with the path formed
by equation (1). Hence, a root has to be selected, which is elaborated in
the works [4,16]. When multiple intersections are found, complex roots
are found [20], which can be resolved using one of the methods pro-

posed in [21,22]. It should be noted that any other arc-length method
can be used within the scheme proposed in this paper, as long as the
constraint equation is satisfied when the arc-length step is converged.

3. Adaptive parallel arc-length method

In this section, our new approach, the APALM, is presented. Firstly,
the method is conceptualised along with some illustrative figures (sec-

tion 3.1). Secondly, details are provided on the curve parameterization
and the measurement of errors (section 3.2). Lastly, section 3.3 presents
(re-)parameterization methods for the solution curve. These parameter-

izations will be essential to the data structure of the APALM. It should
be noted that the method described in this section is presented only for
one continuation parameter, 𝜆.

3.1. Concept

Learning from parallel-in-time methods like Parareal or MGRIT, par-
allelization in the APALM is achieved from a subdivision of the curve

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 2. Concept of the APALM. The large open circles represent reference solutions from a previously computed level. The small solid circles represent new data on the
interval between two reference solutions, computed by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation
for which the sum is equal to the total curve length.
length domain. Contrary to MGRIT and Parareal, where the temporal do-

main 𝑡 ∈ [𝑇0, 𝑇1] is fixed, the APALM will work with a changing curve
length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed
path, with an underlying fixed parametric domain with parametric co-

ordinate 𝜉 ∈ [0, 1]. The APALM is initialised with an initial coarse grid
approximation, in which the parametric and the curve length domains
are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖, 𝑠𝑖+1], respec-

tively, as illustrated in Fig. 2.

In the initialization phase of the APALM, the first subdivision into
sub-intervals is made (see Fig. 2a). Here, the sizes of the sub-intervals
𝑠 ∈ [𝑠𝓁

𝑖
, 𝑠𝓁
𝑖+1] are determined based on the distance measure that is

used by the corresponding ALM; see equation (2). Note that the super-

script 𝓁 denotes the 𝓁th level. Based on the initial curve-length domain
𝑠 ∈ [0, 𝑆], where 𝑆 is the total length of the initial curve, and the
corresponding sub-intervals, the curve-length domain can be mapped
3

accordingly onto a parametric domain; see section 4 for more details.
With an initialised computational domain, the number of sub-

intervals determines the degree of parallelization. On any sub-interval,
[𝑠𝓁
𝑖
, 𝑠𝓁
𝑖+1] data at the start-point and end-point is known, which can be

used to initiate an arc-length method to re-compute the sub-interval
with 𝑁 increments, i.e., with an arc-length of Δ𝐿𝓁+1

𝑖
= Δ𝐿𝓁

𝑖
∕𝑁 (see

Fig. 2b).

After sub-interval [𝑠𝓁+1
𝑖
, 𝑠𝓁+1
𝑖+1] has been finished, the distance of the

end-point of the sub-interval can be compared to the previously known
solution at 𝑠𝓁

𝑖+1, which is called parallel verification of intervals in Fig. 2c.
Since the sub-interval is traversed in 𝑁 increments with length Δ𝑠0

𝑖
∕𝑁 ,

the triangle inequality with the arc-length measure implies that there
must be a distance greater than or equal to zero between the newly
found end-point and the reference end-point. The more ‘curved’ the
domain in-between, the larger this distance. Based on an error measure
(see section 3.2), intervals with a relatively large deviation between the
coarse-level arc length and the fine-level arc length are to be marked

for ‘refinement’.

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 3. Error measures on a nearly straight interval (a) and a curved interval (b). For the nearly straight interval, the distance 𝛿𝐿 (see b) is sufficiently small, whereas
for the curved interval, it is too big. The measures Δ𝐿 and Δ𝐿′ , Δ𝐿, and 𝛿𝐿 are, respectively, the coarse arc length, the fine arc length, the lower distance, and the

absolute error.

Lastly, the intervals with a too large deviation in the newly com-

puted curve length need to be reparameterized (see section 3.3). This
is because the total curve-length parameterization is elongated exactly
by the distance between the newly computed endpoint and the previ-

ously known point. By this means, the reference interval is subdivided
into 𝑁 + 1 sub-intervals, and the data corresponding to the 𝑁 newly
computed point is stored. For sub-intervals that have an error below
the tolerance, only 𝑁 − 1 points are stored as references, and no repa-

rameterization takes place. The process is sketched in Fig. 2d. After
reparameterization, the marked interval can be re-computed, and the
process can be repeated from Fig. 2b onward.

Remark 1 (Difference with parallel-in-time methods). As mentioned, the
multi-level approach that is employed in this method is derived from the
idea of parallel-in-time methods. However, the fundamental difference
between time integration and continuation comes from the fact that
time integration methods typically compute the solution on the next
time step with a certain time integration error (Δ𝑡𝑝). Parallel-in-time
methods rely on this time integration error to mark solution intervals as
converged or not, and additionally, updated solutions contain smaller
time integration errors, so sub-intervals need to be recomputed as soon
as solutions previously in time have been updated.

For arc-length methods, Newton’s method is applied to a system of
equations that solves the arc-length constraint equation together with
the discretized system 𝑮(𝒖, 𝜆) = 𝟎. Therefore, the error of the solution
that is found after an arc-length increment is independent of the arc-

length increment size but solely depends on the convergence tolerance
of Newton’s method. Therefore, the end-point of an interval does not
have to be updated, nor do intervals after the update be recomputed.
This implies, in principle, that parallel corrections of the arc-length
steps are not needed, since the intervals already capture the structural
response at the equilibrium path. However, the parallel corrections are
still meaningful to capture the equilibrium path in desired detail, in the
case where the initial step size is chosen very coarse. As will follow from
the results section, cf. section 5, the parallel performance increases for
fewer (hence coarser) initial intervals.

Remark 2 (Path-dependency). The concept presented in this paper as-
4

sumes path-independence of the equation to be solved, in order to
assume that from a given starting point on the equilibrium path, the
same end-point could be reached irrespective of the computed intervals
on the path in-between the points. Path-dependent problems are out of
the scope of this paper.

3.2. Error measures

The refinement of computed sub-intervals depends on the distances
between the points in the original (coarse) interval and the newly ob-

tained solutions in this sub-interval. Here, error measures are presented,
that can be used to mark an interval [𝑠𝓁

𝑖
, 𝑠𝓁
𝑖+1] based on the obtained

solutions {𝑠𝓁+1
𝑘

}𝑘=0,...,𝑁 at the finer level. Fig. 3 presents two possi-

ble situations: a nearly straight interval that would not be marked for
refinement, and a curved interval that would be marked for refine-

ment. Here, the interval is considered ‘curved’ in the discrete solution
space if the hyperdimensional path between two solutions differs from
the hyperplane between these solutions. The errors that determine the
marking of an interval for refinement are illustrated in Fig. 3b and can
be interpreted as follows: Δ𝐿 is the original arc length between two
coarse solutions, Δ𝐿′ is the newly obtained length between two coarse
solutions, the lower distance Δ𝐿 is the distance between the start of the
interval and the last solution at the fine level, and 𝛿𝐿 is the distance
between the last obtained solution on the fine level and the final point
on the coarse level. Using these distances, the total error (𝜀), the lower
error (𝜀𝑙), and the upper error (𝜀𝑢) can be defined:

𝜀 = (Δ𝐿′ − Δ𝐿)∕Δ𝐿, total error, (6)

𝜀𝑙 = (Δ𝐿−Δ𝐿)∕Δ𝐿, lower error, (7)

𝜀𝑢 = (𝜀− 𝜀𝑙)∕Δ𝐿, upper error. (8)

Here, the total error is the total difference between the coarse and fine
intervals; the lower error is the contribution of the first 𝑁 sub-intervals;
and the upper error is the contribution of 𝛿𝐿 to the total error. Depend-

ing on these errors and specified tolerances, refinement rules can be set
up, in particular:

Refine the first 𝑁 intervals ⟷ 𝜀𝑙 > TOL𝑙 , (9)
Refine the last interval ⟷ 𝜀𝑢 > TOL𝑢. (10)

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 4. Domain parameterizations on the curve-length domain 𝑠 and the param-

eter domain 𝜉 with levels 𝓁 and 𝓁 + 1. Fig. 4a illustrates the original domain,
Fig. 4b illustrates the insertion of interior points in the case of a sufficiently
close approximation of the end-point of the domain and Fig. 4c illustrates the
full insertion of all sub-domain solutions combined with the stretching of the
curve length domain.

3.3. Curve (re-)parameterization

As indicated in Fig. 2, the concept of the APALM is supported by the
parameterization of the solutions of 𝐺(𝒖, 𝜆) = 𝟎 by parameterizing the
curve length using the increment length 𝑑(Δ𝒘) embedded in the arc-

length method. As illustrated in Fig. 2, the APALM maps solutions 𝒘
to a point on the curve-length domain [0, 𝑆], and points on the curve-

length domain are mapped on a parametric domain [0, 1].
Provided a series of solutions from the initialization phase

{𝒘0
𝑖
}𝑖=0,...,𝐼 , with 𝐼 denoting the total number of initial points, and

defining solution intervals by Δ𝒘𝓁
𝑖
=𝒘

𝓁
𝑖+1 −𝒘

𝓁
𝑖
, each solution 𝒘0

𝑖
can

recursively be assigned to the curve-length and parametric domains by

𝑠0
𝑖+1 = 𝑠

0
𝑖
+ 𝑑(Δ𝒘0

𝑖
), 𝑖 = 1, ..., 𝐼 − 1, 𝑠0 = 0, (11)

𝜉0
𝑖
=
𝑠𝑖

𝑠𝐼
, 𝑖 = 0, ..., 𝐼, (12)

where the superscript 0 represents the 0th level. In addition, equa-

tion (11) guarantees that 𝑆 = 𝑠𝐼 marks the total length of the curve
that has been traversed, measured by the distance between each solu-

tion. Given the curve-length coordinates of each point as an increasing
sequence, the parametric domain can simply be obtained by scaling
the domain back to [0, 1]; see equation (12). In the following, two
ways of adding solutions to the parameterization are defined: i) inte-

rior insertion, and ii) full insertion and stretching. The operations are
defined given a parent interval [𝑠𝓁

𝑖
, 𝑠𝓁
𝑖+1) in which a set of new solutions

{𝑠𝓁+1
𝑘

}𝑘=0,...,𝑁 , where 𝑠𝓁+10 = 𝑠𝓁
𝑖
, is computed, with 𝑁 the total number

of points in the interval; see Fig. 4a.

Firstly, the interior insertion operation inserts solutions within the
sub-interval, see Fig. 4b, and is later used for intervals where the
error is small. The idea behind this operation is that the solutions
{𝑠𝓁+1
𝑘

}𝑘=1,...,𝑁−1 between 𝑠𝓁
𝑖

and 𝑠𝓁
𝑖+1 are inserted and that the solu-

tion 𝑠𝓁+1
𝑁

is not added to the map. In the case of the interior insertion,
the points 𝑠𝓁+1

𝑘
and their parametric coordinates 𝜉𝓁+1

𝑘
are added by:

𝑠𝓁+1
𝑘+1 = 𝑠

𝓁+1
𝑘

+ 𝑑(Δ𝒘𝓁+1
𝑘

), 𝑘 = 0, ...,𝑁 − 2,

𝑠𝓁+10 = 𝑠𝓁
𝑖
, 𝑠𝓁+1

𝑁
= 𝑠𝓁

𝑖+1, (13)

𝜉𝓁+1
𝑘+1 = 𝜉𝓁+1

𝑘
+ (𝜉𝓁

𝑖+1 − 𝜉
𝓁
𝑖
)
𝑠𝓁+1
𝑘+1 − 𝑠

𝓁+1
𝑘

𝑠𝓁
𝑖+1 − 𝑠

𝓁
𝑖

, 𝑗 = 0, ...,𝑁 − 2. (14)

Note that 𝒘𝓁+1
𝑘

denotes the 𝑘th solution on level 𝓁+1 on the computed
sub-interval, here [𝑠𝓁

𝑖
, 𝑠𝓁
𝑖+1].

The full insertion and stretching operation inserts the solutions of
5

the sub-interval, including its end point, and also stretches the curve
Computers and Structures 296 (2024) 107300

parameterization (see Fig. 4c), which is later used for intervals where
the error is large, hence intervals that need refinement. The idea behind
this operation is that the solutions {𝑠𝓁+1

𝑘
}𝑘=1,...,𝑁−1 between 𝑠𝓁

𝑖
and 𝑠𝓁

𝑖+1
are inserted and that the point 𝑠𝓁

𝑖+1 is shifted such that 𝑠𝓁
𝑖+1 = 𝑠

𝓁+1
𝑁

and
such that all points further than 𝑠𝓁

𝑖+1 are updated to ̃𝑠𝓁
𝑗

by the shift

using the distance between the last computed solution and the reference
solution, i.e. 𝑑(Δ𝒘𝓁+1

𝑁
), Δ𝒘𝓁+1

𝑁
=𝒘

𝓁
𝑖+1 −𝒘

𝓁+1
𝑁

:

𝑠𝓁+1
𝑘+1 = 𝑠

𝓁+1
𝑘

+ 𝑑(Δ𝒘𝓁+1
𝑘

),

𝑘 = 0, ...,𝑁 − 1, 𝑠𝓁+10 = 𝑠𝓁
𝑖
, 𝑠𝓁

𝑖+1 = 𝑠
𝓁+1
𝑁
, (15)

𝜉𝓁+1
𝑘+1 = 𝜉𝓁+1

𝑘
+ (𝜉𝓁

𝑖+1 − 𝜉
𝓁
𝑖
)
𝑠𝓁+1
𝑘+1 − 𝑠

𝓁+1
𝑘

𝑠𝓁
𝑖+1 − 𝑠

𝓁
𝑖

, 𝑘 = 0, ...,𝑁 − 1, (16)

�̃�𝓁
𝑗
= 𝑠𝓁

𝑗
+ 𝑑(𝒘𝓁+1

𝑁
,𝒘𝓁

𝑖+1), 𝑗 = 𝑖+ 1, ..., 𝐼. (17)

As can be noticed in equation (16), the re-scaling of 𝜉 is done using
the parametric length of the original interval at level 𝓁, (𝜉𝓁

𝑖+1 − 𝜉
𝓁
𝑖
) and

the curve coordinate 𝑠𝑖+1 relative to the beginning point of the interval
𝑠𝑖 with respect to the (updated) total curve length of the interval 𝑠𝑖+1 −
𝑠𝑖, which is similar to the well-known chord-length parameterization in
splines [23].

4. Implementation

In this section, data structures and algorithms for the implemen-

tation of the APALM are presented. In section 4.1, a data structure
is provided for the implementation of the APALM. Thereafter, sec-

tion 4.2 provides algorithms for the implementation of the APALM, and
section 4.3 elaborates on the extension of these methods to multiple
branches, hence enabling arc-length exploration.

4.1. Data structure

Since the APALM is based on a sub-interval approach where the
start and end points of each sub-interval are known, a data structure
referencing the sub-intervals is essential. Since the curve-length coor-

dinate is subject to change after reparametrisation of the curve and
since the curve parameter is fixed, the logical choice is to connect the
data to parametric coordinates. That is, a series of discrete maps is con-

structed such that solutions, levels, and curve-length coordinates can be
obtained via a parametric point 𝜉𝓁

𝑘
.

Fig. 5 shows the data structure behind the APALM. Firstly, the data
structure contains the map (𝜉) ∶ [0, 1] → [0, 𝑆], which is the map
that maps the parametric coordinate to the curve-length domain. Sec-

ondly, the maps  (𝜉) ∶ [0, 1] → ℝ𝑛+1 and  ′(𝜉) ∶ [0, 1] → ℝ𝑛+1 map
the solution and the previous solution from the parametric domain to
the solution and previous solution domain, respectively. The mapper
 ′(𝜉) ∶ [0, 1] → ℝ𝑛+1 is constructed in order to construct the predictor
of the ALM. Lastly, the map (𝜉) ∶ [0, 1] → ℕ is a map that can be used
to obtain the level of a parametric point, which is optional but can be
useful to limit the method to a certain depth.

4.2. Algorithms

Given the underlying data structure of the APALM (see section 4.1),
algorithms are defined for its implementation. Firstly, it is assumed that
the APALM is based on an ALM with possibly a black-box implemen-

tation, striving for the non-intrusiveness of the method. The required
routines for the underlying ALM are:

• 𝒘
𝓁
𝑖+1 ← step (𝒘𝓁

𝑖
, Δ𝒘𝓁

𝑖
Δ𝐿): Performs a step with length Δ𝐿 start-

ing at point 𝒘𝓁
𝑖

and returns the new solution 𝒘𝓁
𝑖+1. Given the

current solution and the previous solution, a predictor for the ini-

tial iteration that employs Δ𝒘𝓁
𝑖
=𝒘

𝓁
𝑖
−𝒘

𝓁
𝑖−1 could be available, as
well as one for a cold start, i.e., Δ𝒘𝓁
𝑖
= 𝟎.

H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 5. The data structure behind the APALM. The axes represent data sets,
which are monotonically increasing when the axis has an arrow. Solid arrows
represent mappers from one axis to another, and dashed arrows represent data
references. The mappers Ξ(𝑠𝑖) and (𝜉𝑖) map between the curve parametrisation
and the curve length axes. The former takes a curve length 𝑠𝑖 and returns the
curve parameter 𝜉𝑖 , and the latter maps the inverse. The mappers  (𝜉𝑘) and
 ′(𝜉𝑘) return the solution 𝒘𝑗 and the previous solution (𝒘′)𝑗 , respectively,
given a parametric coordinate 𝜉𝑗 , and the mapper (𝜉𝑗) returns the level on
which the coordinate 𝜉𝑗 was computed. The guess is a data reference to the
previous solution. The thick solid intervals represent running jobs assigned with
an ID, and the thick dashed intervals represent queued intervals. Each interval
is represented by a start-point and an end-point tuple (𝜉𝑙, 𝜉𝑙+1). The red lines,
squares, and arrows represent the submit operation when solutions are added
to the data structure.

• Δ𝑠 ← distance (𝒘𝓁
𝑖
, 𝒘𝓁

𝑗
): gets the distance between two points

𝒘
𝓁
𝑖

and 𝒘𝓁
𝑗
, using equation (2) with Δ𝒘𝓁

𝑖
=𝒘

𝓁
𝑖
−𝒘

𝓁
𝑗
.

In the following, three implementations are presented. The first im-

plementation is a serial implementation without communication but
with queueing, referred to as the Adaptive Serial Arc-Length Method
(ASALM). The serial implementation provides the building blocks for
the hybrid implementation and the parallel implementation. The hybrid
implementation, referred to as the Adaptive Serial-Parallel Arc-Length
Method (ASPALM), is a hybrid version of the APALM where parallel
corrections are performed after a serial solve has finished. The parallel
implementation, on the other hand, starts parallel corrections as soon as
the first interval has been initialised; hence, there is no separation be-

tween a serial phase and a parallel phase. The parallel implementation
is the final APALM.

4.2.1. Serial implementation

The global workflow for a serial APALM, i.e., the ASALM, is illus-

trated in Algorithm 1. As seen in this algorithm, the initialization is
performed using a serialSolve routine, which defines the initial so-

lution sequence {𝒘0
𝑖
}𝐼
𝑖=0 with 𝐼 steps on level 𝓁 = 0. In addition, this

routine also provides a sequence of curve-length coordinates, {𝑠0
𝑖
}𝐼
𝑖=0.

Based on these sequences, the mappers from Fig. 5 and a queue 𝑄
are initialised in the initializeMap routine. Given the queue 𝑄, the

correctQueueSerial routine provides a sequence of solutions {𝒘𝑖}
and of curve parameters {𝑠𝑖} spanning multiple levels, hence the super-

script 𝓁 is omitted.

Algorithm 1 Global ASALM routine (ASALM). The ASALM first consists
of a serial solve of the whole curve length domain, followed by an eval-

uation of subintervals.
Input: Δ𝐿, 𝐼

1: {𝒘0
𝑖
}𝐼
𝑖=0, {𝑠0𝑖 }𝐼𝑖=0 ← serialSolve(Δ𝐿, 𝐼)

2: 𝑄 ← initializeMap({𝒘0
𝑖
}𝐼
𝑖=0, {𝑠0𝑖 }𝐼𝑖=0)

3: {𝒘𝑖}, {𝑠𝑖} ← correctQueueSerial(𝑄)
Output: {𝒘𝑖}, {𝑠𝑖}, {𝜉𝑖}

Using basic ALM routines, Algorithm 2 defines an algorithm to ob-

tain in serial a coarse approximation to initialise the ASALM. Option-
6

ally, a stability computation can be performed after the arc-length step,
Computers and Structures 296 (2024) 107300

which could lead to a specialised solution towards a bifurcation point.
This allows for automatic exploration of bifurcation diagrams [8,9] and
is discussed more in detail in section 4.3.

Algorithm 2 Serial solve (serialSolve). This routine provides the
initial step for the APALM/ASALM, i.e., the solution data {𝒘𝓁

𝑖
}𝑖=0,...,𝐼

and the corresponding curve-length parameters {𝑠𝓁
𝑖
}𝑖=0,...,𝐼 on level 𝓁 =

0.
Input: Δ𝐿, 𝐼

1: Initialise 𝒘𝓁
0 , 𝑠𝓁0 = 0

2: 𝒘
𝓁
1 ← step (𝒘𝓁

0 , 𝟎, Δ𝐿) ⊳ Compute first solution

3: 𝑠1 ←Δ𝐿
4: for 𝑘 = 1, ..., 𝐼 − 1 do

5: 𝒘
𝓁
𝑘+1, Δ𝑠

𝓁
𝑘+1 ← initiate (𝒘𝓁

𝑘
, Δ𝒘𝓁

𝑘−1, Δ𝐿) ⊳ Compute new solution

6: 𝑠𝓁
𝑘+1 = 𝑠

𝓁
𝑘
+Δ𝑠𝓁

𝑘+1 ⊳ Compute curve coordinate

7: end for

Output: {𝒘𝓁
𝑖
}𝐼
𝑖=0, {𝑠

𝓁
𝑖
}𝐼
𝑖=0

In Algorithm 2, the initiate routine (see Algorithm 3) computes
an arc-length interval and returns a new point 𝒘𝓁

𝑘
and the traversed

distance Δ𝑠𝓁
𝑘
, provided the previous point 𝒘𝓁

𝑘−1, the previous solution
interval Δ𝒘𝓁

𝑘
and the intended arc-length step size Δ𝐿 and using the

step and distance functions. Typically, Δ𝑠𝓁
𝑘

is equal to Δ𝐿 unless
the arc-length step does not converge and needs to be bisected.

Algorithm 3 Initiation of an interval (initiate). Given a previous
solution 𝒘𝓁

𝑘
, the previous step size 𝒘𝓁

𝑘−1, and the desired arc-length Δ𝐿,
this routine returns a new solution 𝒘𝓁

𝑘+1 and a distance with respect to
the previous solution 𝒘𝓁

𝑘
, denoted by Δ𝑠𝓁

𝑘+1.

Input: 𝒘
𝓁
𝑘

, 𝒘𝓁
𝑘−1, Δ𝐿

1: Δ𝒘𝓁
𝑘
=𝒘

𝓁
𝑘
−𝒘

𝓁
𝑘−1 ⊳ Compute previous step

2: 𝒘
𝓁
𝑘+1 ← step (𝒘𝓁

𝑘−1, Δ𝒘
𝓁
𝑘
, Δ𝐿) ⊳ Compute new solution

3: Δ𝑠𝓁
𝑘+1 ← distance (𝒘𝓁

𝑘+1, 𝒘
𝓁
𝑘
) ⊳ Compute curve coordinate

Output: 𝒘
𝓁
𝑘+1, Δ𝑠

𝓁
𝑘+1

As soon as a set of solution data and curve parameters, {𝒘𝓁
𝑖
}𝑖=0,...,𝐼

and {𝑠𝓁
𝑖
}𝑖=0,...,𝐼 , respectively, are known, the initialization of the par-

allel computations can take place. In this initialization, the maps from
Fig. 5 are constructed and a queue 𝑄 of jobs is created, cf. Algorithm 4.

Algorithm 4 Parallel initialization (initializeMap). Within this al-

gorithm, the maps  ,  ′,  , and Ξ are constructed from a series
of solutions and corresponding curve length coordinates, {𝒘𝓁

𝑖
}𝐼
𝑖=0 and

{𝑠𝓁
𝑖
}𝐼
𝑖=0, respectively, both on level 𝓁 = 0. Furthermore, the queue 𝑄 is

initialised by adding all subintervals to the queue.

Input: {𝒘𝓁
𝑖
}𝐼
𝑖=0, {𝑠

𝓁
𝑖
}𝐼
𝑖=0

1: Add 𝒘𝓁
0 to  , 𝑠𝓁0 to  , and 𝜉𝓁0 to Ξ ⊳ Add the start of the level 0

solutions to the map 
2: for 𝑘 = 1, ..., 𝐼 do

3: Add 𝒘𝓁
𝑘

to  and 𝒘𝓁
𝑘−1 to  ′.

4: Add 𝑠𝓁
𝑘

to  and 𝜉0
𝑘

to Ξ.

5: Add 𝑄𝑘−1 = [𝜉𝓁
𝑘−1, 𝜉

𝓁
𝑘
) to Q. ⊳ Construct elements of the queue 𝑄

6: end for

Output: 𝑄 = {𝑄𝑘 = [𝜉𝓁
𝑘
, 𝜉𝓁
𝑘+1]}𝑘=0,...,𝐼

After initialization, the computation of the sub-intervals can take
place. This requires the routine correctQueueSerial as defined in
Algorithm 5 for fully serial computations. That is, no communication
between manager and worker takes place since everything will be done
on the same node.

The computation of the sub-interval takes place in the correct
routine of Algorithm 6 and can be used both in a serial and a parallel

H.M. Verhelst, J.H. Den Besten and M. Möller

Algorithm 5 The routine that solves the queue (correctQueue-
Serial). Given a queue 𝑄, this algorithm takes an entry from the
queue using pop and solves the defined interval using correct. The
new solution is added to the solution maps, and if required, new jobs
are added to the queue 𝑄 using submit. The final solutions are col-

lected from the maps using the collectSolutions routine.

Input: 𝑄

1: while 𝑄 ≠ ∅ do

2: 𝑄, ID, Δ𝐿, 𝒘𝓁
𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1← pop(𝑄)

3: {𝑑𝓁+1
𝑘

}𝑘=0,...,𝑁−1, {𝒘𝓁+1
𝑘

}𝑘=0,...,𝑁 , Δ𝐿, 𝛿𝐿← correct(𝑁, Δ𝐿0, 𝒘𝓁
𝑖
,

𝒘
𝓁
𝑖−1,𝒘

𝓁
𝑖+1)

4: 𝑄← submit(ID, {𝑑𝓁+1
𝑘

}𝑘=0,...,𝑁−1, {𝒘𝓁+1
𝑘

}𝑘=0,...,𝑁 , Δ𝐿, 𝛿𝐿, 𝑄) ⊳ Submit
the job; adds new jobs to 𝑄 if needed

5: end while

6: {𝒘𝑖}, {𝑠𝑖}← collectSolutions

Output: {𝒘𝑖}, {𝑠𝑖}

implementation. Given a number of sub-intervals 𝑁 , the original dis-

tance between the end-points of the interval Δ𝐿0 and the start point,
previous solutions, and reference solutions 𝒘𝓁

𝑖
, 𝒘𝓁

𝑖−1 and 𝒘𝓁
𝑖+1, respec-

tively, this routine computes a series of solutions of the sub-interval
{𝒘𝓁+1

𝑘
}𝑘=0,...,𝑁 , their distances {𝑑𝑘}𝓁+1𝑘=0,...,𝑁−1 and the distances Δ𝐿 and

𝛿𝐿 for error computation. Note that the distance Δ𝐿′ can be computed
by taking the sum of the distances.

Algorithm 6 The routine that solves an interval (correct). This rou-

tine takes a number of subintervals 𝑁 , the desired step length for the
total interval, the start point 𝒘𝓁

𝑖
, the previous point 𝒘𝓁

𝑖−1, and the next
point 𝒘𝓁

𝑖+1. It returns the solutions on the subinterval and the distances
between them, respectively {𝑑𝓁+1

𝑗
}𝑗=0,...,𝑁−1 and {𝒘𝓁+1

𝑗
}𝑗=0,...,𝑁 , as well

as the distances Δ𝐿 and 𝛿𝐿. When the step does not converge, it is as-

sumed that step size modification takes place and that the data points
are adjusted accordingly.

Input: 𝑁 , Δ𝐿0, 𝒘𝓁
𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1

1: Initialise output vectors {𝑑𝓁+1
𝑘

}𝑘=0,...,𝑁−1, {𝒘𝓁+1
𝑘

}𝑘=0,...,𝑁
2: Δ𝐿 =Δ𝐿0∕𝑁 ⊳ Defines the size of the sub-intervals

3: 𝒘
𝓁+1
0 =𝒘

𝓁
𝑖

4: Δ𝒘𝓁+1 =𝒘
𝓁
𝑖
−𝒘

𝓁
𝑖−1 ⊳ Determine previous arc-length step, to be used to

predict the step on 𝓁 + 1
5: for 𝑘 = 0, ..., 𝑁 − 1 do

6: 𝒘
𝓁+1
𝑘+1 ← step(𝒘𝓁+1

𝑘
, Δ𝒘, Δ𝐿) ⊳ Perform the ALM iteration

7: Δ𝒘 =𝒘
𝓁+1
𝑘+1 −𝒘

𝓁+1
𝑘

⊳ Update the solution step

8: 𝑑𝑘 ← distance(𝒘𝓁+1
𝑘+1 , 𝒘

𝓁+1
𝑘

) ⊳ Gets the distance

9: end for

10: 𝛿𝐿 ← distance(𝒘𝓁
𝑖+1, 𝒘

𝓁+1
𝑁

)
11: Δ𝐿← distance(𝒘𝑁, 𝒘0)
Output: {𝑑𝓁+1

𝑗
}𝑗=0,...,𝑁−1, {𝒘𝓁+1

𝑗
}𝑗=0,...,𝑁 , Δ𝐿, 𝛿𝐿

The correctQueueSerial routine includes the pop, submit, and

collectSolutions routines. These routines mainly involve read and
write operations for the mappers defined in Fig. 5; hence, only a brief
description is provided:

• 𝑄, ID, Δ𝐿, 𝒘𝓁
𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1← pop(𝑄): Takes the first available in-

terval from the queue 𝑄 and returns a job ID, an interval length
Δ𝐿, the start solution 𝒘𝓁

𝑖
, the previous solution 𝒘𝓁

𝑖−1 and the next
available solution 𝒘𝓁

𝑖+1. It also updates the queue 𝑄 internally by
removing the current entry.

• 𝑄← submit(ID, { 𝑑𝓁+1
𝑘

}𝑘=0,...,𝑁−1, { 𝒘𝓁+1
𝑘

}𝑘=0,...,𝑁 , Δ𝐿, 𝛿𝐿, 𝑄): Takes
a job ID, the series of solutions {𝒘𝓁+1

𝑘
}𝑘=0,...,𝑁 and their distances

{𝑑𝓁+1
𝑘

}𝑘=0,...,𝑁−1 and the distances Δ𝐿 and 𝛿𝐿. Using equations (6)

to (8), the errors are computed and solution intervals are added to
7

the queue 𝑄 if needed.
Computers and Structures 296 (2024) 107300

• {𝒘𝑖}, {𝑠𝑖}← collectSolutions: Based on the underlying map-

pers, the solutions of all levels are collected into {𝒘𝑖} and {𝑠𝑖}.

4.2.2. Hybrid implementation

The hybrid implementation of the APALM is referred to as the Adap-

tive Serial-Parallel Arc-Length Method (ASPALM), since it is a two-stage
method with a serial initialization and a parallel correction. This con-

cept is similar to the concept presented for the ASALM, but communi-

cation between the manager and worker processes is added so that the
correction stage can be performed in parallel. To this end, the correc-

tQueueSerial routine is re-defined into correctQueueParallel

and communications between workers and the manager are defined. In
the following, the global solution algorithm for the ASPALM is defined
in Algorithm 7. As for the ASALM (see Algorithm 1), the initialization
is performed in serial by the serialSolve routine, and the maps are
initialised, both by the manager process. As soon as queue 𝑄 is estab-

lished, the queue can be processed in parallel. Indeed, this implies that
the worker processes are idle until the queue 𝑄 is fully available.

Algorithm 7 Global ASPALM routine (ASPALM). The ASPALM first con-

sists of a serial solve of the whole curve length domain, followed by a
parallel evaluation of subintervals. This algorithm is specified for sim-

ple manager-worker parallelization; more advanced parallelization
schemes, e.g., with multiple managers, are easily achieved.

Input: Δ𝐿, 𝐼
1: if manager then

2: {𝒘𝓁
𝑖
}𝐼
𝑖=0, {𝑠

𝓁
𝑖
}𝐼
𝑖=0 ← serialSolve(Δ𝐿, 𝐼) ⊳ See Algorithm 2

3: 𝑄 ← initializeMap({𝒘𝓁
𝑖
}𝐼
𝑖=0, {𝑠

𝓁
𝑖
}𝐼
𝑖=0)

4: {𝒘𝓁
𝑖
}, {𝑠𝓁

𝑖
} ← correctQueueParallel(𝑄)

5: else

6: Initialise stop=false
7: while stop = false do

8: stop← receiveStop

9: workerCorrect()
10: end while

11: end if

Output: {𝒘𝑖}, {𝑠𝑖}

As seen in Algorithm 7, the manager process uses the correc-

tQueueParallel routine; see Algorithm 9. This routine is called by
the manager process and sends and receives data to and from the work-

ers, updates the queue, and heavily relies on communication functions
as defined in Table 1. The communication function sendMetaData can
be omitted for the ASPALM since it is primarily used in the APALM to
distinguish between initiation and correction jobs. Furthermore, as de-

scribed in Table 1, the routine sendJob can be called with and without
the reference solution 𝒘𝓁

𝑖+1, depending whether it is available (correc-

tion) or not (initiation). In the case of the ASPALM, all jobs that are
popped from the queue 𝑄 in the correctQueueParallel routine are
by definition correction jobs.

As shown in Algorithm 7, the worker processes will perform the

workerCorrect from Algorithm 11. This algorithm contains the cor-

rection step for any interval that is received from the communications
coming from the manager process. The workerCorrect is executed
until a stop signal is received from the manager process. The latter is
broadcast to all workers as soon as queue 𝑄 is empty. Table 1 gives an
overview of the communication functions that are used for communi-

cations between the manager and worker processes in the hybrid and
parallel implementations.

4.2.3. Parallel implementation

Contrary to the serial and hybrid implementations, the fully parallel
implementation does not work with a two-staged procedure of serial
initialization and parallel correction. Instead, the fully parallel solve

consists of one stage with a single queue consisting of initialization and

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Table 1

Required communications between manager and worker processes for the ASPALM and APALM.

Send/Receive From To Data Description

sendMetaData

receiveMetaData

Manager Worker ID, 𝓁 Communicates meta-data between the manager and the worker processes. In this case, only
the ID and the level 𝓁 are needed.

sendJob

receiveJob

Manager Worker ID, Δ𝐿0, 𝒘𝓁
𝑖
, 𝒘𝓁

𝑖−1, (𝒘𝓁
𝑖+1) Communicates information to perform the computation of an interval between the manager

and the worker processes. The reference solution 𝒘𝓁
𝑖+1 is optional since it is not available for

initiation jobs.

sendData

receiveData

Worker Manager 𝑊𝑗 , ID, {𝑑𝓁+1
𝑗

}𝑗=0,...,𝑁−1,
{𝒘𝓁+1

𝑗
}𝑗=0,...,𝑁 , Δ𝐿, 𝛿𝐿

Communicates the data resulting from a sub-interval computation between the manager and
the worker processes. The receive communication also provides the worker from whom the
data is received.

sendStop

receiveStop

Manager Worker
(all)

Boolean Communicates a stop signal between the manager and the worker processes.
correction jobs. For the Adaptive Parallel Arc-Length Method (APALM),
the global routine is provided in Algorithm 8.

Algorithm 8 Global APALM routine (APALM). The APALM first consists
of a serial solve of the whole curve length domain, followed by a parallel
evaluation of subintervals. This algorithm is specified for simple man-
ager-worker parallelization; more advanced parallelization schemes,
e.g., with multiple managers, are easily achieved.

Input: Δ𝐿, 𝐼
1: if manager then

2: 𝑄 ← initializeQueue(Δ𝐿, 𝐼)
3: {𝒘𝓁

𝑖
}, {𝑠𝓁

𝑖
} ← correctQueueParallel(𝑄)

4: {𝒘𝑖}, {𝑠𝑖}← collectSolutions

5: else

6: while true do

7: stop← receiveStop

8: if stop then

9: Break loop

10: end if

11: ID, 𝓁← receiveMetaData

12: if 𝓁 = 0 then

13: workerInitiate()
14: else

15: workerCorrect()
16: end if

17: end while

18: end if

Output: {𝒘𝑖}, {𝑠𝑖}, {𝜉𝑖}

As can be seen in Algorithm 8, the manager process in the APALM
only initialises the queue using the initializeQueue routine, and it
contains the correctQueueParallel routine. The former is not spec-

ified explicitly since it only initialises a map with zero points and allo-

cates the maximum number of intervals 𝐼 as well as the interval length
Δ𝐿. The correctQueueParallel routine is given in Algorithm 9. It
applies meta-data communication, see Table 1, to the worker processes
so that the distinction based on the data level 𝓁 in Algorithm 8 can be
made by the workers. On the side of the worker processes, the meta-data
is received, and if the level is equal to 0, an interval is initiated using

workerInitiate (see Algorithm 10), and if the level is larger than
0, an interval is corrected using workerCorrect (see Algorithm 11);
see Algorithm 8. Inside the workerInitiate and workerCorrect
routines, communications from the worker to the manager process (see
Table 1) are included.

4.3. Arc-length exploration

To enable multi-branch parallelization of APALM, small modifi-

cations are required to the data structure and the algorithms pre-

sented in sections 4.1 and 4.2. The easiest multi-branch parallelization
is achieved by identifying branch switches only in the serial solve,
such that the initialization of the APALM can be done across differ-
8

ent branches. In this case, the serial solve is performed on the main
Algorithm 9 The correctQueueParallel routine, accompanied by
the workerCorrect routine from Algorithm 11 and communication
functions defined in Table 1. This routine takes the queue 𝑄 and assigns
jobs from the queue to the available workers. Then, while the queue
𝑄 is non-empty, data is communicated to and from the workers, and
solutions are submitted. Note that the pop and submit routines are
equivalent to the ones in Algorithm 5.

Input: 𝑄

1: Initialise a pool of worker processes 𝑊 = {𝑊𝑗, 𝑗 = 1, ..., 𝑁workers}
2: while 𝑄 ≠ ∅ and 𝑊 ≠ ∅ do

3: 𝑄, ID, Δ𝐿, 𝒘𝓁
𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1← pop(𝑄) ⊳ See line 2 of Algorithm 5

4: sendStop(false)
5: sentMetaData(ID, 𝓁)
6: sendJob(ID, Δ𝐿0, 𝒘𝓁

𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1, 𝑊𝑗)

7: Remove 𝑄𝑖 from 𝑄 and 𝑊𝑗 from 𝑊
8: end while

9: ⊳ Send jobs to workers when they are available

10: while |𝑊 | ≠𝑁workers do

11: 𝑊𝑗, ID, { 𝑑𝓁+1𝑗
}𝑗=0,...,𝑁−1, { 𝒘𝓁+1

𝑗
}𝑗=0,...,𝑁 , Δ𝐿, 𝛿𝐿 ←receiveDataWorker-

2Manager

12: 𝑄← submit(ID, {𝑑𝓁+1
𝑗

}𝑗=0,...,𝑁−1, {𝒘𝓁+1
𝑗

}𝑗=0,...,𝑁 , Δ𝐿, 𝛿𝐿, 𝑄) ⊳ See line
4 of Algorithm 5

13: Add 𝑊𝑗 to 𝑊
14: while 𝑄 ≠ ∅ and 𝑊 ≠ ∅ do

15: 𝑄, ID, Δ𝐿, 𝒘𝓁
𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1← pop(𝑄)

16: sendStop(false) ⊳ The worker always expects a stop signal,
now it is false.

17: sentMetaData(ID, 𝓁)
18: sendJob(ID, Δ𝐿0, 𝒘𝓁

𝑖
, 𝒘𝓁

𝑖−1, 𝒘
𝓁
𝑖+1, 𝑊𝑗)

19: Remove 𝑄𝑖 from 𝑄 and 𝑊𝑗 from 𝑊
20: end while

21: end while

22: sendStopManager2All(true)
Output: {𝒘𝑖}, {𝑠𝑖}

Algorithm 10 Solve routine for a worker (workerInitiate). This
routine performs the initiation steps (see Algorithm 3) on jobs received
from the manager, until a stop signal is received. More information on
the communication functions can be found in Table 1.
Input:

1: (ID, Δ𝐿0, 𝒘𝑖, 𝒘𝑖−1, 𝒘ref) ← receiveJob

2: 𝒘
𝓁
𝑘+1, Δ𝑠

𝓁
𝑘+1 ← initiate (𝒘𝓁

𝑘
, Δ𝒘𝓁

𝑘−1, Δ𝐿)
3: sendDataWorker2Manager(ID, {𝑑𝑗}𝓁+1𝑗=0,...,𝑁−1, {𝒘𝑗}𝓁+1𝑗=0,...,𝑁 , Δ𝐿)

Output:

branch, and any bifurcation point is stored such that a restart can be
performed from this point; see [9] for details. As soon as such a bifur-

cation point is identified, a branch switch can be performed, and a new
serial solve can be started from that point. As a result, a series of solu-

tions {𝒘𝑖}𝐼𝑖=0 is computed for each branch. Similar to the single-branch
case, a data structure and a queue can be initialised using Algorithm 4

per branch. Depending on the parallel configuration, the queues 𝑄𝑏,

𝑏 = 0, ..., 𝑛branches of all branches can be treated separately by multiple

H.M. Verhelst, J.H. Den Besten and M. Möller

Algorithm 11 Solve routine for a worker (workerCorrect). This rou-

tine performs correction steps (see Algorithm 6) on jobs received from
the manager, until a stop signal is received. More information on the
communication functions can be found in Table 1.
Input:

1: (ID, Δ𝐿0, 𝒘𝑖, 𝒘𝑖−1, 𝒘ref) ← receiveJob

2: {𝑑𝓁+1
𝑘

}𝑘=0,...,𝑁−1, {𝒘𝓁+1
𝑘

}𝑘=0,...,𝑁 , Δ𝐿, 𝛿𝐿← correct(𝑁, Δ𝐿0,𝒘
𝓁
𝑖
,𝒘𝓁

𝑖−1,

𝒘
𝓁
𝑖+1)

3: sendDataWorker2Manager(ID, {𝑑𝑗}𝓁+1𝑗=0,...,𝑁−1, {𝒘𝑗}𝓁+1𝑗=0,...,𝑁 , Δ𝐿)
Output:

manager processes, or they can be combined into one large queue 𝑄
and handled by one single manager process. In the latter case, each job
will also contain a branch identifier to refer to the corresponding data
structure.

The advantages of the above approach combining multi-branch and
within-branch parallelization using the APALM are that the extension
from a single-branch APALM to a multi-branch APALM is straightfor-

ward. The disadvantage, however, is that the identification of bifur-

cations is only taken into account in the serial solve step; hence, any
bifurcations that are identified in the parallel solve will not be taken
into account. A remedy would be to rebuild the map and the data
structure on the manager process as soon as a worker process finds a
bifurcation point; this requires all active workers to terminate.

5. Numerical experiments

In this section, the APALM scheme is demonstrated on a series of
benchmark problems. The first two benchmark problems are structural
analysis problems with limit-point instabilities and complex collaps-

ing mechanisms involving strongly curved solution paths. The third
benchmark is a buckling problem containing a bifurcation with mul-

tiple branches to illustrate the concept of the APALM in a multi-branch
setting. All benchmark problems are computed using isogeometric
Kirchhoff-Love shell elements based on the works [24–26]. Further-

more, a scaling test with respect to the number of worker processes
is performed for all benchmark problems. Here, a scaling analysis of
the ASPALM is performed to demonstrate the relative computational
costs of the serial initialization phase compared to the parallel correc-

tion phase. Furthermore, a scaling analysis of the APALM is performed
to show the advantage of the fully parallel APALM scheme over the
two-stage ASPALM scheme. For the scaling tests, the communications
from Table 1 are performed using the Message Passing Interface (MPI),
and they are performed on the Delft High Performance Computing Cen-

tre (DHPC) [27] with Intel XEON E5-6248R 24C 3.0 GHz nodes with
96 GB of memory per CPU. The code will be made available within the
Geometry + Simulation modules [28] upon publication.

5.1. Collapse of a shallow roof

The first benchmark problem involves a shallow roof subject to a
point load at the midpoint. The roof is discretized with 4 × 4 NURBS el-

ements of degree 3. The roof is composed of a lay-up of composites with
material properties as presented in Fig. 6, inspired by [29]. It is mod-

elled using isogeometric Kirchhoff-Love shell elements [24] supporting
composite laminates [30]. A Crisfield ALM is used with an initial arc
length of 30 and a scaling parameter of Ψ = 1. The tolerance of the
APALM is set to 𝜀𝑙 = 𝜀𝑢 = 10−2. This tolerance implies that intervals are
marked for refinement when the traversed length is deviates than 1%
of the original interval length. A smaller tolerance would imply that
more elements are marked for refinement and that the corrections are
performed up to lower levels. The material, and load parameters for
this benchmark can be found in Fig. 6. Reference solutions are obtained
using a serial arc-length method with a sufficiently fine increment size.

Fig. 7 provides the results of the APALM applied to the collapse of
9

the shallow roof. As can be seen from this figure, the serial computa-
Computers and Structures 296 (2024) 107300

Fig. 6. The problem definition for the benchmark of the collapsing roof with
length 𝐿 = 508 [mm], with radius 𝑅 = 2540 [mm], an angle 𝜃 = 10 [rad] with a
thickness of 𝑡 = 6.35 [mm]. The boundaries Γ1 and Γ3 have fixed displacements,
and the other sides are free. The material is modelled using a Saint-Venant
Kirchhoff laminate with 𝐸11 = 3300 [N∕mm2], 𝐸22 = 𝐸33 = 1100 [N∕mm2],
𝐺12 = 𝐺13 = 660 [N∕mm2], 𝐸23 = 440 [N∕mm2] and 𝜈12 = 𝜈13 = 𝜈23 = 0.25 [−]
and with lay-up angles [0∕90∕0]◦. The load is variable with a magnitude
𝑃 = 10 [N] and magnification factor 𝜆.

tion provides a coarse estimate of the reference curve. Especially on
the first limit point (between 𝜆 × 𝑤𝐴 ∈ [−15, −8] × [20, 25]), the data
is sparse, similar to the collapse itself (see inset in Fig. 7). The results
of the APALM show that a lot of refinements are needed to represent
the collapsing behaviour correctly in the region of the inset in Fig. 7.
These regions do not necessarily involve extremely curved paths in the
axes of Fig. 7, but the solutions 𝒘 are most likely curved in the higher-

dimensional solution space.

In order to assess the parallelization of the APALM in this example,
the test from Fig. 7 is performed with an increasing number of work-

ers using the ASPALM and the APALM schemes. The results in Table 2a
show that for the computation with arc-length parameter Δ𝐿 = 30, the
parallel correction step of the ASPALM scales optimally (i.e., with a fac-

tor 2) up to around 8 workers, after which the scalability decreases and
the parallel correction phase takes around 15% of the total computa-

tional time. Using the APALM scheme, the total computational time
is decreased compared to the ASPALM scheme, and parallel correc-

tions can be started as soon as the first interval has been initialized.
The computational time of the APALM stagnates around 4 workers, at
a computational time similar to the serial initialization time for the
ASPALM method, showing that adaptive parallel corrections can be per-

formed without significantly more computational costs compared to a
serial arc-length method. When the number of intervals is increased,
e.g., by decreasing the arc-length parameter to Δ𝐿 = 2.5 (Table 2b), it
can be seen that the parallel stage of the ASPALM scales up to a higher
number of workers, in this case 64, up to the point that it takes around
5% of the total computational time for 256 workers. The APALM again
provides computational times similar to a serial ALM without correc-

tions. The improved scalability is explained by the fact that the queue
is in general longer; therefore, the time that workers are idle waiting for
the last job to be finished is smaller relative to the total computational
time.

5.2. Collapse of a truncated cone

The second benchmark example is based on [26] and involves the
collapsing behaviour of a truncated cone with a hyperelastic Mooney-
Rivlin material model. This benchmark is based on [31], but in the

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 7. Results of the collapsing roof. The figure on the left indicates the full solution path, and the figures on the right depict the insets indicated in the left figure.
The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated per
level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 30.

Table 2

Computational time in [s] for the benchmark of the collapsing roof for the ASPALM and APALM for dif-

ferent numbers of worker processes. The times for the ASPALM are presented for the serial initialization
and the parallel correction phases, and the sum of the two is given as the total computational time. The
numbers in the Serial column should theoretically be the same, but they provide a representation of the
variation in the time measurements. The results are presented for simulations with increment lengths
Δ𝐿 = 30 (a) and Δ𝐿 = 2.5 (b), and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 30

Workers ASPALM APALM

Serial + Parallel = Total Parallel

0 115.7 195.3 311.1 287.1

1 119.2 209.0 328.2 318.8

2 114.0 100.8 214.8 162.4

4 109.5 46.1 155.6 115.8

8 115.0 27.0 142.1 115.9

16 115.1 17.8 132.9 116.3

32 114.9 15.9 130.8 113.0

64 114.5 13.3 127.8 116.0

(b) Δ𝐿 = 2.5

Workers ASPALM APALM

Serial + Parallel = Total Parallel

0 507.2 1,778.1 2,285.3 2,187.1

1 500.5 1,757.7 2,258.2 2,310.2

2 447.5 835.3 1,282.9 1,114.0

4 493.4 449.4 942.8 558.1

8 496.8 223.2 720.0 453.9

16 503.3 113.0 616.2 483.6

32 493.2 58.1 551.3 510.9

64 504.2 29.2 533.4 498.3

128 501.0 20.2 521.3 494.7

256 505.5 18.8 524.3 509.6
work of [26], the full collapsing behaviour was revealed using arc-

length methods. The geometry, material, and load specifications can
be found in Fig. 8.

The truncated cone is modelled using a quarter geometry using sym-

metry conditions to represent the axisymmetry as used in the original
case of [31]. The geometry is modelled with 32 NURBS elements of de-

gree 2 over the height. Further, an initial arc length of 0.5 is used, and
the scaling factor is Ψ = 0. The top boundary Γ2 is free, and on the
bottom boundary Γ4, all displacements are fixed. The other boundaries
have symmetric boundary conditions. The governing material model is
an incompressible Mooney-Rivlin material model with a strain energy
density function (with a slight abuse of notation)

Ψ(𝐂) =
𝑐1
2
(
𝐼1 − 3

)
+
𝑐2
2
(
𝐼2 − 3

)
, (18)

with 𝐼1 and 𝐼2 the first and second invariants of the deformation tensor
𝐂 = 𝑭

⊤
𝑭 . More information on the problem set-up and the material

models can be found in [26]. The reference results are obtained from a
serial ALM computation with a sufficiently small increment size.

The results of the collapsing truncated cone problem are presented
in Fig. 9. As seen in this picture, the serial initialization provides a
coarse approximation of the path but leaves out details, e.g., the rotated
“S”-shaped curve in the inset in Fig. 9. From the results, it is clear that
the APALM focuses its refinement on the curved parts of the path and
reveals the “S”-shaped curve among other features of the path.

Similar to the collapse of the roof, a scaling analysis of the paral-
10

lel evaluations is performed. The results in Table 3a verify that, as for
Fig. 8. The problem definition for the benchmark of the collapsing truncated
cone with inner radii 𝑅1 = 1 [m] and 𝑅2 = 2 [m] and height 𝐻 = 1 [m]. The
thickness of the cone is 𝑡 = 0.1 [m]. The cone is modelled by using a quarter of
the geometry, using symmetry conditions on Γ1 and Γ3. The displacements at
the bottom boundary (Γ4) are fixed, and on the top boundary, a variable line
load is applied and is variable with magnitude 𝑝 = 1 [N∕mm] and magnification
factor 𝜆. The material of the cone is modelled using an incompressible Mooney-

Rivlin model with parameters 𝜇 = 𝑐1 + 𝑐2 = 4.225 [N∕mm2], 𝑐1∕𝑐2 = 7.

the benchmark example with the collapsing roof, the scalability of the
parallel correction phase scales optimally up to 8 workers, where the

parallel correction phase takes around 15% of the total computational

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 9. Results of the collapsing truncated cone. The figure on the left depicts the full solution path, and the figure on the right depicts the inset indicated in the left
figure. The reference and serial solutions are represented by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated
per level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 0.5.

Table 3

Computational time in [s] for the benchmark of the collapsing truncated cone for the ASPALM and
APALM for different numbers of worker processes. The times for the ASPALM are presented for the
serial initialization and the parallel correction phases, and the sum of the two is given as the total
computational time. The numbers in the Serial column should theoretically be the same, but they provide
a representation of the variation in the time measurements. The results are presented for simulations
with increment lengths Δ𝐿 = 0.5 (a) and Δ𝐿 = 0.0625 (b), and the italic row with 0 workers denotes the
ASALM method.

(a) Δ𝐿 = 0.5

Workers ASPALM APALM

Serial + Parallel = Total Parallel

0 160.2 244.0 404.2 436.6

1 162.5 247.2 409.7 424.8

2 169.5 130.1 299.6 207.1

4 170.6 68.1 238.7 172.9

8 162.6 43.0 205.6 160.5

16 175.3 32.0 207.3 173.3

32 175.5 27.3 202.8 170.8

64 170.1 23.3 193.4 169.5

(b) Δ𝐿 = 0.0625

Workers ASPALM APALM

Serial + Parallel = Total Parallel

0 499.7 2,575.9 3,075.6 3,055.3

1 467.5 2,232.5 2,700.0 2,783.8

2 496.3 1,337.0 1,833.2 1,573.4

4 467.8 654.4 1,122.2 789.5

8 490.1 322.6 812.7 489.4

16 467.6 167.6 635.1 496.0

32 494.1 97.1 591.1 483.9

64 491.4 55.7 547.1 493.6

128 485.0 41.5 526.5 494.5

256 493.8 32.9 526.7 491.4

512 491.8 25.8 517.6 488.5
time when using 64 workers. When using the APALM scheme, the col-

lapsing cone also shows that the computation times of the APALM are
similar to the times needed for serial initialization, in other words, a
classical ALM without adaptive corrections. When the number of inter-

vals is increased, i.e., when the arc-length parameter is decreased to
Δ𝐿 = 0.0625 (Table 3b), the scalability of the parallel phase of the AS-

PALM and of the full APALM reaches further, up to 64 workers.

5.3. Strip buckling

The third example involves a benchmark problem consisting of a bi-

furcation instability. The problem consists of a flat strip that is clamped
on one edge and free on all the others, with an in-plane compressive
load applied on the free end opposite to the clamped edge; see Fig. 10

for the problem set-up and [32] for the reference results. The ALM that
is used is a Crisfield method with Ψ = 0, with a pre-buckling arc-length
of 5 ⋅10−5, a post-buckling arc-length of 5, and a tolerance of the APALM
of 𝜀𝑙 = 𝜀𝑢 = 10−3. The serial ALM is equipped with an extension for the
computation of singular points (Wriggers 1988); see [33] for more de-

tails on this implementation. Using these methods, an initially flat strip
is compressed until the bifurcation point has been computed. As soon
as the strip becomes unstable, the bifurcation point is computed, and
a branch switch is performed, marking the transition between the pre-
11

buckling and post-buckling branches.
The results for the buckled strip are presented in Fig. 11. In this fig-

ure, the non-dimensional horizontal and vertical displacements of the
end point are plotted with respect to the non-dimensional applied load.
In the plots, the pre- and post-buckling branches are plotted separately
for clarity, but the branches should obviously be connected at the bi-

furcation point. As can be seen from the results, a rather coarse serial
approximation of the post-buckling branch gives a good starting point
for a multi-level approximation of the curve, providing additional detail
in the sharp corner in 𝑊 ∕𝐿 ∈ [0.7, 0.8]. In addition, it can be seen that
the pre-buckling branch requires no more levels than the first, as the
behaviour there is just a linear axial compression, hence the solution
path is straight.

As for the previous two benchmark examples, a scaling analysis of
the parallel evaluations is performed. The main difference between the
previous two examples is that the present example involves a bifur-

cation point. However, since the job queue includes the jobs from all
branches together, there is no idle time to wait for a branch to fin-

ish before starting a new branch; hence, it is expected that the parallel
scaling for a bifurcation problem should have the same scaling prop-

erties. Indeed, Table 4a shows that optimal scaling is achieved in the
parallel correction phase of the ASPALM up to 8 nodes, after which
the idle time to wait for the last job to finish significantly impacts the
scaling, as observed in the other benchmarks. In addition, it is found

that the APALM reaches efficient computation of the full adaptive load-

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Table 4

Computational time in [s] for benchmark of the buckled strip using the ASPALM and APALM with different
numbers of worker processes. The times for the ASPALM are presented for the serial initialization and the
parallel correction phases, and the sum of the two is given as the total computational time. The numbers
in the Serial column should theoretically be the same, but they provide a representation of the variation in
the time measurements. The results are presented for simulations with increment lengths Δ𝐿 = 2.5 (a) and
Δ𝐿 = 0.025 (b), and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 2.5

Workers ASPALM APALM

Serial + Parallel = Total Parallel

0 50.7 171.8 222.0 244.0

1 58.7 198.1 257.0 244.0

2 58.5 102.6 161.0 112.0

4 59.0 51.1 110.0 77.0

8 59.0 27.9 87.0 67.0

16 59.3 24.9 84.0 68.0

32 60.3 23.0 83.0 68.0

64 58.6 24.4 83.0 66.0

(b) Δ𝐿 = 0.025

Workers ASPALM APALM

Serial + Parallel = Total Parallel

0 963.3 1,963.3 2,926.6 3,017.6

1 1,022.3 2,065.7 3,088.0 3,020.6

2 1,025.0 1,053.7 2,078.7 1,509.7

4 943.9 464.0 1,407.9 1,034.1

8 1,019.5 256.0 1,275.5 1,028.2

16 1,006.2 129.3 1,135.5 1,027.7

32 1,026.6 68.8 1,095.4 1,028.3

64 1,032.7 33.6 1,066.4 1,028.0

128 935.1 18.9 954.0 1,023.5

256 1,012.6 12.0 1,024.6 1,026.8
Fig. 10. The problem definition for the benchmark of the buckling of a strip
with length 𝐿 = 1 [m], width 𝑊 = 0.01 [m] and thickness 𝑡 = 0.01 [m] subject to
a horizontal load with magnitude 𝑝 = 0.1 [N] with magnification factor 𝜆. The
strip has fixed displacements and rotations at Γ1 and fixed displacements in 𝑦-
direction on Γ2 and Γ4 . The material is modelled using a Saint-Venant Kirchhoff
material model with Young’s modulus 𝐸 = 75 ⋅ 106 [N∕mm2] and Poisson ratio
𝜈 = 0 [−].

displacement curve within the time of a serial ALM computation, using
8 workers. When increasing the number of curve segments by decreas-

ing the arc-length parameter to Δ𝐿 = 0.025, it can again be seen that
the parallel scalability increases. Optimal scaling of the parallel correc-

tion of the ASPALM is achieved up to 256 workers, with the correction
phase taking only 1% of the total computational time. The APALM pro-

vides an adaptively refined solution curve in the time of a serial ALM
computation, using only 4 to 8 workers.

5.4. Snapping meta-material

As a final example, the APALM is applied to a problem of larger
scale. In particular, the snapping behaviour of a snapping meta-material
is modelled, inspired by [15]. The meta-material consists of 𝑁𝑥 ×𝑁𝑌 =
3 ×2.5 building blocks (see Fig. 12a) with a snapping and a bearing seg-

ment (see Fig. 12b), and the material is modelled with a compressible
Neo-Hookean material model. The full problem details are provided in
Fig. 12. The snapping behaviour of the meta-material is investigated
by using arc-length methods on the varying load 𝜆𝑃 , with a step size
of Δ𝐿 = 5 ⋅ 10−2, until 1.5% strain. The simulation is modelled us-

ing 2D elasticity equations using the plane-stress assumption, which
are discretised using B-splines with mixed degrees 2 and 3 and maxi-

mal regularity. The mesh is uniformly distributed, and the full system
of equations has 16563 degrees of freedom. The simulations are per-

formed using shared-memory parallelization of the assembly routines
and distributed memory parallelization of the ASPALM and APALM.
For reference, a displacement-controlled (DC) simulation is performed.

Fig. 13 depicts the stress-strain curve for the snapping meta-material
12

depicted in Fig. 12. Firstly, it can be seen that the curve computed using
a serial ALM coincides with the curves obtained from DC simulations,
but the ALM shows additional snap-through behaviour on the points
where the DC curve has kinks. These kinks coincide with the instabil-

ity in the metamaterial. Furthermore, the figure shows that the initial
course approximation at level 0 is refined up to level 4 in the adap-

tive arc-length method scheme proposed in this paper, provided the
tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3. The refinements of the adaptive scheme are
mainly present in the highly curved segments of the load displacement
curve. The reader is referred to Video 1 from the supplementary ma-

terial for the deformations corresponding to the stress-strain curve in
Fig. 13.

As for the other numerical experiments, the parallelization proper-

ties of the ASPALM and APALM schemes are investigated. For the snap-

ping meta-material simulation, the computational times are presented
in Table 5. The results in the table show high computational times for
the ASALM (i.e., the ASPALM and APALM with 0 workers) compared
to the DC simulation. However, the scalability observed in the previous
benchmark problems can also be observed in the simulation of the snap-

ping metamaterial. In fact, the APALM with 8 workers requires a factor
of 4 less computational time, again equivalent to the computational
time required for only the serial initialization phase of the ASPALM.
Lastly, the case of the snapping meta-material shows that, compared to
a naturally serial displacement-controlled method, the APALM achieves
a speed-up of a factor of 2.5 while providing snapping behaviour with
greater accuracy.

6. Conclusions and outlook

In this paper, an Adaptive Parallel Arc Length Method (APALM) is
presented. Contrary to existing parallel implementations of the Arc-

Length Method (ALM), the present method provides within-branch
parallelization, hence providing scalable parallelization independent of
the physics of the problem, i.e., the number of branches. The method
employs a multi-level approach, where parallel corrections are per-

formed on solution intervals that have been initialised before. Given
the sub-intervals provided by the serial computation, computations with
finer arc lengths can be performed and evaluated using suitable error
measures, marking intervals for further refinement when needed. Em-

ploying the multi-level approach, their implementations are discussed:
the Adaptive Serial ALM (ASALM), the Adaptive Serial-Parallel ALM
(ASPALM), and the APALM. The ASALM is a serial implementation,
employing only the inherent adaptivity of the concept provided in this
paper. The ASPALM is a two-stage approach, separating a serial initial-

ization of the full equilibrium path from the parallel corrections. The

APALM is a fully parallel implementation, where parallel corrections

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 11. Results of the buckling of a clamped strip. The left figure provides the out-of-plane displacement of the free end with respect to the non-dimensional load
4𝑃𝐿2∕𝜋2𝐸𝐼 , and the right figure represents the horizontal displacement of the free end with respect to the same non-dimensional load. In both figures, buckling
occurs when 4𝑃𝐿2∕𝜋2𝐸𝐼 = 1 and the axes are split on this point to make the pre- and post-buckling branches both visible. The simulation is performed with a
tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and a step length of Δ𝐿 = 5 ⋅ 10−5 (pre-buckling) and Δ𝐿 = 5 (post-buckling).

Fig. 12. The problem definition for the snapping meta material using a grid of 3 × 2.5 elements (a) with the element geometry as defined in (b). The element
dimensions are defined using the thickness of the load-bearing part 𝑡𝑏 = 1.5 [mm] and the thickness of the snapping part 𝑡𝑠 = 1.0 [mm], the thickness of the gap
𝑡𝑔 = 1.0 [mm] and the thickness of the connectors 𝑡𝑤 = 1.5 [mm], such that the height ℎ = 𝑡𝑏 + 𝑡𝑠 + 2𝑡𝑔 . The length of the element is 𝓁 = 10 [mm], and the amplitude
of the cosine wave defining the element shape is given by 𝑎 = 0.3𝑙. Since the meta-material has 3 × 2.5 elements, the total width is 𝑊 = 3𝓁. The height of the
total metamaterial is given by 𝐻 = 3ℎ + 2𝑡𝑔 + 𝑡𝑠 + ℎ𝐵 + ℎ𝑇 , where ℎ𝐵 = ℎ𝑇 = 5𝑡𝑔 are the buffer zones on the top and the bottom. The thickness of the specimen (in
out-of-plane direction) is 𝑏 = 3 [mm]. The material is defined using a compressible Neo-Hookean material model with Young’s modulus 𝐸 = 78 [N∕mm2] and Poisson
ratio 𝜈 = 0.4 [−]. The bottom boundary Γ1 is fixed using 𝑢𝑥 = 𝑢𝑦 = 0, and the top boundary Γ2 is fixed in the horizontal direction (𝑢𝑥 = 0) and coupled in the vertical
direction 𝑢𝑦. The load applied on the top boundary is a variable defined by 𝜆𝑃 .
are performed as soon as the first path segments have been initial-

ized. Conceptually, the APALM has a higher degree of parallelization
since the workers are not idle until the full solution curve is obtained.
Given a basic step function and distance computation, the present pa-

per provides all algorithms necessary for implementing the APALM with
manager-worker parallelization.

The implementation of the APALM is evaluated using three bench-

mark problems and an application example. The first problem involves
the collapse of a composite shallow cylindrical shell. The second prob-

lem involves the collapse of a truncated conical rubber shell, and the
13

third example involves the bifurcation problem of a strip subject to an
in-plane load. Moreover, the method is applied to the modelling of a
snapping metamaterial to investigate its performance on a larger-scale
problem. In all examples, it can be observed that the APALM provides
an accurate description of the reference solution, given a (sufficiently)
coarse serial initialization of the curve. Through refinement, the APALM
provides refinements (hence details in the solution), typically on sharp
corners in the load-displacement diagrams. In addition, the bifurca-

tion example also shows that the APALM is able to work within an
exploration scheme for bifurcations. In all benchmark problems, the
ASPALM and APALM have been used to evaluate the parallelization of

the schemes. The natural separation of the serial and parallel stages

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

Fig. 13. Stress-strain diagram for the snapping meta-material from Fig. 12. The vertical axis depicts the equivalent stress 𝜎 = 𝜆𝑃∕(𝑏𝑊), and the horizontal axis
represents the strain 𝜀 = 𝑢𝑦∕𝐻 , where 𝑢𝑦 is the displacement of the top boundary Γ2 . The complete curve with the displacement-controlled (DC) results, the points
obtained in serial initialization, and the line obtained by parallel corrections are presented on the left. The figures on the right present the points from different
hierarchical levels at the inset depicted in the left diagram. The simulation is performed with a tolerance of 𝜀 = 𝜀 = 10−3 and an increment length of Δ𝐿 = 0.05.
Table 5

Computational time in [s] for the example of the snapping meta-

material for the ASPALM and APALM for different numbers of
worker processes. The computational time for a displacement-

controlled (DC) simulation with step Δ𝑢𝑦 = 0.0005 [𝑚𝑚] is pro-

vided as a reference. The times for the ASPALM are presented
for the serial initialization and the parallel correction phases,
and the sum of the two is given as the total computational time.
The numbers in the Serial column should theoretically be the
same, but they provide a representation of the variation in the
time measurements. The italic row with 0 workers denotes the
ASALM method.

Workers ASPALM APALM DC

Serial + Parallel = Total Parallel Serial

0 1,571.6 5,204.8 6,776.4 7,022.9 4,400.8

1 1,686.9 4,593.2 6,280.1 5,319.1

2 1,237.5 3,005.9 4,243.4 3,827.9

4 1,742.7 1,548.2 3,290.9 2,137.3

8 1,445.4 717.4 2,162.8 1,711.8

16 1,931.1 352.2 2,283.3 1,632.9

32 1,746.9 219.7 1,966.6 1,755.6

of the ASPALM reveals the scalability of the parallel correction with re-

spect to the number of workers, showing that the parallel correction can
take only a fraction of the total computational time for a larger num-

ber of workers. Furthermore, the comparison between the ASPALM and
the APALM shows that the full parallelization of the APALM provides
a more efficient scheme than the two-stage approach of the ASPALM,
as expected. The benchmarks and example also show that the APALM
provides a full solution curve – including adaptive refinements – in the
same computational time needed to compute only the initialisation of
the ASPALM. This reveals the potential of the APALM: it can provide de-

tailed solution paths without significantly increasing the computational
time. The coarser the initial step size, the more arc-length intervals are
computed during the parallel corrections of the method until a suffi-

cient; hence, the higher the computational merit of the method to reach
a desired level of detail. Moreover, the scaling analyses also show that
the benefits of the APALM are already achieved with a small number of
workers, e.g., 8 workers, making the APALM interesting on a desktop
scale. For larger clusters, the APALM can be employed using dynamic
load balancing within OpenMP.

As the APALM enables parallelization in the arc-length domain,
future applications of this method include quasi-static computations
for solid and fluid dynamics, among other problems, especially those
with a large number of load steps. Therefore, future works with this
method include automatic exploration of solution spaces, e.g., follow-
14

ing the work of [8,9], or applications with large numbers of degrees
𝑙 𝑢

of freedom, for instance with phase-field models for fracture mechanics
[34]. Other future work includes combining the APALM with a spatial
refinement scheme to enable space-quasi-time refinements. MPI scal-

ability and distribution of cores per worker are topics to investigate
for different applications. Another topic for further investigation is the
convergence of the underlying arc-length method for large steps. Since
a fewer number of initial intervals reduces the serial initialization time
of the APALM, the parallel performance can be increased significantly
when the initial step size is maximized. For example, the Mixed In-

tegration Point (MIP) method increases the convergence of the ALM,
allowing for larger step sizes. The performance of the MIP is demon-

strated for isogeometric Kirchhoff–Love shells in [35–38]. Lastly, since
the presented APALM is developed for path-independent problems, an
extension to path-dependent problems is a natural direction for future
research.

CRediT authorship contribution statement

H.M. Verhelst: Conceptualization, Formal analysis, Investigation,
Methodology, Resources, Software, Validation, Visualization, Writing –
original draft, Writing – review & editing. J.H. Den Besten: Funding ac-

quisition, Project administration, Supervision, Writing – original draft,
Writing – review & editing. M. Möller: Funding acquisition, Project ad-

ministration, Supervision, Writing – original draft, Writing – review &
editing, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors are grateful for the financial support from Delft Univer-

sity of Technology.

Appendix A. Supplementary material

Supplementary material related to this article can be found online

at https://doi .org /10 .1016 /j .compstruc .2024 .107300.

https://doi.org/10.1016/j.compstruc.2024.107300

Computers and Structures 296 (2024) 107300H.M. Verhelst, J.H. Den Besten and M. Möller

References

[1] Rupp K. Microprocessor trend data. https://github .com /karlrupp /microprocessor -
trend -data, 2022.

[2] Gander MJ. 50 years of time parallel time integration; 2015. p. 69–113.

[3] Riks E. The application of Newton’s method to the problem of elastic stability. J
Appl Mech 1972;39:1060.

[4] Crisfield MM. A fast incremental/iterative solution procedure that handles “snap-

through”. In: Computational methods in nonlinear structural and solid mechanics.
Pergamon; 1981. p. 55–62.

[5] Wriggers P, Wagner W, Miehe C. A quadratically convergent procedure for the cal-

culation of stability points in finite element analysis. Comput Methods Appl Mech
Eng 1988;70:329–47.

[6] Pretti G, Coombs WM, Augarde CE. A displacement-controlled arc-length solution
scheme. Comput Struct 2022;258:106674.

[7] Kadapa C. A simple extrapolated predictor for overcoming the starting and track-

ing issues in the arc-length method for nonlinear structural mechanics. Eng Struct
2021;234:111755.

[8] Thies J, Wouters M, Hennig RS, Vanroose W. Towards scalable automatic explo-

ration of bifurcation diagrams for large-scale applications. Lect Notes Comput Sci
Eng 2021;139:981–9.

[9] Wouters M, Vanroose W. Automatic exploration techniques of numerical bifurca-

tion diagrams illustrated by the Ginzburg–Landau equation. SIAM J Appl Dyn Syst
2019;18:2047–98. https://doi .org /10 .1137 /19M1248467.

[10] Lions JL, Maday Y, Turinici G. Résolution d’EDP par un schéma en temps
« pararéel ». C R Acad Sci, Sér 1 Math 2001;332:661–8.

[11] Falgout RD, Friedhoff S, Kolev TV, MacLachlan SP, Schroder JB. Parallel time inte-

gration with multigrid. SIAM J Sci Comput 2014;36:C635–61.

[12] Cyr EC, Günther S, Schroder JB. Multilevel initialization for layer-parallel deep neu-

ral network training. ArXiv preprint arXiv :1912 .08974, 2019.

[13] Hessenthaler A, Falgout RD, Schroder JB, de Vecchi A, Nordsletten D, Röhrle O.
Time-periodic steady-state solution of fluid-structure interaction and cardiac flow
problems through multigrid-reduction-in-time. ArXiv preprint arXiv :2105 .00305,
2021.

[14] Aruliah DA, Van Veen L, Dubitski A. Algorithm 956: PAMPAC, a parallel adaptive
method for pseudo-arclength continuation. ACM Trans Math Softw 2016;42.

[15] Rafsanjani A, Akbarzadeh A, Pasini D. Snapping mechanical metamaterials under
tension. Adv Mater 2015;27:5931–5.

[16] Ritto-Corrêa M, Camotim D. On the arc-length and other quadratic control meth-

ods: established, less known and new implementation procedures. Comput Struct
2008;86:1353–68.

[17] Ragon SA, Gürdal Z, Watson LT. A comparison of three algorithms for tracing non-

linear equilibrium paths of structural systems. Int J Solids Struct 2002;39:689–98.

[18] Schweizerhof K, Wriggers P. Consistent linearization for path following methods in
nonlinear fe analysis. Comput Methods Appl Mech Eng 1986;59:261–79.

[19] Bellini P, Chulya A. An improved automatic incremental algorithm for the efficient
solution of nonlinear finite element equations. Comput Struct 1987;26:99–110.

[20] Carrera E. A study on arc-length-type methods and their operation failures illus-

trated by a simple model. Comput Struct 1994;50:217–29.

[21] Lam WF, Morley CT. Arc-length method for passing limit points in structural calcu-

lation. J Struct Eng 1992;118:169–85.

[22] Zhou Z, Murray D. An incremental solution technique for unstable equilibrium paths
of shell structures. Comput Struct 1995;55:749–59.

[23] Piegl L, Tiller W. The NURBS book, monographs in visual communications. Berlin,
Heidelberg: Springer Berlin Heidelberg; 1995.

[24] Kiendl J, Bletzinger K-U, Linhard J, Wüchner R. Isogeometric shell analysis with
Kirchhoff–Love elements. Comput Methods Appl Mech Eng 2009;198:3902–14.

[25] Kiendl J, Hsu M-C, Wu MC, Reali A. Isogeometric Kirchhoff–Love shell for-

mulations for general hyperelastic materials. Comput Methods Appl Mech Eng
2015;291:280–303.

[26] Verhelst H, Möller M, Den Besten J, Mantzaflaris A, Kaminski M. Stretch-based
hyperelastic material formulations for isogeometric Kirchhoff–Love shells with ap-

plication to wrinkling. Comput Aided Des 2021;139:103075.

[27] Delft High Performance Computing Centre (DHPC). DelftBlue supercomputer (Phase
1). https://www .tudelft .nl /dhpc /ark :/44463 /DelftBluePhase1, 2022.

[28] Jüttler B, Langer U, Mantzaflaris A, Moore SE, Zulehner W. Geometry + simulation
modules: implementing isogeometric analysis. PAMM 2014;14:961–2.

[29] Leonetti L, Magisano D, Madeo A, Garcea G, Kiendl J, Reali A. A simplified
Kirchhoff–Love large deformation model for elastic shells and its effective isoge-

ometric formulation. Comput Methods Appl Mech Eng 2019;354:369–96.

[30] Herrema AJ, Johnson EL, Proserpio D, Wu MC, Kiendl J, Hsu M-C. Penalty coupling
of non-matching isogeometric Kirchhoff–Love shell patches with application to com-

posite wind turbine blades. Comput Methods Appl Mech Eng 2019;346:810–40.

[31] Başar Y, Itskov M. Finite element formulation of the Ogden material model with
application to rubber-like shells. Int J Numer Methods Eng 1998.

[32] Pagani A, Carrera E. Unified formulation of geometrically nonlinear refined beam
theories. Mech Adv Mat Struct 2018;25:15–31.

[33] Verhelst HM, Moller M, Den Besten J, Vermolen F, Kaminski M. Equilibrium path
analysis including bifurcations with an arc-length method avoiding a priori pertur-

bations. In: Proceedings of ENUMATH2019 conference; 2020.

[34] Borden MJ, Hughes TJ, Landis CM, Verhoosel CV. A higher-order phase-field model
for brittle fracture: formulation and analysis within the isogeometric analysis frame-

work. Comput Methods Appl Mech Eng 2014;273:100–18.

[35] Magisano D, Leonetti L, Garcea G. How to improve efficiency and robust-

ness of the Newton method in geometrically non-linear structural problem dis-

cretized via displacement-based finite elements. Comput Methods Appl Mech Eng
2017;313:986–1005.

[36] Magisano D, Leonetti L, Garcea G. Advantages of the mixed format in geometri-

cally nonlinear analysis of beams and shells using solid finite elements. Int J Numer
Methods Eng 2017;109:1237–62.

[37] Leonetti L, Kiendl J. A mixed integration point (MIP) formulation for hyperelastic
Kirchhoff–Love shells for nonlinear static and dynamic analysis. Comput Methods
Appl Mech Eng 2023;416:116325.

[38] Leonetti L, Magisano D, Liguori F, Garcea G. An isogeometric formulation of the
Koiter’s theory for buckling and initial post-buckling analysis of composite shells.
Comput Methods Appl Mech Eng 2018;337:387–410.
15

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib07285064EEE888B26D85D4203DC5AA99s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib26301617B543D6A486560C1D69F69B3Es1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib26301617B543D6A486560C1D69F69B3Es1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib8C96A89F44D538AD28CF8E62E580AC35s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib8C96A89F44D538AD28CF8E62E580AC35s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib8C96A89F44D538AD28CF8E62E580AC35s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5301DED34D7095AD003705E0F48B2055s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5301DED34D7095AD003705E0F48B2055s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5301DED34D7095AD003705E0F48B2055s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibDC30D3A1F4D82BCD8E1AEAD2A95F117Bs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibDC30D3A1F4D82BCD8E1AEAD2A95F117Bs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBFD60E733BE5072D26FF35D9E2EAE04Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBFD60E733BE5072D26FF35D9E2EAE04Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBFD60E733BE5072D26FF35D9E2EAE04Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3AAA2FB248004CFD2D4D4C7AAB92CCE5s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3AAA2FB248004CFD2D4D4C7AAB92CCE5s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3AAA2FB248004CFD2D4D4C7AAB92CCE5s1
https://doi.org/10.1137/19M1248467
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBABDD4D25222ADA54C5367F9753DE4F3s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBABDD4D25222ADA54C5367F9753DE4F3s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib6BAAAA596932C4F33DFE8992A245D995s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib6BAAAA596932C4F33DFE8992A245D995s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibC431C269F9F5D80855F79537793A8892s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibC431C269F9F5D80855F79537793A8892s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA90EF650FC426F7011960189C36A124Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA90EF650FC426F7011960189C36A124Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA90EF650FC426F7011960189C36A124Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA90EF650FC426F7011960189C36A124Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib851D184B1BF67D8701A2C17950EB7673s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib851D184B1BF67D8701A2C17950EB7673s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5C38775CBE20A83104EB3FD2E34BD17Fs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5C38775CBE20A83104EB3FD2E34BD17Fs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3513A11E4D8CAA91731129DD8096C551s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3513A11E4D8CAA91731129DD8096C551s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3513A11E4D8CAA91731129DD8096C551s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5525A3521FC434AD8FF73284D9B9642Fs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5525A3521FC434AD8FF73284D9B9642Fs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5EE056172010AC63EF7CCC7454A5826Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5EE056172010AC63EF7CCC7454A5826Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3A36EC1D59714AE10C2B00D1E63298FDs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib3A36EC1D59714AE10C2B00D1E63298FDs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib8C41EDAFBC995AE8EA73ABA9D1C288C3s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib8C41EDAFBC995AE8EA73ABA9D1C288C3s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib9A6CCDFEFBA1318D6F5B0D730EA7BDD2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib9A6CCDFEFBA1318D6F5B0D730EA7BDD2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibEFF6F18A5BDC0AB0CE498620792CFBF2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibEFF6F18A5BDC0AB0CE498620792CFBF2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib9D113E64E183A1FB7C73B6B98E9A2707s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib9D113E64E183A1FB7C73B6B98E9A2707s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5A4EC167670AAFBC240ACF522EC8E908s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5A4EC167670AAFBC240ACF522EC8E908s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibC9DCFF3323C7D0289732CCDE3008CCA8s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibC9DCFF3323C7D0289732CCDE3008CCA8s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibC9DCFF3323C7D0289732CCDE3008CCA8s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib59843127B8BBEB55CF31B649CEA80982s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib59843127B8BBEB55CF31B649CEA80982s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib59843127B8BBEB55CF31B649CEA80982s1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibFEFC9DE0C77D8D13D1FCCA7817FDE825s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibFEFC9DE0C77D8D13D1FCCA7817FDE825s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib6DEA237C7F364E4EF5D285C3319C6216s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib6DEA237C7F364E4EF5D285C3319C6216s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib6DEA237C7F364E4EF5D285C3319C6216s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBD16B4D7EC6A61A647BE5D0858828642s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBD16B4D7EC6A61A647BE5D0858828642s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibBD16B4D7EC6A61A647BE5D0858828642s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibD4A63BD6F5F4FBB45CFE7DE933162268s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibD4A63BD6F5F4FBB45CFE7DE933162268s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibEC1C9AC8585B3AF9645520B649D13A50s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibEC1C9AC8585B3AF9645520B649D13A50s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib53ED670E8067C6018FFE19B2D112FB52s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib53ED670E8067C6018FFE19B2D112FB52s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib53ED670E8067C6018FFE19B2D112FB52s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA1FDA1A6BEB05F2ABD1751335436A3D2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA1FDA1A6BEB05F2ABD1751335436A3D2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibA1FDA1A6BEB05F2ABD1751335436A3D2s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib122B9002C689FFF92C524AD66EA70D48s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib122B9002C689FFF92C524AD66EA70D48s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib122B9002C689FFF92C524AD66EA70D48s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib122B9002C689FFF92C524AD66EA70D48s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5098198011615E6E94C593E3A5C4FE7Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5098198011615E6E94C593E3A5C4FE7Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib5098198011615E6E94C593E3A5C4FE7Ds1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib1905DFD735AAE2F1DEC69191ED36C341s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib1905DFD735AAE2F1DEC69191ED36C341s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bib1905DFD735AAE2F1DEC69191ED36C341s1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibD7970C7C49588478091882FE48F850DEs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibD7970C7C49588478091882FE48F850DEs1
http://refhub.elsevier.com/S0045-7949(24)00029-4/bibD7970C7C49588478091882FE48F850DEs1

	An adaptive parallel arc-length method
	1 Introduction
	2 Arc-length methods
	3 Adaptive parallel arc-length method
	3.1 Concept
	3.2 Error measures
	3.3 Curve (re-)parameterization

	4 Implementation
	4.1 Data structure
	4.2 Algorithms
	4.2.1 Serial implementation
	4.2.2 Hybrid implementation
	4.2.3 Parallel implementation

	4.3 Arc-length exploration

	5 Numerical experiments
	5.1 Collapse of a shallow roof
	5.2 Collapse of a truncated cone
	5.3 Strip buckling
	5.4 Snapping meta-material

	6 Conclusions and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

