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Abstract
Dysarthria is a speech disorder commonly caused by

neurological disorders such as strokes, cerebral palsy and
Amyotrophic Lateral Sclerosis (ALS). The severity level of
dysarthria greatly influences the appropriate treatment for a pa-
tient. However, assessing the severity of dysarthria in a pa-
tient is a time-consuming process that requires a trained speech
therapist. Therefore the following work explores a variety of
classifier architectures for automatic dysarthria severity assess-
ment using Whisper encodings. The datasets used were MSDM
and TORGO while the classifier architectures implemented in-
cluded a Convolutional Neural Networks and Recurrent Neu-
ral Network variants. Across both datasets, the Gated Recur-
rent Unit network (GRU) achieved the best performance with
97.21% accuracy on MSDM and 97.47% on TORGO.
Index Terms: speech recognition, dysarthria

1. Introduction
1.1. Background

Dysarthria is a speech disorder caused by weakness or incoor-
dination of the muscles necessary for speech. It is commonly
caused by strokes, Parkinson’s disease, cerebral palsy and other
neurological disorders [1]. With close to 90% of individuals
with Parkinson’s disease having dysarthria, we see that it is
a common and serious issue that requires great attention [2].
Dysarthria can cause people’s speech to be unintelligible which
has been shown to impact their self-esteem, ability to express
themselves and their overall autonomy [3]. Luckily, speech and
language therapy can help patients improve their speech intel-
ligibility, but the focus of this therapy is highly dependent on
the severity level of the patient’s dysarthria [3]. Today, the most
common form of dysarthria assessment is via a test, such as the
Frenchay Dysarthria assessment [4]. However, these tests are
time-consuming and need to be performed by a licensed speech
therapist. Therefore, there is a need for automatic dysarthria
severity assessment based on recordings of patients’ speech.

1.2. Related Work

Previous work done in this area includes Joshy et al. com-
paring the performance of different classifier architectures for
dysarthria severity assessment [5]. The models considered
included a Support Vector Machine (SVM), Random Forest
(RF), Deep Neural Network (DNN), Convolutional Neural
Network (CNN), Long Short-Term Memory network (LSTM)
and Gated Recurrent Unit network (GRU). The models were
evaluated when trained on different spectral features namely
Mel-Frequency Cepstral Coefficients (MFCCs) and Constant-
Q Cepstral Coefficients (CQCCs). Moreover, the models
were trained and evaluated on different datasets, specifically
TORGO [6] and UASpeech [7]. Their highest reported ac-
curacy was 96.18% which was achieved by training a CNN
on MFCCs. Furthermore, their GRU outperformed all mod-
els on both TORGO and UASpeech when trained on CQCC
features. Additionally, their models achieved higher levels of
accuracy when trained on MFCCs compared to CQCCs and all
models performed better when trained on TORGO compared to
UASpeech. To assess speaker dependency, the authors also per-
formed Leave One Speaker Out (LOSO) cross-validation allow-
ing them to measure how the models perform on new speakers
not included in the training data. However, due to the imbal-
anced nature of UASpeech the models were adapted to perform

binary dysarthria detection rather than dysarthria severity as-
sessment. This means their conclusion that models trained on
CQCCs perform better on new speakers than those trained on
MFCCs may only hold for dysarthria detection.

Next, Charola et al. developed a dysarthria severity classi-
fier using the encoding of Whisper’s model followed by a CNN
[8]. Their focus was on evaluating the effect of noisy conditions
on the performance of their model. Their best-performing CNN
achieved an accuracy of 97.49% with this being more than a
1% accuracy improvement compared to state-of-the-art models
trained on MFCCs. Additionally, models trained on Whisper
features were shown to outperform models trained on MFCCs
by over 10% in accuracy when noise was added to the utter-
ances. However, the study only used 1,982 utterances from
TORGO, with this being a small subset of the entire TORGO
dataset [6]. Additionally, this subset only included 6 of the 7
speakers with dysarthria included in TORGO. Finally, the re-
sults produced were from one split of 90% training data and
10% test data with no repeated testing conducted. This means
that the results could have been produced by a ’lucky’ testing
and training split and do not represent the true performance of
their model.

Mani et al. developed a dysarthria detection classifier by
applying a CNN to the Mel Spectrogram of the given unit of
speech [9]. Furthermore, they applied transfer learning by fine-
tuning the ResNet50 CNN, a popular image classification model
to perform dysarthria detection. Their best solution reached an
impressive level of accuracy with 97.73% on the TORGO cor-
pus. Additionally, they found that their fine-tuned ResNet50
model performed significantly better than the CNN that they
trained from scratch. Although these results are promising,
they are comparing the performance of different models on only
one dataset, namely TORGO. To determine if their transfer-
learned CNN truly outperforms a CNN trained from scratch for
dysarthria detection, results from more than one dataset would
be needed.

In another paper, Rathod et al. compared the performance
of CNNs trained on Whisper embeddings with those trained on
traditional sound representations, such as MFCCs and Linear
Frequency Cepstral Coefficients (LFCCs), for dysarthria sever-
ity assessment [10]. The CNNs developed included one trained
from scratch as well as a ResNet50 model that they fine-tuned in
a similar manner as the authors in [9]. The models were trained
and evaluated on the TORGO corpus as well as UASpeech [6]
[7]. Both the newly trained CNN and fine-tuned ResNet50
achieved their best performance when trained on TORGO with
accuracies of 98.49 % and 98.99 % respectively. Additionally,
their results showed that their models achieved higher levels of
accuracy when trained on Whisper embeddings, compared to
both MFCCs and LFCCs. One critique of the paper is that they
only compared the performance of two CNNs and did not con-
sider other families of classifiers such as those developed in [5].
Additionally, the results presented are achieved by selecting the
highest performance of the models across 5 runs rather than av-
eraging the performance of these runs.

1.3. Proposed Work

The proposed solution of this paper is to adapt Whisper, a tra-
ditional Automatic Speech Recognition (ASR) model into a
dysarthria severity classifier. Whisper has an encoder-decoder
architecture and is a weakly-supervised model, trained on over
680,000 hours of audio from across the internet [11]. Whisper’s
encodings have been shown to robustly and efficiently repre-



sent the spectral information of sound [8]. In addition to this,
dysarthria severity classifiers trained on Whisper embeddings
have been shown to achieve greater levels of accuracy compared
to traditional spectral representations like MFCCs and LFCCs
[10]. However, to the best of our knowledge, the types of clas-
sifiers trained on Whisper embeddings for dysarthria severity
assessment have been limited to variations of CNNs. In con-
trast, other machine learning techniques such as GRUs have
been shown to produce impressive results when trained on tra-
ditional spectral representations [5]. Hence, the proposed work
explores the performance of both a CNN and RNN variations
for dysarthria severity assessment using Whisper-extracted fea-
tures.

The main research questions that this paper aims to answer
include:
• How do different types of classifiers perform in distinguish-

ing between dysarthria severity levels using Whisper’s en-
codings?

• How do training classifiers on different dysarthria datasets
impact their performance?

• How does the inclusion of padded silence in the Whisper em-
beddings affect the performance of the classifiers?

• How does fine-tuning Whisper to perform dysarthric ASR af-
fect the performance of classifiers trained on its encodings?

The types of classifiers that have been considered are a
CNNs, LTSMs, Bidirectional Long Short-Term Memory net-
work (BiLSTM), GRUs and a traditional RNN. The datasets
the models are trained on include TORGO [6] and MSDM [12].
Furthermore, the evaluation metrics include accuracy, F1 score,
Jaccard score and Matthew’s Correlation Coefficient (MCC).

The main conclusions include that the best-performing
model was the GRU, with it reaching an impressive accuracy
of 97.11% on the TORGO dataset. This was further improved
to 97.47% when trained on fine-tuned Whisper embeddings that
were processed to include no embedded silence.

The remainder of this paper includes six main sections:
Section 2 discusses the methodology, which describes the se-
lected model’s architectures and provides more details on the
end-to-end training pipeline. Section 3 describes the datasets
that are used as well as an in-depth explanation of the experi-
ment setup. Section 4, Results, shows the performance of the
respective models on each dataset. Section 5 reflects on the
results achieved and the limitations of the research. Section 6
summarizes the main research questions and findings and pro-
poses possible future work. Finally, Section 7 discusses the re-
producibility of the results and the ethical considerations made
regarding data storage.

2. Methodology

2.1. Whisper Model

Open AI’s Whisper is currently considered to be one of the
state-of-the-art ASR models with it being shown to outperform
its main point of comparison Wav2vec2 on key metrics such
as Word Error Rate (WER) [11]. One of the main distinctions
between Whisper and its contemporaries is that it is a weakly
supervised model, meaning a portion of its data is labeled with
the rest unlabeled [11]. The incorporation of large amounts of
unlabeled data from the internet has likely contributed to the
robustness of Whisper’s embeddings [8]. Furthermore, Whis-
per is also a multilingual ASR model with it being trained on
data from 97 languages, more specifically, of its 680,000 hours
of training audio, 117,000 hours are from languages other than
English. In addition to being multilingual, Whisper is also mul-
titask. Multitask models leverage shared information and rep-
resentations across multiple tasks to improve both their perfor-
mance and efficiency [11]. Whisper’s multi-lingual and multi-
task properties have allowed its training data to have greater
diversity than a traditional ASR model. This training data diver-
sity has enabled Whisper to learn rich, generalized speech em-
beddings, which is beneficial for nuanced tasks like dysarthria
assessment [8].

The Whisper model has a variety of sizes, namely Tiny,
Base, Small, Medium and Large. They differ in terms of the
number of parameters considered, the number of layers and
importantly for this topic, the width of their encodings [11].
Rathod et al. found that the large model performed best for
training their CNN to assess severity levels of dysarthria using
Whisper’s encodings [8]. Therefore, the large model was se-
lected for our training pipeline.

2.2. Training Pipeline

Figure 1 shows the end-to-end training pipeline of all models
trained on Whisper encodings. Firstly, the sound is converted
into an 80-channel log-Mel spectrogram. This is then fed into
2 convolutional layers with a kernel size of 3. Next, sinusodial
embeddings are calculated to help Whisper learn the relative
positions within the input signal. This, along with the output
of the convolutional layers, are fed into a fixed number of en-
coder blocks whose output produces a shape of 1280 × 1500
[11]. A width of 1280 is due to the large Whisper model be-
ing selected, while the timeframe of 1500 is due to Whisper
padding silence to all utterances. More specifically, Whisper
pads all input audio to 30 seconds and given that the encodings
represent 50ms slices of the input sound, the total length reaches
1500 units. However, since both MSDM and TORGO have ut-
terances that are much shorter than 30 seconds, Whisper pads
large amounts of silence to the end of each utterance. This ex-
cess padding led to worse performance (see section 4) and was
less memory efficient since large amounts of embedded silence
was stored for each utterance. To combat this, the timeframes
of the embeddings were cut to either 375 or 125 for TORGO
and 40 for MSDM since its utterances are shorter (see section
3.1.2). Figure 1 shows an example of this with the embeddings
cut to a timeframe of 375. The classifier is either the CNN,
RNN, LSTM, GRU or BiLSTM, all of which were developed
using Pytorch.



Figure 1: Training pipeline for all models with Whisper embed-
dings cut to a timeframe of 375

2.3. Fine-tuned Whisper model

Fine-tuning is a deep learning technique that involves taking
a pre-trained model (which has been trained on large amounts
of data) and updating its weights by further training it on a
smaller dataset. The result is a model that leverages the knowl-
edge gained in the original training to perform better than a
model trained only on the smaller dataset [13]. To assess
how fine-tuning Whisper for dysarthric ASR affects the perfor-
mance of classifiers trained on its embeddings, the MG Whis-
per model was selected. The MG Whisper model was devel-
oped by Mirella Günther for their Bachelor’s research project by
training the Whisper large-V3 model on TORGO for 2 epochs.
The weights were updated using low-rank adaptation (LoRa), a
parameter-efficient technique that reduces the number of train-
able parameters compared to full fine-tuning [14]. After train-
ing, the MG Whisper model improved the WER by 20.49% for
dysarthric speakers with a Low dysarthria severity level com-
pared to the unchanged Whisper model.

2.4. Model Architectures

2.4.1. CNN Architecture

As previously stated, this paper explores a variety of classifier
architectures, including a CNN, traditional RNN, LSTM, BiL-
STM and GRU. Firstly, CNN is a type of deep learning algo-
rithm designed for handling 2D data, with its most common ap-
plication being image classification [15]. In this use case, one
could imagine the sound as an image as it also has two dimen-
sions, the first being time and the second being the embeddings
calculated for this time interval. As Figure 2 shows, CNNs uti-
lize convolutional layers to learn spatial features compared to
traditional ANNs which do not account for the spatial structure
of input data. The results of the convolutional layers are fed
into pooling layers, with the most common being a max-pooling
layer. One benefit of utilizing a CNN for dysarthria severity as-
sessment is its hierarchical feature learning which allows it to
learn complex patterns by combining low-level learned features.

Furthermore, CNNs are translationally invariant, meaning they
can recognize learned features regardless of their position in the
input data [15].

Figure 2: Example of a CNN Architecture [16]

The specific CNN architecture chosen for TORGO was four
convolutional layers with the first two having a kernel size of 3
and the final two having a kernel size of 5. The number of
output layers each convolutional layer produced was 16, 32, 64
and 128 respectively. The CNN architecture for MSDM was
altered since the input sizes differed significantly between the
datasets. For MSDM, three convolutional layers were applied
with each having a kernel size of 3 and their output layers being
8, 16, and 32. These output layers were then passed through a
ReLU activation function, as is typical for CNNs [15]. Next, a
max-pooling layer with a kernel size of 2 was applied to each
layer except for the final layer, which was flattened before being
fed into a 1-layer deep linear model. Finally, the CNN, as with
all other models discussed in this paper, used cross entropy loss
and stochastic gradient descent to learn the optimal weights.

2.4.2. RNN Variants

Recurrent Neural Networks (RNNs) are a type of neural
network that detects and exploits patterns in sequential data.
Common applications for RNNs include predicting stock
prices and natural language processing tasks for example text
generation [17]. RNNs differ from traditional artificial neural
networks significantly due to how information is propagated
through the network. RNNs compute their output by incorpo-
rating both the current input data and the model’s hidden state
from the previous time step, thus incorporating the sequential
nature of the data [17]. Despite their advantages in handling
sequential data, traditional RNNs struggle to learn long-term
dependencies due to their vanishing and exploding gradients in
training. The vanishing gradient problem occurs because the
gradient, which measures how the current state is influenced by
some earlier state, is repeatedly multiplied by itself for each
time step between the two states. Hence, if this gradient is less
than 1, this repeated multiplication will trend to 0 given enough
time steps. The exploding gradient is the same issue, except if
the gradient is greater than 1, the repeated multiplication will
make it reach infinity [17].

Luckily, there are types of RNNs that do not suffer from
the exploding or vanishing gradient problems with one of the
most common being LSTMs. LSTMs maintain long-term de-
pendencies through the use of a cell state, which can be seen as
a form of memory. The goal is to store information in the cell
state that is relevant for calculating future outputs [18]. To do
so, LSTMs make use of 3 gates: the forget gate, input gate and



output gate. Each gate can be thought of as a learned function
that decides how much of its input to let through, their output
is passed through a sigmoid function to ensure it is in the range
of 0 to 1. The forget gate is responsible for which portion of
the cell to forget. The output gate decides what part of the cell
state should contribute to the current output. Finally, the input
gate determines what new information should we add or update
to the cell state [18]. The main benefit of utilizing LSTMs in
the field of dysarthria severity assessment is that they do not
suffer from exploding or vanishing gradient problems, meaning
they can form longer temporal dependencies compared to tradi-
tional RNNs. Additionally, their incorporation of gates allows
for a more controlled flow of information from cell to cell com-
pared to traditional RNNs [18]. BiLSTMs can be considered an
extension of LSTMs with one key addition. They process the
input in both forward and backward directions, allowing them
to capture greater contextual information in the cell state [19].

The final type of RNN considered in this research is Gated
Recurrent Units (GRUs). GRUs are similar to LSTMs but
they differ in their number of gates and their efficiency [20].
GRUs have only two gates: the update gate and the reset
gate. The update gate is responsible for determining what of
the past cell state should be kept as well as how much of the
input should be included in the new cell state. The reset gate
determines how much of the past information to forget as it
is deemed not relevant to the current time step. Regarding
efficiency, GRUs are 29.29% faster at processing the same
dataset compared to LSTMs, this difference is even more
significant when comparing GRUs with BiLSTMs as they
need to process the inputs in both directions [20]. In the field
of dysarthria assessment, GRUs have been shown to achieve
higher accuracies than other RNN variants such as LSTMs [5].
This can be attributed to their simplified gate structure being
less prone to overfitting on training data compared to LSTMs
[20].

3. Experiment

3.1. Datasets

3.1.1. Torgo Dataset

All models were trained on a subset of the TORGO database
[6]. TORGO contains utterances from 15 speakers, 8 of whom
have dysarthria with either ALS or cerbral palsy and 7 of whom
have typical speech. Table 1 shows the dysarthria severity of
the participants whose recordings were used to train the mod-
els. TORGO consists of a variety of utterances including short
words like ”yes”, restricted sentences, unrestricted sentences
and non-words [6]. Restricted sentences in this case were pho-
netically rich sentences that the participants were tasked with
speaking aloud. Unrestricted sentences were gathered by hav-
ing the participants describe a variety of images in whichever
way they saw fit. Finally, non-words were repetitions of sylla-
bles that were again phonetically rich [6].

The subset of TORGO selected for this study consisted of
3667 utterances lasting longer than 2.5 seconds. These included
867 labeled with a dysarthria severity level of Very Low, 923
Low, 927 Medium and 950 Healthy. By ensuring that all labels
had roughly the same number of data points, we avoided our
model overfitting to the distribution of our training set.

Severity Participant
Typical MC01

FC01
MC04

VeryLow F04
M03

Low M05
F03

Medium F01
M01
M02
M04

Table 1: TORGO Participant Dysarthria Severity [21]

3.1.2. MSDM Dataset

In addition to TORGO, each model was trained and evaluated
on the MSDM dataset, which is a dysarthria dataset in Man-
darin. More specially, MSDM includes 25 participants with
dysarthria who had a stroke and 25 typical speakers [12]. Partic-
ipants were tasked with uttering 200 unique syllables, 90 com-
mon characters, 150 common words and 72 sentences. For this
study, a total of 61,396 unique utterances were considered, of
which 22,753 belonged to label 0, 23074 to label 1, 10,613 to
label 2 and 4956 to label 3. To balance the distribution of the
dataset, the minority classes were randomly sampled to reach
23,074 samples.

3.2. Model Training and Optimization Techniques

The datasets were split such that 90% of the data was allocated
for training and 10% for testing. To achieve more accurate re-
sults repeated testing was applied such that the models were
trained 10 times each on a different test and train split with the
evaluation metrics then averaged. Additionally, the training set
was further split into 90% for true training, while 10% was al-
located as a validation set. This validation set was used to de-
termine when to perform early stopping if the model’s perfor-
mance was no longer improving. More specifically, patience-
based early stopping was implemented such that if the average
loss on the validation set had not improved after 13 epochs, then
the training would terminate and the best-performing version
would be evaluated on the test set. Figure 3 shows an exam-
ple of this early stopping in effect for a training of the GRU on
the TORGO dataset. We see that the validation loss, validation
accuracy and test accuracy improve quickly in the first epochs
with the test accuracy in this run plateauing after 28 epochs. The
inclusion of early stopping prevents the model from overfitting
on the training data supplied and also is more computationally
efficient. The learning rate of the models was adjusted in a sim-
ilar manner, if the performance on the validation set had not
improved after 3 epochs, then the learning rate would be mul-
tiplied by 0.5 with the initial learning being set to 0.1 and the
minimum learning rate set to 0.00001.



Figure 3: Training accuracy, validation accuracy and valida-
tion loss for a GRU run on TORGO embeddings cut to a time-
frame of 125

3.3. Experiment Configurations

All models were run on both TORGO and MSDM to assess the
effect of different datasets on the performance of the models.
Additionally, the models were run on TORGO with the embed-
dings cut to a timeframe of 375 and 125 to assess the impact of
padded silence on the performance of the models. Finally, to
evaluate the effect of fine-tuning Whisper for dysarthric speech,
all models were trained on fine-tuned Whisper embeddings of
the TORGO dataset with no padded silence included. The spe-
cific architectures implemented for the RNNs include a hidden
state size of 128 except for the BiLSTM which has a hidden
state size of 256 since it needs to store information about both
directions of the input. Furthermore, the networks themselves
were 2 layers deep and all models were trained using stochastic
gradient descent and cross-entropy loss.

3.4. Evaluation Metrics

The models were evaluated on the following metrics: accu-
racy, F1 score, Jaccard score and Mathew’s Correlation Coef-
ficient (MCC). Accuracy, of course, is the number of correctly
labeled samples divided by the total number of samples. The
formula below provides more information with TP representing
true positive, FN representing false positives etc. If one were
to only evaluate using accuracy, you might not consider some
aspects of the performance of the model. For example, a model
may reach relatively high levels of accuracy by predicting the
majority class for every data point.

Accuracy =
TP + TN

TP + TN + FP + FN

Metrics like F1 score, Jaccard score and MCC aim to pro-
vide a more nuanced evaluation of a model’s performance. An
F1 score is calculated by taking the harmonic mean of the
model’s precision and recall. Precision is the number of true
positives divided by the total number of samples predicted to

be positive. Conversely, recall is the number of true positives
divided by the total number of data points labeled as positive.
It is important to note that F1 scores can only be calculated for
binary classification, to account for this the macro average of
F1 scores was taken.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2× precision× recall

precision+ recall

The Jaccard score measures the similarity of two sets by
taking the intersection of the sets divided by the union of them.
Once again, the macro average was taken by performing a one-
vs-rest approach.

Jaccard Score =
TP

TP + FP + FN

Finally, Matthew’s Correlation Coefficient (MCC) shows
the degree of relation between the expected and actual class. It
has a range of - 1 to 1 with 0 being randomly assigning classes,
1 being perfect predictions and -1 being when no data points are
predicted correctly.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

4. Results
4.1. TORGO Results

As mentioned in section 3.1, the TROGO subset was selected
by taking all utterances longer than 2.5 seconds. With almost
no recordings lasting longer than 7.5 seconds, the embeddings
were cut to this point ie. to a timeframe of 375 instead of 1500.
The results for all of these models can be seen in Table 2. Ad-
ditionally, the models were also evaluated on the case when the
embeddings were cut to be 2.5 seconds long, essentially ensur-
ing that there was no silence at the end of any embedding. The
results of these models can be found in Table 3.

We see in Table 2 that the CNN and LSTM have achieved
similar performance with accuracies of 96.21% and 95.32%,
respectively. Furthermore, with both having very high MCC
scores, we see that the models have truly learned the fea-
tures and are not relying on random guessing. The LSTM has
achieved this strong performance by learning long-term depen-
dencies and patterns in the temporal sequence by utilizing its
memory cells to retain important information. The CNN, alter-
natively, has leveraged its convolutional layers to extract local
patterns and features from the speech signals. Next, the GRU
had the best performance on all of the metrics. With an ac-
curacy of 97.18% and a high F1, Jaccard Score and MCC the
model is achieving high performance on all classes. Further-
more, the GRU has outperformed the LSTM, this is consistent
with previous research that shows GRUs outperform LSTMs
on small datasets or ones with low-complexity sequences [20].
This is because their simplified gate architecture is less prone
to overfitting on the training data. Moreover, we see that the
traditional RNN performed worst out of all of the models, only
achieving an accuracy of 31.92% when the dataset was cut to
a length of 375. Additionally, we see that its MCC score was



0.1173, indicating that the model only barely outperformed ran-
dom guessing. This can be attributed to the vanishing and ex-
ploding gradient problems that inhibit traditional RNNs from
learning long-term dependencies as well as GRUs or LSTMs,
see Section 2.4.2 for more information.

Table 3 shows that the performance of all RNNs improved
when trained on data that was cut such that there was no si-
lence embedded. This effect was most visible with the tradi-
tional RNN, with its accuracy improving by 27.04%, one could
contribute this to the vanishing or exploding gradient problem.
Given that the embeddings cut to 7.5 seconds had up to 5 sec-
onds of embedded silence padded to them, removing this silence
likely helped mitigate the gradient issues by reducing the length
of the sequence and reducing the amount of data that does not
contribute to learning the patterns. The BiLSTM also improved
much more significantly than the LSTM or GRU when process-
ing embeddings that had been cut so that there was no silence.
More specifically, its accuracy improved by 11.62% while the
GRU and LSTM improved by 0.68% and 0.07% respectively.
Unlike the traditional RNN, this improvement is not attributable
to the vanishing gradient problem as the BiLSTM does not suf-
fer from it. Instead, because the BiLSTM processes data in
both the forward and backward directions, the backward di-
rection starts with up to 5 seconds of padded silence, mean-
ing its contribution is negatively impacting the model’s perfor-
mance. Finally, we saw that the CNN’s performance did not
improve when trained on embeddings cut so that there was no
silence padded. This can be attributable to the feature extrac-
tion method of CNNs, which focus on local patterns rather than
temporal sequence meaning they are less impacted by the pres-
ence of padded silence. Additionally, the convolution filters
may learn to ignore the silence padded as it is deemed to not
contribute to their output. This means the CNN is able to lever-
age the additional training data offered by the longer utterances
without being hindered by the presence of padded silence.

Model Accuracy % F1 Score Jaccard Score MCC

GRU 97.11 0.9710 0.9440 0.9615
BiLSTM 82.99 0.8179 0.7413 0.7780
LSTM 95.32 0.9538 0.9208 0.9420
RNN 31.92 0.2141 0.1352 0.1173
CNN 96.21 0.9431 0.9125 0.9482

Table 2: Performance on TORGO cut to timeframe of 375

Model Accuracy % F1 Score Jaccard Score MCC

GRU 97.18 0.9721 0.9487 0.9646
BiLSTM 94.61 0.9455 0.8980 0.9280
LSTM 96.00 0.9595 0.9230 0.9464
RNN 58.96 0.5837 0.4191 0.4526
CNN 89.11 0.8897 0.8034 0.8555

Table 3: Performance on TORGO cut to a timeframe of 125 (2.5
seconds so no embedded silence)

4.2. MSDM Results

Table 4 shows the performance of the models trained on the
MSDM dataset. Just as with TORGO, the best-performing
model was the GRU, with it reaching an accuracy of 97.21%
and F1 Score of 0.9689. This is consistent both with previous

literature [5] and the results achieved on the TORGO dataset.
Next, the LSTM just marginally outperformed the BiLSTM
with each reaching an accuracy of 96.71% and 96.66% respec-
tively. This indicates that processing the embeddings in both di-
rections does not improve performance in the field of dysarthria
severity assessment. Finally, the worst-performing models were
the RNN achieving 68.05 % accuracy and CNN achieving 80.27
%. As with TORGO, we see that the traditional RNN had the
worst performance with a Jaccard score of 0.4951 and F1 Score
of 0.6437 indicating that the model also had imbalanced perfor-
mance across the classes.

Relative to the results produced when training on TORGO,
all RNN variants had improved performance with this differ-
ence being most evident in the traditional RNN. Again, this
can be attributed to the vanishing or exploding gradient problem
since MSDM has much shorter utterances, resulting in less se-
vere gradient issues during backpropagation. In contrast to the
RNN variants, the CNN’s performance is significantly worse
when trained on MSDM compared to TORGO. This could be
attributed to their differing architectures ie. it is possible that
the TORGO CNN architecture was simply better than that used
for MSDM. However, these results are also consistent with the
findings in Table 2 and Table 3 which indicated that the TORGO
CNN was able to perform better when trained on longer utter-
ances. Additionally, Joshy et al. found that their CNN per-
formed significantly better when trained on the longer utter-
ances of TORGO compared to UASpeech [5]. With MSDM
utterances being considerably shorter than TORGO, it is ratio-
nal that a CNN is truly more suitable when trained on TORGO
than MSDM.

Model Accuracy % F1 Score Jaccard Score MCC

GRU 97.21 0.9689 0.9431 0.9612
BiLSTM 96.66 0.9629 0.9288 0.9509
LSTM 96.71 0.9644 0.9317 0.9525
RNN 68.05 0.6437 0.4951 0.5326
CNN 80.27 0.7978 0.6695 0.7273

Table 4: MSDM performance

4.3. Fine-tuned results

As discussed in Section 2.3, all models were also trained on
encodings produced by a fine-tuned version of Whisper which
was adapted for dysarthric speech recognition. Table 5 shows
the performance of these models with the embeddings cut such
that there was no silence embedded as in Table 3. We see that
the performance of all models improved when trained on these
fine-tuned embeddings. The most significant improvement can
be seen in the traditional RNN, with its accuracy improving by
over 2% and all other models improving by between 0.29% and
0.73%. Figures 4 and Figure 5 provide an explanation for these
results, with the former presenting a 2D projection of the fine-
tuned Whisper features while the latter shows the same for the
original Whisper model features. Naturally, the plots look very
similar, as the fine-tuned model was produced by only slightly
altering the original model. However, we do see that the fine-
tuned Whisper features can more clearly distinguish between
higher dysarthria severities, meaning models trained on these
features will marginally outperform those trained on normal
Whisper features.



Model Accuracy % F1 Score Jaccard Score MCC

GRU 97.47 0.9744 0.9503 0.9661
BiLSTM 94.91 0.9489 0.9042 0.9323
LSTM 96.32 0.9629 0.9288 0.9508
RNN 61.56 0.6122 0.4213 0.4741
CNN 89.84 0.8921 0.8147 0.8693

Table 5: Fine-tuned Whisper Results

Figure 4: 2D projection of t-SNE dimensions for fine-tuned
Whisper features

Figure 5: 2D projection of t-SNE dimensions for original Whis-
per features

Table 6 shows the cumulative confusion matrix for the GRU
trained on fine-tuned Whisper features. As discussed in Section
3.2, repeated testing was applied where each model was run 10
times on different train, test splits. Hence, the confusion matrix
presented shows all of the predictions on the test sets across all
runs. With the model achieving an average accuracy of 97.48%,
the matrix unsurprisingly shows that the predicted dysarthria
severity level is heavily correlated with the actual dysarthria
severity level. Additionally, we see that the incorrect predic-
tions are distributed according to their distance to the actual
class. For example, 11 utterances that were labeled as having

a low dysarthria severity level were predicted to be Very Low,
while only 4 were predicted to have typical speech. This pattern
holds across all severity levels and indicates that the model has
learned the ordinal nature of the classes.

Actual \Predicted Typical Very Low Low Medium
Typical 939 7 4 0

Very Low 13 839 11 4
Low 4 11 894 14

Medium 5 9 11 907
Table 6: Cumulative Confusion Matrix for GRU trained on fine-
tuned Whisper embeddings

5. Discussion
5.1. Comparision of results with previous literature

When comparing the results from Table 5 with dysarthria sever-
ity assessment models trained on MFCCs and CQCCs we see
significant improvements in accuracy. The best-performing
model presented in [5] achieved an accuracy of 96.18%,
meaning the GRU trained on fine-tuned Whisper embeddings
achieved an accuracy improvement of 1.29%. We also see that
the LSTM and GRU achieved accuracy improvements of over
10% compared to their counterparts presented in [5] indicat-
ing that models trained on Whisper features perform better than
those trained on traditional spectral features. Figure 6 illustrates
this by presenting a t-SNE projection of MFCC features for the
TORGO dataset. When comparing this with Figure 5 we see
that the Whisper features more clearly distinguish between dif-
ferent dysarthria severity levels.

Figure 6: 2D projection of t-SNE dimensions for MFCC features

As discussed in Section 1.2, Rathod et al. trained a CNN
on Whisper embeddings and reached an accuracy of 98.49% on
TORGO [10]. At first glance, this appears considerably bet-
ter than the results presented in Table 5. However, the authors
achieved this result by training their model 5 times on differ-
ent test-train split and selecting the best result. Contrastingly,
the results in this paper were achieved by averaging the per-
formance across 10 test-train splits. The best run of the GRU
trained on fine-tuned Whisper embeddings achieved an accu-
racy of 98.36% meaning it performed similarly to the CNN pre-
sented in [10].



5.2. Limitations

There are many potential improvements, namely in the pro-
cessing of the datasets, the splitting of test and training data,
the duration of training for the models, the tuning of some hy-
perparameters and the difference in CNN architectures across
datasets. Firstly, as mentioned in Section 3.1.1, only a subset
of the TORGO dataset was used. This was both to limit train-
ing time and to standardize the sequence length for the RNNs
by ensuring that all utterances were at least 2.5 seconds long.
However, by choosing 2.5 seconds as the cutoff point, only a
relatively small subset of TORGO was used for training and the
results from Table 2 and Table 3 indicate that shorter embed-
dings can lead to promising results. Hence, future work could
explore the use of training models on a larger subset of TORGO
or even the entire dataset.

Next, due to limitations in computational resources, the
models were trained for an average of 32 epochs. However, pre-
vious research into dysarthria severity assessment using Whis-
per encodings trained for 100 epochs [8]. This effect is espe-
cially clear with training CNNs which are consistently more
resource-heavy than other neural networks [15]. Another possi-
ble improvement could be made in the split between test, vali-
dation and training sets. At the moment, the split between test,
train and validation is done randomly, leading to the risk that
the models are overfitting to the speaking patterns of the par-
ticipants. To combat this, the test and training split could have
been made by using one speaker per severity class as a test set.
When training the models on the TORGO dataset this would
have been infeasible since there are very few speakers per sever-
ity class. However, the MSDM data set has 25 participants with
dysarthria, meaning leaving one or more speakers out per class
as the test set could lead to more robust models.

Additionally, improvements could be made by fine-tuning
the hyperparameters of the batch size and model depth. Batch
size refers to the number of training examples used to update
the weights of the model per iteration. At the moment, the batch
size was simply set to 4 for TORGO and 64 for MSDM using
trial and error. The depth, number of hidden layers and size
of hidden layers for the RNNs were also achieved in the same
manner. An improvement would be to fine-tune these hyperpa-
rameters using cross-fold validation. Finally, as mentioned in
Section 2.4.1, the architecture of the CNN had to be altered for
the MSDM dataset as the input data had significantly different
dimensions compared to TORGO due to the utterances being
shorter. This means that any direct comparison of the results of
the CNN across datasets must take into account this difference
in model architecture.

6. Conclusion
This research aimed to answer the following research questions:
”How do different ML techniques perform in dysarthria assess-
ment using Whisper embeddings?”; ”How does the inclusion
of padded silence in the Whisper embeddings affect the per-
formance of the classifiers?”; ”How does training classifiers on
different dysarthria datasets impact their performance?”; ”How
does fine-tuning Whisper to perform dysarthric ASR affect the
performance of classifiers trained on its encodings?”

As discussed in Section 5, the model that achieved the
greatest performance was the GRU with it reaching an accu-
racy of 97.11% on TORGO. Furthermore, the performance of
all RNN variants improved when the Whisper embeddings were
processed to not include any embedded silence with the GRU

reaching 97.18% accuracy. The performance of RNN variants
was improved further when trained on the MSDM dataset com-
pared to TORGO with the GRU reaching 97.21% accuracy. In
contrast, the CNN achieved its greatest accuracy of 96.21% af-
ter having it trained on the unprocessed Whisper embeddings
of TORGO. Finally, the performance of all models improved
when trained on fine-tuned Whisper embeddings with the GRU
reaching 97.47% accuracy on TORGO.

Future work could include comparing the performance of
models trained on Whisper embeddings to those trained on ei-
ther unchanged or fine-tuned Wav2Vec2 embeddings. Previous
studies have shown that models trained on Wav2Vec2 embed-
dings achieve greater levels of accuracy in dysarthria detection
compared to those trained on MFCCs [22]. With all models im-
proving performance when trained on fine-tuned Whisper em-
beddings compared to normal Whisper embeddings, it is plau-
sible that this may also hold for models trained on Wav2Vec2
embeddings. Additional future work could include evaluating
which dataset produced more robust models. An example of
this could be training the models on one dataset and evaluating
them on another, for example, training on MSDM and evaluat-
ing on TORGO. Next, as discussed in Section 4.2, the CNN had
worse performance on MSDM compared to TORGO. One pos-
sible explanation would be that longer utterances include more
contextual information which aids some models in dysarthria
assessment. To verify this, more datasets with varying utter-
ance lengths, such as UASpeech [7], would need to be used to
train additional models and compare the results. Finally, en-
semble methods such as voting or stacking could be used to
combine multiple models into one, leveraging their differing ar-
chitectures to produce a more accurate or robust model. Stack-
ing involves training multiple distinct models on the same data
and then training another model to integrate their outputs into
a single prediction [23]. Contrastingly, voting is the process
of combining the outputs of the models using some predefined
rule, for example, Bayesian voting [24].

7. Responsible Research
To ensure the reproducibility of the results, repeated testing
was applied with the evaluation metrics presented being aver-
ages across the train-test folds. This ensured that the results
presented were truly representative of the model’s performance
rather than results from a favorable train-test split. Addition-
ally, the subset of TORGO selected is clearly stated with it be-
ing all recordings from dysarthric speakers that last longer than
2.5 seconds. Finally, to ensure true reproducibility, the code for
the models was made publicly available on GitHub [25].

Due to queue time limitations with Delft Blue, some results
were produced by utilizing compute power from Google Colab.
However, since MSDM is not a publicly available dataset, ex-
plicit permission was received from the owners of the dataset to
upload it to Google Drive. To ensure additional security, only
the Whisper embeddings of MSDM were uploaded, rather than
the original dataset recordings. The TORGO dataset is openly
available both on their website [26] and on Kaggle [27] meaning
these precautions were not necessary.
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