Influence of temporal fluctuations and spatial heterogeneity
on pollution transport in porous media
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Abstract The combined influence of temporal fluctuations
and spatial heterogeneity on non-reactive solute transport
mechanisms in porous media can be understood by
performing simulations of steady and unsteady flow and
transport in heterogeneous media. The study focuses on
issues such as the degree of heterogeneity, correlation length,
separation of the combined effects of temporal and spatial
variations, and ergodicity conditions under unsteady flow
conditions. It is shown that the effect of temporal variations
on solute transport is masked by the strong effect of spatial
heterogeneity. There is no obvious difference in plume shape
between steady and unsteady flow conditions; the first and
the second spatial moments of the plume of the unsteady-
state flow condition fluctuate around the steady-state flow
condition with the same period of oscillations as the input
signal at small storage coefficient (5<0.001). At a relatively
high standard deviation in hydraulic conductivity and a small
storage coefficient, the unsteady flow condition sharpens the
temporal variations in macrodispersion coefficients. The
magnitude of the longitudinal macrodispersion coefficient
under unsteady flow condition is almost doubled at the
maximum values. However, the transverse macrodispersion
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coefficient fluctuates around zero. The Kubo number and
Peclet number ranges are 1.2—64 and 10-250, respectively.
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Introduction

Flow and transport in natural formations are primarily
controlled by the spatial heterogeneity of hydrogeological
parameters, especially hydraulic conductivity (Dagan 1984;
Tompson and Gelhar 1990; Boggs et al. 1992; Adams and
Gelhar 1992, and Gelhar 1993). However, flow and transport
processes are not only dependent on spatial heterogeneity
but dependent on temporal variability as well. Temporal
variability occurs due to seasonal, daily or hourly variations
in water levels, piezometric heads or recharge from the land
surface (Rehfledt and Gelhar 1992; Dagan et al. 1996; and
Wang and Tsay 2001).

Temporal variability that is exhibited in a form of
piezometric level fluctuation, acts on the aquifer by
modifying the magnitude and direction of groundwater
velocities as spatial heterogeneity does; therefore, it has an
impact on the transport processes. Temporal variability has
been addressed by many researchers, among them Ackerer
and Kinzelbach (1985) and Rehfledt and Gelhar (1992).
Ackerer and Kinzelbach (1985) showed that temporal
fluctuations in the mean hydraulic gradient enhanced
transverse mixing. Rehfledt and Gelhar (1992) provide an
analysis of the influence of a temporal fluctuation in the
direction of the hydraulic gradient on the macrodispersivity
tensor in a randomly heterogeneous porous medium. Their
analysis indicates that the longitudinal macrodispersivity is
negligibly different from that in a steady flow field, while the
transverse macrodispersivity is significantly enhanced,
which supports the work by Ackerer and Kinzelbach (1985).

Goode and Konikow (1990) have also studied dispersion
in transient groundwater flow. They focused on changes in
flow direction over time in homogeneous fields, rather than
temporal changes in magnitude of velocity, because they
claimed that fluctuations in magnitude are unlikely to have a
significant effect on dispersion. Yim and Mohsen (1992)
have studied the tidal effect on contaminant transport in
homogeneous porous media through simulations in one-
dimension. They concluded that tidal fluctuations cause exit
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concentration levels to be significantly diluted by the
surface-water body of the estuary. Wood and Kavvas
(1999) have solved the ensemble averaged solute-transport
equation for reactive transport in porous media under
unsteady flow conditions. They compared their results with
previous results from the Borden aquifer in Ontario, Canada
(Sudicky 1986). In the Wood and Kavvas (1999) approach,
the Darcy scale dispersion is included in the analysis, and it
showed that this dispersion term has a small but significant
influence on the results. Stochastic analyses of solute
dispersion in heterogeneous media under temporal flow
fluctuations have been considered by Cirpka and Attinger
(2003), and Dentz and Carrera (2005). However, Cirpka and
Attinger (2003), and Dentz and Carrera (2005) analyses are
based on perturbation methods and focused on the derivation
of an up-scaled effective transverse dispersion as the main
parameter that is strongly influenced by the temporal
fluctuations of the flow field. Uffink et al. (2005) have
performed two-dimensional (2D) numerical simulation of
steady and unsteady groundwater flow and solute transport
as part of the Macrodispersion Experiment, MADE (Boggs
et al. 1992). They concluded that the influence of temporal
variability is relatively low; spatial variability is the main
factor controlling plume spreading.

The current study addresses the combined influence of
temporal and spatial variability on contaminant transport
in porous media by performing numerical simulations of
unsteady flow and transport in heterogeneous porous
media. Adapting this approach releases the analysis from
any assumptions that might be adopted when using
analytical stochastic methods of flow and transport
equations. The aim of this work is to study the transport
of a non-reactive solute injected into a heterogeneous
confined aquifer under temporal variability of the flow
field and to investigate the plume behavior in terms of
plume shape, plume spatial moments and macrodispersion
coefficients for better understanding of the transport
mechanisms under these conditions. The study focused
on issues that do not get much attention in the literature
such as investigating different degrees of heterogeneity in
terms of magnitude, separating the combined effects of
temporal and spatial variations of the flow fields,
estimating macrodispersion coefficients, and considering
ergodicity conditions under an unsteady-state flow field.

Setup of flow and transport simulations

In order to study the effects of spatial aquifer heteroge-
neity and temporal variability on solute transport by
groundwater, a numerical model is set up for that purpose.
A heterogeneous aquifer of a constant thickness with
impermeable boundaries at the top and the bottom, as
shown in Fig. 1, is considered in the analysis. At the left
side (upstream boundary), a river with a constant water
level is feeding the aquifer. The main direction of the flow
of water is from left to right. At the right side
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Fig. 1 Transient groundwater flow problem in a confined aquifer:

the aquifer cross-section (yellowrefers to theaquifer, reddish-brown

is theconfining units, bluecorresponds tosurface water)

(downstream boundary), the water level is fluctuating
with a given function. The influences of these fluctuations
on the aquifer response and consequently on the transport
of solute are investigated.

The properties of the aquifer such as hydraulic conductiv-
ity, K, and S, storage coeflicient, are considered constant over
its whole depth, and therefore it is possible to model the
aquifer in the horizontal plane with depth-averaged proper-
ties. Thus, the problem will be approached in two dimensions.
It should also be mentioned that lateral sides of the aquifer are
also considered impermeable boundaries.

Numerical simulations of the groundwater flow system
and solute transport are performed with two specific numerical
models: a groundwater flow model called “TRAN _FLOW”
and a solute transport model called “TRAN SOLUTE”. The
unsteady groundwater flow model “TRAN_FLOW” has been
developed by Elfeki (2003). This model is designed to study
the influence of transient conditions on the aquifer response
(hydraulic heads and Darcy’s velocities) of homogeneous and
heterogeneous confined aquifers. The model is based on a
fully implicit finite difference method and computes hydraulic
heads, as well as Darcy’s velocities, in horizontal and 2D
aquifers. For the sake of completeness, a description is given
in the following.

The governing equation, in the absence of source and
sink terms, of transient 2D (in the horizontal plane)
saturated incompressible fluid flow in an anisotropic
heterogeneous confined aquifer is given by:

Oh(x,y,t) _ 0 Oh(x,y,0)\ 0 Oh(x,y, 1)
N ot —ax TLV(x7y) Ox +ay TW(x7y) ay € Q

(1)

where Ty (x,) is the transmissivity in X-direction, T3y (x,) is
the transmissivity in y-direction, A(x,),?) is the hydraulic
head, S is the storage coefficient, and 2 is the domain of
interest. The transmissivity is related to the hydraulic
conductivity by:
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where H is the aquifer thickness, which is assumed
constant in this study. A finite difference model has
been developed for discretization of Eq. 1. Detailed
derivation of the numerical model is presented in
Appendix A.

A large number of solvers are available for systems
of linear equations and some of the efficient solvers, in
the case of heterogeneous systems with a large number
of nodes, are the iterative ones. All the iterative
solvers start with an initial guess of the field variable
and in each iteration a new and better approximation is
computed. It has been proven that the method of
conjugate gradient (CG) is powerful in addressing
highly heterogeneous media. This method was adopted
by Elfeki (1996) for steady-state flow problems. The
CG method is extended in the current study to handle
time dependent flow problems. The formulas and the
algorithm for implementation in the case of transient
conditions are presented. The algorithm used here is an
extension of the one given by Strikwerda (1989).
Some modifications are adopted to handle the hetero-
geneity of the medium and transient conditions. A
fully implicit backward difference scheme that is
solved by CG is used for the time integration. This
technique is fairly simple, completely stable and is free
from oscillation problems. The equations to solve are
in the form of a linear system ax=b where, a is the
positive definite matrix and the vector b contains both
zeros and the values of the solution on the boundary.
The solution algorithm is presented in Appendix B. In
the presented algorithm, there is no need to construct
the matrix a, however, the algorithm moves through
the nodes in the domain until a conversion criterion is
achieved.

After the solution of the flow equation, one can
calculate the potential head distribution at each time step
and consequently the gradient field and the Darcy’s
velocity field on the grid. This is can be done by
differentiation as:

k+1 k+1
BT () Oh(x,y, 1)\ _ -7 hily; — hij
Driprny = (X O ~ Mig1/2 Ax
(3)

Oh(x,y,t HERL — pt
q)/c)Jrl — Tyy(qu) (M) ~ — TW o |:J+1’1
ij+1/2 ay Wij+1/2 Ay
(4)
where q’;:}/u and q’y‘:}l/z are the inter-nodal Darcy’s

velocity components between nodes (i,7) and (i+1,j), and
between nodes (i,j) and (i,j+ ) at time k+1. The model
has been tested under homogeneous cases where analyt-
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ical solutions exist and produces accurate results under
different values of aquifer properties and excitation
parameters (Elfeki et al. 2007).

The transport equation (advection-dispersion equation)
of an inert tracer in 2D with full tensor description is
given by (Wang and Anderson 1982):

oc aC oCc 0 ( oc f)C) B 0 < oc f)C) —0
dy B

V,— ——=— | Du—+D. '\Va Wa_y
(5)

ax TV oy o \Pegr TPy
Where, C is the concentration of the solute, and ¥V, ¥,
are the components of the average pore water velocities in
the x- and y-directions respectively at time :

V, = qxn_lH_l,Vy = qyn_lH_1 (6)

where n is the medium porosity, and Dy, Dy, Dyy,
and Dy, are the components of the dispersion tensor
given by (Bear 1972):

Dy = o VAV + V2 V]!
Dy = arVAV] ™ + o V2 V]!
Dy = Dy = (a1 — O’T)vaywrl

(7)

where, oy and ar are longitudinal and transverse pore-
scale dispersivities and |V| is the resultant velocity given
by [V|=/Vi+V;

The transport equation is commonly solved by
numerical schemes. Numerical schemes can be classi-
fied into Eulerian (e.g. finite difference and finite
element methods, see e.g. Wang and Anderson 1982),
Lagrangian (e.g. random walk particle tracking, see e.g.
Kinzelbach 1986) and Eulerian-Lagrangian (e.g. meth-
od of characteristics, see also Kinzelbach 1986)
methods. Finite difference and finite element methods
are both often used and reliable methods, but in the
case of advection dominated transport, they suffer from
artificial dispersion (Holly and Usseglio-Polatera 1984).
These solution methods produce an extra numerical
dispersion which is added to the physical dispersion.
Lagrangian methods treat the transport of solute mass
as a large number of moving particles and do not
solve the advection-dispersion equation directly. The
random walk method is the method that is applied in
the current code “TRAN _SOLUTE” to solve the
transport equation, since the method has some advan-
tages compared with other conventional methods (e.g.
finite difference and finite element methods): (1) it
provides a good approximation of the dispersion
process, (2) it has the ability to solve problems having
zeros or low dispersivities, (3) it does not suffer from
numerical (artificial) diffusion as other methods do, (4)

DOI 10.1007/s10040-011-0796-0



286

it does not produce negative concentrations, (5) the
principle of conservation of mass is satisfied, (6) it is
easy to implement and efficient in terms of computer
costs, and (7) it is robust and powerful in case of
heterogeneous media.

OD,  OD \Y \%
X, (t+ At) = X, (1) + (Vx + 8;“ + ay’”)m + 271201 |V|At — 2 2\ 207 |V|AL

M

0D
Ox Oy

B+ 8) = 100+ (V, + v

oD \Y V.
+ yy)At + 271\ 20, |V|At + 751/ 207 |V|At

Equation 5 is not solved directly; however, the random
walk method is used to simulate the advective-dispersive
processes by using a number of particles. The following
equations give the x and y coordinates of a particle p at
any point in time (Kinzelbach 1986):

V]

where, X, (t+At) and Y, (1+Af) are the new x- and y-
coordinates of the particle p, X, (f) and Y, (¢) are the
old x- and y-coordinates of the particle p, Z; and Z,
are statistically independent normal random numbers
with zero mean and unit variance, and Af is the time
step in calculations. It is assumed in this study, that
the time scale of flow and transport is the same and
therefore one single time step was used for both.

In the right hand side of Eqgs. 8 and 9, the first term
is the old position of the particle; the term between
brackets consists of two terms: the advective displace-
ment and the so-called Fokker-Plank term (see Uffink
1990). The last two terms are the dispersive compo-
nents projected in the x- and y-directions respectively.
Note that these two terms are stochastic and depend on
the random numbers Z; and Z,. The particle tracking
model has been tested for several cases under
homogeneous and layered system by Elfeki (1996). In
order to quantify the plume behavior, some plume
characteristics are calculated. Statistical moments of the
plumes (Freyberg 1986) are estimated. These moments
are shown in Fig. 2.

The centroid displacement is the average position of
the particles. The mean x-coordinate X and the y-
coordinate Y are computed from the particle cloud as
follows.

Fig. 2 Spatial moments of a
pulse injection in a 2D flow
field

The x-coordinate of the plume centroid is: X(f) =
Ny

Nip > X;(t) where X; (¢) is the x-coordinate of particle, i, at
i=1

time ¢ and N, is the number of particles. The y-coordinate
J— P
of the plume centroid is: Y (1) = 3= Y;(r) where Y; (9) is
Pi=1
the y-coordinate of particle, i, at time .

The variance around the centroid, which is a
measure of plume spreading, is the second spatial
moment around the mean which is computed as:

Np —
oy (t) = N%, [Xi(t) — X (1)]* for the longitudinal variance
i=1

Np J—
and o3y (1) = &+ 3. [Yi(t) — Y(1)]” for the transversal vari-
Pi=1

ance. The macrodispersion coefficients are derived from the

_ 1 a"%{x

longitudinal and transversal variances as Dy, = ;—* and

D,, = %agy respectively (Dagan 1982).

Generation of the heterogeneous medium

The hydraulic conductivity is considered to be lognor-
mally distributed (Smith 1981) with arithmetic mean
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(K) and variance o°g. Therefore, the logarithmic
transform Y= log(K) is normally distributed with mean
(Y) and variance o’y The values of (¥) and o’y are
related to (K) and o’ through the logarithmic
transformation

(Y) = log(K) — 0.50%
ok
oy = log<1 + (K))

The corresponding harmonic mean K, and geometric
mean K, of the lognormal distribution are given by

(10)

Ky, = (K)e

(1)
K, = VKi(K)

The heterogeneous aquifer is modeled as a log-
Gaussian random field characterized by a mean conduc-
tivity, (K), a standard deviation ok, and an exponential
decay auto-correlation function characterized by a corre-
lation length A (a measure of the distance which tells to
what extent the values are correlated in space).

There are various methods to generate heterogeneous
media (e.g. Haldorsen and Damsleth 1990, and Deutsch
and Journel 1998). Comparison of some methods (e.g.
multi-Gaussian method, nearest neighbor method and
turning bands method) has been performed by Elfeki
(2000).

Briefly, the turning bands method (Mantoglou and
Wilson 1982) has some merits over other methods. It
works by a fast generation of a stochastic process on a line
and then projects the generated line process on the 2D or
three-dimensional (3D) domain which is very cheap in
terms of computer storage and speed. Most of the other
methods work by building a huge matrix of the covariance
function for all the points in the 2D or 3D domain and
then decompose it with matrix operations. The turning
bands method needs memory storage and time for matrix
operations. Other methods such as the simulated annealing
method, have the problem of being an iterative process
where one needs to stop at certain criteria which might not
be archived at the desired conversion.

Heterogeneous aquifers are generated using the pro-
gram TBM2D developed by Elfeki (1996) based on the
spectral turning bands method. The generation process on
a random line is given by

M

Zi(u) =2 Z \/ [S1(@).A0)] cos(aju+ ¢))

J=1

(12)

where Z;(u) is a set of N independent realizations of a one-
dimensional (1D), second-order stationarity stochastic
process on a line u, S)(wj) is the spectral density function
of the real process Z(u) on the line, ¢; represents
independent random angles (which is uniformly distribut-
ed between 0 and 27t), M is the number of harmonics used
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in the calculations, w;=(j-0.5) Aw, and j=1,2,...M. Aw is
the discretized frequency (which is given by w./M).
Wmax 18 the maximum frequency used in the calculations.
;= wj+5w where dw is a small random frequency added
here in order to avoid periodicities. dw is unlformly
distributed between —A®/2 and Aw/2, where Aw is a
small frequency such that A << Aw. Ad is taken equal
to Aw/20 according to Shinozuka and Jan (1972).

The construction of a simulated field Zy(x,y) is
performed by discrete simulation of the one-dimensional
process Zj(u) on a number of lines, L, and subsequent
projection of the generated values onto all simulation
points (x,y) in the 2D domain. The random field is
generated at each point according to

Zj (13)

%\

Model parameters of the numerical experiments

The present study has considered various aquifer con-
ditions and parameters to be investigated. Table 1 shows
the parameters considered in the flow and transport
experiments. The experiments have considered the influ-
ence of the size of the flow domain, the boundary
conditions of the flow field, the parameters of the head
fluctuation function (amplitude and period), the size of the
source (initial condition) of the solute mass and the
corresponding number of particles, the shape of the
source, medium porosity, specific storage, and pore-scale
longitudinal and lateral dispersivities. The model param-
eters cover the influence of correlation length of an
isotropic medium that describes the size of the heteroge-
neity under ergodic and nonergodic conditions. The
parameters also cover the influence of three degrees of
heterogeneity.

Some common dimensionless numbers have been
estimated to provide the limitations of application. The
dimensionless parameter that relates advection and dis-
persion processes of the particles is called the Peclet
number, Pe=vA/D,,, where v is the absolute value of a
typical velocity, A is a typical system length (in the present
study this is the correlation length) and Dy, is the pore
scale dispersion coefficient. Peclet numbers smaller than
one, Pe<1, imply dispersion dominated transport behav-
ior, whereas transport characterized by Peclet numbers
larger than one, Pe>1, is dominated by advection.

Dentz and Carrera (2005) have used the non-dimen-
sional Kubo number, x=1/t,, which compares the
correlation time of the flow fluctuations, t, to the
advection time scale, t,. It equivalently compares the
distance A,.=v 1, (Kubo distance) over which the solute is
advected by the mean flow during one correlation time,
T, to the correlation length in the direction of the mean
flow, A, (k=MA, ). The Kubo time scale is related to
the dispersion time scale tp by the relation 7,=(1+x )

DOI 10.1007/s10040-011-0796-0
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Table 1 Simulation Parameter

Range of the numerical values

arameters used in — -
b Domain dimensions (m)

Domain 500% 50 and Domain 300 x50

computations Domain discretization (m) 1.0x1.0
Time step (day) 1.0
Upstream fxed head boundary (m) 20
Downstream head boundary (m) A COS (i.2mAYP), i=1,2,...,50

A=1,10,20 m

Period of oscillation (days) 40 and 20
Constant aquifer thickness (m) 10
Mean hydraulic conductivity (m/day) 10
Standard deviation in hydraulic conductivity (m/day) 1, 5,10
Accuracy in computation 0.001
No. of time steps 50
Storage coefficient 0.001,0.01,0.1
Porosity 0.4

Correlation lengths (m)
Source size (m)

Source centroid location (m)

Longitudinal pore scale dispersivity (m)
Transverse pore scale dispersivity (m)

No. of particles
Injected solute mass (grams)

1,2,3and 1, 2, 5, 15, 25

Point-like source (one cell size) 1x1
Line-like source (horizontal x vertical) 1x50
X,=10 and y,=-25

0.1, 0.5

0.01, 0.05

100,000

25,000

tp (Dentz and Carrera 2005). The wvalues of the
dimensionless parameters are presented in Table 2.

Analysis of the results

Influence of the correlation length

(order of the heterogeneity)

Heterogeneous aquifers are generated using the same
mean and standard deviation of the hydraulic conductivity,
and with different correlation lengths. As a rule of thumb,
the plume, under steady-state flow conditions, should
travel at least 2025 correlation lengths to reach asymp-
totic behavior (Ababou et al. 1989). The same condition
has been considered for the unsteady state within one
cycle of the oscillation. As a result, in one cycle the plume
travels a distance large enough to discover all hetero-
geneities in the aquifer. Thus, in the next cycle, the plume
will discover the same heterogeneities and therefore
heterogeneity is no longer contributing to the spreading.
With the boundary conditions imposed, the plume travels
approximately 40 m in one cycle of 40 days. So
simulations in aquifers are only done with correlation
lengths 1, 2 and 3 m. Moreover, this study takes a source
that covers the whole width of the aquifer (1 mx50 m).
Indeed, if a point-like source (1 mx1 m) is used, the
plume is small with respect to the size of heterogeneities

Table 2 Parameters estimated from the simulations

and follows only one path and will not discover all
heterogeneities unless the travel time tends to infinity.
Then, a large source enables one to sample all the
heterogeneities in the aquifer and the plume becomes
ergodic.

The centroid displacement (Fig. 3) shows that the
plume moves slower when the correlation length
increases. This is due to the tortuosity of the particle
paths which increases with the correlation length; the
plume moves around zones of low conductivity which
leads to longer paths when the correlation length is long.
The longitudinal variance and macrodispersion coefficient
show larger variation in the spreading when the correla-
tion length increases.

The plume evolution for correlation length 3 m (Fig. 4)
enables one to see that, indeed, some part of the plume
stays behind in the zone of low conductivity while another
part goes ahead in the zone of high conductivity; a
phenomenon of channelling appears when the correlation
length increases. On the other hand, the variance in x-
direction can go down as shown at correlation length of
3 m after 200 days since release. The reason is that the
plume may face the zone of low conductivity which
makes the front of the plume slow down, while the tail of
the plume may be located in the high conductivity zone
which makes the tail move faster. This causes the plume to
shrink and therefore causes the variance to decrease. This

A (m) v (m/day) 7, (days) Tk (days) T (days) Period, 7 (days) Kubo No. Peclet No.
1 1.6 .6 25,606.3 6.3 40 64 10

2 1.4 4 22,428.6 28.6 40 28 20

3 1 16,010.1 90.0 40 13.3 30

1 1.5 7 6,006.7 6.7 20 30 10

5 1.5 3 6,166.7 166.7 20 6 50

15 1.5 0 7,500.0 1,500.0 20 2 150

25 1.5 6.7 10,166.7 4,166.7 20 1.2 250

Hydrogeology Journal (2012) 20: 283-297
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Fig. 3 Spatial moments and

macrodispersion coefficients
of the plume for different -
correlation lengths 1, 2 and 3 & -
m. Aquifer characteristics: EE Correlation Length=1 m (unsteady)
length=500 m, (K)=10 m/day, 85 - - - -Correlation Length=2 m (unsteady)
ox=5 m/day, S=0.001, a,= g} — — Correlation Length=3 m (unsteady)
0.1 m,a7=0.01 m. The down- o3 Correlation Length=1 m (steady)
stream water level fluctuates Ec - - - - Correlation Length=2 m (steady)
with a period of 40 days and E — — Correlation Length=3 m (stoady)
amplitude of 20 m. The source
size is 1 mx50 m
u ) 1 L I
0 100 200 300 400
Time (days)
400
|b 4
T A =
= 300 - 2
g T
b e
= o
% 200+ 3
c o
3 2
& 100 g
g =
0 T T -2 T T+ 1
0 100 200 300 400 0 100 200 300 400
Time (days) Time (days)

feature could lead to a negative macrodispersion as shown
in Fig. 3. Some studies have shown this behavior. The
reason behind this behavior, in the case of spatial
variability, is that when there are diverging flow lines,
the front of the plume moves slower than the tail of the
plume so that the plume shrinks in the longitudinal

and consequently a negative macrodispersion (Elfeki et al.
1996, 1997, 2007). Negative dispersion has also been
reported in the literature in coastal water where oscillating
unsteady-state flow conditions are present (List et al.
1990).

The main observation concerning transient conditions

direction leading to a decrease in the longitudinal variance

50 days 150 days 300 days

29
40+

- 204

- 404

is that results under transient conditions oscillate around
1

100 150 00 2.';0 300 ‘JEIH} iﬂ!ﬂ déﬂ 500 0 50 100 150 260 25 JBIEI 450 500
Correlation Length = 1m m

= VAR
i
_W

% W0 0 A0 B0 50 0 0 10 a0 250 M0 30 40 0 £
Correlation Length=2m 0.1

i.
i
!
i
L.
|
|
I

mg/L

J

l} SD 103 !%ﬂ EE;E 25!0 SEIFEI 35|D 4E'iﬂ «i.‘;& 500
Correlation Length =3 m

Unsteady Conditions

Steady Conditions

Fig. 4 Plume evolution in three aquifers of correlation lengths 1, 2 and 3 m. Aquifer characteristics: length=500 m,(K)=10 m/day, ox=5
m/day, $=0.001, a;=0.1 m,a7=0.01 m. The downstream water level fluctuates with a period of 40 days and amplitude of 20 m. The source
size is 1 m*x50 m (Concentration scale is in mg/L and dimensions in meters)
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the steady-state case. The difference between both states is
relatively small. The evolution and shape of the plume
under transient condition is similar to the steady-state case
(Fig. 4).

Figure 5a and b show transport spatial moments
performed in aquifers with correlation lengths which do
not fulfil the condition ‘distance travelled >201’. The
distance travelled within one cycle is about 30 m, thus for
aquifers with A = 5,15 and 25 m, the ergodic condition is
not fulfilled. Therefore, there is no trend obtained in the
results when A increases; however, periodicity is presented
in the results. Figure 5¢ and d show the macrodispersion
in both longitudinal x-direction and transverse y-direction.
Longitudinal macrodispersion shows periodicity; howev-
er, no regular pattern can be observed due to the increase
in the correlation length. For transverse macrodispersion,
periodicity is not observed clearly due to the fact that the
sources are extended laterally over the whole domain.

Influence of the standard deviation

Several heterogeneous aquifers have been generated. All
have the same correlation length and the same arithmetic
mean, but the standard deviation is variable. Increasing the
standard deviation means that the range of hydraulic
conductivity values is wider. Because the lognormal
distribution (i.e. asymmetrical distribution) is used, gen-
erated hydraulic conductivity values that are lower than
the arithmetic mean (10 m/day) are more likely to be
present in the medium, compared with those above the
arithmetic mean (Fig. 6).

The transport simulation has been performed for both
steady and unsteady flow with a source covering all the
width of the aquifer and a downstream level fluctuating
with a period of 40 days and amplitude of 20 m. Figures 7

standard deviation because there are more zones of low
conductivity generated in the field when the standard
deviation is increased.

Figure 8b shows the longitudinal x-direction variance
of the plume for both steady and unsteady conditions. The
spreading of the plume is enhanced in the longitudinal
direction with increasing standard deviation. The spread-
ing increases because the contrast in hydraulic conductiv-
ity values is higher in the case of high standard deviation.
In the macrodispersion coefficient plots (Fig. 8c and d),
periodic variations are obvious with increasing amplitude
due to the increase in the standard deviation of the
hydraulic conductivity. Periodicity is present in both the
variance and macrodispersion coefficient. It is also noticed
that the variation in both the longitudinal and transverse
macrodispersion coefficients are sharper in the case of
unsteady flow when compared with steady flow con-
ditions. This behavior is due to the fact that under
unsteady flow conditions, parts of the plume might be
stagnant while other parts might be moving, so the plume
is shrunk and stretched suddenly, which leads to this
sharpening in the variation of the macrodispersion
coefficients. The magnitude of the longitudinal macro-
dispersion coefficient under unsteady flow condition is
almost doubled when compared with the steady-state flow
condition. However, the transverse macrodispersion coef-
ficient fluctuates around zero for the whole period covered
(ie. along the horizontal axis).

Influence of the magnitude of the amplitude

Figure 9 displays plume spatial moments and macro-
dispersion under three values of wave amplitude (4=1, 10,
and 20 m) at the upstream boundary. It is obvious, from
the first moment (plume centroid), that the plume moves

and 8a show that the plume travels slower for high the slowest at the lowest amplitude, 1 m, and the fastest at
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Fig. 6 Hydraulic conductivity (K) distribution (m/day) in heterogeneous media with the same correlation length of 2 m and arithmetic
mean 10 m/day, but different standard deviations: ox=1, 5 and 10 m/day. Domain dimensions are in meters

the highest amplitude, 20 m. This is due to the high
gradients induced by high amplitudes. The middle
value, 10 m, lies in between the two extremes. The
second longitudinal spatial moment (longitudinal vari-
ance) shows increase in the variance with increase in
the wave amplitude. This leads to the largest spreading
of the plume at the 20-m amplitude. The longitudinal
macrodispersion coefficient displays oscillatory changes
due to the wave fluctuations at the boundary. The
appearance of negative macrodispersion is due to the
instantaneous extension and reduction of the longitudi-
nal variance of the plume. The variability in the macro-
dispersion coeflicient increases with the increase of the wave
amplitude that is reflected by the high gradients. The same
behavior has been also observed in homogenous media
(Elfeki et al. 2007).

Influence of the storage coefficient

Figure 10 shows the effect of the storage coefficient on the
plume spatial moments and the longitudinal macrodisper-
sion. It is obvious that the increase in the storage
coefficient leads to a decrease in the spatial moments
and longitudinal macrodispersion. In the case of the high
storage coefficient value (S=0.1), the wave is damped in
the aquifer and the aquifer response is delayed. However,
in the case of the lowest storage coefficient value (S=
0.001), the immediate aquifer response is manifested on
the spatial moments and the longitudinal macrodispersion
where the plume reaches a steady oscillations. The middle
value case (S=0.01) shows the combined effects of both
the aforementioned extreme cases (i.e. there is a delay
effect in the beginning, and the immediate response is
reached after about 100 days). The longitudinal macro-

Fig. 7 Plume evolution in 0
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dispersion is getting amplified especially for the middle
case because this case shows the plume development until
it reaches a state of steady oscillations.

Influence of pore-scale dispersivity

Figure 11 presents the effect of pore-scale dispersivity on the
plume spatial moments and longitudinal macrodispersion.
Two cases are considered, where longitudinal dispersivities
are 0.1 and 0.5, and where the transverse dispersivities are
taken as one tenth of the longitudinal ones. The first moment
is not presented because the mean velocity is not influenced

by the pore-scale dispersivities. However, the second
moment has been presented showing high spreading with
high pore-scale dispersivity, since it enhances spreading. The
variability of the longitudinal macrodispersion increases
with larger value of pore-scale dispersivity and the amplifi-
cation of the longitudinal macrodispersion appears as the
plume reaches the fluctuating boundary.

Spreading due to heterogeneity and transient flow
In heterogeneous aquifers, the spreading is caused by the
spatial variation in the hydraulic conductivity values on
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one hand and by the temporal variations in the head field
on the other hand. However, in the steady-state case, the
spreading is only due to spatial variations. Therefore it
was expected that if the steady component was subtracted
from the transient component, only the component due to
temporal fluctuations would remain (see Fig. 12). A point-
like source of contaminant was injected in a heteroge-
neous aquifer. The transport is simulated under steady-
state conditions and also under transient conditions in both
homogeneous (with the mean hydraulic conductivity) and
heterogeneous media (the downstream level is a cosine
function with a period of 20 days and amplitude of 20 m).
The results are presented in Figs. 13 and 14, for
homogenous and heterogeneous media respectively, which
shows that the temporal component is still periodic in the
heterogeneous media, Fig. 14, but is no longer a perfect
sine like in the homogenous aquifer (Fig. 13).

It is difficult to interpret, but it seems that spreading is
not simply a component due to temporal fluctuations
added to a component due to heterogeneity (otherwise the

350,
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residual would have a symmetric shape). It seems, rather,
that spatial and temporal variations interact in a complex
manner to produce variations in the velocity field and thus
in the plume spreading.

Conclusions

Simulations of solute transport in heterogeneous porous
media show that the effect of temporal variations on the
transport of solutes is masked by the strong effect of
spatial heterogeneity. There is no obvious difference in
terms of plume shape between steady and unsteady flow
conditions; however, the difference is obvious in the first
moment, second moment and macrodispersion coeffi-
cients. The spatial moments of the plume of the
unsteady-state flow condition fluctuate around the
steady-state flow condition. The period of oscillations in
the flow field is reflected in plume spatial moments and
macrodispersion coefficient signals when the storage
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Fig. 11 Plume second spatial moment and longitudinal macrodispersion in heterogeneous aquifers with the same correlation length of 2 m
but with different longitudinal dispersivities (a,) of 0.1 and 0.5 and transverse dispersivities (@,) of 0.01 and 0.05 m. a Variance in X-
direction, and b Longitudinal macrodispersion. Aquifer characteristics: length=300 m, (K)=10 m/day, A,=A,=2m. The downstream water
level fluctuates with a period of 40 days. Strip source of contamination

Hydrogeology Journal (2012) 20: 283-297 DOI 10.1007/s10040-011-0796-0



294
140

—Steady State

E 120 —unsteadyState /
§ 100
2
3 % 4
T 60 Z
8 /
5 . / s
o
Oi
0 20 40 60 80
(a) Time (Days)

160

—5teady State

E 140 + —Unsteady State f
e 120
=]
g 100 //
T 80
x
£ g0 /
g
E 40
o
= 20 /

0

0 20 40 60 80
(b) Time (Days)

Fig. 12 Comparison between longitudinal variance in case of steady and unsteady states in a a homogenous aquifer and b heterogeneous
aquifer. Aquifer characteristics: $=0.001; k=10 m/day in homogeneous case; (K) = 10 m/day, o0x=5 m/day and A,=2 m in heterogeneous
case. The downstream water level fluctuates with a period of 20 days and an amplitude of 20 m. Point source of contamination

coefficients are small (S<0.001). At a relatively high
degree of the standard deviation in hydraulic conductivity
and at a small storage coefficient, the unsteady flow
condition sharpens the temporal variations in the macro-
dispersion coefficients. The magnitude of the longitudinal
macrodispersion coefficient under unsteady flow condition
is almost doubled at the maximum values when compared
with the steady-state flow condition. However, for the
transverse macrodispersion coefficient, the magnitude
fluctuates around zero, i.e. along the horizontal axis,
under the range of parameters used in this study. The
presented simulations have covered the Kubo number
range of 1.2—64, while it covers the Peclet number range
of 10-250. The spatial moments of the plume show that
spatial and temporal variations interact together in a
complex manner to produce variations in the velocity
field, and therefore it is difficult to distinguish the
influence of transient conditions from the influence of
heterogeneity on the transport of solutes. This conclusion
is supported by other researchers (Rehfledt and Gelhar
1992; Dagan et al. 1996) who concluded that heterogene-

Fig. 13 Difference between

ity and time variation effects cannot be treated separately.
The numerical experiments of this study have emphasized
that the plume spreading increases with increasing ox. The
temporal variations in the macrodispersion coefficients are
increasing when the contrast in the hydraulic conductivity
is high.

Appendix A: derivation of the numerical
groundwater flow model

A numerical scheme with a five-point operator is used.
The solution is based on the backward difference
approximation in order to get a stable solution whatever
the size of the time step. The following equation must then
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The finite difference analogue of the derivatives is

given by:
h
Txxi+l /2

with the harmonic mean of the transmissivity between
2., . T
/\Xl /\X, k 1
- T”+1J1]+ TW]J and +1 s the
hydraulic head at the node (i,j), at time (k+1).
The derivative analogue with respect to y, is obtained
similarly. Further evaluation leads to the following

expressions of the second derivatives
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Substitution of these equations into the governing
equation, Eq. 14, leads to the finite difference approxima-
tion of the governing equation as
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The boundaries and initial conditions are given by

h t
% =0 for x,y € Y (no— flow condition)
h(0,y,1) = ho
h(L,y,t) = h(t)

(20)

where " is the lateral boundary and n is the unit vector
normal to /" pointing out forward from the boundary.

Appendix B: solution algorithm

The procedure for solving the model equations involves
the following steps between two successive time steps k
and k+1.

First iteration, denoted by (0), for the time step (k+1):

e An initial estimation of the heads h
the nodes

" is given for all
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e The residual rfj“(o) is computed as follows:

k4100 and QK1 is comput-

e The inner product of P;;
k+1(0)

ed to evaluate the parameter o

k+1(0) k+1(0 k+l k+1(0
rij AljhlJrlj +BUh + Cl/hl 1] ’ ft1( )‘2
o100 — r
+ Dyl [+ Eghi ) — Fghi O (21) = (PFHI), pEHI0)) (25)
e A matrix P?MO) is introduced as o The heads and the residuals are updated
Pf;w) = rf;.(o) (22) hgﬂrl(l) _ hgﬂ(o) + gkt P“k+1(0)
e Another matrix Q,]k+1 9 is introduced as ”;Jrl(l) = k+1 — o0 ka+1 (26)
Q§+1(0) _ Fz’i”f;ﬂ(o) _yp rf:ﬁ,(o) — By rﬁ;ll(m
’ e A parameter 871 is computed
ket k1
- ?fri—lf ) Dl/ l,/+l( ) +Ell U( ) (23) 5
k+1(1)
e The residual is summed over all the nodes g0 u (27)
|1 )|2
2 k+1(0)\ 2
|’}( HOP = Z Z (” ij+ ( >> (24) e For the next iterations (m + 1), the matrix P and Q are
i updated as follows
P§+1(m+l) _ ;+1(m+1) —l—ﬁkH(m Pf;+1(m)
Q§+1(m+1) _ [F,-J-rl]f;rl(mﬂ) Ayrf:11;m+l) i ’ljil(erl) Cy lkT,](mH rj;:] (m+1) +E k+1(m+l)] N
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e The iteration counter is incremented for a new and
better estimation of the heads, until the sum of the
residual is less than the convergence criterion ¢, which
has been chosen a priori.

[t < (29)
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