

Delft University of Technology

Increasing Memory Density through Dynamic Memory Extension with Memory1 through
Flash

Rellermeyer, Jan S.; Amer, Maher; Smutzer, Richard; Rajamani, Karthick

Publication date
2018
Document Version
Accepted author manuscript
Citation (APA)
Rellermeyer, J. S., Amer, M., Smutzer, R., & Rajamani, K. (2018). Increasing Memory Density through
Dynamic Memory Extension with Memory1 through Flash. Poster session presented at ICT.OPEN 2018,
Amersfoort, Netherlands. Advance online publication.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Increasing Container Density through
Dynamic Memory Extension with Memory1 Flash

Jan S. Rellermeyer,
�

Maher Amer,
†

Richard Smutzer,
†

Karthick Rajamani
‡

�
Distributed Systems Group, TU Delft,

†
Diablo Technologies,

‡
IBM Research

Containers in Practice
• Containers co-exist on the same OS as opposed to full virtual-

ization with a separate OS per tenant

• In practice, we see many cases where a majority of the con-

tainers on a server are mostly inactive for an extended period

of time while few containers show high activity.

• Should allow for higher density and better server utilization if

we can pack container more densely without compromising the

performance of the critical workloads

Container Density Benchmark

MongoDB

AcmeAir
Authentication

httpd
(~16 GiB of

images)
httpd

(~16 GiB of
ic images)

httpd
(~16 GiB of

ic images)
httpd

(~16 GiB of
mages)

httpd
1

atic images)
httpd

(~16 GiB of
mages)

httpd
(~32 GiB of

static images)

AcmeAir
Server

AcmeAir

Figure 1: ContainerScale setup

One critical workload (AcmeAir) of 3 containers, varying the

amount of mostly inactive noise containers (Apache httpd).

Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50
 0

 50

 100

 150

 200

 250

 300

Th
ro

ug
hp

ut
 (

TP
S)

La
te

nc
y

(m
s)

Noise Container Instances

throughput
99% latency
95% latency
90% latency

Figure 2: ContainerScale without DMX

Server
1

can only sustain around 19 noise containers despite an

overall constant workload.

DOES NOT SCALE
Memory becomes the bottleneck and the tail

latency of the critical workload explodes

Memory1 DMX

AcmeAir
Config

File

AcmeAir
DMX Context

AcmeAir
MongoDB

Config
File

MongoDB
DMX Context

Virtual Memory Manager (VMM)

Web server cache

MongoDB httpd

DMX
Driver

User Space

Kernel

RAM

Flash

AcmeAir Memory
Mongo DB

Memory

Pagi
ng Paging

httpd
Config

File

Web Servers
DMX Context

Paging

Figure 3: Memory1 DMX

Memory1 is a server memory extension product developed by

Diablo Technologies that plugs into the DDR-4 memory channel

and provides high bandwidth, low latency access to flash devices

mounted on the module. The DMX kernel driver intercepts and

services all memory requests generated by the selected application

(malloc, page fault, etc). DMX creates a Memory Context for each

selected application running on the server and carves out a dynamic
portion of the server’s physical memory (i.e. DRAM) to be used as

front-end cache for that application.

Evaluation with DMX

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50
 0

 50

 100

 150

 200

 250

 300

Th
ro

ug
hp

ut
 (

TP
S)

La
te

nc
y

(m
s)

Noise Container Instances

Figure 4: ContainerScale with DMX

The system can now sustain 50 noise container instances with-

out significant performance degradation.

Dynamic memory extension with DRAM Flash helps
to increase container density.

1
Inspur NF5180M4 system with 2xIntel Xeon E5-2660 v3 (32 cores), 256GiB RAM, Linux 3.10 with Docker 17.03.1-ce, Docker OOM disabled. 2 TiB of Diablo Memory1 Flash

Faculty of Electrical Engineering, Mathematics and Computer ScienceContainerScale Benchmark on GitHub

