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Containers in Practice
• Containers co-exist on the same OS as opposed to full virtual-

ization with a separate OS per tenant

• In practice, we see many cases where a majority of the con-

tainers on a server are mostly inactive for an extended period

of time while few containers show high activity.

• Should allow for higher density and better server utilization if

we can pack container more densely without compromising the

performance of the critical workloads

Container Density Benchmark
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Figure 1: ContainerScale setup

One critical workload (AcmeAir) of 3 containers, varying the

amount of mostly inactive noise containers (Apache httpd).
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Figure 2: ContainerScale without DMX

Server
1

can only sustain around 19 noise containers despite an

overall constant workload.

DOES NOT SCALE
Memory becomes the bottleneck and the tail

latency of the critical workload explodes
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Figure 3: Memory1 DMX

Memory1 is a server memory extension product developed by

Diablo Technologies that plugs into the DDR-4 memory channel

and provides high bandwidth, low latency access to flash devices

mounted on the module. The DMX kernel driver intercepts and

services all memory requests generated by the selected application

(malloc, page fault, etc). DMX creates a Memory Context for each

selected application running on the server and carves out a dynamic
portion of the server’s physical memory (i.e. DRAM) to be used as

front-end cache for that application.

Evaluation with DMX
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Figure 4: ContainerScale with DMX

The system can now sustain 50 noise container instances with-

out significant performance degradation.

Dynamic memory extension with DRAM Flash helps
to increase container density.

1
Inspur NF5180M4 system with 2xIntel Xeon E5-2660 v3 (32 cores), 256GiB RAM, Linux 3.10 with Docker 17.03.1-ce, Docker OOM disabled. 2 TiB of Diablo Memory1 Flash
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