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Chapter 10
Abstracted Models for Scheduling
of Event-Triggered Control Data Traffic

M. Mazo Jr., A. Sharifi-Kolarijani, D. Adzkiya and C. Hop

Abstract Event-Triggered control (ETC) implementations have been proposed to
overcome the inefficiencies of periodic (time-triggered) controller designs, namely
the over-exploitation of the computing and communication infrastructure. However,
the potential of aperiodic Event-Triggered techniques to reuse the freed bandwidth,
and to reduce energy consumption onwireless settings, has not yet been truly reached.
The main limitation to fully exploit ETC’s great traffic reductions lies on the diffi-
culty to predict the occurrence of controller updates, forcing the use of conservative
scheduling approaches in practice. Having a model of the timing behaviour of ETC
is of paramount importance to enable the construction of model-based schedulers for
such systems. Furthermore, on wireless control systems these schedulers allow to
tightly schedule listening times, thus reducing energy consumption. In this chapter
we describe an approach to model ETC traffic employing ideas from the symbolic
abstractions literature. The resulting models of traffic are timed-automata. We also
discuss briefly how thesemodels can be employed to automatically synthesize sched-
ulers.
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10.1 Introduction

A surge of Event-Triggered control (ETC) implementation strategies has appeared in
the last decade promising to alleviate the inefficiencies of periodic (time-triggered)
controller designs. Periodic controller implementations abuse the computing and
communication infrastructures employing periodic feedback independently of the
current state of the system. In ETC these inefficiencies are mitigated by letting
the sensors decide (employing their limited computation capabilities) whether a
measurement is worth transmitting for the computation of corrective actions. This
results in aperiodic transmissions of measurements and computation of corrective
actions. The amount of transmissions is often orders of magnitude smaller than the
amount required to achieve a similar performance with periodic control.

However, this potential of aperiodic Event-Triggered techniques, to release chan-
nel capacity and reduce energy consumption on wireless settings, has not yet been
truly reached. See e.g., [1] in which a tenfold traffic reduction resulted in barely a
57% energy consumption reduction of a wireless sensing infrastructure. The main
limitation to fully exploit ETC’s great traffic reductions lies on the difficulty to pre-
dict the occurrence of controller updates. Having a model of the timing behaviour
of ETC is therefore of paramount importance to enable the construction of model-
based schedulers for such systems, and to tightly schedule listening times onwireless
communications to reduce energy consumption.

Different from controller/scheduler co-design approaches, see e.g., [2–4], we sug-
gest to retain the separation of concerns between controller design and scheduling by
defining a proper interface between these two realms. We propose a formal approach
to derive models that capture the timing behaviour (of controller updates) of a family
of Event-Triggered strategies for Linear Time-Invariant systems [5]. The constructed
models provide an over-approximation of all the updates’ timing behaviours gener-
ated by the aperiodic ETC system. Then, techniques from games over timed automata
(TA) can be leveraged to synthesise schedulers [6].

Inspired by the state-dependent sampling proposed in [7], we employ a two-step
approach to compute sampling intervals associated to states: first, the state space
is partitioned (abstracted) into a finite number of convex polyhedral cones (pointed
at the origin); then, for each conic region the time interval in which events can be
originated is computed using a convex embedding approach [8] and Linear Matrix
Inequalities derived from Lyapunov conditions. In the resulting timing models, tran-
sitions among discrete states (associated to the conic regions) are derived through
reachability analysis over the sampling intervals computed earlier, see e.g., [9].

Furthermore, we show that the resulting models of traffic can be alternatively
encoded as TA [10]. This allows us to additionally address the problem of scheduling
the access to a shared resource bymultiple ETC systems by solving games over TA [6,
11]. To this end, we enrich the constructed models of ETC traffic with actions that
trade communication traffic for control performance. Then, a scheduler is synthesised
as a strategy providing actions (for one player) that prevents the set of ETC tasks and
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shared resource (the other player) from entering in a conflict situation. Useful classes
of games for such a synthesis are readily solvable in tools like UPPAAL-TIGA [12].

10.2 Mathematical Preliminaries

We start by introducing some common notation employed throughout the chapter,
and the basic theoretical notions of finite-state abstractions, timed automata, and
Event-Triggered control that support the remainder of the chapter.

10.2.1 Notation

We use R
n to denote the n-dimensional Euclidean space, R

+ and R
+
0 to denote

the positive and nonnegative reals, respectively, N is the set of positive integers,
and IR

+ is the set of all closed intervals [a, b] such that a, b ∈ R
+ and a � b.

For any set S, we denote by 2S the set of all subsets of S, i.e., the power set of
S. The sets of all m × n real-valued matrices and the set of all n × n real-valued
symmetric matrices are denoted byMm×n andMn , respectively. Given a matrix M ,
M � 0 (or M � 0) indicates that M is a negative (or positive) semidefinite matrix
and M ≺ 0 (or M � 0) denotes M is a negative (positive) definite matrix. For a
given matrix M , we denote by [M](i, j) its i-th row, j-th column entry. The largest
integer not greater than x ∈ R is denoted by �x� and |y| denotes the Euclidean norm
of a vector y ∈ R

n . Given two sets Za and Zb, every relation Q ⊆ Za × Zb admits
Q−1 = {(zb, za) ∈ Zb × Za|(za, zb) ∈ Q} as its inverse relation. For Q ⊆ Z × Z , an
equivalence relation on a set Z , [z] denotes the equivalence class of z ∈ Z and Z/Q
denotes the set of all equivalence classes. For a set A ⊆ R

n we denote its Lebesgue
measure by μ(A).

Given an ordinary differential equation of the form ξ̇ (t) = f (ξ(t)), admitting a
unique solution, we denote by ξx : R

+
0 → R

n the solution to the initial value problem
with ξx (0) = x . Finally, we also employ the notion of flow pipe:

Definition 10.1 (Flow Pipe [9]) The set of reachable states, or flow pipe, from an
initial set X0,s in the time interval [τ s, τ̄s] is denoted by:

X[τ s ,τ̄s ](X0,s) = ⋃

t∈[τ s ,τ̄s ]
Xt (X0,s) = ⋃

t∈[τ s ,τ̄s ]
{ξx0(t) | x0 ∈ X0,s}. (10.1)
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10.2.2 Symbolic Abstractions

We revise in the following the framework from [13] to relate different models of a
system.

Definition 10.2 (Generalized Transition System [13])
A system S is a tuple (X, X0,U,−→,Y, H) consisting of:

• a set of states X ;
• a set of initial states X0 ⊆ X ;
• a set of inputs U ;
• a transition relation −→⊆ X ×U × X ;
• a set of outputs Y ;
• an output map H : X → Y .

We say a system is finite-state (or infinite-state) when X is a finite (or infinite)
set, and that the system S is metric if the output set Y is a metric space (with some
appropriately defined metric).

Definition 10.3 (Approximate Simulation Relation [13]) Consider two metric sys-
tems Sa and Sb with Ya = Yb, and let ε ∈ R

+
0 . A relation R ⊆ Xa × Xb is an ε-

approximate simulation relation from Sa to Sb if the following three conditions are
satisfied:

1. ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R;
2. ∀(xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) � ε;
3. ∀(xa, xb) ∈ R for all (xa, ua, x ′

a) ∈−→
a

, ∃(xb, ub, x ′
b) ∈−→

b
satisfying (x ′

a, x
′
b) ∈

R.

Whenever an ε-approximate simulation relation from Sa to Sb exists we write Sa �ε

Sb, and say that Sb ε-approximately simulates Sa . Intuitively, under some technical
conditions, Sa �ε Sb implies that all possible output sequences that Sa can produce
are contained in the set of output sequences that Sb can generate.

Let us also introduce the following alternative notion of quotient system (see e.g.,
[13] for the traditional definition):

Definition 10.4 (Power Quotient System [5]) Let S = (X, X0,U,−→,Y, H) be a
system and R be an equivalence relation on X . The power quotient of S by R, denoted
by S/R , is the system (X/R, X/R,0,U/R,−→

/R
,Y/R, H/R) consisting of:

• X/R = X/R;
• X/R,0 = {x/R ∈ X/R|x/R ∩ X0 �= ∅};
• U/R = U ;
• (x/R, u, x ′

/R) ∈→
/R

if ∃(x, u, x ′) ∈→ in S with x ∈ x/R and x ′ ∈ x ′
/R ;

• Y/R ⊂ 2Y ;
• H/R(x/R) = ∪

x∈x/R

H(x).



10 Abstracted Models for Scheduling of Event-Triggered Control Data Traffic 201

In the case considered in this chapter we rarely are able to compute such power
quotient systems. In particular, the transition relation and output maps in general
need to be over-approximated. We introduce the following relaxed version of the
previous definition, followed by a Lemma establishing the relation between such
quotient systems and the original concrete system.

Definition 10.5 (Approximate Power Quotient System [5])
Let S = (X, X0,U,−→,Y, H) be a system, R be an equivalence relation on X ,

and S/R = (X/R, X/R,0,U/R,−→
/R

,Y/R, H/R) be the power quotient of S by R.

An approximate power quotient of S by R, denoted by S̄/R , is a system
(X/R, X/R,0,U/R,−→̄

/R
, Ȳ/R, H̄/R) such that:

• →̄
/R

⊇→
/R
,

• Ȳ/R ⊇ Y/R , and

• H̄/R(x/R) ⊇ H/R(x/R), ∀x/R ∈ X/R .

Lemma 10.1 [5] Let S be a metric system, R be an equivalence relation on X, and
let the metric system S̄/R be the approximate power quotient system of S by R. For
any

ε � max
x∈x/R

x/R∈X/R

d(H(x), H̄/R(x/R)),

with d the Hausdorff distance over the set 2Y , S̄/R ε-approximately simulates S, i.e.,
S �ε

S S̄/R.

For any set Y , Y ∈ 2Y , which allows us to employ the Hausdorff distance [14] as a
common metric for output sets of the power quotient and the original system.

10.2.3 Timed Safety and Timed Game Automata

The abstraction methodology we propose results in models semantically equivalent
to Timed Safety Autamata (TSA) [15]. TSA are a simplified version of the classical
timed automata [10] (TA).While TA employBüchi-acceptance conditions to specify
progress properties, in TSA local invariant conditions are employed to this same end
(see [16, Sect. 2] for a detailed discussion).Here,we just recall briefly the definition of
TSA from [16]. LetΣ be a finite alphabet of actions, andC a set of finitelymany real-
valued variables employed to represent clocks. Consider ∼∈ {>,�,<,�}, a clock
constraint δ is a conjunctive formula of atomic constraints c1 ∼ k or c1 − c2 ∼ k
for c1, c2 ∈ C , and k ∈ N. We employ B(C ) to denote the set of all possible clock
constraints.
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Definition 10.6 (Timed Safety Automata [16]) A timed safety automata is a tuple
A = (L , L0,Σ,C , E, I ) where

• L is a finite set of locations (or discrete states);
• L0 ⊆ L is a set of start locations;
• Σ is the set of actions;
• C is the set of clocks;
• E ⊆ L × B(C ) × Σ × 2C × L is the set of transitions.
• I : L −→ B(C ) assigns invariants to locations.

The shorthand notation l
g,a,r� l ′ is used to denote (l, g, a, r, l ′) ∈ E , i.e., a transition

from state l to state l ′ under input symbol a, with r ⊆ C the set of clocks reset when
this transition is taken, and a clock constraint g over C as the guard enabling this
transition.

Definition 10.7 (Operational Semantics [16]) The semantics of a timed safety
automaton is a transition system (also known as timed transition system) where
states are pairs (l, u), with l ∈ L and u a clock valuation, and transitions are defined
by the rules:

• (l, u)
d� (l, u + d) if u |= I (l) and (u + d) ∈ I (l) for a scalar d ∈ R

+;
• (l, u)

a� (l ′, u′) if l g,a,r� l ′, u |= g, u′ = [r → 0]u and u′ |= I (l ′).

Remark 10.1 In a TSA, the guards and invariants assert necessary and sufficient
conditions respectively for transitions to take place. The sufficient conditions estab-
lished by invariants must not be violated by letting time advance. Therefore, invari-
ants establish upper bounds for the time to take the next transition [15].

Remark 10.2 Note that a timed automaton is a particular class of hybrid automata
in which the only allowed continuous dynamics are of the form ċ = 1, and in which
guard and invariant sets are in the form of clock constraints.

TSA evolve over uncountable state spaces, due to its clock variables. Nonetheless,
it has been shown that its reachability analysis is decidable [10]. This decidability
allows the development of powerful tools for verification and synthesis [10, 17],
which can be used to generate schedulers for real-time systems, whose timing is
modelled as TSAs [6].

Timed GameAutomata (TGA) are an extension of TSAwhere the set of actions is
partitioned into controllable actions (activated by the controller) and uncontrollable
actions (activated by the environment or an opponent).

Definition 10.8 (Timed Game Automaton [18]) A timed game automaton is a tuple
G = (L , L0,Σc,Σu,C , E, I ) where

• (L , L0,Σc ∪ Σu,C , E, I ) is a timed safety automaton;
• Σc is a set of controllable actions;
• Σu is a set of uncontrollable actions;
• Σc ∩ Σu = ∅.
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A feature of TGA is its modularity. Constructing a TGA for complex systems can
be done by constructing a TGA for each part and then combining (or composing)
them. The resulting object is denoted a Network of TGA (NTGA), and is constructed
through a synchronized parallel composition in which uncontrollable inputs of a
TGA are linked to outputs of another TGA. For a more detailed discussion of such
composition we refer the reader to [19].

10.2.4 Event-Triggered Control for LTI Systems

We describe next a basic framework for Event-Triggered control in the case of Linear
Time Invariant (LTI) control systems with state-feedback. The techniques we present
in the remainder of the paper only focus on this class of control systems. Many
extensions to this simple framework have been proposed, see for instance the rest of
the papers in Part 2 of this book and references therein. See the conclusion of the
chapter for a brief discussion on generalizing the current results.

Consider an LTI system without disturbances:

ξ̇ (t) = Aξ(t) + Bυ(t), ξ(t) ∈ R
n, υ(t) ∈ R

m (10.2)

and a linear state-feedback controller implemented in a sample-and-hold fashion:

υ(t) = υ(tk) = K ξ(tk), ∀t ∈ [tk, tk+1), k ∈ N. (10.3)

The following quadratic triggering mechanism:

tk+1 := inf{t > tk | |ξ(tk) − ξ(t)|2 � α|ξ(t)|2}, (10.4)

with α ∈ R
+ a design parameter properly selected, renders the closed-loop system

asymptotically stable [20]. Let us denote the inter-sample time associated to a state
by:

τ(x) := tk+1 − tk, with x = ξ(tk). (10.5)

For LTI systems, the solutions ξ in some time interval [tk, tk + σ ] can be easily
expressed in terms of the initial condition:

ξ(tk + σ) = Λ(σ)ξ(tk), (10.6)

Λ(σ) = [I + ∫ σ

0 eArdr(A + BK )]. (10.7)
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Thus, the state-dependent inter-sampling times can be rewritten as:

τ(x) = inf{σ > 0| xTΦ(σ)x � 0}, (10.8)

Φ(σ) = [I − ΛT (σ )][I − Λ(σ)] − αΛT (σ )Λ(σ). (10.9)

10.3 Timing Abstractions of Event-Triggered Control
Systems

We are interested in obtaining models capturing the evolution over time of the inter-
sample times generated by an ETC loop. Such dynamics are actually provided by
the following system:

S = (X, X0,U,−→,Y, H)

where

• X = R
n;

• X0 ⊆ R
n;

• U = ∅, i.e., the system is autonomous;
• −→∈ X ×U × X such that ∀x, x ′ ∈ X : (x, x ′) ∈−→ iff ξx(τ (x)) = x ′;
• Y ⊂ R

+;
• H : R

n → R
+ where H(x) = τ(x).

The system S generates as output sequences all possible sequences of inter-
sampling intervals that a given ETC loop can exhibit. However, S is an infinite-state
system and the map H (a copy of τ ) is not an explicit function.

Problem 10.1 We seek to construct finite-state systems capturing, up to some com-
putable precision, all the possible traffic patterns of an ETC system, i.e., all possible
sequences {τ(ξ(tk))}k∈N.

In order to solve this problem, we propose to abstract the system S by a power
quotient system S/R as follows:

S/R = (X/R, X0/R,U/R,−→
/R

,Y/R, H/R)

where

• X/R = R
n
/R := {R1, . . . ,Rq};

• X/R,0 = {Ri | X0 ∩ Ri �= ∅};
• U/R = ∅, i.e., the system is autonomous;
• (x/R, x ′

/R) ∈−→
/R

if ∃x ∈ x/R , ∃x ′ ∈ x ′
/R such that ξx (H(x)) = x ′;

• Y/R ⊂ 2Y ⊂ IR
+;

• H/R(x/R) = [ inf
x∈x/R

H(x), sup
x∈x/R

H(x)] := [τ x/R
, τ̄x/R ].
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In general, constructing such a power quotient system is not possible, thus we
focus on constructing an approximate power quotient system S̄/R .

Remark 10.3 By Lemma 10.1 we know that S �ε
S S̄/R . This can be interpreted

as the (approximate) power quotient system producing output sequences {Tk}k∈N,
Tk ∈ IR

+, such that τ(ξ(tk)) ∈ Tk . The fact that all the possible timing sequences
{tk+1 − tk}k∈N of the ETC system, i.e., output sequences of the infinite system S,
are captured by S̄/R allows us to employ these abstractions to synthesize schedulers,
cf. Sect. 10.4.

In the remaining of this section we describe how to select an appropriate equiv-
alence relation R, compute the intervals [τ x/R

, τ̄x/R ], and determine the transition
relation −→̄

/R
.

10.3.1 State Set

In the traditional construction of quotient systems, one bundles together states that
produce the same output. In our proposed construction of power quotient systems
this is no longer the case, but the precision ε achieved depends on how close are
the outputs of states bundled together, cf. Lemma 10.1. In the case of LTI Event-
Triggered systems one can easily characterize states that produce the same output,
i.e., states x, x ′ such that τ(x) = τ(x ′), see e.g., [7, 21]:

Proposition 10.1 States lying on the same ray crossing the origin have the same
inter-sample time, i.e., τ(x) = τ(λx), ∀λ �= 0, x �= 0.

Hence, to construct a quotient system of S, the abstract states need to be rays
in the state space at hand. But there is an infinite number of rays, thus, in order to
obtain a finite state abstraction, we suggest to take as abstract states unions of an
infinite number of such rays. In particular, polyhedral cones pointed at the origin are
a choice which makes the construction of finite state-space partitions relatively easy.
We denote such cones byRs where s ∈ {1, . . . , q} and⋃q

s=1 Rs = R
n (see Fig. 10.1

for an example in R
2).

In order to construct such a partition of the state-space, we use a so called isotropic
covering. Consider first the case of partitioning R

2 via cones pointed at the origin.
This is easily achieved by first splitting the interval Θ = [−π

2 , π
2 ) uniformly in a

number of sub-intervals Θs = [θ s, θ s). Then for each of those intervals one can
construct the corresponding cone as:

Rs = {x ∈ R
2 | xT Qsx � 0}, Qs = 1

2

[−2 sin θ s sin θ s sin (θ s + θ s)

sin (θ s + θ s) −2 cos θ s cos θ s

]

.

(10.10)
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Fig. 10.1 Example of a
state-space partitioning with
polyhedral cones in R

2 [5]

Remark 10.4 Note that even though it may look like we only partition in this form
half of the space (as we only ranged in the polar coordinates between [−π

2 , π
2 )

radians), in reality the other half space is covered by this same Rs sets. To see
this, just observe that a point defined in polar coordinates by the pair (r, θ), i.e.,
x1 = r cos θ, x2 = r sin θ , and the point (−r, θ) (or alternatively (r, θ + π)) belong
to the same setRs as xT Qsx = (−x)T Qs(−x). Furthermore, this poses no problem
in terms of the times associated to the set as τ(x) = τ(−x) from Proposition 10.1.

We can generalize this partitioning approach to cover arbitrary higher dimensions
as follows. Consider a point x = [x1, x2, . . . xn]T ∈ R

n , and define the projection of
that point on its i − j coordinates as (x)(i, j) = (xi , x j ). Now, let the sets defining
the partition of the state-space to be defined as:

R(s1,s2,...sn−1) =
{

x ∈ R
n |

n−1∧

i=1

(x)T(i,i+1)Qsi (x)(i,i+1) � 0

}

. (10.11)

By ranging over all possible indices s = (s1, s2, . . . sn−1) ∈ {1, 2, . . . ,m}n−1 the
whole state space can be covered. Here m denotes the number of intervals employed
to subdivide [−π

2 , π
2 ) in constructing the Qs matrices.

The equivalence relation R ⊆ R
n × R

n in Definition 10.5 is thus given by
(x, x ′) ∈ R ⇔ x, x ′ ∈ Rs , for some s.

10.3.2 Output Map

Constructing the output map H̄/R (and the associated output set Ȳ/R) boils down to
computing the time intervals [τ s, τ̄s] such that ∀x ∈ Rs : τ(x) ∈ [τ s, τ̄s]. In other
words, we need to compute lower and upper bounds on the inter-sample times that
can be observed for different states (among the infinite number) in a region Rs .
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Employing the state transition matrix in (10.9), one can express a necessary con-
dition for τ to be a lower bound of τ(x) as:

xTΦ(σ)x � 0,∀σ ∈ [0, τ ] ⇒ τ s � τ(x).

Note that this condition involves a matrix functional Φ(σ) and thus it cannot be
directly checked. To address this issue, we employ the approach from Hetel et al. [8]
to construct a convex polytope (in the space of matrices) containing Φ(σ). Then,
employing convexity, one can replace the condition involving an infinite number of
matrices Φ(σ) by a finite (and thus computable) set of inequalities involving only a
finite set of matrices Φκ , with κ ∈ K , i.e., :

(xTΦκ x � 0,∀κ ∈ K ) =⇒ (xTΦ(σ)x � 0,∀σ ∈ [0, τ s]). (10.12)

Assumption 10.1 Assume that a scalar σ̄ > 0 exists such that xTΦ(σ̄ )x � 0,∀x ∈
R

n .

Remark 10.5 This constant σ̄ is a global upper bound for the inter-sample times.
It can be computed through a line search until the matrix Φ(σ̄ ) becomes positive
definite. In general, such an upper-bound may not exist. Think e.g., of a stable real
eigenvector v of the open-loop system and a controller setting the control action
for u = Kv = 0, in this case the system may not trigger new controller updates. A
simple solution to this issue is to modify the triggering condition by fixing a certain
upper bound for the triggering times σ̄ :

τ(x) = min{σ̄ , σ > 0| xTΦ(σ)x � 0}. (10.13)

The following Lemma provides the construction of a finite number of LMIs to
numerically check condition (10.12). Consider a positive integer Nconv � 0 such that
Nconv + 1 is the number of vertices of the polytope employed to cover Φ(σ) in the
time interval [0, σ̄ ], and an integer number l � 1 for the number of intervals in which
to divide the cover, see Fig. 10.2 for an intuitive illustration.

Lemma 10.2 [5]Consider a timebound τ ∈ (0, σ̄ ]. If xTΦ(i, j),τ x � 0holds∀(i, j) ∈
Kτ = ({0, . . . , Nconv} × {0, . . . , � τ l

σ̄
�}), then:

xTΦ(σ)x � 0, ∀σ ∈ [0, τ ]

with Φ defined in (10.9) and

Φ(i, j),τ = Φ̂(i, j),τ + ν I,

Φ̂(i, j),τ =
{∑i

k=0 Lk, j (
σ̄
l )

k if j < � τ l
σ̄
�,

∑i
k=0 Lk, j (τ − j σ̄

l )k if j = � τ l
σ̄
�,
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Fig. 10.2 Polytopic
bounding of a (scalar)
exponential function, with
Nconv = 4 and l = 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0, j = I − Π1, j − ΠT
1, j + (1 − α)ΠT

1, jΠ1, j ,

L1, j = [(1 − α)ΠT
1, j − I ]Π2, j

+Π T
2, j [(1 − α)Π1, j − I ],

Lk�2, j = [(1 − α)ΠT
1, j − I ] Ak−1

k! Π2, j

+Π T
2, j

(Ak−1)T

k! [(1 − α)Π1, j − I ]
+(1 − α)Π T

2, j (
∑k−1

i=1
(Ai−1)T

i !
Ak−i−1

(k−i)! )Π2, j ,

(10.14)

{

Π1, j = I + Mj (A + BK ), Mj = ∫ j σ̄
l

0 eAsds,
Π2, j = N j (A + BK ), N j = AMj + I,

(10.15)

ν � max
σ ′∈[0, σ̄

l ]
r∈{0,...,l−1}

λmax(Φ(σ ′ + r σ̄
l ) − Φ̃Nconv,r (σ

′)),
(10.16)

Φ̃Nconv,r (σ ) = ∑Nconv
k=0 Lk,rσ

k . (10.17)

For a given state x we can now employ this result to compute a lower bound
on τ(x). In order to compute a lower bound τ s for the bundle of states defined by
a conic region Rs , one can leverage the S-procedure as in the following theorem.
Before stating the result, we need to define some new set of matrices Q̃(i, j)

s as:

Q̃(i, j)
s ∈ Mn, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[Q̃(i, j)
s ](i,i) = [Qs](1,1)

[Q̃(i, j)
s ](i, j) = [Qs](1,2)

[Q̃(i, j)
s ]( j,i) = [Qs](2,1)

[Q̃(i, j)
s ]( j, j) = [Qs](2,2)

[Q̃(i, j)
s ](k,l) = 0 otherwise

(10.18)

where Qs ∈ M2 are as defined in (10.10).
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Theorem 10.2 (Regional Lower Bound Approximation) Consider a scalar τ s ∈
(0, σ̄ ] and matrices Φκ,τ s

, κ = (i, j) ∈ Kτ s
, defined as in Lemma 10.2. If there exist

scalars εκ,τ s
� 0 such that for all κ ∈ Kτ s

the following LMIs hold:

Φκ,τ s
+ ∑n−1

i=1 εκ,si Q̃
(i,i+1)
si � 0

the inter-sample time (10.4) of the system (10.2)–(10.3) is regionally bounded from
below by τ s, ∀x ∈ Rs .

Proof The proof is verbatim the proof on [5], replacing the linear representation of
conic partitions in dimensions higher than two, by the alternative quadratic repre-
sentation of (10.11).

Similarly, one can compute upper bounds τ̄s of the inter-sample time for a conic
region, employing Lemma 10.3 and Theorem 10.3.

Lemma 10.3 [5]Consider a timebound τ̄ ∈ [τ , σ̄ ]. If xT Φ̄(i, j),τ̄ x � 0holds∀(i, j) ∈
Kτ̄ = ({0, . . . , Nconv} × {� τ̄ l

σ̄
�, . . . , l − 1}), then:

xTΦ(σ)x � 0, ∀σ ∈ [τ̄ , σ̄ ]

with Φ defined in (10.9) and:

Φ̄(i, j),τ̄ = ¯̂
Φ(i, j),τ̄ + ν̄ I,

¯̂
Φ(i, j),τ̄ =

{∑i
k=0 Lk, j (

( j+1)σ̄
l − τ̄ )k if j = � τ̄ l

σ̄
�,

∑i
k=0 Lk, j (

σ̄
l )

k if j > � τ̄ l
σ̄
�,

ν̄ � max
σ ′∈[0, σ̄

l ]
r∈{0,...,l−1}

λmin(Φ(σ ′ + r σ̄
l ) − Φ̃Nconv,r (σ

′)),
(10.19)

where Lk, j and Φ̃Nconv,r are given by (10.14) and (10.17), respectively.

Theorem 10.3 (Regional Upper Bound Approximation) Consider a scalar τ̄s ∈
(0, σ̄ ] and matrices Φ̄κ,τ̄s , κ = (i, j) ∈ Kτ̄s , defined as in Lemma 10.2. If there exist
scalars ε̄κ,τ̄s � 0 such that for all κ ∈ Kτ̄s the following LMIs hold:

Φ̄κ,τ̄s + ∑n−1
i=1 ε̄κ,si Q̃

(i,i+1)
si � 0

the inter-sample time (10.4) of the system (10.2)–(10.3) is regionally bounded from
above by τ̄s, ∀x ∈ Rs .

Proof Analogous to the proof of Theorem 10.2.
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Remark 10.6 In order to employ Theorem 10.2 (Theorem 10.3) to compute lower
(upper) bounds for each of the regions, one needs to apply a line search over τ s ∈
[0, σ̄ ] (τ̄s ∈ [τ s, σ̄ ]). This requires checking the feasibility of the LMIs at each step
of the line search.

10.3.3 Transition Relation

Finally, the transition relation −→
/R

of the abstraction is given by:

(x/R, x ′
/R) ∈ −→

/R
⇔ μ(X[τ s ,τ̄s ](x/R) ∩ x ′

/R) > 0. (10.20)

Remark 10.7 Equation (10.20) explicitly enforces that the intersection between the
sets needs to be strictly larger than just the trivial coincidence in the origin, or one
facet of the sets, by requiring that such intersection has non-zero measure.

In other words, to construct the relation one needs to compute which sets Rs ′

are (non-trivially) intersected byX[τ s ,τ̄s ](Rs): the reachable set fromRs in the time
interval [τ s, τ̄s]. In practice, we can only compute approximations of this reachable
set. Nevertheless, in order to construct an approximate abstraction S̄/R it suffices
to compute the intersection with outer approximations i.e., X̂[τ s ,τ̄s ](Rs) such that

X[τ s ,τ̄s ](Rs) ⊆ X̂[τ s ,τ̄s ](Rs).

Remark 10.8 Employing anouter approximationof the reachable sets canpotentially
introduce spurious transitions, i.e., −→

/R
⊆ −→̄

/R
but as stated in Lemma 10.1 the

desired approximate simulation relation is retained.

Note that Rs are not compact sets (they are unbounded cones). However, all of
those cones share the origin which is an invariant point of the state space. Therefore,
it is sufficient to compute the reachable set ofRs := Rs ∩ Es for some affine hyper-
plane Es = {x |eT x + c � 0}with e ∈ R

n and c �= 0 ∈ R. Then from the convex hull
of this polytope in R

n−1 and the origin one can construct a non-empty convex subset
R̂s of Rs as follows:

R̂s = {λxe | λ ∈ [0, 1], xe ∈ Rs}. (10.21)

Now observe that, thanks to the linearity of (10.6) and the fact that all sets are
pointed at the origin, the condition (10.20) can be replaced by:

μ(X[τ s ,τ̄s ](Rs) ∩ Rs ′) > 0 ⇔ μ(X[τ s ,τ̄s ](R̂s) ∩ R̂s ′) > 0 (10.22)

There are many techniques available to compute polytopic outer approximations
of reachable sets of polytopes as the set X̂[τ s ,τ̄s ](Rs). In particular, we employ in our
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implementations the approach from [9]. Similarly, there are many tools that enable
the computation of intersection of polytopic sets and check that such sets have no
empty interior, e.g., [22, 23].

10.3.4 Increasing the Precision of the Abstractions

The precision of the abstractions obtained can be considered from both: the distance
of the output traces, i.e., ε in Lemma 10.1, and in terms of the amount of spurious
transitions introduced.

The conservatism introduced through the polytopic embedding, cf. Sect. 10.3.2
can be reduced by increasing Nconv and l in Lemmas 10.2 and 10.3. This results in
moreLMIconstraints, but in general leads to a smaller ε by reducing |τ̄s − τ s | for each
Rs . Having tighter bounds for the inter-sample times also reduces the conservatism
introduced in computing the reachable sets in Sect. 10.3.3, which in turn reduces the
amount of spurious transitions. Similarly, one can employ more precise or tight outer
approximations of the reachable sets to reduce spurious transitions.

Finally, one can also refine the conic regions of an abstraction S/R into more
regionsRs . As long as in the new abstraction S/R′ the equivalence classes are subsets
of the classes in the first abstraction S/R , the precision of the inter-sample bounds
cannot decrease, i.e., |τ̄s − τ s | cannot increase. Formally:

(∀(x, x ′) ∈ R′ ⇒ (x, x ′) ∈ R
) ⇒ ε′ � ε, (10.23)

where S �ε
S S̄/R , and S �ε′

S S̄/R′ . Note that this does not need to hold if the partition
defined by R′ is not a refinement of the original partition determined by R.

10.4 Timed Automata and Scheduling

In this section we briefly show that the abstractions S̄/R , whose construction is
described in the previous sections, are in fact semantically equivalent to TSA. Then,
we illustrate a few possibilities to enrich the obtained abstractions with controllable
actions, which may be employed to design schedulers for ETC systems on shared
resources.

Let us first interpret the semantics of the proposed abstractions S̄/R . Note that the
system S̄/R only captures discrete events. However, just like the concrete system S,
the connection with actual time is established through the outputs produced by these
models. The abstraction S̄/R is a finite-state dynamical system, but with an infinite
output set Ȳ/R capturing time intervals. When the last transmitted measurement x
satisfies x ∈ x/R , the output y/R = H̄(x/R) indicates that the original control system:

1. does not trigger updates during the interval [0, τ x/R
);

2. may trigger a controller update during the time interval [τ x/R
, τ̄x/R ); and

3. must trigger an update if τ̄x/R seconds have elapsed since the last transmission.
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In the model S̄/R a controller update of the ETC system (cf. Sect. 10.2.4) is captured
by a transition between states x/R → x ′

/R of the abstraction S̄/R . As described in
Sect. 10.2.3, one can capture the same type of semantics with a TSA. In particular,
the TSA S̄T SA = (L , L0,Σ,C , E, I ) has the same semantics as the abstraction S̄/R ,
where:

• the set of locations L := X/R = {l1, . . . , lq};
• the set of initial locations L0 := X/R,0;
• the set of actionsΣ = {∗} is an arbitrary labeling of discrete transitions (or edges);
• the clock set C = {c} contains a single clock;
• the set of edges E is such that (ls, g, a, r, ls ′) ∈ E iff ls /R

� ls ′ , g = {τ s � c � τ̄s},
a = ∗, and r = {c := 0};

• the invariant map I (ls) := {0 � c � τ̄s}, ∀s ∈ {1, . . . , q}.

10.4.1 Automatic Synthesis of Schedulers

One may think of a scheduler as a coordinating controller that prevents several
systems from entering into a conflict configuration.We consider a set of ETC systems
that share a common resource, e.g., a computing or communication platform, and
propose to use anNTGA-based approach to synthesize schedulers in this set-up.After
each update the shared resource is unavailable for some predefined time interval, and
to prevent a conflict (a control loop requesting access while the resource is being
used) the scheduler decides which control loop shall be updated next by selecting
an update mechanism for each control loop (see next paragraph). The process to
automatically synthesize schedulers consists of three steps: first, construct an NTGA
associated with the set of NCSs; then, define the set of bad states (representing
conflicts); and finally, employ a tool like UPPAAL-Tiga [12] to obtain a safe strategy
avoiding the bad states. The NTGA derived from the set of NCSs: G NCSs, is a parallel
synchronized composition of the TGA associated with the network: G net , and the
TGA associated with the control loops G cli for all i ∈ {1, . . . , N }.

In order to design schedulers, the models of the systems to schedule need to
expose variables enabling the control of their dynamics. More precisely, the TSA
S̄T SA needs to be enriched to contain more than one action in the set Σ , resulting in
the TGA G cli. Several update mechanisms, providing different controllable actions
for the scheduler can be considered:

• the update time is based on a triggering mechanism, where a triggering coefficient
is selected from the finite set {α1, . . . , αp}. In TGAG cli for each s ∈ {1, . . . , q}, we
introduce additional locations lα1

s , …, l
αp
s representing the choice of the triggering

coefficient α1, …, αp selected at state x/R = Rs . For each s ∈ {1, . . . , q}, the
edges from ls to lα1

s , …, l
αp
s are controllable enabling the scheduler to choose the

triggering coefficient.
• the update time is forced at a predefined time, which is earlier than the minimum
inter-sample time of the active triggering condition. In TGA G cli for each s ∈
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Fig. 10.3 TGA of a shared
resource

Idle InUse Bad

{1, . . . , q}, we introduce controllable edges originated from ls that represent earlier
controller updates.

• the update time is based on a triggering mechanism but delayed a predefined
amount of time to be selected from some set {τ d

1 , . . . , τ d
r }. Note that ETC naturally

tolerates a maximum amount of delay Δ̄ [20], thus one must select these delays
smaller than such Δ̄. In TGA G cli for each s ∈ {1, . . . , q}, we introduce locations
l
τ d
1

s , …, lτ
d
r
s that represent the sampled state is inRs and the chosen delay is τ d

1 , …,

τ d
r , respectively. Again, these new edges from ls to l

τ d
1

s , …, lτ
d
r
s are controllable for

the scheduler.

Each of these mechanisms can be employed on their own or combined to provide
more control handles to the scheduler. The status of the shared resource – available,
unavailable and conflict – and the possible transitions among them are modeled by
TGA G net depicted in Fig. 10.3. Thus, the bad states of the NTGA are defined as the
set of states such that the location of G net is Bad. For a more detailed treatment of
this procedure we refer the reader to the report [19].

10.5 Illustrative Examples

Inwhat follows,we illustrate the described abstraction construction on two examples.
First, we consider a simple academic two-dimensional LTI system:

ξ̇1(t) =
[−14 10

−24 17

]

ξ1(t) +
[
1
2

]

ν1(t),

ν1(t) = [9 − 6.5] ξ1(t).

(10.24)

We employ the following values for the abstraction parameters: the triggering coef-
ficient α = 0.05, the upper bound of the inter-sample interval σ̄ = 1s, the order of
polynomial approximation Nconv = 5, the number of polytopic subdivisions l = 100
and the total number of state space partitions q = 20.

The resulting abstractionof the closed-loop system (10.24) is provided inFig. 10.4,
depicting τ s and τ̄s ; τ s and τ̄s in a radial manner, and a representation of the dis-
crete transitions in the resulting TSA. The achieved precision of the abstraction
is ε = 0.284s. Figure10.5 illustrates the validity of the theoretical bounds that we
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Fig. 10.4 System (10.24) lower and upper bounds of inter-sample times depicted by solid and
dashed curves, respectively (left panel). Spider-web representation of times (note the symmetry)
(center panel). Graphic representation of the transition relation (right panel)

Fig. 10.5 System (10.24) states and input trajectories (left panel) and triggering times (right panel)
of a simulation of the ETC system. Time between triggering (asterisks), predicted lower bound
(solid line) and upper bound (dashed line)

found for τ s (solid line) and τ̄s (dashed line). The asterisks represent the inter-sample
times sequence during 5s simulation of the ETC system.

The second example is a somewhat more realistic system: an intelligent vehicle
headway controller [24]:

⎡

⎣
Ėr (t)
Ėv(t)
ȧ(t)

⎤

⎦ =
⎡

⎣
0 1 0
0 0 1
0 −1.43 −2.149

⎤

⎦

⎡

⎣
Er (t)
Ev(t)
a(t)

⎤

⎦ +
⎡

⎣
0
0

0.01077

⎤

⎦ u(t), (10.25)

u(t) = − [
40 55.78 24.45

] [Er (t) Ev(t) a(t)]T , (10.26)

where Er = Rh − R, Ev = V − Vp, with Rh and R the desired and actual headway,
Vp and V the preceding and host vehicle velocities, and a the host velocity acceler-
ation. The controller is implemented with a triggering coefficient α = 0.05. In the
abstraction we select m = 10, the number of subdivisions for each angular coor-
dinate in the interval [−π

2 , π
2 ), which results in q = 2 × m(n−1) = 2 × 102 = 200

states of the abstraction, i.e., regions in which the state space is divided. The rest of
the parameters are selected as σ̄ = 2 s, Nconv = 5, and l = 100.
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Fig. 10.6 System (10.25) lower and upper bounds of inter-sample times depicted by solid and
dashed curves, respectively (left panel). Graphic representation of the transition relation (right
panel)

Fig. 10.7 System (10.25) states and input trajectories (left panel) and triggering times (right panel)
of a simulation of the ETC system. Time between triggering (asterisks), predicted lower bound
(solid line) and upper bound (dashed line)

Figure10.6 shows the resulting abstraction of the closed-loop system (10.25).
Note that times for only half of the state space (100 regions) are plotted, as the
symmetric half of the state space results in identical bounds. The precision of the
constructed abstractions is ε = 1.3 s. The validity of the theoretical bounds that we
found on a simulation, with initial condition x0 = [3 − 2 5]T , is visualized in
Fig. 10.7.

10.6 Conclusion

We have presented a methodology to construct models describing the timing patterns
of updates in Event-Triggered control systems. The resulting models can be recast
as timed automata, for which a large body of literature and tools are available. In
particular, one can employ techniques from the literature on timed automata to auto-
matically synthesize schedulers arbitrating the access to shared resources between
ETC loops and possibly other (real-time) tasks.
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An apparent drawback of the proposed approach is the amount of computation
required to construct themodels. In the construction of each abstract state one needs to
solve several LMI feasibility problems to construct the output set. Then a reachability
analysis must be run for each of these states. Fortunately, this is a procedure that can
be easily parallelized and that is only run offline. However, the amount of abstract
states that is required (assuming a uniform partitioning) scales exponentially with
the dimensionality of the system. A couple of promising approaches to address the
challenge of scalability are the use of compositional ideas, as in e.g., [25], and the
use of model order reduction techniques, as in e.g., Chap.1 of this book.

The versatility of timed automata to model the traffic of model-based aperiodic
controllers has been also demonstrated in e.g., [26], or Chap.6 of this book. Exten-
sions to other types of event-based controller implementations, like periodic ETC
with dynamic controllers [27], or to the non-linear context [20] can be constructed
similarly, provided that: (i) the reachability of the considered systems is possible,
and (ii) one can construct computable triggering checks dependent solely on the
last sampled state. Many approaches are available for the reachability of non-linear
systems, see e.g., [28–30]. The second condition is closely related to the idea of Self-
Triggered control, for which large classes of non-linear systems have been studied
in e.g., [21, 31]

Future work shall investigate if other applications of these sort of abstractions can
be found in the real-time control context. An interesting possibility is the study of
security, where timed automata may serve to characterize resilient traffic flows (or
conversely attacker patterns) as in the context of Chap. 11 in this book.
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