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An interface element for modelling the onset
and growth of mixed-mode cracking
in aluminium and fibre metal laminates

Frank Hashagent and Rene de Borstt
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Abstract. In the present contribution an interface crack model is introduced which is capable of model-
ling crack initialisation and growth in aluminium as well as in Fibre Metal Laminates. Interface elements
are inserted in a finite element mesh with a yield function which bounds all states of stress in the
interface. Hardening occurs after a state of stress exceeds the yield stress of the material. The hardening
branch is bounded by the ultimate stress of the material. Thereafter, the state of stress is reduced to
zero while the inelastic deformations grow. The energy dissipated by the inelastic deformations in this
process equals the fracture energy of the material. The model is applied to calculate the onset and
growth of cracking in centre cracked plates made of aluminium and GLARE®. The impact of the

model parameters on the performance of the crack model is studied by comparisons of the numerical
results with experimental data.

Key words: interface elements; discrete crack model; mixed-mode cracking; plasticity; fibre metal lami-
nates.

1. Introduction

To apply new materials for modern aircraft structures it is essential to evaluate their residual
strength and fracture toughness. For this reason intensive testing is undertaken before new mate-
rials enter service. A standard test for the evaluation of the K-factors and the critical energy
release rate (Broek 1983), is a centre cracked plate, (ASTM 1990). While carrying out this test
the crack mouth opening displacement (CMOD), the elongation and, most importantly, the crack
length extension of a plate with a crack perpendicular to the loading direction are measured.
On basis of these quantities the K-factors and general design rules for the application of the
material are derived. However, testing is time consuming and expensive. Furthermore, experimen-
tal data should be verified against theoretical findings. Therefore, it is essential that numerical
tools become available which correctly describe the onset and growth of cracking, the formation
of the plastic zone around the crack tip, the elongation of the plate and the crack mouth opening
displacement (CMOD). While testing a centre croched plate buckling might be caused due to
imperfections in the plate, where buckling is understood as the deformation of material points
around the crack perpendicular to the plane of the plate. When the displacements on one side
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of the crack have the opposite direction of those on the other side of the crack, anti-symmetric
buckling occurs. This implies that a combined mode-I/mode-1I failure causes the crack growth.
A numerical model must take into account this effect, which requires a three-dimensional model
for the formulation of the continuum as well as for the onset and growth of cracking.

To describe the crack initialisation and growth, two different classes of crack models can
be distinguished, namely a discrete crack model or a smeared crack model. Applying a smeared
crack model, the material behaviour is described on the integration point level of the continuum
element. Various models have been derived (Feenstra 1993), (Rots 1988), (Willam, ot al. 1987),
(Cope, et al. 1980). The smeared crack models do not supply information about the crack width.

When a discrete crack model is applied. new degrees of freedom are introduced by inserting
interface elements into a finite element mesh. These interface elements have no thickness and
in the elastic regime they represent a perfect bond between two continuum clement. For this
reason a very high dummy stiffness is inserted in the constitutive relation between the relative
displacement of the two adjacent layers of the interface element and the stress in the interface.
Cracking occurs when a critical parameter, eg. the normal stress, exceeds a certain threshold.
Obviously, when interface elements are applied, cracking is located between two continuum eleme-
nts, and is restricted to those locations where interface elements are inserted into the FE mesh.
Therefore, crack growth is dependent on the original location and orientation of the finite eleme-
nts. This draw-back is alleviated if the direction of the crack growth is known either on basis
of experimental data or calculations with a smeared crack model.

Interface elements can be divided into two classes, namely nodal or point interface clements
and continuous interface elements. The latter type is applied in the present model. The continuous
interface elements can be applied together with shell or volume elements. Intensive research
has been carried out with respect 1o the element formulation, mesh dependency, the impact
ol the integration schemes and the dummy stilfness on the performance ol interface clements
(Schaler 1975, Beer 1985, Hohberg 1990, and Schellekens and de Borst 1993),

The formulation of the constitutive relation which governs the material behaviour and the
description of the physically nonlinear effects has also been investigated. Depending on the
failure mechanisms for which the interface clements are applied the mathematical formulation
can be bhased on a plasticity theory (Schellekens 1992) or on a damage theory (Allix 1992),

The present research has been carried out within the framework of rescarch on Fibre Metal
Laminates for which experimental data, especially the crack orientation, are available. Combined
with a need for a direct comparison of the location of the crack tip and the CMOD with
numerical data makes a discrete crack model preferable compared with o smeared crack model,
Therefore an interface element is described which can be applied together with solid-like shell
clements (Parisch 1995), to model the onset and growth of cracking in a centre cracked plate.
The solid-like shell assures a three-dimensional description of the continuum and adopts a purely
displacement-based deformation field.

In the following the topology and the element formulation of the interface elements are introdu-
ced. The conclusions of previous rescarch, especially by Hohberg (1990) and Schellekens and
de Borst (1993), are taken into account to assess the pertormance of the present interface element
with regard to the applied integration schema. Subsequently, the crack model is described. Mixed-

mode cracking is expressed on the basis of a plasticity model. The onset of cracking occurs
when a state of stress violates a vield function. A local return-mapping algorithm and a consistent
tangent stiffness matrix are derived. The models are applied 1o caleulate the onset and growth
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Fig. 1 Interfaces for the sixteen-noded solid-like shell element.

of cracking in a centre cracked plate made ol aluminium. Next, the model is applied to investigate
the cracking behaviour of a centre cracked plate made of the Fibre Metal Laminate GLARE®.

2. Element geometry and stiffness

2.1. Element geometry

If two solid-like shell elements (Parisch 1995) are connected two different kinds of interface
elements can be distinguished depending on the surface of the solid-like shell element. The
top and the bottom surface of a sixteen-noded solid-like shell element consist of eight nodes.
However, the connection of two elements at one of the other four sides requires a twelve-noded
interface element because each side is formed by six nodes, Fig. 1. Elements that are connected
along these surfaces have the same material parameters, and cracking is the failure mechanism
which normally occurs in this interface. In the following this twelve-noded interface element
is described. For a description of an eight-noded or a sixteen-noded interface element for the
connection at the top and bottom surface the reader is referred to (Schellekens and de Borst
1993).

The geometry of the twelve-noded interface element is displayed in Fig. 2. The two adjacent
layers of the interface element are defined by the nodes one to six and the nodes seven to
twelve, respectively. In each material point of the element a local frame of reference I=1{n, ¢
s} can be established. The direction » of this local frame is normal to the surface of the interface
and the direction ¢ and s are tangential to the surface in the material point. The relative displace-
ment vector v=(v,, v, v,) is defined as difference of the displacement of the two adjacent layers
of the interface, with:

v=R L u, n
In Eq. (1) the vector u, contains the displacements of a point in the two planes of the interface
in global coordinates x=1{x y, z}. The matrix L maps the displacements ol the material points

in the two planes onto the relative displacements, and the matrix R contains the transformation
from the global frame of reference into the local frame of reference with:
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Fig. 3 Kinematics and displacement field of the twelve-noded interface element.
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To set up the element stiffness matrix the displacement field is separated into the displacement
fields of the two adjacent layers which are denoted as left and right layer. In Fig. 3 the displace-
ment field of the right layer is shown, while the displacement field of the left layer appears
in a similar manner. Any material point in the undeformed configuration can be described
by a vector X, pointing to a point on the ¢axis of the element and the thickness director D,
Fig. 3. The position of a material point in the deformed configuration can additively be decompo-

sed into the position in the undeformed configuration (X,+nD) and the displacement field u,
with:

u'=uy+ nu (2)

In Eq. (2) the superscript refers to the plane, here the right plane. The displacement of a
point on the &axis is denoted by uy and 7 is the coordinate in the thickness direction. The
thickness director in the deformed configuration d” can be decomposed into the thickness director
in the undeformed configuration D" and the change of the thickness director uf, Fig. 3. The

displacement field of the left plane is set up in a similar manner which gives for the vector
u, in Eq. (1)
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=i o) ®
If the vector of nodal displacements is introducéd with the indices (x, y, z) for the global directions:
| 0= e w1, 4

the vector u, reads:
u,=Au+nA'n. (5)

In Eq. (5) the matrices A° and A' are composed of the quadratic interpolation functions ;
in the following way:

- 0 0 0 0 0= -II' 0 0 0 0 0 -
0O 0 I 0 0 0 0O 0 II' 0 0 0
0 0 0 0 IT 0 0O 0 0 0 II' 0
A=l 0110 0 0 0 ;A= 0 0 0 0 0 |
0 0 0 I 0 0 0 0 0 II' 0 0
000 0 0 0 I ooooonl_j

with:
HO:I/Q(V/l, Ve, Vs, s, Wb W) HI:l/z(“ Vie — V¥ —Yh, Ws Wa, W)

After some algebra (Hashagen 1996) the matrix B, can be derived which relates the relative

displacements v in the local frame of reference I to the nodal displacements # in the global
frame of reference:

v=DB, U, (6)
with 7; the components of R and =11+ nIl' the matrix B, reads:

_7‘111:7 rul:j _’”121:7 "121?:[ _7‘131:7 7‘13IJ
B= _"21{7 rzl{] ""221] 7‘221] “7‘23{1 "231] .
=l Il —rpdl rpl —rpdl rpdl
2.2. The element stiffness

In the elastic regime the constitutive relation between the tractions r=(z,, t, #,) and the relative
displacements v of the two adjacent layers can be written as:

d, 0 0
(=D v with: D:< 0 4 0 ) )
0 0 4

In Eq. (7) the quantities d; denote the individual stiffness in the directions #, 1, and s. To model
the perfect bond between two adjacent layers in the elastic regime the value of d; must be relatively
high compared with the Young's modulus of the material.

To derive the stiffness matrix of the element the weak form of the equilibrium is established:
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8 W+ 6W, =0, ®)

The variation of the external work can be set up in a standard way using the external force
vector fo

SWo=8u'f,; ©)

and the variation of the internal work reads (Schellekens and de Borst 1993):
SW,-,,——“J. Syt dS,. (10)
Sp

In Eq. (10). So denotes the surface of the undeformed reference system. The traction vector ¢
is a measure for the stresses which has the role similar to the 2nd Piola-Kirchhoff stress tensor
for continuous media and is, as well as the relative displacement v, measured with respect to
the local undeformed system in each material point. In nonlinear finite element analysis the
equilibrium is evaluated at time ¢+ Ar. Decomposing the traction vector at time 7+ At into the
traction at time #, and a change of the tractions Ar gives together with Eq. (7):

tl;:t(J+DAvn- (]1)
The update of the relative displacement increment is accomplished according to:
Av, = Av,_ | +dv. (12)

In Eq. (12), dv denotes the iterative change of the relative displacement at iteration n. Using
Eq. (7) and Eq. (9)-Eq. (12) the virtual work equation transforms into:

f (5 CJV)TD (dV) C[S():(édl})T ﬁw“—f ((SdV)Tt“_l dS(}.
S0 S0
Together with Eq. (6) the stiffness matrix for the numerically integrated interface element equals:

K":IJ B'DB, det J, d&édn, (13)
nd ¢

and the internal force reads:

ﬁn:fj Bt det Jy d&dn. (14)
nd ¢

2.3. Performance tests

Before the constitutive relation for modelling crack initialisation and growth can be derived
for the interface element the performance of the element regarding the dummy stiffness and
the applied integration schema must be verified (Scheliekens and de Borst 1993). Due to the
presence of the high dummy stiffness spurious oscillations of the stress field can occur, (Hohberg
1990). Therefore, a 3D notched concrete beam (Rots and Schellekens 1990) is modelled with
solid-like shell elements and the corresponding interface elements. The structure is analysed
using a Gauss, a Newton-Cotes, a Lobatto or a lumped integration for different values of the
dummy stiffness. The geometry of the structure is displayed in Fig. 4. A refinement of the mesh
is applied at the side where the notch is located. The interface elements are located at the
front of the notch in order to model the potential development of a discrete crack. Since the
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Fig. 4 Geometry of the 3D notched concrete beam (t=100.0 mm).

application of interface elements should not lead to additional high deformations in the elastic
regime a very high dummy stiffness d; must be supplied for the calculations. To assess the
impact of the dummy stiffness; ¢;/=10"* N/mm* and 4,=10"° N/mm® have been chosen for
all three directions. The Young's modulus of the continuum equals £=20 GPA while a Poisson
ratio v=02 is adopted. A surface load is applied at the second row of elements, Fig. 4, with
a total load of Fy=1.0 kN. The structure is simply supported at the left bottom side and symmetry
is assumed perpendicular to the plane of the notch.

The results of the calculations are shown in Fig. 5-Fig. 7. Using a dummy stiffness of d;=10*?
N/mm® all integration schemes produce satisfactory results. However, for a stiffness of ;=10**
N/mm® spurious oscillations occur when a Gauss, a Newton-Cotes, or a Lobatto integration
is applied. Schellekens has reported spurious oscillations for a sixteen-noded interface element
when a Gauss or a lumped integration are applied. Schellekens attributes the poor behaviour

o &=I0TNm] e d,=10°[N/mm’]
’,&]‘\5\- XQQ -ad»ﬁ
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g
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Fig. 5 Traction profile for the twelve-noded interface element calculated with 3X3 Lobatto/Newton-Cotes
integration; left: d,=10""[N/mm‘]; right: d,=10*[N/mm?*].
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Fig. 6 Traction profile for the twelve-noded interface element calculated with 3X3 Gauss integration;
left: d,=10"3[N/mm*]; right: d,=10"*[N/mm?].
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Fig. 7 Traction profile for the twelve-noded interface element calculated with lumped integration; left:
d,= 10" [N/mm’]; right: d,=10"[N/mm?].

of the lumped integration for a sixteen-noded interface element to the negative surface contribu-
tions. In contrast to a sixteen-noded interface element, the surface contributions of the present
twelve-noded interface element remain positive. Therefore, no negative diagonal terms occur on
the diagonal of the stiffness matrix and a well-conditioned system of equations arises that can
be solved by applying a LDU-decomposition. The spurious oscillation that occur when a Gauss,
a Newton-Cotes or a Lobatto integration are applied are caused by the choice of a linear shape
function in n-direction, Fig. 2. The stiffness matrix can be decomposed into a matrix which
contains the contributions of infegration points that coincide with the nodes of the element
and the contribution of integration points which are located between two nodes. The latter parts
of the stiffness matrix cause coupling between the nodes. Due to the linear displacement field
in n-direction the displacements are not approximated correctly when the elements exhibit a
highly nonlinear displacement field in the n-direction. Therefore, a lumped integration is recom-
mended for the twelve-noded interface element.
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Fz= 0.5 MPa

Fig. 9 Traction profile of the doubly notched concrete beam applying 3 X3-Newton-Cotes integration
and d;=10"[N/mm?].

For a further clarification of the impact of the integration method on the traction profile,
the notched concrete beam is modified. To trigger a second traction gradient another notch
is attached perpendicular to the first notch, combined with a distributed force in the y-direction,
Fig. 8. The results with a dummy stiffness of d/=10" N/mm?® and either 3X3 Newton-Cotes
or lumped integration are displayed in Fig. 9 and Fig. 10. It can be seen that the three point
integration in the &direction which corresponds to the global y-direction does not yield spurious
oscillations. In this direction the nonlinear displacement field can be approximated correctly.

3. The interface crack model
3.1. Return-mapping and tangent stiffness

In a general situation all three stress components in the plane of cracking are affected by
the initialisation of a crack. For a fully opened crack even under single-mode loading this means
that no stress can be transferred in any of the three directions in the plane of cracking.

A vyield function is now introduced which bounds all states of stress. In the limiting case
the yield function shrinks to a point in the origin of the stress space while the inelastic deforma-
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Fig. 10 Traction profile of the doubly notched concrete beam applying lumped integration and 4;=10*°

[N/mm?].

tions grow. The yield function & reads:

&, 9=\/32 P t—1x) < 0. (15)

In Eq. (15), the quantity ¢ denotes the equivalent stress. It is a function of the hardening parameter
x and discussed in the remainder. The vector ¢ contains the tractions, Eq. (7). The matrix P
is set up with reference to von Mises plasticity:

2/3 0 0
P=|: 0 2 0 ] (16)
0o 0 2

The shape of the yield function is displayed in Fig. 11. For the application of this plasticity-
based crack model the consistent tangent stiffness matrix and the local return-mapping are derived.
For this purpose, the field of relative displacements is decomposed into an elastic and a plastic
part, v and »”, respectively. In an incremental formulation this reads:

L

Fig. 11 Yield surface of the von Mises-type yield criterion.
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Av= A+ Ap?, (17)

Under the assumption of an associative flow rule the plastic deformations can be written in
an incremental manner as:

o (18)

Hereby, AA represents the finite amount of inelasticity and the gradient (J&/¥) sets the direction
of the plastic deformations. The increment of the elastic relative displacements A is related

to the traction increment Ar, at the end of the loading step via the linear elastic stiffness matrix
D:

Av''= AL ( 5@)

Av'=D""At. (19)
Upon substitution of Eq. (17) and Eq. (18) into Eq. (19) we obtain:
A, ZD[Av,, — Al (%‘? ﬂ 20)

The tractions at the end of a loading step ¢, are decomposed into:
rll:t()+AtI1; ‘ (21)

where ¢, contains the tractions at the beginning of the loading step. Substituting Eq. (20) into
Eq. (21) finally leads to:

tnml AA‘H ( i'-]? )a Wlth t[ll(l/ t0+DAvn (22)

If the trial traction t,, violates the yield function, Eq. (15), then the corresponding tractions
and the inelastic deformations are calculated according to:

tllltl/+ A/ln ( ?) 0, (23)
and:
D (tm Kn) =0. (24)

Eq. (23) and Eq. (24) represent a system of four equations with the five unknowns: ¢, x, AA.
For the final solution of Eq. (23) and Eq. (24) a hardening hypothesis must be introduced which
describes the relation between AA, and Ak,

In mixed-mode fracture, which occurs for instance when anti-symmetric buckling appears
in a centre cracked plate, it is appealing to take the dissipated inelastic energy as hardening
parameter. It can be directly compared with the fracture energy Gf which serves as a fundamental
material parameter for the model. The hardening parameter is defined:

Kzf K dr; (25)

and the rate of the hardening parameter  is set up according to the following hardening hypothe-
sis:

k=t p7 (26)
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which, using Eq. (18), reads in an incremental format:
Ax=AA tT(%‘D ) @7
To arrive at a stable local return-mapping algorithm, the change of the hardening parameter

Ak is considered as independent variable (Hofstetter and Mang 1995), instead of AA:

AA= % ; (28)

where Eq. (15) has been used. Upon substitution of this expression for AA in Eq. (23) we obtain:

t,=B 't (29)
With I the unit matrix, B can be written as:
B=[I+% % DP]Bm. (30)
Employing Eq. (29) in Eq. (15) the yield function is rewritten as a function of Ax:
\/3/2t,:"B~PB ™ 1y~ 1) =0. (31)

Starting from an initial estimate Ax,°=0 Eq. (31) can be solved using a Newton-Raphson schema:
Axf= Ak} ' — BNdD/dAxk) |}

The gradient (d®/d Ax) is obtained by differentiating Eq. (31). Taking into account that the matrices
D, B and P are diagonal matrices for the interface element (dP/dAx) reads:

d® _ 91 1 (1_4;(_@; &

dAx 4t (D+1) \t r? ok ok’ (32)
The rate of convergence on local level depends on the function which describes the equivalent
stress 1(x). For large load increments and a subsequent large trial stress increment combined
with a small equivalent stress ¢ quadratic convergence cannot always be guaranteed. In Fig,
12 the yield function @(Ax) is displayed for a typical situation. In the limiting case when the
trial stress tends against infinity and the equivalent stress tends against zero the rate of convergence
can be approximated by: @*~1/2d* 1. Based on this phenomenon a pre-iteration is applied
with: Ax¥= Ax2*, @(Ax)>0 and max kp, after which nearly quadratic convergence is obtained.
In a full Newton-Raphson procedure the tangential stiffness matrix must be set up for every
iteration on global level. Starting with the differentiation of Eq. (23), whereby ¢, is not constant
but a function of v, gives:

dz,,zHe,:l[dv,,—[r’(—‘g )] ('%%) dAK,,]. (33)

In Eq. (33), the matrix H,, equals:

sl [{2] S HET SN2 o

Invoking Prager’s consistency relation, @(t, K)=0, dAk, can be rewritten as:

) Lot [P°DB™*] ty—
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Fig. 12 Function &Ak) in a typical situation for the local return-mapping procedure.

dAKx,= o (35)

00\ o0\ . 08\ _ o

) ()

Upon substitution of dAk, in Eq. (33) by Eq. (35) the tangential stiffness relation finally becomes:
0D\ o®\

I Y v -1

Hen ( & )( & > HE"

(a_ab)TH _l<_@ 0B _cz_dz)
173 “ V7.3 oK 07,4

(he 55 )

which appears in Eq. (34) for H,,, the stiffness operator can become non-symmetric.

T
(—5@ > H,,'dv,

dv,=| H,,'— dav,,. (36)

Note, that due to the product:

3.2. The hardening/softening function

The function 7(x) is a phenomenological representation of the fracture process and not a descrip-
tion of the atomic separation (Tvergaard and Hutchinson 1993). In contrast to the traction-separa-
tion law proposed by Tvergaard and Hutchinson (1993) the interface element has to represent
a perfect bond between the two adjacent layers in the elastic regime. Thus, the fracture process
is initialised when the initial yield stress o, is reached. Then, the stress increases from the yield
stress o, up to the ultimate stress o, of the material, Fig. 13. When the ultimate stress is reached
the plastic work per unit surface area equals the fracture energy G; of the material. At this
point cracking is initiated and the dissipated energy exceeds the fracture energy. The stress is
reduced to zero while the inclastic relative displacements grow. To obtain a smooth transition
from the hardening to the softening branch, the hardening regime is described by a quadratic
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Fig, 13 Hardening and softening function for the interface crack model.

function:
- o= 0~ Gy
==X +2 G K+ o, 37
and the softening regime is described by an exponential function, (Keuser, et al. 1983):
T= Gt (0i—0) € with: k——"—( Kwa)z. (38)
s B G

The parameter § determines the rate of softening. For a sharp decrease a parameter f=0.15
is chosen. The hardening and softening branch are exposed schematically in Fig. 13. The residual
stress oy is a small value (0,,=10"2 MPa) in order to achieve numerical stability for the return-
mapping algorithm.

4. Numerical investigations

4.1. Centre cracked plate with pure mode-I cracking

A standard test to investigate the residual strength and the crack growth of materials is a
centre cracked plate, (ASTM 1990). In the following the plate is taken to assess the performance
of the present crack model. In Fig. 14 the geometrical properties of the plate are exposed. The
numerical results obtained with the interface model are compared with results obtained experime-
ntally for this problem at the Faculty of Aerospace Engineering of Delft University of Technology,
(de Vries 1994).

By virtue of symmetry of the plate one quarter is modelled with sixteen-noded solid-like shell
elements. At the symmetry line from the tip of the crack onwards, interface elements are located.
The displacements in the y-direction of one plane of the interface elements are restrained. In
the x-direction the displacements of both interface planes are the same. The plate is loaded
with a distributed load as depicted in Fig. 14. The material data for the aluminium plate and
the interface are collected in Tables 1 and 2, respectively.

It is known (Bazant 1976) that softening problems tend to suffer from mesh dependence.
To assess this effect calculations have been cartied out with three meshes with 1227, 798 and
512 elements, respectively and a mesh refinement at the crack tip (Hashagen 1996). In a first
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Fig. 14 Geomerical properties (in [mm]) and boundary conditions of the centre cracked plate (r=1.04

mm).

Table 1 Material data for aluminium alclad 2024-T3L

E [Gpa] 14 Oyield [MPE[] Cultimate [Mpa] Eultirnare
66.0 0.33 350.0 440.0 0.15

Table 2 Material data for the interface elements representing cracking in alu-

minium
d[N/mm?] Gie [IMPa]  Guiwae [MPa] Gy [N/mm] B
1-10* 350.0 440.0 95.6 0.15

series of calculations plasticity in the aluminium has not been taken into account. The elongation,
the crack mouth opening displacement and the crack length extension for this case are displayed
in Fig. 15-Fig. 17. It can be observed that a significant difference exists between experimental
and numerical results. The reason for this effect is caused by the plastic effects in the continuum.
Furthermore, the results become worse without mesh refinement at the crack tip.

In a second series of calculations von Mises plasticity is included for the continuum, Table
1. The results of these calculations are also displayed in Fig. 15-Fig. 17. Now, a good agreement
between numerical and experimental results is obtained. However, a snap-back is observed for
the elongation which is not found in the experimental results. The reason for this effect lies
in the choice of the softening parameter 3 Here, a sharp drop is assumed. According to Tvergaard
and Hutchinson (1993) a part of the fracture energy is dissipated on the softening branch. This
gives a smoother drop from the ultimate stress to zero. Therefore, a higher value for g gives
better results and circumvents severe mesh dependence, (Bazant 1976). The following calculations
have been carried out with f=03.

The fracture energy G, which serves as the fundamental material parameter can be calculated
from experimental data given by de Vries (1994). Two different methods can be applied for
the calculation of G, If the method according to Irwin (1958) is applied we obtain G,=95.6
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Fig. 15 Elongation of the centre cracked plate for different meshes and the interface crack model with
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Fig. 16 Crack mouth opening displacement of the centre cracked plate for different meshes and the
interface crack model with G/=956 N/mm.
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Fig, 17 C.rac:k length of the centre cracked plate for different meshes and the interface crack model
with G;/=95.6 N/mm.
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Fig. 18 Elongation of the centre cracked plate modelled with 798 elements by applying solid-like shell
elements with plasticity and the interface element with 8=0.3.
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Fig. 19 Crack mouth opening displacement of the centre cracked plate modelled with 798 elements
by applying solid-like shell elements with plasticity and the interface element with 8=0.3.

N/mm. However, if the method according to Eftis and Liebowitz (1972) is used G;=121.6 N/mm
results. To investigate the impact of the fracture energy on the performance of the model calcula-
tions have been carried out with both values of Gy

In Fig. 18-Fig. 20 the results for a variation of the fracture energy are displayed. Obviously,
a variation does not lead to a significant difference between experimental and numerical results.
However, with an increasing fracture energy the load bearing capacity increases and the crack
grows at a slower rate.

4.2. Centre cracked plate made of GLARE®

Finally, the crack model is applied for modelling crack propagation of a centre cracked plate
made of the Fibre Metal Laminate GLARE®. This material consists of thin aluminium layers
that are connected by prepreg layers. Here, a lay-up is taken with R-Glass fibres in the prepreg
layers that are oriented in loading direction. From experiments the homogenised material parame-
ters are obtained which are collected in Table 3 and Table 4 for the continuum and the interface,
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Fig. 20 Crack length of the centre cracked plate modelled with 798 elements by applying solid-like
shell elements with plasticity and the interface element with f=03.

Table 3 Material data for GLARE® assuming a plane stress situation

E“ 65 GPa Ey_j_ 50 GPa Glz 17 GPa Vi2 0.33
o 3600 MPa o, 1074 MPa «, 0,105 - -

Table 4 Material data for the interface elements representing cracking

in GLARE®
d [N/ m1113:| O,-vir.-lllp [MPZ\] Ouliimate [MPE\] Gf [N/ mln] ,B
1-10%8 360.0 1074.0 371.53 03

respectively. The calculations are carried out under the assumption of a plane stress situation.
The geometry of the plate remains the same but with a thichness t=14 mm and is exposed
in Fig. 14. Again, symmetry is assumed. Due to fibre bridging at the crack tip a smoother
softening has been assumed. Therefore, the calculations have been carried out with =02 and
=0.5.

g In Fig 21-Fig. 23 the results of the calculations are shown. It can be observed in Fig 23
that the crack growth for the composite agrees well with the experimental results. However,
differences occur when the elongation and the crack mouth opening displacement are considered.
The reason is the assumption of isotropic von Mises plasticity for an orthotropic material. The
numerical results show a better agreement with the experimental data, Fig. 21-Fig, 23, when
the calculations are carried out with an orthotropic plasticity model (Hashagen 1997).

5. Conclusions

In the present paper a discrete crack model has been introduced. On the basis of interface
elements which are inserted into the finite element mesh cracking is modelled by a yield function
which bounds all states of stress. In the limiting case of a fully opened crack the stress reduces
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Fig. 21 Elongation of the centre cracked plate made of GLARE® modelled with 798 plane stress elements.
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Fig. 22 Crack mouth opening displacement of the centre cracked plate made of GLARE® modelled

with 798 plane stress elements.
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Fig. 23 Crack length extension of the centre cracked plate made of GLARE® modelled with 798 plane

stress elements.
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to zero while the inelastic deformations grow unboundedly.

The model has been applied to calculate crack propagation in a centre cracked plate made
of aluminium or GLARE®. The results obtained numerically match the data obtained experimen-
tally. It has been demonstrated that the proper choice of the softening parameter S circumvents
mesh dependence. Also, the major impact of the development of the plastic zone around the
crack tip on the results has been demonstrated.
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