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Lay Summary
This thesis examines how to count the number of ways in which directed networks without loops are cre-
ated, known as Directed Acyclic Graphs (DAGs), under various constraints. These graphs are impor-
tant for modeling tasks, processes, and relationships in which certain steps must precede others, such
as scheduling tasks or determining cause-effect relationships. This report adapts a powerful mathemat-
ical method originally developed by the mathematician R.W. Robinson, to systematically count these
DAGs, even when they must meet specific conditions like having a fixed number of connections or spe-
cial substructures. This approach gives interesting insights into otherwise complex counting problems,
giving a precise count of possible configurations for different networks. The findings presented here
help clarify how quickly the complexity of such networks grows as they expand and the techniques and
results in this thesis lay the groundwork for tackling even more complicated network structures in the
future.
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Abstract
This report investigates the enumeration of labeled directed acyclic graphs (DAGs) under various struc-
tural constraints, extending an inclusion–exclusion recurrence introduced by R.W. Robinson. Starting
from the enumeration of general DAGs via out-point partitioning, the recursive method is adapted to
count more specialized classes such as DAGs with a fixed number of arcs or out-points. The Robin-
son method is also applied to create a formula for the enumeration of rooted directed trees, polytrees,
and a special triangle structure. For each of these constrained graph classes, both the closed-form
expressions and the derived recursive enumeration formulas are explained, showcasing the versatility
and mathematical elegance of Robinson’s technique. A main focus of this report is the derivation and
interpretation of the Robinson recurrence that adjusts the choose-attach model while using the local
attachment rules. This report also presents visual illustrations of the original Robinson method and its
adaptations. The results of these formulas are shown in graphs and tables to show the exponential
growth of each class. The results bring together several enumeration problems in graph theory un-
der a single recursive framework, offering both theoretical insight and practical enumeration formulas.
The contributions of this thesis provide an analysis of DAG enumeration problems, bridging theoretical
insights and practical relevance. These results have important implications for a wide range of ap-
plications, including Bayesian networks, causal inference modeling, scheduling, and network design.
Finally, promising directions for future research are mentioned, emphasizing potential extensions to
more complex graph structures and advanced enumeration methodologies.
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1
Introduction

Motivation and Relevance of Labeled Directed Acyclic Graphs
Directed acyclic graphs (DAGs) are essential tools for modeling systems in which directionality and
dependency are fundamental. When vertices are labeled, each node explicitly represents a specific
entity, and each distinct graph configuration encodes different dependencies or causal relationships.
Labeled DAGs commonly represent execution sequences in task scheduling problems, where tasks
begin only after prerequisite tasks are completed [12]. Each node corresponds to a distinct task, and
the acyclic structure ensures no circular dependencies occur. Figure 1.1 illustrates such a labeled
DAG for task scheduling, highlighting how the explicit labeling of tasks (Design, Code, Write Docs,
Test, Deploy) clarifies the execution sequence.

DAGs are also fundamental in causal inference, especially within Bayesian networks. In this con-
text, each node represents a specific random variable and the directed edges encode causal relation-
ships [6]. The directionality of edges indicates causality, with each configuration potentially represent-
ing a distinct causal system. Figure 1.2 illustrates a labeled DAG modeling causal relationships among
variables such as Exercise, Weight, and Heart Health.

Design Code

TestWrite Docs

Deploy

Figure 1.1: Labeled DAG for task scheduling. Ex-
plicit labels define task identities and clarify execu-
tion sequences without circular dependencies.

Exercise Weight

Heart Health

Figure 1.2: Labeled DAG for a causal model. Explicit
labeling identifies distinct variables and their direc-
tional causal influences.
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2 1. Introduction

Enumerating labeled DAGs is essential both theoretically and practically. Determining how many
labeled DAGs exist provides crucial insight into the complexity and feasibility of systematic analysis
methods, including systematic search, randomized generation, and recursive computation. Because
the edge direction encodes dependencies or causal relations, each labeled DAG configuration can
represent a distinct scenario. For instance, ”A causes B” differs from ”B causes A,” illustrating the
significance of labeling. Therefore, accurate enumeration of labeled DAGs is critical for analyzing,
searching, and learning complex systems [5].

The Enumeration Problem
Given 𝑝 labeled vertices, the enumeration problem asks howmany distinct DAGs can be formed among
these vertices. The first challenge arises from the global acyclicity constraint, which prohibits cycles
and cannot be verified solely by local examination.

One naïve enumeration method is generating all directed graphs on these vertices and filtering out
graphs containing cycles. With 𝑝 labeled vertices, there are 𝑝(𝑝 − 1) possible directed edges, each
independently present or absent. Consequently, the number of distinct labeled directed graphs grows
exponentially [13]. As 𝑝 grows, most generated graphs will contain cycles, making it computationally
infeasible to check each graph individually for cycles. In fact, results from random graph theory indicate
that large random directed graphs almost always contain cycles [9], confirming the impracticality of
exhaustive enumeration.

To overcome these computational difficulties, R.W. Robinson proposed a recursive enumeration
method that takes advantage of the existence of vertices with zero in-degree (out-points). Robin-
son’s method recursively decomposes DAG enumeration into smaller subproblems, significantly reduc-
ing computational complexity by avoiding direct cycle checking. The approach applies the inclusion-
exclusion principle to establish a recurrence relation expressing the count of labeled DAGs on 𝑝 vertices
in terms of DAG counts with fewer vertices. The second part of this report details Robinson’s method
and presents its derivation.

Project Objectives and Extensions
After deriving and examining Robinson’s recursive formula, this report explores enumeration extensions
by imposing additional constraints. Initially, existing methods for enumerating DAGs with exactly𝑚 arcs
or exactly 𝑘 out-points will be reviewed. Enumerating DAGs with a fixed number of arcs significantly
narrows the solution space and proves valuable in applications requiring bounded connectivity, such as
network design or efficient workflow management. Similarly, constraining the enumeration to exactly 𝑘
out-points provides clarity and practical relevance for scenarios where specific nodes act explicitly as
initiators or source tasks.

Subsequently, this report will apply Robinson’s recursive method to enumerate special classes of
DAGs, including rooted directed trees, polytrees, and DAGs composed of triangles. These applica-
tions illustrate the versatility of Robinson’s approach and its effectiveness in tackling combinational
enumeration problems within specific structural constraints.



2
Graph Theory Definitions

This chapter introduces and elaborates on key graph theory concepts essential for understanding the
enumeration of Directed Acyclic Graphs (DAGs). These definitions form the foundational language and
tools used in this thesis, these definitions and notations are from [3, 14].

Basic Concepts
Vertex and Edge
A vertex is a fundamental unit in a graph, representing an entity such as a task, event, or data point.
An edge is a connection between two vertices.

Graph
A graph is a mathematical structure used to model relationships between pairs of objects. Graphs are
widely used in fields such as computer science, logistics, biology, and network analysis.

Definition 1 (Graph). A graph 𝐺 is a pair of sets (𝑉, 𝐸) where 𝑉 is non-empty and 𝐸 is a subset of the
set {{𝑢, 𝑣} ∶ 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣} of all two-element subsets of 𝑉. The set 𝑉 is known as the set of vertices
and the set 𝐸 is called the set of edges.

Undirected Graph
Definition 2 (Undirected Graph). An undirected graph is a pair 𝐺 = (𝑉, 𝐸) with non-empty vertex set
𝑉 and edge set 𝐸 ⊆ {{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣} of unordered pairs. Since each edge is unordered,
{𝑢, 𝑣} ∈ 𝐸 ⟺ {𝑣, 𝑢} ∈ 𝐸.

An undirected graph contains edges without inherent direction: if {𝑢, 𝑣} ∈ 𝐸 then 𝑢 and 𝑣 are ad-
jacent in both ways. Such graphs model symmetric relationships, for instance, friendship networks or
undirected communication links. An example of an undirected graph is shown in figure 2.1.

Neighbor
Definition 3 (Neighbor). Vertices 𝑢 and 𝑣 are neighbors if {𝑢, 𝑣} ∈ 𝐸. The set of all neighbors of a
vertex 𝑣 ∈ 𝑉 is denoted by N(𝑣) = {𝑢 ∈ 𝑉 ∣ ({𝑣, 𝑢} ∈ 𝐸}.

Degree
Definition 4 (Degree). Let 𝐺 = (𝑉, 𝐸) be an undirected graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted
deg(𝑣), is the number of neighbors of 𝑣,

deg(𝑣) = |{{𝑢, 𝑣} ∈ 𝐸 ∣ 𝑢 ∈ 𝑉 ∖ {𝑣}}|.

Directed Graph (Digraph)
Definition 5 (Directed Graph). A directed graph (or digraph) is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a non-
empty set of vertices and 𝐸 ⊆ {(𝑢, 𝑣) ∣ 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣} is a set of ordered pairs of distinct vertices,
called arcs.

3



4 2. Graph Theory Definitions

Since arcs are ordered, the presence of (𝑢, 𝑣) ∈ 𝐸 excludes (𝑣, 𝑢) ∈ 𝐸; each direction is treated
independently.

Directed edges (𝑢, 𝑣) encode a relationship from 𝑢 to 𝑣. An example of a directed graph is shown
in figure 2.1.

Skeleton (Underlying Graph)
Definition 6 (Skeleton (Underlying Graph)). Let 𝐺 = (𝑉, 𝐸) be a graph, possibly directed and/or con-
taining multiple edges or loops. The skeleton (or underlying graph) of 𝐺, denoted skel(𝐺), is the
undirected graph (𝑉, 𝐸′), where skel(𝐺) retains the same vertex set as 𝐺, with a single undirected
edge between any two adjacent vertices, ignoring direction, multiplicity, and loops,

𝐸′ = {{𝑢, 𝑣} ∣ 𝑢 ≠ 𝑣 and 𝐺 contains an edge or arc between 𝑢 and 𝑣}.

Cycle
A cycle in an undirected graph is a closed path where vertices are revisited only at the start/end, and
edges can be traversed in either direction. In a directed graph, a cycle requires all arcs to follow
a consistent direction. Directed cycles are fundamental in detecting feedback loops or violations of
acyclicity.

Definition 7 (Cycle). Let 𝐺 = (𝑉, 𝐸) be a graph.

• In an undirected graph, a cycle is a sequence of distinct vertices 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑉 with 𝑘 ≥ 3, such
that {𝑣𝑖 , 𝑣𝑖+1} ∈ 𝐸 for all 1 ≤ 𝑖 < 𝑘, and {𝑣𝑘 , 𝑣1} ∈ 𝐸. All vertices are distinct except that 𝑣1 = 𝑣𝑘+1,
completing the loop.

• In a directed graph (digraph), a cycle is a sequence of distinct vertices 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑉 with 𝑘 ≥ 2,
such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 1 ≤ 𝑖 < 𝑘, and (𝑣𝑘 , 𝑣1) ∈ 𝐸. The direction of the arcs must follow
the sequence strictly, and again, all vertices are distinct except 𝑣1 = 𝑣𝑘+1.

𝑣1

𝑣2 𝑣3

(a) Undirected graph on 3 nodes (Undirected triangle)

𝑣1 𝑣2

𝑣3 𝑣4

(b) Directed acyclic graph on 4 nodes. The underlying graph has
a cycle of length 4.

Figure 2.1: (a) An undirected graph containing a cycle; (b) a directed acyclic graph.

Tail and Head (Parent and Child)
In a directed graph, the direction of each arc matters. The tail (parent) is the vertex where the arc
originates, and the head (child) is where it terminates.

Definition 8 (Tail and Head (Parent and Child)). Let 𝐺 = (𝑉, 𝐸) be a directed graph and let (𝑢, 𝑣) ∈ 𝐸
be an arc. The vertex 𝑢 is called the tail of the arc or parent of the node 𝑣, and 𝑣 is called the head of
the arc or a child of u.

That is, the arc (𝑢, 𝑣) is directed from 𝑢 to 𝑣, indicating a one-way relationship from tail to head.

Orientation
An orientation of an undirected graph turns it into a directed graph by choosing a direction for every
edge. This process preserves the connectivity structure while introducing directionality.

Definition 9 (Orientation). Let 𝐺 = (𝑉, 𝐸) be an undirected graph, where 𝐸 ⊆ {{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣}.
An orientation of 𝐺 is a directed graph 𝐺⃗ = (𝑉, 𝐸⃗), where 𝐸⃗ ⊆ {(𝑢, 𝑣) ∣ {𝑢, 𝑣} ∈ 𝐸} ∪ {(𝑣, 𝑢) ∣ {𝑢, 𝑣} ∈ 𝐸},
such that for every edge {𝑢, 𝑣} ∈ 𝐸, exactly one of (𝑢, 𝑣) or (𝑣, 𝑢) belongs to 𝐸⃗.
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Topological Order
Definition 10 (Topological Order). A topological order of a directed graph 𝐺 = (𝑉, 𝐸) is a total order on
𝑉 such that for every arc (𝑢, 𝑣) ∈ 𝐸, it holds that 𝑢 < 𝑣. Equivalently, it is a labeling of the vertices with
distinct integers 1, 2, … , |𝑉| such that all arcs point from smaller to larger labels.

In-Degree and Out-Degree
In a directed graph, the in-degree of a vertex counts how many edges point into it, and the out-degree
counts how many edges leave it.

Definition 11 (In-Degree and Out-Degree). Let 𝐺 = (𝑉, 𝐸) be a directed graph. For a vertex 𝑣 ∈ 𝑉,
the in-degree of 𝑣, denoted deg−(𝑣), is the number of arcs (𝑢, 𝑣) ∈ 𝐸 with head 𝑣. The out-degree of
𝑣, denoted deg+(𝑣), is the number of arcs (𝑣, 𝑢) ∈ 𝐸 with tail 𝑣. Formally,

deg−(𝑣) = |{𝑢 ∈ 𝑉 ∣ (𝑢, 𝑣) ∈ 𝐸}|, deg+(𝑣) = |{𝑢 ∈ 𝑉 ∣ (𝑣, 𝑢) ∈ 𝐸}|.

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

(a) Vertex 𝑣5 has deg−(𝑣5) = 2.

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

(b) Vertex 𝑣1: deg+(𝑣1) = 2 and deg−(𝑣1) = 0.

Figure 2.2: Illustrating vertex properties on the same DAG.

Out-point
Definition 12 (Out-point). In a directed graph, an out-point is a vertex 𝑣 ∈ 𝑉 with in-degree zero:
deg−(𝑣) = 0.

Such vertices typically represent starting points in a process or independent tasks. In figure 2.2,
vertex 𝑣1 is the only out-point, serving as the root of the dependency structure.

Path
A path represents a walk through the graph, traversing edges (or arcs) from one vertex to another. In
directed graphs, the direction of arcs must be followed, whereas in undirected graphs, edges can be
traversed in either direction. Paths are central to many graph algorithms and structural properties.

Definition 13 (Path). Let 𝐺 = (𝑉, 𝐸) be a graph.

• In an undirected graph, a path is a sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑉 such that {𝑣𝑖 , 𝑣𝑖+1} ∈ 𝐸
for all 1 ≤ 𝑖 < 𝑘. The path is simple if all vertices are distinct.

• In a directed graph (digraph), a path is a sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑉 such that (𝑣𝑖 , 𝑣𝑖+1) ∈
𝐸 for all 1 ≤ 𝑖 < 𝑘. The path is simple if all vertices are distinct.

Types of Graphs
Labeled Graph
Definition 14 (Labeled Graph). A labeled graph is a graph where each vertex 𝑣 ∈ 𝑉 has a unique
identifier, usually from the set {1, 2, … , 𝑝}. Two labeled graphs are equal only if they have the same
structure and the same vertex labels.

Unlabeled Graph
Definition 15 (Unlabeled Graph). An unlabeled graph is considered up to isomorphism; only the struc-
ture (adjacency relationships) matters, not the labels of the vertices. Two unlabeled graphs are con-
sidered the same if there exists a bijection between their vertex sets that preserves adjacency.



6 2. Graph Theory Definitions

Directed Acyclic Graph (DAG)
Definition 16 (Directed Acyclic Graph). A Directed Acyclic Graph (DAG) is a directed graph 𝐺 = (𝑉, 𝐴)
with no directed cycles; that is, there do not exist distinct vertices 𝑣1, … , 𝑣𝑘 such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐴 for
1 ≤ 𝑖 < 𝑘 and (𝑣𝑘 , 𝑣1) ∈ 𝐴.

In Figure 2.1(b) a DAG on 4 nodes is shown. There is no path in this graph that starts and ends at
the same node.

Tree
A tree is a minimal connected undirected graph: removing any edge disconnects the graph. It is also
a maximal acyclic graph: adding any new edge creates a cycle. Trees are fundamental in hierarchical
structures and recursive algorithms.

Definition 17 (Tree). An undirected tree is a connected undirected graph 𝐺 = (𝑉, 𝐸) with no cycles.
That is, 𝑇 is connected and acyclic.

Equivalently, a tree is an undirected graph in which any two vertices are connected by exactly one
simple path.

Rooted Directed Tree
Definition 18 (Rooted Directed Tree). A rooted directed tree is a directed graph 𝐺 = (𝑉, 𝐸) with a
distinguished root vertex 𝑟 ∈ 𝑉 such that the underlying undirected graph is a tree, the root 𝑟 has
indegree 0, every other vertex 𝑣 ∈ 𝑉 ∖ {𝑟} has indegree 1, and there exists a unique directed path from
each vertex 𝑣 ∈ 𝑉 ∖ {𝑟} to the root 𝑟.

Polytree
Definition 19 (Polytree). A polytree is a directed acyclic graph 𝐺 = (𝑉, 𝐸) whose underlying undirected
graph is a tree; that is, it is connected and contains no undirected cycles.

𝑣1

𝑣2 𝑣3

𝑣4

(a) Rooted directed tree

𝑣1 𝑣2

𝑣3

𝑣4

(b) Polytree

Figure 2.3: (a) A rooted directed tree; (b) a polytree where 𝑣3 has two parents.

Bipartite Graph
Bipartite graphs model relationships between two distinct classes of objects, for example, students and
courses, jobs and machines, or users and movies.

Definition 20 (Bipartite Graph). A graph 𝐺 = (𝑉, 𝐸) is bipartite if there exists a partition of the vertex
set into two disjoint subsets 𝑉1 and 𝑉2 (called a bipartition) such that every edge joins one vertex of 𝑉1
to one vertex of 𝑉2:

𝐸 ⊆ {{𝑢, 𝑣} ∣ 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2}.
Equivalently, a graph is bipartite if and only if it contains no cycle of odd length.



3
Robinson’s Recursive Formula

This chapter presents a recursive formula for enumerating labeled DAGs, originally derived byR.W. Robin-
son [10]. Robinson’s recursive method allows for a combinatorial interpretation that offers deeper in-
sight into the structure of DAGs. The focus of this section is to provide a detailed walk-through of this
derivation from Robinson. This will serve as the foundation for later sections, where further extensions
of the formula are explored.

Breakdown of Robinson’s Recursive Formula
Robinson introduced a recursive formula based on the principle of inclusion-exclusion and the concept
of out-points. The recursive formula is given by:

Robinson Let 𝑎𝑝 denote the number of labeled DAGs on 𝑝 vertices. Then

𝑎𝑝 =
𝑝

∑
𝑠=1
(−1)𝑠+1(𝑝𝑠)2

𝑠(𝑝−𝑠)𝑎𝑝−𝑠 ,

with the initial condition 𝑎0 = 1. where:

• 𝑎𝑝 is the number of labeled DAGs on 𝑝 vertices,

• 𝑠 is the number of vertices that are out-points (vertices with in-degree zero) in a DAG,

• (𝑝𝑠) is the number of ways to choose 𝑠 out-points from the 𝑝 labeled vertices,

• 2𝑠(𝑝−𝑠) counts all possible directed edges from the 𝑠 out-points to the remaining 𝑝 − 𝑠 vertices,

• 𝑎𝑝−𝑠 is the number of labeled DAGs on the remaining 𝑝 − 𝑠 vertices.

Step by Step Derivation
A key observation for the derivation of this formula is that every nonempty DAG must contain at least
one out-point that is, a vertex with in-degree zero. This can be understood by contradiction: suppose
that a nonempty DAG has no out-point. Then every vertex has at least one incoming edge, which
implies the existence of a closed directed path. However, this would form a directed cycle, which
contradicts the definition of a DAG. Therefore, at least one out-point must exist in every DAG.

To count all labeled DAGs, Robinson grouped all possible DAGs according to their sets of out-
points. However, since a single DAG with multiple out-points belongs to multiple such groups, one for
each subset of its out-points, this leads to overcounting. To correct for this, the principle of inclusion-
exclusion is applied: overlapping contributions from subsets are alternately added and subtracted to
ensure that each DAG is counted exactly once. This combinatorial insight leads to an elegant recursive
formula for enumerating labeled DAGs.

7



8 3. Robinson’s Recursive Formula

Step 1: at least one out-point
Figure 3.1 shows a DAG on five vertices and highlights its unique out-point. The existence of such a
vertex motivates the entire decomposition.

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

Figure 3.1: A DAG on 𝑝 = 5 vertices. Vertex 𝑣1 (blue) is an out-point because no edge enters it.

Step 2: choose a set 𝑆 of out-points
Let 𝑆 ⊆ {1, 2, … , 𝑝} be a chosen set of 𝑠 vertices that will be out-points. First, the presence or absence of
each of the 𝑠(𝑝−𝑠) possible arcs from the subset 𝑆 to the remaining 𝑝−𝑠 vertices must be determined.
Since each arc can independently be present or absent, there are 2𝑠(𝑝−𝑠) possible configurations.
Once those outward arcs are fixed, the remaining 𝑝 − 𝑠 vertices must themselves form any labeled
DAG, of which there are 𝑎𝑝−𝑠. Together, the number of possible labeled DAGs on 𝑝 vertices with these
𝑠 outpoints is 2𝑠(𝑝−𝑠) 𝑎𝑝−𝑠, or formally

|⋂
𝑖∈𝑆
𝑃𝑖| = 2𝑠(𝑝−𝑠) 𝑎𝑝−𝑠 .

Figure 3.2 illustrates these free choices for 𝑆 = {𝑣1, 𝑣2}.

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

Figure 3.2: Fixing 𝑆 = {𝑣1 , 𝑣2} (𝑠 = 2). The 6 solid arrows represent the 𝑠(𝑝 − 𝑠) outward edge possibilities. Each may be
present or absent, giving 26 options. The dashed arrows show an example of a DAG on the remaining vertices.

Interpretation of Each Term
Combining the preceding components gives the following recursive formula:

(𝑝𝑠) 2
𝑠(𝑝−𝑠) 𝑎𝑝−𝑠 .

The three factors have a transparent meaning:

• Choosing 𝑆. There are (𝑝𝑠) ways to choose the out-point set.

• Edge freedom. For every ordered pair (𝑢, 𝑣) with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 ∖ 𝑆 the arc 𝑢 → 𝑣 can be
included or excluded. There are 𝑠(𝑝 − 𝑠) such pairs, giving 2𝑠(𝑝−𝑠) configurations.

• Internal structure. After these choices, the vertices in 𝑉 ∖ 𝑆 must form a labeled DAG, of which
there are 𝑎𝑝−𝑠.

The Role of Inclusion–Exclusion
If all of the above values are simply summed, the resulting formula would overcount the number of
DAGs. A graph with, for example, three out-points is included once for each non-empty subset of
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those out-points. Inclusion–exclusion solves this problem by adding the 𝑠 = 1 counts, subtracting the
𝑠 = 2 counts, adding the 𝑠 = 3 counts, and so on, exactly the following alternating pattern

0 = ∑
∅≠𝑆⊆[𝑝]

(−1)|𝑆|+1|⋂
𝑖∈𝑆
𝑃𝑖|.

Figure 3.3 shows the 𝑠 = 2 case of the alternation.

𝑃1 𝑃2

𝑃1 ∩ 𝑃2

Figure 3.3: A two-set Venn diagram: the overlap is added in with 𝑠 = 2 and subtracted out again when 𝑠 = 1. The alternating
signs guarantee every DAG is counted exactly once.

Setting 𝑠 = |𝑆| this yields Robinson’s recurrence

𝑎𝑝 =
𝑝

∑
𝑠=1
(−1)𝑠+1(𝑝𝑠)2

𝑠(𝑝−𝑠)𝑎𝑝−𝑠 , 𝑎0 = 1.

Advantages of the Recursive Approach
Robinson’s recursive formula offers a systematic and scalable method to enumerate labeled DAGs.
By decomposing the counting problem into smaller subproblems based on the number of out-points,
the recurrence enables efficient computation for moderate values of 𝑝 without the need to generate
all possible graphs explicitly. In addition to its computational utility, the formula also reveals structural
insights in the set of DAGs, framed in terms of their out-point configurations. This will help to extend
the approach to more refined enumeration problems involving additional constraints.

Exclusion of Cyclic Graphs in the Robinson Method
The recursive method developed by Robinson for enumerating labeled DAGs excludes graphs con-
taining cycles. This follows from a key structural property of DAGs: every nonempty DAG must contain
at least one vertex with in-degree zero, known as an out-point.

In the Robinson approach, the enumeration is carried out by selecting subsets 𝑆 ⊆ 𝑉 of out-points,
constructing all valid edge configurations from 𝑆 to 𝑉∖𝑆, and recursively counting DAGs on the remain-
ing vertices. Crucially, graphs containing cycles cannot satisfy the out-point condition, as every vertex
in a directed cycle has positive in-degree. Such graphs are therefore excluded from all intersections
⋂𝑖∈𝑆 𝑃𝑖 considered in the inclusion-exclusion formula.

Furthermore, the recursive construction only combines smaller acyclic graphs with edge sets di-
rected from out-points to the rest of the graph, preserving acyclicity at each stage.

Theorem 3.0.1 (Robinson). Let 𝑎𝑝 denote the number of labeled DAGs on 𝑝 vertices. Then

𝑎𝑝 =
𝑝

∑
𝑠=1
(−1)𝑠+1(𝑝𝑠)2

𝑠(𝑝−𝑠)𝑎𝑝−𝑠 , (3.1)

with the initial condition 𝑎0 = 1.

Proof. Let 𝑉 = {1, 2, … , 𝑝} denote the set of labeled vertices. Define, for each 𝑖 ∈ 𝑉, the set 𝑃𝑖 as the
collection of all labeled DAGs on 𝑉 in which the vertex 𝑖 is an out-point, which means that vertex 𝑖 has
in-degree zero.
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Since every nonempty DAG must contain at least one out-point, it follows that:

𝑎𝑝 = |⋃
𝑖∈𝑉
𝑃𝑖| .

Where ⋃𝑖∈𝑉 𝑃𝑖 represents the union of all such sets 𝑃𝑖, that is, the set of all DAGs in which at least
one vertex is an out-point. The outer vertical bars |⋅| denote the size of the set, that is, the number of
distinct DAGs captured by at least one 𝑃𝑖.

However, the sets 𝑃𝑖 are generally not disjoint: a single DAG with multiple out-points can belong
to several of the sets 𝑃𝑖. To accurately count the total number of labeled DAGs without overcounting
those that appear in multiple sets, the principle of inclusion-exclusion is applied. This principle corrects
for overlapping elements by alternately adding and subtracting the sizes of intersections of the sets 𝑃𝑖.
This yields the following formula:

|⋃
𝑖∈𝑉
𝑃𝑖| = ∑

∅≠𝑆⊆𝑉
(−1)|𝑆|+1 |⋂

𝑖∈𝑆
𝑃𝑖| .

In this expression, the summation symbol ∑∅≠𝑆⊆𝑉 denotes a sum taken over all non-empty subsets
𝑆 of the vertex set 𝑉. For each such subset 𝑆, the intersection ⋂𝑖∈𝑆 𝑃𝑖 denotes the set of all DAGs in
which every vertex in 𝑆 has in-degree zero. The alternating sign (−1)|𝑆|+1 ensures that overcounted
graphs are adjusted correctly.

Fix a non-empty subset 𝑆 ⊆ 𝑉 with |𝑆| = 𝑠. The intersection ⋂𝑖∈𝑆 𝑃𝑖 consists of all labeled DAGs in
which each vertex in 𝑆 is an out-point. In such graphs:

• No incoming edges are allowed into any vertex of 𝑆,

• Directed edges from vertices in 𝑆 to vertices in 𝑉 ∖ 𝑆 can either be included or excluded indepen-
dently,

• The induced subgraph on 𝑉 ∖ 𝑆 must itself be a labeled DAG.

There are 𝑠(𝑝 − 𝑠) possible directed edges from the vertices in 𝑆 to the vertices in 𝑉 ∖ 𝑆. Since
each edge can either be present or absent, there are 2𝑠(𝑝−𝑠) possible configurations of these edges.
The number of labeled DAGs that can be formed on the remaining 𝑝− 𝑠 vertices is, by definition, 𝑎𝑝−𝑠.
Therefore, the total number of labeled DAGs corresponding to a fixed set 𝑆 of out-points is:

|⋂
𝑖∈𝑆
𝑃𝑖| = 2𝑠(𝑝−𝑠)𝑎𝑝−𝑠 .

Since there are (𝑝𝑠) ways to choose a subset 𝑆 of size 𝑠, the total contribution from all subsets of
size 𝑠 is:

(𝑝𝑠)2
𝑠(𝑝−𝑠)𝑎𝑝−𝑠 .

By the inclusion-exclusion principle, this term had to be multiplied by (−1)𝑠+1 to account for overcount-
ing subsets of different sizes.

Summing over all 𝑠 = 1,… , 𝑝, Robinson’s recursive formula is obtained:

𝑎𝑝 =
𝑝

∑
𝑠=1
(−1)𝑠+1(𝑝𝑠)2

𝑠(𝑝−𝑠)𝑎𝑝−𝑠 .

Finally, the initial condition 𝑎0 = 1 states that there is exactly one DAG (the empty graph) on zero
vertices, completing the proof.
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Visualizing All Labeled DAGs on Three Nodes
To provide the reader with a concrete understanding of the enumeration problem, Figure 3.4 presents
all possible labeled DAGs on three nodes. The DAGs are sorted by the number of directed edges
(arcs), ranging from 0 to 3.

Each DAG is drawn with labeled vertices and a unique acyclic orientation of the edges. The sorting
by edge count helps illustrate how the number of valid DAGs grows rapidly as edges are added, but
also how the acyclicity constraint prevents the formation of certain edge combinations. This example
concretely demonstrates the structural constraints involved in DAG enumeration and motivates the
recursive and closed-form methods developed in later sections.

0 edges
𝑣1

𝑣2 𝑣3

1 edge
𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

2 edges
𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

3 edges
𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

Figure 3.4: All 25 possible labeled DAGs on {𝑣1 , 𝑣2 , 𝑣3}, grouped by edge-count (0, 1, 2, and 3 edges).
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Enumerating DAgs With Extra

Constraints Using Robinson’s Argument
In this chapter, Robinson’s classical recursive enumeration approach is extended to address more
specialized combinational problems involving DAGs. Specifically, the enumeration of labeled DAGs is
considered under additional structural constraints, such as a fixed number of arcs or a fixed number of
out-points. By adapting Robinson’s original inclusion-exclusion framework, refined recursive formulas
are developed that efficiently handle these extra conditions. The methods and results presented in this
chapter form an essential foundation for further investigation of specialized DAG subclasses and their
enumeration.

4.1. Existing Extensions of The Robinson Method
In this section, the existing extensions and refinements of Robinson’s classical recursive enumeration
technique for labeled DAGs are explored. Although Robinson’s original method provided a robust
framework for general enumeration, some researchers have expanded upon his foundational approach
to address specific combinational challenges. Methods developed for the enumeration of DAGs with
constraints such as a fixed number of arcs or a fixed number of out-points are examined. Reviewing
these existing methodologies not only highlights the adaptability and versatility of Robinson’s approach
but also sets the stage for further applications.

4.1.1. Enumeration of Labeled Directed Acyclic Graphs with a Fixed Number of
Arcs

The classical result of Robinson [10] gives a neat inclusion-exclusion derivation for the number 𝑎𝑝 of
labeled acyclic digraphs (DAGs) on 𝑝 vertices. In many practical applications, especially in probabilistic
modeling and network design, it is often of interest to enumerate not only all possible labeled DAGs, but
also those with a fixed number of arcs. For example, in workflow scheduling systems, there may be a
strict upper limit on task dependencies due to hardware or resource constraints. This section develops
a two-parameter recurrence that extends Robinson’s argument [11].

Setting up the Parameters
Let 𝑎𝑝,𝑚 denote the number of labeled DAGs on 𝑝 vertices with exactly 𝑚 arcs, formally

𝑎𝑝,𝑚 = |{labeled DAGs on 𝑝 vertices with exactly 𝑚 arcs}| ,

with the conventions 𝑎0,0 = 1 and 𝑎𝑝,𝑚 = 0 whenever 𝑚 < 0 or 𝑚 > 𝑝(𝑝−1)
2 .

For every vertex 𝑖 define the event
𝑃𝑖 = {DAGs in which vertex 𝑖 has in–degree 0}, 𝑖 = 1,… , 𝑝.

Because every non-empty DAG has at least one out-point (a vertex of in–degree 0), the union of all
such sets ⋃𝑖∈𝑉 𝑃𝑖 covers the whole set of DAGs, making it suitable for inclusion–exclusion.

12
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Counting an intersection while tracking arcs
Let 𝑆 ⊆ {1,… , 𝑝} be a non-empty index set of size 𝑠, and define

𝑃𝑆 ∶= ⋂
𝑖∈𝑆
𝑃𝑖 .

A DAG lies in 𝑃𝑆 precisely when every vertex in 𝑆 has in-degree 0. The goal in this step is to count how
many DAGs are contained in the fixed intersection 𝑃𝑆 and have a prescribed total number of arcs. The
following argument gives a step-by-step explanation.

1. Why arcs can only leave 𝑆. Because the in-degree of each vertex in 𝑆 must be zero, no arc may
point into 𝑆 from its complement 𝑆 = {1,… , 𝑝} ∖ 𝑆, and no arc may exist between elements of 𝑆. Hence,
all permissible arcs incident to 𝑆 must originate in 𝑆 and end in 𝑆.

Therefore, the only possible DAGs are those for which the elements of 𝑆 are parents of the ele-
ments of 𝑆. This structural constraint implies that all valid arcs flow from 𝑆 to 𝑆, forming a directed
bipartite graph. This bipartite configuration is illustrated in the figure 4.1, where 𝑆 = {𝑠1, … , 𝑠𝑠} and
𝑆 = {𝑐1, … , 𝑐𝑝−𝑠}, with all arcs directed from 𝑆 toward 𝑆.

𝑠1

𝑠2

⋮

𝑠𝑠

𝑐1

𝑐2

⋮

𝑐𝑝−𝑠

𝑠 𝑝 − 𝑠
𝑠(𝑝 − 𝑠) potential arcs

𝑟 chosen

(a) Step (a): pick 𝑟 of the 𝑠(𝑝 − 𝑠) potential outgoing arcs.

𝑐1 𝑐2

𝑐3 𝑐4

⋮

𝑐𝑝−𝑠

𝑚 − 𝑟 remaining arcs

(b) Step (b): build a DAG on 𝑝 − 𝑠 vertices with𝑚− 𝑟 arcs.

Figure 4.1: Two–stage construction used in |𝑃𝑆 ∩ {𝑚 arcs}|. First select an outgoing layer of 𝑟 arcs (4.1a); then recursively
complete the DAG on the complement with the remaining 𝑚− 𝑟 arcs (4.1b).

2. Counting the outgoing layer. The pair (𝑆, 𝑆) gives rise to exactly 𝑠(𝑝 − 𝑠) possible arcs, since
every vertex of 𝑆 can have an arc to each of the 𝑝 − 𝑠 vertices outside 𝑆. Let 𝑟 denote the chosen
number of such arcs. Two elementary but crucial bounds hold:

1. 0 ≤ 𝑟 ≤ 𝑠(𝑝 − 𝑠) by definition of a subset;
2. 𝑟 ≤ 𝑚 because the entire DAG may contain at most 𝑚 arcs.

Hence
0 ≤ 𝑟 ≤min{𝑚, 𝑠(𝑝 − 𝑠)}.

Given 𝑟, the outgoing layer can be selected in (𝑠(𝑝−𝑠)𝑟 ) ways.

3. Recursive completion of the complement. Once the outgoing layer corresponding to 𝑆 has been
fixed, the attention shifts to the remaining vertex set of size 𝑝 − 𝑠. Importantly, since no arcs are
directed into 𝑆, this separation preserves the acyclicity of the subgraph induced by the complement.
Consequently, the task of completing the construction reduces to selecting

𝑚 − 𝑟
arcs that form aDAG on exactly 𝑝−𝑠 labeled vertices. By the definition of the double-indexed sequence,
there are 𝑎𝑝−𝑠,𝑚−𝑟 possible configurations.
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4. Combining steps (1)–(3). The independence between the choice of the outgoing layer and the
internal arrangement of 𝑆 multiplies the possibilities:

|𝑃𝑆 ∩ {𝑚 arcs}| =
min{𝑚, 𝑠(𝑝−𝑠)}

∑
𝑟=0

(𝑠(𝑝 − 𝑠)𝑟 ) 𝑎𝑝−𝑠,𝑚−𝑟

This equation is the heart of the derivation: it quantifies exactly howmany arc budgets are consumed
by fixing the out–points 𝑆.

Inclusion–exclusion
Applying inclusion-exclusion over all 𝑠–element subsets 𝑆 results in the desired two–parameter recur-
rence.
Theorem 4.1.1 (Two-Parameter Inclusion–Exclusion Recurrence for Labelled DAGs). Let 𝑎𝑝,𝑚 denote
the number of labeled DAGs on 𝑝 vertices with exactly 𝑚 arcs. Then, for all 𝑝 ≥ 1,

𝑎𝑝,𝑚 =
𝑝

∑
𝑠=1
(−1)𝑠+1(𝑝𝑠)

min{𝑚, 𝑠(𝑝−𝑠)}

∑
𝑟=0

(𝑠(𝑝 − 𝑠)𝑟 ) 𝑎𝑝−𝑠,𝑚−𝑟 . (4.1)

with initial condition 𝑎0,0 = 1 and 𝑎𝑝,𝑚 = 0 whenever 𝑚 < 0 or 𝑚 > 𝑝(𝑝−1)
2 .

For𝑚 summed over all possible values, this formula returns to Robinson’s original single-parameter
recurrence.

4.1.2. Counting Labeled DAGs with Exactly 𝑘 Out-points
In specific contexts, it is of interest to enumerate labeled DAGs that posses exactly 𝑘 out-points. For
example, in task scheduling and project planning, vertices may represent tasks, and having a fixed
number of out-points ensures that a certain number of tasks depend on others without introducing
additional complexity. Enumeration of such DAGs is achieved by modifying Robinson’s recurrence to
account only for configurations in which exactly 𝑘 vertices are selected as out-points [7].

The derivation proceeds by reversing the process; initially, the 𝑘 out-points are removed, leaving a
smaller DAG with 𝑚 = 𝑝 − 𝑘 vertices, among which 𝑠 nodes are specified as out-points. The required
DAGs are then obtained by introducing 𝑘 new out-points and allowing all possible connections from
these to the existing vertices. Each of the𝑚−𝑠 non out-point nodes has 2𝑘 possibilities to have an arc
to one of the 𝑘 new out-points or not. Furthermore, the 𝑠 old out-points must be connected to at least
one of the new outpoints, which introduces a factor of 2𝑘−1 to ensure that all out-points are connected.
Finally, the labels of the vertices can be rearranged in (𝑝𝑘) ways. Figure 4.2 shows an example of how
this process works. This leads to the following recursions for counting labeled DAGs with exactly 𝑘
out-points.
Theorem 4.1.2. Let 𝑎𝑝,𝑘 denote the number of labeled DAGs with 𝑝 vertices and exactly 𝑘 out-points,
for 1 ≤ 𝑘 ≤ 𝑝, and set 𝑚 = 𝑝 − 𝑘. Then

𝑎𝑝,𝑘 = (
𝑝
𝑘)𝑏𝑝,𝑘 , 𝑏𝑝,𝑘 =

𝑚

∑
𝑠=1
(2𝑘 − 1)𝑠 2𝑘(𝑚−𝑠) 𝑎𝑚,𝑠 . (4.2)

with base cases 𝑎𝑝,𝑝 = 1 and 𝑏𝑝,𝑝 = 1.
In this formula:
• (𝑝𝑘) counts the number of ways to choose 𝑘 out-points from the 𝑝 vertices,

• (2𝑘 − 1)𝑠 ensures that all 𝑠 old out-points are connected to at least one of the new out-points,

• 2𝑘(𝑚−𝑠) counts the number of ways to connect the 𝑚 − 𝑠 non-outpoint nodes to the 𝑘 new out-
points,

• 𝑎𝑚,𝑠 counts the number of valid DAGs on the 𝑚 remaining vertices with exactly 𝑠 out-points.
This recursive approach enables efficient enumeration of labeled DAGs with exactly 𝑘 out-points,

while systematically ensuring that all structural constraints are satisfied at each step.
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𝑣1 𝑣2

𝑣3 𝑣4
(a) Smaller DAG:𝑚 = 4 vertices with exactly 𝑠 = 1 out-point (𝑣1, red).

𝑣5 𝑣6

𝑣1 𝑣2

𝑣3 𝑣4
(b) Add 𝑘 = 2 new out-points (𝑣5 , 𝑣6, green). 𝑣1 now has indegree ≥ 1.

Figure 4.2: Reverse-construction step for counting labeled DAGs with exactly 𝑘 out-points (sources). Remove the 𝑘 sources to
obtain the smaller graph (left), then add 𝑘 new sources and all admissible outgoing arcs (right). Each former non-source chooses
any subset of incoming arcs from the new sources (2𝑘 options), whereas each former source must pick at least one ((2𝑘 − 1)
options), yielding the factors in the recurrence.

4.2. Enumeration of Rooted Directed Trees
Rooted directed trees represent a fundamental class of acyclic directed graphs, where every vertex
except the root has a unique parent, and all edges are oriented away from the root. The enumeration
of labeled rooted directed trees plays an important role in both combinatorics and computer science.
Rooted directed trees arise naturally in a wide range of structures, including data hierarchies, syntax
trees, decision processes, and communication networks. This chapter presents both the closed-form
formula and the recurrence based on Robinson’s argument for counting the number of labeled rooted
directed trees, thereby establishing a foundation for subsequent generalizations to other classes of
directed acyclic graphs. Figure 4.3 shows two rooted directed trees on six labeled vertices: In (a) the
branching factor is balanced between the two children of the root, while in (b) the structure extends in
a deeper chain.

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

(a) Rooted directed tree

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

(b) Another rooted directed tree

Figure 4.3: Two examples of rooted directed trees.

4.2.1. Closed Form Enumeration of Rooted Directed Trees
In this section, Cayley’s classical result will be used to derive the number of possible rooted directed
trees, this result also provides the building blocks for enumerating more complex DAG families such
as polytrees. In algorithmic contexts, understanding the number of possible tree structures is crucial
to analyze the complexity of tree-based searches, optimizations, and storage requirements. In proba-
bilistic modeling, such as Bayesian networks, trees often represent causal structures, and enumeration
helps quantify the hypothesis space for structure learning.

Derivation of the Closed Form Formula
Step 1 – Undirected Skeleton. Regardless of the edge directions, each rooted directed tree corre-
sponds to a labeled undirected tree. Conversely, any labeled undirected tree can be transformed into



16 4. Enumerating DAgs With Extra Constraints Using Robinson’s Argument

a rooted directed tree by selecting a root and orienting all edges away from this vertex.

Theorem 4.2.1 (Cayley’s Theorem [1]). The number of labeled undirected trees on 𝑝 vertices is given
by

𝑈𝑝 = 𝑝𝑝−2 . (4.3)

This result applies to all labeled undirected trees, which serve as the undirected skeletons for the
rooted directed trees considered in this enumeration.

Derivation of Cayley’s Formula Using the Prüfer Code Cayley’s result can be derived via Prüfer
codes, which establish a bijection between labeled undirected trees on 𝑝 vertices and sequences of
length 𝑝 − 2 over the set {1, 2, … , 𝑝}. The encoding process proceeds as follows:

At each step, the leaf with the smallest label is removed, and its unique neighbor is recorded.
Repeating this 𝑝−2 times produces a sequence known as the Prüfer code. This procedure is reversible:
given any sequence of length 𝑝−2, the unique tree can be reconstructed by maintaining degree counts
and repeatedly connecting the smallest available degree-1 vertex to the next symbol in the sequence.
The final edge connects the last two remaining vertices. Figure 4.4 shows how the Prüfer code works.

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

Prüfer code: (𝑣2, 𝑣2, 𝑣1, 𝑣3)
(a) Delete 𝑣4 , 𝑣5 , 𝑣2 , 𝑣1 in that order.

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

Reconstructed from (𝑣2, 𝑣2, 𝑣1, 𝑣3)
(b) Reconstruction from Prüfer code.

Figure 4.4: Cayley’s theorem via Prüfer codes: (a) encoding by successive leaf deletion; (b) decoding by connecting smallest
degree-1 vertex to next symbol in the code.

Since there are 𝑝 choices for each of the 𝑝 − 2 entries in the sequence, the total number of labeled
undirected trees is:

|labeled undirected trees on 𝑝 vertices| = 𝑝𝑝−2.

Step 2 – Choose a root. Given a tree structure (the undirected skeleton), any of the 𝑝 vertices can
serve as the root. This multiplies the count by a factor of 𝑝:

|rooted undirected trees| = 𝑝 ⋅ 𝑝𝑝−2.

Step 3 – Orient the tree. Once the root is specified, every edge can be oriented away from the root.
This results in a unique directed tree with all arcs pointing outward. This is valid because every vertex
(except the root) has a unique parent in a tree, ensuring that each arc has a clear direction.

Closed Form Enumeration of Rooted Directed Trees
Let 𝑇𝑝 denote the number of labeled rooted directed trees on the vertex set 𝑉 = {1, 2, … , 𝑝}, where all
arcs are oriented away from a single root. As established in the preceding subsection, this enumeration
is closely related to Cayley’s classical result for undirected trees.

Theorem 4.2.2 (Enumeration of Labeled Rooted Directed Trees). The number of labeled rooted di-
rected trees on 𝑝 vertices, where each edge is oriented away from the root, is given by

𝑇𝑝 = 𝑝𝑝−1, for 𝑝 ≥ 1. (4.4)
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4.2.2. Enumeration of Rooted Directed Trees Using Robinson’s Arguments
Although a closed-form expression already exists for enumerating directed trees, this section derives a
recursive formula for counting labeled directed trees on 𝑝 vertices, each rooted at a unique node. This
recursion, inspired by Robinson’s inclusion–exclusion techniques for counting acyclic digraphs [10],
provides a constructive approach to computing 𝑇𝑝, the number of such rooted trees.

Construction Using a Core and an Attachment Set
Derivation of the recurrence proceeds by partitioning the vertex set 𝑉 = {1,… , 𝑝} into two disjoint sub-
sets [2]:

• A core 𝐶 of size 𝑝 − 𝑘, which contains the root and forms a connected directed tree. The core
represents the portion of the tree that is already fully constructed and to which new vertices can
be attached.

• An attachment set 𝐾 of size 𝑘, consisting of vertices that must be attached to the core. The
attachment set contains those vertices not yet integrated into the tree structure; each such vertex
will be connected to a vertex in the core, thus extending the tree while maintaining its rooted and
acyclic nature.

This partitioning enables a recursive construction of larger trees from smaller ones by successively
attaching new vertices from 𝐾 to the existing core 𝐶. The partition is considered for all 1 ≤ 𝑘 ≤ 𝑝 − 1;
for each such case, the following steps are examined:

1. Choosing the attachment set: There are (𝑝𝑘) ways to choose 𝐾.

2. Building the core tree: The subgraph on 𝐶 must be a rooted directed tree on 𝑝 − 𝑘 vertices,
which can be done in 𝑇𝑝−𝑘 ways.

3. Attaching the attachment vertices: Each vertex in 𝐾 must attach to a vertex in 𝐶. Since |𝐶| =
𝑝 − 𝑘, there are (𝑝 − 𝑘)𝑘 such assignments.

Figure 4.5 shows how the attachment of these vertices works. Without further correction, this con-
struction results in overcounting, as the same treemay arise frommultiple partitions. To ensure that only
unique directed trees are counted, specifically those in which each attachment vertex has a directed
path to the root via the core, the inclusion-exclusion principle is applied.

𝑣1

𝑣2
𝑣3

𝑣4
𝑣5

𝑣6

𝑣7
𝑣8

(a) The vertex set is split into a core (gray, forming a rooted tree at
𝑣1) and an attachment set (red) to be connected to the core. Dashed
arrows show possible attachment options for each 𝑣𝑖 ∈ 𝐾.

𝑣1

𝑣2
𝑣3

𝑣4
𝑣5

𝑣6

𝑣7
𝑣8

(b) A valid directed tree where each vertex in the attachment set has
a directed path to the root via the core. Inclusion–exclusion removes
overcounted trees.

Figure 4.5: Recursive construction of rooted directed trees by partitioning the vertex set into a core and an attachment set,
illustrating the attachment of new vertices to an existing rooted directed tree.

Necessity of the Inclusion–Exclusion Principle
Exact enumeration requires correction for this overcounting, which is achieved by applying the inclusion-
exclusion principle. For each possible size 𝑘 of the attachment set, the sign of the corresponding term
in the summation is alternated, thus eliminating configurations that are counted multiple times due to
shared attachment vertices. This yields the following fundamental recurrence relation:
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Theorem 4.2.3 (Recursive Enumeration of Labeled Rooted Directed Trees). The number 𝑇𝑝 of labeled
rooted directed trees on 𝑝 vertices satisfies

𝑇𝑝 =
𝑝−1

∑
𝑘=1
(−1)𝑘−1(𝑝𝑘)(𝑝 − 𝑘)

𝑘𝑇𝑝−𝑘 , with 𝑇1 = 1. (4.5)

Here, for each 1 ≤ 𝑘 ≤ 𝑝 − 1, the term (𝑝𝑘)(𝑝 − 𝑘)
𝑘𝑇𝑝−𝑘 counts all ways of choosing an attachment

set of size 𝑘, building a rooted directed tree on the remaining 𝑝−𝑘 vertices, and attaching each vertex
in 𝐾 to the core. The alternating sign, arising from the inclusion–exclusion principle, ensures that only
distinct trees are counted exactly once.

Interpretation of the Recurrence
Each term in the recurrence has a clear combinatorial interpretation:

(𝑝𝑘) Choose the 𝑘 attachment vertices 𝐾 ⊂ 𝑉
𝑇𝑝−𝑘 Construct the rooted directed tree on the core 𝐶
(𝑝 − 𝑘)𝑘 Connect each vertex in 𝐾 to a vertex in 𝐶
(−1)𝑘−1 Correct for overcounting via inclusion–exclusion

Results
Figure 4.6 presents a comparison between the enumeration of rooted directed trees obtained via Robin-
son’s recurrence and the corresponding closed-form expression. The results are identical for all 𝑝 ≤ 35,
which validates the correctness of the recursive enumeration algorithm. Moreover, the figure illustrates
that rooted trees, while structurally simpler than general DAGs, already show exponential growth in the
number of configurations as the number of vertices increases.

Figure 4.6: Comparison of closed form and Robinson style formula

4.3. Enumeration of Polytrees
Polytrees form an important class of directed acyclic graphs, characterized by the property that their
underlying undirected structure is a tree. Unlike rooted directed trees, polytrees can contain vertcies
with multiple parents, as long as there are no directed cycles present. In Figure 4.7 two example
polytrees are given. This increased structural flexibility makes polytrees significant in applications such
as probabilistic graphical models and Bayesian networks. In this chapter, two enumeration approaches
are explored for labeled polytrees, beginning with the classical closed-form result and later deriving a
recursive formula inspired by Robinson’s inclusion-exclusion method.
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4.3.1. Closed Form Enumeration of Polytrees
Polytrees allow nodes to have multiple parents as long as no directed cycles are present. This added
flexibility means that polytrees are important in modeling hierarchical or causal structures, especially
in Bayesian networks. Before examining recursive enumeration methods, the closed-form solution for
counting labeled polytrees is presented, with connections to classical results in tree enumeration.

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5 𝑣6

(a) Polytree where vertex 𝑣3 has two parents.

𝑣1 𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

(b) Polytree where vertex 𝑣4 has three parents.

Figure 4.7: Two examples of labeled polytrees with multiple parent nodes.

Derivation of Closed Form Formula
Step 1 – Choose an undirected skeleton. By ignoring the edge directions, each polytree corre-
sponds to a labeled undirected tree. Conversely, any such tree can serve as the skeleton of a polytree.
By Cayley’s formula:

|number of labeled skeletons| = 𝑈𝑝 = 𝑝𝑝−2.

Step 2 – Orient the edges. An undirected tree with 𝑝 vertices contains exactly 𝑝 − 1 edges and
no cycles. Since orienting edges in any way cannot introduce cycles, every edge has two possible
orientations, and every assignment yields a valid DAG:

|Orientations per skeleton| = 2𝑝−1.

Step 3 – Multiply independent choices. The skeleton and orientation steps are independent: each
labeled tree gives rise to 2𝑝−1 distinct orientations, and each combination yields a unique labeled poly-
tree.

Closed Form Enumeration of Polytrees
Let 𝑃𝑝 denote the number of labeled polytrees on the vertex set 𝑉 = {1, 2, … , 𝑝}. Recall that a polytree
is a directed acyclic graph whose underlying undirected structure is a tree.

Theorem 4.3.1 (Enumeration of Labeled Polytrees). The number of labeled polytrees on 𝑝 vertices is
given by

𝑃𝑝 = 2𝑝−1 𝑝𝑝−2, for 𝑝 ≥ 1. (4.6)

In this formula, the factor 𝑝𝑝−2 counts the number of labeled undirected trees on 𝑝 vertices, as given
by Cayley’s theorem, while the factor 2𝑝−1 accounts for the possible orientations of the 𝑝 − 1 edges in
each tree. Each undirected tree admits exactly 2𝑝−1 acyclic orientations, and each orientation produces
a unique labeled polytree.

4.3.2. Enumeration of Polytrees Using Robinson’s Argument
Although Cayley’s formula yields an exact count of labeled polytrees, the objective here is to derive
a recursive formula for 𝑃𝑝 that uses the inclusion-exclusion technique introduced by Robinson for the
enumeration of acyclic digraphs [10]. This recursive form not only offers structural insight, but also
illustrates the power of inclusion–exclusion in graph enumeration.
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Construction via Core and Attachment Set
The derivation of the recurrence begins by partitioning the vertex set 𝑉 = {1,… , 𝑝} into two disjoint
subsets [2]:

• A core 𝐶 of size 𝑝 − 𝑘, which forms a polytree. The core represents the portion of the structure
that is already assembled; it is a connected, acyclic subgraph containing the root and serves as
the foundation to which new vertices may be attached.

• An attachment set 𝐾 of size 𝑘, consisting of vertices that must connect to the core. These are
the vertices not yet incorporated into the polytree. Each vertex in 𝐾 will be joined to a node in the
core, thereby expanding the polytree while preserving its acyclic and connected nature.

This decomposition facilitates a recursive construction: by iteratively attaching vertices from the
attachment set 𝐾 to the existing core 𝐶, all polytrees of size 𝑝 can be generated from smaller instances,
ultimately resulting in the desired recurrence relation. All possible values 1 ≤ 𝑘 ≤ 𝑝−1 are considered.
For each partition of this form, the construction proceeds as follows:

1. Choosing the attachment set: There are (𝑝𝑘) ways to choose the set 𝐾 ⊂ 𝑉.

2. Building the core tree: The subgraph on 𝐶 = 𝑉 ∖ 𝐾 must form a labeled polytree on 𝑝 − 𝑘
vertices. This can be done in 𝑃𝑝−𝑘 ways.

3. Attaching the vertices: To maintain symmetry among all nodes, including the root, the root
vertex 𝑟 ∈ 𝐶 is regarded as one of the attachment points. Consequently, there are 𝑘 + 1 vertices
(comprising the 𝑘 attachment vertices in 𝐾 together with the root 𝑟) that must each select a parent
in the core 𝐶. Since |𝐶| = 𝑝 − 𝑘, there are (𝑝 − 𝑘)𝑘+1 ways to assign these parent connections.
These connections maintain acyclicity because all edges are directed into the core. This step is
shown in figure 4.8.

4. Orienting the edges: Each of the 𝑘 attachment edges can be oriented in two ways (either toward
or away from the core), resulting in 2𝑘 possible orientation choices.

5. Correcting for overcounting: This construction counts each labeled polytree 𝑝 times, corre-
sponding to every possible choice of root. Therefore, a division by 𝑝 is required to obtain the
correct enumeration.

𝑣1

𝑣2

𝑣3 𝑣4

𝑣5

𝑣6
(a) Partition into core (gray) and attachment set (red). The root 𝑣1 is
part of the core but also participates as one of the 𝑘 + 1 attachment
endpoints. Each red vertex independently selects a parent in the core.

𝑣1

𝑣2

𝑣3 𝑣4

𝑣5

𝑣6
(b) An example of a valid configuration: each attachment vertex se-
lects a parent in 𝐶. Since each labeled polytree appears once for each
possible choice of root, division by 𝑝 is required to correct for over-
counting.

Figure 4.8: Visualizing the 2𝑘(𝑝 − 𝑘)𝑘+1 attachment factor and the final normalization in Robinson’s recurrence for labeled
polytrees.

Necessity of the Inclusion–Exclusion Principle
A naive construction for enumerating labeled polytrees leads to significant overcounting. This is be-
cause multiple choices of the attachment set 𝐾 and their connections to the core 𝐶 can yield the same
polytree. To correct for this overcounting and ensure that each distinct polytree is counted exactly once,
the inclusion-exclusion principle is applied. For each possible size 𝑘 of the attachment set, the sign
of the corresponding term is alternated, thereby systematically removing overlapping and overcounted
configurations from the total. This reasoning leads to the following recurrence relation for labeled poly-
trees:
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Theorem 4.3.2 (Recursive Enumeration of Labeled Polytrees). The number 𝑃𝑝 of labeled polytrees on
𝑝 vertices satisfies the recurrence

𝑃1 = 1, 𝑃𝑝 =
1
𝑝

𝑝−1

∑
𝑘=1
(−1)𝑘−1(𝑝𝑘) ⋅ 2

𝑘 ⋅ (𝑝 − 𝑘)𝑘+1 ⋅ 𝑃𝑝−𝑘 , for 𝑝 ≥ 2. (4.7)

Here, for each 𝑘, the summand (𝑝𝑘) ⋅2
𝑘 ⋅ (𝑝−𝑘)𝑘+1 ⋅𝑃𝑝−𝑘 counts the ways to select and attach 𝑘 new

vertices to a core polytree, including possible orientations and attachment choices. The alternating
sign, as dictated by the inclusion–exclusion principle, ensures that only valid and distinct polytrees are
counted.

Interpretation of the Recurrence Terms
Each term in the recurrence (4.7) corresponds to a meaningful combinatorial step:

(𝑝𝑘) Choose the 𝑘 attachment vertices 𝐾 ⊂ 𝑉
𝑃𝑝−𝑘 Build a polytree on the core 𝐶 = 𝑉 ∖ 𝐾
(𝑝 − 𝑘)𝑘+1 Choose parent nodes in the core for 𝑘 attachment vertices and the root
2𝑘 Assign a direction to each of the 𝑘 attachment edges
(−1)𝑘−1 Alternate signs to apply inclusion–exclusion
1
𝑝 Normalize to count each labeled polytree exactly once

Results
Figure 4.9 compares the enumeration of labeled polytrees using two approaches: the Robinson-style
recurrence-based method and the closed form expression derived from Cayley’s formula. The values
are plotted on a logarithmic scale. As shown, both curves are identical up to 𝑝 = 35, with the Robinson-
style count matching the closed form expression. This confirms the accuracy of the implementation of
the recurrence and supports the known result.

Figure 4.9: Comparison of closed form and Robinson style formula

4.4. Enumeration of Triangle-Covered DAGs
Among the many possible structural constraints on directed acyclic graphs, one particularly intriguing
family is formed by triangle-covered DAGs, graphs in which every edge belongs to exactly one trian-
gle, and each triangle is oriented to preserve acyclicity. These structures provide a rich setting for
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exploring many different types of graphs and demonstrating the adaptability of combinatorial enumera-
tion techniques. In this chapter, both closed-form and recursive approaches for counting such labeled
triangle-covered DAGs are presented, revealing new insights into their combinatorial complexity.

4.4.1. Closed Form Enumeration of Triangle-Covered DAGs
Triangle-covered DAGs form a fascinating class in which every edge belongs to exactly one triangle,
and all triangles are oriented to avoid cycles. Due to their rigid local structure and recursive construction,
it is possible to derive an explicit closed-form expression for the number of such labeled DAGs. In this
subsection, a formula for the enumeration of triangle-covered DAGs is established, together with an
explanation of the underlying combinatorial principles. The objective is to derive an explicit expression
for the number of such labeled DAGs on 𝑝 = 2𝑡 + 1 vertices.

Definition
A triangle-covered DAG is a labeled DAG with the following properties:

• The underlying undirected graph is connected;

• Each edge is part of exactly one triangle;

• Every vertex appears in at least one triangle;

• Every triangle is oriented without forming a directed cycle;

• The entire graph is acyclic.

Because the triangles only intersect at shared vertices (never share edges), orienting each triangle
acyclically guarantees that the entire digraph remains acyclic. Figure 4.10 shows two different triangle-
covered DAG examples.

The following notation is used throughout the following section:

𝑡 = number of triangles, 𝑝 = 2𝑡 + 1 = number of vertices, 𝑚 = 3𝑡 = number of edges.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

(a) A triangular-cactus where articulation 𝑣1 participates in two tri-
angles and 𝑣5 continues a chain.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

(b) A compact triangular-cactus where vertex 𝑣1 lies in three edge-
disjoint triangles.

Figure 4.10: Two examples of labeled triangle-covered DAGs. In both, every vertex belongs to at least one directed triangle and
the global orientation is acyclic.

Counting the Undirected Structures
Before enumerating triangle-covered directed acyclic graphs, it is necessary to first count the num-
ber of underlying undirected graphs with the desired triangular structure. Specifically, the class under
consideration consists of connected labeled graphs constructed from 𝑡 edge-disjoint triangles, with the
property that each vertex is included in at least one triangle.

Noam D. Elkies [4] derived a closed-form enumeration formula for such labeled undirected graphs
with 𝑝 = 2𝑡 + 1 vertices:



4.4. Enumeration of Triangle-Covered DAGs 23

Theorem 4.4.1 (Enumeration of Labeled Triangle-Covered Graphs). The number 𝑇𝑝 of labeled, con-
nected, undirected graphs on 𝑝 = 2𝑡 + 1 vertices, in which every edge is contained in exactly one
triangle and every vertex is part of at least one triangle, is given by

𝑇𝑝 = 𝑝
𝑝−3
2 ⋅ (𝑝 − 2)!! = (2𝑡 + 1)𝑡−1 ⋅ (2𝑡 − 1)!!, where 𝑝 = 2𝑡 + 1. (4.8)

Here, (2𝑡 − 1)!! denotes the double factorial, which can be written in closed form as

(2𝑡 − 1)!! = (2𝑡 − 1)!
2 𝑡−1 (𝑡 − 1)! .

Counting Acyclic Orientations
Next, the number of ways to assign directions to the edges of each triangle while avoiding directed
cycles is determined. There are 23 = 8 total orientations for the three edges in a triangle, but only 6 of
these are acyclic. Since triangles are edge-disjoint and only intersect at most in a single vertex, each
triangle can be oriented independently. Consequently, each graph has 6𝑡 valid acyclic orientations.
Multiplying this quantity by the undirected count 𝑇𝑝 yields the total number of labeled triangle-covered
DAGs:

𝐴𝑝 = 6𝑡 ⋅ 𝑇𝑝 = 6
𝑝−1
2 ⋅ 𝑝

𝑝−3
2 ⋅ (𝑝 − 2)!! = 6𝑡 ⋅ (2𝑡 + 1)𝑡−1 ⋅ (2𝑡 − 1)!!

In summary, the structure of triangle-covered DAGs allows for the derivation of an explicit closed-
form enumeration formula by combining results from undirected graph enumeration and acyclic ori-
entation counting. The resulting expression highlights the interplay between local motifs and global
acyclicity, which provides a foundation for further analysis and serves as a benchmark for verifying the
Robinson method of enumeration.

4.4.2. Enumeration of Labeled Triangle-covered Graphs Using Robinson’s Ar-
gument

Although the closed-form formula is exact and efficient to compute, a recursive formula is now derived
using the inclusion-exclusion technique introduced by Robinson in his work on acyclic digraphs [10].
This method gives deeper structural insight into how these graphs are built and demonstrates how local
constraints (such as the triangle structure) can be incorporated recursively.

Key Idea: Decomposition by Leaf-triangles
Every triangular-covered or triangular-cactus graph contains at least one leaf-triangle, a triangle that
connects to the rest of the graph via a single shared vertex (called the articulation point). The two
remaining vertices of the triangle are degree-2 leaf vertices, each belonging to only that triangle.

This observation leads to an inclusion–exclusion approach. Let:

• 𝑉 = {1, 2, … , 𝑝} be the labeled vertex set;

• For each 𝑣 ∈ 𝑉, define the property 𝒫𝑣: “𝑣 is a leaf vertex.”
Since every cactus must contain at least one leaf-triangle, there must exist at least two leaf vertices.

Consequently, no cactus graph avoids all properties 𝒫𝑣, and the inclusion-exclusion principle can be
applied to the sets of vertices that are required to be leaves.

Recursive Decomposition Strategy
A subset 𝑆 ⊆ 𝑉 of leaf vertices is fixed and the number of triangular-cactus graphs in which all vertices
in 𝑆 are leaf vertices is counted. This quantity is nonzero only when |𝑆| = 2𝑠, as each leaf-triangle
contributes exactly two leaf vertices. The construction works as follows:

1. Choose the leaf vertices: There are ( 𝑝2𝑠) ways to choose a set 𝑆 ⊆ 𝑉 of size 2𝑠.

2. Pair the leaf vertices: The vertices in 𝑆 must be grouped into 𝑠 unordered pairs (so that each
pair becomes the two leaf vertices of a leaf-triangle). The number of different ways to do this is

(2𝑠)!
2𝑠𝑠! .
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This formula comes from a simple idea: First, list all 2𝑠 vertices in any order. There are (2𝑠)! such
arrangements. Then, group the list into consecutive pairs. However, this counts each unordered
pairing more than once, because swapping the order inside any pair doesn’t change the pairing
(so divide by 2 for each of the 𝑠 pairs,2𝑠 in total). The 𝑠 pairs themselves can be listed in any
order, but as the pairs are unordered, we must divide by 𝑠!.

3. Attach the leaf-triangles to the core: For each pair of leaf vertices, the attachment is made
to an articulation point in the core. As the core contains 𝑝 − 2𝑠 vertices and the selections are
made independently with repetition allowed, there exist (𝑝 − 2𝑠)𝑠 possible choices for assigning
articulation points.

4. Apply inclusion–exclusion: For each 𝑠, the sign alternates as (−1)𝑠+1 due to the inclusion–
exclusion principle.

𝑐1

𝑐2 𝑐3

𝑐4 𝑐5

𝑢1

𝑢2

𝑢3

𝑢4

(a) Each unordered leaf pair may attach to any core vertex, giving
the factor (𝑝 − 2𝑠)𝑠.

𝑐1

𝑐2 𝑐3

𝑐4 𝑐5

𝑢1

𝑢2

𝑢3

𝑢4

(b) A particular choice of articulation vertices attaches the two leaf-
triangles, producing a cactus on 𝑝 = 2𝑡 + 1 vertices.

Figure 4.11: Attachment of leaf-triangles: The core (gray) is itself a triangular-cactus (two edge-disjoint triangles sharing 𝑐1). (a)
Each dashed red pair indicates one of (𝑝−2𝑠)𝑠 possible attachments of the leaf-triangles. (b) After selecting specific articulation
points (𝑐2 for {𝑢1 , 𝑢2} and 𝑐1 for {𝑢3 , 𝑢4}) we obtain the full cactus required in step 4 of the decomposition.

Final Recursive Formula
Combining the construction steps and applying the inclusion–exclusion principle yields the following
recurrence relation for the number of labeled triangular-cactus graphs:

Theorem 4.4.2 (Recursive Enumeration of Labeled Triangular-Cactus Graphs). Let 𝐶𝑡 denote the num-
ber of labeled connected undirected graphs composed of 𝑡 edge-disjoint triangles such that every vertex
is contained in at least one triangle, with 𝑝 = 2𝑡 + 1 vertices. Then 𝐶𝑡 satisfies the recurrence:

𝐶1 = 1, 𝐶𝑡 =
𝑡

∑
𝑠=1
(−1)𝑠+1(2𝑡 + 12𝑠 )(2𝑠)!2𝑠𝑠! (2𝑡 + 1 − 2𝑠)

𝑠𝐶𝑡−𝑠 , for 𝑡 ≥ 2. (4.9)

Here, each term in the sum corresponds to the process of selecting and removing 𝑠 leaf-triangles,
pairing the 2𝑠 leaf vertices, and reattaching them to a smaller core graph with 𝑡 − 𝑠 triangles. The
alternating sign, as dictated by the inclusion–exclusion principle, ensures that each configuration is
counted exactly once and only when the chosen vertices are required to be leaf vertices.

From Triangular-Cactus Graphs to Triangle-Covered DAGs
Finally, the enumeration of labeled DAGs with a triangular-cactus underlying structure is considered.
Each triangle has 3 edges, and each edge can be oriented in 2 ways, giving 23 = 8 total edge orienta-
tions. However, exactly 2 of these form a directed 3-cycle, so there are 8 − 2 = 6 acyclic orientations
per triangle. Since triangles are edge-disjoint and only meet at articulation vertices, their orientations
are independent. Thus, each triangular-cactus graph with 𝑡 triangles yields 6𝑡 distinct labeled DAGs
through independent acyclic orientations of its triangles.

The total number of labeled DAGs with a triangular-cactus structure is therefore:

Number of DAGs = 6𝑡 ⋅ 𝐶𝑡 .
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Results
Figure 4.12 compares the enumeration of triangle-covered DAGs using a Robinson-style recurrence
and a closed-form approach. The log-scale plot reveals a perfect match between the two methods. In
particular, the two counts coincide exactly for odd values of 𝑝. This is because in the Robinson-style
construction the recursion operates over the number of triangles instead of the number of vertices. This
comparison confirms the validity of both enumeration formulas.

Figure 4.12: Comparison of closed form and Robinson style formula
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4.5. Comparison of Enumeration of Different Types of Graphs on 𝑝
Nodes

To illustrate the combinatorial explosion in the number of possible structures, Table 4.1 lists the exact
counts of labeled DAGs, rooted directed trees, polytrees and triangle-covered DAGs for small values of
𝑝. As 𝑝 increases, the number of possible DAGs far exceeds that of the more structurally constrained
subclasses, such as trees and polytrees.

Table 4.1: Exact counts for small 𝑝 (1 ≤ 𝑝 ≤ 7) of various labeled acyclic structures.

𝑝 Rooted Directed Trees Triangle-Covered DAGs Polytrees DAGs

1 1 1 1
2 2 2 3
3 9 6 12 25
4 64 128 543
5 625 540 2000 29281
6 7776 41472 3781 503
7 117649 158760 1 075 648 1138 779 265

Figure 4.13 further visualizes the growth of each enumeration sequence on a logarithmic scale. The
figure demonstrates that, while all classes increase rapidly, the number of general DAGs grows much
more quickly than any of the structured subclasses. For example, with 𝑝 = 7, the number of labeled
DAGs exceeds one billion, while the counts for rooted trees and polytrees are several orders of mag-
nitude smaller.

The exponential growth in these sequences emphasizes the difficulty of enumeration and highlights
the significance of analytical methods and recursive formulas for both theoretical analysis and practical
applications. In particular, structural constraints such as being a tree, polytree, or triangle-covered limit
the solution space dramatically, but do not fully mitigate the combinatorial explosion for large 𝑝.

Figure 4.13: Growth comparison of labeled rooted directed trees, triangle-covered labeled DAGs, labeled polytrees, and labeled
DAGs for 𝑝 ≤ 35. The vertical axis is logarithmic due to the rapid growth.



5
Discussion and Conclusion

In this report, the enumeration of labeled DAGs under a variety of structural constraints was explored.
The central theme of this report is the integration and extension of recursive counting techniques, most
notably the inclusion-exclusion based method introduced by Robinson, to address both classical and
new enumeration problems in graph theory.

The derivation and analysis of Robinson’s recursive formula serve as a foundation for understand-
ing the exponential complexity of DAGs, while also providing a flexible framework for extensions. By
partitioning graphs according to out-points and applying the inclusion–exclusion principle, we obtain a
recurrence that efficiently counts labeled DAGs and can be adapted for refined constraints, such as
fixing the number of arcs or out-points.

Beyond general DAGs, Robinson’s approach has been successfully adapted to the enumeration
of several important specialized structures, including rooted directed trees, polytrees, and triangle-
covered DAGs. For each of these classes, both closed-form expressions and recursive constructions
were provided. The results reveal combinatorial connections between these special classes and high-
light how local attachment rules can encode a wide range of global structural properties. The closed-
form results provide important checks and context for the recursive methods, reinforcing their validity.

A key observation is the rapid growth in the number of possible structures as the number of ver-
tices increases. This occurrence, illustrated through tables and plots, underscores the combinatorial
explosion faced in practical applications, such as Bayesian network structure learning, scheduling, and
network design. Although the considered extensions restrict the enumeration and thus result in sub-
stantially lower counts compared to general DAGs, the enumeration for rooted directed trees, while
the lowest among the examined classes, remains very large as the number of vertices grows. While
closed-form and recursive formulas provide theoretical insight and allow efficient computation for small
graphs, enumeration quickly becomes infeasible for larger instances.

Despite these advances, several challenges and opportunities remain for future work. Other possi-
ble directions include the enumeration of DAGs with more complex constraints (such as connectivity or
bounded degree), the study of asymptotic properties, and the development of efficient algorithms and
software implementations for practical use.

In conclusion, this thesis brings together a variety of enumeration problems within a single recursive
framework, offering both new formulas and theoretical insights. The results contribute to a deeper
understanding of the structure and complexity of directed acyclic graphs and provide a solid basis for
further study in combinatorial theory and its applications across science and engineering.
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6
Future Work

The results presented in this thesis lay the foundation for a wide range of future research directions
in the combinatorial analysis of DAGs and related graph structures. Several promising directions are
described below.

Enumeration of Larger Cycle Structures
Although this thesis has focused on acyclic graphs and local structures such as triangles, an important
challenge for future research is the enumeration of graphs containing larger cycles. Understanding the
enumeration of larger cycles is not only a natural extension but is also important for modeling real-world
networks, where feedback loops and cyclical dependencies play a crucial role. Developing recursive or
inclusion-exclusion-based methods for these classes may yield new insights but will involve complexity
due to global and local constraints.

Importantly, enumeration of labeled DAGs with underlying graphs built from larger cycles (such as
squares, pentagons, or any 𝑘-cycle) can be approached using a generalization of the Robinson-style
inclusion–exclusion method used for triangles. The main idea is that, as with triangles, you can sys-
tematically choose leaf cycles, cycles that attach to the rest of the graph at a single point, and account
for all the ways to reattach them. For each larger cycle, you consider the possible ways to assign its
extra vertices, group them together, and choose an articulation vertex where the cycle attaches. The
number of ways in which each cycle can be acyclically oriented can be calculated independently for
each block and multiplied together in the final count.

Although the enumeration problem changes in the presence of larger cycles, the strategy remains
unchanged: the inclusion-exclusion principle enables the enumeration of all possible configurations
by successively adding and removing substructures while correcting for overcounting. This approach
paves the way for the application of recursive and algebraic techniques to a much broader class of
directed graph structures.

Combining Enumeration Techniques
Another extension is the combination and generalization of the techniques explored in this thesis. For
instance, hybrid approaches may allow for efficient enumeration of graphs with multiple simultaneous
constraints. Enumeration of labeled DAGs for hybrid structures, for example, polytrees where a cer-
tain number of triangles are attached as additional building blocks is also possible. In such models,
the construction can begin with a tree-shaped core to which additional triangles are subsequently at-
tached at various locations. Each triangle is connected to a tree node and introduces two new vertices,
expanding the structure in a controlled, non-branching way.

The Robinson-style argument extends naturally to this setting: after fixing the underlying tree, the
inclusion-exclusion principle is applied to systematically account for all possible subsets of the newly
added vertices that may be designated as leaves. At each step count all the ways the original structure
can be created and then count the number of possibilities to attach these triangles to the original tree,
keeping track of labelings and attachment points. Finally, the possible orientations for each triangle are
counted independently, multiplying the total by a constant.
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This approach means that you can systematically enumerate very complex classes of labeled DAGs
by breaking them into manageable steps: first, count the core structure, then count the ways to attach
and orient additional subgraphs. It also makes it feasible to extend the enumeration to networks with
even more intricate local or global properties, such as combinations of cycles, trees, and other types
of graphs.

Enumeration of Labeled DAGs Without V-structures
A major source of combinatorial complexity in DAGs arises from V-structures, which are formed when
two edges from different sources point to the same node. However, there are important classes
of DAGs, such as modeling sequential processes, chains of causality, or certain types of molecular
graphs, where such V-structures are forbidden by design [8].

For example, in the case of triangle-covered DAGs, we can consider sequences of triangles con-
nected end-to-end (triangle chains). The key advantage of this structure is that it allows for a systematic
recursive decomposition: at each step, one can remove an end-triangle, count the ways to orient and
label the remaining smaller chain, and then reattach the triangle in only a fixed number of ways. This
process can be modeled using a variant of the Robinson-style inclusion–exclusion principle, which
alternates between adding and subtracting counts based on which vertices are forced to be leaves.
The orientation of each triangle can be accounted for independently, allowing the total count to be
constructed from the product of local choices and the recursive structure of the chain.

Overall, it is plausible that this approach may generalize to other classes of block graphs where V-
structures are forbidden, potentially providing a useful technique for enumerating DAGs with sequential
chain-like dependencies. Suchmodels are particularly relevant in fields where order, sequence, or non-
branching flows are fundamental, and the counting methods developed here could serve as a template
for addressing more complex restrictions in future research.

Importance and Broader Impact
The capability to enumerate these advanced graph classes is significant beyond purely theoretical
considerations. It directly impacts our ability to model, analyze, and optimize complex systems in fields
ranging from artificial intelligence and biology to operations research and communication networks. As
such, future work on the enumeration of larger cycles, and V-structures, potentially by combining and
generalizing the methods presented in this thesis, will contribute both to the depth of combinatorial
mathematics and to the effectiveness of applied modeling in science and engineering.
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