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This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as
well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution
generation. To demonstrate and test the novel approach, we use the classic shallow lake problem. We compare
the results obtained with the novel approach to those obtained with previously used approaches. We show that
the novel approach guarantees the feasibility and robust efficiency of the produced solutions under all selected

scenarios, while decreasing computation cost, addresses the scenario-dependency issues, and enables the
decision-makers to explore the trade-off between optimality/feasibility in any selected scenario and robustness
across a broader range of scenarios. We also find that the lake problem is ill-suited for reflecting trade-offs in
robust performance over the set of scenarios and Pareto optimality in any specific scenario, highlighting the need
for novel benchmark problems to properly evaluate novel approaches.

1. Introduction

Decision making in complex environmental problems typically in-
volves several conflicting objectives to be considered simultaneously.
There is no single optimal solution for these multi-objective problems
because of the conflicting objectives. Instead, several so-called Pareto
optimal solutions reflecting different trade-offs between the conflicting
objectives can be found. In such multi-objective decision problems,
decision support tools can help decision makers in balancing between
conflicting objectives.

The task of decision makers in environmental problems is further
complicated by the presence of uncertainty. To mitigate the potential
negative consequences of uncertainty, it has been argued that decisions
should have limited sensitivity to the consequences of uncertainty (so-
called robust decision) and perform relatively well in a broad range of
future states of the world or scenarios (Lempert et al., 2006). In envi-
ronmental systems, the level of uncertainty is high and probabilities
over the various alternative states of the world can only be approxi-
mately assessed. This kind of uncertainty is sometimes also known as
deep uncertainty (Bankes 2002; Lempert et al., 2003; Kwakkel et al.,
2010; Walker et al., 2013; Shavazipour and Stewart 2019). Uncertainties
about future climate change and socio-economic conditions are two
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examples of deep uncertainty in environmental problems.

Therefore, decision makers in complex environmental problems are
facing a multi-objective optimization problem to be solved in the pres-
ence of deep uncertainty, where the performance of a decision should be
evaluated according to all objectives in all plausible scenarios (Shava-
zipour and Stewart 2019; Shavazipour et al., 2020; Stewart et al., 2013).
This kind of decision problem is also known as a multi-scenario mul-
ti-objective decision making problem. Scenarios, in this paper, represent
different plausible future realizations of the deep uncertainties (Maier
et al., 2016). In practice, it is almost impossible to find a decision that is
Pareto optimal (or even feasible) in all plausible scenarios. By a feasible
solution in multi-scenario multi-objective optimization problems, we
mean a solution that is feasible (i.e., satisfies all constraints) in all sce-
narios. Accordingly, decision makers seek robust solutions that are
sufficiently good in a broad range of scenarios, i.e., robust satisficing.
This introduces an additional trade-off between Pareto optimality (and
feasibility) in any given scenario and robustness over a set of scenarios.
In this paper, we refer to this as the trade-off between scenarios.

Recently, different approaches have been introduced for environ-
mental multi-objective optimization problems under deep uncertainty,
such as Many-Objective Robust Decision Making (MORDM) (Kasprzyk
et al., 2013), multi-scenario MORDM (Watson and Kasprzyk 2017), and
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Multi-Objective Robust Optimization (MORO) (Hamarat et al., 2014;
Kwakkel et al., 2015; Trindade et al., 2017). All these approaches are
based on the Robust Decision Making (RDM) framework (Lempert et al.,
2006; Groves and Lempert 2007). RDM is an iterative approach, where
pre-specified policy alternatives/solutions are stress-tested over a wide
range of scenarios in order to determine conditions under which each
solution fails to perform adequately. Then, the policy alternatives are
refined to find the most robust solution(s) in light of these failure
conditions.

MORDM was introduced as an extension to RDM to help in gener-
ating a promising set of candidate solutions as input to the stress testing
for decision problems involving multiple objectives. These solutions are
produced using multi-objective optimization given a single reference
scenario (i.e., only optimizing in the feasible region of a single scenario).
This inadvertently introduces scenario dependency of the generated
solutions (given that the Pareto approximation only includes solutions
optimized in (and feasible for) that single scenario), which reduces both
the robustness which can be attained during stress-testing (Eker and
Kwakkel 2018; Giudici et al., 2020; Bartholomew and Kwakkel 2020), as
well as the feasibility of the candidate solutions in other scenarios. To
reduce this shortcoming, Watson and Kasprzyk (2017) proposed
multi-scenario MORDM, which repeats the process of identifying
candidate solutions prior to stress-testing for several scenarios.
Expanding on this, Eker and Kwakkel (2018) introduced a more sys-
tematic scenario selection procedure that ensures high diversity among
the scenarios which are used for the identification of candidate solu-
tions. However, solutions generated with multi-scenario MORDM are
still highly dependent on the selected scenarios. This is because
multi-scenario MORDM does the search separately for few selected
scenarios without checking the feasibility and performance of the so-
lutions in the other scenarios during the optimization process. There-
fore, there is no guarantee that the solutions generated are feasible in
any other scenario.

Besides, gathering solutions generated by single-scenario optimiza-
tions cannot guarantee optimal robustness either. Of course, the feasi-
bility and the performance of the solutions will be checked later in the
robustness analysis. However, many of the solutions found in that way
may have inferior performance (i.e., be dominated) in some scenarios or
even be infeasible, which means wasting computational resources in
finding poor solutions that will be eliminated later in the robustness
analysis.

In contrast, MORO (Hamarat et al., 2014; Kwakkel et al., 2015;
Trindade et al., 2017) only concentrates on robustness by optimizing the
robustness measures as objective functions over a set of scenarios.
However, this simulation-optimization approach is computationally
demanding and (possibly) intractable, even for small sets of scenarios
(Eker and Kwakkel 2018; Bartholomew and Kwakkel 2020; Giudici
et al., 2020). Furthermore, utilizing different robustness measures re-
sults in different solutions. This highlights the meta-choice of selecting
the most appropriate robustness measures, which might require a
separate study (Giudici et al., 2020; Kwakkel et al., 2016; McPhail et al.,
2018). Besides, the existing trade-offs between objectives in different
scenarios cannot be explicitly verified in worst-case/min-max and
aggregation-based robustness measures, which are often used in MORO.
For instance, the overall robustness may be affected excessively because
of poor performance in a few scenarios (Ben-Tal et al., 2017; Roos & den
Hertog 2020; Shavazipour and Stewart 2019; Shavazipour et al., 2020).

Bartholomew and Kwakkel (2020) compared MORDM,
multi-scenario MORDM, and MORO, and confirmed that the more
robustness is considered in the search for candidate solutions prior to
stress-testing, the more robust the solutions will be. Nevertheless, there
remains a trade-off between optimality (and feasibility) in any given
scenario and robustness over the set of scenarios. This trade-off is
sometimes also known as the price of robustness (Bertsimas and Sim
2004; Schobel and Zhou-Kangas 2021). There is currently no approach
for the search phase of MORDM that enables decision makers to explore
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this trade-off explicitly. Note that adding scenarios to a multi-objective
optimization problem adds dimensions to the problem. Indeed, the
resulting multi-scenario multi-objective optimization problem includes
all objective-scenario combinations, in which the dimension of the space
grows exponentially (e.g., in a problem with four objectives and five
scenarios, the space becomes (4x 5 = ) 20-dimensional). This means
that a solution may have an outstanding performance on one objective in
one particular scenario, but its performance on other objectives may be
poor, or the solution may even be infeasible in some scenarios. The
previous variants of MORDM identify solutions in the objective space of
a single-scenario problem. Then, they test the performance of these so-
lutions on the uncertainty space constructed by an ensemble of random
scenarios. This may imply losing robust solutions as well as the chance of
exploring the mentioned trade-off.

In parallel to the continuous refinement of RDM via MORDM, multi-
scenario MORDM and MORO, the concept of robustness in multi-
objective optimization has been receiving theoretical attention as well.
This has resulted in various novel theoretical concepts such as min-max
robustness (Ehrgott et al., 2014), highly (Dranichak and Wiecek 2019),
flimsy (Bitran 1980; Kuhn et al., 2016) and lightly robust efficiency (Ide
and Schobel 2016), regret robustness (Xidonas et al., 2017), and
multi-scenario efficiency (Botte and Schobel 2019; Shavazipour and
Stewart 2019; Shavazipour et al., 2020). We refer the interested readers
to Botte and Schobel (2019), Ide and Schobel (2016) and Schobel and
Zhou-Kangas (2021) for a review and comparison of different theoretical
robustness concepts in multi-objective optimization. Although not all of
these concepts and methods were primarily developed to deal with deep
uncertainty, still, to some extent, they can be utilized for this purpose as
a complement to the existing approaches in decision making under deep
uncertainty (DMDU). Among these concepts, multi-scenario efficiency,
defined particularly for a discrete uncertainty space (i.e., constructed
with a finite number of scenarios), is similar to the concept of robustness
utilized in the deep uncertainty literature.

The main difference between these two bodies of literature in how
they use robustness concepts lies in where they are evaluating the
robustness of a candidate solution. In mathematical optimization,
robustness is often utilized as an a priori criterion or soft constraint in
searching for candidate solutions leading to a particular set of solutions
following that criterion/constraint (i.e., we are only looking for robust-
efficient solutions). In contrast, in DMDU, the robustness of solutions is
typically an attribute of a generated solution measured in an a posteriori
manner (i.e., after the search phase). As a result, robustness in DMDU is
used as an a posteriori measure for ranking already generated solutions.
In mathematical optimization, all the robust-efficient solutions are
compromise solutions distinguishable by different trade-offs between
objective(s) in various scenarios. As the central common assumption,
none of these two bodies of literature consider the probability of sce-
nario occurrence in their definitions and models.

In a multi-scenario multi-objective decision making problem, ideally,
candidate decisions are evaluated in terms of all objectives in all (or at
least a representative set of selected) scenarios (Shavazipour and
Stewart 2019; Shavazipour et al., 2020; Stewart et al., 2013). This kind
of an assessment helps identifying solutions that are not only feasible in
all (selected) scenarios but also robust efficient. That is, the used
approach should guarantees that there exists no other solution which is
not worse on all objectives in all selected scenarios and, is better on at
least one objective in one scenario (Botte and Schobel 2019; Shavazi-
pour et al., 2021). Among the previously proposed methods developed
to handle multiple objectives under deep uncertainty, only MORO can,
to some extent, guarantee the robust efficiency of all generated solutions
(without any extra filtering) in all (selected) scenarios (e.g., by consid-
ering all scenario-specific constraints within the optimization model).

The primary aim of this paper is to build a bridge between the
literature on mathematical multi-objective optimization, which has a
strong theoretical foundation, and the robust decision making literature
which has shown successful real world applications. To the best of our
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knowledge, this is the very first step in this regard. By drawing on the
theoretical developments in mathematical multi-objective optimization,
we can address the issues of robust efficiency, feasibility, and the price of
robustness which affect existing approaches for the search phase within
the MORDM framework. In this paper, we propose a novel multi-
scenario multi-objective robust optimization approach (called multi-
scenario MORO, hereinafter) by incorporating uncertainties in the
optimization phase and identify solutions that perform well in some
(selected) scenarios. In this way, the performance of solutions in terms of
all objectives in all selected scenarios are evaluated within a single
optimization problem. As a result, the Pareto optimal solutions for
considered scenarios can be found, which are not only feasible in all
selected scenarios but also robust efficient, if any feasible solution is
available.

In other words, we combine all single-scenario multi-objective
optimization problems into a meta-optimization problem, and simulta-
neously consider the evaluation of the objective functions in multiple
scenarios. Indeed, our objective functions include all the objective-
scenario combinations (called meta-objective/meta-criteria (Stewart
et al., 2013)) subject to constraints satisfaction in all considered sce-
narios. The proposed multi-scenario MORO has both a lower computa-
tion cost and increased robustness consideration during the search
process, it generates less scenario dependent solutions. For our proposed
approach, and likewise for other approaches for multi-scenario
MORDM, selected scenarios should reflect the system vulnerabilities
and/or the main decision maker’s preferences (Giudici et al., 2020).

The classic shallow lake problem, first introduced by Carpenter et al.
(1999), has been very often used to demonstrate, test, and compare
methodological developments for decision making under deep uncer-
tainty (Kwakkel 2017; Lempert and Collins 2007; Singh et al., 2015;
Bartholomew and Kwakkel 2020; Eker and Kwakkel 2018; Quinn et al.,
2017; Singh et al. 2015, 2015; Ward et al., 2015). It is a standard
benchmark problem reflecting the required characteristics of real-world
environmental problems such as tipping points affected by deeply un-
certain parameters and multiple conflicting objectives. Therefore, we
use the shallow lake problem to demonstrate our novel approach and
compare it with existing approaches.

In brief, the main contributions of this paper are: (1) Proposing a
multi-scenario MORO approach, which utilizes a different solution
method from the mathematical multi-objective optimization literature
to produce candidate solutions that reduce the computational cost and,
also, can guarantee Pareto optimality; (2) Paving the way to explore the
trade-offs between scenario-specific Pareto optimality and robustness by
considering different numbers of scenarios in the optimization model;
and (3) Introducing a novel way of scenario analysis to determine
vulnerable scenarios using ideal points (best possible achievements on
each objective in each scenario) and information about feasible regions
in various scenarios. Since the proposed scenario analysis does not need
any prior knowledge of solutions and their robustness, the decision
makers can gain insight into the problem before solution determination.

The rest of the paper is organized as follows. Section 2 includes a
brief description of multi-scenario multi-objective optimization prob-
lems and the solution method utilizing in this study, as well as the
proposed multi-scenario MORO approach. The lake problem, as our case
study, and the multi-scenario formulation of it are described in Section
3. In Section 4, we illustrate more details about how the proposed multi-
scenario MORO can be applied and compare the results with the state-of-
the-art methods in the literature. Finally, we discuss the feasibility,
robustness, and computational costs of multi-scenario MORO regarding
the different number of scenario considerations in Section 5, before
concluding in Section 6.
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2. Methods
2.1. Multi-scenario multi-objective optimization

A multi-scenario multi-objective optimization problem (MSMOP),
also called all-in-one or scenario-based multi-objective optimization
problem with k > 2 objective functions and s > 2 scenarios can be
formulated as follows (Shavazipour et al., 2021):

(3ol w

minimize
subject to

where the scenario space/set Q is constructed by s plausible scenarios
and each scenario includes k objective functions. Objective functions in
scenario p (p €{1, ..., s}) are described by f;, (i = 1, ..., k), x=
(x1,...,x,)" is a vector of n decision variables in the feasible region S in
the decision space R" (SCR") defined by constraint functions, z, =
(fip(x), ... fi (x)T (p €41, ..., s}) (called an objective vector) is the image
of a decision vector x in the objective space R* under the conditions of
scenario p. A decision vector x* € S is called Pareto optimal (also called
non-dominated) in scenario p if, under the conditions of scenario p, there
does not exists another x € S such that for all i, fi(x) < fip(x*) and fj(x)
< fjp(x*) for at least one index j. The image of the set of Pareto optimal
decision vectors in the objective space is sometimes called a Pareto front.
X € S is weakly Pareto optimal in scenario p if, there does not exists
another x € S such that for all i, fi (x) < fi(X). A preferred solution refers
to a Pareto optimal solution satisfying decision maker’s preferences in

terms of all (k x s) meta-criteria. For any two objective vectors zl',,

z, € RK, in scenario p, we say that z;, dominates z, if and only if for all i,
z;-p <z}, and zl',j < 2}, for at least one index j.

The best and the worst possible values for individual objectives in the
Pareto front are components of an ideal point 74 — (gideal . gideal)
and a nadir point 2" = (g5adr z,’;‘;’d)r, respectively. While ideal points
can be simply calculated by solving a relevant single-scenario single-
objective optimization problem, computing nadir points is difficult in
practice. However, their estimations can either be provided by the de-
cision maker or approximated, for instant, through a pay-off table (see,
e.g., Miettinen (1999) and references therein). Also,
z;‘;" = zge"l —¢(i=1,....,k;p=1,...,s) are components of an objective
vector z;° € R", called a Utopian objective vector in scenario p, where ¢ >
0 is a relatively small scalar. It is strictly better than the ideal point.

2.2. Generating candidate solutions - achievement scalarizing function

Over the years, many different methods have been proposed to solve
multi-objective optimization problems. The two most popular type of
methods are 1) Multiple Criteria Decision Making (MCDM) (e.g.,
Chankong and Haimes (1983); Miettinen (1999)) and 2) Evolutionary
Multi-objective Optimization (EMO) (e.g., Coello et al. (2007); Deb
(2001)). A major advantage of EMO algorithms is that they generate a
set of approximated Pareto optimal solutions in a single run of the al-
gorithm. However, EMO algorithms tend to be inefficient when the
number of objectives increases. In contrast, MCDM method guarantee
Pareto optimality, have a strong theoretical foundation, and no limita-
tion regarding the number of objectives. Many MCDM methods trans-
form the original problem into a single-objective optimization problems
(using a so-called scalarizing function) considering the decision maker’s
preferences (see, e.g. (Miettinen 1999), for more information on
different MCDM methods and (Miettinen and Makela 2002; Ruiz et al.,
2009) for a comparison of various scalarizing functions).

So far, all variants of MORDM have utilized EMO algorithms. To the
best of our knowledge, MCDM methods have not yet been utilized within
the MORDM framework. As also mentioned in Kasprzyk et al. (2013),
the main reason is related to the use of a priori (importance) weights (as
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one form of preference information) because of some concerns about the
accuracy of these weights before the decision maker observes a broader
set of solutions and gains a better understanding about the
non-convexity/continuity of the Pareto front and potential non-linear
relations between variables/parameters. However, on the one hand, a
priori methods are designed to be used in problems in which the decision
maker has a good enough understanding of the problem, in-
terdependencies of the objectives, and possible outcomes and is able (or
wishes) to express his/her expertise a priori. On the other hand, there
are also other types of MCDM methods: interactive and a posteriori
methods (see, e.g. (Miettinen 1999),). Furthermore, when the number of
objectives grows, EMO algorithms cannot efficiently approximate the
Pareto front. Thus, they cannot be used to solve MSMOPs which usually
have tens or hundreds of objectives. To overcome this issue, in this
paper, we utilize one of the most popular scalarizing functions, i.e., an
achievement scalarizing function (Wierzbicki 1986). More specifically,
we use the following achievement scalarizing function, which includes
an augmentation term to avoid weakly Pareto optimal solutions
(Wierzbicki 1986),

min, max,___x[wi(fi(x) —z)] + EZW,-(f,-(X) -7 @

s.t. xes

where w; (i = 1, ..., k) are the weights for normalization.

As preference information set by a decision maker, zi(i = 1, ..., k),
known as aspiration levels, represent desirable objective function values.
The vector of k aspiration levels is called a reference point. A reference
point in the objective space can be feasible or infeasible. In any case, a
scalarizing function like (2) can identify the closest Pareto optimal so-
lution to the given reference point. Accordingly, utilizing different
reference points tends to lead to different Pareto optimal solutions.
However, sometimes the same Pareto optimal solution may be associ-
ated with multiple reference points. The multiplier ¢ is a small positive

number, and «‘:’ZLWI' (fi(x) —z;) is an augmentation term ensuring Pareto
optimality. Thus, the optimal solution to problem (2) is a Pareto optimal
solution to the original multi-objective optimization problem (Wierz-
bicki 1986; Miettinen 1999).

When we have multiple scenarios, the above formulation has an
additional dimension:

l’nile maX—i,.. kp=1,..s [W[p (f}/; (X) - Zip)} +¢ i: zs:[wfp(f[ll (X) - Zfﬁ)]

i=1 p=1

(€)]
s.t. xes

where wy, represents the weight for objective i in scenario p and z;, is the
aspiration level for the ith objective function in the pth scenario.

Solving the scalarized problem (3) provides a single optimal solution
which is Pareto optimal for the original problem (1). Different solutions
can be generated by using different reference points. Therefore, in
contrast to EMO methods, to produce a set of Pareto optimal solutions,
one needs to repeatedly solve the optimization problem using different
reference points. Nonetheless, considering the decision maker’s prefer-
ences (reference points here) not only gives rise to generating solutions
that lie in the areas of interest to the decision makers, but it can also
confine the search area and thus reduce computational cost.

In general, a decision maker may provide preferences a priori, choose
a preferred solution among the provided set of solutions in a posteriori
method, or be iteratively involved using an interactive approach (Miet-
tinen 1999). Achievement scalarizing functions can be applied in any of
these three ways. In this paper, following all variants of RDM, we utilize
scalarizing functions in an a posteriori method. Therefore, we need to
predetermine several reference points to produce different Pareto
optimal solutions. Amongst various techniques that have been devel-
oped for setting the reference points, we utilize the method introduced
by Mueller-Gritschneder et al. (2009).
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2.3. The proposed multi-scenario multi-objective robust optimization
approach

(MO)RDM is an iterative approach for finding robust solution(s). It
consists of four steps: (1) model specification; (2) solution identification;
(3) computational exploration, i.e., re-evaluation of candidate solutions
in a broad range of plausible scenarios; and (4) scenario discovery, in
which vulnerable scenarios are identified and this information can be
used to modify the model and/or generate new solutions. This process
continues until the decision maker is satisfied with a (set of) solution(s)
(Lempert et al., 2006; Kasprzyk et al., 2013).

There exist three different approaches for identifying policy alter-
natives in the second step of MORDM: single-scenario (Kasprzyk et al.,
2013), multiple single-scenario (Eker and Kwakkel 2018; Watson and
Kasprzyk 2017), and robust optimization (Hamarat et al., 2014; Kwak-
kel et al., 2015; Trindade et al., 2017). However, they have shortcom-
ings, e.g., scenario dependency (in the first two variants) and inability to
reflect the trade-offs between scenarios (in all three variants). To over-
come these weaknesses, we propose a novel multi-scenario multi--
objective robust optimization approach that simultaneously considers
multiple objectives in multiple scenarios (not an indirect aggregated
value over a set of scenarios); i.e., the proposed multi-scenario MORO
approach performs the search in a combined multi-scenario multi--
objective space. In this way, all the generated solutions are
robust-efficient in all (selected) scenarios, which increases robustness
and reduces scenario dependency. Indeed, we propose to use the
multi-scenario multi-objective optimization approach (model (1)) to
generate solutions in the second step (search phase) of the (MO)RDM.

Yet, the proposed multi-scenario MORO involves four iterative steps
portraying in Fig. 1 and detailed as follows:

1. Model specification: Determining the components of a decision
making problem, such as the decisions to be made, decision vari-
ables, certain and uncertain parameters and relations between them,
how to measure performance like objective functions in an optimi-
zation problem, problem constraints, etc.

2. Solution determination: This step, which is the main contribution
of this study, divides into three sub-steps, as also shown in Fig. 1.
(a) Scenario selection: Similar to the previous variants of multi-

scenario MORDM, we need to select a set of scenarios to be
considered within the optimization. This study follows the state-
of-the-art scenario selection method proposed by Eker and
Kwakkel (2018), although any other approaches can be utilized.
The decision maker can set the number of scenarios to be
considered in the optimization problem based on preferences,
computation cost, complexity, or other considerations.

(b) Multi-scenario multi-objective optimization problem formulation: In
this step, to identify the candidate solutions, we formulate (using
the information specified in the previous steps) and solve a
multi-scenario multi-objective optimization problem that
simultaneously considers multiple objectives and multiple sce-
narios within a single optimization problem of the form (1). By
changing the number of scenarios considered in this problem, the
decision maker can explore the trade-offs between all objectives
in all selected scenarios. The higher the number of scenarios
considered within the optimization problem, the more robust the
identified solutions will be. However, increasing the number of
scenarios considered within the problem can reduce the chance
of feasibility and/or optimality in any given scenario.

(c) Solution process: Since the total number of objective-scenario
combinations (meta-objectives) utilizing in MSMOP, is often
significantly high, we utilize the scalarizing function (3) to
generate Pareto optimal solutions by solving it multiple times, by
any appropriate single-objective solver, incorporating different
reference points.
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Fig. 1. Schematic of the proposed multi-scenario multi-objective robust optimization approach.

3. Uncertainty/Robustness analysis: In this study, following the
previous variants of MORDM, the solutions identified in step 2 are re-
evaluated over a wider range of plausible scenarios to assess their
robustness and investigate the impacts of deep uncertainty on the
objective functions.

4. Scenario discovery/analysis: Scenario discovery methods aim at
identifying sub-spaces/subsets in the uncertainty space/set Q where
candidate solutions perform poorly. Different algorithms have been
developed for this purpose in the literature (e.g., Bryant and Lempert
2010; Dalal et al., 2013; Kwakkel and Jaxa-Rozen 2016). However,
as an alternative to available scenario discovery methods, we pro-
pose a novel method to determine vulnerable scenarios using ideal
points and information about feasible regions in various scenarios.
To this end, first, we calculate the ideal points for all objective
functions in all new randomly generated scenarios in the previous
step. Note that these randomly generated scenarios may not be the
same as the scenarios considered in the optimization problem. Thus
we need to calculate the best possible values for each objective
(hereinafter called ideal values) in each randomly generated sce-
nario. These ideal values are computed by solving the associated
single-scenario single-objective optimization problem described in
Section 2.1. Comparing the differences between the ideal values in
various scenarios, will help us identify vulnerable scenarios and the
combinations of the deeply uncertain parameters causing the poor
performances in these vulnerable scenarios. This novel way of sce-
nario analysis/discovery will be illustrated in more detail through
the case study in Section 4.3.

2.4. Robustness measures and trade-offs analysis

Following recent studies and for comparison purposes, in this paper,
we use the mean/standard deviation (Hamarat et al., 2014) and the
domain criterion (Starr 1963) to measure the robustness for each objec-
tive and avoid objectives aggregation to compare the robustness
trade-offs between the objectives. The mean/standard deviation mea-
sure is used to compare the results with Eker and Kwakkel (2018), while
the domain criterion measure is utilized mostly for scenario analyzes
and relevant discussions. It is also used in comparison with the results of
Quinn et al. (2017). These two robustness measures, which are used in
robustness analyses and scenario discovery (not in optimization), are
briefly described in this section.

2.4.1. Mean/standard deviation (signal-to-noise ratio)

The mean/standard deviation measure for solution j in objective
function i, representing by R;;, can be formulated as follows (Eker and
Kwakkel 2018):

M(f,-}iﬁ 1)
R; = a(ﬁﬁ—’_ 1)

u(fi +1) xo(f,+1); i £ s 10 be minimized;p=1,...,5.
4

if f; is to be maximized;p =1,...,s,

©“

where u(-) is the mean over the set of scenarios for the ith objective
function in the case of implementing the solution j, and ¢ is the standard
deviation.

2.4.2. Domain criterion

The domain criterion is a satisficing robustness measure, introduced
by Starr (1963), which directly applies the decision maker’s preferences
on minimum acceptable values for each objective function. This mea-
sure mirrors the fraction/percentage of all considered scenarios in which
the minimum acceptable thresholds are met (i.e., the percentage/num-
ber of scenarios in which the solutions are meeting the criterion.). The
robustness value lies between 0 and 1, where 1 shows that the given
criterion is met in all scenarios for the relevant candidate solution, and
0 means that the given criterion is not met in any scenario.

3. Case study - The shallow lake problem

To demonstrate the proposed multi-scenario MORO, we use the
shallow lake problem (Carpenter et al., 1999), which is often used to
demonstrate and benchmark methodological developments for decision
making under deep uncertainty (Bartholomew and Kwakkel 2020; Eker
and Kwakkel 2018; Hadka et al., 2015; Lempert and Collins 2007; Quinn
et al., 2017; Singh et al., 2015; Ward et al., 2015). In this stylized de-
cision making problem, a city is located next to a shallow lake.
Anthropogenic pollution produced by the city goes into the lake. If a
eutrophication threshold is passed, the lake irreversible transitions to a
eutrophic state. The decision problem is to decide on an annual pollution
control strategy that gives rise to the highest economic benefits without
passing a critical threshold. To complicate the decision problem, next to
the controllable anthropogenic inflow, there is also uncontrollable nat-
ural inflow. Phosphorus pollution levels can be calculated by the
following dimensionless differential equation (Quinn et al., 2017):

P,
P, = (1 7b)P,,1 +W

+x+ 4 (5)
where P represents the phosphorus level in the lake, x describes the
phosphorus/anthropogenic pollution input, ¢ ~ logn(y, %) refers to the
natural pollution input, t indicates the time period, and b and q are the
parameters of the lake model which control the rate at which pollution is
lost from the lake and recycled from the sediment.

3.1. Objective functions

Following the literature on the shallow lake problem (Bartholomew
and Kwakkel 2020; Eker and Kwakkel 2018; Hadka et al., 2015; Quinn
etal., 2017; Ward et al., 2015), we consider four conflicting objectives as
follows:

3.1.1. Economic utility (to be maximized)

The first objective function is the economic utility by releasing
anthropogenic phosphorus pollution into the lake. Following Quinn
etal. (2017) and Ward et al. (2015), the economic utility is computed as
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the average of the discounted benefit in N simulations of T years of
random natural inflows. In the first objective function

ax,d', (6)

« is an economic constant (fixed at 0.04), § is a discount rate, and x,
is the decision variable describing the phosphorus pollution level that
can be released in year t for the nth random natural inflows simulation/
realization.

3.1.2. Phosphorus pollution (to be minimized)

Minimizing the maximum average phosphorus level is considered as
an environmental objective for water quality targets. This objective
function is naturally conflicting with the economic objective. If P;,;(x)
represents the concentration of the phosphorus pollution in year t for the
nth random natural inflows simulation, the second objective function is

&
fo(x) = maxieq...1y {N EP,,,} @

3.1.3. Inertia (to be maximized)

To avoid extremely rapid declines in phosphorus pollution in one
year, which needs a massive amount of investments in infrastructure and
to control the maintain decision inertia, the decision maker can set an
annual reduction limit (Ijjm;) on phosphorus pollution. Therefore, in the
third objective function

' | N T-1 1, Xt — X < Liimit
f (X) = m Z Z @y, Where ¢, = {() otherwise,

n=1 =1 ’

®

the inertia of a decision is maximized. Inertia is defined as the average
fraction of (T-1) planning years over N random natural inflows simu-
lations, where inter-annual pollution declines are lower than [j,;% of
the maximum possible reduction. In this paper, following (Eker and
Kwakkel 2018; Quinn et al., 2017; Ward et al., 2015), Ijjm; is set as 0.02
(i.e. 20% of the maximum possible reduction).

3.1.4. Reliability (to be maximized)
The last objective function

R 1,
f4(X) = ﬁ Z Zgnn where 6, = {0.

n=1 r=1

P m < P crit
Py > Py ©
also called an average reliability of a decision, reflects the decision
maker’s desire in abstaining from the eutrophication of the lake which
occurs if the concentration of the phosphorus in the lake passes a critical
threshold (P). If the phosphorus level in the lake lies below P in a
given period, the reliability index 6, is 1 and 0 otherwise. Thus, maxi-
mizing the reliability means maximizing the periods (out of T and across
N simulations) in which the phosphorus level in the lake stays below the
critical threshold P.

3.2. Uncertainties and scenario selection

Two different degrees/levels of uncertainty (see, e.g., Shavazipour
and Stewart (2019) or Kwakkel and Walker (2010) for the definitions of
various degrees or levels of uncertainty), i.e., mild (also called sto-
chastic) and deep, are present in the shallow lake problem. The mild
uncertainty in natural pollution inflow (¢) is handled by the average
values of random samples generating by a log-normal distribution. The
mean (¢) and standard deviation (o) of the log-normal distribution, the
discount factor (), the natural recycling rate (q), and the loss rate (b) are
the deeply uncertain parameters in this problem. Following previous
work (Bartholomew and Kwakkel 2020; Eker and Kwakkel 2018; Quinn
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etal., 2017), these five deeply uncertain parameters and their ranges are
shown in Table 1. A combination of the values of these five deeply un-
certain parameters, sampled from their ranges, generates a scenario
from the scenario space Q. For scenario selection, we followed Eker and
Kwakkel (2018) in selecting four more scenarios in addition to the
baseline scenario and, thus, consider the same scenarios (by utilizing the
same values for deeply uncertain parameters constructing those four
scenarios). For more information about how these four scenarios were
selected, see Eker and Kwakkel (2018, Section 4.1, pages 205-207). The
last five columns of Table 1 denote these five selected scenarios.

3.3. Multi-scenario inter-temporal open-loop control formulation for the
lake problem

Different variants of the shallow lake problem have been proposed in
the literature. The widely known ones are inter-temporal open-loop
control (Eker and Kwakkel 2018; Hadka et al., 2015; Quinn et al., 2017;
Singh et al., 2015; Ward et al., 2015), direct policy search (Quinn et al.,
2017), and planned adaptive direct policy search (Bartholomew and
Kwakkel 2020). In this paper, we use the often used inter-temporal open
loop control version in a multi-scenario manner which includes T deci-
sion variables.

The optimization formulation for this multi-scenario inter-temporal
open-loop control version of the lake problem is:

minimize {7fip(x)7ﬁ/7(x)ﬂ 7](3/7(’(): fﬁ‘p(x)} pE Q (10)
s.t. 0.0001 <x, <0.1, forallz,

where x = (xg, X1, ..., XT_1) is a vector of decision variables, T indicates
the length of the planning horizon, x; represents the amount of phos-
phorus pollution to be released in year t, which is limited to 0.1. As
before, f;, refers to objective function i (i = 1, 2, 3, 4) in scenario p and Q
is the scenario space.

4. Results

In this section, we illustrate the proposed multi-scenario MORO step
by step, following the steps shown in Fig. 1 describes in Section 2.3. To
assess the efficacy of the novel approach, we compare the results with
those of the previous studies.

4.1. Steps 1 and 2: Problem setting, scenario selection and generating
candidate solutions

We consider the formulation of the lake problem (10) with four
objective functions in five scenarios for T = 100 years and N = 100
random realizations of the natural inflows. We follow the selection
approach of Eker and Kwakkel (2018) and thus use the same scenarios.
These five scenarios are presented in Table 1. Therefore, to generate
solutions, we need to solve a multi-scenario multi-objective optimiza-
tion problem with 100 decision variables and 20 objective functions (5
scenarios x 4 objectives per scenario).

Based on the above-mentioned settings and the estimated worst
possible values of the objective functions (6)-(9), the nadir points for the
second objective (pollution) were set as 15 in all five scenarios, and for
the other three objectives in all selected scenarios 0. Ideal points, pre-
senting in Table 2, were calculated by solving the relevant single-
scenario single-objective optimization problems for each objective
function in each considered scenario. The utopian values were calcu-
lated by adding (for objectives to be maximized) or subtracting (for
objective to be minimized) a small scalar of 0.0001 to (from) the ideal
points. An ideal point represents the optimal performance that can be
reached for each objective in a given scenario. For instance, as shown in
Table 2, the best possible performance for the first objective (utility) in
the fourth scenario was 0.581, which is about two-third of the maximum
potential performance in the first three scenarios, and around one-third
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Table 1
Deeply uncertain parameters and five reference scenarios.
Deeply uncertain variables Scenarios
Notation Description Range 1 2 3 4 5
b Pollution rate of removal through natural outflows [0.1, 0.45] 0.193 0.141 0.111 0.272 0.420
q Pollution recycling rate through natural processes [2.0, 4.5] 3.049 2.585 2.969 2.971 2
u" Mean of natural pollution inflows [0.01, 0.05] 0.017 0.012 0.010 0.033 0.020
c Standard deviation of natural inflows [0.001, 0.005] 0.0021 0.0024 0.0037 0.0046 0.0017
8 Utility discount factor [0.93, 0.99] 0.953 0.950 0.957 0.931 0.980
Table 2 filtering. In this way, we can simultaneously save computational re-
able L L . sources and improve the quality of the solutions. We will return to this
Ideal values for each objective function in each selected scenario. . . .
later in this section.
Scenarios Objective functions Each poly-line of the parallel coordinate plot in Fig. 2 represents the
Utility Pollution Inertia Reliability performance of a single solution on all four objectives in each of the five
1 0.846 0.097 1.0 1.0 scenarios. Different colors, in Fig. 2, distinguish the solutions in terms of
2 0.802 0.111 L.0 Lo their performance on the utility objective in the fifth scenario (ss). The
3 0.908 0.102 1.0 1.0 higher the utilitv. the lichter the col. llow in the colored . A
4 0.581 0.132 1.0 10 %g ert eil.,ltl ity, the lig te':rt e color (.ye ow {n e co. ore'z version). .
5 1.735 0.057 1.0 1.0 higher utility leads to a higher pollution, which results in lower reli-

of the performance in the best-case scenario (ss). These ideal values are
represented the effect of deep uncertainty and highlight some of the
problem’s limitations, even before identifying the solution candidate.
Given this setup, we use the achievement scalarizing function and
solve the resulting optimization problem using the Sequential Least
Squares Programming (SLSQP) algorithm (Kraft 1994) available from
the SciPy module (Oliphant 2007). To generate different Pareto optimal
solutions we followed the Mueller-Gritschneder et al. (2009) method to
pre-specify With the 50 reference points and weights wy =1/
(zf‘,;dir —z5°) (i=1,...,4, p=1,...,5) we get 50 different Pareto optimal
solutions for the original multi-objective problem. In practice, the
number of solutions is to be set by the decision maker. Here, we chose 50
for comparison purposes, as it is the number of solutions considered by
Eker and Kwakkel (2018) in their robustness analysis. Note that the 50
solutions plotting in Eker and Kwakkel (2018) were the brushed solu-
tions after all the filtering. However, a set of 50 (or even fewer) solutions
generated by the proposed multi-scenario MORO can reasonably (out)
perform these. Because of the simultaneous consideration of the five
selected scenarios in multi-scenario MORO, there is no need for further

In_s1 In_s2 In_s3 1In_s4 In_s5 Pol_sl1 Pol_s2 Pol_s3 Pol_s4 Pol_s5 Re_sl
b | 1 1 1 1= 104 104 104 10+ 104
A
0.8 0.8 0.8 08, 028 ‘\\ 8 8 8
INVRYS
0.6 *0;67*0:6’;*0:6’#0:6’*‘\3\; 6
0.4 0.4 0.4 0.4 0.4 4 4
0.2 0.2 0.2 0.2 0.2
0 0 0 0- 0 0 0™ 0= (e o~

1

ability values. The opposite is visible for solutions with higher reliability
values, shown with darker colors (dark purple in the colored version),
which highlights the trade-off between pollution/reliability and utility.

Another observation is that there is no significant trade-off between
scenarios in each objective, particularly between the performances in
utility and inertia in different scenarios. For example, the highest values
for utility in different scenarios are from the same solution, or inertia
values in all five scenarios are similar in each solution (visible by hori-
zontal lines for inertia over the five scenarios in Fig. 2). This particular
characteristic of the lake problem may prevent the explicit study of the
trade-offs between scenarios and cause some difficulty in robustness and
trade-off comparisons. We return to this point in Section 5.

4.2. Step 3: Robustness analysis

To re-evaluate the 50 solutions and assess their robustness, we
generate an ensemble of 1000 randomly generated scenarios (using
Latin Hypercube Sampling). The 50 solutions are re-evaluated over
these scenarios to analyze and compare their robustness across a broader
range of scenarios. Based on this ensemble of 1000 scenarios, the
robustness of the candidate solutions is determined using the domain

Re_s2 Re_s3 Re_s4 Re_s5 U_si U_s2 U_s3 U_s4 U_s5

1. 1 1 1

1.75

1.6

Fig. 2. Comparing candidate solutions based on all four objectives in five selected scenarios. U_sp: Utility in scenario p, Pol_sp: Pollution in scenario p, In_sp: Inertia

in scenario p, Re_sp: Reliability in scenario p.
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criterion and the mean/standard deviation.

4.2.1. Robustness trade-offs with mean/standard deviation

In this section, we use the mean/standard deviation as the robustness
measure to compare the results identified with multi-scenario MORO.
solution (j) in each objective function (i), using (4). Fig. 3 shows the
mean/standard robustness trade-offs of the generated candidate solu-
tions over the 1000 random scenarios. The color code is similar to the
previous figure; i.e., the higher the utility robustness, the lighter the
color. Also, conflicts between the robustness values in reliability and
utility are vivid when the poly-lines cross between the last two columns
representing the robustness trade-offs between these two objectives.
Note that since we are minimizing pollution, lower values of robustness
are better for this objective. Thus, the relevant column, representing the
robustness of pollution, are inverted in the plot to unify the robustness
improvement direction, which is upwards (1). Lines higher up in the plot
describe solutions with higher robustness on all objectives.

Fig. 4 compares the robustness trade-offs of the solutions generated
by the proposed multi-scenario MORO, the solutions of Eker and
Kwakkel (2018), and the solutions produced by Quinn et al. (2017). As
seen in this figure, the solutions generated by multi-scenario MORO
result in a wider variety of robustness trade-offs compared to the solu-
tions produced by the other methods. For example, the maximum
robustness value for utility in multi-scenario MORDM (Eker and
Kwakkel 2018) and MORDM (Quinn et al., 2017) were, respectively,
1.21 and 1.16, while almost a half of the solutions generated by
multi-scenario MORO provided better values (up to 1.51). Similar pat-
terns are valid for the robustness of all three other objectives. Moreover,
as mentioned, the trade-offs between reliability and utility are evident
among the solutions produced by multi-scenario MORO. These
trade-offs are hardly visible with the solutions of the other methods.
There are two reasons why the other methods could not find solutions
with wider robustness trade-offs: 1) Scenario dependency of their solu-
tions since their search area has a lower dimension (limiting the search
to a hyperplane constructed by one scenario at a time). For instance,
solutions with exceptionally low performance in one scenario (i.e.,
dominated solutions in that scenario) may have high performance in
many other scenarios (i.e., non-dominated in many different scenarios).
These solutions are not identified as non-dominated solutions when the
search is confined to only a single-scenario space. 2) Some of the solu-
tions (which represent wider trade-offs) may be eliminated from the
final list after applying the reliability constraint (Quinn et al., 2017; Eker
and Kwakkel 2018) (with a similar reason to the previous item).

Robustness of Inertia(t)
2.05 9

Robustness of Pollution(t)
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4.2.2. Robustness trade-offs with domain criterion

The second robustness measure we use is the domain criterion. The
following criteria are considered, based on previous studies using the
lake problem (Quinn et al., 2017; Bartholomew and Kwakkel 2020):

. Utility >0.2

. Reliability >0.95

. Pollution < Critical point (Pg;)
. Inertia >0.99.

A WN =

In practice, these criteria would be set by a decision maker. For each
criterion from the above list, we calculated the number of solutions
meeting that criteria after re-evaluation over the ensemble of 1000
randomly generated scenarios in Section 4.2. Then ranked and sorted
them based on their robustness in that criterion. Over the rank-sorted
solutions, the robustness scores, on the following criteria, are
described in Fig. 5.

Fig. 6 compares the distributions of the robustness for the 50
candidate solutions generated by multi-scenario MORO, the 50 brushed
solutions of Eker and Kwakkel (2018), and the 86 brushed solutions
produced by Quinn et al. (2017). Note that all the solutions are
re-evaluated over the same ensemble of 1000 randomly generated sce-
narios. As seen in Fig. 6(b), in 60% of the generated solutions by
multi-scenario MORO and in 26% of the solutions of the multi-scenario
MORDM (Eker and Kwakkel 2018), the robustness values for utility were
1, meaning that the utility values met the domain criterion of 0.2 in all
1000 random scenarios for these solutions. In contrast, none of the so-
lutions of the MORDM (Quinn et al., 2017) reached this value (the utility
robustness value of 1). The maximum value of the utility robustness
gained by a solution of Quinn et al. (2017) was 62.9%. The robustness
value of 1 for inertia is observed in about 34% of the solutions generated
by multi-scenario MORO, while, only one solution (amongst the ones
produced by the MORDM (Quinn et al., 2017)) could obtain a similar
value of robustness for inertia (see Fig. 6(d)). All the solutions generated
by the multi-scenario MORDM (Eker and Kwakkel 2018) have the
robustness value of 0 for inertia. Nevertheless, no solution (among the
generated solutions by either approach) provides the robustness value 1
for reliability and pollution (Fig. 6(a) and (c)). The maximum robustness
percentage of reliability and pollution, among the solutions of
multi-scenario MORO, were 76.9% and 76.7%, respectively. Corre-
sponding values amongst the solutions of Quinn et al. (2017) were,
respectively, 63.4% and 63.1%. Also, the maximum robustness per-
centage of reliability and pollution obtained by the solutions of Eker and

Robustness of Reliability(1)
1.4 1.55

Robustness of Utility(t)

Robustness
of Utility

1.9 ———

1.5

TR

1.6 —

1.2

1.5

1.4

1.1

Fig. 3. The robustness trade-offs of the candidate solutions with the mean/std. deviation measure.
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Multi-scenario MORO

Multi-scenarios MORDM (Eker & Kwakkel 2018)

MORDM (Quinn et al. 2017)
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Fig. 4. Comparing the robustness trade-offs of the 50 candidate solutions generated by the proposed multi-scenario MORO, the 50 brushed solutions of Eker and
Kwakkel (2018), and the 86 brushed solutions of Quinn et al. (2017) with the mean/std. deviation measure.



B. Shavazipour et al.

Fraction Inertia Fraction Pollution

1 19

0.8

Environmental Modelling and Software 144 (2021) 105134

Fraction Reliability Fraction Utility

14 14

Utility

0.8

0.6

0.6

0.4+

0.2

0~ 0-

0.4

0.2

04

0

Fig. 5. The robustness trade-offs of the candidate solutions with the domain criterion measure for the ranked-sorted solutions (the higher the utility robustness, the

lighter the colors).
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Fig. 6. Comparing the robustness distributions of the 50 candidate solutions generated by the proposed multi-scenario MORO, the 50 solutions of Eker and Kwakkel
(2018), and the 86 solutions of Quinn et al. (2017), with the domain criterion measure.

Kwakkel (2018) were 63.7% and 63.4%, respectively. This result is also
in line with the results of a similar analysis in Quinn et al. (2017) and
Bartholomew and Kwakkel (2020). In general, two main reasons may
cause these results. First, some parts of the Pareto front are left unex-
plored (i.e., the set of generated solutions is not diverse enough to cover
the entire front). Second, there may be no feasible solution in those
scenarios that can satisfy the given criterion. In the next section, through
scenario analysis, we will show that there is no feasible solution meeting

10

the domain criterion on reliability and pollution (as can also be seen in
Fig. 6(a) and (c)) in about 23% of the scenarios. This means that in
around 23% of the scenarios, the reliability criterion cannot be satisfied.

The values for the deeply uncertain parameters of these scenarios are
presented in Fig. 8. Moreover, comparing the left-side plots (a and c) in
Fig. 6, demonstrates a strong correlation between the robustness of
reliability and pollution (particularly amidst the solutions of multi-
scenario MORO) which is expected, as minimum pollution values give
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rise to high-reliability values. This strong correlation is even more
visible by tracing the straight lines between pollution and reliability in
Fig. 5. Apart from these insights, in Fig. 5, we also see that the existing
trade-offs between reliability and utility are again visible. The color
codes are the same as Fig. 3, i.e., the higher the utility robustness, the
lighter the colors.

Comparing the robustness of the solutions generated by multi-
scenario MORO and the ones produced by the two other methods (i.e.,
MORDM (Quinn et al., 2017) and multi-scenario MORDM (Eker and
Kwakkel 2018)) with the domain criterion measure, as portrayed in
Fig. 7, confirms the superiority of multi-scenario MORO. For instance,
multi-scenario MORO identifies Pareto optimal solutions that provide a
broader range of robustness trade-offs. They also help decision makers to
gain more insights into the problem than the previous variants of
MORDM.

In the next section, we investigate in more detail the feasibility of the
domain criteria through scenario analysis. Furthermore, we analyze
vulnerable scenarios to identify the combinations of deeply uncertain
parameters causing poor performance in those scenarios.

4.3. Step 4: Scenario analysis/discovery

To check the feasibility of meeting the domain criterion for each
objective function in any scenario, first, we calculate the ideal points for
all four objective functions in all 1000 scenarios. Effectively, we are
searching for the best possible values for each objective under the con-
ditions of each scenario; i.e., “what is the best that could happen in every
scenario?”. The ideal points can be calculated by solving a single-
scenario single-objective problem using for each objective function in
each scenario. This required solving 4 x 1000 = 4000 problems for our
case study. However, the total computation time for solving all these
problems is less than a couple of hours on a personal laptop and we only
need to calculate the ideal points once. Indeed, the ideal point calcula-
tions are related to the best-/worst-case discovery (Halim et al., 2016).

Table 3 represents the minimum and maximum values for each
objective function among the components of the ideal points across all
1000 scenarios (i.e., the best possible values for each objective in the
best- and worst-case scenario), describing the best and the worst per-
formances for each objective. As seen in this table, the corresponding
ideal values for reliability in some (or at least in one) scenarios are very
close to 0 (min = 0.04). This means that, in those scenarios, there is no
feasible solution (even in the feasible region of the single-scenario sin-
gle-objective problem) with a reliability higher than 0.04, which is far
less than the domain criterion for reliability at 0.95. Similarly, the ideal
values for pollution in some (or at least one) scenarios are more than 10,
which is also far more than the maximum values of the critical points in
any scenarios (i.e., 0.9165). Counting the scenarios with the reliability
of less than 0.95 indicates 231/1000 scenarios, which confirms the
claim that no feasible solutions meet the reliability criterion (reliability
> 0.95) in about 23% of the scenarios.

Fig. 8 shows the combination of deeply uncertain parameter values
(listed in Table 1) leading to poor performance in the ensemble of 1000
scenarios. Each dot represents a scenario. Orange dots (e) correspond to
scenarios where the reliability criterion is not met, while blue dots (e)
belong to scenarios that met the reliability criterion (reliability > 0.95).
Similar to the results of the sensitivity analysis of Quinn et al. (2017), the
first plot at the bottom left describes the area in which some nonlinear
combination of small values of g and b results in poor performance on
the reliability objective. Of course, other uncertain parameters also have
some impacts. For instance, higher values of mean natural pollution can
also contribute to a failure on reliability, even for higher values of g, if b
is not large enough. Overall, it seems that for b > 0.3 we rarely have a
failure on the reliability objective, giving the decision maker a new
insight into the problem. This point is more visible in Fig. 9 showing the
vulnerable combinations of deeply uncertain parameters. As seen in this
figure, only few failures were observable for b > 0.3 and none for b >
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0.34. Also, no failure was recorded for 5 > 0.98.

Investigating the feasible region and ideal values for each objective
across an ensemble of scenarios fosters the understanding of the
behavior of deeply uncertain parameters in combination with each
other. The directed search (Kwakkel 2017; Moallemi et al., 2020) in
some extreme areas of the uncertainty space, provides us with detailed
insights into the system dynamics in these areas. Because calculating the
ideal values and the proposed scenario analysis do not need any prior
knowledge about the solutions and their robustness, this kind of analysis
can be done even before solution generation. Thus, one can get more
insight into the problem and modify the model or preferences, if needed,
before determining solutions, potentially saving time and energy.

5. Discussion

As mentioned in the introduction, previous variants of MORDM only
considered a single scenario at a time in the search for the candidate
solutions-leaving MORO aside. Therefore, the feasibility of the gener-
ated solutions in a different scenario is questionable, and, in the best-
case, the solutions are scenario-dependent, if not infeasible. For
example, Quinn et al. (2017) added a hard constraint of reliability >
0.85 to the intertemporal model of the lake problem in a reference
scenario (which is the same as ss5 in this study). Then, they solved the
four-objective optimization model with the BORG MOEA (Hadka and
Reed 2013) to generate candidate solutions that were subsequently
stress-tested (re-evaluated) across 1000 scenarios for robustness anal-
ysis. They used the domain criterion as their robustness measure and
their second criterion was reliability >0.95. They showed that their
generated solutions met this criterion only in around 60% of scenarios
(see Figure 8 in (Quinn et al., 2017)), that is quite similar to the results
described in Figs. 6(a) and 7. However, they could not find any failure
mechanism on the reliability criterion. The reason is that there exists no
feasible solution with a reliability >0.95 in around 23% of the scenarios,
as described in Section 4.3. Identifying such a failure mechanism is
almost impossible if only one scenario is considered in the search phase.

As another example, Bartholomew and Kwakkel (2020) set the
domain criterion of utility > 0.75. Let us set this criterion as a hard
constraint in the model. Suppose we separately solve the lake problem
(with this constraint) for each selected scenario. In that case, we cannot
find any feasible solution for the optimization problem related to the
fourth scenario in which the ideal values for the utility are less than 0.75
(see Table 2). Utility has undesired values in more than 33% of the
scenarios. Therefore, if we generate solutions based on any other four
scenarios, none of the solutions can meet this constraint ‘utility >0.75’
in the fourth scenario (i.e., they are infeasible in this scenario), even
though they are feasible in all other four scenarios. Accordingly, some
solutions identified by the previous variant of MORDM, which does not
consider this scenario (or some similar scenarios), are infeasible in some
scenarios in terms of satisfying the constraint of utility > 0.75. In other
words, if the set of scenarios considering as part of the search phase of
MORDM does not contain scenarios causing a particular type of failure
mechanism, we cannot find solutions that can cope with this failure.

In general, identifying solutions for some particular scenario cannot
guarantee the feasibility of the solutions in any other scenario; i.e.,
scenario-dependent solutions may not be feasible in some other sce-
narios. This feasibility robustness (i.e., the solution is feasible in all (or in
a wide variety of) scenarios) is an essential factor that must be somehow
checked or guaranteed in the search phase. To the best of our knowl-
edge, this concept of robustness has not received much attention from
the authors developing methods for dealing with deep uncertainty. One
reason for this may be the particular characteristics of the lake problem.
As the most popular benchmark problem for methodological de-
velopments for decision making under deep uncertainty, it is weak in
representing the trade-offs between scenarios. Consequently, the
simultaneous consideration of multiple scenarios within the optimiza-
tion problem, like multi-scenario MORO, helps in verifying the
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Fig. 7. Comparing the robustness of the 50 candidate solutions generated by the proposed multi-scenario MORO, the 50 brushed solutions of Eker and Kwakkel
(2018), and the 86 brushed solutions of Quinn et al. (2017), with the domain criterion measure.All the solutions are re-evaluated over the same ensemble of 1000
random scenarios generated in this study.

12



B. Shavazipour et al.

Environmental Modelling and Software 144 (2021) 105134

] L\l Al
0925 0950 0975
delta

006

L] T L)
00000 00025 00050
stdev

]
002
mean

]
0.00 004

Fig. 8. Combinations of uncertain parameter values leading to failure in reliability.

Table 3
Maximum and minimum values for each objective functions among the com-
ponents of the ideal points across 1000 randomly generated scenarios.

Objective functions

Utility Pollution Inertia Reliability
min 0.5712 0.0159 1.00 0.04
max 1.7348 10.2174 1.00 1.00

feasibility of the generated solutions in various scenarios during the
search process. However, one cannot consider an infinite number of
scenarios. Therefore, it is vital to study the effects of the number of
scenarios considered within the optimization problem and explore the
trade-offs between the overall robustness and optimality in any given
scenario. This investigation is performed in the next sections.

5.1. Effects of the number of scenarios

In this section, we study the effects of different numbers of scenarios
within multi-scenario MORO. Again, we consider the lake problem (10)
with four objectives, but with a different number of scenarios, namely 1,
5,9, and 50 scenarios. These problems, which respectively include 4, 20,
36, and 200 meta-objectives, are solved utilizing achievement scalariz-
ing functions with 50 reference points to generate different Pareto
optimal solutions. Note that, when we compare all generated solutions
in a particular dimension of the scenario space (e.g., 1D or single sce-
nario comparisons in Table 4), some solutions that were non-dominated
in the higher dimension may dominate in the lower dimensions and no
longer lie in the Pareto set. These solutions are removed and, therefore,
the number of solutions considered in comparisons may be less than
fifty.

We compare the solutions found through the above-mentioned
models for the five scenarios described in Table 1. In the model with

b q delta mean std
0.45 4.5 0.99 0.05 0.005
0.45 4.54 0.99 0.05

0.01

Fig. 9. Combinations of uncertain parameter values leading to failure in reliability.
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Table 4
Percentage of the solutions that remain in the Pareto set for each scenario for
each model. Red and green fonts describe the worst and the best, respectively.

Number of scenarios Scenarios

in multi-scenario MORO 5 Sy S5 Sy Ss
50 (5, .. 550) 38 24% 18% 16% 16% 32%
9 (51, 5) 46 35% 30% 35% 26% 26%
5 (Sys s S5) 49 61% 63% 61% 55% 29%
1 (s) 39 48% 39% 39% 39% 33%
1(sy) 34 64% 74% 51% 62% 41%
1 (s5) 33 38% 41% 47% 38% 35%
1(s,) 32 63% 55% 52% T79% 45%
1 (s5) 33 47% 53% 40% 56% 63%

nine scenarios, in addition to these five scenarios, four extra scenarios
(the same scenarios utilized by Bartholomew and Kwakkel (2020,
Table 2, page 127)) are also considered. Moreover, we consider 41
additional scenarios from the set of randomly generated scenarios in the
model with 50 scenarios. Table 4 portrays the results of this comparison.
The number of scenarios utilizing in the optimization problem has been
shown in column 1, while the second column shows the total number of
solutions in the Pareto set for each model in the 5D scenario space
constructing by the first five scenarios. The percentage of the solutions
that remain in the Pareto set when evaluated in each scenario is
described in columns 3 to 7. We merge all the solutions found by all
models (multi-scenario multi-objective optimization problems with 1,5,
9, and 50 scenarios), identify the non-dominated solutions in each sce-
nario, and classify them according to the models that generated them.
As seen in Table 4, in general, the percentage of the solutions that
remain in the Pareto set for any single scenario decreases by increasing
the number of scenarios considered within the optimization problem,
displaying the price of robustness. This observation is also in-line with
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the results of Bartholomew and Kwakkel (2020). Moreover, the solutions
generated by the five scenarios optimization problem perform relatively
well, especially in the first four scenarios in comparison with the results
from the other optimization problems. Therefore, there is not much loss
in the optimality in the first four scenarios compared to the solutions
generating by the other models. In contrast, the optimality loss (the price
of robustness) is high in the model with 9 and 50 scenarios.

Note that not all solutions to each single-scenario optimization
problem remain in the Pareto set of that particular scenario, mainly
because of the stochastic nature of the natural flows in the lake problem.
This random variation of the natural flows causes some dominance is-
sues in the non-dominated sorting calculation, i.e., multiple evaluations
of a decision may give rise to some close but not the same values for the
objective functions. In fact, some solutions are dominated because of the
random values set by the model for the natural flows in each evaluation,
not because of the existence of any better solutions. This issue also
questions the suitability of the lake problem for robustness and trade-off
comparisons.

5.2. Robustness over the randomly generated scenarios

The domain criterion robustness of the solutions, generated by 50-,
9-, 5- and single-scenario models, is presented in Fig. 10. The larger the
number of scenarios considered within the optimization problem
(especially for more than five scenarios), the higher the robustness
values on reliability, pollution, and inertia objectives after re-
evaluation. This means that the optimization problem involving 50
scenarios largely dominates the solutions found for the 9-scenario
optimization problem. The inverse is observed for the utility objective.
It seems that by increasing the number of scenarios that is simulta-
neously considered within the optimization problem, the solutions are
increasingly biased towards higher reliability at the expense of utility.
The individual performance of the solutions found for the 5-scenario
optimization formulation, as shown in Fig. 10 with blue lines, show a
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Fig. 10. Comparing the robustness of solutions generated by 50-, 9-, 5- and single-scenario models (domain criterion measure).
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moderate behavior. In all objective functions, the robustness of the so-
lutions produced by the 5-scenario formulation lies somewhere in the
middle of the others, demonstrating more balanced solutions. However,
utilizing different reference points for each optimization formulation
can generate various solutions that can completely change the story.
Indeed, the decision maker can steer the solution process towards the
area of interest by providing relevant reference points. Therefore,
determining the reference points is an important step in multi-scenario
MORO. Furthermore, the trade-off diversity between the objectives
and the robustness ranges is not visible in Fig. 10, highlighting the need
for a different visualization. Accordingly, Fig. 11 is used to investigate
these two issues.

As seen in Fig. 11, a similar pattern is observed across the different
optimization formulations, for both the domain criterion and the mean/
standard deviation robustness measure. The robustness ranges are
almost the same across formulations, while the trade-off diversity be-
tween objectives varies. The main reason, again, is because of the set of
chosen reference points. To pre-determine the reference points, we use
the method proposed by Mueller-Gritschneder et al. (2009), in which the
extreme points together with some evenly distributed points on the
convex hull of all extreme points are considered as the reference points
to ensure diversity. Nonetheless, in higher dimensions (i.e., when we
consider more scenarios in the optimization problem), to cover the
whole space, one needs to generate more solutions compared to lower
dimensional formulations. For example, the number of extreme points in
the model with four objectives and 1, 5, 9, and 50 scenarios is 4, 20, 36,
and 200, respectively. Therefore, as we generate 50 solutions for each
formulation, we cannot cover the whole objective space in the higher
dimensions, particularly for the 50-scenario formulation. This explana-
tion justifies the extreme distribution of the robustness of the solutions
generated by the 50 scenarios formulation. The lack of diversity in the
solutions produced by some single-scenario formulations can be justified
by the limited search area comparing to the optimization formulations
for five and nine scenarios. Nevertheless, once again, the particular
characteristics of the lake problem prevent further investigations and
comparison in the robustness of the solutions generating by different
models.

To sum up, there is no significant difference in the robustness of the
solutions generated by various models since there is no significant trade-
off between scenarios in each objective function in the lake problem.
Because the feasible region in all scenarios stays the same, any Pareto
optimal solution can be generated by any model if an appropriate
reference point is set. Therefore, determining the reference points and
the number of solutions to be generated are more vital than the number
of scenarios considered in the optimization model of the lake problem,
as a special case.

5.3. Computation cost

Another vital matter is the computational cost of multi-scenario
MORO (Bartholomew and Kwakkel 2020; Giudici et al., 2020). We
examine the effects of considering more scenarios within the optimiza-
tion phase of the proposed approach on computational cost. The number
of function evaluations (NFE) and the processing time for generating 50
solutions by multi-scenario MORO with 1, 5, 9 and 50 scenarios are
described in Table 5. All these models were solved 50 times (once for
each reference point) in a laptop with Intel CORE i7 CPU and 16 GB RAM.

Overall, as expected, the computation costs increased when the
number of scenarios grew. During the experiments, we noticed that the
number of function evaluations and/or the time of evaluation varied
from one reference point to another. For example, the most time-
consuming calculations were related to the reference points that
directed the search into the area in which the utility objective is maxi-
mizing. Also, the computational cost in most of the extremes was lower
than the cost of identifying the more balanced solutions. This is the
reason why the computation cost in the 50-scenario model was lower
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than in some other models.

As discussed earlier in Section 4, the solutions generated by multi-
scenario MORO (without any additional filtering) have a similar
robustness to the solutions produced by the previous variants of
MORDM (after extra filtering). The proposed multi-scenario MORO,
however, identified these solutions with fewer function evaluations. As
seen in Table 5, the number of function evaluations was less than 145
000 in s5 (the reference scenario), which is much less than 200 000
function evaluations that were used by Quinn et al. (2017) in MORDM.
Moreover, the MORDM approach, used in Quinn et al. (2017), can
hardly generate more robust solutions (if ever) even with more function
evaluations mainly because no information about other scenarios can be
considered within its optimization model. This is also true in the case of
separate consideration of multiple scenarios as performed in
multi-scenario MORDM (Eker and Kwakkel 2018). In contrast, by
increasing the computational resources (like NFE) in the proposed
multi-scenario MORO, one can include more scenarios within the opti-
mization model that boost the robustness of the generated solutions.
Furthermore, as mentioned above, we ran the proposed multi-scenario
MORO on a personal laptop, which is significantly slower than the
high-performance computer resources often used to solve different
variants of MORDM (e.g., as utilized in Bartholomew and Kwakkel
(2020)). Therefore, multi-scenario MORO is computationally more
efficient than the previous approaches for the search phase of MORDM
while considering more scenarios within the optimization formulation
and has other advantages such as representing a wider variety of
robustness trade-offs.

6. Conclusions

In various disciplines, there has been a growing interest in robust
multi-objective optimization. This topic has in parallel been explored by
researchers in both mathematical multi-objective optimization, and
decision making under deep uncertainty. The former focuses mostly on
theory developments, while the latter concentrates on practical prob-
lems. We believe that integrating the developments of these two fields
can address some current issues in robust multi-objective optimization.
One of the widely used model-based decision support frameworks in
DMDU is many-objective robust decision making (MORDM). A critical
step within the MORDM framework is the search phase, where candidate
solutions are identified using multi-objective optimization. In this step,
typically, one solves one or more single-scenario multi-objective opti-
mization problems to produce a large set of promising solutions to be
stress-tested under uncertainty. However, this solution set might not be
feasible or be dominated in other scenarios. As an alternative, others
have proposed to optimize robustness directly, but this leaves the trade-
off between optimality within individual scenarios and robustness over
the scenario set unexplored. To address these gaps, in this paper, we
have proposed a new multi-scenario multi-objective robust optimization
approach (called multi-scenario MORO) drawing on the concept of
scalarizing functions from mathematical multi-objective optimization.

In the novel approach, the performance of solutions in terms of all
objectives in all selected scenarios is evaluated within a single optimi-
zation problem. Therefore, the generated solutions are feasible in all
selected scenarios and robust efficient. Furthermore, the proposed
multi-scenario MORO enhances the robustness of the generated solu-
tions, reduces scenario dependency, and produces a wider variety of
robustness trade-offs than the previous variants of MORDM. Multi-
scenario MORO also provides the opportunity of exploring trade-offs
between optimality/feasibility in any given scenario and robustness
over a broader range of scenarios by considering different numbers of
scenarios within the optimization problem, which helps the decision
maker in discovering balanced solutions. The computation cost of multi-
scenario MORO is low compared to previous approaches.

However, there is a need for more experience in different real-life
environmental problems. As we observed in this study, the lake
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Table 5

The total number of function evaluations (NFE) and the processing time for
generating 50 solutions by multi-scenario MORO with a different number of
scenarios within the optimization model.

Multi-scenario MORO

Number of 1(s1) 1(s2) 1(s3) 1(s4) 1(ss) 5 9 50
scenarios
Total NFE 184 101 133 162 144 147 156 25
724 486 815 049 457 912 360 394
Time (sec) 5 2 3 4 4 20 39 35
092 785 543 688 303 673 378 625
Non- 39/ 34/ 33/ 32/ 33/ 49/ 50/ 50/
dominated/ 50 50 50 50 50 50 50 50
non-
duplicated

problem, as a widely used benchmark problem in robustness compari-
sons, cannot reflect the trade-offs between scenarios. Therefore, there is
a need for new benchmark problems that reflect trade-offs between
scenarios. This will be one of our future research directions.

We also proposed a novel approach for scenario discovery based on
the basic concepts of mathematical multi-objective optimization to
determine vulnerable scenarios before generating any solution. The
decision maker can learn about vulnerability and the sources of failures
even before policy determination, paving the way for considering other
solution methods like a priori and particularly interactive multi-
objective optimization methods (Miettinen et al. 2008, 2016; Mietti-
nen 1999). This interesting topic is also in our future research interests.

Last but not least, in this study, we used the inter-temporal open-loop
formulation (including static periodical decision variables) of the lake
problem for demonstrating our method and for comparisons because it is
easy to understand and is supposed to present the relationship between
scenarios and robustness of solutions. Nonetheless, the proposed multi-
scenario MORO can also be applied to solve adaptive formulations, such
as direct policy search (Quinn et al., 2017) and planned adaptive direct
policy search (Bartholomew and Kwakkel 2020). We also believe that
the best way to deal with deep uncertainty is dynamic robustness and
adaptive approaches. As another interesting future direction, our pro-
posed multi-scenario MORO can also be combined with dynamic
adaptive policy pathways (Haasnoot et al., 2013). In this way, we can
design a dynamic multi-stage multi-scenario MORO approach to identify
the best combination of the initial decisions and scenario-relevant
possible adaptation decisions (Shavazipour and Stewart 2019; Shava-
zipour et al., 2020).
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