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ABSTRACT 

The presence of many local minima in the merit function landscape is perhaps the most difficult challenge in lens design. 
We present a simplified mathematical model that illustrates why the number of local minima increases rapidly with each 
additional lens added to the imaging system. Comparisons with results obtained with lens design software are made for 
the design landscape of triplets with variable curvatures, a problem that is nontrivial, but still simple enough to be 
analyzed in detail. The mathematical model predicts how many types of local minima can exist in the landscape of the 
global optimization problem and what are, roughly, their curvatures. This model is mathematically quite general and 
might perhaps be useful as an analogy for understanding other global optimization problems as well, there where the 
number of local minima increases rapidly when more components of the same kind are added in the model of the 
problem. 
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1. INTRODUCTION 
The presence of many local minima in the merit function landscape is perhaps the most difficult challenge in lens design. 
Refraction of rays at a surface is described by a simple law that makes the design of a single lens, which is optimal for a 
given application, rather straightforward. However, increasing the number of lenses in an imaging system makes optimal 
design much more complex, because the topological structure of the design landscape changes qualitatively: the number 
of local minima that are present increases rapidly with the number of lenses. A good choice of a starting configuration 
that leads after optimization to a design with high imaging quality is then essential. The theory of primary aberrations 
may be useful for this purpose if the system to be designed is sufficiently simple (e.g. an achromatic doublet) but for 
more complex systems struggling with the labyrinthine structure of a design space with many local minima consumes a 
significant part of the total design effort.  
 
A fundamental approach for finding the best possible design is to answer two different questions: first, how many types 
of local minima can exist and what are, roughly, their constructional parameters and second, which local minimum in 
this set is the best one. In this work the first question will be addressed. It will be shown that the presence of many local 
minima in the design landscape is a fundamental problem, not one caused e.g. by imperfect design techniques. We will 
focus here on what we called earlier1 system (or design) shapes. Local minima that are close to each other in the variable 
space and have almost the same merit function values correspond to the same system shape (see Ref. 1 for more details).  
 
For a better understanding of the properties of the design landscape it is useful to organize the set of local minima that 
result from a global optimization run in networks2,3. For a typical global optimization run such a network may seem 
rather complicated and irregular4. For global optimization runs for simple systems (doublets and triplets) with variable 
curvatures, we have observed that the complexity of the network structure results from the interplay of two different 
mechanisms, one that generates new local minima when new lenses are added, and another one that destroys local 
minima when specifications (e.g. aperture and field) or design parameters that are not optimization variables are 
changed. By a careful choice of settings, we can obtain a theoretically interesting situation where only the first 
mechanism is present. If we draw only one minimum per system shape in the network, we have observed that the 
corresponding network becomes perfectly regular (the so-called ideal or fundamental network)1. The system shapes that 
appear in the fundamental network form a set having maximal diversity, i.e. in the practical runs we have studied some 
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fundamental shapes may not be present, but no new system shape could be found. When, as e.g. in the case of practical 
settings, the second mechanism is in action, the structure of the fundamental network helps us to understand not only the 
structure of the more complicated real network, but also why certain fundamental design shapes are not present in the 
corresponding design landscape1. 
 
In Secs. 2-5 we present a simplified mathematical model derived from aberration theory that captures the essence of the 
topology of fundamental networks and explains, for simple optical systems, what types of local minima can exist in the 
merit function landscape. Examples will be given in Sec. 6 for the design landscape of triplets with curvatures as 
variables, for which the design landscape is already fairly complex, but still manageable. In the Appendix a method 
called Saddle-Point Construction, which was described earlier in the specific context of lens design5, will be discussed in 
a more general context, which is appropriate for the mathematical model used in Sec.2. 

2. TOY MODEL 
A first goal of the present work is to develop the simplest possible mathematical model that explains the qualitative 
properties (e.g. the number of system shapes, the perfectly regular structure) of the fundamental network for three lenses 
(shown in Figure 3 of Ref. 1) and that predicts, roughly, the constructional parameters of all systems that appear there. 
The global optimization problem there has N=6 variables (the six surface curvatures) and there is one (paraxial) 
constraint (e.g. effective focal length constant or total track constant, see Ref. 1 for more details). A second, even more 
important goal, will be to use this model (which will be called the “toy” model, because it is simplified to the extreme) in 
order to illustrate why the number of local minima increases rapidly with each additional lens added to the imaging 
system. Finally, the toy model is mathematically so general that it might be useful as an analogy that helps understanding 
other global optimization problems as well, there where the number of local minima increases rapidly when more 
components of the same kind are added in the design model. Because of the fundamental nature of the problems 
discussed here, they are best understood when the treatment is kept at a general mathematical level. Therefore, the 
specific optical details are intentionally postponed for Sec.6.  
 
As mentioned earlier6, and as will be discussed in more detail in a subsequent paper, the starting point for the derivation 
of the toy model is thin-lens aberration theory. Since only qualitative properties are envisaged, gross approximations can 
be made, e.g. not even the refractive index of the lens material is explicitly present in the model. The refractive index 
will appear in the formulas only in the final stage, when the N variables ( )1 2, ,... Nz z z are translated into lens surface 
curvatures using the formulas given in Ref. 6.  
 
In the toy model, the simplified “merit” function is given by 
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When numerical values are required, in this work we will use a=1/100 and t=1. 
 
Note the high degree of symmetry present in this model. For any point in the variable space, the value of f will not be 
affected by permutations of the variables (e.g. by interchanging ,i kz z  for arbitrary i and k). 
 
For studying the “landscape” of the toy model, it is important to consider not only the local minima that are present, but 
other critical points as well. For handling critical points in the presence of the constraint (2) it is useful to use the 
Lagrange multiplier method7 because it preserves the symmetry of the toy model. We first compute the associated 
Lagrange function 
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where b is the so-called Lagrange multiplier, and the partial derivatives 
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A point in the landscape is a critical point if a value of b can be found such that for all k 
* / 0kf z∂ ∂ =         (5) 

The constraint (2) must also be satisfied. 
 
An important characteristic of a (non-degenerate) critical point is its so-called Morse (or Hessian) Index. Critical points 
with Morse Index 0 are local minima, those with Morse Index N are maxima, and those with a Morse Index between 1 
and N-1 are called saddle points (for more details see e.g. Ref. 6). For computing the Morse index, we eliminate e.g. the 
last variable by using the constraint equation (2) 
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The function obtained by substituting Eq.(6) in Eq.(1) will be denoted by ( )1 2 1, ,... Nf z z z −
% . We then compute the 
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2
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i j

fH
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 with i,j=1…N-1. To obtain the Morse Index, we insert in the Hessian 

the set of the first N-1 z values of the critical point and compute with standard numerical techniques the eigenvalues of 
the resulting matrix. The number of negative eigenvalues is then the Morse Index of the critical point. When one or more 
eigenvalues are zero, the critical point is degenerate. 
 
If we want to find the critical points of the toy model, solving the system of equations (4-5) directly is very difficult, 
because of the high-order polynomials appearing there. Therefore we will use two heuristic methods to find the critical 
points that are of interest for the present purpose. If a heuristic method suggests that a point is a critical point, this can be 
easily verified by solving for b e.g. the equation *

1/ 0f z∂ ∂ = and then by checking whether for the same value of b all 
other equations (5) are satisfied. For the first of the two heuristic methods, we will use the concept of the so-called 
fundamental critical point. 
 

3. FUNDAMENTAL CRITICAL POINTS 
We define the fundamental critical points as the critical points of the toy model that are also critical points of the 
function 

3
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subject to the constraint (2).  
 
We want now to find all critical points of Eq.(7). To transform this constrained problem into an unconstrained one we 
use again the Lagrange multiplier method. With μ as Lagrange multiplier, we now look for the critical points of the 
Lagrange function associated to T  
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From the equations 
* 2/ 3 0k kT z z μ∂ ∂ = − =      (9) 

it can be immediately seen that for a given critical point the absolute value of the variables is the same for all k  
/ 3kz μ ω= =       (10) 
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and we can write 

kz ω= ±       (11) 
The set of critical points is obtained by permuting the plus and minus signs in all possible ways, and ω is chosen so that 
the constraint (2) is satisfied. The critical points can then be classified according to the number of negative signs 
(denoted by MI) in the solution vector z = (z

1
,z

2
,...,z

N
). We therefore have 

( )/ 2MI t N MIω = −       (12) 
It can be easily seen that a critical point of the function (7) is a fundamental critical point, i.e. it is also a critical point of 
Eq.(1) independent of the value of a. Because of Eq.(11), the sum S3 of cubes and the sum S5 of fifth powers are the same 
for all critical points of Eq.(7) with the same MI  
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Since kz ω= ± , for all k, for 
2 4

3 56 10MI MIb S a Sω ω= − −      (14) 

we have * / 0kf z∂ ∂ =  for all k variables of the given critical point. By computing the eigenvalues of the Hessian as 
shown above, it turns out that the number MI of minus signs in the solution vector of a given fundamental critical point is 
exactly its Morse Index. 
 
As will be seen in what follows, a special role in the present analysis is played by the critical point with MI =0 having  

/kz t N=       (15) 
for all k. This local minimum that exists for all values of N will be called the “main hub” of the landscape. In Eq. (12) all 
values of MI < N/2 need to be considered. In this paper, the maximal value of N will be 6, which is necessary for 
explaining the triplet landscape. For N=2 (singlet lens) the only fundamental critical point is the main hub. When N 
increases, additional types of fundamental critical points appear. For N=3 and N=4 we also have saddle points with MI 
=1, and for N=5 and N=6 saddle points with MI =2 appear. As shown below, the appearance of new types of 
fundamental critical points when N increases leads to a significant increase of the complexity of the design landscape. 

4. CRITICAL-POINT PROJECTION 
For simplicity, we consider first the case N=3. Because of the constraint (2) the analysis of the critical points is now a 
two-dimensional problem. In order to preserve the symmetry of the problem, rather than eliminating a variable by using 
Eq. (6), we rotate the coordinate system such that one of the new axes, t, is perpendicular on the constraint plane 

1 2 3z z z t+ + = and the other two, 1 2,u u , are in the constraint plane. By inserting in Eq.(1) 

1 1 2

2 2

3 1 2

/ 3 / 2 / 6

/ 3 2 / 3

/ 3 / 2 / 6

z t u u

z t u

z t u u

= + −

= +

= − −

     (16) 

and also t=1 and a=0.01, f becomes a function of two independent variables 1 2,u u . In this two-dimensional landscape 
we can find four local minima and three saddle points with MI =1 as shown in Fig. 1a. The central local minimum (at 

1 2 0u u= = ) is the main hub, which according to Eq. (15) has z =(1/3, 1/3, 1/3). The three saddle points are 
fundamental critical points for which, according to Eqs. (11) and (12) we have z =(-1, 1, 1), z =(1, -1, 1) and z =(1, 1, -1) 
, respectively. Note that the coordinate vectors for the last two saddle points are simple permutations of the coordinates 
of the first saddle point. 
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On one side of any of the three saddle points, the optimization rolls down to the same minimum, the main hub. On the 
other side, each saddle point leads to a different local minimum. It is important to note that, because of the high 
symmetry, the local minima other than the main hub are situated exactly on the line that passes through the main hub and 
through one of the saddle points, that are fundamental critical points. Figure 1b shows that, on the side opposite to the 
main hub of the corresponding saddle point, all equimagnitute contours are perpendicular on any of these three lines. 
Therefore, the derivative along the direction perpendicular on these lines is zero. In order to find the z values for these 
three minima, it is sufficient to look for them along the lines passing through the main hub and saddle points. For 
instance, the line through the main hub and the saddle point with z =(-1, 1, 1)is given by 

1 2 31/ 3 4 / 3, 1/ 3 2 / 3z u z z u= − = = +     (17) 
where the variable u gives the position along this line, e.g. u=0 gives the main hub and  u=1 gives the saddle point with 
 z =(-1, 1, 1). Inserting Eq. (17) in Eq.(1) leads to a function with a single variable u that has three extrema, as shown in 
Fig.2. 
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a      b 

Fig.1 Equimagnitude contours of the toy model function for N=3, with 1u  on the horizontal axis, and 2u  on the vertical one. Local 
minima are shown with small dots, saddle points (situated there where two equimagnitute lines cross) are shown with large dots. For 
keeping Fig. 1a simple, only a few equimagnitute contours are shown there. In Fig. 1b the number of displayed equimagnitute 
contours is larger, in order to show that they are perpendicular on the line passing through the main hub and saddle points. 
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Fig.2 Typical behavior of the toy model function along a line passing through the main hub and a fundamental 

 critical point, with u on the horizontal axis, and the value of the toy model function on the vertical one 
 
With a=0.01, in addition to the extrema for u=0 (the main hub) and u=1 (the saddle point) we find a third extremum for 
u=1.46426. Inserting this value of u in Eq.(17) gives z =(-1.61902, 1.30951, 1.30951). By considering the possible 
permutations, the three peripheric minima shown in Fig. 1a have z =(-Y,y,y), z =(y,-Y,y), and z =(y,y,-Y) respectively, 
with Y=1.61902 and y=1.30951. By using Eqs. (4) and (5) it can be easily checked that these three points are indeed 
critical points for b =1.53836. 
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A remarkable property of the toy model is that for N=3,4,5,6 all local minima, other than the main hub, which are 
relevant for the present research,  can be obtained in the same way. As in the simple case shown in Fig. 1, there is a one-
to-one correspondence between these local minima and the fundamental critical points resulting from Eqs.(11) and (12). 
For each fundamental critical point FCP other than the main hub, a local minimum can be found on the line  

( )( ) 1/ ( ) 1/k kz u N u z FCP N= + −    for k=1…N   (18) 
passing though the main hub given by Eq. (15) (here with t=1) and the given fundamental critical point. By inserting the 
line (18) into Eq. (1) we obtain a function with a single variable u that has a plot very similar to the one shown in Fig. 2. 
By inserting the u value of the minimum on the opposite side of the main hub (u>1) in Eq. (18) we obtain the 
coordinates of a local minimum that is called the projection of FCP. This heuristic method to obtain local minima is 
called critical-point projection. 
 
For a given N it is sufficient to consider only one fundamental critical point for each allowed Morse Index value. 
Because of the high symmetry of the model, other fundamental critical points with the same Morse Index will lead to the 
same u value for their projected minimum. 
 
For N=4 (which in lens design corresponds to the design landscape of the airspaced doublet), the fundamental critical 
points are the main hub given by Eq. (15) and four saddle points with Morse Index 1, given by  

z =(-1/2, 1/2, 1/2,1/2), z =(1/2, -1/2, 1/2,1/2), z =(1/2, 1/2, -1/2,1/2), z =(1/2, 1/2, 1/2,-1/2) 
respectively. They lead to four projected local minima which for a= 0.01 have u= 1.56067. From Eq. (18) we obtain 
then the coordinates of the four projected minima 

z =(-Y,y,y,y), z =(y,-Y,y,y), z =(y,y,-Y,y),  z =(y,y,y,-Y) 
respectively, with Y=0.9205 and y= 0.640167. 
 
The emphasis in this paper is on the case N=6 which in lens design corresponds to the triplet problem. In addition to the 
main hub with Morse Index 0 and z =(1/6, 1/6, 1/6, 1/6, 1/6, 1/6) we have fundamental critical points with Morse Index 1 
and 2. Depending on the position k where the minus sign is placed, there are 6 solutions with Morse Index 1, e.g. for k=1 
we have z =(-1/4, 1/4, 1/4, 1/4, 1/4, 1/4). By permuting two minus signs over six positions, we find 6*5/2=15 solutions 
with Morse Index 2, e.g. z =(-1/2, -1/2, 1/2, 1/2, 1/2, 1/2). For a= 0.01, the six local minima that are projections of the 
Morse Index 1 saddle points have u= 1.64671.Their coordinates are permutations of z =(-Y,y,y,y,y,y) with Y=0.519464 
and y= 0.303893. The 15 local minima that result from Morse Index 2 saddle points have u=1.52097 and are 
permutations of z =(-Y,-Y,y,y,y,y) with Y=0.847311 and y=0.673656. In Figures 4, 5 and 7, bar charts indicating the z 
values of all these minima and fundamental critical points will be given. The z values will also be translated in curvatures 
of lens surfaces and the resulting triplet drawings will be compared with triplet local minima obtained with commercial 
optical design software. 
 
The one-to-one correspondence observed in Fig. 1 between fundamental critical points and local minima is more general 
than the present toy model. We have observed it also in more elaborate models, which include terms that correspond to 
additional aberrations not present in Eqs. (1) and (2) (to be discussed elsewhere) and we have observed it in doublet and 
triplet global optimization landscapes obtained with commercial optical design software6. There however, the technique 
to obtain the local minima from the corresponding fundamental critical points is more elaborate, because the main hub, 
the fundamental critical points and their projected minima are not situated on straight lines any more. 
 
We note also that in general critical-point projection cannot find all minima present in the landscape. For instance, in the 
present model (Eqs. (1) and (2)) we can find for N=6 points for which the two sums of third and fifth-order terms on the 
right-hand side of Eq.(1) vanish simultaneously. These points are degenerate critical points (i.e. critical points having 
zero eigenvalues). However, if additional terms are added in Eq. (1) e.g. a squared sum of 7th-order terms, the 
degeneracy is removed and those critical points become 60 new local minima. These new local minima cannot be found 
via critical-point projection, but can be found via local optimization by using the technique described in the next section 
and in the Appendix. These new local minima are in a sense less fundamental than the 22 local minima found earlier for 
N=6, because when translated to lens drawings, each of them strongly resembles one of the 15 minima that result from 
Morse index 2 projection, and cannot therefore be called new “system shapes”. For each Morse index 2 projection, there 
are four such new minima similar to it (i.e. for any k, the zk-values for all these five systems have the same sign). 
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5. SADDLE-POINT CONSTRUCTION AND NETWORK OF THE TOY MODEL 
For understanding the properties of an optimization landscape it is useful to consider not only the local minima existing 
there, but also all saddle points with Morse index 1. For example, it can be observed in Fig. 1a that for each saddle point 
with Morse index 1, on one side of the saddle optimization rolls down to one minimum, on the other side it leads to a 
different minimum (the straight lines from the saddle points to the minima indicate the optimization paths). Saddle points 
with Morse index 1 have the same useful property even when N increases: on the two sides of such a saddle point 
optimization leads to two distinct minima (see e.g. Ref. 5 for more details). We can organize all local minima in a 
network by drawing a link between two minima if there is a saddle point with Morse index 1 between them. Such 
networks capture in a drawing the essentials of the topology of the landscape even when the dimensionality is high and 
we are not able to draw plots such as Fig. 1a any more. 
 
Saddle points that lead after optimization to all minima of the toy model can be found by using a method called saddle-
point construction, described in Ref. 5 in the case of lens design and generalized in the Appendix in order to facilitate its 
use for the toy model8. 
 
Note that for N=6 the Morse index 1 saddle point z =(1/4, 1/4, 1/4, 1/4, 1/4, -1/4) can be obtained by adding to the main 
hub for N=4, z =(1/4, 1/4, 1/4, 1/4), a new pair of coordinates 5 61/ 4, 1/ 4z z= = − . The values of f given by Eq.(1) 
for the 6-dimensional saddle point and the 4-dimensional main hub are the same. Since the new pair of coordinates does 
not affect the value of f, it is called a null element. It can be easily seen that all fundamental Morse index 1 saddle points 
for N>2 can be obtained in the same way from the main hub with N-2 variables.  
 
Since the toy model satisfies the mathematical requirements described in the Appendix, not only the main hub, but also 
the other four local minima for N=4 can be used to generate saddle points with N=6 by using saddle-point construction. 
By adding to the minimum z =(-Y,y,y,y), with Y=0.9205 and y= 0.640167, a null element 5 6,z y z y= = − we obtain a  
Morse index 1 saddle point z =(-Y,y,y,y,y,-y). By permuting the coordinates, we find 30 saddle points of this type. Other 
60 saddle points that are permutations of z =(-Y,Y,-Y,y,y,y) (i.e. the null element is e.g. 1 2,z Y z Y= − = ) will be 
neglected in what follows. They lead on one side of the saddle to the degenerate critical points mentioned above. 
 
The network for the toy model is shown in Fig. 3. The 1+6+15=22 points denoted by “M” on the first, third and fifth row 
of the network are local minima and the 6+30=36 ”S” points on the second and fourth row are saddle points. The two 
downward paths of local optimization started on both sides of a saddle point Si-j lead to minima Mi and Mj, as indicated by 
the continuous lines between systems. The six saddle points on the second row are the fundamental critical points with 
Morse Index 1 that are permutations of z =(-1/4, 1/4, 1/4, 1/4, 1/4, 1/4). As in Fig. 1a, on one side they are all linked to 
the main hub M1, here with z =(1/6, 1/6, 1/6, 1/6, 1/6, 1/6), on the other side they are linked to their own projections on 
the third row M2-M7 that are permutations of z =(-Y,y,y,y,y,y) with Y=0.519464 and y=0.303893. The 30 saddle points 
that are permutations of z =(-Y,y,y,y,y,-y) with Y=0.9205 and y= 0.640167 are shown on the fourth row and the minima 
M8-M22 that are projections of Morse index 2 critical points and are permutations of z =(-Y,-Y,y,y,y,y) with Y=0.847311 
and y=0.673656 are on the last row. 
 
The network in Fig. 3 is a perfectly regular arrangement. The regular pattern that can be easily observed in the first four 
rows includes in fact the fifth row as well, but in a two-dimensional drawing such as Fig. 3 this is less obvious. In fact, 
any third-row minimum has a link drawn upwards to the main hub and five drawn downwards that finally arrive at all 
other five third-row minima, with a minimum in the fifth row as an intermediate stage. The total number of 15 minima in 
the fifth row is exactly the number necessary to link any third-row minimum with all other five in the same row. 
 
Note that from the five minima with N=4 (doublets), all local minima for N=6 can also be obtained in a way that is 
different from the one shown in Sec.4, by first constructing the saddle points with N=6 and then by optimizing these 
saddle points on both sides of the saddle. Similarly, the five minima with N=4 can be also obtained with saddle-point 
construction from the N=2 (singlet) main hub. 
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Fig.3. Network of the toy model. Large points are local minima, small points are saddle points with Morse Index 1. The fundamental 
network for three lenses, in which the systems are obtained with ray tracing, has exactly the same structure. In the toy model, each 
minimum shown here is surrounded by six saddle points, but, as explained in the text, for each of the 15 minima in the fifth row four 
saddle points of the type  z =(-Y,Y,-Y,y,y,y) linked to it, are omitted. 

  
Fig. 4. The main hub 

  
a      b 

Fig.5. Second row of saddle points (a) and third row of minima (b) 
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Fig.6. Fourth row of saddle points  
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Fig.7. Fundamental critical points with Morse index 2 and their projected minima on the fifth row. M15 is the Cooke Triplet shape. 

After reoptimization with variable distances between surfaces and adequate glasses, it leads to the well-known Cooke Triplet. 
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6. COMPARISON WITH THE FUNDAMENTAL TRIPLET NETWORK  
As mentioned earlier, one of the goals of the present work is to find the simplest model that can explain the fundamental 
network for three lenses, where the variables of the global optimization problem are the surface curvatures1. It turns out 
that the fundamental triplet network shown in Figure 3 of Ref. 1 is exactly the network shown in Fig. 3. Therefore, in the 
triplet design space, in the absence of the mechanism that is responsible for the destruction of local minima (e.g. when 
the distances between surfaces increase, see Fig. 5 of Ref. 1), the toy model captures the essentials of the topology of the 
merit function landscape based on ray tracing, and explains why we have exactly 22 system shapes there. 
 
For comparison with numerical results1, the z values of the critical points of the toy model must be converted to lens 
curvatures. This can be done in two different ways. Both of them produce results that are in good qualitative agreement 
with the numerical results given below, but each one has its own advantages and disadvantages at the level of 
quantitative details. A simple way is to identify zk with the power of surface k.  Since the origin of the toy model is a 
thin-lens (aberration) model, t in Eq.(2) becomes the total power of the system. The curvature of a surface is then given 
by 

( )/ 'k kc z n n= −       (19) 
where n’ is the refractive index after refraction and n is the refractive index before refraction. 
 
In Figures 4, 5, 6 and 7 we use a different method, described in detail in Ref. 6, where it has already been used to 
associate curvatures to the fundamental critical points given by Eqs. (11) and (12). As shown there, the z values can be 
expressed in terms of paraxial ray angle changes at a surface, which can then be expressed in terms of surface curvatures. 
For simplicity, it is assumed that the imaging has transverse magnification -1 and that the three lenses have the refractive 
index 1.5.  
 
Figures 4, 5, 6 and 7 show the systems in the fundamental triplet network1, together with the corresponding system 
predicted by the toy model. In each case, the set of z values is shown as a bar chart. The toy-model system drawings are 
produced by substituting in the lens file for the numerical system the set of curvatures resulting from the z values in the 
corresponding bar chart. (Some artifacts, such as the excessive size of some lenses in these drawings, result from an 
insufficient control of the lens drawing process for the toy-model systems.) In Fig. 7, in addition to the local minima in 
the 5th-row of the network in Fig.3, the fundamental critical points with Morse Index 2 that produce the 5th-row minima 
via critical-point projection are shown.  
 
We observe that the toy model gives a reasonable rough estimation of the system shape for the systems appearing in the 
fundamental triplet network. The lenses computed with the model have the correct type: positive, negative or menisci 
with positive or negative curvatures. Not surprisingly, there are significant quantitative differences between the model 
and numerical results. For instance, in many cases there is even a scale difference, i.e. for a better agreement the 
curvatures of the toy-model systems could be multiplied with a different, system-dependent factor. But considering the 
gross approximations that have been made to derive the toy model from aberration theory, a better quantitative 
agreement between the results of the model and the numerical ones cannot be expected. However, the triplet problem 
discussed here leads to a more general insight: the good qualitative agreement with the numerical systems obtained with 
lens design software shows that the toy model describes correctly the essence of the process of appearance of new local 
minima in the lens design landscape when the number of lenses in the design increases.  

7. CONCLUSIONS 
 
The growing diversity in the design landscape when the number of lenses increases can be understood in two different 
ways. The number of fundamental critical points increases rapidly with the dimensionality of the problem, and because 
of the one-to-one correspondence mentioned in Sec. 4, so does the number of system shapes. Alternatively, the number 
of local minima increases rapidly with the dimensionality of the problem, because there are so many ways to construct 
saddle points with M(=N/2) lenses from local minima with M-1 lenses. Saddle-point construction has already been used 
as a design tool in practical lens design problems5,9,10. Rather than being just another addition to the long list of known 
empirical tools in lens design, saddle-point construction has a fundamental underlying basis, as shown by the toy model. 
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To the author’s knowledge, models similar to the present one that explain how the complexity of a global optimization 
landscape increases with the dimensionality of the problem are not found in the literature. Lens design is a ”real-world” 
problem described by the toy model, but, because it is mathematically so general, this model might be useful in other 
design or research areas as well.   

8. APPENDIX:  SADDLE-POINT CONSTRUCTION 

Consider a smooth function 1 2( , ,..., )Nf z z z with N variables, subject to the constraint
1

N

i
i

z t const
=

= =∑ . Assume 

that 1 2( , ,..., )NM z z z=  is a local minimum of f. We add now two new variables 1 2,N Nz z+ + and define a function 

1 2 1 1 2
ˆ ( , ,..., , , , )N N N Nf z z z z z z− + +  subject to the constraint

2

1

N

i
i

z t const
+

=

= =∑ . Here, for simplicity the two new 

variables have been added at the end of the list of variables, but their position in the list can in fact be arbitrary. Eq. (1) is 
an example of a function f that can be transformed into a function f̂ of the same kind simply by changing N into N+2.  
 
We will show below that from the local minimum M  of f in the space with N variables we can “construct” a saddle 
point with N+2 variables of f̂ if f̂ is such that we can use one of the new variables (e.g. 1Nz +  ) in order to restore the 

“old” value ( )f M  after any change of f̂ produced by two other variables (an old and the other new one). 
 
Mathematically, saddle-point construction is stated as follows: Assume that there exist two transformations that leave 
f̂ invariant 

1. 1 2 1ˆ ( , ,..., , , , ) ( )N Nf z z z z p p f M− − = for any p and 

2. 1 2 1ˆ ( , ,..., , , , ) ( )N Nf z z z q q z f M− − =  for any q. 

Then, the point 1 2 1ˆ ( , ,..., , , , )N N N Nf z z z z z z− − is a critical point of f̂ . If it is non-degenerate, it is a saddle point 
with Morse Index 1.  
 
The proof is shown below. A transformation of the type ( ) ,  1... 2i iz z p i N= = + with variable p defines a curve in 
the variable space. In the particular case of the two transformations mentioned above we have two straight lines. 
Since 1 2 1, ,..., Nz z z − remain constant in both cases, we focus on the three-dimensional variable subspace 

1 2( , , )N N Nz z z+ + . The two lines are then given by 

1. 1 2, ,NN N Nz z const z p z p+ += = = − =    and 

2. 1 2, , NN N Nz q z q z z const+ += = − = =  

Note that for Np q z= =  these two lines intersect at a point S having 

1 2, ,N N NN N Nz z z z z z+ += = − = . 

The two intersecting lines define a plane in the three-dimensional variable subspace 1 2( , , )N N Nz z z+ + . Considering also 

the old variables 1 2 1, ,..., Nz z z − kept here constant, this plane turns out to be the constraint plane
2

1

N

i
i

z t const
+

=

= =∑ . 

This can be seen by shifting the coordinate system to S, by defining two vectors  along lines 1 and 2, (0,-1,1) and (1,-1,0) 
respectively, and by computing their vector product, which turns out to be (1,1,1), the normal vector to the constraint 
plane in the three-dimensional variable subspace.  
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If in a plane, two lines, along which a function is constant, cross, then the crossing point is a critical point of this function 
(see e.g. Fig. 1a). In the constraint plane, S is a critical point of f̂  because the projection of the gradient on this plane, 
which cannot point in two different directions (i.e. those of the two normals to the lines 1 and 2), must be zero. In 
addition, because 1 2 1, ,..., Nz z z − are kept unchanged as for the minimum M of f, the derivatives of f̂ with respect to 
them remain zero as well. We assume here that S is a non-degenerate critical point. (For a discussion of the degenerate 
case see Ref. 5 and Fig. 10 there.) In a two-dimensional problem, non-degenerate critical points are maxima, minima or 
saddle points. For maxima or minima, close to a critical point the contours along which a function is constant (the 
equimagnitude contours) are ellipses which reduce to a point at the critical point. For saddle points, the equimagnitude 
contours are two crossing lines. In the two-dimensional constraint plane of the three-dimensional variable subspace, the 
critical point S is a two-dimensional saddle point, for which the two crossing equimagnitude lines are line 1 and 2. In the 
two-dimensional constraint plane, this saddle point is a maximum in one direction (the downward direction), and a 
minimum in the perpendicular direction. (The third direction in the three-dimensional variable 
subspace 1 2( , , )N N Nz z z+ + is blocked by the constraint and does not play a role in the determination of the Morse Index.) 

Since M is a minimum in the “old” variable space 1 2 1, ,..., Nz z z −  (we can consider them as independent variables, and 

assume that Nz is solved as in Eq.(6) in M to satisfy the constraint) S is a non-degenerate critical point with only one 
downward direction, i.e. a saddle point with a Morse Index of 1. 
 
Since the pair 1 2,N NN Nz z z z+ += − = that transforms the minimum M into a saddle point does not affect ( )f M , we 
call this pair of variables a “null element”. 
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