
An Integrated System for Live
Characterization and Adaptive

Compensation of Ultrasonic
Transducers

Position Measurement & Control Team

N. D. J. Barker
T. Evers

16 June 2023

DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS
AND COMPUTER SCIENCE

ELECTRICAL ENGINEERING PROGRAMME

Abstract
Ultrasonic transducers are commonly used in a variety of medical, industrial, and consumer devices, con-
verting electrical energy into high-frequency sound waves. These devices find extensive applications in
fields such as medical imaging, non-destructive testing, distance measurement, and cleaning processes.
However, these transducers suffer from a narrow operating frequency range caused by a steep frequency
response curve with a prominent resonance peak. Existing passive compensation methods using filters
are limited due to the individual characteristics of transducers and their susceptibility to process varia-
tions, making generic compensation filters impractical. Additionally, the frequency response of transducers
changes over time, input power, and environmental conditions, further complicating compensation efforts.

The objective of this project is to overcome these challenges by creating an integrated solution that can
provide an ultrasonic transducer system with a consistent frequency response despite external disturbances.
The proposed system will incorporate non-linear dynamics characterization and compensation, which are
currently lacking in integrated solutions. By accurately characterizing the transducer’s non-linear behavior
and compensating for it, the system will overcome the drawbacks associated with passive compensation.

The proposed integrated system holds promising implications for various applications, including med-
ical imaging, material testing, and industrial processes. By mitigating the limitations associated with the
narrow operating frequency range of ceramic piezoelectric transducers, this research project contributes to
the advancement of ultrasonic technology and its broader impact on diverse industries.

Preface

We are pleased to present this thesis, which focuses on the development of an integrated system for ul-
trasonic transducers with a flat frequency response. Throughout this project, we aimed to overcome the
limitations associated with existing systems, particularly in dealing with non-linear effects and external
disturbances.

We would like to express our gratitude to Warner Venstra for generously sponsoring this project and
providing valuable mentorship throughout. Furthermore we are grateful to Arjan van Genderen for his
guidance and assistance throughout the entire process. His expertise and support greatly contributed to the
quality of this work. We would also like to thank both Anton Montagne and Michiel Pertijs for their critical
insights and feedback, which encouraged us to refine our goals and improve the presentation of our work.

Finally we would like to acknowledge the assistance of Ioan Lager, the Bachelor Project coordinator,
and Martin Schumacher from the Tellegen Hall for their support in coordinating the project and sourcing
components respectively.

Nicolas Barker & Thomas Evers
Delft, June 2023

Contents

1 Introduction 2
1.1 Problem Definition . 2
1.2 State of the Art Analysis . 2
1.3 Thesis Synopsis . 3

2 Program of Requirements 4
2.1 Functional Requirements . 4
2.2 Non-Functional Requirements . 4

3 Project Overview 5
3.1 Producing Ultrasound Waves . 5
3.2 Measuring the Ultrasonic Transducer . 5
3.3 Compensation for Linear Distortion . 5

3.3.1 Feedback . 5
3.3.2 Linear Feed-forward . 6
3.3.3 Non-Linear Feed-Forward . 6
3.3.4 Adaptive Feed-Forward . 6

3.4 Modeling the System . 6
3.4.1 IIR Filter . 6
3.4.2 FIR Filter . 7
3.4.3 Frequency Domain Filter . 7
3.4.4 Comparison . 7
3.4.5 Non-Linear Feature Choice . 8
3.4.6 Feature Mapping Method . 9
3.4.7 Size of Feature Vector . 9

3.5 Division of Teams . 9

4 System Design 11
4.1 Division of Specifications . 11

4.1.1 Ripple and Noise . 11
4.1.2 Price . 12

4.2 Top Level Design . 12
4.3 ADC and DAC . 12
4.4 ADC and DAC Clock Selection . 13
4.5 ADC and DAC Communication . 13
4.6 Model Communication . 13
4.7 ADC Sample Memory and Communication . 14
4.8 System Platform Selection . 14
4.9 Custom Connection Board . 15

5 Position Measurement 16
5.1 Interferometer Theory . 17
5.2 Operating Point . 18
5.3 Reflection Coefficient Estimation . 18
5.4 Arcsine Approximation . 18

5.4.1 Error Prediction . 18
5.4.2 Interferometry Simulation . 19
5.4.3 Selecting a Laser Wavelength λ . 21
5.4.4 Simplifications . 21

5.5 USB Communication Format . 21
5.6 ADC Noise Contribution . 21

4 CONTENTS

6 Signal Generation 22
6.1 UART Communication . 23
6.2 Feed Forward Filter . 23

6.2.1 Toplevel Design . 24
6.2.2 Design choices . 24
6.2.3 Feature Generation . 25
6.2.4 Estimated System Gain Generation . 26
6.2.5 Feed Forward Step . 27
6.2.6 Feed Forward Filter Sub-Component Integration 27

6.3 Time Signal Generation . 27
6.4 Control Module . 28
6.5 DAC Output . 28
6.6 Signal Generation Integration . 29

7 Prototype Implementation and Validation 30
7.1 Simulation and Synthesis . 30
7.2 Testing and Validation . 30

7.2.1 Data Acquisition . 30
7.2.2 Complete System . 30

8 Discussion 32

9 Conclusion 33

Appendices 34

A Interferometry Theory Derivation 35
A.1 Derivation of θHF . 35

A.1.1 Basic Interferometry . 35
A.1.2 Low Frequency and High Frequency Division . 35
A.1.3 Operating Point . 36
A.1.4 Signal Reproduction . 36

A.2 Arcsine Approximation . 37

B Source Code 38
B.1 Control Module [VHDL] . 38
B.2 Control Phasor Generation [VHDL] . 42
B.3 Feature Generation [VHDL] . 44
B.4 Map Inputs DDS [VHDL] . 46
B.5 Multiple Time Signal Generation [VHDL] . 48
B.6 My Types Package [VHDL] . 50
B.7 Phasor Calc Toplevel [VHDL] . 51
B.8 Project Toplevel [VHDL] . 53
B.9 System Phasor Calc [VHDL] . 56
B.10 Time Signal Generation [VHDL] . 58
B.11 UART Communication [VHDL] . 60
B.12 USB Communication . 64
B.13 Vector Scalar Multiplier [VHDL] . 66
B.14 Vector Vector Scalar Multiplier [VHDL] . 67
B.15 UART Simulation Creator [Python] . 70

CONTENTS 1

C Simulation Results 73
C.1 Feed Forward Filter Simulation . 73
C.2 Time Signal Generation Simulation . 73
C.3 System Utilization Report . 74

Bibliography 76

1 Introduction

1.1 Problem Definition
Situation Assessment

Ultrasonic transducers are used in a wide variety of medical, industrial, and consumer devices. Among
the various types of transducers for higher frequencies, ceramic piezoelectric transducers are commonly
used. A common limitation of these devices is a very narrow operating frequency range, due to a steep
frequency response curve with a large peak around resonance. This issue is often addressed by making
an appropriate compensation filter, however there are drawbacks to this approach. The first is that the
characteristics of individual transducers are susceptible to large process variations, which does not allow for
a generic compensation filter to be made, and individually characterizing and compensating each transducer
is very costly. The frequency response of transducers also changes over time and input power, and with
environmental conditions such as temperature and air pressure. A solution is required that can improve the
performance of these devices, regardless of the device’s unpredictable circumstances.

Scoping and Bounding Analyses

From this situation assessment it is clear that there is a need for an affordable system that can produce
undistorted ultrasound waves. While distortion exists in many forms, in this paper the term distortion refer-
ences to linear distortion, defined as: a change in amplitude or phase with no new frequencies added. The
limitation to linear distortion makes this project feasible in the timeline in which it needs to be delivered,
but it limits the use in real life applications. The time limitation for this project was a period of eight weeks,
in which the design, creation, and validation must be completed. Due to this limitation, the goal of this
project is to make no more than a proof of concept prototype. Furthermore, while most design decisions
can be made as direct consequences of the program of requirements, without a specific application in mind
some tradeoffs cannot be optimized - assumptions must be made. A significant technical constraint that
was set was to limit the compensation to linear distortion (as opposed to non-linear), which is often not the
case in real systems. Furthermore, the chosen implementation shall only be capable of producing periodic
outputs. Another bound is of course development cost. While the funding available was sufficient to com-
plete the project, cost was still a limitation to consider. A final bound was the determination of useful extra
non-linear features used. This task warrants an investigation in itself, so simple non-optimal features will
be considered such as temperature. This is further discussed in 3.4.5.

OxiNEMS Affiliation

This project is affiliated with OxiNEMS, an MEG research project that requires a similar system to be built.
It may be possible to design the system in such a way that a portion of it will be useful to OxiNEMS, which
while making this work more useful, could also limit the flexibility in making choices, often in the form of
disregarding optimizations to keep the system generic.

1.2 State of the Art Analysis
The aim of this paper is to design a system that can characterize a system that creates ultrasound live. On
top of that it should adaptively control the system based on this characterization.

Currently, ultrasound systems are characterized once and then controlled based on this. Advanced
methods[1] of characterization are used that can capture non-linear distortion. The downsides of these
systems is that they do not capture any changes in dynamics due to permanent physical changes. This
leaves the option open for complete signal distortion without the option of compensation. The system in
this paper aims to solve that problem.

1.3 Thesis Synopsis 3

1.3 Thesis Synopsis
The thesis will explore previous research on live characterization and compensation of ultrasonic transduc-
ers. The focus will be on developing a methodology that accurately characterizes the linear distortion of the
transducers and employs an adaptive model to dynamically control the transducer’s response. The scalabil-
ity of the proposed solution to work at high frequencies will also be considered, ensuring its applicability
to a wide range of ultrasonic transducers.

The key objective of the project is to design and create a prototype for this system. This prototype will
be capable of achieving a flat frequency response for high frequency ultrasonic transducers. The project
aims to provide researchers and developers in the field of ultrasonics with an integrated system that offers
enhanced control over the sound waves they generate, reducing amplitude distortion and enabling precise
manipulation of ultrasound for various applications.

By addressing the current limitations in non-linear characterization and control of ultrasonic transduc-
ers, this research will contribute to the advancement of ultrasonic technology and its applications. The
outcomes of this thesis will have implications for fields such as medical imaging, non-destructive testing,
and industrial applications that rely on accurate and precise ultrasound control.

2 Program of Requirements
The requirements for the system as a whole can be divided into the functional and non-functional require-
ments. The former specifies the general functions desired in the end product, while the latter specifies the
desired technical specifications of the system.

2.1 Functional Requirements
The final product must:

1. Allow the user to input a periodic reference waveform

2. Control the position of an ultrasonic transducer

3. Compensate partially for the linear dynamics of the transducer

4. Compensate partially for the non-linear dynamics of the transducer

5. The production of this system should be scalable, implying the price can be lowered when the system
is scaled.

2.2 Non-Functional Requirements

Table 2.1: Table of Non-Functional Requirements

Specification Minimum Req. Trade off Req.
1 Steady State Ripple of the Flatband 3 dB Lower
2 Bandwidth of Flatband 50 KHz Higher
3 Noise Power in Flatband 0.001 Watt Lower
4 Bandwidth Disturbance Rejection 1 KHz Higher
5 Time Before System Works 120 Sec Lower
6 Ultrasound Output Power 1 Watt Higher
7 Operating Center Frequency 1 MHz Higher
8 Price Prototype 1500 C Lower
9 Num Frequency Components Waveform 4 Higher

3 Project Overview

3.1 Producing Ultrasound Waves

In order to create ultrasound an ultrasonic transducer was chosen, the reasoning for which can be found the
in the paper [2]. The transducer must then be driven with an amplifier than can deliver the electrical power
required to power the transducer. The resulting system will have a non-flat frequency response to input
signals. In order to compensate for this, a filter is placed after the input, distorting it in such a way that the
final outputted sound closer matches the original input signal. If however the frequency response of the
combination of amplifier and transducer changes, the compensation filter will also require adjustment. A
logical choice for making one such flexible system is to implement it digitally, so that the functionality can
easily be reprogrammed. The last component required is some form of sensor to measure the ground truth
behavior of the transducer as well as properties of possible disturbances, such as ambient temperature.

3.2 Measuring the Ultrasonic Transducer

Measuring the vibration of ultrasonic transducers is a demanding problem for any measurement device,
given the nanometer-scale displacement and high frequency requirements. Existing methods for measure-
ment include using microphones, hydrophones, and laser interferometers. While many types of micro-
phones exist for this purpose, they are restricted in accuracy due to the air coupling between the transducer
and sensor. Aside from the limited resolution of hydrophones due to spatial averaging [3], they also must be
used underwater, and could therefore not be implemented non-invasively into an ultrasound device. Laser
interferometry is a flexible measurement solution that allows for a high resolution and high frequency
displacement measurements. Drawbacks include a relatively high cost and sensitivity to environmental
disturbances such as vibrations or temperature fluctuations.

3.3 Compensation for Linear Distortion

In the following section some possible methods of compensation for the system’s linear distortion are com-
pared. These include feedback, linear feed-forward, non-linear feed-forward, and adaptive feed-forward.

3.3.1 Feedback

Feedback is a method of controlling a system by measuring the output of the system and adapting the
control signal based on that measurement. The advantage is that any non-linear error from the desired
ultrasound can directly be compensated for. Many forms of feedback have been used to control audio
transducers [4], but few attempts have been made for ultrasound transducers. The reasoning for this is that
a feedback system can not be stable, if the controller has a delay of more than half the period of the input
frequency. At 1.6 MHz, this is a maximum feedback delay of 312.5 ns. For a well controlled system, this
can be at most 100 ns. This includes the entire delay from analog measurement, to digital measurement,
to calculating digital control signal, to analog control signal. For a price that meets the non-functional
requirement #8, this is an unreasonable specification based on current market research.

6 Project Overview

3.3.2 Linear Feed-forward
Feed forward is a method of creating a flat frequency response that works by distorting an input signal with
the inverse of the system, and then sending that signal into the system.

Outref · |Gest|−1 · |G| = Out (3.1)
|Gest| ≈ |G| (3.2)

Outref ≈ Out (3.3)

This can theoretically create a flat response and is commonly used in the compensation of audio systems
and ultrasound systems [5]. An advantage of this method is that it is simple to implement and it only
requires the characterisation of the device once, which makes it cheaper to implement. The downside of
linear feed forward is that it is not able to compensate for any non-linear dynamics in the system.

3.3.3 Non-Linear Feed-Forward
Non-Linear feed forward is a variation of feed forward in which the system model is non-linear. It is able
to compensate for non-linear behavior, but still only to the extent that it is included in the model. When the
system exhibits behavior not present in the model, the behavior can not be compensated for, which leads
to a distorted output. On top of that, non-linear feed forward is much more resource intensive than regular
feed forward.

3.3.4 Adaptive Feed-Forward
Adaptive feed forward is similar to feed forward, but the system model keeps updating based on recent
system measurements. In this paper it was chosen to implement what could be best described as adaptive
linearized feed forward. This implies the estimated model used in the feed forward is a linearized estimation
of the non-linear system. The linearization is around an operating point that exists in a k-dimensional space,
in which each dimension is a parameter Pk that effects the dynamics of the system. This compensation
method has, with enough training time, the ability to create a perfect linear model of the system, based on
the parameters that it was provided. This method does require significantly more computational power than
regular feed forward, and even more than feedback. This significant difference is that there is no latency
requirement. The system can take a lot of time to make a relatively accurate model of the system, after
that the system will work and start working better every training cycle. In the paper [6] this method and its
implementation is described in more detail.

3.4 Modeling the System
In this section several options of describing the linearized system will be discussed.

3.4.1 IIR Filter
A system model linearized around parameters P = [P1, ... , Pk] in the shape of an IIR filter, would be
represented as the following:

GIIR =
an (P) · z−n + + a1 (P) · z−1 + a0 (P)

bn (P) · z−n + + b1 (P) · z−1 + b0 (P)
(3.4)

Creating an IIR model of the system involved would require the following steps:

1. Convert the discrete model to a continuous model

2. Obtain samples of the system gain and phase difference at different frequencies and values of P

3.4 Modeling the System 7

3. Optimise the functions an(P), ..., b0(P) to minimise the gain and phase estimation error.

When considering the model for this system, an IIR is a logical first step, because the lumped element
model of the system would have a transfer function of this form. An advantage of this model is that it
requires a lower order features than a FIR model. This indicates it may be less resource intensive to imple-
ment. The downside is that the optimisation problem that needs to be done in order to obtain an accurate
model would be non-convex [7]. This is because the transfer function is not linear in its optimisation co-
efficients. Non-convexity implies there will be many local minima that the model could settle at that are
not optimal. There are methods for overcoming this problem, but they are beyond the scope of this project.
For this reason an IIR model was not chosen.

3.4.2 FIR Filter
The IIR model shape was not chosen due to its non-linearity, therefore the next logical choice would be to
select a FIR shape to model the system. This form is presented below in Equation 3.5.

GFIR = an (P) · z−n + + a1 (P) · z−1 + a0 (P) (3.5)

Many of the same ideas apply as for a FIR model shape, but with a few distinctions. The main advantage
is that a FIR model shape becomes a convex optimisation problem.
The downside however, is that a FIR filter requires a much higher filter order in order to obtain similar
model steepness characteristics. In fact, according to the paper [2] the model of the system may require
a 30 dB gain difference in a span of 100KHz. With a sampling rate of 65 MHz, we can use a Harris
approximation [8] to estimate the minimum order FIR required for a filter to be able to create the steepness
required.

N =
Fs · Atten (dB)

(22 · dF)
=

65 · 106 · 30
22 · 105

= 887 (3.6)

This translates to 887 multiplications every sampling period, this is not implementable for the price re-
quirements 8 of this project. An improvement would be to decrease the sampling frequency 10-fold. A
sampling frequency of 6.5 MHz would lead to a filter order of 89.

3.4.3 Frequency Domain Filter
This type of filtering implies multiplying the magnitude spectrum of the input signal with the inverse of
the magnitude spectrum of the system. This operation is functionally equivalent to convolution in the time
domain such as is done with the IIR and FIR models. The model would have the following shape:

|GFreq| = Φ(F,P) ·W|G| (3.7)

∠GFreq = Φ (F,P) · W∠G (3.8)

In this paper phase will not be compensated for. The reason for this is that it is not a requirement for
this project. From now on W|G| will be referred to as W .
For some project requirements, this method of filtering is more efficient. A downside of this method of
filtering is that the input signal needs to be split up into time bins in which the frequency components are
fixed. This is common practice in audio processing, but the result of this is the frequency components
present in the input signal can not change continuously. On top of that the implementation becomes more
costly as the number of frequency components increases. Both of these issues are not present in the FIR
filter implementation.

3.4.4 Comparison
In this section frequency domain filtering and FIR filtering are compared for this project. The performance
indicator for this decision will be the number of multiplications required to implement the filtering. Before

8 Project Overview

this decision can be made, some variables relevant to these calculations must be clarified or extracted from
the program of requirements (Chapter 2). However, as mentioned in the Bounding Analysis (Section 1.1),
some parameters such as the R∆P and R∆In cannot be derived from the program of requirements, and due
to the lack of a specific applications, were determined somewhat arbitrarily.

Variable Estimation

The rate at which the parameters will change R∆P will be set at 4 KHz as to not restrict the 1 KHz
disturbance rejection non-functional requirement #4. The number of features in the feature vector that
are not frequency dependant, Nϕ, will be set to 8. Assuming this is a 8th order polynomial of a single
parameter P1, this will be able to capture the necessary complexities in the bandwidth required. It may
also be a combination of 2 parameters P1 and P2 with orders 2 and 4 respectively. The maximum number
of input frequencies NF is set to 4. This comes directly from the non-functional requirement #9. The rate
of input signal spectrum renewal R∆In can not be derived from the program of requirements. The value is
chosen to be 100 Hz. Lastly the order of the frequency polynomial features, PF , is chosen to be 8. As per
the Ultrasound team’s reasoning [6], this is sufficient to capture the expected complexities of the system.

Multiplication estimation

For an estimation of the multiplications required for the FIR implementation we can round the order require
to 100 and obtain the following Equation 3.10.

Fs = 6.5 · 106 Hz
R∆P = 4000 Hz

Nϕ = 8

RM,FIR ≈ Fs · 100 + 100 · R∆ P · Nϕ Multiplications/s of FIR (3.9)

RM,FIR = 6.5 · 106 · 100 + 100 · 4000 · 8 = 6.532 · 108 Multiplications/s (3.10)

In the same way an approximation can be made for the multiplications required to filter in the frequency
domain. The expression 3.11 can be seen below.

NF = 4

R = max (R∆In, R∆P) = 4000 Hz
R∆In = 100 Hz

Number of features in the feature vector inc frequency = NΦ = PF ·Nϕ

PF = 8

RM, Freq ≈ NF · R · (2 · NΦ) (3.11)

RM, Freq = 4 · 4000 · (2 · 8 · 8) = 2.048 · 106 Multiplications/s (3.12)

As can be seen in Eq 3.9 and 3.11, frequency domain filtering is significantly less resource intensive
for the requirements of this project. As such this option is chosen over a FIR filter.

3.4.5 Non-Linear Feature Choice
First and foremost the system in this paper will try to compensate for linear effects. This linearity implies
the only relevant feature should be frequency. As such this will be a feature that is used to predict the
gain of the system. The non-functional requirement #4 state that the system needs to include rejection of
disturbances. This implies the system needs to adjust itself based on one or more parameters Pk that affect
the behavior of the system. There are three types of parameters that could be used for this system.

3.5 Division of Teams 9

Position derived Firstly, this system could extract features from the position measurements made. Of
course the position measurements are already used for the modeling of the system, but theoretically the
position measurements could be used to extract time domain data of the system and that could be used to
construct features that effect the system. Although this would be a system with interesting characteristics
approaching a feedback system and more, it would have its downsides. Besides for high complexity, many
of the features would also require very low control latency. This makes these kinds of features not very
desirable. The decision was made not to use position derived features for this reason.

Control Derived An idea for features that are easy to obtain, is features derived from the input signal.
Features such as the input power [1], all the frequencies that are present in the signal, and past input signals
could all be used as features. A large advantage of this is that for these features, there is no measurement
latency because their values are known or require little calculation to obtain.

Environment Derived Other options for features could come form environmental parameters. Variables
such as temperature [1] or air pressure are known to effect the performance of transducers, which implies
they would work as useful features. Most features such as this work at a low rate of change, which implies
a relatively high high latency between a change in feature and a change in control signal is acceptable. This
is good because most commercially available sensors for these parameters have a high latency.

Choice The choice was made to create the system in such a way that any type of single feature could be
plugged in and the system will model the effect of that feature. For now the decision was made to allow the
possibilities of both temperature and input power as features. However, only a single one of these features
can be used as feature at the same time, the choice will be up to the user.

3.4.6 Feature Mapping Method
Feature mapping is the concept of combining all parameters that may effect the system gain, and including
their interactions. A definition must be given to Φ(F,P). In this paper a polynomial feature mapping [9]
is chosen. Reasoning for which can be found in the paper [6].

Φ (F,P) =


1
F
P

F · P
.....

Fn · Pm

 (3.13)

Polynomial feature vectors have the main advantage that they require fewer multiplications and addi-
tions to calculate. Options such as Gaussian RBF’s [10] require approximations of exponential functions
which are expensive to calculate. On top of that, for polynomial feature vectors the existing feature vector
can be grown iteratively. This is shown in Section 6.2.3.

3.4.7 Size of Feature Vector
With the method of feature mapping being chosen, the choice of feature vector Φ must be made. Size 64
was chosen. According to [6], this will be able to capture the dynamics of the system accurately enough to
achieve the ripple in the flatband non-functional requirement #1.

3.5 Division of Teams
This project was divided into three teams, each responsible for different functionalities. The Ultrasound
team [2] selected the transducer used and designed an amplifier capable of driving the transducer. The

10 Project Overview

System Modelling [6] team used the position measurements to train a model to improve the frequency
response of the system. Finally the Position Measurement and Control team was responsible for collecting
the position measurements and calculating the output signal to the amplifier based on the desired output
and model parameters.

Amplifier

Laser Interferometer

Calculate
Compensation Model

Ultrasonic Transducer

Laser

Implement
Compensation Model

ModelInput

Interferometer
Control

Control
DC Data

Output

AC Data

Ultrasound Team Position Measurement & Control Team System Modeling Team

Figure 3.1: System functional diagram with division of tasks

4 System Design

4.1 Division of Specifications

4.1.1 Ripple and Noise
Non-functional requirement #1 specifies the final system is allowed 3 dB total gain ripple, which implies
the maximum difference in gain in the passband may be 3 dB.

Distortion in the Ultrasound Signal Path

Distortion in the ultrasound signal path is the distortion caused by any components that are involved in
creating the ultrasound. In theory the adaptive feed forward method will compensate for any linear, and
some non-linear distortion in the ultrasound signal path. A factor of 1 dB will be budgeted to any non-linear
distortions in the ultrasound signal path that are not accounted for, such as hysteresis.

Distortion in the Model Creation Path

Distortion in the model creation path cannot be corrected by the adaptive feed forward model, because it
is the loop that creates the model. Because of this, any distortions will directly lead to ripple in the pass
band. Any components between the interferometry setup and model calculation computer may add to the
distortion in the model creation path. A factor of 3 − 1 = 2 dB is left for distortion caused in the model
creation path. 1.5 dB is attributed to the Position Measurement and Control team. This leaves 0.5 dB for
the modeling team.

Noise in the Model Creation Path

Noise in the Model Creation Path will be attributed to the System Modeling team. The reason for this is
that as will be shown, they have most control over it. Noise in the model creation path can cause noisy
gain data points and colored noise in the model creation path can create distortion in the model. The effect
of noise in this system becomes very complex, but several ideas below will come together the justify an
approximation on the noise added by the model creation path. Firstly, since the input frequency is known,
the SNR can arbitrarily be increased by increasing the size of the bin of time domain samples used for the
Fourier transform. The limitation to this is that the size of the time bin used may not exceed the period at
which the system compensates for disturbances. Given the rate of disturbance rejection requirement #4,
this limit is set to 1ms. This implies an FFT would have a resolution of 1 KHz. This in turn implies that
for white noise, 2 percent of the total noise in the flat band will translate to information about the gain.
Secondly, the SNR of the signal can be kept at a sufficient level by setting a minimum input power required
that can lead to valid information about the system. Lastly, the system modeling team can create a model
based on many data points of the system, the effect of this is that noisy data points will get averaged.

The distortion caused by noise may cause 0.5 dB = 1.12202 ripple as per Section 4.1.1. This translates
to noise that may at least have a spectral density of 1·0.12202

0.02·50·103 = 1.2202 · 10−4 W
Hz .

Noise in the Ultrasound Signal Path

Noise in the ultrasound signal path has two effects. Firstly, noise in the ultrasound signal path has the exact
same distortion effect as the time domain noise in the model creation path noise. As such they can be added
up to form the total noise that may cause distortion. Secondly, it is by definition the noise that is directly
translated to ultrasound. Because of this there is a direct limit on this noise. The program of requirements
(non-function requirement #3) states that the allowed noise in the passband is 1 mW. For white noise, this
implies a maximum noise with spectral density 2 · 10−8 W

Hz . This noise budget is spread equally over the
Position Measurement and control team and the ultrasound team.

12 System Design

4.1.2 Price
The financial budget is divided over the three teams in the following way. The Ultrasound team is given
a budget of C300. The System modeling team is given a budget of C50. The position measurement and
control team is allotted the remaining budget of C1150. According to the interferometer provider [11], the
complete interferometer will cost up to C500. The remaining budget of C650 must be divided between the
ADC, DAC, and system platform. The ADC and DAC are therefore allotted roughly C200 each, while the
system platform will be allotted C250.

4.2 Top Level Design
Following the decisions made thus far, an integrated system architecture was designed. The resulting sys-
tem and the required connected hardware can be seen outlined in Figure 4.1. The details of each component
will be outlined in the following three chapters, this chapter discusses the choices of hardware.

Ultrasound

Interferometer ADC PC

MCU

ADC

Our System

Pre-processing

DAC Adaptive Feed Forward Filter

Figure 4.1: Top level system functional diagram with external components

4.3 ADC and DAC
In selecting the ADC and DAC the two most significant specifications to consider are sampling rate and
resolution. In general the cost also increases proportionally to these specifications, so it is desirable to pick
the minimum viable solution.

Given the input frequency of between 1.625 to 1.75 MHz, a sampling rate of at least 4 MSps is re-
quired for the ADC to prevent aliasing. However, due to the small bandwidth of the signal, aliasing may
occur without it being destructive. This would decrease the theoretical lower limit of the sampling rate to
100KHz. For the the prototype of this project, a 14-bit ADC [12] with a sampling rate of 65 MSps was
chosen. The reason for this was to ensure that the ADC was not a limiting factor. Another ADC with higher
or lower specifications could be integrated into the project with relative ease. A 14-bit DAC [13] with a
165MSps was chosen for this same reason.

To ensure the 14-bit resultion does not cause any issues, the noise from both the ADC and DAC will be
calculated. The quantisation noise [14] can be described with the following formula.

N (f) =

{
∆ 2

12·Fs − Fs
2 < f < Fs

2

0 else
(4.1)

Where ∆ is the resolution, and Fs is the ADC or DAC frequency. This results in a noise spectral density of(
1

214

)2
12 · 65 · 106

· 50 · 103 = 2.4 · 10−13 (4.2)

4.4 ADC and DAC Clock Selection 13

With the unit being the ratio of noise in the flatband, to full signal power. For the ADC, the noise level
can be very high due to the Fourier transform length possible, as explained in Section 4.1.1. For the DAC,
whose noise is approximately half that of the ADC, the programme of requirements state this ratio is
allowed to be 10−3. This implies the noise caused by the DAC is negligible.

4.4 ADC and DAC Clock Selection
Both the ADC and DAC clocks will inevitably contain noise in the form of jitter (σ), which affects both the
operation of these devices and the communication to/from them. For the ADC in particular the jitter affects
the sampling aperture time, which for input signals with high slew rates can quickly degrade measurement
capabilities. For a maximum slew rate max(dVdt) = A · 2πf ≈ 10.05 V µs−1 and Vres = Vpp/2

bits =
2/214 ≈ 122 µV of the fin = 1.6 MHz input signal, the threshold for jitter that will not contribute any
noise can be calculated:

Vres

2
≥ σ · dV

dt
⇒ σ ≤ 6.07 ps (4.3)

However, the noise added by jitter is evenly distributed spectrally, so as discussed in Section 4.1.1
this noise does not directly affect performance. The clocks selected for the ADC in this project are from
the DSC1001 series (datasheet: [15]), and specifies a maximum jitter of 50 ps. As derived in an Analog
Devices design note [16], Equation 4.4 gives the theoretical limit on the SNR of our measurements, which
is 66 dBFS. For identical reasoning as in Section 4.3 this is negligible.

SNR(dBFS) = −20log(2πfinσ) ≈ 66 dBFS @ fin = 1.6 MHz (4.4)

Clock jitter is often less of an issue for a DAC [17], as it affects the timing of the output rather than
the level. While this does contribute to phase noise, it does so at the sampling frequency rather than at
the signal frequency. Given the same maximum slew rate and a jitter of 50 ps, the maximum noise power
added to the ultrasound signal path can be calculated as follows:

Pnoise =

(
σ · dV

dt

)2

≈ 0.25 µW @ fs = 65 MHz (4.5)

This high frequency noise is both in a negligible range, and can easily be filtered out of the output
signal when the signal frequency is significantly lower than the sampling frequency.

4.5 ADC and DAC Communication
The ADC and DAC communicate at the provided clock rate via parallel interfaces. In order to meet the
timing requirements of these high speed interfaces the signals must be carefully routed from the ICs to the
FPGA. The ADC outputs a clock to which its data is synced. This clock signal must be routed into the
FPGA via a designated clock input pin, which is connected to the internal dedicated clock bus of the FPGA
to guarantee low distortion. Most importantly the parallel signals between the FPGA and ADC/DAC must
be routed at equal lengths, such that the delay between the signals is identical. Next the delay, setup, and
hold times relative to the clocks as specified in their respective datasheets are provided to the FPGA design
software, which uses this information to run a timing analysis.

4.6 Model Communication
Each time the PC updates the current model, the parameters of this model must be transferred from the PC
to the FPGA. This is a relatively small amount of data, and there are no strict timing requirements for it,
so a simple serial protocol such as UART can be used. The one other parameter that is needed is the extra
feature, which is sent from the MCU to the FPGA. In order to simplify the design on the FPGA both the

14 System Design

model parameters and extra feature will be received through the same UART interface, meaning that the
PC will send the model parameters via the MCU. At the standard rate baud rate of 115.2 KBaud/s, using
binary signalling this gives a data rate of 115.2 KBit/s. This will allow for the extra feature to be transferred
in 4 ∗ 8/115200 ≈ 0.3 ms, and the entire model to be transferred in 300 ∗ 8/115200 ≈ 21 ms. For extra
features with higher bandwidth requirements, the extra feature could be measured by the FGPA directly.

4.7 ADC Sample Memory and Communication
The samples recorded by the ADC must be transferred to the PC for processing. With the sampling rate of
65 MSps and resolution of 14 bits, this equals a rate of 910 Mbit/s (113.75 MB/s).

Some possible options for transferring data at the rates required to a PC are Ethernet (1 Gbit/s), USB
3.0 (4.8 Gbit/s), or some form of internal connection such as PCIe or SATA. The latter are not standard on
laptops, and were therefore not considered. Both Ethernet and USB SuperSpeed are both fairly complicated
protocols, difficult to implement on an FPGA. Ethernet requires a PHY IC, however IP is readily available
to be used. In real applications gigabit Ethernet often only can deliver 900 Mbit/s, which does not meet
our requirement of 910Mbit/s, so the margin for error is small. An interesting contender is the FT600 IC,
which takes a 16 width FIFO input and outputs the data over USB with a maximum bandwidth of 200MB/s.
Due to the availability of a development board with the FT600 IC and the required minimum FPGA IO pin
count, USB was selected.

The sample communication will also require a buffer, as the PC will be receiving the data and saving it
in blocks. Between blocks the data must be intermittently stored in some form of memory. Based on real
worlds tests the time between reads was determined to be 160 µs, or 10400 samples at 65 MSps. A FIFO
of 214 = 16384 depth can be used for this. While this is still small enough to fit on a FPGA, if more time
is needed between transfers, an external sample memory must be used.

4.8 System Platform Selection
The filtering and acquisition of position measurements must be done on a digital processing platform, of
which there is a large variety. Some examples of possible choices are an MCU, FPGA or programmable
DSPs. An MCU would not have the IO nor the processing bandwidth to handle the data handling require-
ments. A DSP would be able to implement the filtering section, however integrating this with the position
measurement functionality could be challenging due to the limited flexibility compared to an FPGA. While
an FPGA is not very cheap, it does allow for the greatest amount of flexibility, which is particularly im-
portant in prototypes. Given the time and budget constraints, and the fact that this is a prototype, a FPGA
development board will be used rather than a custom PCB. Three requirements were considered for the
selection of the FPGA development board, namely the available IO pins, logic resources, and peripherals.
The pins required are: 15 for ADC, 15 for DAC, 2 for UART, 8 for LEDs, and 20 for FT600 USB IC,
giving a total of at least 60 IO pins. The required logic resources can be seen in the Utilization report for
the design (see Figure C.3). Finally the only peripheral required was either a Ethernet or USB 3.0 interface
(see Section 4.7).

Figure 4.2: Alchitry Au FPGA

The Alchitry AU FPGA platform met all of the re-
quirements, providing 100 IO pins, a daughter board
with the FT600 USB IC, and 33K LUTs and 93 DSPs.
The FPGA itself is a Xilinx Artix-7 XC7A35T. This de-
velopment board also features 256 MB of DDR3 mem-
ory which could optionally be used as an equivalent two
seconds (130 million samples) of sample memory as
suggested in the previous Subsection 4.7. The price of
this development board is currently C142, which meets
the C250 budget specified in Section 4.1.2.

4.9 Custom Connection Board 15

4.9 Custom Connection Board
Due to the high frequency (100 MHz) single ended CMOS communication used between the ADC, DAC,
and FPGA, it is likely that wiring harnesses will degrade signal integrity significantly, causing errors in
communication. To address this issue a PCB was designed to reduce the effects of noise, reflections, and
impedance mismatches that wires are more susceptible to. On the PCB the signals are all routed the same
length, the trace width is selected to the correct impedance, and there is adequate spacing between traces
to reduce crosstalk. This PCB also has multiple clock generator ICs for the DAC and ADC, which are
transmitted over controlled impedance coaxial cable.

Figure 4.3: PCB designed to connect ADC, DAC, and FPGA

Calculations were required in order to calculate the required trace width to achieve the desired char-
acteristic impedance Zc = 50 Ω. As derived by Hammerstad [18] equations 4.6 and 4.7 can be used to
approximate the characteristic impedance of a microstrip PCB trace. The electromagnetic wave in a mi-
crostrip line exists in both the dielectric substrate and the air above it. Since the relative permittivity of
the substrate εr differs from that of air, the wave travels through an inhomogeneous medium. As a result,
the propagation velocity lies between what it would be in the substrate and in air alone. Equation 4.6 pro-
poses an effective permittivity εeff , which is the permittivity an equivalent homogeneous medium with the
same propagation velocity would have. This approximation has an error ≤ 1% for 0.05 ≤ w/h ≤ 20 and
εr ≤ 16.

εeff =
εr + 1

2
+

ε r − 1

2

1√
1 + 12h

w

= 3.2924 (4.6)

Next these equations are applied given the substrate relative permittivity εr = 4.4, and substrate height
h = 0.2104 mm, which are made available by the PCB manufacturer, and the desired Zc = 50 Ω. Z0 is
the impedance of free space, which is approximately equal to 120π. This resulted in a value of w = 0.349
mm for the trace width.

Zc =
Z0√
εeff

[w
h

+ 1.393 + 0.667ln
(w
h

+ 1.444
)]−1

for
w

h
> 1 (4.7)

5 Position Measurement

Feature
Vector Gen

MCU

ADC FIFO
to USB

Feed Forward Filter

Time Signal
Generation

Output
FIFO

USB Communication

ControlUART
Communication

DAC

Pre-processing

Position Measurement

Figure 5.1: System diagram with external components

In this chapter laser interferometry and its use for measuring the vibration of ultrasonic transducers
is discussed. This method of measurement leverages the interference property of light, and the fact that
the interference pattern in this setup changes with a much lower frequency than that of light. While the
underlying principle is relatively straightforward, it is essential to acknowledge the limitations inherent to
this setup that must be addressed to ensure the technical requirements are met. The following sections
provide an overview of the relevant requirements, a short introduction to optical interferometry, and a
thorough analysis of the system.

Signal Integrity The interferometer may effect the position signal integrity by adding noise and by dis-
torting the signal. Firstly, due to the fact that the interferometer is in the model creation path, the noise
requirement is a relatively high 1.2 · 10−4 W

Hz (see Section 4.1.1). Secondly, there is a limit to the distor-
tion that can occur due to the method of position measurement. In Section 4.1.1 1.5 dB of distortion was
budgeted to the position measurement of the model creation path. The entire distortion budget can be used
for the processing of the interferometry data.

FPGA Resources Ideally the processing implementation requires as few FPGA resources as possible
without causing significant distortion.

5.1 Interferometer Theory 17

5.1 Interferometer Theory

Figure 5.2: Diagram of interferometry setup

The basic principle of interferometry is depicted in Figure 5.2. The photodiode will measure the power
intensity P of two light waves, which is dependant on the phase difference θ between the two waves and
the ratio R of power that is reflected. In turn, θ is directly dependant on the distance to the transducer x.

λ =
2 · π · c
ωlight

(5.1)

θ (x) =
4 · x · π

λ
= Phase difference (5.2)

P̂ =
1

2
·R(x) · cos (θ (x)) + R(x)2 + 1

4
= Normalized power measured (5.3)

For convenience, the normalized power P̂ , the phase difference θ, and the distance x will be split up
into their low and high frequency components.

x = xLF + xHF

θ = θLF + θHF

P̂ = P̂LF + P̂HF (5.4)

The high frequency signal will be considered the signal that carries the information, whereas the low
frequency signal will be considered noise caused by disturbances such as thermal expansion. This leads to
the following reconstruction formula for θHF . The derivation of this Equation can be found in Appendix
A.1.

θ HF ≈ arcsin

±

(
P̂HF + P̂LF − R2+1

4

)
1
2R

− arcsin

±

(
P̂LF − R2+1

4

)
1
2 R · J0 (θ HF,max)

 (5.5)

Firstly, in this equation, R is the reflection coefficient that indicates the ratio of the amplitudes of the 2
waves that are interfering. In this equation the approximation is made that R does not change significantly
with changes in x. Secondly, θHF,max is the maximum value of θHF . If θHF (t) has the form θHF,max ·
sin(ωt) then the approximation 5.5 becomes an equality. Later in the paper the effect of this approximation
will be nullified, thus it is worth no further discussion.
Once θHF has been reconstructed, xHF can be calculated using the following Equation.

xHF = (θ HF + k · π) · λ k ∈ Z (5.6)

18 Position Measurement

5.2 Operating Point
In order to maximize the signal PHF that is measured based on any changes of xHF , an operating point of
θLF was found. The derivation can be found in Appendix A.1.3.

θLF =
π

2
+ k · π k ∈ Z

θerr = θLF − π

2
+ k · π (5.7)

5.3 Reflection Coefficient Estimation
As can be seen in Equation 5.5 the signal is dependant on R, the reflection coefficient. Although R does
not change significantly, an accurate estimation is required to reconstruct xHF . The value of R can be
estimated by varying the wavelength, which is something the interferometry setup is capable of. This light
should fluctuate between constructive and deconstructive interference. The maximum and minimum values
of P = Scale · P̂ can be recorded.

Pmax = max λ P = Scale · 1 + 2R+R2

4
(5.8)

Pmin = min λ P = Scale · 1− 2R+R2

4
(5.9)

P is obtained by measuring PLF and PHF and adding them. Next, Equations 5.8 and 5.9 can be used to
obtain R and Scale from the Pmax and Pmax that are measured.

5.4 Arcsine Approximation
Equation 5.5 requires a resource intensive implementation of an arcsine function.The system would be
easier and cheaper to implement if the following approximation were to be valid:

x = arcsin(x) (5.10)

This approximation is valid when:

|θerr| <<
π

2
(5.11)

|θHF | <<
π

2
(5.12)

The derivation of which can be found in Appendix A.2.

5.4.1 Error Prediction
A simulation was made in which these approximations were made. In the simulation the following signal
was input:

P̂sim = −1

2
· R (xLF) · sin (θerr + θHF + k · π) +

R (xLF)
2
+ 1

4
θ HF = θ HF,max · sin (ωtestt) (5.13)

5.4 Arcsine Approximation 19

An attempt was then made to reconstruct θHF as θHF,EST but using the approximation 5.10. A good
indicator of the validity of the approximation is the gain of the input frequency component. Any variation
in gain will imply distortion.

Gain =
ΘHF,EST (ωtest)

ΘHF (ωtest)
(5.14)

Figure 5.3 shows the effect of this as a function of variations in θHF,max and θerr.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HF,max
 (/2)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
a

in
 o

f
In

p
u

t
S

ig
n

a
l

err
 = 0

err
 = 0.1* /2

err
 = 0.2* /2

err
= 0.3* /2

err
 = 0.4* /2

err
 = 0.6* /2

No approximation

Figure 5.3: Gain variation caused by Arcsin(x) = x approximation

From this figure an acceptable combination of θerr and θHF can be derived. The functional require-
ments in Section 2.1 of the project allow a maximum ripple of 3dB in the flatband. In Section 4.1 this
total ripple was divided over the entire system, which allows a factor of 1.4 = 1.15 dB to be caused by the
FPGA. Of course we would like to limit this, especially since there will be other sources of noise caused
by the FPGA. We will internally allow the arcsine approximation 5.10 to cause a factor of 1.075 error.

5.4.2 Interferometry Simulation
In this section we will predict an achievable value of θerr and use that to determine a value of θHF .

Phase Error θerr Variation

Approximation 5.10 directly affects the ripple in the passband as shown in Figure 5.3. In this section we
determine a proper estimate of the DC Error. Based on a conversation with Warner Venstra [11], the creator
of the interferometry setup used in this paper, we modeled the setup to estimate the DC error. The model
contains the following assumptions:

1. The position has low (< 0.07 Hz) frequency noise component with amplitude > λ/8

20 Position Measurement

2. The λ can be tuned slightly to stay in the correct operating region 5.7. The control voltage to fre-
quency transfer is modeled as a lowpass with 3 Hz cutoff and a 0.5 second delay.

The system was simulated with 0.07 hz noise and a PID controller that uses wavelength control to track
setpoint θerr = 0. The result can be seen in Figure 5.4 below.

0 10 20 30

Time(s)

3.4

3.6

3.8

4

P
o
s
ti
o
n
(u

m
)

Position Transducer

x
LF

 + x
HF

x
LF

0 10 20 30

Time(s)

-0.5

0

0.5

1

V
o
lt
a
g
e

DC

0 5 10 15 20

Time(s)

-1

-0.5

0

0.5

1

R
a
d
ia

n
s

Phase Difference

err
 +

HF

err

0 10 20 30

Time(s)

200

205

210

F
re

q
u
e
n
c
y
 T

H
z

Frequency

Light Frequency

X 11.8038

Y 0.0977886

Figure 5.4: Phase Error With Frequency Control

Besides for error at startup, θerr fluctuates to a value of 0.1 rad at most, which is 0.06 · π/2. Of
course this is purely based on simulation, we will include a safety margin and round the maximum θerr to
0.1 ·π/2. Another team will present a micro controller implementation of the control system that will keep
the interferometer at its desired π/2 operating point.

Choice of θHF,Amp

The value of θHF,Amp can now be chosen based on the estimated maximum value of θerr and the gain
variation factor of 1.05 that is budgeted to the arcsin approximation.

Using Figure 5.3 and the conclusion draw from Section 5.4.2 we can safely say that θHF,Amp may have
a maximum value of 0.3 · π/2 without exceeding the flatband ripple requirement #1.

5.5 USB Communication Format 21

5.4.3 Selecting a Laser Wavelength λ

We know from the ultrasound team paper [2] that the maximum value of xHF will be 50 nm. This leads to
a wavelength of:

λmin =
4 · xHF,Amp · π

θHF,Amp
= 1333 nm ≈ 1500nm (5.15)

We will round this up to 1500nm due to the availability of an interferometer with that wavelength.
Assuming the validity of the assumptions we have made, with this wavelength interferometer laser, the
approximation in this section 5.10 is valid.

5.4.4 Simplifications
Once the arcsin approximation is made, several simplifications can be made. Firstly, the low frequency
power PLF cancels out in the Equation A.12. This leads to the Equation below.

θHF ≈ ± P̂HF
1
2R

(5.16)

In Equation 5.16 it can be seen that the value of θHF is now proportional to the high frequency power PHF

measured. In order for the proper gain factor, a proper estimation of R would be required. However, due
to the fact that the gain is equal for all frequencies, this does not cause any distortion.

The result of this is the following expression.

xHF ∝ ˆPHF (5.17)

Which leads to the conclusion that the signal measured does not need to be processed.

5.5 USB Communication Format
To derive an accurate model the PC must receive the ADC samples, but it also must know what model
and extra feature value is associated with these samples. In order to address this, along with the samples,
the model ID and extra feature used will be sent to the PC. The model ID is a unique code assigned to
the model by the PC upon creation. Since these parameters do not update frequently, and in fact must be
constant for the entire width of each FFT done on the data, they are sent every N+S samples, where N is the
FFT width and S is the amount of cycles needed for the system to settle to a steady state. S is configurable,
and should include the time required to: calculate a new output, for the output to change, and for the new
signal to propagate through the interferometry system and be measured. The ADC samples are 14 bits
wide, while the data transferred over USB is 16 bits wide, meaning the first two bits can be used as markers
for the model ID and extra feature in order to avoid problems with synchronization. The source code for
this module can be found in Appendix B.12

5.6 ADC Noise Contribution
With the lack of pre-processing done, the only possible source of noise is from the ADC’s sampling. The
ADC noise would be added to the model creation path noise, is caused by quantization errors 4.3 and clock
jitter errors 4.4.

6 Signal Generation

Feature
Vector Gen

MCU

ADC FIFO
to USB

Feed Forward Filter

Time Signal
Generation

Output
FIFO

USB Communication

ControlUART
Communication

DAC

Pre-processing

Signal Generation

Figure 6.1: System diagram with external components

In this chapter the system components responsible for implementing the feed forward control are discussed.
The relevant technical requirements for this subsystem can be divided into three categories, namely the
noise, latency, and FPGA resource requirements.

Noise Noise caused by the signal generation can be described as noise in the ultrasound signal path. There
are two thing requirements that need to be met regarding this noise. Firstly, the output noise budget for the
signal generation section is half (see Section 4.1.1) of the noise allowed by the program of non-functional
requirement #3. This implies the signal generation on the FPGA has a budget of 0.0005 watts. This is 0.5
percent of the maximum power. Internally this will be divided equally over the phasor generation and the
time signal generation.

Latency As per the non-functional requirement #4 the system needs to be able to reject any disturbances
at a bandwidth of 1 KHz. This implies the latency between a change in the external parameter P and a
change in the output signal can be a maximum of 1 ms. As can be seen in Section 4.6, the parameter delay
from the MCU to the FPGA via UART will be 0.3ms. To this we add the delay of the MCU, which we
approximate to be another 0.3ms in the worst case. This leaves 0.4 ms for the feed forward filter and time
signal generation. Internally we will allow the the feed forward filter to take 0.35 ms seeing as it requires
the most calculation. The filter needs to filter 4 frequencies, which implies each frequency component
translates to 87.5 us. On an FPGA with a 100 MHz clock, this translates to 8.75 · 103 clock cycles. This
leaves 5 · 103 clock cycles for the time signal generation.

FPGA resources The price budget for an FPGA is chosen to be 250 euros. Our market research from
vendors such as Mouser [19] shows that this will yield an FPGA development board resources on the order
of 100.000 LUTs and 200 DSPs. Naturally, the price of the FPGA required for implementation needs to be
as low as possible, but the limit is set to this number of resources. Seeing as the feed forward filtering is
the most calculation intensive component, it will receive a budget of 2/3 of these resources.

6.1 UART Communication 23

6.1 UART Communication
The UART Communication component is responsible for processing the received commands and either
updating the model or setting LEDs accordingly. The LEDs are included as a tool for debugging. The
communication between the MCU and FPGA was chosen to be implemented using UART. A simple custom
data structure that can be seen in Figure 6.2 was designed consisting of one command byte followed by the
N data bytes expected based on the command sent. This is possible due to the various parameters having
fixed widths.

Figure 6.2: UART Protocol Diagram and Data Structure

On the FPGA, the UART protocol itself was implemented using a simple Xilinx IP UART state ma-
chine. This IP abstracts the UART to a simple parallel communication with write and ack handshake bits.
The UART configuration used is baud rate = 115200 baud, data bits = 8, parity bits = none, stop bits = 1,
and flow control = none.

WAIT_RX_CMDRX_PARAM RX_LED

SEND_UPDATE

cmd = 0x63 ... 0x6A

cmd = 0x6B

cmd = 0x61

size = data_size

no cmdstart

size < data_size wait for set value

Figure 6.3: State Machine Diagram of UART Communication

The state SEND UPDATE informs the FPGA that all parameters of the model have been updated suc-
cessfully, after which the new parameters are made available to the control module. The source code for
this module can be found in Appendix B.11

6.2 Feed Forward Filter
The feed forward filter module applies the inverse of the system gain |Gest| to a single input frequency
component Fk. The result of this operation is the magnitude |Ink| at which the frequency component Fk

will be sent into the system.

24 Signal Generation

6.2.1 Toplevel Design

Figure 6.4: Top Level of the Feed Forward Filter Component

As can be seen in Figure 6.4 the feed forward filter component is split up into 3 sub-components. Firstly,
the feature generation, which combines the parameter P with a small feature vector ϕk to create the final
feature vector Φk. Secondly, the Model Gain generation sub-component calculates the estimated system
gain |Gest| at frequency Fk. This is done by scalar multiplying the feature vector Φk with the weight vector
W . Lastly, the actual feed forward step is applied, in which the reference output magnitude |Outk,ref | for
Fk is divided by the estimated system gain |Gest(Fk)|. The result is the value Ink, which is the magnitude
at which the frequency component Fk will be sent into the ultrasound system via the DAC.

6.2.2 Design choices
Arithmetic Format and Size

A choice needs to be made regarding the size and type of representation of the numbers that the calcula-
tions in this module are done with. Firstly, the type of representation is chosen, for this, fixed point and
floating point are the choices. Fixed point representation has a constant resolution, but it has a limited
range. Floating point representation has a much larger range but its resolution is dynamic, implying that
its resolution is much lower at high ranges. Even with methods to compensate for it 6.2.2, the values used
in this module can vary orders of magnitude. For this reason, floating point representation was chosen.
Vivado, the VHDL analysis and synthesis tool that is used for this project, has great IP that allows for easy
floating point integration into projects.

Secondly, the bit size of the floating point will effect its range and the relative resolution. More specifi-
cally, the exponent will determine the range, and the mantissa will determine the resolution. The datasheet
of the Vivado Floating Point IP [20] states that the addition, multiplication, and division operators are all
accurate to half a ULP (Unit Last Place) as per the IEEE standard [21]. For a 16-bit float with a 10-bit
mantissa, the worst-case ULP is 1

1024 of the actual value. This implies a 0.5/1024 ≈ 0.05 percent error
added every time a floating point IP is used.

In the worst case, the following number of operations in series would be required. In feature generation,
the variable P 8

1 will require 8 multiplications. In Model gain generation the scalar multiplication of the
feature vector Φ with the weight vector W takes 1 multiplication and log2 (64) = 6 additions. Lastly, the
feed forward step requires 1 division. We find that the maximum error due to 16 bit floating point rounding
in the feed forward filer is 1.000516 = 1.00803 = 0.803%. This is equivalent to 0.0347dB, which
directly translates to ripple in the pass band. This is an acceptable number seeing 1.5 dB of ripple was
budgeted to the implementations in this Section 4.1.1. It is concluded that a 10-bit mantissa is sufficient for
the requirements of this project. This would leave an exponent of 5 bits. This implies the 16-bit floating
point has a range of 216 till 2−14 and an identical range with the reverse sign. In this project, this leads
to the restriction that no number can exceed these ranges. If this range requirement is met, 16 bit floating
point arithmetic will allow the program of requirements to be met.

6.2 Feed Forward Filter 25

Feature Format

Due to the range limit of the 16 bit floating point 6.2.2, there is a limit to the size of F and P. This upper
limit is |F · P1| < 8

√
216 = 4. The lower limit is |F · P | > 8

√
2−14 = 2−

14
8 ≈ 0.3. This range is equally

divided over F and P1. On top of that, to simplify, only the positive range will be used. This implies both
the F and P need to be normalised to a value between

√
0.3 = 0.55 and

√
4 = 2. The following formula

will be used to normalise the frequency F and parameter P1.

Xnorm =

(
X − Xmin+Xmax

2
Xmax−Xmin

2

+ 1.275

)
· 0.725 ∈ [0.55, 2] where X ∈ [Xmin, Xmax] (6.1)

Using the mapping equation 6.1 the values of FNorm and P1,Norm are obtained. These calculations are
done on the MCU and on the PC.

6.2.3 Feature Generation
This sub-component takes the small feature vector ϕ and combines it with the parameter P1,norm to create
Φ. The main design goals for this module are to generate the feature vector Φ with a low latency, while
taking few FPGA resources.

For a frequency polynomial(PF) of 8th order and an extra parameter order Nϕ of 8. The number of
multiplications required is 56. Assuming an equal division of the latency budget 6 over the feed forward
filter component, the maximum latency for the feature generation is 3000 clock cycles. The feed forward
filter component was budgeted 66 percent of the total FPGA resources. Both the feature generation and
estimated system gain generation will receive 30 percent of the total resources, leaving 6 percent for the
actual feed forward step.

Figure 6.5: Estimated System Gain Generation

For the feature generation, it was chosen to implement the calculation by doing 7 consecutive cycles
of 8 parallel multiplications. The implementation that can be seen in Figure 6.5 requires a multiplication
unit that does 8 floating point multiplications in parallel. This can be done with floating point multiplier
IP from Vivado [22]. The multiplier has several parameters that can be tuned. Firstly, its ”latency”, which
according to the documentation is the number of internal registers. The latency is set to 0, the reason for
this is that the documentation [22] states that increasing the latency does not create any re-use of resources.
Its only advantage is that it allows for a higher clock rate. In the feature generation sub-component, the
multiplier in series with a MUX is the longest combinatorial path. According to the documentation, this

26 Signal Generation

is faster than the 100 MHz clock used. The other parameter that can be tuned is the division of LUTs and
DSPs. A single 16-bit floating point multiplier can be implemented using 200 logic elements or 90 logic
elements and a single DSP. This choice is not binding due to the ease of changing the IP. The choice was
made to use purely logic elements. The design implemented in VHDL can be found in Appendix B.3

6.2.4 Estimated System Gain Generation

This sub-component scalar multiplies the weight vector W and the feature vector Φ. The same 8 floating
point multiplier block as in the feature generation 6.2.3 is used. The design for the estimated system gain
generation can be seen in Figure 6.6.

Figure 6.6: Model gain generation system diagram

This implementation does eight of the 64 required multiplications in parallel. Once the multiplications
are finished, the results are added up in an adder tree. For a 64 by 64 scalar multiplication, an adder tree
of depth 6 is required. This implies the data needs to move through six adders in series before it is saved.
With a 100 MHz clock cycle and the floating point adder IP used in this project, this causes timing issues.
For this reason, the adders were configured to have a latency of 1 clock cycle, which prevents timing issues.

The documentation of the floating point adder IP [23] states that a 16 bit floating point adder takes
170 LUTs, or 130 LUTs and one DSP. This is approximately the same as the multiplier. The reason for
this is that for floating point numbers, addition is a complex operation. For the implementation in this
paper, that was overlooked and the adder tree shown in Figure 6.6 was implemented. When adding many
numbers, an adder tree is the option with the lowest latency, but it requires the most adders. When adders
are cheap to implement, like for fixed point arithmetic, this is not a problem. However, for floating point
numbers this significantly increases the number of resources required. The current implementation of the
estimated system gain generation component requires 8 multipliers and 127 adders and has a latency of 14
clock cycles. This requires 24k LUTs to implement, which is very close to the 30k LUT budget. A simple
improvement that is recommended, is for the implementation in this paper to split the required additions
up into at least 16 clock cycles. This would decrease the number of adders required to 8 and decrease
the number of FPGA resources required by the estimated system gain generation by a factor of at least
12. This is a substantial improvement for the entire Position measurement & control system, seeing as the
feature calculation without this improvement is responsible for more than 90 percent of the total resource
requirements. The design implemented in VHDL can be found in Appendix B.2.

6.3 Time Signal Generation 27

6.2.5 Feed Forward Step
Once the estimated system gain has been calculated, a simple calculation can be done to apply the feed
forward step. The desired output magnitude |Outk,ref | will be divided by the estimated system gain
|Gest(Fk)| as explained in section 3.3.2.

Figure 6.7: Feed Forward Filtering Step

The division is done by floating point IP provided by Vivado [22]. A single division has been configured
to take 2 clock cycles which allows for the reuse of hardware. Because of this the latency is also 2 clock
cycles. The number of required LUTs for this implementation is 500. The design implemented in VHDL
can be found in Appendix B.9

6.2.6 Feed Forward Filter Sub-Component Integration
The 3 sub-components that make up the feed forward filter were combined together. The result is a com-
ponent that takes 27k LUTs and has a latency of 23 clock cycles. This meets the requirements, but a
substantial improvement should be made. If the recommended method of alternative addition were to be
implemented, the number of LUTs required for the feed forward filter component would decrease by a
factor of approximately 10x. This system would require approximately 3k LUTs and have a latency of 39
clock cycles. This would still be extremely low latency when compared to the minimal latency requirement
6, but the FPGA resources required would be much lower.

The VHDL code for the sub-component integration can be found in Appendix B.7. The simulation can
be found in Appendix C.1

6.3 Time Signal Generation
In this component the time domain signal is synthesized. A diagram of the design can be seen in Figure
6.8 below.

Figure 6.8: Time Signal Generation Diagram

As can be seen 4 DDS modules in parallel are responsible for the the creation of the time domain signal
for each frequency component Fk. These are then added to create the signal that is used as input for the

28 Signal Generation

DAC. The DDS (Direct Digital Synthesizer) modules are created with Vivado IP. A single DDS module
takes as input a frequency and a magnitude, and outputs a time domain signal. The choice was made to
represent the frequency and magnitude as 32 bit numbers and the output as 14 bit numbers. This leads to a
frequency resolution of 0.02 Hz, which ensures the model creation team can do a very large FFT [6]. For
these parameters, the spurious free dynamic range is 90dB. This approximately translates to a 10−9 dB
ripple in the passband, which is negligible. In total, the time signal generation requires 16 DSP, mainly due
to the DDS and a few hundred LUTs. The latency is 5 clock cycles.

The VHDL implementation for both the time signal generation and the feed forward filter can be found
in Appendix B.10. The simulation of this component can be found in Appendix C.2.

6.4 Control Module

The control module is responsible for controlling the signal generation and updating the model ID and
extra features reported for each sample bin. The new parameters received from the UART Communication
component are converted into output magnitudes |Ink| and frequencies Fk for each frequency using the
Feed Forward Filter component. These updated phasors are then sent to the Time Signal Generation at the
beginning of each new time bin. The counter for the time bins is implemented in this module, the size of
which is discussed in detail in Section 5.5. The source code for this module can be found in Appendix B.1

WAIT_UPDATE

QUEUE_MATH EXECUTE_MATH RX_MATH

SAVE_PARAMS

math_valid = falsebin_size_counter > settling_cycles

repeat for each freq

all freqs completed

no update

start

Figure 6.9: State Machine Diagram of Control Module

6.5 DAC Output

The outputs generated by the time domain signal generation cannot be directly sent to the DAC, because the
DAC uses an external clock for timing the data input. This clock is also connected to the FPGA, which will
output data as requested by the clock. In order to synchronize the output from the internal to the external
clock domain, an asynchronous FIFO is used. The internal and external clocks both operate at 100 MHz,
but should and frequency differences occur that cause there to be no new output available, the previous
output value will be used. The depth of the FIFO is limited to two in order to avoid incurring delays and
samples building up between the two domains.

6.6 Signal Generation Integration 29

6.6 Signal Generation Integration
The control module, feed forward filter component, and time signal generation component were added
together in a VHDL signal generation component. The component was tested in simulation, the result of
which can be found in Appendix C.2. The VHDL code for the signal generation component can be found
in Appendix B.5.

7 Prototype Implementation and
Validation

7.1 Simulation and Synthesis
Throughout the process of development the various individual components were simulated with testbenches
to verify operation as well as for debugging issues. Next the individual components were synthesized to
further test the feasibility of implementation in practice, as well as estimate the utilization of logic re-
sources. An important part of this was to specify constraints on delays and frequencies from the various
external interfaces so that a valid timing analysis can be performed. After this the components were inte-
grated together one at a time, starting at the UART input and moving down the data path to finish with the
DAC output. Simulations showing the successful testing of various components and the system as a whole
can be found in Appendix C. Once the entire system was integrated, the total required logic resources was
reported as can be seen in the utilization report in Appendix C.3.

7.2 Testing and Validation
After the system was verified to work in synthesis, the design was implemented in hardware. This process
was split into two steps in order to better isolate errors.

7.2.1 Data Acquisition
The data acquisition, consisting of the ADC, USB Communication component, and FT600 USB interface,
was tested as an isolated system. On the PC a driver provided by the FT600 manufacturer was used to
read the USB pipe. The measurements from Table 7.1 show that the desired data rate of 113.75 MB/s was
met, however the performance did not meet the theoretical limit of 200 MB/s. Using a pattern generator
to emulate the ADC, it was verified that the data has a 0% error rate. This also confirms that the internal
FIFO size of 214 = 16384 depth is sufficient to avoid data loss.

Table 7.1: USB data rates vs amount of bytes requested
Transfer Size [KB] Average Data Rate [MB/s]

16 57.7
32 77.1
64 82.0
128 155.8
256 173.3
512 174.7

1024 174.6

In the above speed test data was sent every clock cycle in order to test the maximum bandwidth of the
USB interface. It can be seen that the data rate increases as the requested transfer size increases. This is
not a limitation of the FPGA implementation or the FT600 USB interface, but rather a limitation within the
PC or provided driver.

7.2.2 Complete System
To test our entire system without requiring integration with the ultrasound and model training systems,
the output of the DAC was connected to the input of the ADC. Subsequently, carefully chosen model

7.2 Testing and Validation 31

parameters were transferred to the system via the UART interface. The output on the DAC was then
measured by the ADC and transferred via USB to the PC. Here the resulting waveform could be compared
to the theoretically expected waveform given the model parameters defined. As can be seen in Figure 7.1,
the data collected matched expectations, and the outputs matched the expected frequencies and magnitudes,
as well as noise requirements. This procedure was repeated with a variety of input parameters.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [us] 10
-6

2000

4000

6000

8000

10000

12000

14000

1
4
-b

it
 A

D
C

 O
u
tp

u
t

1.596 1.598 1.6 1.602 1.604 1.606 1.608 1.61

f [Hz] 10
6

0

1000

2000

3000

4000

5000

|P
1
(f

)|

Cropped Single-Sided Amplitude Spectrum of X(t)

ADC Raw Data signal sampled at 65 MSps

Figure 7.1: Raw measurements and frequency spectrum of complete system test

In the above test the UART parameters were specified such that:

• F1 = 1.600 MHz and |In1| = 0.25

• F2 = 1.602 MHz and |In2| = 0.5

• F3 = 1.604 MHz and |In3| = 0.75

• F4 = 1.606 MHz and |In4| = 1

Additionally a significant spike was observed at 0 Hz, which is to be expected due to the 213 = 8192
DC bias that can be seen in the above Figure 7.1. This is an expected result of the ADC output format, as
the -1V to 1V range of the ADC is distributed from 0 to 214. Unfortunately integration with the ultrasound
and model training systems was not achieved within the time constraints, however this would be the next
logical step in testing the system.

8 Discussion
After considering a variety of possible solutions to the problem of flattening the frequency response of
an ultrasonic transducer, a design was made considering the program of requirements. Unfortunately due
to time constraints, the subsystem presented in this thesis has not yet been integrated with the ultrasonic
and model training systems. While the requirements were met, some tradeoffs were made that may not
have been optimal. For instance, while the price requirement of C1500 was met, the system in it’s current
prototype form could be made much more affordably, albeit not in the same short time span. Another non-
optimal implementation was the resource consumption of the Feed Forward Filter. As discussed in Section
6.2, the current implementation exceeds the specification for latency by orders of magnitude. As it is the
most resource intensive component, by increasing the latency and reducing the resource consumption, a
lower cost FPGA could be used.

Another cost optimization could be made by changing the selection of ADC. The system is currently
oversampling by a factor of 20 with respect to the Nyquist rate. Furthermore, sub-sampling could be used in
this application, as long as destructive aliasing in avoided. A reduction in sampling rate would both reduce
the cost of the ADC, and reduce the bandwidth required to transfer the acquired data, simplifying the
system. The prototype developed allows for a reduction in sampling rate, so the sub-sampling performance
can be evaluated without any changes to the system.

For the position measurement, an extensive analysis of the system was done, resulting in the conclu-
sion that for the given operating range of the system, no pre-processing was needed in order to acquire
satisfactory measurements. This greatly simplified the expected design, and allowed for the use of a more
cost effective FPGA. A valuable byproduct of this analysis was a deeper understanding of the system’s
behavior, which proved beneficial for both the design and troubleshooting process.

9 Conclusion
Overall, the system performed its intended functions and met the requirements. Design challenges were
faced, particularly in terms of logic resource utilization and cost optimization. These aspects provide
valuable insights for future improvements, including exploring alternative model architectures, extending
the operating range, and a variety of changes that could reduce system cost. Throughout the development
process of this system, many possible avenues of future work were discovered to further enhance the
capabilities and functionality of the developed system.

• Frequency Update Latency: The latency bottleneck for updating the frequency components of the
output currently lies in the speed of UART. While this meets the specifications per the program
of requirements, should this latency be reduced, the system would be capable of generating more
dynamic outputs, such as pulses. There are many practical applications in which this functionality
would increase the utility of our system.

• Expanded Operating Range: While not required, extending the operating range of the position mea-
surement interferometer would greatly improve the flexibility of the system. Increasing the range
would involve accounting for the arcsine distortion as discussed in Section 5.4, as well as accounting
for the signal no longer being directly proportional to displacement.

• Time Domain Implementation: While it was not the optimal solution given the provided program of
requirements, modelling the distortion with a time domain filter rather than in the frequency domain
as explored in Section 3.4 does provide numerous benefits, most notably the ability to input an
arbitrary non-periodic signal.

• Non-Linear Modeling and Neural Networks: A promising direction for future work involves the
development of a complete non-linear model for the system. Incorporating time samples as input
features, such as in a neural network, could potentially enhance the system’s ability to accurately
predict and control the behavior of ultrasonic transducers, eliminating the need for the linearizations
made in the current method.

• Digital versus Analog Systems: An interesting area to explore is the comparison between digital and
analog feedback systems. While making a dynamic analog system is complex, they have the clear
advantage of operating fast enough to provide direct feedback.

• Data Compression: Considering the implementation of the FFT on the FPGA, would allow for only
the relevant frequency information to be sent, greatly reducing the required transmission bandwidth.
However, the feasibility and cost-effectiveness of this approach should be further investigated, taking
into account the additional complexities and expenses associated with its implementation.

By pursuing these avenues of future work, the system can be further enhanced, expanding its capabili-
ties, improving accuracy, and exploring new possibilities in the field of ultrasonic transducer control and
measurement.

Appendix

A
Interferometry Theory Derivation

A.1 Derivation of θHF

A.1.1 Basic Interferometry
In this section below an expression for the reconstruction of θHF is derived.

ωlight = Angular frequency of light
x = Distance optical fiber to transducer

λ =
2 · π · c
ωlight

R(x) = Reflection coefficient[0, 1]

θ (x) =
4 · x · π

λ
= Phase difference

Signal into diode = sin (ωlight · t) +R (x) · sin (ωlight · t+ θ (x))

= 2 · sin
(
ωlight · t+

θ (x)

2

)
cos (θ (x)) + (1−R (x)) · sin (ωlight · t+ θ (x))

P̂ =
1

2
·R(x) · cos (θ (x)) + R(x)2 + 1

4
= Normalized power measured∗ (A.1)

From here on we assume R is constant with position seeing as the absolute distance is much larger than
the variation in distance, implying R will vary very little.

As per the equation A.1 we obtain a relationship between the distance and the signal measured.

A.1.2 Low Frequency and High Frequency Division
In the setup used, the normalized signal power P is actually split up into a high frequency and low frequency
part (20KHz cutoff). We can also arbitrarily split the position x up into its high and low frequencies. We
get:

x = xLF + xHF

θ = θLF + θHF

P̂ = P̂LF + P̂HF (A.2)

36 Interferometry Theory Derivation

We can combine Equation A.1 with Equations A.2 to obtain the following expressions:

P̂LF =
1

Period θHF

∫ Period θ HF

0

−R (xLF)

2
· cos (θ LF + θ HF (t)) +

R (xLF)
2
+ 1

2
dt (A.3)

P̂HF =
1

2
· R (xLF) · cos (θ LF + θ HF (t)) +

R (xLF)
2
+ 1

4
− P̂LF (A.4)

Taking the assumption A.5, equation A.3 simplifies to Eq A.6:

θHF (t) = θLF,Amp ∗ sin(ωt) (A.5)

P̂LF = −1

2
·R · cos (θLF) · J0 (θHF,Amp) +

R (xLF)
2
+ 1

4
(A.6)

Due to simplification later in the report we will assume the validity of assumption A.5.
We can now interpret xLF and θLF to be any low frequency noise changing the distance, such as

expansion due to temperature. The information of interest is in the high frequency distance signal xHF .

A.1.3 Operating Point
The type of interferometry used in this thesis is called absolute phase interferometry. Compared to interfer-
ometry with phase wrapping, this is much less costly to implement, and it leads to higher resolution. The
downside is that the operating range is limited, but this not a problem for the magnitudes of distance that
are relevant in this project. The choice of absolute phase interferometry implies
k ∈ Z |0 < θHF − k ∗ 2π < 2π must hold at all times.

The sensitivity of the interferometer can be maximized by operating the setup at an optimal θLF , which
can be achieved by slightly changing the wavelength. The optimal θLF can be found using Equation A.7.

argmaxθLF

δabs
(

P̂HF

xHF

)
δθLF

(A.7)

0 =
δabs

(
P̂HF

xHF

)
δθLF

θLF =
xLF · 4π

λ
+

π

2
+ k · π k ∈ Z (A.8)

It is worth noting that the solution will change signs based on whether k is odd or even. (pi/2 and -p/2 are
both valid solutions but sign of slop is negated)

Seeing as xHF is a high frequency signal, its average value is 0, this implies that the maximizing
condition for Eq A.7 is:

θLF =
π

2
+ k · π k ∈ Z

θerr = θLF − π

2
+ k · π (A.9)

A.1.4 Signal Reproduction
This leads to the following expressions for the power measured:

P̂LF = −1

2
·R · sin (θerr + kπ) · J0 (θHF,Amp) +

R (xLF)
2
+ 1

4
(A.10)

A.2 Arcsine Approximation 37

P̂HF = −1

2
·R (xLF) · sin (θ err + θ HF + k · π) +

R (xLF)
2
+ 1

4
− PLF (A.11)

We can then rearrange the equations A.10 and A.11 to obtain an expression for θHF which can be used
to obtain xHF :

θHF = arcsin

−
(
P̂HF + P̂LF − R(xLF)2+1

4

)
1
2R (xLF)

−arcsin

−

(
P̂LF − R(xLF)2+1

4

)
1
2 R (xLF) · J0 (θHF,Amp)

 (A.12)

xHF = (θ HF + k · π) · λ (A.13)

A.2 Arcsine Approximation
Implementing an accurate arcsine function on an FPGA that runs at 65 MHz is costly. The system would
be easier and cheaper to implement if the following approximation were to be valid:

x = arcsin(x) (A.14)

This approximation is valid when |x| << 1. For this paper, that implies we assume∣∣∣∣∣ P̂LF − R(xLF)2+1
4

1
2 R (xLF)

∣∣∣∣∣ << 1 (A.15)

∣∣∣∣∣ −P̂HF
1
2R (xLF)

∣∣∣∣∣ << 1 (A.16)

This in turn implies:
θerr <<

π

2
(A.17)

θHF <<
π

2
(A.18)

B
Source Code

B.1 Control Module [VHDL]
1 ---
2 -- CONTROL MODULE
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use work.my_types_pkg.all;
7

8 entity control_module is
9 port (

10 clk : in std_logic;
11 reset : in std_logic;
12

13 -- Inputs from Communication
14 new_frequencies : in custom_fp_array_32_bit(FREQ_DIM-1 downto 0); -- Array of

frequencies used↪→
15 new_update : in std_logic;
16 new_polynomial_features : in custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto 0);
17 new_extra_feature : in std_logic_vector(FP_SIZE-1 downto 0);
18 new_magnitude_weights : in custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
19 new_phase_weights : in custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
20 new_phasor_magnitude : in custom_fp_array(FREQ_DIM-1 downto 0);
21 new_phasor_phase : in custom_fp_array(FREQ_DIM-1 downto 0);
22 new_model_id : in std_logic_vector(13 downto 0);
23

24 -- Connections to Math Module
25 math_start : out std_logic; -- Start pulse to start math, data to math

module is valid on this pulse↪→
26 math_polynomial_features : out custom_fp_array(POLY_DIM-1 downto 0);
27 math_extra_feature : out std_logic_vector(FP_SIZE-1 downto 0);
28 math_phase_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
29 math_magnitude_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
30 math_phasor_magnitude : out std_logic_vector(FP_SIZE-1 downto 0);
31 math_phasor_phase : out std_logic_vector(FP_SIZE-1 downto 0);
32 math_result_phasor_magnitude : in std_logic_vector(FP_SIZE-1 downto 0);
33 math_result_phasor_phase : in std_logic_vector(FP_SIZE-1 downto 0);
34 math_valid : in std_logic;
35

36 -- Connections to Time Signal Generation
37 gen_frequencies : out custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
38 gen_phasor_magnitudes : out custom_fp_array(FREQ_DIM-1 downto 0);
39 gen_phasor_phases : out custom_fp_array(FREQ_DIM-1 downto 0);
40

41 bin_update : out std_logic;
42 bin_extra_feature : out std_logic_vector(FP_SIZE-1 downto 0);
43 bin_model_id : out std_logic_vector(13 downto 0)
44);
45 end control_module;
46

47 architecture Behavioral of control_module is
48

49 type math_states is (WAIT_UPDATE, QUEUE_MATH, EXECUTE_MATH, RX_MATH, SAVE_PARAMS);
50 signal state : math_states;

B.1 Control Module [VHDL] 39

51

52 signal bin_size_counter : integer range 0 to (BIN_SIZE+SETTLING_CYCLES-1);
53

54 signal current_freq : integer range 0 to (FREQ_DIM-1); -- Which frequency to calculate for
55

56 -- Register signals to maintain output
57 signal reg_math_polynomial_features : custom_fp_array(POLY_DIM-1 downto 0);
58 signal reg_math_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
59 signal reg_math_phase_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
60 signal reg_math_magnitude_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
61 signal reg_math_phasor_magnitude : std_logic_vector(FP_SIZE-1 downto 0);
62 signal reg_math_phasor_phase : std_logic_vector(FP_SIZE-1 downto 0);
63

64 signal reg_all_math_polynomial_features : custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto
0);↪→

65 signal reg_all_math_phasor_magnitude : custom_fp_array(FREQ_DIM-1 downto 0);
66 signal reg_all_math_phasor_phase : custom_fp_array(FREQ_DIM-1 downto 0);
67

68 signal reg_gen_frequencies : custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
69 signal reg_gen_phasor_magnitudes : custom_fp_array(FREQ_DIM-1 downto 0);
70 signal reg_gen_phasor_phases : custom_fp_array(FREQ_DIM-1 downto 0);
71 signal reg_bin_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
72 signal reg_bin_model_id : std_logic_vector(13 downto 0);
73

74 signal reg_next_gen_frequencies : custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
75 signal reg_next_gen_phasor_magnitudes : custom_fp_array(FREQ_DIM-1 downto 0);
76 signal reg_next_gen_phasor_phases : custom_fp_array(FREQ_DIM-1 downto 0);
77 signal reg_next_bin_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
78 signal reg_next_bin_model_id : std_logic_vector(13 downto 0);
79

80 begin
81

82 process(clk, reset)
83 begin
84 if reset = '1' then
85 -- Reset values
86 state <= WAIT_UPDATE;
87 bin_size_counter <= 0;
88 current_freq <= 0;
89

90 math_start <= '0';
91 reg_math_polynomial_features <= (others => (others => '0'));
92 reg_math_extra_feature <= (others => '0');
93 reg_math_phase_weights <= (others => (others => '0'));
94 reg_math_magnitude_weights <= (others => (others => '0'));
95 reg_math_phasor_magnitude <= (others => '0');
96 reg_math_phasor_phase <= (others => '0');
97

98

99

100 reg_gen_frequencies <= (others => (others => '0'));
101 reg_gen_phasor_magnitudes <= (others => (others => '0'));
102 reg_gen_phasor_phases <= (others => (others => '0'));
103 reg_bin_extra_feature <= (others => '0');
104 reg_bin_model_id <= (others => '0');
105

106 reg_next_gen_frequencies <= (others => (others => '0'));
107 reg_next_gen_phasor_magnitudes <= (others => (others => '0'));
108 reg_next_gen_phasor_phases <= (others => (others => '0'));
109 reg_next_bin_extra_feature <= (others => '0');
110 reg_next_bin_model_id <= (others => '0');
111

112 gen_frequencies <= (others => (others => '0'));
113 gen_phasor_magnitudes <= (others => (others => '0'));
114 gen_phasor_phases <= (others => (others => '0'));
115 bin_extra_feature <= (others => '0');
116 bin_model_id <= (others => '0');
117

118 elsif rising_edge(clk) then
119 -- Default values
120 state <= state;
121 math_start <= '0';
122 reg_math_polynomial_features <= reg_math_polynomial_features;
123 reg_math_extra_feature <= reg_math_extra_feature;
124 reg_math_phase_weights <= reg_math_phase_weights;
125 reg_math_magnitude_weights <= reg_math_magnitude_weights;
126 reg_math_phasor_magnitude <= reg_math_phasor_magnitude;
127 reg_math_phasor_phase <= reg_math_phasor_phase;
128 current_freq <= current_freq;
129 reg_gen_frequencies <= reg_gen_frequencies;

40 Source Code

130 reg_gen_phasor_magnitudes <= reg_gen_phasor_magnitudes;
131 reg_gen_phasor_phases <= reg_gen_phasor_phases;
132 reg_bin_extra_feature <= reg_bin_extra_feature;
133 reg_bin_model_id <= reg_bin_model_id;
134

135 case state is
136 when WAIT_UPDATE =>
137 if new_update = '1' then
138 -- RX latest outputs from Communication
139 reg_all_math_polynomial_features <= new_polynomial_features;
140 reg_math_extra_feature <= new_extra_feature;
141 reg_math_phase_weights <= new_phase_weights;
142 reg_math_magnitude_weights <= new_magnitude_weights;
143 reg_all_math_phasor_magnitude <= new_phasor_magnitude;
144 reg_all_math_phasor_phase <= new_phasor_phase;
145

146 reg_next_gen_frequencies <= new_frequencies;
147 reg_next_bin_extra_feature <= new_extra_feature;
148 reg_next_bin_model_id <= new_model_id;
149 -- Start math
150 state <= QUEUE_MATH;
151 end if;
152 when QUEUE_MATH =>
153 if bin_size_counter <= SETTLING_CYCLES then
154 current_freq <= 0; -- Start by updating 0th frequency
155 state <= EXECUTE_MATH;
156 else
157 state <= QUEUE_MATH;
158 end if;
159 when EXECUTE_MATH => -- Send start pulse and params to math module
160 math_start <= '1';
161 for i in POLY_DIM-1 downto 0 loop
162 reg_math_polynomial_features(i) <= reg_all_math_polynomial_features(current_freq,

i);↪→
163 end loop;
164 reg_math_phasor_magnitude <= reg_all_math_phasor_magnitude(current_freq);
165 reg_math_phasor_phase <= reg_all_math_phasor_phase(current_freq);
166 state <= RX_MATH;
167 when RX_MATH =>
168 if math_valid = '1' then
169 math_start <= '0';
170 reg_next_gen_phasor_magnitudes(current_freq) <= math_result_phasor_magnitude;
171 reg_next_gen_phasor_phases(current_freq) <= math_result_phasor_phase;
172 if current_freq = (FREQ_DIM-1) then
173 state <= SAVE_PARAMS;
174 else
175 current_freq <= current_freq + 1; -- Increment frequency to update for
176 state <= EXECUTE_MATH;
177 end if;
178 else
179 math_start <= '1';
180 state <= RX_MATH;
181 end if;
182 when SAVE_PARAMS =>
183 reg_gen_frequencies <= reg_next_gen_frequencies;
184 reg_gen_phasor_magnitudes <= reg_next_gen_phasor_magnitudes;
185 reg_gen_phasor_phases <= reg_next_gen_phasor_phases;
186 reg_bin_extra_feature <= reg_next_bin_extra_feature;
187 reg_bin_model_id <= reg_next_bin_model_id;
188 state <= WAIT_UPDATE;
189 end case;
190

191 -- Bin counter
192 if bin_size_counter >= BIN_SIZE+SETTLING_CYCLES-1 then
193 bin_update <= '1';
194 bin_size_counter <= 0;
195 gen_frequencies <= reg_next_gen_frequencies;
196 gen_phasor_magnitudes <= reg_next_gen_phasor_magnitudes;
197 gen_phasor_phases <= reg_next_gen_phasor_phases;
198 bin_extra_feature <= reg_next_bin_extra_feature;
199 bin_model_id <= reg_next_bin_model_id;
200 else
201 bin_update <= '0';
202 bin_size_counter <= bin_size_counter + 1;
203 end if;
204 end if;
205 end process;
206

207 math_polynomial_features <= reg_math_polynomial_features;
208 math_extra_feature <= reg_math_extra_feature;

B.1 Control Module [VHDL] 41

209 math_phase_weights <= reg_math_phase_weights;
210 math_magnitude_weights <= reg_math_magnitude_weights;
211 math_phasor_magnitude <= reg_math_phasor_magnitude;
212 math_phasor_phase <= reg_math_phasor_phase;
213

214

215 end Behavioral;

42 Source Code

B.2 Control Phasor Generation [VHDL]

1 ---
2 -- CONTROL PHASOR GENERATION
3 ---
4

5 library IEEE;
6 use IEEE.STD_LOGIC_1164.ALL;
7 use IEEE.NUMERIC_STD.ALL;
8 use work.my_types_pkg.all;
9 use ieee.math_real.all;

10

11 entity Control_Phasor_Generation is
12 port(
13 clk : in std_logic;
14 reset : in std_logic;
15 input_ready : in std_logic;
16 System_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
17 System_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
18 input_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
19 input_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
20 Control_Phase : out std_logic_vector(FP_SIZE-1 downto 0);
21 Control_Gain : out std_logic_vector(FP_SIZE-1 downto 0);
22 Control_Phasor_valid : out std_logic);
23 end Control_Phasor_Generation;
24

25 architecture Behavioral of Control_Phasor_Generation is
26 component fp_subtract_X_bit is
27 Port (
28 s_axis_a_tvalid : in STD_LOGIC;
29 s_axis_a_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
30 s_axis_b_tvalid : in STD_LOGIC;
31 s_axis_b_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
32 m_axis_result_tvalid : out STD_LOGIC;
33 m_axis_result_tdata : out STD_LOGIC_VECTOR (FP_SIZE-1 downto 0)
34);
35

36 end component;
37

38 component fp_divider_X_bit is
39 Port (
40 aclk : in STD_LOGIC;
41 s_axis_a_tvalid : in STD_LOGIC;
42 s_axis_a_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
43 s_axis_b_tvalid : in STD_LOGIC;
44 s_axis_b_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
45 m_axis_result_tvalid : out STD_LOGIC;
46 m_axis_result_tdata : out STD_LOGIC_VECTOR (FP_SIZE-1 downto 0)
47);
48

49 end component;
50

51 signal subtract_valid, divide_valid: std_logic;
52 begin
53

54

55

56 subtract_phase: fp_subtract_X_bit
57 port map (
58 -- Global signals
59 -- AXI4-Stream slave channel for operand A
60 s_axis_a_tvalid => input_ready,
61 s_axis_a_tdata => input_Phase,
62 -- AXI4-Stream slave channel for operand B
63 s_axis_b_tvalid => input_ready,
64 s_axis_b_tdata => System_Phase,
65 -- AXI4-Stream master channel for output result
66 m_axis_result_tvalid => subtract_valid,
67 m_axis_result_tdata => Control_Phase
68);
69

70 divide_gain: fp_divider_X_bit
71 port map (
72 -- Global signals
73 aclk => clk,
74 -- AXI4-Stream slave channel for operand A
75 s_axis_a_tvalid => input_ready,
76 s_axis_a_tdata => input_gain,

B.2 Control Phasor Generation [VHDL] 43

77 -- AXI4-Stream slave channel for operand B
78 s_axis_b_tvalid => input_ready,
79 s_axis_b_tdata => System_gain,
80 -- AXI4-Stream master channel for output result
81 m_axis_result_tvalid => divide_valid,
82 m_axis_result_tdata => Control_gain
83);
84

85

86 Control_Phasor_valid <= divide_valid and subtract_valid;
87

88 end Behavioral;
89

90

91

44 Source Code

B.3 Feature Generation [VHDL]

1 ---
2 -- FEATURE GENERATION
3 ---
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.numeric_std.all;
7 use work.my_types_pkg.all;
8

9 entity Feature_Gen is
10

11 port (
12 clk : in std_logic;
13 reset : in std_logic;
14 Generate_Features: in std_logic;
15 input_features : in custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0);
16 extra_feature_value : in std_logic_vector(FP_SIZE-1 downto 0);
17 final_features : out custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
18 Feature_Gen_Done : out std_logic
19);
20 end Feature_Gen;
21

22 architecture behavior of Feature_Gen is
23

24 component vector_scalar_multiplier
25 port (
26 clk : in std_logic;
27 reset : in STD_LOGIC;
28 input_valid : in STD_LOGIC;
29 input_mult_vect : in custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0); -- partial

features↪→
30 input_mult1 : in std_logic_vector(FP_SIZE-1 downto 0);
31 output_mult : out custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0);
32 mult_valid : out std_logic
33);
34 end component;
35

36 type state is (idle,start, calc, done);
37 signal current_state : state ;
38 signal next_state : state;
39 signal count, next_count : unsigned(4 downto 0);
40 signal input_mult_vect : custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0); -- partial

features↪→
41 signal input_mult1 : std_logic_vector(FP_SIZE-1 downto 0); -- the extra

feature↪→
42 signal feat_partial, temp_feat_partial : custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0);
43 signal output_features_next: custom_fp_array(INPUT_FEATURE_LENGTH*2*ORDER_EXTRA_FEATURE-1 downto

0);↪→
44 signal output_features_temp: custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto

0);↪→
45 signal mult_valid, input_mult_valid: std_logic;
46

47 begin
48

49 update_state: process (clk, reset)
50 begin
51 if(reset='1' or Generate_Features='0') then
52 current_state <= idle;
53 count <= "00000";
54 output_features_temp<= (others => (others=>'0'));
55 else
56 if rising_edge(clk) then
57

58 if(current_state /= done) then
59 output_features_temp <=

output_features_next(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);↪→
60 else
61 end if;
62 count <= next_count;
63 current_state <= next_state;
64

65 end if;
66 end if;
67 end process update_state;
68

69

70 execute_state: process (reset,current_state,mult_valid)

B.3 Feature Generation [VHDL] 45

71 begin
72 case (current_state) is
73 when idle =>
74 next_state <= start;
75 Feature_Gen_Done <= '0';
76 input_mult_vect <= input_features;
77 input_mult1 <= "0011110000000000";--"00111111100000000000000000000000";
78 next_count <= "00000";
79 input_mult_valid <= '0';
80 when start =>
81

82 input_mult_vect <= input_features;
83 input_mult1 <= "0011110000000000";--"00111111100000000000000000000000";
84

85 Feature_Gen_Done <= '0';
86 next_state <= calc;
87 input_mult_valid <= '1';
88 next_count <= count+1;
89

90 when calc =>
91 if mult_valid='1' then
92 next_count <= count + 1;
93 output_features_next(INPUT_FEATURE_LENGTH*(ORDER_EXTRA_FEATURE+1)-1 downto

INPUT_FEATURE_LENGTH) <= output_features_temp;↪→
94 output_features_next(INPUT_FEATURE_LENGTH-1 downto 0) <= feat_partial;
95 temp_feat_partial <= feat_partial;
96 input_mult_vect <= feat_partial; --temp_feat_partial;
97 input_mult_valid <= '0';
98 input_mult1 <= extra_feature_value;
99

100 if(count<ORDER_EXTRA_FEATURE)then
101 next_state <= calc;
102 else
103 next_state <=done;
104 end if;
105 Feature_Gen_Done <= '0';
106

107 else
108 next_state <= calc;
109 -- input_mult_vect <= temp_feat_partial; Leads to error when first coming from

start because input should be input features↪→
110 -- input_mult1 <= extra_feature_value;
111 input_mult_valid <= '1';
112 end if;
113

114

115 when done =>
116 final_features <= output_features_temp;
117 Feature_Gen_Done <= '1';
118 when others =>
119

120

121 end case;
122 end process execute_state;
123

124 uu1: vector_scalar_multiplier port map(
125 clk => clk,
126 reset => reset,
127 input_valid=>input_mult_valid,
128 input_mult_vect=>input_mult_vect,
129 input_mult1=>input_mult1,
130 output_mult=>feat_partial,
131 mult_valid=>mult_valid
132);
133

134 end behavior;

46 Source Code

B.4 Map Inputs DDS [VHDL]

1 ---
2 -- MAP INPUTS DDS
3 ---
4

5 library IEEE;
6 use IEEE.STD_LOGIC_1164.ALL;
7 use work.my_types_pkg.all;
8

9 entity Map_inputs_DDS is
10 port(
11 clk: in std_logic;
12 input_Map_inputs_DDS_valid : in std_logic;
13 Control_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
14 Control_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
15 DDS_Phase: out std_logic_vector(31 downto 0);
16 DDS_Gain : out std_logic_vector(15 downto 0);
17 output_Map_inputs_DDS_valid: out std_logic
18);
19 end Map_inputs_DDS;
20

21 architecture Behavioral of Map_inputs_DDS is
22

23 component float_to_fixed_32_bit Port (
24 s_axis_a_tvalid : in STD_LOGIC;
25 s_axis_a_tdata : in STD_LOGIC_VECTOR (31 downto 0);
26 m_axis_result_tvalid : out STD_LOGIC;
27 m_axis_result_tdata : out STD_LOGIC_VECTOR (31 downto 0)
28);
29 end component;
30

31

32 component fp_16_to_32 is
33 Port (
34 s_axis_a_tvalid : in STD_LOGIC;
35 s_axis_a_tdata : in STD_LOGIC_VECTOR (15 downto 0);
36 m_axis_result_tvalid : out STD_LOGIC;
37 m_axis_result_tdata : out STD_LOGIC_VECTOR (31 downto 0)
38);
39 end component;
40

41 component floating_point_mult_32_bit is
42 Port (
43 s_axis_a_tvalid : in STD_LOGIC;
44 s_axis_a_tdata : in STD_LOGIC_VECTOR (31 downto 0);
45 s_axis_b_tvalid : in STD_LOGIC;
46 s_axis_b_tdata : in STD_LOGIC_VECTOR (31 downto 0);
47 m_axis_result_tvalid : out STD_LOGIC;
48 m_axis_result_tdata : out STD_LOGIC_VECTOR (31 downto 0)
49);
50 end component;
51

52 component fp_mult_16_bit is
53 Port (
54 s_axis_a_tvalid : in STD_LOGIC;
55 s_axis_a_tdata : in STD_LOGIC_VECTOR (15 downto 0);
56 s_axis_b_tvalid : in STD_LOGIC;
57 s_axis_b_tdata : in STD_LOGIC_VECTOR (15 downto 0);
58 m_axis_result_tvalid : out STD_LOGIC;
59 m_axis_result_tdata : out STD_LOGIC_VECTOR (15 downto 0)
60);
61 end component;
62

63 component float_to_fixed_32bit_to_16_bit is
64 Port (
65 s_axis_a_tvalid : in STD_LOGIC;
66 s_axis_a_tdata : in STD_LOGIC_VECTOR (31 downto 0);
67 m_axis_result_tvalid : out STD_LOGIC;
68 m_axis_result_tdata : out STD_LOGIC_VECTOR (15 downto 0)
69);
70 end component;
71

72 signal Control_Phase_32, Control_Phase_div_2pi_32 : STD_LOGIC_VECTOR (31 downto 0);
73 signal Control_Phase_32_valid, Control_Phase_div_2pi_32_valid: std_logic;
74 signal DDS_phase_valid, DDS_gain_valid, DDS_gain_pad_valid: std_logic;
75 signal DDS_phase_pad, DDS_gain_pad: STD_LOGIC_VECTOR (31 downto 0);
76 begin

B.4 Map Inputs DDS [VHDL] 47

77

78 Control_phase_to32: fp_16_to_32 port map(
79 s_axis_a_tvalid => input_Map_inputs_DDS_valid,
80 s_axis_a_tdata => Control_Phase,
81 m_axis_result_tvalid => Control_Phase_32_valid,
82 m_axis_result_tdata => Control_Phase_32
83);
84

85 Divide_by_2pi: floating_point_mult_32_bit port map(
86 s_axis_a_tvalid => Control_Phase_32_valid ,
87 s_axis_a_tdata => Control_Phase_32 ,
88 s_axis_b_tvalid =>Control_Phase_32_valid ,
89 s_axis_b_tdata => "01001011101000101111100110000011" , -- (2ˆ27 -1)/2pi
90 m_axis_result_tvalid => Control_Phase_div_2pi_32_valid,
91 m_axis_result_tdata => Control_Phase_div_2pi_32
92);
93 to_fixed_get_DDS_phase: float_to_fixed_32_bit port map(
94 s_axis_a_tvalid => Control_Phase_div_2pi_32_valid,
95 s_axis_a_tdata => Control_Phase_div_2pi_32,
96 m_axis_result_tvalid => DDS_phase_valid,
97 m_axis_result_tdata=> DDS_phase_pad
98);
99 DDS_phase <= DDS_phase_pad;--(27 downto 0);

100

101 DDS_GAIN_TO_32_bit : fp_16_to_32 port map(
102 s_axis_a_tvalid => input_Map_inputs_DDS_valid,
103 s_axis_a_tdata => Control_gain,
104 m_axis_result_tvalid => DDS_gain_pad_valid,
105 m_axis_result_tdata => DDS_gain_pad
106);
107

108 to_fixed_get_DDS_gain:
109 float_to_fixed_32bit_to_16_bit port map(
110 s_axis_a_tvalid => DDS_gain_pad_valid,
111 s_axis_a_tdata => DDS_gain_pad,
112 m_axis_result_tvalid => DDS_gain_valid,
113 m_axis_result_tdata => DDS_gain
114);
115

116 output_Map_inputs_DDS_valid <= DDS_gain_valid and DDS_phase_valid;
117

118

119 end Behavioral;

48 Source Code

B.5 Multiple Time Signal Generation [VHDL]

1 ---
2 -- MULTIPLE TIME SIGNAL GENERATION
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use work.my_types_pkg.all;
7 -- Uncomment the following library declaration if using
8 -- arithmetic functions with Signed or Unsigned values
9 --use IEEE.NUMERIC_STD.ALL;

10

11 -- Uncomment the following library declaration if instantiating
12 -- any Xilinx leaf cells in this code.
13 --library UNISIM;
14 --use UNISIM.VComponents.all;
15

16 entity Multiple_time_signal_generation is port(
17 clk : in std_logic;
18 reset : in std_logic;
19 input_valid : in std_logic;
20 Control_Phase : in custom_fp_array(NUM_FREQS-1 downto 0);
21 Control_Gain : in custom_fp_array(NUM_FREQS-1 downto 0);
22 phase_increase : in custom_fp_array_32_bit(NUM_FREQS-1 downto 0); -- sent by PC
23

24 DAC_IN : out std_logic_vector(15 downto 0)
25);
26 end Multiple_time_signal_generation;
27

28 architecture Behavioral of Multiple_time_signal_generation is
29 component Time_Signal_Generation is
30 port(
31 clk : in std_logic;
32 reset : in std_logic;
33 input_valid : in std_logic;
34 Control_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
35 Control_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
36 phase_increase : in std_logic_vector(31 downto 0); -- sent by PC
37

38 SINGLE_FREQ_SIG : out std_logic_vector(15 downto 0);
39 time_sig_valid: out std_logic
40);end component;
41

42 component adder_16_bit is
43 Port (
44 A : in STD_LOGIC_VECTOR (15 downto 0);
45 B : in STD_LOGIC_VECTOR (15 downto 0);
46 S : out STD_LOGIC_VECTOR (16 downto 0)
47);
48 end component;
49

50 component adder_17_bit is
51 Port (
52 A : in STD_LOGIC_VECTOR (16 downto 0);
53 B : in STD_LOGIC_VECTOR (16 downto 0);
54 S : out STD_LOGIC_VECTOR (17 downto 0)
55);
56 end component;
57

58 signal single_freq_sig: custom_fp_array_16_bit(NUM_FREQS-1 downto 0);
59 --signal single_freq_sig_VALID: custom_array_1_bit(NUM_FREQS-1 downto 0);
60 signal double_freq_sig1: std_logic_vector(16 downto 0);
61 signal double_freq_sig2: std_logic_vector(16 downto 0);
62 signal quad_freq_sig: std_logic_vector(17 downto 0);
63 begin
64

65 generate_time_sigs: for i in NUM_FREQS-1 downto 0 generate
66 add_freq: Time_Signal_Generation port map(
67 clk => clk,
68 reset => reset,
69 input_valid => input_valid,
70 Control_Phase => Control_Phase(i),
71 Control_Gain => Control_Gain(i),
72 phase_increase => phase_increase(i),
73 single_freq_sig => single_freq_sig(i)
74);
75 end generate;
76

B.5 Multiple Time Signal Generation [VHDL] 49

77 add_freqs1: adder_16_bit port map(
78 A => single_freq_sig(0),
79 B => single_freq_sig(1),
80 S => double_freq_sig1
81);
82 add_freqs2: adder_16_bit port map(
83 A => single_freq_sig(2),
84 B => "0000000000000000",
85 S => double_freq_sig2
86);
87

88 add_freqs3: adder_17_bit port map(
89 A => double_freq_sig1,
90 B => double_freq_sig2,
91 S => quad_freq_sig
92);
93

94 DAC_IN <= quad_freq_sig(17 downto 2);
95

96 end Behavioral;

50 Source Code

B.6 My Types Package [VHDL]
1 ---
2 -- MY TYPES PACKAGE
3 ---
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.numeric_std.all;
7 use ieee.math_real.all;
8

9 package my_types_pkg is
10

11 --When using this still replace all IP for different float size
12 --when changing FP size make sure to also change MAP_INPUT_DDS
13 constant FP_SIZE :integer := 16;
14

15 type array8 is array (natural range <>) of std_logic_vector(7 downto 0);
16 type custom_fp_array is array (natural range <>) of std_logic_vector(FP_SIZE-1 downto 0);
17 type custom_fp_array_32_bit is array (natural range <>) of std_logic_vector(32-1 downto 0);
18 type custom_fp_array_14_bit is array (natural range <>) of std_logic_vector(14-1 downto 0);
19 type custom_fp_array_16_bit is array (natural range <>) of std_logic_vector(16-1 downto 0);
20 type custom_array_1_bit is array (natural range <>) of std_logic;
21 type int_array is array (natural range <>) of integer range -2**15 to 2**15 -1;
22

23

24 constant NUM_FREQS : integer := 3;
25 -- Vector Vector scalar multiplier only works for 64>ORDER_EXTRA_FEATURE*INPUT_FEATURE_LENGTH
26 constant ORDER_EXTRA_FEATURE : integer := 5;
27 constant INPUT_FEATURE_LENGTH : integer := 10;
28 constant VECTOR_WIDTH : integer := 64; --Max value is 64
29 constant ADDER_TREE_DEPTH_SCALAR: integer := 6;
30 constant INPUT_SIZE_ADDER_TREE: integer := 2**ADDER_TREE_DEPTH_SCALAR;
31

32 -- Nic's types
33 constant POLY_DIM : integer := 10; -- Order of initial feature vector polynomial
34 constant EXTRA_DIM : integer := 5; -- Amount of times to multiply the initial feature vector with

the extra feature↪→
35 constant FREQ_DIM : integer := 3; -- Amount of frequencies used
36 constant BIN_SIZE : integer := 1024; -- Size of FFT bin on PC
37 constant SETTLING_CYCLES : integer := 50; -- Amount of extra cycles to include in each bin for

settling↪→
38 type custom_fp_array_2D is array (natural range <>, natural range <>) of std_logic_vector(FP_SIZE-1

downto 0);↪→
39

40 end package;
41

B.7 Phasor Calc Toplevel [VHDL] 51

B.7 Phasor Calc Toplevel [VHDL]

1 ---
2 -- PHASOR CALCULATION TOPLEVEL
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use ieee.numeric_std.all;
7 use work.my_types_pkg.all;
8 -- Uncomment the following library declaration if using
9 -- arithmetic functions with Signed or Unsigned values

10 --use IEEE.NUMERIC_STD.ALL;
11

12 -- Uncomment the following library declaration if instantiating
13 -- any Xilinx leaf cells in this code.
14 --library UNISIM;
15 --use UNISIM.VComponents.all;
16

17 entity Phasor_Calc_Toplevel is
18 port(
19 clk : in std_logic;
20 reset : in std_logic;
21 input_Phasor_calc_valid: in std_logic;
22 input_features : in custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0);
23 extra_feature_value : in std_logic_vector(FP_SIZE-1 downto 0);
24 weights_gain : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
25 weights_phase : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
26 input_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
27 input_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
28

29 Control_Phase : out std_logic_vector(FP_SIZE-1 downto 0);
30 Control_Gain : out std_logic_vector(FP_SIZE-1 downto 0);
31 Control_Phasor_valid : out std_logic
32);
33

34 end Phasor_Calc_Toplevel;
35

36 architecture Behavioral of Phasor_Calc_Toplevel is
37

38 component Feature_Gen is
39 port (
40 clk : in std_logic;
41 reset : in std_logic;
42 Generate_Features: in std_logic;
43 input_features : in custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0);
44 extra_feature_value : in std_logic_vector(FP_SIZE-1 downto 0);
45 final_features : out custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
46 Feature_Gen_Done : out std_logic
47);
48 end component;
49

50 component System_Phasor_Calc is
51 port(
52 clk : in std_logic;
53 reset : in std_logic;
54 input_ready : in std_logic;
55 in_features : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
56 weights_gain : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
57 weights_phase : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
58 System_phase : out std_logic_vector(FP_SIZE-1 downto 0);
59 System_gain : out std_logic_vector(FP_SIZE-1 downto 0);
60 output_phasorcalc_ready : out std_logic);
61 end component;
62

63 component Control_Phasor_Generation is
64 port(
65 clk : in std_logic;
66 reset : in std_logic;
67 input_ready : in std_logic;
68 System_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
69 System_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
70 input_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
71 input_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
72 Control_Phase : out std_logic_vector(FP_SIZE-1 downto 0);
73 Control_Gain : out std_logic_vector(FP_SIZE-1 downto 0);
74 Control_Phasor_valid : out std_logic);
75 end component;
76

52 Source Code

77 signal final_features: custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
78 signal Feature_Gen_Done, output_phasorcalc_ready : std_logic;
79 signal System_gain, System_phase : std_logic_vector(FP_SIZE-1 downto 0);
80 signal sub_reset, sub_reset1, sub_reset2, sub_reset3: std_logic;
81

82 begin
83 Feature_Gen_map: Feature_Gen port map
84 (clk => clk,
85 reset => sub_reset,
86 Generate_Features => input_Phasor_calc_valid,
87 input_features => input_features,
88 extra_feature_value => extra_feature_value,
89 final_features => final_features,
90 Feature_Gen_Done => Feature_Gen_Done);
91

92 System_Phasor_calc_map: System_Phasor_Calc port map
93 (clk => clk,
94 reset => sub_reset,
95 input_ready => Feature_Gen_Done,
96 in_features => final_features,
97 weights_gain => weights_gain,
98 weights_phase => weights_phase,
99 System_phase => System_phase,

100 System_gain => System_gain,
101 output_phasorcalc_ready => output_phasorcalc_ready);
102

103 Control_Phasor_Generation_map: Control_Phasor_Generation port map(
104 clk => clk,
105 reset=> sub_reset,
106 input_ready =>output_phasorcalc_ready,
107 System_Phase => System_phase,
108 System_Gain => System_gain,
109 input_Phase => input_phase,
110 input_Gain => input_gain,
111 Control_Phase => Control_Phase,
112 Control_Gain => Control_Gain,
113 Control_Phasor_valid => Control_Phasor_valid
114);
115

116 create_reset: process (clk)
117 begin
118 if rising_edge(clk) then
119

120 sub_reset1 <= reset or (not input_Phasor_calc_valid);
121 sub_reset2 <= sub_reset1;
122 sub_reset3 <= sub_reset2 ;
123 sub_reset <= sub_reset3 or sub_reset2 or sub_reset1;
124 end if;
125 end process;
126 end Behavioral;

B.8 Project Toplevel [VHDL] 53

B.8 Project Toplevel [VHDL]

1 ---
2 -- PROJECT TOPLEVEL
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use work.my_types_pkg.all;
7

8 entity project_toplevel is
9 Port (clk : in std_logic;

10 rst_n : in std_logic;
11 uart_rx : in std_logic;
12 uart_tx : out std_logic;
13 led : out std_logic_vector(7 downto 0);
14 dac_in : out std_logic_vector(15 downto 0)
15);
16 end project_toplevel;
17

18 architecture behavioral of project_toplevel is
19

20 component uart_communication
21 generic (
22 baud : positive := 115200;
23 clock_frequency : positive := 100000000
24);
25 port (
26 clk : in std_logic;
27 rst_n : in std_logic;
28 uart_tx : out std_logic;
29 uart_rx : in std_logic;
30 led : out std_logic_vector(7 downto 0);
31 frequencies : out custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
32 update : out std_logic;
33 polynomial_features : out custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto 0);
34 extra_feature : out std_logic_vector(FP_SIZE-1 downto 0);
35 magnitude_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
36 phase_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
37 phasor_magnitude : out custom_fp_array(FREQ_DIM-1 downto 0);
38 phasor_phase : out custom_fp_array(FREQ_DIM-1 downto 0);
39 model_id : out std_logic_vector(13 downto 0);
40 amplitude_estimate : in std_logic_vector(FP_SIZE-1 downto 0)
41);
42 end component;
43

44 component control_module
45 port (
46 clk : in std_logic;
47 reset : in std_logic;
48 new_frequencies : in custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
49 new_update : in std_logic;
50 new_polynomial_features : in custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto 0);
51 new_extra_feature : in std_logic_vector(FP_SIZE-1 downto 0);
52 new_magnitude_weights : in custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
53 new_phase_weights : in custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
54 new_phasor_magnitude : in custom_fp_array(FREQ_DIM-1 downto 0);
55 new_phasor_phase : in custom_fp_array(FREQ_DIM-1 downto 0);
56 new_model_id : in std_logic_vector(13 downto 0);
57 math_start : out std_logic;
58 math_polynomial_features : out custom_fp_array(POLY_DIM-1 downto 0);
59 math_extra_feature : out std_logic_vector(FP_SIZE-1 downto 0);
60 math_phase_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
61 math_magnitude_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
62 math_phasor_magnitude : out std_logic_vector(FP_SIZE-1 downto 0);
63 math_phasor_phase : out std_logic_vector(FP_SIZE-1 downto 0);
64 math_result_phasor_magnitude : in std_logic_vector(FP_SIZE-1 downto 0);
65 math_result_phasor_phase : in std_logic_vector(FP_SIZE-1 downto 0);
66 math_valid : in std_logic;
67 gen_frequencies : out custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
68 gen_phasor_magnitudes : out custom_fp_array(FREQ_DIM-1 downto 0);
69 gen_phasor_phases : out custom_fp_array(FREQ_DIM-1 downto 0);
70 bin_update : out std_logic;
71 bin_extra_feature : out std_logic_vector(FP_SIZE-1 downto 0);
72 bin_model_id : out std_logic_vector(13 downto 0)
73);
74 end component;
75

76 component Multiple_time_signal_generation is

54 Source Code

77 port(
78 clk : in std_logic;
79 reset : in std_logic;
80 input_valid : in std_logic;
81 Control_Phase : in custom_fp_array(NUM_FREQS-1 downto 0);
82 Control_Gain : in custom_fp_array(NUM_FREQS-1 downto 0);
83 phase_increase : in custom_fp_array_32_bit(NUM_FREQS-1 downto 0);
84 DAC_IN : out std_logic_vector(15 downto 0)
85);
86 end component;
87

88 component Phasor_Calc_Toplevel
89 port(
90 clk : in std_logic;
91 reset : in std_logic;
92 input_Phasor_calc_valid: in std_logic;
93 input_features : in custom_fp_array((POLY_DIM-1) downto 0);
94 extra_feature_value : in std_logic_vector(FP_SIZE-1 downto 0);
95 weights_gain : in custom_fp_array(POLY_DIM*EXTRA_DIM-1 downto 0);
96 weights_phase : in custom_fp_array(POLY_DIM*EXTRA_DIM-1 downto 0);
97 input_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
98 input_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
99 Control_Phase : out std_logic_vector(FP_SIZE-1 downto 0);

100 Control_Gain : out std_logic_vector(FP_SIZE-1 downto 0);
101 Control_Phasor_valid : out std_logic
102);
103 end component;
104 -- ctrl signals
105

106 signal reset : std_logic;
107 signal new_frequencies : custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
108 signal new_update : std_logic;
109 signal new_polynomial_features : custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto 0);
110 signal new_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
111 signal new_magnitude_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
112 signal new_phase_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
113 signal new_phasor_magnitude : custom_fp_array(FREQ_DIM-1 downto 0);
114 signal new_phasor_phase : custom_fp_array(FREQ_DIM-1 downto 0);
115 signal new_model_id : std_logic_vector(13 downto 0);
116 signal math_start : std_logic;
117 signal math_polynomial_features : custom_fp_array(POLY_DIM-1 downto 0);
118 signal math_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
119 signal math_phase_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
120 signal math_magnitude_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
121 signal math_phasor_magnitude : std_logic_vector(FP_SIZE-1 downto 0);
122 signal math_phasor_phase : std_logic_vector(FP_SIZE-1 downto 0);
123 signal math_result_phasor_magnitude : std_logic_vector(FP_SIZE-1 downto 0);
124 signal math_result_phasor_phase : std_logic_vector(FP_SIZE-1 downto 0);
125 signal math_valid : std_logic;
126 signal gen_frequencies : custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
127 signal gen_phasor_magnitudes : custom_fp_array(FREQ_DIM-1 downto 0);
128 signal gen_phasor_phases : custom_fp_array(FREQ_DIM-1 downto 0);
129 signal bin_update : std_logic;
130 signal bin_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
131 signal bin_model_id : std_logic_vector(13 downto 0);
132

133 constant clock_period: time := 10 ns;
134 constant bit_period : time := ((1.0 / real(115200)) * real(1e9)) * 1 ns;
135 signal stop_the_clock : boolean;
136

137 -- comm signals
138 signal transmit_data: std_logic_vector(7 downto 0);
139 signal amplitude_estimate: std_logic_vector(FP_SIZE-1 downto 0);
140

141

142

143 begin
144 reset <= NOT(rst_n);
145

146 -- Insert values for generic parameters !!
147 comm: uart_communication generic map (baud => 115200,
148 clock_frequency => 100000000)
149 port map (clk => clk,
150 rst_n => rst_n,
151 uart_tx => uart_tx,
152 uart_rx => uart_rx,
153 led => led,
154 frequencies => new_frequencies,
155 update => new_update,
156 polynomial_features => new_polynomial_features,

B.8 Project Toplevel [VHDL] 55

157 extra_feature => new_extra_feature,
158 magnitude_weights => new_magnitude_weights,
159 phase_weights => new_phase_weights,
160 phasor_magnitude => new_phasor_magnitude,
161 phasor_phase => new_phasor_phase,
162 model_id => new_model_id,
163 amplitude_estimate => amplitude_estimate);
164

165 ctrl: control_module port map (clk => clk,
166 reset => reset,
167 new_frequencies => new_frequencies,
168 new_update => new_update,
169 new_polynomial_features => new_polynomial_features,
170 new_extra_feature => new_extra_feature,
171 new_magnitude_weights => new_magnitude_weights,
172 new_phase_weights => new_phase_weights,
173 new_phasor_magnitude => new_phasor_magnitude,
174 new_phasor_phase => new_phasor_phase,
175 new_model_id => new_model_id,
176 math_start => math_start,
177 math_polynomial_features => math_polynomial_features,
178 math_extra_feature => math_extra_feature,
179 math_phase_weights => math_phase_weights,
180 math_magnitude_weights => math_magnitude_weights,
181 math_phasor_magnitude => math_phasor_magnitude,
182 math_phasor_phase => math_phasor_phase,
183 math_result_phasor_magnitude => math_result_phasor_magnitude,
184 math_result_phasor_phase => math_result_phasor_phase,
185 math_valid => math_valid,
186 gen_frequencies => gen_frequencies,
187 gen_phasor_magnitudes => gen_phasor_magnitudes,
188 gen_phasor_phases => gen_phasor_phases,
189 bin_update => bin_update,
190 bin_extra_feature => bin_extra_feature,
191 bin_model_id => bin_model_id);
192

193 siggen: Multiple_time_signal_generation
194 port map(
195 clk => clk,
196 reset => reset,
197 input_valid => '1',
198 Control_Phase => gen_phasor_phases,
199 Control_Gain => gen_phasor_magnitudes,
200 phase_increase => gen_frequencies,
201 DAC_IN => DAC_IN);
202

203 math: Phasor_Calc_Toplevel port map (
204 clk => clk,
205 reset => reset,
206 input_Phasor_calc_valid => math_start,
207 input_features => math_polynomial_features,
208 extra_feature_value => math_extra_feature,
209 weights_gain => math_magnitude_weights,
210 weights_phase => math_phase_weights,
211 input_Phase => math_phasor_phase,
212 input_Gain => math_phasor_magnitude,
213 Control_Phase => math_result_phasor_phase,
214 Control_Gain => math_result_phasor_magnitude,
215 Control_Phasor_valid => math_valid);
216

217

218 end behavioral;

56 Source Code

B.9 System Phasor Calc [VHDL]
1 ---
2 -- SYSTEM PHASOR CALCULATION
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use IEEE.NUMERIC_STD.ALL;
7 use work.my_types_pkg.all;
8 use ieee.math_real.all;
9

10 entity System_Phasor_Calc is
11 port(
12 clk : in std_logic;
13 reset : in std_logic;
14 input_ready : in std_logic;
15 in_features : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
16 weights_gain : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
17 weights_phase : in custom_fp_array(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0);
18 System_phase : out std_logic_vector(FP_SIZE-1 downto 0);
19 System_gain : out std_logic_vector(FP_SIZE-1 downto 0);
20 output_phasorcalc_ready : out std_logic);
21 end System_Phasor_Calc;
22

23 architecture Behavioral of System_Phasor_Calc is
24

25 component Vector_Vector_Scalar_multiplier is
26

27 port(
28 clk : in std_logic;
29 reset : in std_logic;
30 input_scalar_mult_valid : in std_logic;
31 input_mult_vect_a : in custom_fp_array(VECTOR_WIDTH -1 downto 0);
32 input_mult_vect_b : in custom_fp_array(VECTOR_WIDTH -1 downto 0);
33 output_scalar_mult: out std_logic_vector(FP_SIZE-1 downto 0);
34 output_scalar_mult_valid : out std_logic
35);
36 end component Vector_Vector_Scalar_multiplier;
37

38 signal input_scalar_mult_valid : std_logic;
39 signal input_mult_vect_a : custom_fp_array(VECTOR_WIDTH -1 downto 0);
40 signal input_mult_vect_b : custom_fp_array(VECTOR_WIDTH -1 downto 0);
41 signal output_scalar_mult: std_logic_vector(FP_SIZE-1 downto 0);
42 signal output_scalar_mult_valid : std_logic;
43

44 signal phase_sum, gain_sum: std_logic_vector(FP_SIZE-1 downto 0);
45 type state is (start, calc_gain,gain_done, calc_phase,phase_done, done);
46 signal current_state : state ;
47 signal next_state : state;
48 signal count : unsigned(4 downto 0);
49

50

51

52 begin
53 update_state: process (clk, reset, input_ready)
54 begin
55 if(reset='1' or input_ready ='0') then
56 current_state <= start;
57

58 else
59 if rising_edge(clk) then
60 current_state <= next_state;
61 if(current_state /= phase_done) then
62 count <= count + 1;
63 end if;
64 end if;
65 end if;
66 end process update_state;
67

68

69 execute_state: process (reset,current_state,count, in_features, weights_gain, weights_phase,
output_scalar_mult_valid)↪→

70 begin
71 case (current_state) is
72 when start =>
73 input_mult_vect_a(VECTOR_WIDTH-1 downto

INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE)<= (others => (others =>'0'));↪→
74 input_mult_vect_b(VECTOR_WIDTH-1 downto INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE)<=

(others => (others =>'0'));↪→

B.9 System Phasor Calc [VHDL] 57

75 count <= (others=>'0');
76 gain_sum <= (others=>'0');
77 phase_sum <= (others=>'0');
78 input_scalar_mult_valid <= '0';
79 next_state <= calc_gain;
80 output_phasorcalc_ready <= '0';
81 System_phase<=(others=>'0');
82 System_gain<=(others=>'0');
83 when calc_gain =>
84 input_mult_vect_a(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto

0)<=in_features;↪→
85 input_mult_vect_b(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto

0)<=weights_gain;↪→
86 input_scalar_mult_valid <= '1';
87 if(output_scalar_mult_valid = '0')then
88 next_state <= calc_gain;
89 else
90 next_state <=gain_done;
91 end if;
92 output_phasorcalc_ready <= '0';
93 System_phase<=(others=>'0');
94 System_gain<=(others=>'0');
95 when gain_done =>
96 gain_sum <= output_scalar_mult;
97 input_scalar_mult_valid <= '0';
98 if(output_scalar_mult_valid = '1')then
99 next_state <= gain_done;

100 else
101 next_state <=calc_phase;
102 end if;
103 when calc_phase =>
104 input_mult_vect_a(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto 0)<=in_features;
105 input_mult_vect_b(INPUT_FEATURE_LENGTH*ORDER_EXTRA_FEATURE-1 downto

0)<=weights_phase;↪→
106 input_scalar_mult_valid <= '1';
107

108 if(output_scalar_mult_valid = '0')then
109 next_state <= calc_phase;
110 else
111 next_state <=phase_done;
112 end if;
113 output_phasorcalc_ready <= '0';
114

115

116 when phase_done =>
117 phase_sum <= output_scalar_mult;
118 input_scalar_mult_valid <= '1';
119 next_state <=done;
120 output_phasorcalc_ready <= '0';
121 System_phase<=(others=>'0');
122 System_gain<=(others=>'0');
123 when done =>
124

125 input_scalar_mult_valid <= '0';
126 next_state <=done;
127 output_phasorcalc_ready <= '1';
128 System_phase<=phase_sum;
129 System_gain<=gain_sum;
130 when others =>
131 System_phase<=(others=>'0');
132 System_gain<=(others=>'0');
133

134 end case;
135 end process execute_state;
136

137 multiplier_feat_weight: Vector_Vector_Scalar_multiplier
138 port map(
139 clk =>clk,
140 reset => reset,
141 input_scalar_mult_valid=>input_scalar_mult_valid,
142 input_mult_vect_a=>input_mult_vect_a,
143 input_mult_vect_b=>input_mult_vect_b,
144 output_scalar_mult=>output_scalar_mult,
145 output_scalar_mult_valid=>output_scalar_mult_valid
146);
147

148 end Behavioral;
149

150

58 Source Code

B.10 Time Signal Generation [VHDL]

1 ---
2 -- TIME SIGNAL GENERATION
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use work.my_types_pkg.all;
7

8 entity Time_Signal_Generation is
9 port(

10 clk : in std_logic;
11 reset : in std_logic;
12 input_valid : in std_logic;
13 Control_Phase : in std_logic_vector(FP_SIZE-1 downto 0); --16 bit float that represents

phase increase↪→
14 Control_Gain : in std_logic_vector(FP_SIZE-1 downto 0); --16 bit float turns into 16 bit

signed↪→
15 phase_increase : in std_logic_vector(31 downto 0); -- 32 bit unsigned represents phase

increase wehre 2ˆ32 is 2*pi↪→
16

17 single_freq_sig : out std_logic_vector(15 downto 0);
18 time_sig_valid: out std_logic
19);end Time_Signal_Generation;
20

21 architecture Behavioral of Time_Signal_Generation is
22

23 component Map_inputs_DDS is
24 port(
25 clk: in std_logic;
26 input_Map_inputs_DDS_valid : in std_logic;
27 Control_Phase : in std_logic_vector(FP_SIZE-1 downto 0);
28 Control_Gain : in std_logic_vector(FP_SIZE-1 downto 0);
29 DDS_Phase: out std_logic_vector(31 downto 0);
30 DDS_Gain : out std_logic_vector(15 downto 0);
31 output_Map_inputs_DDS_valid: out std_logic
32);
33 end component;
34

35 component dds_compiler_0
36 Port (
37 aclk : in STD_LOGIC;
38 s_axis_phase_tvalid : in STD_LOGIC;
39 s_axis_phase_tdata : in STD_LOGIC_VECTOR (63 downto 0);
40 m_axis_data_tvalid : out STD_LOGIC;
41 m_axis_data_tdata : out STD_LOGIC_VECTOR (15 downto 0)
42);
43 end component;
44

45 component floating_point_mult_32_bit is
46 Port (
47 s_axis_a_tvalid : in STD_LOGIC;
48 s_axis_a_tdata : in STD_LOGIC_VECTOR (31 downto 0);
49 s_axis_b_tvalid : in STD_LOGIC;
50 s_axis_b_tdata : in STD_LOGIC_VECTOR (31 downto 0);
51 m_axis_result_tvalid : out STD_LOGIC;
52 m_axis_result_tdata : out STD_LOGIC_VECTOR (31 downto 0)
53);
54 end component;
55

56 component fp_mult_16_bit is
57 Port (
58 s_axis_a_tvalid : in STD_LOGIC;
59 s_axis_a_tdata : in STD_LOGIC_VECTOR (15 downto 0);
60 s_axis_b_tvalid : in STD_LOGIC;
61 s_axis_b_tdata : in STD_LOGIC_VECTOR (15 downto 0);
62 m_axis_result_tvalid : out STD_LOGIC;
63 m_axis_result_tdata : out STD_LOGIC_VECTOR (15 downto 0)
64);
65

66 end component;
67

68 component X_X_Multiplier is
69 Port (
70 A : in STD_LOGIC_VECTOR (15 downto 0);
71 B : in STD_LOGIC_VECTOR (15 downto 0);
72 P : out STD_LOGIC_VECTOR (15 downto 0)
73);

B.10 Time Signal Generation [VHDL] 59

74

75 end component;
76

77 signal config_data : STD_LOGIC_VECTOR (64-1 downto 0);
78 signal DDS_Phase: STD_LOGIC_VECTOR(31 downto 0);
79 signal DDS_Gain: std_logic_vector(15 downto 0);
80 signal output_Map_inputs_DDS_valid, DDS_output_valid, DDS_output_valid_delayed: std_logic;
81 signal single_freq_sig_temp, DDS_output: std_logic_vector(15 downto 0);
82 signal DDS_Phase_padded: std_logic_vector(31 downto 0);
83 signal DDS_output_padded: std_logic_vector(15 downto 0);
84

85 begin
86

87 map_inputs_dds1: Map_inputs_DDS port map(
88 clk => clk,
89 input_Map_inputs_DDS_valid => input_valid,
90 Control_Phase => Control_Phase,
91 Control_Gain => Control_Gain,
92 DDS_Phase => DDS_Phase,
93 DDS_Gain => DDS_Gain,
94 output_Map_inputs_DDS_valid => output_Map_inputs_DDS_valid
95);
96

97 DDS_Phase_padded <= DDS_Phase;
98 config_data(31 downto 0) <= phase_increase;
99 config_data(63 downto 32) <= DDS_Phase_padded;

100

101 Attach_DDS: dds_compiler_0 Port map (
102 aclk =>clk,
103 s_axis_phase_tvalid =>output_Map_inputs_DDS_valid,
104 s_axis_phase_tdata => config_data,
105 m_axis_data_tvalid => DDS_output_valid,
106 m_axis_data_tdata =>DDS_output_padded
107);
108

109 DDS_output <= DDS_output_padded(15 downto 0);
110

111 multiply_with_gain: X_X_Multiplier
112 Port map(
113

114 A => DDS_output,
115 B => DDS_gain,
116 P => single_freq_sig_temp
117);
118

119 DAC_out_validator: process(clk)
120 begin
121 if(rising_edge(clk)) then
122 DDS_output_valid_delayed <= DDS_output_valid;
123 time_sig_valid <=DDS_output_valid_delayed;
124 single_freq_sig <= single_freq_sig_temp;
125 end if;
126 end process;
127

128

129 end Behavioral;

60 Source Code

B.11 UART Communication [VHDL]

1 ---
2 -- UART COMMUNICATION
3 -- NOT IMPLEMENTED:
4 -- Flexible FP_SIZE that isn't a multiple of 8
5 -- Timeout to return to WAIT_RX_CMD state (watchdog)?
6 ---
7 library ieee;
8 use ieee.std_logic_1164.all;
9 use ieee.numeric_std.all;

10 use work.my_types_pkg.all;
11

12 entity uart_communication is
13 generic (
14 baud : positive := 115200;
15 clock_frequency : positive := 100000000
16);
17 port (
18 clk : in std_logic;
19 rst_n : in std_logic;
20

21 -- Connections to UART pins
22 uart_tx : out std_logic;
23 uart_rx : in std_logic;
24

25 -- Connections to LEDs
26 led : out std_logic_vector(7 downto 0);
27

28 -- Connections to Control Module
29 frequencies : out custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
30 update : out std_logic;
31 polynomial_features : out custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto 0);
32 extra_feature : out std_logic_vector(FP_SIZE-1 downto 0);
33 magnitude_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
34 phase_weights : out custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
35 phasor_magnitude : out custom_fp_array(FREQ_DIM-1 downto 0);
36 phasor_phase : out custom_fp_array(FREQ_DIM-1 downto 0);
37 model_id : out std_logic_vector(13 downto 0);
38

39 -- Connections to Pre-processing Module
40 amplitude_estimate : in std_logic_vector(FP_SIZE-1 downto 0)
41);
42 end uart_communication;
43

44 architecture rtl of uart_communication is
45 component uart is
46 generic (
47 baud : positive;
48 clock_frequency : positive
49);
50 port (
51 -- general
52 clk : in std_logic;
53 reset : in std_logic;
54 data_stream_in : in std_logic_vector(7 downto 0);
55 data_stream_in_stb : in std_logic;
56 data_stream_in_ack : out std_logic := '0';
57 data_stream_out : out std_logic_vector(7 downto 0);
58 data_stream_out_stb : out std_logic;
59 tx : out std_logic;
60 rx : in std_logic
61);
62 end component;
63

64 -- UART Signals
65 signal tx_data : std_logic_vector(7 downto 0);
66 signal tx_data_stb : std_logic;
67 signal tx_data_ack : std_logic := '0';
68 signal rx_data : std_logic_vector(7 downto 0);
69 signal rx_data_stb : std_logic;
70

71 -- Control Module Signals
72 signal reg_frequencies : custom_fp_array_32_bit(FREQ_DIM-1 downto 0);
73 signal reg_update : std_logic;
74 signal reg_polynomial_features : custom_fp_array_2D(FREQ_DIM-1 downto 0, POLY_DIM-1 downto 0);
75 signal reg_extra_feature : std_logic_vector(FP_SIZE-1 downto 0);
76 signal reg_magnitude_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);

B.11 UART Communication [VHDL] 61

77 signal reg_phase_weights : custom_fp_array((EXTRA_DIM*POLY_DIM)-1 downto 0);
78 signal reg_phasor_magnitude : custom_fp_array(FREQ_DIM-1 downto 0);
79 signal reg_phasor_phase : custom_fp_array(FREQ_DIM-1 downto 0);
80 signal reg_model_id : std_logic_vector(15 downto 0);
81

82 -- signal amplitude_estimate : std_logic_vector(FP_SIZE-1 downto 0):=
"01001000011001010111100100001010";↪→

83 constant FP_DATA_BYTES : integer := (FP_SIZE + 8 - 1) / 8;
84 signal count_byte : integer range 0 to 4;
85 signal original_count_byte : integer range 0 to 4;
86 signal count_index : integer;
87 signal original_count_index : integer;
88 signal count2_index : integer;
89 type param_types is (PARAM_FREQUENCIES, PARAM_POLYNOMIAL_FEATURES, PARAM_EXTRA_FEATURE,
90 PARAM_MAGNITUDE_WEIGHTS, PARAM_PHASE_WEIGHTS, PARAM_PHASOR_MAGNITUDE,

PARAM_PHASOR_PHASE, PARAM_MODEL_ID, NONE);↪→
91 signal parameter : param_types;
92

93 type state_types is (WAIT_RX_CMD, RX_PARAM, SEND_UPDATE, TX_AMPLITUDE, RX_LED);
94 signal state : state_types;
95

96 begin
97 -- Connect uart componenet
98 uart_component : uart
99 generic map(

100 baud => baud,
101 clock_frequency => clock_frequency
102)
103 port map(
104 -- general
105 clk => clk,
106 reset => '0',
107 data_stream_in => tx_data,
108 data_stream_in_stb => tx_data_stb,
109 data_stream_in_ack => tx_data_ack,
110 data_stream_out => rx_data,
111 data_stream_out_stb => rx_data_stb,
112 tx => uart_tx,
113 rx => uart_rx
114);
115

116 receive : process(clk)
117 begin
118 if rst_n = '0' then
119 -- Initial values
120 state <= WAIT_RX_CMD;
121 reg_frequencies <= (others => (others => '0'));
122 reg_update <= '0';
123 reg_polynomial_features <= (others => (others => (others => '0')));
124 reg_extra_feature <= (others => '0');
125 reg_magnitude_weights <= (others => (others => '0'));
126 reg_phase_weights <= (others => (others => '0'));
127 reg_phasor_magnitude <= (others => (others => '0'));
128 reg_phasor_phase <= (others => (others => '0'));
129 reg_model_id <= (others => '0');
130 count_index <= 0;
131 original_count_index <= 0;
132 count2_index <= 0;
133 count_byte <= 0;
134 parameter <= NONE;
135 led <= (others => '0');
136

137 elsif rising_edge(clk) then
138 -- Default values
139 state <= state;
140 reg_frequencies <= reg_frequencies;
141 reg_update <= '0';
142 reg_polynomial_features <= reg_polynomial_features;
143 reg_extra_feature <= reg_extra_feature;
144 reg_magnitude_weights <= reg_magnitude_weights;
145 reg_phase_weights <= reg_phase_weights;
146 reg_phasor_magnitude <= reg_phasor_magnitude;
147 reg_phasor_phase <= reg_phasor_phase;
148 reg_model_id <= reg_model_id;
149 count_index <= 0;
150 original_count_index <= 0;
151 count2_index <= 0;
152 count_byte <= 0;
153 parameter <= NONE;
154 case state is

62 Source Code

155 when WAIT_RX_CMD =>
156 if rx_data_stb = '1' then -- If CMD available
157 count_byte <= FP_DATA_BYTES;
158 original_count_byte <= FP_DATA_BYTES;
159 count2_index <= 1;
160 case rx_data is -- Execute command
161 when "01100001" => -- CMD: RX_LED [ascii: a]
162 state <= RX_LED;
163 when "01100010" => -- CMD: TX_AMPLITUDE [ascii: b]
164 state <= TX_AMPLITUDE;
165 when "01100011" => -- CMD: RX frequencies [ascii: c]
166 parameter <= PARAM_FREQUENCIES;
167 count_index <= FREQ_DIM;
168 original_count_index <= FREQ_DIM;
169 count_byte <= 4;
170 original_count_byte <= 4;
171 state <= RX_PARAM;
172 when "01100100" => -- CMD: RX polynomial_features [ascii: d]
173 parameter <= PARAM_POLYNOMIAL_FEATURES;
174 count_index <= POLY_DIM;
175 original_count_index <= POLY_DIM;
176 count2_index <= FREQ_DIM;
177 state <= RX_PARAM;
178 when "01100101" => -- CMD: RX extra_feature [ascii: e]
179 parameter <= PARAM_EXTRA_FEATURE;
180 count_index <= 1;
181 original_count_index <= 1;
182 state <= RX_PARAM;
183 when "01100110" => -- CMD: RX magnitude_weights [ascii: f]
184 parameter <= PARAM_MAGNITUDE_WEIGHTS;
185 count_index <= EXTRA_DIM*POLY_DIM;
186 original_count_index <= EXTRA_DIM*POLY_DIM;
187 state <= RX_PARAM;
188 when "01100111" => -- CMD: RX phase_weights [ascii: g]
189 parameter <= PARAM_PHASE_WEIGHTS;
190 count_index <= EXTRA_DIM*POLY_DIM;
191 original_count_index <= EXTRA_DIM*POLY_DIM;
192 state <= RX_PARAM;
193 when "01101000" => -- CMD: RX phasor_magnitude [ascii: h]
194 parameter <= PARAM_PHASOR_MAGNITUDE;
195 count_index <= FREQ_DIM;
196 original_count_index <= FREQ_DIM;
197 state <= RX_PARAM;
198 when "01101001" => -- CMD: RX phasor_phase [ascii: i]
199 parameter <= PARAM_PHASOR_PHASE;
200 count_index <= FREQ_DIM;
201 original_count_index <= FREQ_DIM;
202 state <= RX_PARAM;
203 when "01101010" => -- CMD: RX model_id [ascii: j]
204 parameter <= PARAM_MODEL_ID;
205 count_index <= 1;
206 original_count_index <= 1;
207 count_byte <= 2;
208 original_count_byte <= 2;
209 state <= RX_PARAM;
210 when "01101011" => -- CMD: Update Model [ascii: k]
211 state <= SEND_UPDATE;
212 when others => -- Else keep for another CMD
213 state <= WAIT_RX_CMD;
214 end case;
215 else
216 state <= WAIT_RX_CMD;
217 end if;
218

219 when RX_PARAM =>
220 count_index <= count_index;
221 original_count_index <= original_count_index;
222 count2_index <= count2_index;
223 count_byte <= count_byte;
224 original_count_byte <= original_count_byte;
225 parameter <= parameter;
226 if count2_index > 0 then
227 if count_index > 0 then
228 if count_byte > 0 then
229 if rx_data_stb = '1' then
230 case parameter is
231 when PARAM_FREQUENCIES =>
232 reg_frequencies(count_index-1)(((count_byte*8)-1) downto

((count_byte-1)*8)) <= rx_data;↪→
233 when PARAM_POLYNOMIAL_FEATURES =>

B.11 UART Communication [VHDL] 63

234 reg_polynomial_features(count2_index-1,
count_index-1)(((count_byte*8)-1) downto ((count_byte-1)*8)) <= rx_data;↪→

235 when PARAM_EXTRA_FEATURE =>
236 reg_extra_feature(((count_byte*8)-1) downto

((count_byte-1)*8)) <= rx_data;↪→
237 when PARAM_MAGNITUDE_WEIGHTS =>
238 reg_magnitude_weights(count_index-1)(((count_byte*8)-1)

downto ((count_byte-1)*8)) <= rx_data;↪→
239 when PARAM_PHASE_WEIGHTS =>
240 reg_phase_weights(count_index-1)(((count_byte*8)-1)

downto ((count_byte-1)*8)) <= rx_data;↪→
241 when PARAM_PHASOR_MAGNITUDE =>
242 reg_phasor_magnitude(count_index-1)(((count_byte*8)-1)

downto ((count_byte-1)*8)) <= rx_data;↪→
243 when PARAM_PHASOR_PHASE =>
244 reg_phasor_phase(count_index-1)(((count_byte*8)-1) downto

((count_byte-1)*8)) <= rx_data;↪→
245 when PARAM_MODEL_ID =>
246 reg_model_id(((count_byte*8)-1) downto

((count_byte-1)*8)) <= rx_data;↪→
247 when NONE =>
248 state <= WAIT_RX_CMD;
249 end case;
250 count_byte <= count_byte - 1;
251 state <= RX_PARAM;
252 end if;
253 else
254 count_index <= count_index - 1;
255 count_byte <= original_count_byte;
256 end if;
257 else
258 count2_index <= count2_index - 1;
259 count_index <= original_count_index;
260 count_byte <= original_count_byte;
261 end if;
262 else
263 state <= WAIT_RX_CMD;
264 end if;
265

266 when SEND_UPDATE => -- Send signal to Control Module to update model parameters
267 reg_update <= '1';
268 state <= WAIT_RX_CMD;
269

270 when TX_AMPLITUDE => -- Send amplitude estimation over UART
271 if count_byte > 0 then
272 tx_data_stb <= '1'; -- Request TX
273 tx_data <= amplitude_estimate(((count_byte*8) -1) downto ((count_byte-1)*8)); --

Send sections of data 1 byte at a time↪→
274 if tx_data_ack = '1' then -- If TX ack received
275 count_byte <= count_byte - 1;
276 tx_data_stb <= '0';
277 end if;
278 state <= TX_AMPLITUDE;
279 else
280 state <= WAIT_RX_CMD;
281 end if;
282

283 when RX_LED =>
284 if rx_data_stb = '1' then -- If value available
285 led <= rx_data; -- Set LEDs
286 state <= WAIT_RX_CMD;
287 else
288 state <= RX_LED;
289 end if;
290

291 end case;
292 end if;
293 end process;
294

295 frequencies <= reg_frequencies;
296 update <= reg_update;
297 polynomial_features <= reg_polynomial_features;
298 extra_feature <= reg_extra_feature;
299 magnitude_weights <= reg_magnitude_weights;
300 phase_weights <= reg_phase_weights;
301 phasor_magnitude <= reg_phasor_magnitude;
302 phasor_phase <= reg_phasor_phase;
303 model_id <= reg_model_id(13 downto 0);
304 end rtl;
305

64 Source Code

B.12 USB Communication

1 ---
2 -- USB COMMUNICATION
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use IEEE.Numeric_Std.all;
7

8 entity usb_communication is
9 port (clk : in std_logic; -- System clk

10 rst_n : in std_logic; -- System rst
11 usb_data : in std_logic_vector(15 downto 0); -- Data sent to output fifo
12 usb_write : in std_logic; -- Valid signal for input data
13 usb_full : out std_logic; -- Buffer is full, no data can be written
14 ft_clk : in std_logic; -- FT600 clk
15 ft_data : out std_logic_vector(15 downto 0); -- Data sent to FT600
16 ft_wr_n : out std_logic; -- FT600 write flag (1 = inactive, 0 = write)
17 ft_rd_n : out std_logic; -- FT600 read flag (1 = inactive, 0 = read)
18 ft_be : out std_logic_vector(1 downto 0); -- FT600 byte enable (1 = valid)
19 ft_oe_n : out std_logic; -- FT600 output enable (1 = FPGA outputs data, 0 = FT600

outputs data)↪→
20 ft_txe_n : in std_logic); -- FT600 Transmit FIFO Empty (1 = FIFO full, 0 = Space

available)↪→
21

22 end usb_communication;
23

24 architecture Behavioral of usb_communication is
25 component fifo_generator_1 is
26 port (rst : IN STD_LOGIC;
27 wr_clk : IN STD_LOGIC;
28 rd_clk : IN STD_LOGIC;
29 din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
30 wr_en : IN STD_LOGIC;
31 rd_en : IN STD_LOGIC;
32 dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
33 full : OUT STD_LOGIC;
34 empty : OUT STD_LOGIC;
35 valid : OUT STD_LOGIC);
36 end component;
37

38 signal full : std_logic;
39 signal empty : std_logic;
40 signal rst : std_logic;
41 signal en_count : integer range 0 to 11 := 0;
42 signal EN : std_logic := '0';
43 signal rd_en : std_logic := '0';
44 signal wr_en : std_logic := '0';
45

46 signal valid : std_logic;
47

48 signal was_full : std_logic := '0';
49 signal ft_data_int : std_logic_vector(15 downto 0);
50 signal ft_data_int_reg : std_logic_vector(15 downto 0);
51 signal ft_data_reg : std_logic_vector(15 downto 0);
52 begin
53 rst <= NOT(rst_n);
54 ft_fifo: fifo_generator_1
55 port map(rst => rst,
56 wr_clk => clk,
57 rd_clk => ft_clk,
58 din => usb_data,
59 wr_en => wr_en,
60 rd_en => rd_en,
61 dout => ft_data_int,
62 full => full,
63 empty => empty,
64 valid => valid);
65 wr_en <= EN and usb_write and not(full);
66 usb_full <= full;
67

68 ft_rd_n <= '1';
69 ft_be <= "11";
70 ft_oe_n <= '1';
71

72 rd_en <= EN and NOT(ft_txe_n) and not(was_full);
73 ft_wr_n <= not(EN and not(empty) and NOT(ft_txe_n));
74

B.12 USB Communication 65

75 process(ft_clk)
76 begin
77 -- The FIFO is picky and needs a 5 cycle reset followed by 5 cycles of not using the FIFO
78 if rising_edge(ft_clk) then
79 ft_data_reg <= ft_data_reg;
80 ft_data_int_reg <= ft_data_int;
81 if rst_n = '0' then
82 en_count <= 0;
83 EN <= '0';
84 elsif en_count > 10 then
85 EN <= '1';
86 else
87 en_count <= en_count + 1;
88 EN <= EN;
89 end if;
90

91 if ft_txe_n = '0' then
92 if was_full = '1' then
93 ft_data <= ft_data_reg;
94 was_full <= '0';
95 else
96 ft_data <= ft_data_int;
97 end if;
98 else
99 if was_full = '0' then

100 ft_data_reg <= ft_data_int_reg;
101 end if;
102 was_full <= '1';
103 end if;
104 end if;
105 end process;
106

107 end Behavioral;

66 Source Code

B.13 Vector Scalar Multiplier [VHDL]
1 ---
2 -- VECTOR SCALAR MULTIPLIER
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use work.my_types_pkg.all;
7 -- Uncomment the following library declaration if using
8 -- arithmetic functions with Signed or Unsigned values
9 --use IEEE.NUMERIC_STD.ALL;

10

11 -- Uncomment the following library declaration if instantiating
12 -- any Xilinx leaf cells in this code.
13 --library UNISIM;
14 --use UNISIM.VComponents.all;
15

16 entity vector_scalar_multiplier is
17 generic(
18 VECTOR_WIDTH : integer := INPUT_FEATURE_LENGTH);
19 port(
20 clk : in std_logic;
21 reset: in std_logic;
22 input_valid : in STD_LOGIC;
23 input_mult_vect : in custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0); -- partial

features↪→
24 input_mult1 : in std_logic_vector(FP_SIZE-1 downto 0);
25 output_mult : out custom_fp_array((INPUT_FEATURE_LENGTH-1) downto 0);
26 mult_valid : out std_logic
27);
28 end vector_scalar_multiplier;
29

30 architecture Behavioral of vector_scalar_multiplier is
31 component fp_mult_16_bit
32 Port (
33 aclk : in STD_LOGIC;
34 aresetn : in STD_LOGIC;
35 s_axis_a_tvalid : in STD_LOGIC;
36 s_axis_a_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
37 s_axis_b_tvalid : in STD_LOGIC;
38 s_axis_b_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
39 m_axis_result_tvalid : out STD_LOGIC;
40 m_axis_result_tdata : out STD_LOGIC_VECTOR (FP_SIZE-1 downto 0)
41);
42 end component;
43 signal valid : std_logic_vector((INPUT_FEATURE_LENGTH-1) downto 0);
44 signal reset_mult_n: std_logic;
45

46 begin
47

48 reset_mult_n <= not reset;
49

50 gen_multipliers: for i in 0 to VECTOR_WIDTH-1 generate
51 mult : fp_mult_16_bit port map(
52 aclk => clk,
53 aresetn => reset_mult_n,
54 s_axis_a_tvalid =>input_valid,
55 s_axis_a_tdata =>input_mult_vect(i),
56 s_axis_b_tvalid => input_valid,
57 s_axis_b_tdata =>input_mult1,
58 m_axis_result_tvalid =>valid(i),
59 m_axis_result_tdata =>output_mult(i)
60);
61

62 end generate gen_multipliers;
63

64

65 process(valid)
66 variable temp_valid:std_logic;
67 begin
68 temp_valid := '1';
69 for i in 0 to VECTOR_WIDTH-1 loop
70 temp_valid := temp_valid and valid(i);
71 end loop;
72 mult_valid <= temp_valid;
73 end process;
74

75 end Behavioral;

B.14 Vector Vector Scalar Multiplier [VHDL] 67

B.14 Vector Vector Scalar Multiplier [VHDL]

1 ---
2 -- VECTOR VECTOR SCALAR MULTIPLIER
3 ---
4 library IEEE;
5 use IEEE.STD_LOGIC_1164.ALL;
6 use ieee.math_real.all;
7 use work.my_types_pkg.all;
8

9

10 -- Uncomment the following library declaration if using
11 -- arithmetic functions with Signed or Unsigned values
12 --use IEEE.NUMERIC_STD.ALL;
13

14 -- Uncomment the following library declaration if instantiating
15 -- any Xilinx leaf cells in this code.
16 --library UNISIM;
17 --use UNISIM.VComponents.all;
18

19 entity Vector_Vector_Scalar_multiplier is
20 port(
21 clk : in std_logic;
22 reset: in std_logic;
23 input_scalar_mult_valid : in std_logic;
24 input_mult_vect_a : in custom_fp_array(VECTOR_WIDTH -1 downto 0);
25 input_mult_vect_b : in custom_fp_array(VECTOR_WIDTH -1 downto 0);
26 output_scalar_mult: out std_logic_vector(FP_SIZE-1 downto 0);
27 output_scalar_mult_valid : out std_logic
28);
29 end Vector_Vector_Scalar_multiplier;
30

31 architecture Behavioral of Vector_Vector_Scalar_multiplier is
32

33 signal output_mult : custom_fp_array(VECTOR_WIDTH -1 downto 0);
34 signal intermediate_sums : custom_fp_array(VECTOR_WIDTH*2 -2 downto 0);
35 signal intermediate_valid: std_logic_vector(VECTOR_WIDTH*2 -2 downto 0);
36 signal aresetn: std_logic;
37

38 component fp_mult_16_bit
39 Port (
40 aclk: in std_logic;
41 aresetn : in STD_LOGIC;
42 s_axis_a_tvalid : in STD_LOGIC;
43 s_axis_a_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
44 s_axis_b_tvalid : in STD_LOGIC;
45 s_axis_b_tdata : in STD_LOGIC_VECTOR (FP_SIZE-1 downto 0);
46 m_axis_result_tvalid : out STD_LOGIC;
47 m_axis_result_tdata : out STD_LOGIC_VECTOR (FP_SIZE-1 downto 0)
48);
49 end component;
50

51 COMPONENT fp_adder_16_bit
52 PORT (
53 aclk: IN STD_LOGIC;
54 aresetn : in STD_LOGIC;
55 s_axis_a_tvalid : IN STD_LOGIC;
56 s_axis_a_tdata : IN STD_LOGIC_VECTOR(FP_SIZE-1 DOWNTO 0);
57 s_axis_b_tvalid : IN STD_LOGIC;
58 s_axis_b_tdata : IN STD_LOGIC_VECTOR(FP_SIZE-1 DOWNTO 0);
59 m_axis_result_tvalid : OUT STD_LOGIC;
60 m_axis_result_tdata : OUT STD_LOGIC_VECTOR(FP_SIZE-1 DOWNTO 0)
61);
62 end component;
63

64 begin
65

66 aresetn <= (not reset);
67

68 gen_multipliers: for i in 0 to VECTOR_WIDTH -1 generate
69

70 mult : fp_mult_16_bit port map(
71 aclk => clk,
72 aresetn => aresetn,
73 s_axis_a_tvalid =>input_scalar_mult_valid,
74 s_axis_a_tdata =>input_mult_vect_a(i),
75 s_axis_b_tvalid => input_scalar_mult_valid,
76 s_axis_b_tdata =>input_mult_vect_b(i),

68 Source Code

77 m_axis_result_tvalid =>intermediate_valid(i),
78 m_axis_result_tdata =>output_mult(i)
79);
80 end generate gen_multipliers;
81

82 intermediate_sums(VECTOR_WIDTH -1 downto 0) <= output_mult;
83

84

85

86 gen_adders6:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-1))-1 generate
87 begin
88 adder: fp_adder_16_bit port map(
89 aclk => clk,
90 aresetn => aresetn,
91 s_axis_a_tvalid => intermediate_valid(2*k),
92 s_axis_a_tdata => intermediate_sums(2*k),
93 s_axis_b_tvalid => intermediate_valid(2*k+1),
94 s_axis_b_tdata => intermediate_sums(2*k+1),
95 m_axis_result_tvalid => intermediate_valid(k+2**ADDER_TREE_DEPTH_SCALAR),
96 m_axis_result_tdata => intermediate_sums(k+2**ADDER_TREE_DEPTH_SCALAR)
97);
98 end generate;
99

100 gen_adders5:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-2))-1 generate
101 begin
102

103 adder: fp_adder_16_bit port map(
104 aclk => clk,
105 aresetn => aresetn,
106 s_axis_a_tvalid => intermediate_valid(2*k+2**ADDER_TREE_DEPTH_SCALAR),
107 s_axis_a_tdata => intermediate_sums(2*k+2**ADDER_TREE_DEPTH_SCALAR),
108 s_axis_b_tvalid => intermediate_valid(2*k+1+2**ADDER_TREE_DEPTH_SCALAR),
109 s_axis_b_tdata => intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR),
110 m_axis_result_tvalid =>

intermediate_valid(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)),↪→
111 m_axis_result_tdata =>

intermediate_sums(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1))↪→
112);
113 end generate;
114 gen_adders4:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-3))-1 generate
115 begin
116

117 adder: fp_adder_16_bit port map(
118 aclk => clk,
119 aresetn => aresetn,
120 s_axis_a_tvalid =>

intermediate_valid(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)),↪→
121 s_axis_a_tdata =>

intermediate_sums(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)),↪→
122 s_axis_b_tvalid =>

intermediate_valid(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)),↪→
123 s_axis_b_tdata =>

intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)),↪→
124 m_axis_result_tvalid =>

intermediate_valid(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)),↪→
125 m_axis_result_tdata =>

intermediate_sums(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2))↪→
126);
127 end generate;
128 gen_adders3:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-4))-1 generate
129 begin
130

131 adder: fp_adder_16_bit port map(
132 aclk => clk,
133 aresetn => aresetn,
134 s_axis_a_tvalid =>

intermediate_valid(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)),↪→
135 s_axis_a_tdata =>

intermediate_sums(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)),↪→
136 s_axis_b_tvalid =>

intermediate_valid(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)),↪→
137 s_axis_b_tdata =>

intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)),↪→
138 m_axis_result_tvalid =>

intermediate_valid(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)),↪→
139 m_axis_result_tdata =>

intermediate_sums(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3))↪→
140);
141 end generate;
142

B.14 Vector Vector Scalar Multiplier [VHDL] 69

143 gen_adders2:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-5))-1 generate
144 begin
145

146 adder: fp_adder_16_bit port map(
147 aclk => clk,
148 aresetn => aresetn,
149 s_axis_a_tvalid =>

intermediate_valid(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)),↪→
150 s_axis_a_tdata =>

intermediate_sums(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)),↪→
151 s_axis_b_tvalid =>

intermediate_valid(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)),↪→
152 s_axis_b_tdata =>

intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)),↪→
153 m_axis_result_tvalid =>

intermediate_valid(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)),↪→
154 m_axis_result_tdata =>

intermediate_sums(k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4))↪→
155);
156 end generate;
157 gen_adders1:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-6))-1 generate
158 begin
159

160 adder: fp_adder_16_bit port map(
161 aclk => clk,
162 aresetn => aresetn,
163 s_axis_a_tvalid =>

intermediate_valid(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)),↪→
164 s_axis_a_tdata =>

intermediate_sums(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)),↪→
165 s_axis_b_tvalid

=>intermediate_valid(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)),↪→
166 s_axis_b_tdata =>

intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)),↪→
167 m_axis_result_tvalid =>

intermediate_valid(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)+2**(ADDER_TREE_DEPTH_SCALAR-5)),↪→
168 m_axis_result_tdata =>

intermediate_sums(2*k+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)+2**(ADDER_TREE_DEPTH_SCALAR-5))↪→
169);
170 end generate;
171

172 output_scalar_mult <= intermediate_sums(2*VECTOR_WIDTH-2);
173 output_scalar_mult_valid <= intermediate_valid(2*VECTOR_WIDTH-2);
174 -- gen_adders0:for k in 0 to (2**(ADDER_TREE_DEPTH_SCALAR-7))-1 generate
175 -- begin
176

177 -- adder: fp_adder_16_bit port map(
178 -- aclk => clk,
179 -- aresetn => aresetn,
180 -- s_axis_a_tvalid => '1',
181 -- s_axis_a_tdata =>

intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)+2**(ADDER_TREE_DEPTH_SCALAR-5)),↪→
182 -- s_axis_b_tvalid => '1',
183 -- s_axis_b_tdata =>

intermediate_sums(2*k+1+2**ADDER_TREE_DEPTH_SCALAR+2**(ADDER_TREE_DEPTH_SCALAR-1)+2**(ADDER_TREE_DEPTH_SCALAR-2)+2**(ADDER_TREE_DEPTH_SCALAR-3)+2**(ADDER_TREE_DEPTH_SCALAR-4)+2**(ADDER_TREE_DEPTH_SCALAR-5)),↪→
184 -- m_axis_result_tvalid => open,
185 -- m_axis_result_tdata => output_scalar_mult
186 --);
187 -- end generate;
188

189

190 end Behavioral;

70 Source Code

B.15 UART Simulation Creator [Python]

1 from math import ceil
2 import struct
3

4 import numpy as np
5

6 FP_SIZE = 16
7 FP_DATA_BYTES = ceil(FP_SIZE/8)
8 POLY_DIM = 10
9 EXTRA_DIM = 5

10 FREQ_DIM = 3
11 cmd = { "set_led": 0b01100001,
12 "request_amplitude": 0b01100010,
13 "param_frequencies": 0b01100011,
14 "param_polynomial_features": 0b01100100,
15 "param_extra_feature": 0b01100101,
16 "param_magnitude_weights": 0b01100110,
17 "param_phase_weights": 0b01100111,
18 "param_phasor_magnitude": 0b01101000,
19 "param_phasor_phase": 0b01101001,
20 "param_model_id": 0b01101010
21 }
22

23 frequencies = [0x180002AA, 0x300002AA, 0x100002AA] # 32 bit unsigned (Phase increase
per clk cycle where 2ˆ32 is 2*pi increase)↪→

24 polynomial_features = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
25 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
26 [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]] # FP_SIZE bit float
27 extra_feature = [1] # FP_SIZE bit float
28 magnitude_weights = [3*i for i in range(0, POLY_DIM*EXTRA_DIM)] # FP_SIZE bit float
29 phase_weights = [1*i for i in range(0, POLY_DIM*EXTRA_DIM)] # FP_SIZE bit float
30 phasor_magnitude = [1000, 4000, 13000] # FP_SIZE bit float (Value

between -2ˆ15 to 2ˆ15 -1)↪→
31 phasor_phase = [2, 1, 1.5] # FP_SIZE bit float (Value between 0 to

2*pi)↪→
32 model_id = [1248] # 14 bit unsigned (sent as 16

bits)↪→
33

34

35 def flatten(list_of_lists):
36 if len(list_of_lists) == 0:
37 return list_of_lists
38 if isinstance(list_of_lists[0], list):
39 return flatten(list_of_lists[0]) + flatten(list_of_lists[1:])
40 return list_of_lists[:1] + flatten(list_of_lists[1:])
41

42

43 def std_logic_vector(value, size):
44 assert value < 2 ** size
45 return '"' + format(value, '0'+str(size)+'b') + '"'
46

47

48 def to_bytes(data, byte_count=FP_DATA_BYTES):
49 fmt = { 1: "B",
50 2: 'H',
51 4: 'I',
52 8: 'Q'}
53 assert byte_count in fmt.keys()
54 return list(struct.unpack(str(byte_count)+'B', struct.pack('>'+fmt[byte_count], data)))
55

56

57 def make_cmd_array(command, data_list, data_byte_count=FP_DATA_BYTES):
58 byte_list = flatten([to_bytes(i, data_byte_count) for i in data_list])
59 return "({}, {})".format(std_logic_vector(command, 8), ", ".join([std_logic_vector(i, 8) for i in

byte_list])), len(byte_list)+1↪→
60

61

62 def float_to_hex(value, size):
63 if size == 16:
64 return np.float16(value).view(np.int16)
65 elif size == 32:
66 return np.float32(value).view(np.int32)
67 else:
68 raise Exception("parameter size not 16 or 32 : " + str(size))
69

70

71 def print_tb_arrays():

B.15 UART Simulation Creator [Python] 71

72 byte_count = 0
73 print("type variable_array is array (natural range <>) of std_logic_vector(7 downto 0);")
74

75 # Send param_frequencies
76 cmds, length = make_cmd_array(cmd["param_frequencies"], flatten(frequencies), data_byte_count=4)
77 byte_count += length
78 print("-- frequencies =", str(frequencies))
79 print("constant frequencies_cmds: variable_array(FREQ_DIM*" + str(4) + " downto 0) :=", cmds,

";")↪→
80

81 # Send param_polynomial_features
82 raw_data = [float_to_hex(a, FP_SIZE) for a in flatten(polynomial_features)]
83 cmds, length = make_cmd_array(cmd["param_polynomial_features"], raw_data)
84 byte_count += length
85 print("-- polynomial_features =", str(polynomial_features))
86 print("constant polynomial_features_cmds: variable_array(FREQ_DIM*POLY_DIM*" + str(FP_DATA_BYTES)

+ " downto 0) :=", cmds, ";")↪→
87

88 # Send param_extra_feature
89 raw_data = [float_to_hex(a, FP_SIZE) for a in flatten(extra_feature)]
90 cmds, length = make_cmd_array(cmd["param_extra_feature"], raw_data)
91 byte_count += length
92 print("-- extra_feature =", str(extra_feature))
93 print("constant extra_feature_cmds: variable_array(" + str(FP_DATA_BYTES) + " downto 0) :=",

cmds, ";")↪→
94

95 # Send param_magnitude_weights
96 raw_data = [float_to_hex(a, FP_SIZE) for a in flatten(magnitude_weights)]
97 cmds, length = make_cmd_array(cmd["param_magnitude_weights"], raw_data)
98 byte_count += length
99 print("-- magnitude_weights =", str(magnitude_weights))

100 print("constant magnitude_weights_cmds: variable_array(EXTRA_DIM*POLY_DIM*" + str(FP_DATA_BYTES)
+ " downto 0) :=", cmds, ";")↪→

101

102 # Send param_phase_weights
103 raw_data = [float_to_hex(a, FP_SIZE) for a in flatten(phase_weights)]
104 cmds, length = make_cmd_array(cmd["param_phase_weights"], raw_data)
105 byte_count += length
106 print("-- phase_weights =", str(phase_weights))
107 print("constant phase_weights_cmds: variable_array(EXTRA_DIM*POLY_DIM*" + str(FP_DATA_BYTES) + "

downto 0) :=", cmds, ";")↪→
108

109 # Send param_phasor_magnitude
110 raw_data = [float_to_hex(a, FP_SIZE) for a in flatten(phasor_magnitude)]
111 cmds, length = make_cmd_array(cmd["param_phasor_magnitude"], raw_data)
112 byte_count += length
113 print("-- phasor_magnitude =", str(phasor_magnitude))
114 print("constant phasor_magnitude_cmds: variable_array(FREQ_DIM*" + str(FP_DATA_BYTES) + " downto

0) :=", cmds, ";")↪→
115

116 # Send param_phasor_phase
117 raw_data = [float_to_hex(a, FP_SIZE) for a in flatten(phasor_phase)]
118 cmds, length = make_cmd_array(cmd["param_phasor_phase"], raw_data)
119 byte_count += length
120 print("-- phasor_phase =", str(phasor_phase))
121 print("constant phasor_phase_cmds: variable_array(FREQ_DIM*" + str(FP_DATA_BYTES) + " downto 0)

:=", cmds, ";")↪→
122

123 # Send param_model_id
124 cmds, length = make_cmd_array(cmd["param_model_id"], flatten(model_id), data_byte_count=2)
125 byte_count += length
126 print("-- model_id =", str(model_id))
127 print("constant model_id_cmds: variable_array(2 downto 0) :=", cmds, ";")
128

129 return byte_count
130

131

132 if __name__ == "__main__":
133 import io
134 from contextlib import redirect_stdout
135 import subprocess
136 import platform
137

138 f = io.StringIO()
139 with redirect_stdout(f):
140 byte_count = print_tb_arrays()
141 out = f.getvalue()
142

143 print("Size of command stream:", byte_count, "bytes")
144 if platform.system() == 'Windows':

72 Source Code

145 subprocess.run("clip", text=True, input=out)
146 print("[Windows] Success: Copied output to clipboard")
147 else:
148 subprocess.run("pbcopy", text=True, input=out)
149 print("Success: Copied output to clipboard")
150

C
Simulation Results

C.1 Feed Forward Filter Simulation

C.2 Time Signal Generation Simulation

74 Simulation Results

C.3 System Utilization Report

Bibliography
[1] M. R. Anderson, Compensation of nonlinearities in transducers, 2005. [Online]. Available: https:

//www2.imm.dtu.dk/pubdb/edoc/imm3871.pdf.

[2] M. Vermeulen and N. van Klaveren, “Amplifier design for a piezoelectric transducer,” TU Delft
Repository, Jun. 2023.

[3] Y. Wu, P. Shankar, and P. Lewin, “Characterization of ultrasonic transducers using a fiberoptic sen-
sor,” Ultrasound in Medicine &amp; Biology, vol. 20, no. 7, pp. 645–653, 1994. DOI: 10.
1016/0301-5629(94)90113-9.

[4] R.-H. Munnig Schmidt, RMS Acoustics & Mechatronics, 2011. [Online]. Available: https://
www.grimmaudio.com/wp- content/uploads/RMS- white- paper- 4- MFB-
theory.pdf.

[5] G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia, A review of feedforward control
approaches in nanopositioning for high-speed spm, Aug. 2009. [Online]. Available: https://
asmedigitalcollection.asme.org/dynamicsystems/article/131/6/061101/
456145/A-Review-of-Feedforward-Control-Approaches-in.

[6] J. Jaspers and J. P. Metz, Model Estimation- & Quadrature-Point Controller & Design, Jun. 2023.

[7] A. Jiang, “Iir digital filter design using convex optimization,” University of Windsor, 2010. [Online].
Available: https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=
1431%5C&context=etd.

[8] F. J. Harris, “Multirate signal processing for communication systems,” in 2004.

[9] A. Agarwal, Polynomial regression, Aug. 2018. [Online]. Available: https://towardsdatascience.
com/polynomial-regression-bbe8b9d97491.

[10] S. Sreenivasa, Radial basis function (rbf) kernel: The go-to kernel, Aug. 2020. [Online]. Available:
https://towardsdatascience.com/radial-basis-function-rbf-kernel-
the-go-to-kernel-acf0d22c798a.

[11] W. Venstra, Personal Communication, Apr. 2023.

[12] T. Instruments, “Ads41xx 14-, 12-bit, 65-, 125-msps, ultra-low-power adc ... - ti.com,” Feb. 2011.
[Online]. Available: https://www.ti.com/lit/ds/symlink/ads4122.pdf.

[13] T. Instruments, Dac904evm, Aug. 2007. [Online]. Available: https://www.ti.com/tool/
DAC904EVM#tech-docs.

[14] A. Van Der Veen. [Online]. Available: https://sps.ewi.tudelft.nl/Education/
courses/ee2s31/slides/DSP6.pdf.

[15] M. Technology, Dsc1001 - microchip technology, 2011. [Online]. Available: https://www.
microchip.com/en-us/product/DSC1001.

[16] D. Redmayne, E. Trelewicz, and A. Smith, Understanding the effect of clock jitter on high speed
adcs, Aug. 2013. [Online]. Available: https://www.analog.com/media/en/reference-
design-documentation/design-notes/dn1013f.pdf.

[17] T. D. Limited, Jitter effects on analog to digital and digital to analog converters, 2000. [Online].
Available: https://www.thewelltemperedcomputer.com/Lib/Troisi.pdf.

[18] E. O. Hammerstad, “Equations for microstrip circuit design,” in 1975 5th European Microwave
Conference, 1975, pp. 268–272. DOI: 10.1109/EUMA.1975.332206.

[19] M. Electronics, Apr. 2023. [Online]. Available: https://www.mouser.com/.

https://www2.imm.dtu.dk/pubdb/edoc/imm3871.pdf
https://www2.imm.dtu.dk/pubdb/edoc/imm3871.pdf
https://doi.org/10.1016/0301-5629(94)90113-9
https://doi.org/10.1016/0301-5629(94)90113-9
https://www.grimmaudio.com/wp-content/uploads/RMS-white-paper-4-MFB-theory.pdf
https://www.grimmaudio.com/wp-content/uploads/RMS-white-paper-4-MFB-theory.pdf
https://www.grimmaudio.com/wp-content/uploads/RMS-white-paper-4-MFB-theory.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article/131/6/061101/456145/A-Review-of-Feedforward-Control-Approaches-in
https://asmedigitalcollection.asme.org/dynamicsystems/article/131/6/061101/456145/A-Review-of-Feedforward-Control-Approaches-in
https://asmedigitalcollection.asme.org/dynamicsystems/article/131/6/061101/456145/A-Review-of-Feedforward-Control-Approaches-in
https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=1431%5C&context=etd
https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=1431%5C&context=etd
https://towardsdatascience.com/polynomial-regression-bbe8b9d97491
https://towardsdatascience.com/polynomial-regression-bbe8b9d97491
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://www.ti.com/lit/ds/symlink/ads4122.pdf
https://www.ti.com/tool/DAC904EVM#tech-docs
https://www.ti.com/tool/DAC904EVM#tech-docs
https://sps.ewi.tudelft.nl/Education/courses/ee2s31/slides/DSP6.pdf
https://sps.ewi.tudelft.nl/Education/courses/ee2s31/slides/DSP6.pdf
https://www.microchip.com/en-us/product/DSC1001
https://www.microchip.com/en-us/product/DSC1001
https://www.analog.com/media/en/reference-design-documentation/design-notes/dn1013f.pdf
https://www.analog.com/media/en/reference-design-documentation/design-notes/dn1013f.pdf
https://www.thewelltemperedcomputer.com/Lib/Troisi.pdf
https://doi.org/10.1109/EUMA.1975.332206
https://www.mouser.com/

76 BIBLIOGRAPHY

[20] Xilinx, Pg060 logicore reference manual. [Online]. Available: https://docs.xilinx.com/
v/u/en-US/pg060-floating-point.

[21] IEEE, “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-
2008), pp. 1–84, 2019. DOI: 10.1109/IEEESTD.2019.8766229.

[22] Xilinx, Ds335 floating point logicore reference manual. [Online]. Available: https://docs.
xilinx.com/v/u/en-US/floating_point_ds335.

[23] Xilinx, Floating point adder logicore reference manual. [Online]. Available: https://www.
xilinx.com/htmldocs/ip_docs/pru_files/floating-point.html.

https://docs.xilinx.com/v/u/en-US/pg060-floating-point
https://docs.xilinx.com/v/u/en-US/pg060-floating-point
https://doi.org/10.1109/IEEESTD.2019.8766229
https://docs.xilinx.com/v/u/en-US/floating_point_ds335
https://docs.xilinx.com/v/u/en-US/floating_point_ds335
https://www.xilinx.com/htmldocs/ip_docs/pru_files/floating-point.html
https://www.xilinx.com/htmldocs/ip_docs/pru_files/floating-point.html

	Introduction
	Problem Definition
	State of the Art Analysis
	Thesis Synopsis

	Program of Requirements
	Functional Requirements
	Non-Functional Requirements

	Project Overview
	Producing Ultrasound Waves
	Measuring the Ultrasonic Transducer
	Compensation for Linear Distortion
	Feedback
	Linear Feed-forward
	Non-Linear Feed-Forward
	Adaptive Feed-Forward

	Modeling the System
	IIR Filter
	FIR Filter
	Frequency Domain Filter
	Comparison
	Non-Linear Feature Choice
	Feature Mapping Method
	Size of Feature Vector

	Division of Teams

	System Design
	Division of Specifications
	Ripple and Noise
	Price

	Top Level Design
	ADC and DAC
	ADC and DAC Clock Selection
	ADC and DAC Communication
	Model Communication
	ADC Sample Memory and Communication
	System Platform Selection
	Custom Connection Board

	Position Measurement
	Interferometer Theory
	Operating Point
	Reflection Coefficient Estimation
	Arcsine Approximation
	Error Prediction
	Interferometry Simulation
	Selecting a Laser Wavelength
	Simplifications

	USB Communication Format
	ADC Noise Contribution

	Signal Generation
	UART Communication
	Feed Forward Filter
	Toplevel Design
	Design choices
	Feature Generation
	Estimated System Gain Generation
	Feed Forward Step
	Feed Forward Filter Sub-Component Integration

	Time Signal Generation
	Control Module
	DAC Output
	Signal Generation Integration

	Prototype Implementation and Validation
	Simulation and Synthesis
	Testing and Validation
	Data Acquisition
	Complete System

	Discussion
	Conclusion
	Appendices
	Interferometry Theory Derivation
	Derivation of HF
	Basic Interferometry
	Low Frequency and High Frequency Division
	Operating Point
	Signal Reproduction

	Arcsine Approximation

	Source Code
	Control Module [VHDL]
	Control Phasor Generation [VHDL]
	Feature Generation [VHDL]
	Map Inputs DDS [VHDL]
	Multiple Time Signal Generation [VHDL]
	My Types Package [VHDL]
	Phasor Calc Toplevel [VHDL]
	Project Toplevel [VHDL]
	System Phasor Calc [VHDL]
	Time Signal Generation [VHDL]
	UART Communication [VHDL]
	USB Communication
	Vector Scalar Multiplier [VHDL]
	Vector Vector Scalar Multiplier [VHDL]
	UART Simulation Creator [Python]

	Simulation Results
	Feed Forward Filter Simulation
	Time Signal Generation Simulation
	System Utilization Report

	Bibliography

