
 
 

Delft University of Technology

Effect of SRA-programming on computational thinking through different output modalities

Fanchamps, Nardie; Slangen, Lou; Specht, Marcus; Hennissen, Paul

DOI
10.1007/s40692-022-00236-w
Publication date
2022
Document Version
Final published version
Published in
Journal of Computers in Education

Citation (APA)
Fanchamps, N., Slangen, L., Specht, M., & Hennissen, P. (2022). Effect of SRA-programming on
computational thinking through different output modalities. Journal of Computers in Education, 10(2), 433-
462. https://doi.org/10.1007/s40692-022-00236-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s40692-022-00236-w
https://doi.org/10.1007/s40692-022-00236-w


Vol.:(0123456789)

J. Comput. Educ.
https://doi.org/10.1007/s40692-022-00236-w

1 3

Effect of SRA‑programming on computational thinking 
through different output modalities

Nardie Fanchamps1   · Lou Slangen2 · Marcus Specht4 · Paul Hennissen2,3

Received: 21 July 2021 / Revised: 26 January 2022 / Accepted: 13 June 2022 
© The Author(s) 2022

Abstract  The application of sense-reason-act (SRA) programming in contempo-
rary education can ensure the development of computational thinking (CT) at a more 
advanced level. SRA-programming has been identified as an instrumental way of 
thinking for learning to program robots and encourages the development of the more 
complex concepts of programming. Visual programming environments are diverse 
in appearance and prove to be an excellent way to teach pupils the basic ideas of 
programming. It is important to investigate whether the type of output has a charac-
teristic influence on the level of development of CT in visual programming environ-
ments. In this research, we therefore explore whether characteristic differences in 
the development of CT can be measured when SRA-programming is applied in a 
visual programming environment with an on-screen output or a tangible output. It 
was expected that the observed effect of pupils’ programming actions through the 
application of SRA would show that the type of output influences the understand-
ing of complex programming concepts at a higher level. Our results indicate that 
SRA-programming with visual, on-screen output yields a significant increase in the 
development of CT, as opposed to SRA-programming with a tangible output. The 
development of complex programming concepts can also be demonstrated.

Keywords  SRA-programming · Computational thinking · Visual programming · 
Visual output · Tangible output

 *	 Nardie Fanchamps 
	 nardie.fanchamps@ou.nl

1	 Open University, Valkenburgerweg 177, 6419 Heerlen, Netherlands
2	 Fontys University of Applied Science, Mgr. Claessenstraat 4, 6131 Sittard, Netherlands
3	 Zuyd University of Applied Science, Nieuw Eyckholt 300, 6419 Heerlen, Netherlands
4	 Delft University of Technology, Mekelweg 4, 2628 Delft, Netherlands

http://orcid.org/0000-0001-7509-2251
http://crossmark.crossref.org/dialog/?doi=10.1007/s40692-022-00236-w&domain=pdf


	 J. Comput. Educ.

1 3

Introduction

The use of information communication technology (ICT) is increasingly wide-
spread, and modern society demands a thorough preparation in this field at the 
earliest possible age (Hernandez, 2017; Kafai & Burke, 2013; Stamati, 2020; Yel-
land, 2005). Programming is now an integral part of everyday life (Iivari et al., 
2020; Luxton-Reilly, 2016), and primary school appears to be the most desig-
nated place to teach pupils the required competencies and skills at an early stage 
(Atman Uslu & Usluel, 2019; Edwards, 2005). There is a variety of didactic 
approaches by which learners can develop computational thinking (CT), which 
can contribute to their problem-solving capabilities (Estapa et  al., 2018; Nouri 
et  al., 2020). However, CT involves more than the ability to solve challenging 
problems using skills derived from the world of computer science (Brennan & 
Resnick, 2012; Israel-Fishelson & Hershkovitz, 2022; Tsarava et  al., 2021). It 
encompasses the mental skills and practices needed to design computations that 
can let computers perform tasks for us, and to explain and interpret the world as 
a complex system of information processes (Denning & Tedre, 2019; Lai, 2021). 
The provision of opportunities to further stimulate the development of CT, and to 
enable pupils to acquire the associated skills, entails demands on both the envi-
ronment and the task (Kong & Abelson, 2019; Rich & Browning, 2022; Yadav 
et al., 2016).

A variety of programming environments are available to teach pupils the con-
cepts of programming at the primary education level (López et  al., 2021; Wahl 
& Thomas, 2002). Visual programming environments are currently very popu-
lar and offer a wide range of possibilities (Chao, 2016; Ray, 2017). The basic 
starting point for visual programming is that definable code blocks are dragged 
into a worksheet using the ‘drag and drop’ method, and are arranged in the cor-
rect sequence (Weintrop, 2019; Weintrop & Wilensky, 2015). When used in this 
way, pupils can construct a program and execute it. A distinction can be made 
between (a) visual programming with a visual on-screen output, in which virtual 
objects are programmed and controlled, and (b) visual programming with a tan-
gible, physically perceptible output in which concrete artefacts are programmed 
and controlled (Caci et al., 2013a, 2013b; Corral et al., 2019; Horn et al., 2009). 
This difference in the type of output determines the way in which pupils receive 
feedback on their programming actions (Sapounidis et al., 2015; Zhang & Nouri, 
2019).

The ability to construct a computer program that anticipates changing environ-
mental conditions by means of sensor observations demands a different compu-
tational approach than performing programming tasks in an unchanging, predict-
able environment (Gomes & Mendes, 2007; Kim & Kim, 2003; Kyriazopoulos 
et al., 2022). By using sense-reason-act (SRA) programming, a programmed arte-
fact or a simulation of reality can react to changes in its surroundings (Fanchamps 
et al., 2021). The concept of SRA, derived from the world of robotics, requires 
the understanding that the operating program should continuously compare the 
external conditions with the desired conditions (Lith, 2006). Actions then become 



1 3

J. Comput. Educ.	

conditional rather than automatic. An SRA-programming application is charac-
terised by an initial process in which a state is detected through sensing or sensor 
observations (sense); this situation is then compared with the corresponding val-
ues of the computer program (reason), and the computer program is then used to 
execute subsequent actions (act) (Slangen, 2016). SRA-programming requires the 
use of more complex forms of iterations, conditionals and functions rather than 
restricted linear, sequential programming structures (Martinez et al., 2015). This 
requires logical reasoning of the ’’if … then …’’, ’’wait … until …’’, ’’repeat … 
until …’’ kind. The complexity is rooted in the ability to think in terms of sce-
narios, and to understand and apply the more complex concepts of programming 
(Popat & Starkey, 2019).

Earlier research shows that although the use of SRA contributes to the devel-
opment of CT (Fanchamps et  al., 2020; Slangen, 2016; Wong, 2014), pupils lack 
fluency in the more  complicated language of conditional reasoning and nest-
ing required for successful SRA-programming. In addition, previous research has 
also shown that pupils need (dedicated) assistance in order to understand the con-
cept of SRA (Slangen, 2016). It has been demonstrated that the concept of SRA, 
encompassing a generalisable theory that contains several specific conceptual ele-
ments (e.g. parallel thinking, cause-effect relationships and conditional reasoning), 
is applicable within visually oriented programming environments where variations 
are compared only with a visual, on-screen output, or only with a physical tangi-
ble output (Fanchamps et  al., 2019, 2020). It is questionable whether the distinc-
tion between a visual, on-screen output and a tangible output can influence a better 
understanding of the concept of SRA, with consequent effects on the development 
of CT. This  study therefore aims to investigate whether the use of SRA-program-
ming has an impact on the understanding of complex programming concepts, and 
whether the impact on CT when using visual programming environments depends 
on the use of an on-screen output or a physical, tangible output. Our research results 
are also compared  to the performance of a control group that did not use either type 
of visual programming environment.

Theoretical framework

In this research, we are specifically interested in the effect on CT of applying SRA-
programming in a visual programming environment, as demonstrated previously 
(Fanchamps et al., 2021), depending on the type of output (i.e. visual or tangible). 
We also want to know whether the type of output influences the understanding of 
the more complex programming concepts when SRA is used (Zapata-Cáceres et al., 
2020).

From earlier research (Fanchamps et  al., 2019), we know that primary school 
pupils show a higher level of CT when SRA is applied in robot programming. We 
also know that the application of SRA with an impact on CT depends on the design 
of the task and the environmental conditions in which robots are programmed 
(Slangen, 2016). In addition, we know that the application of SRA in a visual 



	 J. Comput. Educ.

1 3

programming environment with visual, on-screen output enables the development of 
CT (Fanchamps et al., 2021).

CT is a conceptualised way of thinking with the aim of solving problems by using 
fundamental concepts of computer science (Hsu et al., 2018; Wing, 2006). It refers 
to a logical approach towards solving problems through problem formulation, data 
organisation, analysis and representation (Denning & Tedre, 2019; Voskoglou & 
Buckley, 2012). CT is a process of thinking in which problems and their solutions 
can be reformulated to allow them to be presented in a form that can be effectively 
implemented by an information processing digital agent (Dummer, 2017; Leifheit 
et al., 2018; Vourletsis & Politis, 2021). Skills such as problem decomposition, algo-
rithmic thinking, pattern recognition, parallelisation and abstraction are addressed 
(Catlin & Woollard, 2014; Chalmers, 2018; SLO, 2017). A solution-focused ability 
is strengthened, and this stimulates creative thinking about the use of digital tools to 
solve a problem (Lee et al., 2011; Tedre & Denning, 2016).

Programming in accordance with the SRA approach in which sensor-based pro-
gramming is used and where sensory input determines consecutive actions, is char-
acterised by connecting observations of (virtual or material) sensory input (sense) to 
a reasoning component which initiates actions based on these observations (reason) 
and a process of subsequent actions based on the given inferences (act) (Krugman, 
2004; Slangen et al., 2011; Wong, 2014). When applying SRA-programming, com-
plex programming concepts such as iterations, conditionals and functions are used 
(Basu et  al., 2016; Werner et  al., 2012). SRA-programming requires conditional, 
causal and iterative reasoning, abstract thinking and thinking in terms of parameters 
and variables (Estapa et  al., 2018). The ability to functionally apply SRA in pro-
gramming environments requires pupils to develop logical reasoning and systematic 
thinking (Fanchamps et al., 2019). Anticipating the requirements of the task design, 
and enabling and executing targeted interventions, demands the correct selection and 
implementation of sensors and actuators (Durak et al., 2019; Oswald et al., 1999). 
The application of SRA-programming requires pupils to adopt a different approach 
to solving a programming problem from applying a linear programming approach 
(Slangen, 2016; Wyeth et al., 2003).

From research by López et  al. (2021), it appears that iterations, condition-
als and functions, the prominent concepts underlying SRA-programming, are dif-
ficult for primary school pupils to comprehend. More specifically, these concepts 
are operationalised through programming elements such as nested loops, “if–then-
else”, “wait until”, “while” or functions with parameters. Pupils tend to avoid apply-
ing these complex concepts due to the higher level of abstraction involved (Wer-
ner et al., 2012). Only when a programming environment or task design appeals to 
the added value of complex programming concepts will pupils be triggered to use 
them in solving a programming problem (Wahl & Thomas, 2002). When introduc-
ing complex programming concepts to primary school pupils, game-based and robot 
programming environments provide a promising opportunity to illustrate and reveal 
their functions and applications (Chevalier et  al., 2021; Dlab et  al., 2019; Mar-
tinez et al., 2015). Previous research indicates that applying SRA thinking, includ-
ing the use of sensory input to anticipate unforeseen, changing events in the task 
design, forces pupils to abandon linear thinking and offers them the opportunity to 



1 3

J. Comput. Educ.	

effectively understand and apply complex programming concepts in a goal-oriented 
way (Fanchamps et al., 2020). SRA thinking involves logical, causal and conditional 
reasoning and the ability to establish cause/effect relationships when using sensor 
input to anticipate changes in the task design.

The influence of the characteristics of the learning environment appears to be 
very important in programming applications (Durak et al., 2019; Gross & Powers, 
2005), in order for pupils to not only comprehend the coding environment used but 
also the programming concepts themselves (Williams et al., 2015). The character-
istics of the programming environment can influence pupils’ performance, and pro-
vide opportunities for assessing and providing feedback (Ahmed et al., 2018; Allison 
et al., 2002). Furthermore, the design of the programming environment can charac-
terise the ways in which pupils perceive, interact with and respond to the environ-
ment (Gomes & Mendes, 2008). It is important that pupils develop programming 
skills in an environment that supports them in learning the basic concepts of pro-
gramming (Gomes & Mendes, 2007; López et al., 2021; Zaharija et al., 2013). The 
programming learning environment must therefore create the conditions for under-
standing and applying certain abstract programming concepts (Sáez-López et  al., 
2019; Werner et al., 2012). The design of the task and the learning environment can 
help pupils to understand the effect of the programming intervention and can clarify 
the functions of concepts (Popat & Starkey, 2019; Wahl & Thomas, 2002). In terms 
of the comprehension and application of the basic concepts of programming, visual 
programming environments prove to be perfectly suited due to their imaginative 
power and low level of abstraction, and are easily accessible to enable pupils learn 
the basic concepts of programming required (Kaučič & Asič, 2011; Tsai, 2019).

Direct manipulation environments (DMEs) are powerful tools for creating a 
learning environment that can make programming understandable. Robotic DMEs 
are concrete, physical artefacts (robots/constellations) that can be controlled by 
programming that makes use of actuators and sensors (Jonassen, 2006; Rekimoto, 
2000). DMEs offer a potentially rich context for learning, understanding and prac-
ticing programming, for understanding the concepts of robotics, and for developing 
(general) problem-solving skills. The use of robotic DMEs provides the possibil-
ity to obtain ‘instant’ feedback from the technology on pupils’ thinking and act-
ing (Slangen et al., 2011). Examples of such environments include TechnoLogica, 
K’nex, Fischertechnic, Arduino, Makeblock and Lego Mindstorms, which allow 
pupils to build controllable structures that can be programmed to perform prede-
fined tasks (Jonassen, 2000; Slangen et al., 2008, 2011; Slangen et al., 2009). The 
efficient and yield-oriented use of DMEs places demands on the programming envi-
ronment and the task design with regard to enabling a problem-solving approach. 
DMEs tend to use complex programming concepts (e.g. nested loops, if–then-else, 
wait until, while, functions with parameters, etc.).

Robotic and virtual environments are considered powerful tools for learning 
complex programming concepts (Caci et al., 2013a, 2013b; López et al., 2021). A 
tangible output can be experienced and perceived through physical representations, 
unlike a visual output, which uses more mental representations (Chevalier et  al., 
2022; Marshall, 2007). Moreover, a visual programming environment with a tan-
gible output also differs from a visual programming environment with an on-screen 



	 J. Comput. Educ.

1 3

output in terms of the connections between the physical and digital representations 
(O’Malley & Fraser, 2004). Furthermore, it can be argued that a three-dimensional, 
physical representation provides different forms of information, immersion and 
engagement from a two-dimensional, visual, on-screen representation (Price et al., 
2003). Some studies indicate that learning to program is more effective and mean-
ingful when the learner operates a tangible and meaningful object (Horn & Bers, 
2019; Papert, 1980; Resnick et al., 1990); other research claims that the visual char-
acteristics of the more virtual world are a better way to develop mental represen-
tations of the program based on the structure of the data flow (Navarro-Prieto & 
Cañas, 2001; Segura et al., 2020). In order to explain the learning outcomes result-
ing from different output modalities in programming, more research is needed into 
the influence of the interaction between a visual programming environment and a 
tangible or visual type of output (Skulmowski et al., 2016; Zhu, 2021).

Visual programming environments use on-screen code elements that help novice 
programmers to easily understand and construct the process of programming (Price 
& Barnes, 2015). The advantages of these visual programming environments are that 
no specific syntax needs to be mastered and that the level of abstraction is low, due 
to the high extent of visualisation and generalisation (Weintrop & Wilensky, 2015). 
Visual programming environments are also intended to support the understanding 
and application of control flow structures (Chao, 2016). Due to their attractiveness, 
transparency and clarity, visual programming environments can help to increase 
user engagement in solving programming tasks (Asad et al., 2016). In a visual pro-
gramming environment, a computer program to solve a computational problem is 
constructed by manipulating visual programming elements in order to formulate and 
design a solution to the problem (Sáez-López et al., 2016). Through the on-screen 
execution of the constructed program, direct visual feedback can be obtained from 
which the user can anticipate and determine the subsequent interventions by means 
of problem-solving actions (Moreno et al., 2011; Tsai, 2019). Through simulation, 
visual programming environments can provide more complex and richer function-
ality than the physical boundaries of artefacts in the material world allow. Direct 
feedback obtained from visual output may be experienced as more powerful than 
feedback obtained via tangible output (Caci et  al., 2013a, 2013b; Sefidgar et  al., 
2017). Visual programming environments also often include integrated, directional 
incentives which provide the user with instant information on whether the program-
ming solution is the optimal one, or whether it could be constructed more efficiently. 
These incentives provide guidance, and the user may decide to use them when sup-
port is needed (Karalekas et  al., 2020). Seen from these perspectives, visual pro-
gramming environments offer excellent opportunities for solving challenging pro-
gramming problems and acquiring CT (Papadakis et al., 2016; Rose et al., 2017).

In programming with a visual output, the application and execution of each 
programming operation is displayed purely on a screen (Sapounidis et al., 2015). 
The information obtained from the programmed operation can be characterised 
as two-dimensional percipient (Mladenović et al., 2020; Price et al., 2003). The 
elaboration of programming actions appeals to the more abstract imagine abil-
ity and reasoning capacity of the user (Price & Barnes, 2015), but it is not pos-
sible to fall back on the tangible and physically perceptible (Horn & Bers, 2019; 



1 3

J. Comput. Educ.	

O’Malley & Fraser, 2004; Sefidgar et al., 2017; Skulmowski et al., 2016). Noth-
ing can be grasped in a hands-on way, and the execution of the programming 
action cannot be seen from more than one point of view (Sapounidis et al., 2015). 
When there is a physically perceptible, tangible output of the programming oper-
ation, concrete artefacts are controlled by the computer program (Chen et  al., 
2017; Jonassen, 2006). The information obtained from the execution of the pro-
gramming intervention is perceptible in a three-dimensional way, from all points 
of view (Korkmaz, 2018). Imagination and reasoning abilities are stimulated at a 
low level of abstraction, and the execution is tangible at any moment (Bers, 2020; 
Ilieva, 2010; Wang et al., 2014). In addition, users can check their expectations of 
the execution in physical reality, at any point in time (Marshall, 2007).

Building on the above theoretical exploration, we hypothesise a relation 
between the SRA approach in a visual programming environment with different 
types of output and an influence on computational thinking. In addition, depend-
ing on the evocation of SRA thinking, we expect an influence on CT caused by 
a greater understanding of the concepts of programming. It is also expected that 
the more complex concepts of programming will initiate a more profound devel-
opment of CT, and that the direct feedback obtained from visual output during 
visual programming will be more powerful than the feedback that can be derived 
from the execution of a visual program using a physical artefact. Our conceptual 
model, shown in Fig. 1, provides an overview of the relationships and intercon-
nections between the independent and dependent variables, in which some con-
nections are reciprocal.

Research question, sub‑questions and hypotheses

Based on preliminary studies and research in the literature, our main research 
question is: What is the influence of the type of output in a visual SRA-program-
ming environment on the development of CT and complex programming concepts 
among primary school pupils?

Supplementary to the main research question, our sub-questions are:

Computational
Thinking

Evocation of SRA thinking

identifies

Understanding of
Complex

Programming Concepts

Task Design
Tangible output /
On-screen output

produces

influences

influences

impacts

Fig. 1   Schematic representation of the conceptual model



	 J. Comput. Educ.

1 3

1	 To what extent can the influence on the development of CT be attributed to the 
evocation of SRA thinking and the type of output (tangible/on-screen) in SRA-
programming?

2	 What is the impact of visual SRA-programming environments (task design) on 
the understanding of complex programming concepts?

3	 What is the influence of the understanding of complex programming concepts on 
CT?

These sub-questions result in the following hypotheses:

1.	 Pupils who apply SRA-programming in a visual programming environment show 
the development of CT.

2.	 Applying SRA-programming in a visual programming environment with visual, 
on-screen output leads to a higher level of development of CT compared to SRA-
programming in a visual environment with tangible output.

3.	 The application of SRA-programming in a visual programming environment with 
visual, on-screen output has a greater impact on the understanding of complex 
programming concepts than SRA-programming in a visual environment with 
tangible output.

Method

This research should be seen as an exploratory approach to gain more insight into 
the effects of the difference in output on the development of CT. To this end, an 
exploratory study was conducted in which, by application of a pre-/post-test ques-
tionnaire survey, quantitative data were obtained (a) to determine the effect of 

Pre-assessment
computational thinking 

test (CTt)
Control group

SRA-programming 
with on-screen output 

using Bomberbot

Post-assessment
computational thinking 

test (CTt)

SRA-programming 
with tangible output 

using Lego EV-3

Fig. 2   Research design



1 3

J. Comput. Educ.	

the intervention; (b) to assess the associated hypotheses and (c) to investigate the 
research questions.

As a pre- and post-assessment, a questionnaire on CT was applied. Quantitative 
data were collected from this exploration in order to answer the research question, 
sub-questions and hypotheses. In order to investigate the effect of the intervention, 
we used a pre-test/post-test design as illustrated in Fig. 2. For the dependent vari-
able, this included the scores from a pre-/post-assessment of CT, and for the inde-
pendent variables, we used two variations of visual SRA-programming interventions 
that differed in output (perception), namely Bomberbot, with on-screen output, Lego 
EV-3, with tangible output, and a control group that were not asked to program.

Participants

This research was conducted with pupils that ranged in age from 9 to 12, from grades 
5 and 61 (N = 156), from various primary schools selected at random from the South 
of the Netherlands, and from which two experimental groups (Lego n = 47/Bomb-
erbot n = 50) and a control group (n = 59) were randomly composed. None of the 
participating pupils were familiar with programming, apart from using basic com-
puter programmes such as Word, PowerPoint and the Internet, and none had previ-
ously taken a CT test. The control group did not receive any programming offerings 
and followed the regular curriculum during the implementation of the study. All of 
the pupils from the primary schools involved were randomly assigned to one of the 
three conditions (Lego Ev-3, Bomberbot, control group). This ensured that the con-
trol group was a realistic reflection of the target group.

Materials

To answer our research questions, we used two visual programming environments 
with different types of output. This allowed pupils to learn complex programming 
concepts by applying SRA thinking. For each application, we aimed to deduce 
whether there was a difference in the effect on CT due to the different type of out-
put. We used Bomberbot©, with a visual, on-screen output, and Lego EV-3 Mind-
storms© robots, with a tangible output.

Bomberbot is a game-based, visual programming environment with an on-screen 
output in which pupils can learn the concepts of programming in a playful way. 
Bomberbot is a robot simulation that can be programmed to accomplish in virtual 
world tasks such as collecting stars, smashing obstacles and gems, opening treas-
ure chests, and sliding unexpectedly across slippery surfaces. Using the ‘drag and 
drop’ method, programming commands need to be dragged from a command library 
into a worksheet in the correct sequence (El-Hamamsy et al., 2021). The command 
library provides the ability to work with fundamental programming concepts such as 

1  In this publication, we use the UK grade level system to represent the research population. Grades 5 
and 6 in the UK correspond to groups 7 and 8 in the Netherlands.



	 J. Comput. Educ.

1 3

iterations, conditionals and functions, which allows pupils to comprehend the prin-
ciple of operation and effects of these concepts. Bomberbot is designed to provide 
the user with direct, self-correcting feedback and is characterised by a build-up from 
beginner to advanced level. The programming tasks to be performed are predefined, 
and consist of 20 missions to be carried out, with ascending complexity. The aim is 
to achieve all missions as efficiently as possible, allowing the user to earn various 
numbers of stars, ranging from three stars for the most efficient solution to one for 
each working solution. In Bomberbot, both the programming environment and the 
execution environment are represented simultaneously within the same on-screen 
image. Figure 3 shows the basics of programming in Bomberbot.

Lego EV-3 Mindstorms is a visual robotics programming environment in which 
tangible, perceptible robots are controlled by means of an interface. The application 
of Lego EV-3 is characterised by a direct effect in the physical space. By using ‘drag 
and drop’ programming blocks, which are arranged into a worksheet, the program 
controls a set of actuators and sensors. The controllable parameters and variables 
inside these blocks (for instance speed, direction, rotation, detection) can be influ-
enced. Lego EV-3 teaches the applicability of basic concepts of programming such 
as iterations, conditionals and functions, and either predefined assignments or self-
designed tasks can be used. In this research, we used 15 training missions and five 
final challenges in which a predefined robot, equipped with a push-button sensor and 
an ultrasonic sensor, had to be programmed to navigate through various labyrinth 
setups. The game element of the Lego challenge tasks is that SRA-programming 
ultimately leads to the most efficiently constructed program. This is determined 
through the application of SRA, based on the runtime of the robot when success-
fully completing each challenge task. In Lego EV-3 Mindstorms, the programming 
environment is separated from the physical task environment. Figure 4 shows a pro-
gramming solution devised using Lego Mindstorms software, and Fig. 5 shows an 
example task in Lego EV-3.

To determine the level of CT between the pre- and post-measurements, we 
used the validated Computational Thinking test (CTt) (Román-González et  al., 
2017). This test makes it possible to generate information on the level of solving 
CT tasks (hypothesis 1), the understanding of the computational concepts involved 

Fig. 3   Programming in Bomberbot©



1 3

J. Comput. Educ.	

(hypothesis 2), and the understanding of complex programming concepts (hypoth-
esis 3). All pupils involved in this research completed this questionnaire individu-
ally. The questionnaire contained a total 28 items that relate to the various com-
putational concepts involved, i.e. basic directions (28 items), loops (repeat times: 
13 items, repeat until: 12 items), conditionals (if-simple: six items, if/else-complex: 
four items, while: four items) and functions (simple functions: four items, func-
tions with parameters: zero items). The existence or nonexistence of nesting can be 
derived (19 items). The computational task required (completion: nine items, debug-
ging: five items, sequencing: 14 items) to provide the right solution for each of the 
28 questionnaire items can be deduced. To determine the reliability of the scale, we 
calculated Cronbach’s alpha. It should be noted that a value for Cronbach’s alpha of 
0.70 is considered an acceptable reliability factor (Santos, 1999). The developers of 
the CTt indicate that for fifth and sixth graders (N = 176), Cronbach’s alpha should 
be α = 0.721 (Román-González et  al., 2017). We measured a value of Cronbach’s 
alpha of α = 0.679, thus almost complying with the required level of internal consist-
ency for our scale with this particular sample. An explanation for this slightly lower 

Fig. 4   SRA-programming in Lego EV-3 Mindstorms©

Fig. 5   Example of a labyrinth task in Lego EV-3©



	 J. Comput. Educ.

1 3

value for Cronbach’s alpha can be found in the fact that the research sample size was 
smaller than that for which the designers of the CTt validated the test. In addition, 
the age category of the research population included in this study was towards the 
lower limit of the test, which may be the reason for the lower reliability. Taking this 
into account, the CTt performed almost as reported by the original authors, and the 
measurement results obtained were therefore be used as such.

Procedure

As a pre-test measurement (Fig. 2), all three groups completed the CTt. Following 
this, the group that were to program with Lego EV-3 Mindstorms received basic 
instruction and then completed 15 programming tasks, with five final challenge 
assignments in five 1-h sessions, by applying SRA-programming. The group that 
was to use Bomberbot completed, after a short introduction, 10 programming mis-
sions in five 1-h sessions using SRA-programming, each consisting of 15 program-
ming tasks. The control group did not program with either of the programming envi-
ronments. At the conclusion of the investigation, all three groups completed the CTt 
as a post-test measurement.

Results and data analysis

Our main research question, “What is the influence of the type of output in a visual 
SRA-programming environment on the development of CT and complex program-
ming concepts among primary school pupils?”, is answered by analysing the means 
for all the variables measured in this research. We aimed to explore (i) whether one 
of the two visual programming environments (Bomberbot and Lego EV-3) with dif-
ferent types of output, and if so which, led to significant differences with respect to 
the control group, and/or (ii) whether significant differences may occur in a compar-
ison between the two programming environments. To this end, a variance analysis 
(Anova) and Levene’s test were initially conducted for all variables to obtain prelim-
inary indications and to assess whether equal variances should be assumed. Since 
specific hypotheses were formulated in this study, a subsequent contrast analysis was 
carried out to demonstrate possible significant effects and to confirm or reject these 
hypotheses. To make the magnitude of the effects visible, Cohen’s d was calculated.

The pre- and post-measurement results from the CTt were entered into SPSS 
for quantitative data analysis, and the effects of the independent variables on the 
dependent variables were assessed. The differences in values were determined by 
comparing the means. In all of our statistical analyses, a significance level of 5% 
(p =  ≤ 0. 05) was assumed. The nature of the data met the conditions for the assump-
tion of normality, indicating that the distribution of sample means (across independ-
ent samples) was normal. We tested whether our assumptions of the homogeneity 
of variances were violated (p ≤ 0.05). Degrees of freedom were calculated, and a 
bootstrapping procedure was applied to re-estimate the standard error of the mean 
difference. The confidence interval was studied to assess the difference between the 



1 3

J. Comput. Educ.	

means and to determine whether a value of zero was within the confidence interval. 
The Shapiro–Wilk test, used to demonstrate the normality of the variables, gave a 
value of p = 0.126, which was greater than the chosen alpha level of 0.05. The null 
hypothesis could not be rejected, as there was evidence that the tested data were nor-
mally distributed. Histograms also showed a normal distribution. It could therefore 
be assumed that all variables were normally distributed. The value for the extent of 
the effect size (Cohen’s d) was calculated (it should be noted that d = 0.2 can be con-
sidered a small effect size, d = 0.5 represents a medium effect size, d = 0.8 indicates 
a large effect size, and any value above d = 1.4 is considered a very large effect) 
(Field, 2013).

Differences in the level of development of computational thinking

In order to provide a structured overview of the differences in the development of 
CT between the three groups, this aspect is divided into subcategories. The basis for 
this approach originates from the subdivision used by Román-González et al. (2017) 
in relation to the CTt. Table 1 shows the data for each of the subcategories for the 
three different groups.

An analysis of the means of the pre- and post-measurement results reveals that 
in comparison with the control group, the two groups that applied SRA-program-
ming using Bomberbot and Lego EV-3 (a) solved more CT tasks successfully, (b) 
showed more control over loops, conditionals and functions, (c) showed more use 
of nesting and (d) applied sequencing, completion and debugging more often for the 
required task application. This can be deduced from the data, as both groups that 
applied SRA-programming with Bomberbot or Lego EV-3 showed higher average 
scores (M) in the post-assessment than the control group for all variables measured. 
The mean values should be considered as the average number of correctly answered 
questions per respondent, normalised to a value from zero to one. This increase can 
also be deduced from the percentage values that were calculated for each variable 
separately for each intervention group. This percentage calculation was applied 
because the three different intervention groups differed in terms of the number of 
respondents (Bomberbot: n = 50; Lego EV-3: n = 47; control group: n = 59). The per-
centage values per category were calculated on the basis of the number of items per 
category compared to the total number of items in the questionnaire, and this value 
was multiplied by the calculated mean (M). By illustrating the differences between 
the two intervention groups and the control group in the form of percentage values, 
the effect and impact of SRA-programming on CT could be objectively compared. 
For the combined categories, the percentages were calculated on the basis of the 
weighted averages. The category "loops: combined" is an aggregation of the subcat-
egories "loops: repeat times" (13 items) and "loops: repeat until" (12 items). Since 
both subcategories have an overlap of three items, the category "loops: combined" is 
based on a total of 22 items.

The category "conditionals: combined" is an aggregation of the subcategories "con-
ditionals: if-simple" (6 items), "conditionals: if/else" (4 items) and "conditionals: while" 
(4 items). Since there are two items that overlap between these three subcategories, 



	 J. Comput. Educ.

1 3

Ta
bl

e 
1  

D
iff

er
en

ce
s i

n 
co

m
pu

ta
tio

na
l t

hi
nk

in
g

Va
ria

bl
e

B
om

be
rb

ot
Le

go
 E

V-
3

C
on

tro
l g

ro
up

M
SD

R
an

ge
%

M
SD

R
an

ge
%

M
SD

R
an

ge
%

Pr
e-

te
st:

 C
T 

ta
sk

s c
or

re
ct

ly
 so

lv
ed

 (2
8 

ite
m

s)
0.

49
0.

13
0.

25
–0

.8
2

49
.0

0
0.

49
0.

12
0.

11
–0

.6
8

49
.0

0
0.

56
0.

14
0.

29
–0

.8
9

56
.0

0
Po

st-
te

st:
 C

T 
ta

sk
s c

or
re

ct
ly

 so
lv

ed
 (2

8 
ite

m
s)

0.
61

0.
14

0.
36

–0
.9

6
61

.0
0

0.
60

0.
13

0.
36

–0
.8

6
60

.0
0

0.
55

0.
15

0.
29

–0
.8

9
55

.0
0

Pr
e-

te
st 

lo
op

s:
 re

pe
at

 ti
m

es
 (1

3 
ite

m
s)

0.
41

0.
16

0.
08

–0
.8

5
19

.0
4

0.
45

0.
16

0.
00

–0
.6

9
20

.8
9

0.
50

0.
17

0.
15

–0
.8

5
23

.2
1

Po
st-

te
st 

lo
op

s:
 re

pe
at

 ti
m

es
 (1

3 
ite

m
s)

0.
59

0.
17

0.
31

–1
.2

3
25

.0
7

0.
68

0.
76

0.
31

–5
.6

9
31

.5
7

0.
50

0.
18

0.
08

–0
.9

2
23

.2
1

Pr
e-

te
st 

lo
op

s:
 re

pe
at

 u
nt

il 
(1

2 
ite

m
s)

0.
45

0.
15

0.
17

–0
.7

5
19

.2
9

0.
41

0.
17

0.
08

–0
.6

7
17

.5
7

0.
50

0.
17

0.
25

–0
.8

3
21

.4
3

Po
st-

te
st 

lo
op

s:
 re

pe
at

 u
nt

il 
(1

2 
ite

m
s)

0.
54

0.
17

0.
17

–1
.0

0
23

.1
4

0.
51

0.
17

0.
17

–0
.8

3
21

.8
6

0.
50

0.
21

0.
08

–0
.9

2
21

.4
3

Pr
e-

te
st 

lo
op

s:
 c

om
bi

ne
d 

(2
2 

ite
m

s)
0.

43
0.

13
0.

20
–0

.8
0

33
.7

9
0.

43
0.

12
0.

08
–0

.6
4

33
.7

9
0.

50
0.

14
0.

20
–0

.7
6

39
.2

9
Po

st-
te

st 
lo

op
s:

 c
om

bi
ne

d 
(2

2 
ite

m
s)

0.
57

0.
15

0.
28

–1
.1

2
44

.7
9

0.
59

0.
37

0.
32

–2
.9

3
46

.3
6

0.
50

0.
17

0.
20

–0
.8

8
39

.2
9

Pr
e-

te
st 

co
nd

iti
on

al
s:

 if
-s

im
pl

e 
(6

 it
em

s)
0.

36
0.

18
0.

00
–0

.8
3

7.
71

0.
34

0.
19

0.
00

–0
.8

3
7.

29
0.

45
0.

19
0.

00
–0

.8
3

9.
64

Po
st-

te
st 

co
nd

iti
on

al
s:

 if
-s

im
pl

e 
(6

 it
em

s)
0.

52
0.

22
0.

00
–1

.0
0

11
.1

4
0.

42
0.

20
0.

00
–1

.0
0

9.
00

0.
40

0.
20

0.
00

–0
.8

3
8.

57
Pr

e-
te

st 
co

nd
iti

on
al

s:
 if

/e
ls

e 
(4

 it
em

s)
0.

45
0.

29
0.

00
–1

.0
0

6.
43

0.
40

0.
25

0.
00

–1
.0

0
5.

71
0.

47
0.

28
0.

00
–1

.0
0

6.
71

Po
st-

te
st 

|co
nd

iti
on

al
s:

 if
/e

ls
e 

(4
 it

em
s)

0.
58

0.
32

0.
00

–1
.0

0
8.

29
0.

53
0.

25
0.

00
–1

.0
0

7.
57

0.
46

0.
31

0.
00

–1
.0

0
6.

57
Pr

e-
te

st 
co

nd
iti

on
al

s:
 w

hi
le

 (4
 it

em
s)

0.
34

0.
22

0.
00

–0
.7

5
4.

86
0.

32
0.

24
0.

00
–0

.7
5

4.
57

0.
39

0.
27

0.
00

–1
.0

0
5.

57
Po

st-
te

st 
co

nd
iti

on
al

s:
 w

hi
le

 (4
 it

em
s)

0.
52

0.
28

0.
00

–1
.0

0
7.

43
0.

44
0.

24
0.

00
–1

.0
0

6.
29

0.
36

0.
21

0.
00

–0
.7

5
5.

14
Pr

e-
te

st 
co

nd
iti

on
al

s:
 c

om
bi

ne
d 

(1
2 

ite
m

s)
0.

38
0.

16
0.

14
–0

.6
7

16
.2

9
0.

35
0.

13
0.

06
–0

.6
4

15
.0

0
0.

44
0.

19
0.

14
–0

.9
4

18
.8

6
Po

st-
te

st 
co

nd
iti

on
al

s:
 c

om
bi

ne
d 

(1
2 

ite
m

s)
0.

54
0.

21
0.

06
–1

.0
0

23
.1

4
0.

46
0.

16
0.

14
–0

.8
3

19
.7

1
0.

40
0.

18
0.

08
–0

.7
8

17
.1

4
Pr

e-
te

st 
fu

nc
tio

ns
: s

im
pl

e 
(4

 it
em

s)
0.

37
0.

25
0.

00
–1

.0
0

5.
29

0.
47

0.
30

0.
00

–1
.0

0
6.

71
0.

50
0.

31
0.

00
–1

.0
0

7.
14

Po
st-

te
st 

fu
nc

tio
ns

: s
im

pl
e 

(4
 it

em
s)

0.
63

0.
24

0.
25

–1
.0

0
9.

00
0.

69
0.

22
0.

25
–1

.0
0

9.
86

0.
63

0.
95

0.
00

–7
.5

0
9.

00
Pr

e-
te

st 
us

e 
of

 n
es

tin
g 

(1
9 

ite
m

s)
0.

37
0.

14
0.

05
–0

.7
4

25
.1

1
0.

37
0.

13
0.

05
–0

.6
3

25
.1

1
0.

45
0.

16
0.

16
–0

.8
4

30
.5

4
Po

st-
te

st 
us

e 
of

 n
es

tin
g 

(1
9 

ite
m

s)
0.

54
0.

17
0.

16
–0

.9
5

36
.6

4
0.

50
0.

14
0.

21
–0

.7
9

33
.9

3
0.

44
0.

17
0.

21
–0

.8
4

29
.8

6
Pr

e-
te

st 
re

qu
ire

d 
ta

sk
 c

om
pl

et
io

n 
(9

 it
em

s)
0.

51
0.

15
0.

11
–0

.7
8

16
.3

9
0.

49
0.

14
0.

11
–0

.7
8

15
.7

5
0.

55
0.

17
0.

11
–0

.8
9

17
.6

8
Po

st-
te

st 
re

qu
ire

d 
ta

sk
 c

om
pl

et
io

n 
(9

 it
em

s)
0.

65
0.

16
0.

33
–1

.0
0

20
.8

9
0.

60
0.

15
0.

33
–1

.0
0

19
.2

9
0.

57
0.

18
0.

22
–0

.8
9

18
.3

2
Pr

e-
te

st 
de

bu
gg

in
g 

(5
 it

em
s)

0.
49

0.
27

0.
00

–1
.0

0
8.

75
0.

51
0.

26
0.

00
–1

.0
0

9.
11

0.
63

0.
24

0.
00

–1
.0

0
11

.2
5

Po
st-

te
st 

de
bu

gg
in

g 
(5

 it
em

s)
0.

60
0.

27
0.

00
–1

.0
0

10
.7

1
0.

63
0.

25
0.

00
–1

.0
0

11
.2

5
0.

57
0.

27
0.

00
–1

.0
0

10
.1

8



1 3

J. Comput. Educ.	

M
 a

ve
ra

ge
, S

D
 s

ta
nd

ar
d 

de
vi

at
io

n,
 ra

ng
e =

 sp
re

ad
 in

 m
ea

su
re

m
en

t, 
%

 =
 pe

rc
en

ta
ge

 v
al

ue
s 

re
la

te
d 

to
 th

e 
to

ta
l n

um
be

r o
f i

te
m

s 
in

 th
e 

qu
es

tio
nn

ai
re

 m
ul

tip
lie

d 
by

 th
e 

ca
lc

u-
la

te
d 

m
ea

n 
(M

)

Ta
bl

e 
1  

(c
on

tin
ue

d)

Va
ria

bl
e

B
om

be
rb

ot
Le

go
 E

V-
3

C
on

tro
l g

ro
up

M
SD

R
an

ge
%

M
SD

R
an

ge
%

M
SD

R
an

ge
%

Pr
e-

te
st 

se
qu

en
ci

ng
 (1

4 
ite

m
s)

0.
46

0.
16

0.
14

–0
.8

6
23

.0
0

0.
48

0.
15

0.
14

–0
.8

6
24

.0
0

0.
53

0.
15

0.
29

–0
.9

3
26

.5
0

Po
st-

te
st 

se
qu

en
ci

ng
 (1

4 
ite

m
s)

0.
61

0.
16

0.
36

–0
.9

3
30

.5
0

0.
58

0.
15

0.
21

–0
.9

3
29

.0
0

0.
51

0.
17

0.
21

–0
.9

3
25

.5
0



	 J. Comput. Educ.

1 3

the category "loops: combined" is assumed to contain a total of 12 items. Based on 
the measured values obtained, it can be stated that SRA-programming, with either 
Bomberbot or Lego EV-3, was the cause of this increase in comparison with the con-
trol group. This is despite the fact that for some variables, only a slight increase in the 
measured values in the post-test could be established. The control group did not score 
better in any category than either the Bomberbot and Lego EV-3 groups. In addition to 
the increase for the Bomberbot and Lego EV-3 programming interventions, it was strik-
ing that the control group showed a decline in the value measured for each variable.

Development in solving computational thinking issues at a higher level

In order to gain more insight into the impact of the interventions based on SRA-pro-
gramming and whether this led to a higher level of CT, a contrast analysis with a three-
group comparison was performed. Table 2 shows the data for the contrast analysis as 
applied to all variables, in a comparison for all groups.

Results of the contrast analysis and main significant effects

A contrast analysis of the total number of correctly solved CT tasks (28) shows that 
there was a significant difference, with a medium measurable effect, between the 

Table 2   Contrast analysis with a comparison of SRA-programming for all groups

Variable measurable value, total number of questions correct CT questionnaire, computational concept 
addressed loops, conditionals, functions, nesting; completion = completed by CT, debugging reformulat-
ing of problems, sequencing sequence, t t value contrast analysis, p p -value contrast analysis, d effect 
size based on Cohen’s d
*Significant effect measured

Group Bomberbot compared to 
control group

Lego EV-3 compared 
to control group

Bomberbot compared to 
Lego EV-3

Variable t p d t p d t p d

Total (28) 2.527 0.013* 0.409 1.810 0.072 0.293 – 0.649 0.517– – 0.105
Loops: repeat times 1.161 0.247 0.188 2.150 0.033* 0.348 0.971 0.333 0.157
Loops: repeat until 1.319 0.189– 0.213 0.357 0.721 0.006 – 0.904 0.367 – 0.146
Loops: combined 1.554 0.122 0.251 2.078 0.039* 0.336 0.529 0.597 0.009
Conditionals: if-simple 3.085 0.002* 0.499 0.575 0.566 0.093 – 2.336 0.019* – 0.383
Conditionals: if/else 2.059 0.041* 0.333 1.190 0.236 0.192 – 0.803 0.423 – 0.130
Conditionals: while 3.538 0.001* 0.572 1.814 0.072 0.293 –1.602 0.111 – 0.259
Conditionals: combined 3.831 0.000* 0.619 1.660 0.099 0.268 – 2.027 0.044* – 0.328
Functions – 0.054 0.957 0.000 0.456 0.649 0.007 0.490 0.625 0.079
Nesting 3.274 0.001* 0.529 1.980 0.049* 0.320 – 1.193 0.235 – 0.193
CT task: completion 2.469 0.015* 0.399 0.999 0.319 0.162 – 1.374 0.171 – 0.222
CT task: debugging 0.592 0.555 0.095 1.069 0.287 0.173 0.469 0.640 0.076
CT task: sequencing 2.920 0.004* 0.472 2.131 0.035* 0.345 – 0.712 0.478 – 0.115



1 3

J. Comput. Educ.	

group that programmed using Bomberbot and the control group t (153) = 2.527, 
p = 0.013, d = 0.409, and an almost significant difference with a small effect between 
the group that programmed using Lego EV-3 and the control group t (153) = 1.810, 
p = 0.072, d = 0.293. No significant difference could be measured between the 
groups that programmed using Bomberbot and Lego EV-3 (p = 0.517).

A contrast analysis of the differences in the application of “loops: repeat times” 
shows that no significant difference could be measured between the group that pro-
grammed using Bomberbot and the control group (p = 0.247), but there was a signif-
icant difference with a small effect between the group that programmed using Lego 
EV-3 and the control group t (153) = 2.150, p = 0.033, d = 0.348. No significant dif-
ference was found between the groups that programmed with Bomberbot and Lego 
EV-3 (p = 0.333).

A contrast analysis of the differences in the combined application of “loops: 
repeat times” and “loops: repeat until” shows that there was no significant differ-
ence between the group that programmed using Bomberbot and the control group 
(p = 0.122), but a significant difference with a small effect was measured between 
the group that programmed using Lego EV-3 and the control group t (153) = 2.078, 
p = 0.039, d = 0.336. No significant difference was measured between the groups 
that programmed using Bomberbot and Lego EV-3 (p = 0.597).

A contrast analysis of the differences in the application of “conditionals: if-sim-
ple” shows that there was a significant difference with a medium effect between the 
group that programmed using Bomberbot and the control group t (153) = 3.085, 
p = 0.002, d = 0.499, but no significant difference between the group that pro-
grammed using Lego EV-3 and the control group (p = 0.566). There was a signifi-
cant difference, with a small, negative effect, between the groups that programmed 
using Bomberbot and Lego EV-3 t (153) =  − 2.336, p = 0.019, d =  − 0.383.

A contrast analysis of the differences in the application of “conditionals: if/else” 
shows that there was a significant difference with a medium effect between the group 
that programmed using Bomberbot and the control group t (153) = 2.059, p = 0.041, 
d = 0.333, but no significant difference between the group that programmed using 
Lego EV-3 and the control group (p = 0.236). No significant difference was meas-
urable between the groups that programmed using Bomberbot and Lego EV-3 
(p = 0.423).

A contrast analysis of the differences in the application of “conditionals: while” 
shows that a significant difference, with a medium to large effect, was meas-
ured between the group that programmed using Bomberbot and the control group 
t (153) = 3.538, p = 0.001, d = 0.572, and an almost significant difference with a 
small effect between the group that programmed using Lego EV-3 and the control 
group t (153) = 1.814, p = 0.072, d = 0.293. No significant difference was measurable 
between the groups that programmed using Bomberbot and Lego EV-3 (p = 0.111).

A contrast analysis of the differences in the combined application of “if-simple”, 
“if/else” and “while” conditionals shows that there was a significant difference, with a 
medium to large effect, between the group that programmed using Bomberbot and the 
control group t (153) = 3.831, p = 0.000, d = 0.619, and an almost significant difference, 
with a small effect, between the group that programmed using Lego EV-3 and the con-
trol group t (153) = 1.660, p = 0.099, d = 0.268. A significant difference, with a small, 



	 J. Comput. Educ.

1 3

negative effect, was measurable between the groups that programmed using Bomberbot 
and Lego EV-3 t (153) =  − 2.027, p = 0.044, d =  − 0.328.

A contrast analysis concerning differences in the application of “nesting” shows 
that there is a significant difference with a medium effect between the group that pro-
grammed using Bomberbot and the control group t (153) = 3.274, p = 0.001, d = 0.529, 
and that a significant difference with a small effect was measurable between the group 
that programmed using Lego EV-3 and the control group t (153) = 1.980, p = 0.049, 
d = 0.320. No significant difference was measurable between the groups that pro-
grammed using Bomberbot and Lego EV-3 (p = 0.235).

A contrast analysis of the differences in the required task “completion” shows that 
a significant difference with a small effect was measurable between the group that pro-
grammed using Bomberbot and the control group t (153) = 2.469, p = 0.015, d = 0.399, 
but no significant difference between the group that programmed using Lego EV-3 and 
the control group (p = 0.319). No significant difference was measurable between the 
groups that programmed using Bomberbot and Lego EV-3 (p = 0.171).

A contrast analysis of the differences in the required task “sequencing” shows a sig-
nificant difference with a medium effect was measurable between the group that pro-
grammed using Bomberbot and the control group t (153) = 2.920, p = 0.004, d = 0.472, 
and a significant difference with a small effect between the group that programmed 
using Lego EV-3 and the control group t (153) = 2.131, p = 0.035, d = 0.345. No signifi-
cant difference was measurable between the groups that programmed using Bomberbot 
and Lego EV-3 (p = 0.478).

An analysis of the data obtained from this contrast analysis indicates that the influ-
ence of the different types of output by applying SRA-programming can have signifi-
cant effects on the development of different characteristics of CT. Notable among these 
are the significant values that we have indicated with an * in Table 2. An interpretation 
of the reported results makes it clear that depending on the characteristics of the pro-
gramming environment, a significant development of the (sub) characteristics of CT 
is measurable. A possible explanation for this may be that Bomberbot, with its visual, 
on-screen output, more effectively stimulates the use of conditional, cause-and-effect 
reasoning by means of the applied task design, and that Lego EV-3, with its tangible 
output, facilitates the understanding of iterations and nested loops and other types of 
linear thinking. The difference in the ability to perceive the impact of the program-
ming intervention in Bomberbot more directly may also explain the significant results 
found. Bomberbot appears to be more focused on parallel programming interventions, 
whereas Lego EV-3 still leaves much room for finding a programming solution via lin-
ear programming. It is also noticeable that Bomberbot incorporates stimuli that encour-
age pupils to keep searching for the most optimal and efficient programming solution, 
which seems to have an effect in the development on sub-characteristics of CT.

Conclusions

From an examination of the data, it can be deduced that the control group initially 
showed a higher starting level (pre-assessment) for all variables present in this study, 
compared with the two other experimental conditions (Bomberbot and Lego EV-3). 



1 3

J. Comput. Educ.	

However, the difference in the increases between the pre- and post-assessments of 
CT for the three different conditions indicates that the groups that received an SRA-
programming intervention involving either Bomberbot or Lego EV-3 showed more 
growth (difference between pre- and post-assessment) and also achieved higher end-
values in the post-measurement compared to the control group. In fact, the end-val-
ues for the control group did not increase, or hardly increased (or even decreased). 
This supports our claim that the application of SRA-programming is the cause of 
this identified increase. It can therefore be assumed that due to the application of 
SRA-programming in both visual programming environments, pupils (1) solved 
more CT tasks correctly; (2) solved more questions correctly which required the 
application of loops, conditionals, functions and nesting and (3) showed an increase 
in the application of CT (e.g. completion, debugging and sequencing) compared 
with the control group, thus indicating that SRA-programming contributes to a bet-
ter understanding of complex programming concepts.

A further interpretation of the available data shows that there was a significant 
increase in the level of CT as a result of the application of SRA-programming using 
two different visual programming environments that differed in terms of output. 
With regard to the application of programming concepts and CT, both environments 
were comparable; the differences in the effects measured for both environments 
were caused as a result of the distinguishing features of the task design. In addition, 
the extent and type of visualisation and the visual program itself also seem to have 
a strong influence. The data analysed here indicate that both visual programming 
environments, with either a visual or tangible output, provided a substantial devel-
opment in CT compared to the control group. Significant yields were measured for 
all variables considered in this research. The extent of the effect of applying SRA-
programming was medium to large. The findings of this research indicate an impact 
on CT due to the use of SRA-programming.

The hypothesis that applying SRA-programming in a visual programming envi-
ronment leads to a development of CT can be confirmed. This can be deduced from 
the total number of correctly solved CT tasks: both the Bomberbot and Lego EV-3 
groups showed a substantial increase in the number of correctly solved CT tasks 
compared to the control group. For the group that programmed with Bomberbot, 
this development was significant, whereas for the group that programmed with Lego 
EV-3, this development was almost significant.

The hypothesis that the application of SRA-programming in a visual program-
ming environment with visual, on-screen output leads to a higher level of develop-
ment of CT compared to SRA-programming in a visual environment with tangible 
output can be confirmed based on the values for the required CT tasks of “comple-
tion” and “sequencing” considered in this research. For the CT task of “debugging”, 
no significance could be found, despite an increase in comparison with the control 
group.

The hypothesis that the application of SRA-programming in a visual program-
ming environment with visual, on-screen output has more impact on the understand-
ing of complex programming concepts than SRA-programming in a visual environ-
ment with tangible output can be confirmed based on our results for “conditionals” 
and “nesting”. The values for “loops: repeat times” and “loops: combined” indicate 



	 J. Comput. Educ.

1 3

that the application of Lego EV-3 causes a higher level of development than Bomb-
erbot. The values for “loops: until” and “functions” indicate that despite an increase 
in comparison with the control group, no significance can be found for either visual 
programming environment, i.e. Bomberbot or Lego EV-3.

In general, it can be stated that visual SRA-programming environments with 
either a visual output or a tangible output are characterised by their own specific 
yield. In comparison with the control group, both groups showed a substantial 
development of CT through the application of SRA-programming. The application 
of SRA-programming within the visual programming environment of Bomberbot, 
with a visual output, gave a higher development of CT and more understanding of 
complex programming concepts than the use of SRA-programming with the visual 
programming environment of Lego EV-3, with a tangible output.

Discussion

The aim of this research was to find answers to the question of whether the type of 
output in a visual SRA-programming environment influences the development of 
CT and the understanding of complex programming concepts.

Our findings indicate that the use of visual SRA-programming environments with 
different types of output is a suitable way to establish the relationship between SRA-
programming and the development of CT. The results obtained from our research 
show that visual SRA-programming with on-screen output predominantly leads to 
a higher development of CT and better understanding of complex programming 
concepts than visual SRA-programming with tangible output. We can also confirm 
that a visual programming environment with an on-screen output can create a higher 
level of understanding of complex programming concepts. This is in line with the 
assertions of Carlisle (2009), López et al. (2021), Werner et al. (2012) and Williams 
et  al. (2015), who state that visual/on-screen oriented programming environments 
with an on-screen output provide an accessible, functional way to introduce these 
concepts into primary education. In this way, pupils acquire functional program-
ming skills at a higher level, with a positive effect on CT.

Our results show that following the use of visual SRA-programming in both 
environments, pupils subsequently show development of computational concepts 
and, due to the influence of the SRA approach, can solve programming tasks of 
higher complexity. This is in line with claims made by Caci & D’Amico (2002) 
and Wong (2014), who state that anticipating differences between expected and 
observed events in the task design triggers a reconsideration of the underlying 
reasoning. The subsequent programming action ensures that pupils develop a 
higher level of cognitive ability, resulting in the ability to solve more complex 
programming tasks. The questions that then arise relate to why visual SRA-
programming with an on-screen output gives rise to significant developments in 
terms of (1) the required CT tasks of “completion” and “sequencing”, and (2) 
complex programming concepts, "conditionals" and "nesting"; and (3) why a 
tangible output gives rise to significant developments in the complex program-
ming concepts of "loops: repeat times" and "loops: combined"? We conjecture 



1 3

J. Comput. Educ.	

that the underlying explanation is the more structured setup of the programming 
environment of Bomberbot, in comparison with the more open form implemented 
in Lego EV-3. A further explanation can be found in a study by Korkmaz (2018), 
who states that visual programming environments with a visual output make a 
more positive contribution to the development of logical-mathematical reasoning 
than those with a tangible output, but that a tangible output makes a more posi-
tive contribution to problem-solving skills.

Another aspect that may have influenced the results of the use of SRA-program-
ming, apart from (1) the difference in output, (2) the similar difficulty of the task 
design and (3) the same drop-down method of programming, is that the two vis-
ual programming environments differ in the way feedback is provided to the user. 
In Bomberbot, feedback is provided as a constant guiding trigger, which provides 
pupils with input via visualisation as to whether the solution they have programmed 
is the most efficient one. This functions as an incentive, and more or less as a form of 
ongoing coaching. This view is endorsed by Papadakis et al. (2014), who state that 
in a visual on-screen programming environment, incentives can be used as a strong 
motivational tool for pupils to strive for the most efficient programming solution. 
However, Lego EV-3 is characterised by a more open, problem-solving approach 
to programming assignments. Pupils only receive feedback on the program that can 
be perceived by the concrete, tangible robot performing the programmed task as a 
reflection of the requirements of the environment and the task. This is in line with 
the perceptions of Asada et al. (1999), who claim that changes in a physical robotics 
environment evoke the programming actions to be taken, and can therefore be seen 
as directional feedback. The question that then arises is whether a visual incentive 
as a direct stimulus in a programming environment with a simulated reality works 
better than powerful, physical feedback as indirect stimulus in a tangible robotics 
environment. In a planned follow-up study, we expect to gain a better insight into 
the influence and relevance of the form of guidance that such programming environ-
ments provide to pupils.

Another noteworthy aspect is why pupils who are already familiar with the added 
functionality of the more efficient SRA-programming often do not apply it on a self-
initiated base. One explanation is that pupils get stuck in the routine of a sequential 
trajectory, and/or that their first programming experiences have established the basis 
for choosing a linear approach without question. Our findings show that when using 
Bomberbot, pupils begin to understand initiated actions on which parallel program-
ming routines rely. From a pedagogical perspective, it can be assumed that experi-
ence of programming with Bomberbot prior to experience of robotics programming 
could provide an opportunity to deter pupils from a linear, sequential programming 
approach.

For the control group, no measurable retention was caused by the application of 
the CTt. It may be a coincidence that this group showed a decline in CT, but it can 
be stated with certainty that no increase was detectable. It is also possible that pupils 
from the control group were less motivated to complete the CTt a second time, 
compared to the experimental groups. This may have been because pupils from the 
experimental groups were more likely to see a relationship between the assessment 
and the intervention. Further research is needed to explain this.



	 J. Comput. Educ.

1 3

A further analysis and comparison between the use of Bomberbot and Lego reveals a 
number of striking findings. The in-depth examination of the contrast analysis (Table 2) 
shows that for the computational concept of "conditionals", Bomberbot showed signifi-
cant improvement compared to Lego, and exactly the reverse was true for "loops". We 
conjecture that explanations for these differences can be derived from the specific char-
acteristics of these programming environments. A primary characteristic of Bomberbot 
is that the visualisation of processes resulting from programming interventions, based 
on the on-screen display, is more imaginative. The ability to establish a relationship 
between a programming action and the execution of the programming process, and the 
perceptible effect of what each variable does, is immediately apparent in Bomberbot. 
Using Lego EV-3, this processing is indirectly visible via the tangible robot, and only 
the progress of the programming execution can be seen on the screen. From this, it can 
be inferred that the programming process is much more imitable in Bomberbot than in 
Lego.

We also believe that the design of each programming environment and the way in 
which information is provided to the user before, during and after the process may have 
a significant influence. The visualisations used and the instant feedback and support 
offered in Bomberbot can be conceived as direct guidance. The graphic design used for 
the tasks to be programmed and the requested application of conditionals in Bomberbot 
immediately appeal to parallel thinking as a characteristic of SRA-programming. This 
is in contrast to Lego Mindstorms software, where this indication of parallel thinking 
occurs indirectly, and the user must establish a relationship with parallel thinking inde-
pendently. From this, we can conclude that the use of SRA-programming in Bomberbot 
is suggested more explicitly than in Lego EV-3 Mindstorms. The provision of incen-
tives in Bomberbot also supports this statement.

This research contributes to the theory of CT and programming education. It also 
can be directional in terms of how programming can be operationalised within edu-
cation. Based on our significant results, it can be concluded that the SRA approach 
is a promising concept for developing CT in a more profound and meaningful way. 
From the effects measured, it can be concluded that the application of SRA-pro-
gramming, when programming in a visual environment, leads to an increased capa-
bility to solve programming tasks at a higher level of complexity. It does not matter 
what kind of output is used within a visual programming environment, as long as a 
SRA approach is applied. From this point of view, the user’s preference for a par-
ticular type of output can be matched accordingly. Overall, it can be concluded that 
the design and specifications of the programming environment, rather than the dif-
ference in the type of output, partly determine the expected learning effect on spe-
cific characteristics of complex programming concepts, resulting in a higher level of 
CT.

Limitations and follow‑up research

Several limitations and considerations can be identified regarding the results of this 
research. Due to these a certain lack of generalisability of the results obtained should 
be taken into account.



1 3

J. Comput. Educ.	

During the course of this research, it may be the case that non-experimental vari-
ables played a determining role in the final results. Reasons for this may include 
that pupils continued to work with programming environments at home or within 
their current primary school curriculum, or that pupils have developed over time 
as a result of their standard educational programme. In addition, our findings could 
also be explained by taking into account children’s familiarity with computer games 
with visual output representing tangibles and/or their previous computer experience.

This research made use of two visual programming environments: Bomberbot, 
with an on-screen output, and Lego EV-3 Mindstorms, with a tangible output. In 
order to be able to generalise the results of our research, it should be replicated with 
other visual programming environments with different types of on-screen and tangi-
ble output. The issues of whether the nature of the programming task and the level 
of difficulty affect the outcome and learning effects should also be examined. There 
are also arguments that the use of visual programming environments with incen-
tives provides a low threshold for giving guidance to users; the user is guided more 
explicitly through the tasks, and it is therefore questionable whether these incentives 
restrict freedom of choice.

It would also be interesting to further investigate (1) whether the use of SRA-pro-
gramming in a visual programming environment in which a tangible output is first 
used and then a visual output (or vice versa) yields a greater understanding of com-
plex programming concepts; (2) whether this can be attributed to the application of 
SRA and (3) to what extent this results in the subsequent measurable development 
of CT. We note that SRA-programming of robotics with tangible output involves a 
very different form of application of SRA compared to visual SRA-programming 
with on-screen output. Learning to apply SRA in one environment may have (dis)
advantages in the other. In follow-up research, it would be worthwhile to further 
clarify the relationship between the use of SRA-programming, the sequence in 
which the type of programming environment is applied, and possible differences in 
the development of CT.

In this research, there was relatively little time available (five sessions of 1  h 
each) for pupils to learn SRA-programming. If more time had been available, this 
may have led to different results; for instance, pupils may have gained more under-
standing of the complex concepts of programming.

In terms of definition and assessing the development of CT among primary 
school pupils, it should be noted that CT is still a developing concept. The findings 
and results reported in our research relate to the interpretation of CT as elaborated 
by Román-González et al. (2017), and as operationalised in their validated instru-
ment to identify and measure the development of CT. In further research, it would 
be valuable to consider other interpretations relating to CT.

In this research, the researcher also acted as the supporting supervisor. It is 
important to consider that initiating, supporting and supervising programming 
activities requires specific competences from the supporting teacher. Moreover, a 
teacher should be well equipped to adequately facilitate and guide such activities. In 
subsequent research, guidance will be provided by regular teachers who are compe-
tent with regard to the requirements of pedagogical content knowledge and effective 
coaching.



	 J. Comput. Educ.

1 3

Acknowledgements  The authors would like to thank Bomberbot Netherlands and Heutink Netherlands 
for making the programming environments available, and for their cooperation. We would also like to 
thank the randomly selected primary schools for their participation in this research.

Author contributions  All authors contributed to the study conception and design. Material prepara-
tion, data collection and analysis were performed by NF. The first draft of the manuscript was written by 
NF and all authors commented on previous versions of the manuscript. All authors read and approved the 
final manuscript.

Funding  Not applicable.

Data availability  Can be requested from the first author.

Code availability  Retrievable on request from Bomberbot© and Heutink with personal login code.

Declarations 

Conflict of interest  The authors declare that they have no conflicts of interest/no competing interests.

Ethical approval  The Ethical research board (cETO) of the Open University of the Netherlands has 
assessed the proposed research and concluded that this research is in line with the rules and regulations and 
the ethical codes for research in Human Subjects (reference: U2019/01324/SVW).

Consent to participate  Written informed consent was obtained from the parents of the individual par-
ticipants.

Consent to publish  The parents of the individual participants consented the data obtained to be pub-
lished.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Ahmed, I., Lubold, N., & Walker, E. (2018). ROBIN: using a programmable robot to provide feedback 
and encouragement on programming tasks. In: Penstein Rosé C. et  al. (Eds.), Artificial Intelli-
gence in Education. AIED 2018. Lecture notes in computer science (Vol. 10948, pp. 9–13). Cham: 
Springer. https://​doi.​org/​10.​1007/​978-3-​319-​93846-2_2

Allison, I., Orton, P., & Powell, H. (2002). A virtual learning environment for introductory programming. 
Paper presented at the 3rd conference of the learning and teaching support network: Subject centre 
of information and computer sciences, Loughborough, UK. Loughborough University (pp. 48–52).

Asad, K., Tibi, M., & Raiyn, J. (2016). Primary school pupils’ attitudes toward learning programming 
through visual interactive environments. World Journal of Education, 6(5), 20–26. https://​doi.​org/​
10.​5430/​wje.​v6n5p​20

Asada, M., Kitano, H., Noda, I., & Veloso, M. (1999). RoboCup: Today and tomorrow—What we have 
learned. Artificial Intelligence, 110(2), 193–214.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-93846-2_2
https://doi.org/10.5430/wje.v6n5p20
https://doi.org/10.5430/wje.v6n5p20


1 3

J. Comput. Educ.	

Atman Uslu, N., & Usluel, Y. K. (2019). Predicting technology integration based on a conceptual frame-
work for ICT use in education. Technology, Pedagogy and Education, 28(5), 517–531. https://​doi.​
org/​10.​1080/​14759​39X.​2019.​16682​93

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying mid-
dle school students’ challenges in computational thinking-based science learning. Research and 
Practice in Technology Enhanced Learning, 11(1), 13. https://​doi.​org/​10.​1186/​s41039-​016-​0036-2

Bers, M. U. (2020). Coding as a playground: Programming and computational thinking in the early 
childhood classroom. Routledge.

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of com-
putational thinking in interactive media design. Paper presented at annual American Educational 
Research Association meeting, Vancouver, BC, Canada (pp. 1–25).

Caci, B., & D’Amico, A. (2002). Children’s cognitive abilities in construction and programming robots. 
Paper presented at the 11th IEEE International Workshop on Robot and Human Interactive Com-
munication, Berlin, Germany (pp. 189–191). https://​doi.​org/​10.​1109/​ROMAN.​2002.​10456​20

Caci, B., Chiazzese, G., & D’Amico, A. (2013a). Robotic and virtual world programming labs to stimulate 
reasoning and visual-spatial abilities. Procedia-Social and Behavioral Sciences, 93, 1493–1497.

Caci, B., D’Amico, A., & Chiazzese, G. (2013b). Robotics and virtual worlds: An experiential learning 
lab. Biologically inspired cognitive architectures 2012 (pp. 83–87). Springer.

Carlisle, M. C. (2009). Raptor: A visual programming environment for teaching object-oriented program-
ming. Journal of Computing Sciences in Colleges, 24(4), 275–281.

Catlin, D., & Woollard, J. (2014). Educational robots and computational thinking. Paper presented at the 
4th International Workshop Teaching Robotics, Teaching with Robotics & 5th International Con-
ference Robotics in Education, Padova, Italy (pp. 144–151).

Chalmers, C. (2018). Robotics and computational thinking in primary school. International Journal of 
Child-Computer Interaction, 17, 93–100. https://​doi.​org/​10.​1016/j.​ijcci.​2018.​06.​005

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-solv-
ing through a visual programming environment. Computers & Education, 95, 202–215. https://​doi.​
org/​10.​1016/j.​compe​du.​2016.​01.​010

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary 
students’ computational thinking in everyday reasoning and robotics programming. Computers & 
Education, 109, 162–175. https://​doi.​org/​10.​1016/j.​compe​du.​2017.​03.​001

Chevalier, M., El-Hamamsy, L., Giang, C., Bruno, B., & Mondada, F. (2021). Teachers’ perspective on 
fostering computational thinking through educational robotics. arXiv preprint arXiv:​2105.​04980.

Chevalier, M., Giang, C., El-Hamamsy, L., Bonnet, E., Papaspyros, V., Pellet, J.-P., Audrin, C., Romero, 
M., Baumberger, B., & Mondada, F. (2022). The role of feedback and guidance as intervention 
methods to foster computational thinking in educational robotics learning activities for primary 
school. Computers & Education. https://​doi.​org/​10.​1007/​978-3-​030-​82544-7_​17

Corral, J. M. R., Ruiz-Rube, I., Balcells, A. C., Mota-Macías, J. M., Morgado-Estévez, A., & Dodero, J. 
M. (2019). A study on the suitability of visual languages for non-expert robot programmers. IEEE 
Access, 7, 17535–17550. https://​doi.​org/​10.​1109/​ACCESS.​2019.​28959​13

Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press.
Dlab, M. H., Hoić-Božić, N., Anđelić, M., & Botički, I. (2019). Digital games and tools for development 

of computational thinking in primary school. Paper presented at the International Conference on 
Management, Economics & Social Science-ICMESS. Changsha, China (pp. 1–6).

Dummer, G. (2017). Computational thinking. Paper presented at the Panama Conferentie, Utrecht, 
Netherlands.

Durak, H. Y., Yilmaz, F. G. K., & Yilmaz, R. (2019). Computational thinking, programming self-effi-
cacy, problem solving and experiences in the programming process conducted with robotic activi-
ties. Contemporary Educational Technology, 10(2), 173–197. https://​doi.​org/​10.​30935/​cet.​554493

Edwards, S. (2005). Identifying the factors that influence computer use in the early childhood classroom. 
Australasian Journal of Educational Technology, 21(2). https://​doi.​org/​10.​14742/​ajet.​1334

El-Hamamsy, L., Papaspyros, V., Kangur, T., Mathex, L., Giang, C., Skweres, M., Bruno, B., & Mon-
dada, F. (2021). Exploring a handwriting programming language for educational robots. In M. 
Merdan, W. Lepuschitz, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in edu-
cation. RiE 2021. Advances in intelligent systems and computing (Vol. 1359). Cham: Springer. 
https://​doi.​org/​10.​1007/​978-3-​030-​82544-7_​25

Estapa, A., Hutchison, A., & Nadolny, L. (2018). Recommendations to support computational thinking in 
the elementary classroom. Technology and Engineering Teacher, 77(4), 25–29.

https://doi.org/10.1080/1475939X.2019.1668293
https://doi.org/10.1080/1475939X.2019.1668293
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1109/ROMAN.2002.1045620
https://doi.org/10.1016/j.ijcci.2018.06.005
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2017.03.001
http://arxiv.org/abs/2105.04980
https://doi.org/10.1007/978-3-030-82544-7_17
https://doi.org/10.1109/ACCESS.2019.2895913
https://doi.org/10.30935/cet.554493
https://doi.org/10.14742/ajet.1334
https://doi.org/10.1007/978-3-030-82544-7_25


	 J. Comput. Educ.

1 3

Fanchamps, N., Specht, M., Hennissen, P., & Slangen, L. (2020). The effect of teacher interventions and 
SRA robot programming on the development of computational thinking. Paper presented at the 
International Conference on Computational Thinking Education 2020, Hong Kong (p.p 69–72).

Fanchamps, N., Slangen, L., Hennissen, P., & Specht, M. (2019). The influence of SRA-programming 
on algorithmic thinking and self-efficacy using Lego robotics in two types of Instruction. Interna-
tional Journal of Technology and Design Education. https://​doi.​org/​10.​1007/​s10798-​019-​09559-9

Fanchamps, N., Slangen, L., Specht, M., & Hennissen, P. (2021). The impact of SRA-programming on 
computational thinking in a visual oriented programming environment. Education and Information 
Technologies, 26(5), 6479–98.

Field, A. (2013). Discovering statistics using IBM SPSS statistics. Sage.
Gomes, A., & Mendes, A. J. (2007). An environment to improve programming education. Paper presented 

at the 2007 International Conference on Computer Systems and Technologies, Bulgaria (pp. 1–6). 
https://​doi.​org/​10.​1145/​13305​98.​13306​91

Gomes, A., & Mendes, A. (2008). A study on student’s characteristics and programming learning. In J. 
Luca & E. Weippl (Eds.),  Proceedings of ED-MEDIA 2008--World Conference on Educational 
Multimedia, Hypermedia & Telecommunications  (pp. 2895–2904). Vienna, Austria: Association 
for the Advancement of Computing in Education (AACE).

Gross, P., & Powers, K. (2005). Evaluating assessments of novice programming environments. Paper pre-
sented at the First International Workshop on Computing Education Research, Seattle, Washington, 
USA (pp. 99–110). https://​doi.​org/​10.​1145/​10897​86.​10897​96

Hernandez, R. M. (2017). Impact of ICT on Education: Challenges and perspectives. Journal of Educa-
tional Psychology, 5(1), 337–347. https://​doi.​org/​10.​20511/​pyr20​17.​v5n1.​149

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. (2009). Comparing the use of tangible and 
graphical programming languages for informal science education. Paper presented at the SIGCHI 
Conference on Human Factors in Computing Systems. New York, USA (pp. 975–984). https://​doi.​
org/​10.​1145/​15187​01.​15188​51

Horn, M., & Bers, M. (2019). Tangible computing. In S. A. Fincher & A. V. Robins (Eds.), The Cam-
bridge handbook of computing education research (Vol. 1, pp. 663–678). Cambridge University 
Press.

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational thinking: 
Suggestions based on a review of the literature. Computers & Education, 126, 296–310. https://​doi.​
org/​10.​1016/j.​compe​du.​2018.​07.​004

Iivari, N., Sharma, S., & Ventä-Olkkonen, L. (2020). Digital transformation of everyday life–How 
COVID-19 pandemic transformed the basic education of the young generation and why infor-
mation management research should care? International Journal of Information Management, 
55(102183), 1–6. https://​doi.​org/​10.​1016/j.​ijinf​omgt.​2020.​102183

Ilieva, V. (2010). Robotics in the primary school. How to do it? Paper presented at the Intl. Conf. on 
Simulation, Modeling And Programming For Autonomous Robots, Darmstad, Germany (pp. 
596–605).

Israel-Fishelson, R., & Hershkovitz, A. (2022). Studying interrelations of computational thinking and 
creativity: A scoping review (2011–2020). Computers & Education, 176, 104353. https://​doi.​org/​
10.​1016/j.​compe​du.​2021.​104353

Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking. Prentice Hall.
Jonassen, D. H. (2006). Modeling with technology: Mindtools for conceptual change. Pearson Merrill 

Prentice Hall.
Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 

61–65. https://​doi.​org/​10.​1177/​00317​21713​09500​111
Karalekas, G., Vologiannidis, S., & Kalomiros, J. (2020). EUROPA: A case study for teaching sensors, 

data acquisition and robotics via a ROS-based educational robot. Sensors, 20(9), 2469.
Kaučič, B., & Asič, T. (2011). Improving introductory programming with Scratch? Paper presented at the 

2011 34th International Convention MIPRO. Opatija, Croatia (p.p 1095–1100).
Kim, D.-H., & Kim, J.-H. (2003). A real-time limit-cycle navigation method for fast mobile robots and 

its application to robot soccer. Robotics and Autonomous Systems, 42(1), 17–30. https://​doi.​org/​10.​
1016/​S0921-​8890(02)​00311-1

Kong, S.-C., & Abelson, H. (2019). Computational thinking education. Springer Nature.
Korkmaz, Ö. (2018). The effect of scratch- and Lego Mindstorms Ev3-based programming activities on 

academic achievement, problem-solving skills and logical-mathematical thinking skills of students. 
Malaysian Online Journal of Educational Sciences, 4(3), 73–88.

https://doi.org/10.1007/s10798-019-09559-9
https://doi.org/10.1145/1330598.1330691
https://doi.org/10.1145/1089786.1089796
https://doi.org/10.20511/pyr2017.v5n1.149
https://doi.org/10.1145/1518701.1518851
https://doi.org/10.1145/1518701.1518851
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.ijinfomgt.2020.102183
https://doi.org/10.1016/j.compedu.2021.104353
https://doi.org/10.1016/j.compedu.2021.104353
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1016/S0921-8890(02)00311-1
https://doi.org/10.1016/S0921-8890(02)00311-1


1 3

J. Comput. Educ.	

Krugman, M. (2004). Teaching behavior based robotics through advanced robocamps. Paper presented at 
the 34th Annual Frontiers in Education, 2004. FIE 2004 (pp. F3D-1). doi: https://​doi.​org/​10.​1109/​
FIE.​2004.​14086​24.

Kyriazopoulos, I., Koutromanos, G., Voudouri, A., & Galani, A. (2022). Educational robotics in primary 
education: A systematic literature review. Research Anthology on Computational Thinking, Pro-
gramming, and Robotics in the Classroom. https://​doi.​org/​10.​4018/​978-1-​6684-​2411-7.​ch034

Lai, R. P. (2021). Beyond programming: A computer-based assessment of computational thinking com-
petency. ACM Transactions on Computing Education (TOCE), 22(2), 1–27.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). 
Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37. https://​doi.​org/​10.​1145/​
19298​87.​19299​02

Leifheit, L., Jabs, J., Ninaus, M., Moeller, K., & Ostermann, K. (2018). Programming unplugged: An 
evaluation of game-based methods for teaching computational thinking in primary school. Paper 
presented at the ECGBL 2018 12th European Conference on Game-Based Learning. Sophia Antip-
olis, France. (pp. 344–353).

Lith, P. V. (2006). Masterclass robotica. Elektuur.
López, J. M. S., Otero, R. B., & García-Cervigón, S. D. L. (2021). Introducing robotics and block pro-

gramming in elementary education. Revista Iberoamericana De Educación a Distancia, 24(1), 
95–113. https://​doi.​org/​10.​5944/​ried.​24.1.​27649

Luxton-Reilly, A. (2016). Learning to program is easy. Paper presented at the 2016 ACM Conference on 
Innovation and Technology in Computer Science Education, Arequipa, Peru. Association for Com-
puting Machinery. New York, USA (p.p 284–289). doi: https://​doi.​org/​10.​1145/​28994​15.​28994​32

Marshall, P. (2007). Do tangible interfaces enhance learning? Paper presented at the 1st International 
Conference on Tangible and Embedded Interaction, Baton Rouge, LA, USA (pp. 163–170). doi: 
https://​doi.​org/​10.​1145/​12269​69.​12270​04

Martinez, C., Gomez, M. J., & Benotti, L. (2015). A comparison of preschool and elementary school chil-
dren learning computer science concepts through a multilanguage robot programming platform. 
Paper presented at the 2015 ACM Conference on Innovation and Technology in Computer Science 
Education. New York, USA (pp. 159–164). https://​doi.​org/​10.​1145/​27290​94.​27425​99

Mladenović, M., Žanko, Ž, & AglićČuvić, M. (2020). The impact of using program visualization tech-
niques on learning basic programming concepts at the K–12 level. Computer Applications in Engi-
neering Education, 29(1), 145–159. https://​doi.​org/​10.​1002/​cae.​22315

Moreno, R., Ozogul, G., & Reisslein, M. (2011). Teaching with concrete and abstract visual represen-
tations: Effects on students’ problem solving, problem representations, and learning perceptions. 
Journal of Educational Psychology, 103(1), 32. https://​doi.​org/​10.​1037/​a0021​995

Navarro-Prieto, R., & Cañas, J. J. (2001). Are visual programming languages better? The role of imagery 
in program comprehension. International Journal of Human-Computer Studies, 54(6), 799–829. 
https://​doi.​org/​10.​1006/​ijhc.​2000.​0465

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital 
competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1), 
1–17. https://​doi.​org/​10.​1080/​20004​508.​2019.​16278​44

O’Malley, C., & Fraser, D. S. (2004). Literature review in learning with tangible technologies. In Learn-
ing with tangible technologies. A NESTA futurelab research report—Report 12. 2004. Bristol, UK.

Oswald, N., Becht, M., Buchheim, T., Hetzel, G., Kindermann, G., Lafrenz, R., et al. (1999). CoPS-Team 
Description. RoboCup-99: Robot Soccer World Cup III. In M. Veloso, E. Pagello, H. Kitano (Eds.), 
RoboCup-99: Robot Soccer World Cup III. Lecture Notes in Computer Science (Vol. 1856). Lec-
ture Notes in Artificial Intelligence. Berlin, Heidelberg, Germany.

Papadakis, S., Kalogiannakis, M., Orfanakis, V., & Zaranis, N. (2014). Novice programming environ-
ments. Scratch & app inventor: A first comparison. Paper presented at the 2014 Workshop on Inter-
action Design in Educational Environments. New York, USA (pp. 1–7). https://​doi.​org/​10.​1145/​
26436​04.​26436​13

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming concepts 
and computational thinking with ScratchJr in preschool education: A case study. International 
Journal of Mobile Learning and Organisation, 10(3), 187–202.

Papert, S. (1980). Mindstorms, children, computers and powerful ideas. Basic Books Inc.
Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic review. Computers & 

Education, 128, 365–376. https://​doi.​org/​10.​1016/j.​compe​du.​2018.​10.​005

https://doi.org/10.1109/FIE.2004.1408624
https://doi.org/10.1109/FIE.2004.1408624
https://doi.org/10.4018/978-1-6684-2411-7.ch034
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.5944/ried.24.1.27649
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/1226969.1227004
https://doi.org/10.1145/2729094.2742599
https://doi.org/10.1002/cae.22315
https://doi.org/10.1037/a0021995
https://doi.org/10.1006/ijhc.2000.0465
https://doi.org/10.1080/20004508.2019.1627844
https://doi.org/10.1145/2643604.2643613
https://doi.org/10.1145/2643604.2643613
https://doi.org/10.1016/j.compedu.2018.10.005


	 J. Comput. Educ.

1 3

Price, T., & Barnes, T. (2015). Comparing textual and block interfaces in a novice programming environ-
ment. Paper presented at the Eleventh Annual International Conference on International Comput-
ing Education Research. New York, USA (pp. 91–99). https://​doi.​org/​10.​1145/​27876​22.​27877​12

Price, S., Rogers, Y., Scaife, M., Stanton, D., & Neale, H. (2003). Using ‘tangibles’ to promote novel 
forms of playful learning. Interacting with Computers, 15(2), 169–185.

Ray, P. P. (2017). A survey on visual programming languages in internet of things. Scientific Program-
ming, 2017, 1–6. https://​doi.​org/​10.​1155/​2017/​12314​30

Rekimoto, J. (2000). Multiple-computer user interfaces: Beyond the desktop direct manipulation environ-
ments. Paper presented at the Conference on Human Factors in Computing Systems, The Hague, 
Netherlands. Association for Computing Machinery. New York, USA (pp. 6–7). https://​doi.​org/​10.​
1145/​633292.​633297

Resnick, M., Ocko, S., & Papert, S. (1990). LEGO/logo–learning through and about design. Epistemol-
ogy and learning group. MIT Media Laboratory Cambridge.

Rich, P., & Browning, S. F. (2022). Using Dr. Scratch as a formative feedback tool to assess computa-
tional thinking. Research anthology on computational thinking, programming, and robotics in the 
classroom (pp. 550–572). IGI Global. https://​doi.​org/​10.​4018/​978-1-​6684-​2411-7.​ch026

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive 
abilities underlie computational thinking? Criterion validity of the computational thinking test. 
Computers in Human Behavior, 72, 678–691. https://​doi.​org/​10.​1016/j.​chb.​2016.​08.​047

Rose, S., Habgood, J., & Jay, T. (2017). An exploration of the role of visual programming tools in 
the development of young children’s computational thinking. Electronic Journal of e-Learning, 
15(4), 297–309.

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming lan-
guages integrated across the curriculum in elementary school: A two year case study using 
“Scratch” in five schools. Computers & Education, 97, 129–141. https://​doi.​org/​10.​1016/j.​
compe​du.​2016.​03.​003

Sáez-López, J.-M., Sevillano-García, M.-L., & Vazquez-Cano, E. (2019). The effect of programming 
on primary school students’ mathematical and scientific understanding: Educational use of 
mBot. Educational Technology Research and Development, 67(6), 1405–1425. https://​doi.​org/​
10.​1007/​s11423-​019-​09648-5

Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of 
Extension, 37(2), 1–5.

Sapounidis, T., Demetriadis, S., & Stamelos, I. (2015). Evaluating children performance with graphi-
cal and tangible robot programming tools. Personal and Ubiquitous Computing, 19(1), 225–
237. https://​doi.​org/​10.​1007/​s00779-​014-​0774-3

Sefidgar, Y. S., Agarwal, P., & Cakmak, M. (2017). Situated tangible robot programming. Paper 
presented at the 2017 12th ACM/IEEE International Conference on Human-Robot Interaction 
(HRI), Vienna, Austria (pp. 473–482).

Segura, R. J., del Pino, F. J., Ogáyar, C. J., & Rueda, A. J. (2020). VR-OCKS: A virtual reality game 
for learning the basic concepts of programming. Computer Applications in Engineering Educa-
tion, 28(1), 31–41. https://​doi.​org/​10.​1002/​cae.​22172

Skulmowski, A., Pradel, S., Kühnert, T., Brunnett, G., & Rey, G. D. (2016). Embodied learning using 
a tangible user interface: The effects of haptic perception and selective pointing on a spatial 
learning task. Computers & Education, 92, 64–75. https://​doi.​org/​10.​1016/j.​compe​du.​2015.​10.​
011

Slangen, L. (2016). Teaching robotics in primary school. PhD thesis, Eindhoven University of Tech-
nology, Eindhoven. Retrieved from https://​pure.​tue.​nl/​ws/​files/​25754​482/​20160​630_​CO_​Slang​
en.​pdf. Accessed 26 Jan 2022

Slangen, L., Fanchamps, N., & Kommers, P. (2008). A case study about supporting the development 
of thinking by means of ICT and concretisation tools. International Journal of Continuing 
Engineering Education and Life-Long Learning, 18(3), 305–322. https://​doi.​org/​10.​1504/​IJCEE​
LL.​2008.​018834

Slangen, L., Keulen, H. V., & Gravemeijer, K. (2011). What pupils can learn from working with 
robotic direct manipulation environments. International Journal of Technology and Design 
Education, 21(4), 449–469. https://​doi.​org/​10.​1007/​s10798-​010-​9130-8

Slangen, L., Keulen, H. V., & Jochems, W. (2009). De bijdrage van direct manipulation environ-
ments aan de ontwikkeling van technische geletterdheid in de basisschool. In Onderzoek naar 

https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1155/2017/1231430
https://doi.org/10.1145/633292.633297
https://doi.org/10.1145/633292.633297
https://doi.org/10.4018/978-1-6684-2411-7.ch026
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1007/s11423-019-09648-5
https://doi.org/10.1007/s11423-019-09648-5
https://doi.org/10.1007/s00779-014-0774-3
https://doi.org/10.1002/cae.22172
https://doi.org/10.1016/j.compedu.2015.10.011
https://doi.org/10.1016/j.compedu.2015.10.011
https://pure.tue.nl/ws/files/25754482/20160630_CO_Slangen.pdf
https://pure.tue.nl/ws/files/25754482/20160630_CO_Slangen.pdf
https://doi.org/10.1504/IJCEELL.2008.018834
https://doi.org/10.1504/IJCEELL.2008.018834
https://doi.org/10.1007/s10798-010-9130-8


1 3

J. Comput. Educ.	

Wetenschap en Techniek in de Basisschool (pp. 115–131). Den Haag, Netherlands: Platform 
Béta Techniek.

SLO. (2017). Curriculum van de toekomst. Retrieved from http://​curri​culum​vande​toeko​mst.​slo.​nl/​
21e-​eeuwse-​vaard​ighed​en. Accessed 18 Nov 2021

Stamati, M. (2020). The importance of ICT in primary education: Interpretive schemes and practices 
in the island of Lesvos. Multilingual Academic Journal of Education and Social Sciences, 8(1), 
168–182. https://​doi.​org/​10.​46886/​MAJESS/​v8-​i1/​7276

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Paper presented at the 
16th Koli Calling International Conference on Computing Education Research, Koli, Finland 
(pp. 120–129). https://​doi.​org/​10.​1145/​29995​41.​29995​42

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts through visual 
programming language: The role of self-efficacy. Computers in Human Behavior, 95, 224–232. 
https://​doi.​org/​10.​1016/j.​chb.​2018.​11.​038

Tsarava, K., Moeller, K., Román-González, M., Golle, J., Leifheit, L., Butz, M. V., & Ninaus, M. 
(2021). A cognitive definition of computational thinking in primary education. Computers & 
Education, 179, 104425. https://​doi.​org/​10.​1016/j.​compe​du.​2021.​104425

Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a learning 
environment. Egyptian Computer Science Journal, 36(4), 18.

Vourletsis, I., & Politis, P. (2021). Exploring the effect of remixing stories and games on the develop-
ment of students’ computational thinking. Computers and Education Open. https://​doi.​org/​10.​
1016/j.​caeo.​2021.​100069

Wahl, F. M., & Thomas, U. (2002). Robot programming: From simple moves to complex robot tasks. 
Institute for robotics and process control (pp. 1–16). Technical University of Brawnschweig.

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for children to cultivate computa-
tional thinking. The Scientific World Journal, 2014, 1–10. https://​doi.​org/​10.​1155/​2014/​428080

Weintrop, D. (2019). Block-based programming in computer science education. Communications of 
the ACM, 62(8), 22–25. https://​doi.​org/​10.​1145/​33412​21

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: Students’ percep-
tions of blocks-based programming. Paper presented at the 14th International Conference on 
Interaction Design and Children, Medford, MA, USA (pp. 199–208). https://​doi.​org/​10.​1145/​
27718​39.​27718​60

Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science concepts via Alice 
game-programming. Paper presented at the 43rd ACM Technical Symposium on Computer Sci-
ence Education. New Your, USA (pp. 427–432). https://​doi.​org/​10.​1145/​21571​36.​21572​63

Williams, C., Alafghani, E., Daley, A., Gregory, K., & Rydzewski, M. (2015). Teaching programming 
concepts to elementary students. Paper presented at the 2015 IEEE Frontiers in Education Con-
ference (FIE), El Paso, TX, USA (pp. 1–9). https://​doi.​org/​10.​1109/​FIE.​2015.​73441​34

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://​doi.​
org/​10.​1145/​11181​78.​11182​15

Wong, L. L. (2014). Rethinking the sense-plan-act abstraction: A model attention and selection frame-
work for task-relevant estimation. Paper presented at the Workshops at the Twenty-Eighth 
AAAI Conference on Artificial Intelligence, Quebec, Canada (pp. 71–72).

Wyeth, P., Venz, M., & Wyeth, G. (2003). Scaffolding children’s robot building and programming 
activities. In D. Polani, B. Browning, A. Bonarini, & K. Yoshida (Eds.), RoboCup 2003: 
Robot Soccer World Cup VII. RoboCup 2003. Lecture notes in computer science.  (Vol. 3020). 
Springer. https://​doi.​org/​10.​1007/​978-3-​540-​25940-4_​27

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical 
approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60, 
565–568. https://​doi.​org/​10.​1007/​s11528-​016-​0087-7

Yelland, N. (2005). The future is now: A review of the literature on the use of computers in early 
childhood education (1994–2004). AACE Journal, 13(3), 201–232.

Zaharija, G., Mladenović, S., & Boljat, I. (2013). Introducing basic programming concepts to elemen-
tary school children. Procedia-Social and Behavioral Sciences, 106, 1576–1584. https://​doi.​
org/​10.​1016/j.​sbspro.​2013.​12.​178

Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). Computational thinking test 
for beginners: Design and content validation. Paper presented at the 2020 IEEE Global Engi-
neering Education Conference (EDUCON), Porto, Portugal (pp. 1905–1914). https://​doi.​org/​10.​
1109/​educo​n45650.​2020.​91253​68

http://curriculumvandetoekomst.slo.nl/21e-eeuwse-vaardigheden
http://curriculumvandetoekomst.slo.nl/21e-eeuwse-vaardigheden
https://doi.org/10.46886/MAJESS/v8-i1/7276
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.1016/j.compedu.2021.104425
https://doi.org/10.1016/j.caeo.2021.100069
https://doi.org/10.1016/j.caeo.2021.100069
https://doi.org/10.1155/2014/428080
https://doi.org/10.1145/3341221
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2157136.2157263
https://doi.org/10.1109/FIE.2015.7344134
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/978-3-540-25940-4_27
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1016/j.sbspro.2013.12.178
https://doi.org/10.1016/j.sbspro.2013.12.178
https://doi.org/10.1109/educon45650.2020.9125368
https://doi.org/10.1109/educon45650.2020.9125368


	 J. Comput. Educ.

1 3

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through scratch 
in K-9. Computers & Education, 141, 103607. https://​doi.​org/​10.​1016/j.​compe​du.​2019.​103607

Zhu, K. (2021). From virtual to physical problem solving in coding: A comparison on various multi-
modal coding tools for children using the framework of problem solving. Research anthology 
on recent trends, tools, and implications of computer programming (pp. 677–694). IGI Global. 
https://​doi.​org/​10.​4018/​978-1-​7998-​3016-0.​ch030

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Nardie Fanchamps  I work at the Open University The Netherlands as an Assistant Professor at the 
faculty for Educational Sciences within the Technology Enhanced Learning Innovations department. I 
am specialised in educational robotics, computational thinking, programming in education, augmented 
reality and VR. I am involved in several European / Global research projects where I am pleased to col-
laborate with colleagues from other Universities and partner organisations. I have a Master’s degree in 
Mathematics and Educational Sciences. The subject of my Ph.D.-dissertation was “Sense-Reason-Act 
(SRA) Programming and the Impact on Computational Thinking”. I have gained a lot of experience as a 
team leader, advisor, senior lecturer, programme leader, project leader, coach, coordinator, manager, tutor 
and implementer within our faculty and ZD branch with an involvement in many other challenging and 
exciting (research) projects. My expertise and interests also include STEM-learning, highly visualised 
learning environments and Interprofessional Collaboration (IPS).

https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.4018/978-1-7998-3016-0.ch030

	Effect of SRA-programming on computational thinking through different output modalities
	Abstract 
	Introduction
	Theoretical framework
	Research question, sub-questions and hypotheses
	Method
	Participants
	Materials
	Procedure

	Results and data analysis
	Differences in the level of development of computational thinking
	Development in solving computational thinking issues at a higher level
	Results of the contrast analysis and main significant effects

	Conclusions
	Discussion
	Limitations and follow-up research
	Acknowledgements 
	References




