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 A B S T R A C T

Forensic microtrace investigation relies on time- and labour-intensive microscopic analyses. To aid forensic 
experts in their investigations, an image recognition model for microtrace localisation and classification is 
needed. In this work, we use deep learning to automate trace recognition in images captured with automated 
microscopy. We localise and classify fibres, hairs, skin, glass and sand in microscopy scans through pixel-wise 
classification of tape-lift samples. As deep learning requires extensive amounts of annotated training data, 
we additionally investigate various pretraining strategies to minimise the required annotation workload. We 
compare ImageNet pretraining, pretraining with self-supervised learning and a sequential application of these 
approaches. We find that pretrained models are able to reduce the required annotated data twofold compared 
to models trained from scratch while retaining the prediction accuracy. While our ImageNet-pretrained models 
outperform our self-supervised-pretrained models, we achieve the highest accuracy by combining the two 
approaches, resulting in a factor 4 reduction of manual annotated microtraces or a 65 % improvement 
in recognition and localisation accuracy (mean intersection over union increases from 0.34 to 0.56 due to 
pretraining) when training on only 2.2 dm2 of annotated tape lift scans. The developed models offer a solid 
fundament for automated analysis of forensic microtrace scans.
. Introduction

Microtraces such as hairs, skin cells and fibres often aid in the 
econstruction of a crime by providing information on items, locations, 
eople and their actions [1]. Microtraces need to be recovered from 
heir carrier to allow a detailed analysis. One of the methods used to 
ecover these traces from areas of interest is tape lifting. Tape lifting is 
 fast technique and allows the recovery of different types of traces [2]. 
 specialised method to lift traces from an item or body is one-to-one 
aping [3,4]. In this method, the item or body is fully covered with 
ransparent tapes, such that the original location of the traces identified 
n the tapes can be retrieved. This may provide important clues in 
ctivity level interpretations [5].
Tape lifting is a quick and efficient method to recover traces. In 

he next step, the recovered traces need to be examined. The current 
outine approach for further examination is based on microscopy [2,6,
]. In this approach, a microscopist scans the tapes and assesses each 
race individually. The cited papers indicate that this approach can lead 
o very powerful results. Examination of traces on tapes is generally 
xpensive, as it is a time-consuming task carried out by highly trained 
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examiners and large areas of tape have to be investigated. According 
to De Wael et al. [4], one-to-one taping of a body on average leads to 
about 1 m2 of tape lifts. Such tapes may contain several thousands of 
traces. This leads to long analysis times.

Early systems, called ‘fibre finder systems’, were introduced a few 
decades ago [8], to reduce analysis time. However, these systems have 
not become part of routine practice in forensic laboratories. A more 
recent step in automation has been made with the procurement of 
automated microscopy systems within the Shuttle project [9] to capture 
digital scans of tape-lifts. The scope of the instrumentation developed 
within this project has been broadened when compared to the earlier 
‘fibre finders’: it is based on a combination of microscopic techniques 
(including reflection, transmission and polarisation modalities) and 
aims to visualise several types of microtraces (fibres, glass, blood, skin, 
sand). Due to this broad approach, automation is expected to reduce 
manual labour and cost and hence improve the effectiveness of trace 
evidence investigations.

Current digital microscopes, including the microscopes developed 
in Shuttle, acquire images. A current challenge is recognising and 
localising microtraces in the captured scans automatically and rapidly.
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A machine learning approach is promising for this application, 
considering the various types of microtraces that can be expected on 
tape lifts, and their representation as images. Analysis of images by a 
machine learning approach is nowadays standard and powerful [10], 
but applications to forensic microtraces are limited to the classifica-
tion of gunshot residues and tapes [11,12]. The authors did not find 
models that are able to identify several types of microtraces from their 
microscopic images.

Therefore, we develop methodology for segmentation and classifica-
tion in microscopic scans and show its ability to precisely localise and 
classify traces on tape-lifted microtrace samples. This model is based 
on annotations provided by experts and creates overviews that show 
the identity and distribution of some of the most useful microtraces. 
These overviews assist experts in deciding on further investigation 
procedures.

The developed methodology is based on a deep learning approach. 
Deep learning image recognition relies on training a neural network 
to derive meaningful information from input images. Neural networks 
learn complex patterns and relationships within images. As a result, 
deep learning has achieved remarkable success in visual tasks such as 
image classification and semantic segmentation [13–15]. Typically, the 
network is trained with a large database of annotated images [14–18].

Our developed methodology includes a deep neural network for 
automated trace classification, schematically represented in Fig.  1. In 
Fig.  1a, we classify pixels in microscopy scans as either fibre, hair, 
skin, glass, sand or background. The network is composed of a ResNet-
50 [14] feature extractor that embeds the relevant information of the 
input image into a feature representation. This feature representation is 
subsequently used by a fully convolutional [19] pixel classifier to assign 
a prediction for each pixel (semantic segmentation). The network is 
trained from scratch by initialising the weights with random parameters 
and training only via annotated microtrace images. Alternatively, we 
use an ImageNet-pretrained feature extractor (see Fig.  1b) or pretrain 
the feature extractor with SSL on unannotated microtrace images (see 
Fig.  1c). In Fig.  1d, we show our method for extracting and augmenting 
training images from microtrace scans.

Generally, the quality of a deep learning model improves with a 
larger set of annotated images. As an example, ImageNet, a well-known 
database, contains over 1 million annotated images that can be used to 
train image recognition models. These images show everyday objects 
and cannot be used to directly train a system to recognise images of 
microtraces. As a result, the development of a trace recognition model 
requires the creation of a database of expert annotated microtrace 
images.

As an additional requirement, forensic experts are interested not 
only in the presence or absence of specific traces but also in their 
location or spatial distribution. Hence, the annotations should also 
provide the segmentation and location of the traces. This implies that 
each pixel in the training data has to be annotated. Altogether, a large 
number of tapes has to be annotated by experts, as a variety of traces 
can be encountered with tape lifts and the number of traces per sample 
is low [20]. This makes the compilation of an annotated database a 
labour-intensive process that needs to be carried out by experts who 
can recognise and localise the relevant traces. The cost to compile a 
database may thus become extremely high [15].

Therefore, we additionally investigate methods to minimise the ex-
pert annotation workload through pretraining. In a pretraining task, the 
neural network is trained either on relevant images from other sources, 
or on unannotated images. It is anticipated that pretraining reaches the 
same trace recognition capacity while using fewer annotated images.

The first pretraining method used in the current study is based on 
ImageNet classification [21,22]. As stated before, ImageNet cannot be 
used to train a network to recognise microtraces. Nevertheless, train-
ing using ImageNet teaches the network to recognise visual features 
important for human observers, such as the colour, shape, and texture 
of objects in the input images. As the network already recognises such 
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important features, recognition of additional items, such as microtraces, 
may become easier. Indeed, it has been shown that a pretrained neural 
network outperforms a randomly initialised network with regard to 
convergence speed and accuracy [23]. Furthermore, ImageNet pre-
trained models are widely available, and no computational efforts 
are needed to use a pretraining neural network [24]. However, the 
benefits of ImageNet pretraining diminish for tasks dissimilar to the 
classification of everyday photographs, as the learned visual features 
can be sub-optimal for other domains [22,25].

The second pretraining method is based on images of microtraces 
that have not been annotated. This approach is based on self-supervised 
learning (SSL) and uses the framework proposed in [26]. In this ap-
proach, two different and perturbed versions are made for each unan-
notated microtrace which are called augmentations. The two augmenta-
tions are made via cropping, recolouring and rotating. Pretraining aims 
to minimise the distance between the features of the two augmenta-
tions. In this way, the neural network learns what features of an image 
are important for microtrace classification and are to be used when 
microtraces are observed. In SSL, the system is trained on augmented 
images, without knowing the nature of the displayed images. Therefore, 
pretraining by SSL does not require the annotation of images.

Finally, we combined the pretraining approaches: a neural network 
is pretrained using ImageNet pretraining. Subsequently, the network is 
further pretrained using SSL, to optimise the processing of microtraces. 
This approach follows recent research on pretraining in SSL [27].

2. Methods

2.1. Samples and datasets

Textile, glass and sand samples were taken from the general collec-
tion available in the authors’ laboratory. Dandruff, donated by volun-
teers was used as skin cells. The used tapes and tape backings were 
provided by Spectricon (Chania, Greece). Samples were prepared by 
distributing materials on a solid surface and lifted using the tape. 
Afterwards, the tape was attached to the provided backing to prevent 
contamination. Images of the tapes were acquired using a smmart
automated microscope, developed by Spectricon, Chania, Greece [28], 
within the context of the Shuttle tender [9]. Samples were imaged using 
transmitted light and acquired as colour images, using the calibration 
and acquisition procedures proposed by the manufacturer. Each pixel 
in the resulting images represents an area of approximately 1 × 1 μm. 
Images were corrected for shading effects and stitched together using 
routines written in Python. In this way, a tape of 80 × 80 mm results in 
a .tiff file that contains 6.4 Gigapixels. In total, 324 tape samples of 
various sizes were scanned. Ten of these were annotated (see Table  2).

2.2. Annotation

Traces present in a selection of the acquired images were segmented 
by thresholding and preliminarily classified using simple heuristics, 
such as the colour histograms and selected shape features. The pre-
liminary annotations were saved as geojson objects and opened in 
QuPath software [29] together with the original images, where experts 
manually corrected the preliminary annotations. In this way, the work-
load for the experts was minimised. The time spent on correcting and 
manually annotating trace images is estimated around 120 h. In this 
period, a dataset of approximately 21.000 annotated image patches (see 
Table  2) was created. Table  3 presents the occurrence of each trace 
annotation in the training dataset.

The annotated dataset was split into training and test sets. The test 
set consisted of an 80 × 80 mm tape lift containing all trace types. Nine 
other annotated tapes were used as training set. In total, the tape lift 
area of the training set was approximately three times as large as the 
test set, as shown in Table  2.
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Fig. 1. Schematic overview of deep neural network for automated microtrace classification. (a) Training trace predictions with expert annotations. A residual 
network with 50 layers (ResNet-50) [14] feature extractor is used in a fully convolutional network (FCN) [19] structure for pixel-wise classification. The network 
aims to find the relationship between the microtrace images (left) and the corresponding annotation provided by experts (right) by minimising the cross-entropy 
loss between the predictions and the annotations. The microtrace image in the figure shows a hair, a fibre and air bubbles. (b) ImageNet pretraining of feature 
extractor through classification of annotated everyday photographs in the ImageNet database [21] with a single layer perceptron (SLP) classifier. (c) Pretraining 
the feature extractor with the self-supervised learning (SSL) model Byol [26] on pairs of unannotated images. Here, the weights of the feature extractor are 
adapted such that pairs of similar images yield similar features. The architecture is composed of two ResNet-50 networks and a set of multi-layer perceptrons 
(MLPs). (d) Extraction and augmentation of training images from tape-lift scans. For pretraining with SSL, image pairs are extracted. For training trace predictions, 
image patches are extracted together with their corresponding annotation mask.
2.3. Training

A schematic representation of the neural network used for micro-
trace classification is provided in Fig.  1a. A detailed overview of the 
architecture is provided in Supplementary Figure S7. This is based on 
the procedure proposed elsewhere [26,30]. The network consists of a 
fully convolutional network (FCN) architecture [19] with a ResNet-50 
feature extractor [14]. The last block of the feature extractor (stage 5) 
uses dilated convolutions to increase the resolution of the feature map, 
which may benefit semantic segmentation [31].

The network is trained by minimising the difference between the 
predicted pixel classifications and the expert annotated classifications 
via standard per-pixel softmax cross-entropy loss [24,32]. We do not 
freeze the weights of pretrained feature extractors but instead allow all 
network weights to be optimised.

In benchmark tests, the feature extractor was randomly initialised. 
Supplementary Table S1, S2 and S3 respectively provide the hyperpa-
rameters, augmentations and initialisations used in training.

2.4. ImageNet pretraining

For the ImageNet pretraining approach, the neural network archi-
tecture and training procedure are identical to the procedure presented 
in Section 2.3. However, the ResNet-50 weights are not randomly 
initialised. Rather, they were initialised by the model provided by [24]. 
This procedure is visualised in Figs.  1a and 1b. Fig.  1b shows the 
3 
training of a model based on the 1.3 million images of ImageNet [21]. 
This training was carried out by [24]. The trained network was down-
loaded and its weights were used to initialise the network for training 
the classifier using microtrace images. This transfer is illustrated by 
the arrow between the subfigures of Fig.  1. The hyperparameters used 
by [24] to obtain these weights are summarised in Supplementary Table 
S1.

2.5. Self-supervised learning

Fig.  1c shows pretraining of the feature extractor using SSL on image 
patches extracted from unannotated microtrace scans. We employ the 
SSL model ‘‘Bootstrap Your Own Latent’’ (Byol) [26]. With Byol, the 
feature extractor is rewarded for predicting the similarity of the feature 
representations of two images with the same underlying structure.

These pairs of images are obtained by augmentation, i.e. alteration 
of an image of a single trace. For this purpose, an image is retrieved us-
ing the method described in Section 2.6. This image is augmented twice 
by using a combination of translation and zoom parameters. Cropping 
is an essential aspect of creating useful image pairs [26]. Cropping is 
performed by adjusting translation and zoom parameters, which were 
consequently optimised for better results. For further details, refer to 
Supplementary Figure S4.

Byol is composed of an asymmetric architecture of two separate 
networks: an online network and a target network, as shown in Fig. 
1b. The online network is composed of a ResNet-50 feature extractor, 
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an multilayer perceptron (MLP) projector and an MLP predictor. The 
target network is composed of a second feature extractor and a second 
projector, both with different weights than the online network. Supple-
mentary Figure S8 provides a detailed overview of the implementation 
and the output dimensions of each network.

During SSL, the online network and target network each take one 
of the augmented patches as input. The weights of the online network 
are optimised to predict the output of the target network.

In this way, the model learns to recognise the similarities between 
two cropped parts of a single trace image and, hence, to recognise the 
important features on which the recognition can be based. SSL does not 
require a classification annotation of the trace. As a result, it can learn 
from images that have not been annotated. The implementation of SSL 
is discussed in detail in Supplementary Note 1.

2.6. Image extraction

The training (see Section 2.3) and SSL (see Section 2.5) make use 
of image patches. These image patches are extracted from transmission 
microscopy scans as shown in Fig.  1d.

Tape lifts generally contain a variety of small traces scattered on a 
transparent tape. The dimensions of the used tapes are 80 × 80 mm, 
which is very large compared to the size of common microtraces and 
to the optical resolution of the used microscopy system. This results 
in large datasets containing around 6.4 Mpixel. The tapes are usually 
not completely covered by microtraces, but also contain background 
areas. In fact, experts annotated less than 2% of all pixels as trace 
(see Supplementary Table S4). The large size of these scans prevents 
calculations on a full scan, as the required computing power would be 
immense. Instead, image patches are sampled from the scans.

Random sampling image patches from the microtrace samples [15] 
would result in many patches containing only background, which is not 
useful for training.

Fortunately, most of the background area can easily be recognised. 
The used tape has an excellent light transmission and the background 
is shown as homogeneous white areas. Traces generally scatter and 
absorb light and are thus displayed as dark objects. Therefore, thresh-
olding with a single global threshold suffices to distinguish foreground 
areas from background [33]. The threshold value is determined using 
the histogram-based triangle method [34], which is suited for images 
dominantly consisting of background [33,35,36]. This is shown in 
Supplementary Figure S11. With the found threshold, a total of 94% 
of the image area in the annotated dataset is estimated as background. 
The remaining 6% is estimated as foreground, including possible mi-
crotraces or artefacts. The proposed procedure extracts patches centred 
around foreground areas. As a result, filtering out background-rich 
areas later in the process, such as proposed by [23,37] is not necessary. 
Training coordinates are then sampled uniformly at random from the 
thresholded foreground areas. At each sampled coordinate, an image 
patch of size 256 × 256 pixels is extracted in a resolution of 4 μm per 
pixel.

For trace training, single image patches are extracted together with 
corresponding annotation masks. These image patches are augmented 
to artificially enlarge the dataset. Specifically, we make a crop of 
random zoom, aspect ratio and rotation and resize it to 256 × 256 pixels 
as shown in Supplementary Figure S12. Then, we further augment the 
image patches by recolouring, blurring and mirroring, which results in 
the required training images. The chosen augmentations, randomisa-
tion processes and their parameters are derived from [26] and are listed 
in Supplementary Table S2.

The chosen FOV of 1024 × 1024 μm  per patch ensures that the 
majority of the traces is captured fully within the FOV (see Table  3). 
Images are mean-downsampled to a resolution of 4 μm/pixel, resulting 
in a patch size of 256 × 256 pixels.
4 
2.7. Evaluation

Trained models are tested by evaluating their predictions on an 
unseen microtrace scan. The used scan was annotated, but was not part 
of the annotated training dataset or the unannotated dataset used in 
SSL pretraining. This scan consists of an 80 × 80 mm tape lift sample 
containing all trace types, shown in Supplementary Figure S14. During 
testing, the scan is processed via a uniform grid of image patches (see 
Supplementary Figure S5), without oversampling the foreground with 
thresholding or applying augmentations as described in Section 2.6. 
During testing, the field of view (FOV) of each image patch is enlarged 
by 12.5%, creating partial overlap between neighbouring patches and 
ensuring full coverage of the scanned area. Predictions at the outer 
edges of each patch are then discarded, as the network needs sur-
rounding image context to correctly interpret features near the borders; 
without this context, edge predictions are less reliable [32,38].

The trace recognition and localisation performance of the model 
is evaluated with the Intersection over Union (IoU) [15,39]. This 
approach provides a powerful way to assess robustness, and combines 
various parameters, such as recall and specificity. For any class 𝐴, the 
IoU is defined as the number of correctly identified trace pixels divided 
by the sum of all pixels either predicted or annotated as class 𝐴: 

IoU𝐴 =
TP𝐴

TP𝐴 + FP𝐴 + FN𝐴
, (1)

Here, TP𝐴 denotes the number of true positives, while FP𝐴 and FN𝐴
denote the number of false positives and false negatives, respectively. 
The maximum value of IoU𝐴 = 1 indicates that the annotations and 
predictions match perfectly. Conversely, the minimum score of IoU𝐴 =
0 indicates no true positives were predicted.

To quantify the overall performance over all classes, the mean of 
the IoU (mIoU) of the 𝑛𝑐 non-background classes is taken: 

mIoU = 1
𝑛𝑐

𝑛𝑐
∑

𝐴=1
IoU𝐴 (2)

In our case, 𝑛𝑐 = 5, with the classes being fibre, glass, hair, sand, 
and skin. Similar to the evaluation protocol of [16], we calculate the 
overall mean Intersection over Union (mIoU) based on the accumulated 
statistics over the entire test set. As single image patches typically do 
not contain all of the five trace classes, the accumulated statistics are a 
more generalisable representation of the trace recognition performance. 
The violin plots used throughout the report show the distribution of 
mIoU values that are obtained by accumulating over a randomly de-
termined 10-fold split in the test set that was kept constant throughout 
the experiments.

mIoU is calculated by averaging over the classes present in the test 
sets. This means that the IoU of each class contributes equally to the 
mean regardless of how many examples of each class are present in 
the test dataset. This approach is also known as micro-averaging [40], 
in contrast to macro-averaging, which aggregates the IoU scores across 
all instances in the test set. Macro-averaged IoU can be more lenient 
towards biased classifiers in imbalanced datasets due to its aggregation 
of class-wise IoU values. Therefore, it is advised to employ a micro-
averaging approach for unbalanced datasets. Moreover, we display 
violin plots with the mIoU distributions and show the confusion ma-
trices (Supplementary Figure S1) to provide additional insight into the 
model performance.

To investigate annotation-efficient learning, we split our annotated 
training set into equally sized regions as shown in Supplementary 
Figure S15 and vary the number of regions used in training the trace 
classifications.



G. Rijpkema et al. Forensic Science International 379 (2026) 112714 
Fig. 2. Comparison of model predictions with expert annotations for patches in the test set to visually assess model performance and corresponding IoU values. 
The IoU values for classes that span less than 1% of the total image area in both the expert annotations and the predictions are omitted.
3. Results

Four models were trained, following the general procedure in Fig.  1, 
namely models with random initialisation, with ImageNet pretraining, 
with SSL pretraining, and with the combination of both pretraining 
methods. Our results show that the final option, combining both pre-
training methods, achieves the best classification, as indicated by the 
highest mIoU. This training will be highlighted in Section 3.1. Sec-
tion 3.2 presents our results on the benefit of pretraining, followed 
by a discussion of our results on SSL in Section 3.3. Finally, we 
provide insight into the model and its key elements through an ablation 
study, that is by removing parts of the pipeline. We discuss the results 
obtained by these ablated methods in Section 3.4.

3.1. Microtrace recognition

The model described in the current section was initialised by an 
ImageNet pretrained model. It was further pretrained using SSL on 
roughly 1 m2 of unannotated tape area. Finally, the model was trained 
on our annotated dataset of 22 dm2 of tape area. This training method 
resulted in an mIoU of 0.56.

A general impression of the meaning of the value of mIoU can be 
obtained from Fig.  2. This figure provides three rows of images. The 
top row provides images as acquired by the automated microscope. 
These images were part of the test set, so they have been annotated 
by an expert, but were not used during the training of the model. 
Rather, the trained model was used to identify and localise traces. As 
a result, the annotations and predictions can be compared. The second 
row of images provides the annotations. These annotations are colour-
coded using the colours shown below the figure. The third row of 
images provides the predictions generated by the model, using the same 
colour-coding. Fig.  2a shows an image of air bubbles and other artefacts 
without annotated traces. Here, the model aligns with the expert in not 
marking any traces. Fig.  2b shows a fibre. Here, the model classified 
part of the trace as fibre and incorrectly masked the largest part of the 
trace as hair. This leads to a fibre mIoU of 0.28 and a hair mIoU of 0.00. 
Fig.  2c and d show correctly identified hairs. Due to imperfect masks, 
IoUs of 0.77 and 0.76 are attained respectively. Fig.  2e shows a trace 
that was classified as sand by both the model, and the expert. The areas 
indicated by the model and the expert overlap almost perfectly, leading 
to an IoU of 0.95. Fig.  2g shows an area in which glass particles are 
annotated and predicted. A visual comparison of these images indicates 
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that all glass particles were found by both the expert and the model. 
Nevertheless, the IoU is only 0.72, indicating that the areas shown do 
not perfectly overlap. In Fig.  2h, the situation is even more extreme. 
The model predicts the same as the expert annotated. Yet the calculated 
IoU is only 0.24, as the model missed part of the fibre.

It should be noted that the mIoU is based on the number of correctly 
classified pixels. Forensic examiners are usually more interested in the 
number of identified microtraces. As each of the microtraces comprises 
several pixels in the images, the number of traces found is higher than 
the mIoU. In practice, we find that nearly all traces are located, though 
our current methodology does not allow an accurate determination of 
the number of accurately predicted traces.

Supplementary Figure S2c provides additional image patches on 
which the model performs poorly. These images were randomly se-
lected from predictions where a class IoU of less than 0.4 was encoun-
tered.

Air bubble patterns can be seen in most of the microscopic images. 
These are caused by air being trapped under the tape. It can be seen 
from Fig.  2 that the model correctly refrained from identifying these 
patterns as traces.

Supplementary Figure S1 shows the confusion matrix of the model 
together with precision and recall analysis. It can be seen that the pixel-
wise precision exceeds 60% for each class, indicating that at least 60% 
of the pixels marked as a certain class are marked as that class by the 
expert annotator as well. Except for the class Skin, the recall exceeds 
60% as well, indicating that at least 60% of the pixels are marked as a 
certain class by both the expert and the model.

Generating predictions for a microtrace tape of 80 × 80 mm takes 
approximately 30 s using our hardware (nvidia rtx3090 GPU and Intel 
i910900X CPU). This is a fraction of the time required for a micro-
scopist to generate an overview of traces on the tape. Also, it is much 
faster than scanning the tape with automated microscopy, which takes 
around 40 min with the used device.

3.2. Pretraining for annotation-efficient learning

The current section explores whether pretraining reduces the time-
intensive and hence expensive task of annotating images. Our main 
results are presented in Fig.  3. The horizontal axis in this figure repre-
sents the area of tape that was used to train the network. Note that this 
axis is not linear, as it is based on a sequential doubling of the number 
of tapes used for annotation. The vertical axis shows the accuracy 
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Fig. 3. Benefit of pretraining for annotation-efficient learning. (a) Violin plot showing the distribution of mIoU over a 10-fold split in the test set. The dot presents 

the median, the inner bar the upper and lower quartile. The line presents the spread between the minimum and maximum. (b) Overall test mIoU per experiment.

Table 1
p-values of label-efficiency results. The shown results are based on training on 
the full 2.2 dm2 of annotated tapes. A paired student t-test was used based on 
the mIoU values in the fixed 10-fold split in the test set.
 SSL+IN IN SSL  
 SSL+IN – – –  
 IN 0.023 – –  
 SSL 0.00025 0.034 –  
 scratch 0.37 ⋅ 10−7 4.3 ⋅ 10−7 5.4 ⋅ 10−7 

of the trained model, as indicated by the mIoU. Training on smaller 
areas reduces the diversity of the microtraces used to train the model, 
resulting in less accurate predictions. To reduce the probability of 
random variation due to the limited sample size, the numbers presented 
in Fig.  3 for areas of 0.1, 0.3, and 0.6 dm2 are averaged over 5, 3, and 
2 training runs, respectively.

Fig.  3 shows that training on a larger area improves the accuracy 
of prediction. In addition, the pretrained models achieve higher mIoU 
values than the models trained from scratch. The ImageNet-pretrained 
models outperform the SSL-pretrained models. The highest mIoU value 
is obtained for the model pretrained by both ImageNet pretraining and 
SSL, followed by training on 2.2 dm2. In Table  1, it is shown that 
the difference in mIoU values obtained for training on 2.2 dm2 are 
statistically significant.

When the model is trained on 0.1dm2, pretraining improves the 
mIoU from 0.14 to 0.18, which is an increase of 29%. The effects of 
pretraining become even higher when the model is trained on larger 
areas. When the model is trained on 2.2 dm2, pretraining improves the 
mIoU from 0.34 to 0.56 for the combined pretraining methods, i.e. an 
improvement of 65%. In addition, pretraining followed by training on 
0.6 dm2 of annotated tape or more leads to models that outperform 
models trained from scratch using two times more annotated data. In 
fact, combined ImageNet and SSL pretraining followed by training on 
0.6 dm2 of annotated tape leads to a higher mIoU (0.36) than a training 
from scratch using 2.2 dm2 (0.34). This means that pretraining, in this 
specific case, reduced the annotation workload by a factor of four.

Values of mIoU below unity indicate that the classification achieved 
by the model is not perfect. The types of errors made by the models are 
not specified in Fig.  3, but can be identified by a further exploration of 
the data. Supplementary Figure S3 shows a detailed exploration of the 
various error modes for our experiments. When the model is trained on 
2.2 dm2, the 65% improved mIoU after pretraining can be traced back 
to a 40% increase in correctly classified trace pixels, a 27% decrease in 
missed trace pixels and a 56% decrease in false detections compared to 
training from scratch. The number of confused trace pixels is increased 
by 1% after pretraining.
6 
3.3. Self-supervised pretraining

SSL pretraining minimises the distance between the two different 
images or image augmentations of a similar trace. In the current study, 
pairs of image augmentations were obtained by selecting a coordi-
nate on a microtrace scan, extracting two images within a maximum 
distance 𝑑𝑚 of this point. Next, each of these images is randomly aug-
mented, according to the procedure described in Section 2.6). Combina-
tions of several augmentation methods have been tested. An overview 
is presented in Supplementary Table S2.

The results of the SSL experiments of Section 3.2 were obtained with 
𝑑𝑚 = 0 and a maximum magnification augmentation between 0.5× and 
2×. These values lead to optimal results, as shown in Supplementary 
Figure S4a, which shows the obtained mIoU values for different settings 
of the magnification and translation. An mIoU of 0.42 is achieved 
with 𝑑𝑚 = 0 and magnification augmentation between 0.5× and 2×, 
while choosing a lighter zoom augmentation (between 0.67× and 1.5×), 
results in an mIoU of only 0.37. It can be anticipated that a light zoom 
augmentation and no translation results in two approximately similar 
representations for both views and hence a trivial solution. This reduces 
the benefit of pretraining.

Optimal parameters for the augmentation are dependent on the class 
of the trace involved. As stated before, SSL is not aware of the class of 
the trace involved. Nevertheless, it is possible to pretrain the model 
using different types of traces. Supplementary Figure S4b-f show the 
IoU benefit per class to illustrate this effect. This can be illustrated by 
the results for hairs and glass. A translation of 2048 μm hardly affects 
the IoU for hair traces (0.61 vs 0.62, see Supplementary Figure S4d), 
while such a large translation reduces the IoU for glass traces from 0.48 
to 0.34 (see Supplementary Figure S4e). This is attributed to the size 
of the traces. Glass fragments are generally small. Table  3 shows that 
the glass particles of our dataset generally have sizes of 0.2 − 0.4 mm. 
A translation of 2048 μm can therefore cause the trace to move out 
of the field of view for one of the images in the augmentation pair. 
This obviously hinders the training, as the SSL procedure assumes that 
both images display items that should be considered similar. On the 
other hand, hairs have lengths of more than 5 mm, yielding a larger 
probability of encountering the trace in both views. The presented 
parameters are a compromise that offers a balanced performance for 
all trace types included.

3.4. Influence of image sampling

In the proposed method, training and SSL procedures make use 
of image patches extracted from transmission microscopy scans. The 
proposed method to extract the image patches, as described in Sec-
tion 2.7 involves a thresholding operation, intended to enhance the 
amount of foreground pixels in the used image patches. Thresholding 
was considered beneficial due to the large amount of background in 
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Fig. 4.  Benefit of thresholding approach shown in Fig.  1d compared to the uniform approach shown in Supplementary Figure S5. Only trace training is regarded. 
An ImageNet pretrained-model is used without additional self-supervised pretraining. For the uniform approach, processing 21.000 image patches corresponds to 
one data set iteration (see Table  2). This is called one epoch. (a) mIoU of trace recognition for training with and without thresholding approach. The test mIoU is 
shown for training with various amounts of image patches across the annotated dataset. It can be seen that the thresholding approach converges earlier and to a 
higher final accuracy. (b) Efficacy of thresholding approach to oversample the foreground pixels. The class distribution of pixels over 8000 randomly selected image 
patches is shown. The left boxplots show the distribution of patches sampled without thresholding, the right boxplots show the class distribution for sampling 
with thresholding. It can be seen that the thresholding approach results in oversampling the non-background classes. (c) Analysis of missed pixels in the annotated 
dataset due to thresholding. It can be seen that after processing 80.000 image patches (4 epochs for the uniform approach), 95% of the non-background pixels 
have been seen at least once. Further experiments show that after 400.000 image patches (20 epochs for the uniform approach), 99.7% of all non-background 
pixels are seen, while 80% of the unique background pixels are seen.
the investigated microscopic scans. In the current section, our method 
is compared to an alternative method that does not involve threshold-
ing. Rather, this alternative method uses a uniform grid as shown in 
Supplementary Figure S5.

The results of this comparison are presented in Fig.  4. The horizontal 
axis in Fig.  4 shows the number of image patches used to train the 
model. The blue datapoints show the calculated mIoU when using the 
thresholding method. The performance of the model increases linearly 
with the number of images used for training, until it levels at an mIoU 
of around 0.55. If a uniform grid is used, (’without thresholding’), a 
7 
lower test mIoU was attained for each of the tested number of training 
images. After training on 400.000 image patches, the thresholding ap-
proach results in a 21% higher overall test mIoU compared to training 
with a uniform grid. Training on lower amounts of images further 
increases the performance difference. Specifically, when training with 
only 80.000 data points, our thresholding approach results in a four-
fold increase in mIoU. The improved performance is attributed to a 
higher representation of traces in the used image patches. Further tests, 
detailed in Fig.  4b and c, confirm the expectation that thresholding 
increases the representation of traces.
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3.5. Influence of hyperparameters

The current section investigates the hyperparameters for training 
trace classifications. The sensitivity of segmentation accuracy with 
respect to hyperparameters is investigated and the chosen values are 
substantiated. These results were obtained after ImageNet pretraining. 
Supplementary Figure S6a shows that the mIoU of trace recognition has 
values between 0.5 and 0.6 for weight decay values between 0 and 10−4
but decreases below 0.05 for a decay value of 10−2. Supplementary 
Figure S6b furthermore shows that mIoU does not significantly change 
across batch sizes between 5 and 200 when the learning rate is scaled 
linearly with the batch size.

Images of traces contain many pixels. Each of these pixels is an 
individual input for our data model. Hence, the time needed to train 
a model increases with the number of input pixels. Downsampling of 
the microtrace images may help to limit the calculation times and 
reduce excess details that can lead to overfitting. On the other hand, 
downsampling images reduces the details that may be important for 
classifying traces. Therefore, we evaluated the performance and cal-
culation times of models trained on the original images (1 μm/pixel) 
and downsampled images (2 and 4 μm/pixel). The results are shown 
in Supplementary Figure S6c and d. Supplementary Figure S6d shows 
that downsampling to 2 μm/pixel results in a shorter training time 
(approximately 4 instead of 15 h) and Supplementary Figure S6d shows 
an unaffected high mIoU (0.6 mIoU). This results in a speed-up of 3.75 
times.

The image patches extracted from the microtrace scans can be 
altered before they are used to train the model. Such alterations may 
improve the robustness of the training [26], as reliance on feature 
diversity in the training data is reduced. Hence, they may improve 
the quality of the classification [41]. However, excess alteration can 
cause the simulated feature diversity to transcend the feature diversity 
of the actual traces, causing a decay in segmentation accuracy. For 
example, heavily shearing an image of a trace can cause the image to 
not resemble the trace anymore. Supplementary Figure S6e and f show 
that altering the magnification and aspect ratio has only a limited effect 
on the obtained mIoU values. Changing the magnification improves 
the model (mIoU 0.55 for magnification 0.33× and 3×, mIoU 0.52 for 
a magnification of 1. A limited alteration of the aspect ratio hardly 
influences the obtained mIoU values. Heavier zoom and aspect ratio 
augmentation deteriorate the training process. This is probably caused 
by the induced loss of information by these heavy augmentations.

4. Discussion and conclusion

A data model is presented to classify microtraces shown in micro-
scopic images. The model is based on a residual network with 50 layers 
(ResNet50). The presented model successfully localises and classifies 
hairs, fibres, skin, sand and glass traces in the presented, resulting 
in a mIoU of 0.56. Classification of a data set representing a tape of 
80 × 80 mm requires approximately 30 s.

The model was trained using images annotated by experts. As 
annotating is a time-consuming task, we explored pretraining methods 
to minimise the time needed for annotating. A pretrained ImageNet 
model can be downloaded, so its use does not incur any computational 
or annotation costs. Pretraining using SSL does not require annotated 
images, but is demanding computationally. The pretraining approaches 
result in an mIoU of 0.52 and 0.49 respectively, yielding a +53% and 
+44% improvement with respect to training from scratch using the 
same number of annotations. Combining ImageNet pretraining and SSL 
is more effective than the use of the individual methods and results in 
the optimal mIoU.

The presented mIoU of 0.56 is based on a model that was pretrained 
and subsequently trained on annotated data. A model trained from 
scratch on the same amount of annotated data achieves an mIoU of 
8 
Table 2
Overview of datasets. The last column shows the number of unique image 
patches that can be extracted for a field of view (FOV) of 1024 × 1024 μm. 
The unannotated dataset includes the tapes of the annotated training dataset. 
Thus, a total of 315 samples were scanned.
 Dataset #tapes Total area #patches

 Unannotated 314 1.082 m2 1.0 ⋅ 106 
 Annotated  
   Training 9 0.022 m2 21 ⋅ 103  
   Test 1 0.006 m2 5.8 ⋅ 103 

Table 3
Traces in annotated training dataset. The class skin is segmented in regions 
instead of individual cells, therefore yielding the two right columns ill-defined. 
The trace size is calculated as the median diameter of the minimum bounding 
circle for each annotation. For the uncertainty measure, the median absolute 
deviation is used. 
 Class Total area Trace size Count

 Fibres 117 μm2 0.5 ± 0.2 mm 3 ⋅ 103 
 Hairs 47 μm2 7 ± 4  mm 2 ⋅ 101 
 Glass 47 μm2 0.2 ± 0.1 mm 2 ⋅ 103 
 Sand 20 μm2 0.3 ± 0.1 mm 4 ⋅ 103 
 Skin 79 μm2  

0.34. Our tests indicated that pretraining may reduce the required 
amount of annotated data by approximately 4.

The finding that ImageNet pretraining outperforms sole SSL pre-
training is in line with [37], in which SSL pretraining is investigated 
for semantic segmentation of biomedical microscopy images, although 
here another SSL framework (SimCLR [42]) is used. Moreover, it aligns 
with [43], in which Byol is compared to ImageNet pretraining for 
semantic segmentation of natural images [43]. However, [26,44,45], 
find that Byol and SimCLR result in higher accuracies than ImageNet 
pretraining for semantic segmentation of natural images.

SSL is based on pairs of images displaying the same type of trace. 
In the current study, such pairs were created by extracting different 
parts from a single image patch of a trace. The image patches have 
been distorted to improve the robustness of the pretraining [26]. The 
parameters selected to extract and distort the image patches have been 
optimised. It is shown that the optimal values depend on the size of the 
displayed trace. The chosen values are a magnification between 0.5×–2 
× and a translation of 0 μm.

As tape lift scans typically contain a small number of traces scat-
tered across a large background area, 99% of the image area of our 
dataset represents background (see Supplementary Table S4). Our pro-
posed image extraction method involving thresholding allows a +0.10 
mIoU increase with respect to processing the image area uniformly by 
effectively oversampling foreground areas.

The presented model exports predictions in the geojson format. 
The predictions can be displayed along with the original images using 
QuPath [29] software, which experts have also used to annotate im-
ages. This provides a user-friendly method to evaluate the predictions 
by the model. In this way, the results of the model can be used to 
initiate further investigations.

The presented model successfully recognises hairs, fibres, skin, glass 
and sand particles, which are key trace types in forensic work. In 
this study, all fibres—regardless of colour or material—were grouped 
into a single ‘‘fibre’’ class, and all crystalline particles into ‘‘sand’’, 
to maintain a compact classification scheme. While the model uses 
colour information from the microscopy images, subclass distinctions 
(e.g., fibre colours or sand mineral types) were not yet addressed. Fu-
ture work will focus on extending the model to include additional trace 
types such as blood and pollen, as well as on subclassification within 
existing categories. These developments may benefit from alternative 
microscopy modalities, such as reflection or polarisation imaging, to 
improve discrimination of opaque or complex traces (see Section 3.1).
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Our study sets a new baseline for forensic microtrace recognition 
and gives practitioners insight into the benefits of pretraining, the 
required annotation workload, augmentation parameters and efficient 
image extraction for microtrace recognition in tape lift scans. We 
provide trained models and facilitate analysis of model predictions 
through a graphical user interface [29] to yield a valuable tool for 
microtrace recognition that aids forensic experts in their investigation. 
Hereby, we contribute to automating the microtrace finding process 
and decreasing the human labour required for trace investigations.
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