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Forensic microtrace investigation relies on time- and labour-intensive microscopic analyses. To aid forensic
experts in their investigations, an image recognition model for microtrace localisation and classification is
needed. In this work, we use deep learning to automate trace recognition in images captured with automated
microscopy. We localise and classify fibres, hairs, skin, glass and sand in microscopy scans through pixel-wise
classification of tape-lift samples. As deep learning requires extensive amounts of annotated training data,
we additionally investigate various pretraining strategies to minimise the required annotation workload. We
compare ImageNet pretraining, pretraining with self-supervised learning and a sequential application of these
approaches. We find that pretrained models are able to reduce the required annotated data twofold compared
to models trained from scratch while retaining the prediction accuracy. While our ImageNet-pretrained models
outperform our self-supervised-pretrained models, we achieve the highest accuracy by combining the two
approaches, resulting in a factor 4 reduction of manual annotated microtraces or a 65 % improvement
in recognition and localisation accuracy (mean intersection over union increases from 0.34 to 0.56 due to
pretraining) when training on only 2.2 dm? of annotated tape lift scans. The developed models offer a solid
fundament for automated analysis of forensic microtrace scans.

1. Introduction

Microtraces such as hairs, skin cells and fibres often aid in the
reconstruction of a crime by providing information on items, locations,
people and their actions [1]. Microtraces need to be recovered from
their carrier to allow a detailed analysis. One of the methods used to
recover these traces from areas of interest is tape lifting. Tape lifting is
a fast technique and allows the recovery of different types of traces [2].
A specialised method to lift traces from an item or body is one-to-one
taping [3,4]. In this method, the item or body is fully covered with
transparent tapes, such that the original location of the traces identified
on the tapes can be retrieved. This may provide important clues in
activity level interpretations [5].

Tape lifting is a quick and efficient method to recover traces. In
the next step, the recovered traces need to be examined. The current
routine approach for further examination is based on microscopy [2,6,
7]. In this approach, a microscopist scans the tapes and assesses each
trace individually. The cited papers indicate that this approach can lead
to very powerful results. Examination of traces on tapes is generally
expensive, as it is a time-consuming task carried out by highly trained
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examiners and large areas of tape have to be investigated. According
to De Wael et al. [4], one-to-one taping of a body on average leads to
about 1 m? of tape lifts. Such tapes may contain several thousands of
traces. This leads to long analysis times.

Early systems, called ‘fibre finder systems’, were introduced a few
decades ago [8], to reduce analysis time. However, these systems have
not become part of routine practice in forensic laboratories. A more
recent step in automation has been made with the procurement of
automated microscopy systems within the Shuttle project [9] to capture
digital scans of tape-lifts. The scope of the instrumentation developed
within this project has been broadened when compared to the earlier
‘fibre finders”: it is based on a combination of microscopic techniques
(including reflection, transmission and polarisation modalities) and
aims to visualise several types of microtraces (fibres, glass, blood, skin,
sand). Due to this broad approach, automation is expected to reduce
manual labour and cost and hence improve the effectiveness of trace
evidence investigations.

Current digital microscopes, including the microscopes developed
in Shuttle, acquire images. A current challenge is recognising and
localising microtraces in the captured scans automatically and rapidly.
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A machine learning approach is promising for this application,
considering the various types of microtraces that can be expected on
tape lifts, and their representation as images. Analysis of images by a
machine learning approach is nowadays standard and powerful [10],
but applications to forensic microtraces are limited to the classifica-
tion of gunshot residues and tapes [11,12]. The authors did not find
models that are able to identify several types of microtraces from their
microscopic images.

Therefore, we develop methodology for segmentation and classifica-
tion in microscopic scans and show its ability to precisely localise and
classify traces on tape-lifted microtrace samples. This model is based
on annotations provided by experts and creates overviews that show
the identity and distribution of some of the most useful microtraces.
These overviews assist experts in deciding on further investigation
procedures.

The developed methodology is based on a deep learning approach.
Deep learning image recognition relies on training a neural network
to derive meaningful information from input images. Neural networks
learn complex patterns and relationships within images. As a result,
deep learning has achieved remarkable success in visual tasks such as
image classification and semantic segmentation [13-15]. Typically, the
network is trained with a large database of annotated images [14-18].

Our developed methodology includes a deep neural network for
automated trace classification, schematically represented in Fig. 1. In
Fig. 1a, we classify pixels in microscopy scans as either fibre, hair,
skin, glass, sand or background. The network is composed of a ResNet-
50 [14] feature extractor that embeds the relevant information of the
input image into a feature representation. This feature representation is
subsequently used by a fully convolutional [19] pixel classifier to assign
a prediction for each pixel (semantic segmentation). The network is
trained from scratch by initialising the weights with random parameters
and training only via annotated microtrace images. Alternatively, we
use an ImageNet-pretrained feature extractor (see Fig. 1b) or pretrain
the feature extractor with SSL on unannotated microtrace images (see
Fig. 1c). In Fig. 1d, we show our method for extracting and augmenting
training images from microtrace scans.

Generally, the quality of a deep learning model improves with a
larger set of annotated images. As an example, ImageNet, a well-known
database, contains over 1 million annotated images that can be used to
train image recognition models. These images show everyday objects
and cannot be used to directly train a system to recognise images of
microtraces. As a result, the development of a trace recognition model
requires the creation of a database of expert annotated microtrace
images.

As an additional requirement, forensic experts are interested not
only in the presence or absence of specific traces but also in their
location or spatial distribution. Hence, the annotations should also
provide the segmentation and location of the traces. This implies that
each pixel in the training data has to be annotated. Altogether, a large
number of tapes has to be annotated by experts, as a variety of traces
can be encountered with tape lifts and the number of traces per sample
is low [20]. This makes the compilation of an annotated database a
labour-intensive process that needs to be carried out by experts who
can recognise and localise the relevant traces. The cost to compile a
database may thus become extremely high [15].

Therefore, we additionally investigate methods to minimise the ex-
pert annotation workload through pretraining. In a pretraining task, the
neural network is trained either on relevant images from other sources,
or on unannotated images. It is anticipated that pretraining reaches the
same trace recognition capacity while using fewer annotated images.

The first pretraining method used in the current study is based on
ImageNet classification [21,22]. As stated before, ImageNet cannot be
used to train a network to recognise microtraces. Nevertheless, train-
ing using ImageNet teaches the network to recognise visual features
important for human observers, such as the colour, shape, and texture
of objects in the input images. As the network already recognises such
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important features, recognition of additional items, such as microtraces,
may become easier. Indeed, it has been shown that a pretrained neural
network outperforms a randomly initialised network with regard to
convergence speed and accuracy [23]. Furthermore, ImageNet pre-
trained models are widely available, and no computational efforts
are needed to use a pretraining neural network [24]. However, the
benefits of ImageNet pretraining diminish for tasks dissimilar to the
classification of everyday photographs, as the learned visual features
can be sub-optimal for other domains [22,25].

The second pretraining method is based on images of microtraces
that have not been annotated. This approach is based on self-supervised
learning (SSL) and uses the framework proposed in [26]. In this ap-
proach, two different and perturbed versions are made for each unan-
notated microtrace which are called augmentations. The two augmenta-
tions are made via cropping, recolouring and rotating. Pretraining aims
to minimise the distance between the features of the two augmenta-
tions. In this way, the neural network learns what features of an image
are important for microtrace classification and are to be used when
microtraces are observed. In SSL, the system is trained on augmented
images, without knowing the nature of the displayed images. Therefore,
pretraining by SSL does not require the annotation of images.

Finally, we combined the pretraining approaches: a neural network
is pretrained using ImageNet pretraining. Subsequently, the network is
further pretrained using SSL, to optimise the processing of microtraces.
This approach follows recent research on pretraining in SSL [27].

2. Methods
2.1. Samples and datasets

Textile, glass and sand samples were taken from the general collec-
tion available in the authors’ laboratory. Dandruff, donated by volun-
teers was used as skin cells. The used tapes and tape backings were
provided by Spectricon (Chania, Greece). Samples were prepared by
distributing materials on a solid surface and lifted using the tape.
Afterwards, the tape was attached to the provided backing to prevent
contamination. Images of the tapes were acquired using a sSMMART
automated microscope, developed by Spectricon, Chania, Greece [28],
within the context of the Shuttle tender [9]. Samples were imaged using
transmitted light and acquired as colour images, using the calibration
and acquisition procedures proposed by the manufacturer. Each pixel
in the resulting images represents an area of approximately 1 x 1 pm.
Images were corrected for shading effects and stitched together using
routines written in Python. In this way, a tape of 80 x 80 mm results in
a .tiff file that contains 6.4 Gigapixels. In total, 324 tape samples of
various sizes were scanned. Ten of these were annotated (see Table 2).

2.2. Annotation

Traces present in a selection of the acquired images were segmented
by thresholding and preliminarily classified using simple heuristics,
such as the colour histograms and selected shape features. The pre-
liminary annotations were saved as geojson objects and opened in
QuPath software [29] together with the original images, where experts
manually corrected the preliminary annotations. In this way, the work-
load for the experts was minimised. The time spent on correcting and
manually annotating trace images is estimated around 120 h. In this
period, a dataset of approximately 21.000 annotated image patches (see
Table 2) was created. Table 3 presents the occurrence of each trace
annotation in the training dataset.

The annotated dataset was split into training and test sets. The test
set consisted of an 80 x 80 mm tape lift containing all trace types. Nine
other annotated tapes were used as training set. In total, the tape lift
area of the training set was approximately three times as large as the
test set, as shown in Table 2.
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Fig. 1. Schematic overview of deep neural network for automated microtrace classification. (a) Training trace predictions with expert annotations. A residual
network with 50 layers (ResNet-50) [14] feature extractor is used in a fully convolutional network (FCN) [19] structure for pixel-wise classification. The network
aims to find the relationship between the microtrace images (left) and the corresponding annotation provided by experts (right) by minimising the cross-entropy
loss between the predictions and the annotations. The microtrace image in the figure shows a hair, a fibre and air bubbles. (b) ImageNet pretraining of feature
extractor through classification of annotated everyday photographs in the ImageNet database [21] with a single layer perceptron (SLP) classifier. (c) Pretraining
the feature extractor with the self-supervised learning (SSL) model BvoL [26] on pairs of unannotated images. Here, the weights of the feature extractor are
adapted such that pairs of similar images yield similar features. The architecture is composed of two ResNet-50 networks and a set of multi-layer perceptrons
(MLPs). (d) Extraction and augmentation of training images from tape-lift scans. For pretraining with SSL, image pairs are extracted. For training trace predictions,

image patches are extracted together with their corresponding annotation mask.

2.3. Training

A schematic representation of the neural network used for micro-
trace classification is provided in Fig. 1a. A detailed overview of the
architecture is provided in Supplementary Figure S7. This is based on
the procedure proposed elsewhere [26,30]. The network consists of a
fully convolutional network (FCN) architecture [19] with a ResNet-50
feature extractor [14]. The last block of the feature extractor (stage 5)
uses dilated convolutions to increase the resolution of the feature map,
which may benefit semantic segmentation [31].

The network is trained by minimising the difference between the
predicted pixel classifications and the expert annotated classifications
via standard per-pixel softmax cross-entropy loss [24,32]. We do not
freeze the weights of pretrained feature extractors but instead allow all
network weights to be optimised.

In benchmark tests, the feature extractor was randomly initialised.
Supplementary Table S1, S2 and S3 respectively provide the hyperpa-
rameters, augmentations and initialisations used in training.

2.4. ImageNet pretraining

For the ImageNet pretraining approach, the neural network archi-
tecture and training procedure are identical to the procedure presented
in Section 2.3. However, the ResNet-50 weights are not randomly
initialised. Rather, they were initialised by the model provided by [24].
This procedure is visualised in Figs. 1la and 1b. Fig. 1b shows the

training of a model based on the 1.3 million images of ImageNet [21].
This training was carried out by [24]. The trained network was down-
loaded and its weights were used to initialise the network for training
the classifier using microtrace images. This transfer is illustrated by
the arrow between the subfigures of Fig. 1. The hyperparameters used
by [24] to obtain these weights are summarised in Supplementary Table
S1.

2.5. Self-supervised learning

Fig. 1c shows pretraining of the feature extractor using SSL on image
patches extracted from unannotated microtrace scans. We employ the
SSL model “Bootstrap Your Own Latent” (Bvor) [26]. With Bvor, the
feature extractor is rewarded for predicting the similarity of the feature
representations of two images with the same underlying structure.

These pairs of images are obtained by augmentation, i.e. alteration
of an image of a single trace. For this purpose, an image is retrieved us-
ing the method described in Section 2.6. This image is augmented twice
by using a combination of translation and zoom parameters. Cropping
is an essential aspect of creating useful image pairs [26]. Cropping is
performed by adjusting translation and zoom parameters, which were
consequently optimised for better results. For further details, refer to
Supplementary Figure S4.

ByoL is composed of an asymmetric architecture of two separate
networks: an online network and a target network, as shown in Fig.
1b. The online network is composed of a ResNet-50 feature extractor,
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an multilayer perceptron (MLP) projector and an MLP predictor. The
target network is composed of a second feature extractor and a second
projector, both with different weights than the online network. Supple-
mentary Figure S8 provides a detailed overview of the implementation
and the output dimensions of each network.

During SSL, the online network and target network each take one
of the augmented patches as input. The weights of the online network
are optimised to predict the output of the target network.

In this way, the model learns to recognise the similarities between
two cropped parts of a single trace image and, hence, to recognise the
important features on which the recognition can be based. SSL does not
require a classification annotation of the trace. As a result, it can learn
from images that have not been annotated. The implementation of SSL
is discussed in detail in Supplementary Note 1.

2.6. Image extraction

The training (see Section 2.3) and SSL (see Section 2.5) make use
of image patches. These image patches are extracted from transmission
microscopy scans as shown in Fig. 1d.

Tape lifts generally contain a variety of small traces scattered on a
transparent tape. The dimensions of the used tapes are 80 x 80 mm,
which is very large compared to the size of common microtraces and
to the optical resolution of the used microscopy system. This results
in large datasets containing around 6.4 Mpixel. The tapes are usually
not completely covered by microtraces, but also contain background
areas. In fact, experts annotated less than 2% of all pixels as trace
(see Supplementary Table S4). The large size of these scans prevents
calculations on a full scan, as the required computing power would be
immense. Instead, image patches are sampled from the scans.

Random sampling image patches from the microtrace samples [15]
would result in many patches containing only background, which is not
useful for training.

Fortunately, most of the background area can easily be recognised.
The used tape has an excellent light transmission and the background
is shown as homogeneous white areas. Traces generally scatter and
absorb light and are thus displayed as dark objects. Therefore, thresh-
olding with a single global threshold suffices to distinguish foreground
areas from background [33]. The threshold value is determined using
the histogram-based triangle method [34], which is suited for images
dominantly consisting of background [33,35,36]. This is shown in
Supplementary Figure S11. With the found threshold, a total of 94%
of the image area in the annotated dataset is estimated as background.
The remaining 6% is estimated as foreground, including possible mi-
crotraces or artefacts. The proposed procedure extracts patches centred
around foreground areas. As a result, filtering out background-rich
areas later in the process, such as proposed by [23,37] is not necessary.
Training coordinates are then sampled uniformly at random from the
thresholded foreground areas. At each sampled coordinate, an image
patch of size 256 x 256 pixels is extracted in a resolution of 4 pm per
pixel.

For trace training, single image patches are extracted together with
corresponding annotation masks. These image patches are augmented
to artificially enlarge the dataset. Specifically, we make a crop of
random zoom, aspect ratio and rotation and resize it to 256 x 256 pixels
as shown in Supplementary Figure S12. Then, we further augment the
image patches by recolouring, blurring and mirroring, which results in
the required training images. The chosen augmentations, randomisa-
tion processes and their parameters are derived from [26] and are listed
in Supplementary Table S2.

The chosen FOV of 1024 x 1024 pm per patch ensures that the
majority of the traces is captured fully within the FOV (see Table 3).
Images are mean-downsampled to a resolution of 4 pm/pixel, resulting
in a patch size of 256 x 256 pixels.

Forensic Science International 379 (2026) 112714

2.7. Evaluation

Trained models are tested by evaluating their predictions on an
unseen microtrace scan. The used scan was annotated, but was not part
of the annotated training dataset or the unannotated dataset used in
SSL pretraining. This scan consists of an 80 x 80 mm tape lift sample
containing all trace types, shown in Supplementary Figure S14. During
testing, the scan is processed via a uniform grid of image patches (see
Supplementary Figure S5), without oversampling the foreground with
thresholding or applying augmentations as described in Section 2.6.
During testing, the field of view (FOV) of each image patch is enlarged
by 12.5%, creating partial overlap between neighbouring patches and
ensuring full coverage of the scanned area. Predictions at the outer
edges of each patch are then discarded, as the network needs sur-
rounding image context to correctly interpret features near the borders;
without this context, edge predictions are less reliable [32,38].

The trace recognition and localisation performance of the model
is evaluated with the Intersection over Union (IoU) [15,39]. This
approach provides a powerful way to assess robustness, and combines
various parameters, such as recall and specificity. For any class A, the
IoU is defined as the number of correctly identified trace pixels divided
by the sum of all pixels either predicted or annotated as class A:

TP,

IoUy= — 4
A7 TP, +FP, +FN,

@

Here, TP, denotes the number of true positives, while FP, and FN ,
denote the number of false positives and false negatives, respectively.
The maximum value of IoU, = 1 indicates that the annotations and
predictions match perfectly. Conversely, the minimum score of IoU, =
0 indicates no true positives were predicted.

To quantify the overall performance over all classes, the mean of
the IoU (mlIoU) of the n, non-background classes is taken:

ne
mioU = - ¥ 10U, @
e 421

In our case, n, = 5, with the classes being fibre, glass, hair, sand,
and skin. Similar to the evaluation protocol of [16], we calculate the
overall mean Intersection over Union (mlIoU) based on the accumulated
statistics over the entire test set. As single image patches typically do
not contain all of the five trace classes, the accumulated statistics are a
more generalisable representation of the trace recognition performance.
The violin plots used throughout the report show the distribution of
mloU values that are obtained by accumulating over a randomly de-
termined 10-fold split in the test set that was kept constant throughout
the experiments.

mloU is calculated by averaging over the classes present in the test
sets. This means that the IoU of each class contributes equally to the
mean regardless of how many examples of each class are present in
the test dataset. This approach is also known as micro-averaging [40],
in contrast to macro-averaging, which aggregates the IoU scores across
all instances in the test set. Macro-averaged IoU can be more lenient
towards biased classifiers in imbalanced datasets due to its aggregation
of class-wise IoU values. Therefore, it is advised to employ a micro-
averaging approach for unbalanced datasets. Moreover, we display
violin plots with the mIoU distributions and show the confusion ma-
trices (Supplementary Figure S1) to provide additional insight into the
model performance.

To investigate annotation-efficient learning, we split our annotated
training set into equally sized regions as shown in Supplementary
Figure S15 and vary the number of regions used in training the trace
classifications.
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Fig. 2. Comparison of model predictions with expert annotations for patches in the test set to visually assess model performance and corresponding IoU values.
The IoU values for classes that span less than 1% of the total image area in both the expert annotations and the predictions are omitted.

3. Results

Four models were trained, following the general procedure in Fig. 1,
namely models with random initialisation, with ImageNet pretraining,
with SSL pretraining, and with the combination of both pretraining
methods. Our results show that the final option, combining both pre-
training methods, achieves the best classification, as indicated by the
highest mIoU. This training will be highlighted in Section 3.1. Sec-
tion 3.2 presents our results on the benefit of pretraining, followed
by a discussion of our results on SSL in Section 3.3. Finally, we
provide insight into the model and its key elements through an ablation
study, that is by removing parts of the pipeline. We discuss the results
obtained by these ablated methods in Section 3.4.

3.1. Microtrace recognition

The model described in the current section was initialised by an
ImageNet pretrained model. It was further pretrained using SSL on
roughly 1 m? of unannotated tape area. Finally, the model was trained
on our annotated dataset of 22 dm? of tape area. This training method
resulted in an mIoU of 0.56.

A general impression of the meaning of the value of mIoU can be
obtained from Fig. 2. This figure provides three rows of images. The
top row provides images as acquired by the automated microscope.
These images were part of the test set, so they have been annotated
by an expert, but were not used during the training of the model.
Rather, the trained model was used to identify and localise traces. As
a result, the annotations and predictions can be compared. The second
row of images provides the annotations. These annotations are colour-
coded using the colours shown below the figure. The third row of
images provides the predictions generated by the model, using the same
colour-coding. Fig. 2a shows an image of air bubbles and other artefacts
without annotated traces. Here, the model aligns with the expert in not
marking any traces. Fig. 2b shows a fibre. Here, the model classified
part of the trace as fibre and incorrectly masked the largest part of the
trace as hair. This leads to a fibre mIoU of 0.28 and a hair mIoU of 0.00.
Fig. 2¢ and d show correctly identified hairs. Due to imperfect masks,
IoUs of 0.77 and 0.76 are attained respectively. Fig. 2e shows a trace
that was classified as sand by both the model, and the expert. The areas
indicated by the model and the expert overlap almost perfectly, leading
to an IoU of 0.95. Fig. 2g shows an area in which glass particles are
annotated and predicted. A visual comparison of these images indicates

that all glass particles were found by both the expert and the model.
Nevertheless, the IoU is only 0.72, indicating that the areas shown do
not perfectly overlap. In Fig. 2h, the situation is even more extreme.
The model predicts the same as the expert annotated. Yet the calculated
IoU is only 0.24, as the model missed part of the fibre.

It should be noted that the mIoU is based on the number of correctly
classified pixels. Forensic examiners are usually more interested in the
number of identified microtraces. As each of the microtraces comprises
several pixels in the images, the number of traces found is higher than
the mIoU. In practice, we find that nearly all traces are located, though
our current methodology does not allow an accurate determination of
the number of accurately predicted traces.

Supplementary Figure S2c provides additional image patches on
which the model performs poorly. These images were randomly se-
lected from predictions where a class IoU of less than 0.4 was encoun-
tered.

Air bubble patterns can be seen in most of the microscopic images.
These are caused by air being trapped under the tape. It can be seen
from Fig. 2 that the model correctly refrained from identifying these
patterns as traces.

Supplementary Figure S1 shows the confusion matrix of the model
together with precision and recall analysis. It can be seen that the pixel-
wise precision exceeds 60% for each class, indicating that at least 60%
of the pixels marked as a certain class are marked as that class by the
expert annotator as well. Except for the class Skin, the recall exceeds
60% as well, indicating that at least 60% of the pixels are marked as a
certain class by both the expert and the model.

Generating predictions for a microtrace tape of 80 x 80 mm takes
approximately 30 s using our hardware (nvipia RTx3090 GPU and Intel
i910900X CPU). This is a fraction of the time required for a micro-
scopist to generate an overview of traces on the tape. Also, it is much
faster than scanning the tape with automated microscopy, which takes
around 40 min with the used device.

3.2. Pretraining for annotation-efficient learning

The current section explores whether pretraining reduces the time-
intensive and hence expensive task of annotating images. Our main
results are presented in Fig. 3. The horizontal axis in this figure repre-
sents the area of tape that was used to train the network. Note that this
axis is not linear, as it is based on a sequential doubling of the number
of tapes used for annotation. The vertical axis shows the accuracy
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the median, the inner bar the upper and lower quartile. The line presents the spread between the minimum and maximum. (b) Overall test mIoU per experiment.

Table 1

p-values of label-efficiency results. The shown results are based on training on
the full 2.2 dm? of annotated tapes. A paired student t-test was used based on
the mIoU values in the fixed 10-fold split in the test set.

SSL+IN IN SSL
SSL+IN - - -
IN 0.023 - -
SSL 0.00025 0.034 -
scratch 0.37-1077 4.3-1077 5.4-1077

of the trained model, as indicated by the mloU. Training on smaller
areas reduces the diversity of the microtraces used to train the model,
resulting in less accurate predictions. To reduce the probability of
random variation due to the limited sample size, the numbers presented
in Fig. 3 for areas of 0.1, 0.3, and 0.6 dm? are averaged over 5, 3, and
2 training runs, respectively.

Fig. 3 shows that training on a larger area improves the accuracy
of prediction. In addition, the pretrained models achieve higher mIoU
values than the models trained from scratch. The ImageNet-pretrained
models outperform the SSL-pretrained models. The highest mIoU value
is obtained for the model pretrained by both ImageNet pretraining and
SSL, followed by training on 2.2 dm?. In Table 1, it is shown that
the difference in mlIoU values obtained for training on 2.2 dm? are
statistically significant.

When the model is trained on 0.1dm?, pretraining improves the
mloU from 0.14 to 0.18, which is an increase of 29%. The effects of
pretraining become even higher when the model is trained on larger
areas. When the model is trained on 2.2 dm?, pretraining improves the
mloU from 0.34 to 0.56 for the combined pretraining methods, i.e. an
improvement of 65%. In addition, pretraining followed by training on
0.6 dm? of annotated tape or more leads to models that outperform
models trained from scratch using two times more annotated data. In
fact, combined ImageNet and SSL pretraining followed by training on
0.6 dm? of annotated tape leads to a higher mIoU (0.36) than a training
from scratch using 2.2 dm? (0.34). This means that pretraining, in this
specific case, reduced the annotation workload by a factor of four.

Values of mIoU below unity indicate that the classification achieved
by the model is not perfect. The types of errors made by the models are
not specified in Fig. 3, but can be identified by a further exploration of
the data. Supplementary Figure S3 shows a detailed exploration of the
various error modes for our experiments. When the model is trained on
2.2 dm?, the 65% improved mloU after pretraining can be traced back
to a 40% increase in correctly classified trace pixels, a 27% decrease in
missed trace pixels and a 56% decrease in false detections compared to
training from scratch. The number of confused trace pixels is increased
by 1% after pretraining.

3.3. Self-supervised pretraining

SSL pretraining minimises the distance between the two different
images or image augmentations of a similar trace. In the current study,
pairs of image augmentations were obtained by selecting a coordi-
nate on a microtrace scan, extracting two images within a maximum
distance d,, of this point. Next, each of these images is randomly aug-
mented, according to the procedure described in Section 2.6). Combina-
tions of several augmentation methods have been tested. An overview
is presented in Supplementary Table S2.

The results of the SSL experiments of Section 3.2 were obtained with
d,, = 0 and a maximum magnification augmentation between 0.5x and
2x. These values lead to optimal results, as shown in Supplementary
Figure S4a, which shows the obtained mIoU values for different settings
of the magnification and translation. An mIoU of 0.42 is achieved
with d,, = 0 and magnification augmentation between 0.5x and 2x,
while choosing a lighter zoom augmentation (between 0.67x and 1.5x),
results in an mloU of only 0.37. It can be anticipated that a light zoom
augmentation and no translation results in two approximately similar
representations for both views and hence a trivial solution. This reduces
the benefit of pretraining.

Optimal parameters for the augmentation are dependent on the class
of the trace involved. As stated before, SSL is not aware of the class of
the trace involved. Nevertheless, it is possible to pretrain the model
using different types of traces. Supplementary Figure S4b-f show the
IoU benefit per class to illustrate this effect. This can be illustrated by
the results for hairs and glass. A translation of 2048 ym hardly affects
the IoU for hair traces (0.61 vs 0.62, see Supplementary Figure S4d),
while such a large translation reduces the IoU for glass traces from 0.48
to 0.34 (see Supplementary Figure S4e). This is attributed to the size
of the traces. Glass fragments are generally small. Table 3 shows that
the glass particles of our dataset generally have sizes of 0.2 — 0.4 mm.
A translation of 2048 pum can therefore cause the trace to move out
of the field of view for one of the images in the augmentation pair.
This obviously hinders the training, as the SSL procedure assumes that
both images display items that should be considered similar. On the
other hand, hairs have lengths of more than 5 mm, yielding a larger
probability of encountering the trace in both views. The presented
parameters are a compromise that offers a balanced performance for
all trace types included.

3.4. Influence of image sampling

In the proposed method, training and SSL procedures make use
of image patches extracted from transmission microscopy scans. The
proposed method to extract the image patches, as described in Sec-
tion 2.7 involves a thresholding operation, intended to enhance the
amount of foreground pixels in the used image patches. Thresholding
was considered beneficial due to the large amount of background in
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Fig. 4. Benefit of thresholding approach shown in Fig. 1d compared to the uniform approach shown in Supplementary Figure S5. Only trace training is regarded.
An ImageNet pretrained-model is used without additional self-supervised pretraining. For the uniform approach, processing 21.000 image patches corresponds to
one data set iteration (see Table 2). This is called one epoch. (a) mIoU of trace recognition for training with and without thresholding approach. The test mIoU is
shown for training with various amounts of image patches across the annotated dataset. It can be seen that the thresholding approach converges earlier and to a
higher final accuracy. (b) Efficacy of thresholding approach to oversample the foreground pixels. The class distribution of pixels over 8000 randomly selected image
patches is shown. The left boxplots show the distribution of patches sampled without thresholding, the right boxplots show the class distribution for sampling
with thresholding. It can be seen that the thresholding approach results in oversampling the non-background classes. (c) Analysis of missed pixels in the annotated
dataset due to thresholding. It can be seen that after processing 80.000 image patches (4 epochs for the uniform approach), 95% of the non-background pixels
have been seen at least once. Further experiments show that after 400.000 image patches (20 epochs for the uniform approach), 99.7% of all non-background

pixels are seen, while 80% of the unique background pixels are seen.

the investigated microscopic scans. In the current section, our method
is compared to an alternative method that does not involve threshold-
ing. Rather, this alternative method uses a uniform grid as shown in
Supplementary Figure S5.

The results of this comparison are presented in Fig. 4. The horizontal
axis in Fig. 4 shows the number of image patches used to train the
model. The blue datapoints show the calculated mIoU when using the
thresholding method. The performance of the model increases linearly
with the number of images used for training, until it levels at an mIoU
of around 0.55. If a uniform grid is used, ('without thresholding’), a

lower test mIoU was attained for each of the tested number of training
images. After training on 400.000 image patches, the thresholding ap-
proach results in a 21% higher overall test mIoU compared to training
with a uniform grid. Training on lower amounts of images further
increases the performance difference. Specifically, when training with
only 80.000 data points, our thresholding approach results in a four-
fold increase in mIoU. The improved performance is attributed to a
higher representation of traces in the used image patches. Further tests,
detailed in Fig. 4b and c, confirm the expectation that thresholding
increases the representation of traces.
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3.5. Influence of hyperparameters

The current section investigates the hyperparameters for training
trace classifications. The sensitivity of segmentation accuracy with
respect to hyperparameters is investigated and the chosen values are
substantiated. These results were obtained after ImageNet pretraining.
Supplementary Figure S6a shows that the mIoU of trace recognition has
values between 0.5 and 0.6 for weight decay values between 0 and 10~*
but decreases below 0.05 for a decay value of 102, Supplementary
Figure S6b furthermore shows that mIoU does not significantly change
across batch sizes between 5 and 200 when the learning rate is scaled
linearly with the batch size.

Images of traces contain many pixels. Each of these pixels is an
individual input for our data model. Hence, the time needed to train
a model increases with the number of input pixels. Downsampling of
the microtrace images may help to limit the calculation times and
reduce excess details that can lead to overfitting. On the other hand,
downsampling images reduces the details that may be important for
classifying traces. Therefore, we evaluated the performance and cal-
culation times of models trained on the original images (1 pm/pixel)
and downsampled images (2 and 4 pm/pixel). The results are shown
in Supplementary Figure S6¢ and d. Supplementary Figure S6d shows
that downsampling to 2 pm/pixel results in a shorter training time
(approximately 4 instead of 15 h) and Supplementary Figure S6d shows
an unaffected high mIoU (0.6 mlIoU). This results in a speed-up of 3.75
times.

The image patches extracted from the microtrace scans can be
altered before they are used to train the model. Such alterations may
improve the robustness of the training [26], as reliance on feature
diversity in the training data is reduced. Hence, they may improve
the quality of the classification [41]. However, excess alteration can
cause the simulated feature diversity to transcend the feature diversity
of the actual traces, causing a decay in segmentation accuracy. For
example, heavily shearing an image of a trace can cause the image to
not resemble the trace anymore. Supplementary Figure S6e and f show
that altering the magnification and aspect ratio has only a limited effect
on the obtained mloU values. Changing the magnification improves
the model (mIoU 0.55 for magnification 0.33x and 3x, mloU 0.52 for
a magnification of 1. A limited alteration of the aspect ratio hardly
influences the obtained mloU values. Heavier zoom and aspect ratio
augmentation deteriorate the training process. This is probably caused
by the induced loss of information by these heavy augmentations.

4. Discussion and conclusion

A data model is presented to classify microtraces shown in micro-
scopic images. The model is based on a residual network with 50 layers
(ResNet50). The presented model successfully localises and classifies
hairs, fibres, skin, sand and glass traces in the presented, resulting
in a mIoU of 0.56. Classification of a data set representing a tape of
80 x 80 mm requires approximately 30 s.

The model was trained using images annotated by experts. As
annotating is a time-consuming task, we explored pretraining methods
to minimise the time needed for annotating. A pretrained ImageNet
model can be downloaded, so its use does not incur any computational
or annotation costs. Pretraining using SSL does not require annotated
images, but is demanding computationally. The pretraining approaches
result in an mIoU of 0.52 and 0.49 respectively, yielding a +53% and
+44% improvement with respect to training from scratch using the
same number of annotations. Combining ImageNet pretraining and SSL
is more effective than the use of the individual methods and results in
the optimal mIoU.

The presented mIoU of 0.56 is based on a model that was pretrained
and subsequently trained on annotated data. A model trained from
scratch on the same amount of annotated data achieves an mlIoU of
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Table 2

Overview of datasets. The last column shows the number of unique image
patches that can be extracted for a field of view (FOV) of 1024 x 1024 pm.
The unannotated dataset includes the tapes of the annotated training dataset.
Thus, a total of 315 samples were scanned.

Dataset #tapes Total area #patches
Unannotated 314 1.082 m? 1.0-10°
Annotated
Training 0.022 m? 21-10°
Test 1 0.006 m? 5.8-10°
Table 3

Traces in annotated training dataset. The class skin is segmented in regions
instead of individual cells, therefore yielding the two right columns ill-defined.
The trace size is calculated as the median diameter of the minimum bounding
circle for each annotation. For the uncertainty measure, the median absolute
deviation is used.

Class Total area Trace size Count
Fibres 117 pm? 0.5 + 0.2 mm 3.10°
Hairs 47 pm? 7 +4 mm 2-10!
Glass 47 pm? 0.2 + 0.1 mm 2-10°
Sand 20 pm? 0.3 + 0.1 mm 4-10°
Skin 79 pm?

0.34. Our tests indicated that pretraining may reduce the required
amount of annotated data by approximately 4.

The finding that ImageNet pretraining outperforms sole SSL pre-
training is in line with [37], in which SSL pretraining is investigated
for semantic segmentation of biomedical microscopy images, although
here another SSL framework (SimCLR [42]) is used. Moreover, it aligns
with [43], in which Bvor is compared to ImageNet pretraining for
semantic segmentation of natural images [43]. However, [26,44,45],
find that Bvor and SimCLR result in higher accuracies than ImageNet
pretraining for semantic segmentation of natural images.

SSL is based on pairs of images displaying the same type of trace.
In the current study, such pairs were created by extracting different
parts from a single image patch of a trace. The image patches have
been distorted to improve the robustness of the pretraining [26]. The
parameters selected to extract and distort the image patches have been
optimised. It is shown that the optimal values depend on the size of the
displayed trace. The chosen values are a magnification between 0.5x-2
x and a translation of O pm.

As tape lift scans typically contain a small number of traces scat-
tered across a large background area, 99% of the image area of our
dataset represents background (see Supplementary Table S4). Our pro-
posed image extraction method involving thresholding allows a +0.10
mloU increase with respect to processing the image area uniformly by
effectively oversampling foreground areas.

The presented model exports predictions in the geojson format.
The predictions can be displayed along with the original images using
QuPath [29] software, which experts have also used to annotate im-
ages. This provides a user-friendly method to evaluate the predictions
by the model. In this way, the results of the model can be used to
initiate further investigations.

The presented model successfully recognises hairs, fibres, skin, glass
and sand particles, which are key trace types in forensic work. In
this study, all fibres—regardless of colour or material—were grouped
into a single “fibre” class, and all crystalline particles into “sand”,
to maintain a compact classification scheme. While the model uses
colour information from the microscopy images, subclass distinctions
(e.g., fibre colours or sand mineral types) were not yet addressed. Fu-
ture work will focus on extending the model to include additional trace
types such as blood and pollen, as well as on subclassification within
existing categories. These developments may benefit from alternative
microscopy modalities, such as reflection or polarisation imaging, to
improve discrimination of opaque or complex traces (see Section 3.1).
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Our study sets a new baseline for forensic microtrace recognition
and gives practitioners insight into the benefits of pretraining, the
required annotation workload, augmentation parameters and efficient
image extraction for microtrace recognition in tape lift scans. We
provide trained models and facilitate analysis of model predictions
through a graphical user interface [29] to yield a valuable tool for
microtrace recognition that aids forensic experts in their investigation.
Hereby, we contribute to automating the microtrace finding process
and decreasing the human labour required for trace investigations.
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