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Abstract—It’s known fact that malicious IP addresses are not
evenly distributed over the IP addressing space. In this paper,
we frame networks concentrating malicious addresses as bad
neighborhoods. We propose a formal definition and show this
concentration can be used to predict future attacks (new spam-
ming sources, in our case), and propose an algorithm to aggregate
individual IP addresses can bigger neighborhoods. Moreover,
we show how bad neighborhoods are specific according to the
exploited application (e.g., spam, ssh) and how the performance
of different blacklist sources impacts lightweight spam filtering
algorithms.

I. INTRODUCTION

The impact of malicious activities on the Internet, such
as spam, phishing and distributed denial-of-services (DDoS)
extrapolates the Internet borders: it is estimated that losses
caused by spam are in the magnitude of US$ 20 billion, only
for the United States [1]. More recently, the blacklists provider
SpamHaus suffered the biggest DDoS ever observed on the
Internet, peaking at 300 Gbps, causing degradation on the
performance of many networks all over the world [2].

Such attacks are typically carried out by a large number of
distributed computers, usually part of botnets, which are net-
works of compromised machines (computers at home, schools,
businesses) under control of a botmaster [3]. These bots (or
zombies) can be found all over the world; however, they tend to
be concentrated in certain networks instead [4]. For example,
Figure 1 shows the concentration of IP addresses per /8
prefix (or netblock, in CIDR notation [5]) that have spammed
Provider A, a major hosting provider in The Netherlands, on
April 5th, 2011.

This concentration of malicious addresses resembles actual
crime distribution in the real world: it occurs in many places,
but tends to be concentrated in certain areas, which are
sometimes labeled as “bad neighborhoods”. Analogously, on
the Internet, malicious activities are statistically more likely to
be originated from networks that concentrate most of malicious
hosts. Taking this into account, van Wanrooij et al. have
introduced the term Internet Bad Neighborhoods [6] to /24
prefixes having been observed sending spam, and employed it
in a spam filter that evaluates suspicious URLs and IP source
addresses in individual spam messages.

Even though the idea behind bad neighborhoods
(BadHoods hereafter) was employed in [6], the very
concept was not proposed or even scrutinized. That then
led to the Ph.D. dissertation of one of the authors [7].
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Fig. 1. Number of spam sources per /8 netblock

The motivation to carry out this investigation is to unravel
patterns and characteristics associated with BadHoods that
can be employed to better secure networks, by means of
improved attack prediction, lightweight spam filtering [6], [8]
and, additionally, to incentivize botnet mitigation initiatives.
The approach employed in the dissertation and in this
paper consists in analyzing various datasets from real world
production networks.

In this paper, we put the Internet BadHoods under scrutiny.
In Section II, we present our definition for Internet BadHoods
and illustrate how it can statistically be used to predict attacks.
Then, in Section III, we propose and evaluate an algorithm to
aggregate /32 IP addresses into BadHoods of various sizes
(/24–/8), while in Section IV we evaluate whether BadHoods
are application-specific. Next, in Section V, we cover the
performance of different BadHood blacklists in spam filtering.
Finally, our findings are summarized in SectionVI.

II. DEFINING INTERNET BAD NEIGHBORHOODS

We define an Internet Bad Neighborhood as a set of IP
addresses clustered according to an aggregation criterion in
which a subset of IP addresses perform a certain malicious
activity over a specified period of time.

In this definition, aggregation criterion stands for the basic
mechanism used to cluster malicious IP addresses into Bad
Neighborhoods (e.g., by network prefixes, autonomous system
numbers (ASN), countries, etc.). A certain malicious activity,
in turn, refers to the application that the bad neighborhood
is abusing or conducting attacks on (e.g., spam, phishing).
Finally, period of time refers to the time frame used to define a



bad neighborhood (e.g, day, weeks), which is important since
bad neighborhoods are expected to change over time – since
machines are expected to get compromised and cleaned up
regularly.

It is important to emphasize that the malicious IP addresses
might not be the one of the real attackers, which, in fact,
might employ a series of intermediate computers to hide their
own identity [9]. We focus on the attribution of the last
host in the logical path of the attacks. As a consequence,
hosts flagged as malicious might not represent the behavior
of the host’s owners, who actually might be unaware that
their computer is involved in such attacks (the ethical issues
related to this research were both covered in the dissertation as
well as in [10]). We choose to focus on the attribution of the
last host because we assume the point of view of a network
administrator who wants to protect a network from malicious
sources. For him/her, knowing the identity of the attacker does
not help to better protect the network he/she maintains, since
blocking traffic from the attacker IP address to the network the
administrator maintains does not stop spam messages. Also,
tracing back the original attacker may involve different ISPs
in different countries, an effort that currently is far from being
done in real-time. In contrast, we see the attribution of the
responsible attacker as a task of law enforcement agencies
instead.

Verifying the BadHood Assumption

Previous research works have shown that malicious IP
addresses tend to be concentrated in certain networks. For
example, in 2006 Ramachandran et al. [11] showed that the
majority of spam was sent from a small fraction of the IP ad-
dress space. Collins et al. [4], on the other hand, have defined
the term “spatial uncleanliness” for clusters of compromised
hosts.

Essentially, the BadHood concept provides an indirect
approach to predict new sources of attacks, by extending
the reputation of malicious IP addresses to their neighboring
ones, assuming that neighboring hosts are more likely to be
malicious as well and, therefore, more likely to carry out
attacks. In this subsection, we carry out an experiment to verify
this assumption.

We consider a simplistic mail filter that classifies a message
as spam if the sender IP address is listed in a previously
obtained blacklist (if SenderIP ∈ Blacklist then SPAM). For
this mail filter, we need two inputs: the SenderIP address of
the mail and a Blacklist. In this experiment, we obtained the
sender IP addresses from the mail servers of the Electrical En-
gineering, Mathematics, and Computer Science Faculty of the
University of Twente (UT/EWI). In total, 3,198,936 messages
were classified by the mail filter SpamAssassin [12] as spam
and used as ground truth.

We have then evaluated the performance of four blacklists
in detecting spam, as shown in Figure 2. CBL32-STD curve
shows the performance of the Composite Blacklist (CBL) [13],
a publicly available spam blacklist used in many mail filters.
As can see, by employing this blacklist, our simplistic mail fil-
ter was to able to filter, on average, 54.33% of all the spam (we
match the spammmers of UT/EWI of a n day to CBL of day
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Fig. 2. Performance of various blacklists

n−1). One important remark is that UT/EWI’s SpamAssassin
does not employ CBL in the message classification.

To verify whether the BadHood concept provides an ad-
vantage over traditional /32 blacklists (i.e., if BadHood-based
blacklists are able to predict new sources), we have then
generated a second blacklist – CBL-BadHood24 – which consists
of the entire CBL32-STD blacklist plus all its /24 neighboring IP
addresses. For example, if 10.10.10.4 was listed in CBL32-STD,
we consider its entire /24 prefix as malicious (10.10.10.0–
10.10.10.255, or 10.10.10/24) in CBL-BadHood24. As can be
seen in Figure 2, CBL-BadHood24 blacklist provides a much
better performance, delivering, on average, 92.74% spam de-
tection.

One may argue that this result was expected, since
CBL-BadHood24 blocks many more IP addresses than CBL32-STD
(up to 256 times more, due to /24 aggregation [14]). To verify
this, we generated a third blacklist – CBL32-EQUIV24-RND.
Instead of blacklisting neighboring hosts from CBL32-STD, we
blacklisted randomly chosen IP addresses. The total number
of blacklisted addresses is then the same as in CBL-BadHood24
(we have created 10 random blacklists and show the average
results, standard deviation shown as well). As can be seen in
Figure 2, CBL32-EQUIV24-RND blacklist performs far worse than
CBL-BadHood24, delivering an average performance of 56.64%
spam detection. That means that even though both blacklists
contain an equivalent number of /32 entries, blocking randomly
chosen hosts will not significantly improve spam detection,
while blocking neighboring IPs (leveraging the network repu-
tation) does. A fourth blacklist confirms this result: RANDOM-32,
which is a /32 blacklist that has the same number of entries
as CBL32-STD, yields to almost 0% detection.

III. FROM IP ADDRESSES TO BAD NEIGHBORHOODS

In the previous section, we have defined Internet BadHoods
and shown how they can be used to predict attacks. In order
to use BadHood-based blacklists efficiently in real intrusion
detection systems (IDS) or filters, it is often required to keep
such blacklists as short (in number of entries) as possible. In
this section, we present an algorithm for BadHood aggegration
called variable-prefix aggregation and study its performance
using real world security data (we refer to [14] for a complete
analysis of BadHood aggregation). The principle behind the
algorithm is analogous to the reduction of entries in routing
tables by Classless Inter-Domain Routing (CIDR) [5].



A. BadHoods Evilness Metrics

Typical input data for identifying Intenet BadHoods are
lists of individual IP addresses which have performed mali-
cious activities [15]. They can be obtained from defense and
monitoring mechanisms, such as intrusion detection systems
(IDSs) [16], [17] or honeypots. In some cases, third parties
provide blacklists containing IP addresses of malicious hosts.
A major example are DNS Blacklists [18], built by harvesting
spamming IP addresses using spamtraps (specialized honey-
pots to collect spam) distributed over different domains, such
as CBL [13], and PSBL [19] and Spamhaus [20].

Given a list of malicious IP addresses (/32), we define
a /n BadHood as a /n netblock (or prefix) An with a score
score(An), where the score is the number of malicious hosts
in the block:

score(An) = #{malicious hosts in block An} (1)

The score value leads to an intuitive definition of the “evilness”
of a netblock: the higher the score, the higher the probability
that a single /32 host address from the /n block is a source of
malicious activities. We define the infection rate of An as

pn(An) =
score(An)

max hosts(An)
, (2)

where max hosts(An) = 232−n is the maximum number of IP
addresses in a /n netblock (neglecting the addresses reserved
for broadcasting and network identification).

The starting point for the aggregation algorithm described
in section III-C will be /24 BadHoods. This prefix size was
already used by us in [15] to build BadHoods on spammer
sources. The reason for this is the fact that /24 is the minimum
prefix “routable on the Internet” [21]. Table I provides a short
example of BadHoods, showing their /24 address and score.

# /24 netblock Score
1 10.10.10.0 22
2 10.10.11.0 21
3 10.10.12.0 20
4 10.10.13.0 41
5 20.20.24.0 130
6 20.20.25.0 1
7 30.30.34.0 60

TABLE I. EXAMPLE OF /24 BADHOODS AND THEIR SCORES

B. Basic Aggregation Operation

Two /n BadHoods An and Bn can be aggregated into the /
(n−1) BadHood An⊕Bn only if An and Bn have a common
address prefix of n−1 bits. The aggregated BadHood An⊕Bn

spans the IP addresses of An and Bn. For example, in Table I,
blocks #1 and #2 can be aggregated from /24 to /23, while
blocks #1 and #7 can not.

Consequently, the infection rate of the aggregated BadHood
An⊕Bn is as follows:

pn−1(An⊕Bn) =
score(An)+ score(Bn)

max hosts(An⊕Bn)
=

1
2
(pn(A)+ pn(B)) .

(3)

C. Variable Prefix Aggregation

The main idea is to merge two BadHoods only if they
satisfy a merging condition. Intuitively, the merging condition
should ensure that the BadHoods to be merged are sufficiently
similar and, therefore, the aggregated BadHood is, to some
extend, representative for them.

Algorithm 1 presents the pseudocode for the proposed
aggregation strategy. The algorithm takes as input the initial
list S24 of /24 netblocks B24

i with score(B24
i ) and the largest

desired aggregation level m. Then, for each aggregation level
n (line 2), the algorithm merges all /n BadHoods Bn

i ,B
n
j which

would form a valid aggregated BadHood according to the
basic aggregation operation (see Section III-B) that satisfy
the merging condition merge (line 3). BadHoods that do not
fulfill those conditions are not aggregated and therefore not
considered further for aggregation in this or the next iterations.

Algorithm 1 Variable prefix aggregation

Input: S24 = {(B24
i ,score(B24

i )), i = 1 . . .num entries}
Input: largest aggregation level m
Input: merging condition parameter β

Output: S
1: S := S24
2: for n = 24→ m+1 do
3: for all Bn

i ,B
n
j ∈ S, i 6= j with common n− 1 prefix

∧ merge(An,Bn) do
4: S := S \ {(Bn

i ,score(Bn
i )),(B

n
j ,score(Bn

j))} ∪ {(Bn
i ⊕

Bn
j ,score(Bn

i ⊕Bn
j))}

5: end for
6: end for

The merging condition is defined as
merge(An,Bn) = pn−1(An⊕Bn)≥ β ·max(pn(A), pn(B)). (4)

The condition is such that we allow a merge only if the
resulting infection rate pn−1(An⊕Bn) is at least equal to a
fraction β of the rate of the most malicious of the blocks to be
merged. The parameter β prevents therefore the aggregation
strategy from merging dissimilar BadHoods. This value can
be tuned according to the scenario and application. β ranges
between 0.5 and 1.0: smaller values make the aggregation less
strict, thus allowing more BadHoods to be merged. Values
close to 1 will instead lead to a less permissive aggregation
strategy.

Finally, at line 4, the algorithm progressively builds the
new BadHood set by removing BadHoods and replacing them
with the merged one. To illustrate the strategy, we apply it to
the example given in Table I. For β = 0.8, we merge blocks #1
and #2, because p24(#1) = 22

254 , p24(#2) = 21
254 , and p23(#1+

#2) = 43
510 , so p(#1+#2)> 0.8 ·max(·)⇒ 0.086 > 0.069. The

other blocks, on the other hand, do not match the condition,
so they are not aggregated. After the first iteration, the list
contains both /23 and /24 entries. In the next iterations, no
further aggregation occurs, and the final result contains entries
using mixed prefixes (/23 and /24).

D. Experimental Results

We now discuss the performance of the variable prefix
aggregation strategy. We have applied it to the following
datasets:
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Fig. 3. Performance of the variable prefix aggregation strategy (β=0.8)

• Composite Blocking List (CBL) [13] – an online Spam
DNS blacklist. CBL maintains four large spamtrap
infrastructures from where the source IP addresses of
spammers are harvested. We have obtained the list
for the April 28th, 2010. On this day, CBL listed
8,177,138 /32 IP addresses.

• Passive Spam Block List (PSBL) (2010) [19], obtained
on April 28th, 2010: the list consists of more than
2.8M /32 distinct IP addresses;

• Passive Spam Block List (PSBL) (2011) [19], obtained
on October 24th, 2011: the list consists of more than
283K /32 distinct IP addresses;

• Mail server logs from Provider A: Provider A is a
major hosting provider in the Netherlands. We have
obtained the IP addresses of spammers on April 28th,
2010, having ∼ 256K distinct /32 IP addresses.

Figure 3 shows the number of lines of the result blacklists
relative to the original sizes of the /24 data sets, as computed
by the variable prefix aggregation for varying aggregation level
and β = 0.8. We observe that our aggregation strategy is able
to reduce the blacklist size for each of the considered data
sets. For β = 0.8, the data sources experience a reduction on
the number of entries from 10% for the Provider A data set
to 26% for the CBL.

A second observation is that the two largest lists, namely
CBL and PSBL 2010 (April 28th), clearly benefit more from
the aggregation than the smaller lists. This is expected because
the BadHoods in the smaller lists are more sparsely distributed
over the Internet address space and, hence, are harder to
aggregate. In addition, the Provider A data set experiences the
smallest reduction of all four traces. By having 0.8 for β, we
could reduce the number of entries by 10% to 26%, depending
on the data source. However, the best value for β remains an
application- and management-dependent decision.

We have also covered other aspects of the aggregation
strategy in [14]. One of the most important aspects is the
aggregation error, i.e., the fact that the infection rate of the
aggregated BadHood An⊕Bn is different from the rate of the
individual BadHoods An and Bn. Interested readers are referred
to [14] for a detailed analysis. Alternatively, other aggregation
criteria can be employed, such as country, Autonomous Sys-
tem, which can be also found in the dissertation.

IV. BADHOODS AND EXPLOITED APPLICATIONS

In the real world, some bad neighborhoods are known for
a certain type of crime incidence (e.g., car theft, robbery, etc.),
but not for all of these crimes at the same time. In this section,
we investigate whether the BadHoods are the same ones for
different types of attacks on the Internet. The motivation is to
avoid carrying out unnecessary network measurements: If we
find that the same set of Internet BadHoods are responsible
for different types of attacks (e.g, spam, SSH attacks, etc),
we could then avoid having to generate application-tailored
BadHood blacklists and employ the currently available ones
to protect targets running different applications.

To proceed with that, we first chose a variety of publicly
available data sets covering several applications. For the three
data sets, we have collected data for a one week period
(November 11th to 18th, 2011). Then, we have generated a
single list of /32 IP addresses for each data set. Subsequently,
each list was aggregated into a /24 BadHood blacklist. The
evaluated data sets are:

• CBL [13], as described in Section III.

• Phishtank: Phishtank is an open community web site
in which anyone can “submit, verify, and track phish-
ing websites” [22]. It provides a blacklist of URLs that
contain forged websites. The URLs were resolved to
IP addresses using Google Public DNS [23]. In case
of a URL was resolved to multiple IP addresses, we
have considered all of them.

• DShield: DShield [24] is a community shared firewall
log system. Volunteers submit their firewall logs from
more than 600 contributors, which encompass more
than “500,000 IP addresses (firewalls) in over 50 coun-
tries” [25]. It is maintained by the SANS Institute [26],
and contains security logs from many applications.

Since DShield provides data for more than 100K types
of applications, we chose a subset of these for our analysis.
We have ranked the most frequently attacked applications
(Port and Proto fields) in terms of number of attacking IP
addresses. In addition, many entries did no list any protocol
and others used high port numbers (unassigned). Therefore,
we have focused only on attacks on the “well-know ports”
(port number < 1024, according to IANA terminology and the
list [27]) that have the protocol field (Proto) different from
NULL. By filtering out such entries, we filter out potential false
positive entries found in the DShield data set, and focus on the
most repeated ones. Table II shows the Top 10 ports according
to these criteria.

From the top 10 ports shown in Table II, we have chosen
the top 5 ports to carry out our experiments (excluding
Telnet1), plus a high port having most of the attacks (5559).
Therefore, six ports from DShield were chosen: TCP 445 (T-
445), UDP 5559 (U-5559), TCP 25 (T-25), TCP 443 (T-443),
TCP 80 (T-80), and UDP 53 (U-53).

1We have deliberately excluded Telnet since this application should have
already been phased out and replaced by SSH. In addition, it does not make
much sense protecting an application that is intrinsically vulnerable, since no
encryption is employed and credentials are transmitted in clear. See more in
http://www.networkworld.com/news/2011/012711-hackers-turn-back-the-clock.html

http://www.networkworld.com/news/2011/012711-hackers-turn-back-the-clock.html


# of /32 IPs Dst Port TCP/UDP Description
553,139 445 TCP Windows/Samba shares
40,498 25 TCP S (SMTP)
28,293 443 TCP https
16,624 80 TCP http)
11,164 23 TCP Telnet
8,979 53 UDP DNS
4,517 161 UDP (SNMP)
4,469 137 UDP NetBIOS
3,722 22 TCP SSH
3,401 80 UDP unassigned

TABLE II. TOP 10 PORTS < 1024, PROTOCOL “NOT NULL”

In order to evaluate whether the same BadHoods are
active for different applications, we perform an intersection
(∩) operation between the different datasets. Table III shows
the results. Note that, for two blacklists, we only compare
the one which has observed less BadHoods (row) to the
one which has observed more BadHoods (column), since
we want to compare what is the intersection of a smaller
BadHood blacklist to a bigger one. In Table III, we show the
number of BadHoods that were found intersecting between two
applications; the percentage values refer to the total number of
matching BadHoods divided by the number of entries observed
by the list specified in the row. As an example, consider the
second row and second column. It is to be interpreted as
follows: of all BadHoods that have attacked using UDP Port
5559 (U-5559), 29.8% were also found attacking TCP 445
application (T-445).

Analyzing this table, we can observe that, for only two
cases (U-5559 and T-25, both against CBL) we have an
intersection rate above 90% (relative to U-5559 and T-25 data
sets sizes). That means that more than 90% BadHoods that
carry out attacks on port 5559 and on port 25 also carry out
spam attacks (we would expect such a high rate for T-25, since
it monitors the default SMTP port), however, port UDP 5559
is not assigned by IANA, which means no official application
is supposed to run on this port.

However, for the rest of the applications, we can see the
matching rate between any two data sets is below 51%, being
the majority below 30%. These are very low values if one
intends to use BadHood blacklists from one application to
secure another application. Therefore, we can conclude that,
for most of the cases, the BadHoods attacking two different
applications differ, and therefore it is necessary to carry out
measurements for distinct applications.

V. BLACKLIST SOURCES AND SPAM FILTERING
PERFORMANCE

In the previous section, we have studied whether BadHood
blacklists from one application can be used to secure another
application. In this section, we will study whether the blacklist
created at one location can be used to secure the same
application at a different location. Again, the main motivation
is to avoid carrying out unnecessary network measurements: If
we know that a BadHood blacklist created from measurements
at site X can be also used to protect site Y , we do not need to
generate a location-specific blacklist for Y .

To this end, we propose a simple spam detection system
that implements a threshold-based filter. Consider LS as the /24
BadHood blacklist to be used for spam detection. Whenever

Dataset # /32 IPs # /24 BadHoods
CBL 13,668,909 1,123,492
PSBL 3,301,159 714,466

Provider A 1,498,991 522,522
UT/EWI 377,571 228,445

TABLE IV. TRAINING DATA SETS, APRIL 19TH–25TH, 2010

Dataset # /32 IPs # /24 BadHoods # spam
Provider A 296,596 206,980 879,856

UT/EWI 68,748 59,739 221,179

Dataset # /32 IPs # /24 Hoods # Ham
HAM: UT/EWI 1,540 978 7,950

TABLE V. TEST DATA SETS, APRIL 26TH, 2010

a new message M arrives, the mail filter extracts the source
/24 prefix address of the sender (M/24) and checks it against
the list LS. If M/24 is found in LS, then the mail filter will
classify the message as spam if nHosts(M/24) > θ, where
θ (0 ≤ θ <= 256)2 can be seen as a threshold on how
malicious a BadHood is. It should be emphasized that a real-
world BadHood-based mail filter, like the one in [6], should
combine different techniques, including whitelisting, in order
to optimize the overall detection performance.

We create /24 BadHood blacklists from the datasets CBL,
PSBL, Provider A, and UT/EWI, as introduced in the previous
sections, and use them to filter spam from the mail servers
of Provider A and UT/EWI. To evaluate the effectiveness of
the different BadHood blacklists, we split each data set into
a training data set of seven full days (April 19th to April
25th) and a test set of 1 day (April 26th). Table IV shows the
number of malicious hosts (distinct /32 hosts) and the number
of BadHoods in each training data set. The training blacklists
are then used by our spam detection system to filter spam in
the test sets of Provider A and UT/EWI. The achieved spam
detection rate is defined as the ratio between the number of
spams detected and the total number of spams received.

The total number of spam mails received by the different
targets on the test day are shown in the first two rows of
Table V. The table also gives the number of spammers (/32
IP addresses) and the number of observed BadHoods on that
day. For UT/EWI, we also know the number of Ham messages
received, as shown in the fourth row of the table.

Experimental Results and Discussion

Figures 4(a) and 4(b) show the achieved detection rates
for detecting the spam directed to Provider A and UT/EWI,
respectively, as function of the threshold θ, using the different
training blacklists. As in Section IV, we have only used
a training blacklist if it is larger than the target’s training
blacklist (i.e., we have not applied the UT/EWI list to the
Provider A target).

The figures indicate that it is possible to effectively detect
spam messages based on the different BadHood blacklists. This
is especially true for large blacklists, like CBL, which always
provides the best detection rate. However, and especially for
the smaller lists, the figures also show that the rate decreases

2A /24 prefix can have up to 256 malicious IP addresses depending on
how addresses are allocated. E.g., if an ISP allocates addresses as /22, as in
130.89.10.0/22 (which covers the /32 addresses 130.89.8.0 — 130.89.11.255),
the addresses 130.89.10.255 and 130.89.10.0 are valid “routable” IP addresses.



CBL T-445 U-5559 T-25 T-443 T-80 U-53
T-445 69.4 % (166,789)

U-5559 91.7% (39,660) 29.8% (12,894)
T-25 93.0% (31,012) 26.7% (8,928) 19.5% (6,504)
T-443 51.02% (12,694) 18.2% (4,547) 3.8% (950) 3.5% (884)
T-80 32.1% (4,658) 11.2 % (1,623) 2.5% (375) 2.6% (387) 9.5% (1,377)
U-53 28.5% (1,269) 8.2% (368) 3.89% (177) 6.9% (307) 1.8% (84) 3.1% (140)

Phishtank 23.43% (413) 0.03% (54) 0.01% (2) 2.4% (43) 1.7% (22) 1.7% (23) 0.2% (5)

TABLE III. BADHOODS INTERSECTION FOR DIFFERENT APPLICATIONS, RELATIVE TO THE BIGGER LIST (COLUMN)
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Fig. 4. Spam detection rate for varying values of the threshold θ in Fig. (a) and (b) and the rate of ham wrongly flagged in Fig. (c).

fast with increasing values of θ, a fact that most likely is due
to the presence of high-volume spammers in the data sets.

A second insight provided by these results is that the value
of θ should be adjusted to the considered BadHood blacklist.
For the same θ, the detection rate changes considerably among
BadHood blacklists. At first sight, this seems to suggest that
the best choice for an administrator is the largest BadHood
blacklist, just due to the fact that it has observed a higher
number of spamming hosts. However, as we show in [8], the
performance of blacklists can be adjusted, compensating for
the blacklist size.

However, a different picture is obtained when calculating
the number of legitimate mail traffic erroneously flagged as
spam – that is, the number of false positives. Figure 4(c)
shows the percentage of legitimate mail messages received
by the mail server of UT/EWI that are labeled as spam for
varying values of the threshold θ. While for CBL and PSBL
the percentages of blocked Ham is less than 5% and rapidly
falls to zero, for UT/EWI and Provider A we observe that up
to approximately 60% of legitimate mail would be labeled as
spam if a very low value of θ is chosen. On the other hand,
also in the case of Provider A and UT/EWI, the percentage of
blocked Ham is decreasing rapidly for increasing values of θ.

Our results highlight therefore a trade-off between (i) the
size of the blacklist, (ii) the spam detection rate and (iii) the
percentage of blocked Ham. Very large lists, such as CBL
and PSBL, achieve a high spam detection rate with a low
percentage of blocked Ham but contain a large number of
irrelevant entries. In contrast, small and mid-sized lists, that is,
Provider A and UT/EWI, contain much less irrelevant entries
and can achieve detection rates comparable to those of the
larger lists. However, for θ < 100, a relatively high number of
false positives can be expected.

These results leads to the conclusion that spam should be
treated in a multi-layer mail filtering approach. At the first

layer, a BadHood-based algorithm is employed to filter out e-
mail from the most dangerous neighborhoods (using high θ

values), that, at the same time, keeps false positives rate low.
The second layer would comprise analysis of URLs and/or
contents within the messages. Similarly, we have learned from
sources at IBM and Google that subnetwork-based techniques
are used in their mail filters.

VI. SUMMARY

Malicious IP addresses tend to be concentrated in certain
networks instead of being evenly distributed over the IP
address space. We have presented a formal definition for these
areas, labeling them as Internet Bad Neighborhoods, and we
have summarized some of the findings of the Ph.D. dissertation
of one of the authors [7], addressed in other publications by
the same team as well [8], [10], [14], [15], [28].

We have shown how neighboring IP addresses of malicious
ones are more likely to be involved in future attacks than
randomly distributed networks. Moreover, we have proposed
and evaluated an algorithm to aggregate malicious IP addresses
(/32) into BadHoods of various sizes (/24–8). We have then
explored the relation between BadHood and exploited applica-
tion and shown how they are application-specific. Finally, we
have shown how BadHoods from third-party sources impact
the performance of spam filters.

As future work, we envision the development of algorithms
for spam filters and intrusion detection that take into account
the findings and algorithms here presented , as well as other
covered in the dissertation as well in our other publications.
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