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Abstract 

The nuclear lamina functions as a structural support system for the nucleus and must be broken 
down during mitosis. Not much is known about the process by which this breakdown is 
initiated. Prior studies have suggested that the nuclear envelope is depleted of lamin B1 at high 
curvatures, which destabilized the nuclear lamina and possibly plays a role in mitotic nuclear 
envelope breakdown. A statistical probability model has been proposed to describe this 
depletion based on the Gaussian curvature of the nuclear lamina. However, this model has only 
been tested on limited two-dimensional data. In this thesis, a quantitative image analysis 
pipeline is created and applied to test the relation between the absolute Gaussian curvature of 
the nuclear lamina and the density of lamin B1 in three-dimensional confocal images. To 
accomplish this, the nuclear lamina are segmented with unsharp-masking and steerable filters. 
The curvature of the nuclear lamina is computed using a grey-scale surface curvature 
estimation. Two different density states of the lamin B1 meshwork are found and a transition 
from high to low density is shown for increasing curvatures. These results support the 
previously proposed probability model for the depletion of lamin B1 at high curvatures and 
provides a deeper understanding of the structure of the nuclear lamina. Additionally, the image 
analysis pipeline established in this thesis provides helpful tools for effective segmentation and 
curvature estimation of the nuclear lamina and can be applied in future research.  
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1 Introduction 

1.1 The nuclear lamina 
The nucleus of a cell contains a number of distinct structures, each with their own functions. 
One of these structures is the nuclear lamina. The nuclear lamina plays a variety of crucial roles 
in the cell, as shown in figure 1. One major function of the nuclear lamina is its interaction with 
chromatin. Lamina-associated domains (LADs) are genomic regions situated at the periphery 
of the nucleus, in close proximity to the nuclear lamina, and usually consist of dense and largely 
inactive heterochromatin [1], [2]. By regulating LADs and influencing chromatin structure, the 
nuclear lamina directly affects gene expression and has flow-on effects on gene regulation. 
Additionally, the nuclear lamina plays an important role in cellular mechanics through its 
interactions with the cytoskeleton. These interactions occur via membrane protein complexes 
such as the linker of nucleoskeleton and cytoskeleton (LINC-) complex [3], [4] and the nuclear 
pore complex (NPC) [5]. Post-translational modifications of the nuclear lamina are influenced 
by mechanical stress on the cell, showing the existence of mechanotransduction between the 
cytoskeleton and the nuclear lamina [6]. Disruptions to the structure or activity of the nuclear 
lamina can lead to a group of diseases known as laminopathies, including muscular dystrophy 
[7], lipodystrophy [8], leukodystrophy [9], neuropathy [10], and progeria [11].   

Figure 1. A schematic representation of a cross-section of the nuclear envelope. The nuclear 
envelope separates the cytoplasm and nucleoplasm with the outer nuclear membrane (ONM), 
the inner nuclear membrane (INM) and the nuclear lamina. The nuclear lamina consists of A-
type and B-type lamins, depicted in red and blue, respectively. Lamins form separate but 
intertwined meshworks and interact with other nuclear components, such as lamina-associated 
proteins, depicted in pink, and the nuclear pore complex (NPC). Lamins also interact with 
lamina-associated domains (LADs), depicted in black, which usually are inactive regions of 
chromatin, depicted in yellow. Figure adapted from [12]. 
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Importantly, the nuclear lamina forms a mechanical support structure for the nucleus, protecting 
chromatin from external forces. However, the structural integrity of the nuclear lamina poses a 
challenge during mitosis, as DNA must be released from the nuclear envelope before cell 
division can take place. In a process called nuclear envelope breakdown (NEBD), cytoplasmic 
kinases enter the nucleus and phosphorylate the nuclear lamina, leading to depolymerization 
and degradation of the nuclear lamina [13], [14]. The initiation of NEBD depends on the rupture 
of the nuclear envelope to allow kinase entry into the nucleus. How the rupture is formed and 
NEBD is initiated, remains largely unknown. A mitotic invagination of the nuclear envelope is 
regularly observed prior to NEBD and supports the belief that the initiation of NEBD is a 
mechanical process. This invagination forms close to the centrosomes and subsequently 
encapsulates them. The invagination is found to be dependent on the activity of microtubules 
and dynein [15], [16]. Several studies hypothesize the invagination to be a consequence of the 
centrosomes applying a tearing force on the nuclear envelope and thereby creating a distal 
rupture site, as shown in figure 2. Interestingly, it is also shown that rupture of the nuclear 
envelope depends on local curvature of the nuclear lamina [17]. The same results are found for 
experimentally induced curvature using micropipettes [17], [18], [19]. Additionally, nuclear 
structures with high curvature, such as micronuclei and blebs, show extreme depletion of the 
nuclear lamina [18]. It could therefore be hypothesized that the mitotic invagination is created 
to increase curvature of the nuclear envelope, thereby depleting the nuclear lamina and creating 
a rupture site to initiate NEBD. To further understand this process, a solid knowledge of the 
properties of the nuclear lamina is essential. 

 

 

 

 

 

 

 

 

 

Figure 2. Stages of a proposed tearing mechanism to initiate 
nuclear envelope breakdown (NEBD) involving a mitotic 
invagination [15], [16]. a. In the late G2 phase of the cell 
cycle, the centrosomes position themselves alongside the 
nucleus. b. At initiation of mitosis, microtubules and dynein 
start pulling on the nuclear envelope. c. The tearing motion 
continues throughout the prophase, causing invaginations to 
occur around the centrosomes. d. During prometaphase, a 
rupture site is created and NEBD occurs. e. After NEBD, the 
mitotic process can resume. Figure obtained from [20]. 
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1.2 Lamins and their properties 
The nuclear lamina consists of a meshwork of lamin proteins along the inner surface of the 
nuclear envelope as shown in figure 1. Lamin proteins contain a long coiled-coil domain that 
enables monomers to associate into dimers, as shown in figure 3a-b. These dimers further 
polymerize into long filaments which are organized in an anti-parallel fashion, as illustrated in 
figure 3c-d. The individual filaments typically have a length of 380 nm and a width of 3.5 nm, 
and together they form a meshwork with a thickness of approximately 14 nm [21]. Different 
lamin types, or isoforms, are present in the nuclear lamina of mammalian cells. Two isoforms 
are classified as A-type lamins, namely lamin A and lamin C. In this thesis, the A-type lamins 
are referred to as lamin A/C. Lamin A/C is encoded by the LMNA gene and diverges by 
alternative splicing [22]. Additionally, there are two B-type lamins, namely lamin B1 and lamin 
B2. Lamin B1 and B2 are encoded by the LMNB1 and LMNB2 genes, respectively [23], [24]. 
All lamin isoforms are present in distinct but intertwined meshworks. The loss of one isoform 
has a great impact on the structure of the other lamin meshworks [25], [26]. Lamin A/C is 
present in a number of differentiated cells, while B-type lamins are present in many 
undifferentiated and differentiated cell types [27], [28]. Another critical difference between 
lamin A/C and B-type lamins is the farnesylation of the C-terminus of processed B-type lamins. 
This farnesyl group allows B-type lamins to directly interact with the lipid bilayer of the inner 
nuclear membrane (INM), as shown in figure 1 [29]. The interaction between B-type lamins 
and the INM causes lamin A/C to be localized more to the center of the nucleus [17], [30]. 

Figure 3. Formation of lamin filaments 
from lamin monomers. a. Lamin 
monomers consist of three domains: a head 
domain at the N-terminus, an Ig-like fold or 
tail domain at the C-terminus and a long 
coiled-coil domain in between. b. Dimers 
are formed by interactions between the 
coiled-coil domains of two lamin 
monomers. c. Single polymers are formed 
by head-tail interactions between lamin 
dimers. d. Lamin filaments are anti-parallel 
combinations of single polymers. Figure 
adapted from [31]. 

Understanding the mechanical properties of lamin filaments is essential to appreciate the role 
of the nuclear lamina in cellular processes. The persistence length, for which the filament can 
be considered to behave as a rigid rod, ranges from under 200 nm to 560 nm [21], [32]. The 
different lamin isoforms also exhibit distinct material properties. The ratio of A-type and B-
type lamins in the nucleus correlates with nuclear stiffness [6]. A-type lamins are believed to 
behave like a viscoelastic fluid and impede deformations to the nucleus, while B-type lamins 
behave more like an elastic solid and restore nuclear deformations [33]. All lamin isoforms 
appear to be sensitive to the curvature of the nuclear envelope; however, the depletion of lamin 
A is additionally influenced by the strain rate of the curvature, likely due to its more fluid-like 
behavior [19]. In contrast, the depletion of B-type lamins does not show this viscoelastic time 
dependency. 

a b 

c 

d 
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1.3 Curvature of lamin B1 
The purely elastic behavior, time-independent properties and relative rigidity of lamin B1 make 
it a suitable model for studying how curvature of the nuclear envelope affects the depletion of 
lamins during the initiation of NEBD. The depletion of lamin B1 and subsequent weakening of 
the nuclear lamina results in the rupture of the nuclear lamina as shown in figure 4. By observing 
these rupture sites, a probability model for the depletion of the lamin B1 meshwork at a given 
curvature of the nuclear lamina has been proposed [18]. The probability of lamin B1 presence 
at a specific curvature can be derived from this previously proposed model and is described in 
formula 1. This probability corresponds to the relative lamin density and local fluorescence 
intensity is used as a proxy for the local density of lamin B1. 

𝑃୪ୟ୫୧୬ ୆ଵ = (𝐴 − 𝐵) 
𝑒௫ 

1 + 𝑒௫ 
+ 𝐵, 𝑥 =  

𝐸 − 𝑎 √𝐾

𝑘୆𝑇
 −  

𝑙୮ 𝐿ϐ୧୪ 𝐾

2
(𝟏) 

Figure 4. Proposed model for lamin B1 (here lamin-B) depletion at high curvatures. a. At high 
curvatures, lamin B1 only weakly interacts with the nuclear envelope, causing depletion of 
lamin filaments. In absence of lamin B1, the nuclear envelope is unstable and ruptures occur. 
b. At low curvature, lamin B1 strongly interacts with the nuclear envelope, creating a stable 
structure supporting the nuclear envelope. Figure adapted from [18]. 

The probability model described by formula 1 relies on the Gaussian curvature K. Gaussian 
curvature represents the local amount of curvature of a surface, as shown figure 5, and is defined 
as the product of the two principal curvatures κ1 and κ2, as shown in formula 2. These principal 
curvatures are the inverse of the minimum and maximum radii of curvature, R1 and R2, 

respectively. The model is only valid for positive Gaussian curvature, as it depends on √𝐾. The 
positive Gaussian curvature is the most relevant for the depletion of lamin B1 compared to other 
measures of curvature such as the mean curvature, because any filaments present on the curved 
surface must either conform to the positive Gaussian curvature or detach from the surface.  

𝐾 = 𝜅ଵ 𝜅ଶ =
1

𝑅ଵ 𝑅ଶ
(𝟐) 

a b 
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Figure 5. The Gaussian curvature K for three different surfaces. Gaussian curvature is the 
product of the two principal curvatures of a surface, resulting in a quantity for the local amount 
of curvature. Figure obtained from [34]. 

The probability model described by formula 1 is based on the change of binding and bending 
energy for a single filament attached on a curved surface as shown in figure 4. The model uses 
the classical Boltzmann distribution and the partition function from statistical physics to 
describe the probability state for an entire system, resulting in a sigmoid probability function. 
The energy of a fully detached filament is set at zero, and the change of energy depends on 
several terms in the exponent. The first term in the exponent is the binding energy between the 
surface and the filament. Parameter E represents the binding energy over the full contact area 
between surface and filament. Parameter a represents the change in binding energy upon 
bending, which is subtracted from E. The ratio E/a determines the cut-off principal curvature 
κc and can be used to compute the midpoint of the sigmoid probability function. The binding 
energy term is normalized by the thermal energy kBT. The second term in the exponent is the 
energy required to bend the filament. This bending energy depends on the persistence length lp 
and filament length Lfil which together represent the stiffness of the filament. Lastly, A and B 
determine the upper and lower bound of the sigmoid probability function, respectively. 

The density of lamin B1 appears to be relevant to the structural integrity of the nucleus and the 
initiation of NEBD [33]. Previous studies have examined the depletion and rupture of the lamin 
B1 meshwork due to high curvatures [17], [18], [19]. Despite promising models, most prior 
studies have been limited to two-dimensional images, discrete locations in the nuclear lamina, 
or artificially induced curvature. To our knowledge, no previous study has applied a three-
dimensional quantitative analysis on endogenous curvature of the nuclear lamina and the 
distribution of lamin B1 across complete nuclei. The aim of this thesis is to create and apply 
a quantitative image analysis pipeline to test the relation between the curvature of the 
nuclear lamina and the density of lamin B1 in three-dimensional images. This is achieved 
by combining the theory from several prior studies [35], [36], [37] and applying it on confocal 
intensity data. The hypothesis is that two lamin B1 states with different intensities exist. The 
high-intensity state would represent an high-density lamin B1 meshwork and the low-intensity 
state would represent a low-density or depleted lamin B1 meshwork. The fraction of lamin B1 
in the high-density state should decline for increasing curvature of the nuclear lamina following 
the sigmoid probability function described by formula 1. 
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2 Materials and methods 

2.1 Sample preparation and data acquisition 
All samples have been cultured, fixed and stained by Myron Hensgens and have been imaged 
at the Erasmus Medical Center. The samples are from the human ovarian cancer HeLa cell line 
which is often used as a model for cellular studies [38]. The cells were synchronized and fixed 
during mitosis with methanol. DNA was stained with DAPI and mmunostaining was used to 
target and visualize lamin A/C and lamin B1. This technique makes use of primary antibodies 
that bind to the protein of interest. Secondary antibodies with fluorophores are subsequently 
added to bind to the primary antibodies. The sample is then illuminated with an excitation laser 
to induce the emission of photons. For this study, lamin A/C and lamin B1 were stained with 
Alexa Fluor 488 (Alexa488) and Cysteine Dye 3 (Cy3), respectively. DAPI, Alexa488 and Cy3 
were excited with lasers of wavelengths λ = 355 nm, λ = 488 nm and λ = 561 nm, respectively. 

Samples were imaged with the Leica SP8 confocal microscope using a 63× Oil HC PL APO 
CS2 objective with numerical aperture (NA) 1.40. Confocal microscopes are similar to regular 
widefield microscopes, but add two confocal pinholes in the light path as shown in figure 6. 
These pinholes filter out the majority of out-of-focus light, which results in excellent optical 
sectioning. The emitted photons from the imaged section are redirected to the sensor by a beam 
splitter. Three-dimensional images of the samples were formed by stacking sections at different 
heights. Lastly, an important setting of the imaging procedure is the Nyquist rate, which is the 
maximum voxel size to obtain optimal resolution. For the used setup, the Nyquist rate was 
0.050×0.050×0.149 μm. In practice however, the sampling rate can be approximately 40% 
larger to still achieve near-optimal resolution, resulting in a maximum voxel size of 
0.070×0.070×0.209 μm. 

Figure 6. Schematic representation of a confocal microscope. Fluorophores in the sample are 
excited by a focused scanning laser and emitted photons are redirected to the detector by a beam 
splitter. Two confocal pinholes remove out-of-focus light, resulting in an image of a section of 
the sample. Figure obtained from [39]. 
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2.2 Data analysis 
The aim of this image analysis pipeline is to correlate the Gaussian curvature of the nuclear 
lamina with the intensity of lamin B1 signal. To achieve this, each field of view (FOV) was first 
made isotropic, followed by nucleus detection within each FOV. A rough segmentation of the 
nuclear lamina was created with unsharp-masking, after which a finer segmentation was 
accomplished with steerable filters. The three-dimensional curvature of the nuclear lamina was 
computed using an algorithm for grey-scale surface curvature estimation. The sign of the 
curvature was recovered from the isophote curvature of a representative solid object. For this 
study, the maximum signal of lamin A/C and lamin B1 was combined as a proxy for the nuclear 
lamina. The main goal of this proxy is to avoid the detection of holes in the nuclear lamina at 
locations where lamin B1 is not present. The principal curvatures of the nuclear lamina and the 
intensity of lamin B1 signal were recorded for the segmentation of the nuclear lamina, and the 
correlation between curvature and intensity was analyzed. 

The pipeline was applied on a main dataset with confocal images of HeLa cell nuclei. The 
images were sampled close to the Nyquist rate mentioned in section 2.1 with a voxel size of 
0.061×0.061×0.180 μm. The main dataset contains fluorescence signal from DNA, lamin A/C 
and lamin B1. A supplementary dataset with voxel size 0.090×0.090×0.299 μm and 
fluorescence signal from lamin A/C and lamin B1 is presented in appendix II. Images were first 
converted to TIFF-files in FIJI [40] using the Bio-Formats package [41]. After this, Python was 
used throughout the full pipeline [42]. Python was selected over other platforms, such as FIJI, 
due to its ability to perform fast multi-dimensional computations, its high flexibility and its vast 
array of pre-existing packages and plugins. The packages that were used for this pipeline, are 
NumPy [43], scikit-image [44], SciPy [45] and Numba [46]. For illustrations and visualizations, 
the packages Matplotlib [47] and Napari [48] were used. 

2.2.1 Image preparation 

The provided images showed two asymmetrical or anisotropic properties. Firstly, the images 
had a different voxel size between the lateral and axial dimensions. The lateral voxel size – in 
the xy-plane – is determined by the pixel density of the camera sensor and the magnification of 
the microscope setup. The axial voxel size – in the z-direction – depends on the height 
difference between sequential sections that together form the three-dimensional image. Usually, 
the axial voxel size is larger than the lateral voxel size, making the voxels anisotropic. The 
second anisotropic property of the images was the blur of the fluorescence signal. This blur was 
caused by limitations inherent to the imaging equipment. Because light has a defined 
wavelength λ, there is a degree of uncertainty on the location of each fluorophore. On the image, 
this uncertainty is translated to a spread of intensity around the location of the fluorophore. The 
spread is characterized with the point spread function (PSF). The PSF is a three-dimensional 
function describing the intensity spread of a singular infinitesimally small emitter. The intensity 
profile of the PSF in any direction usually approximates a Gaussian function with a scale 
defined by its standard deviation σ. The PSF for confocal imaging is anisotropic between the 
lateral and axial profiles, with a wider profile in the axial direction as shown in figure 7.  
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Figure 7. Shape of the point spread function (PSF) of the confocal microscopy setup used for 
this study. The PSF was computed for the largest used excitation wavelength λmax = 561 nm, 
which results in the largest PSF for the nuclear lamina. a. Lateral cross-section of the PSF. b. 
Axial cross-section of the PSF. c. Lateral and axial intensity profiles of the PSF.  

To make the voxel size isotropic, the axial voxel size was increased to match the lateral voxel 
size. The intensity values were interpolated to account for values of newly created voxels using 
spline interpolation. This method computes a smooth intensity function through all existing 
intensities by splitting the function up in shorter splines and fitting low-order polynomial 
functions on these intervals [49]. Spline interpolation with third order polynomials was applied 
for a smooth intensity function. Then, the axial voxel size was equalized to the lateral voxel 
size and the intensity values for the new voxels were derived from the computed interpolation 
function. 

To overcome the anisotropy of the signal blur, additional Gaussian blurring was applied in the 
lateral dimensions to match the axial signal blur. Firstly, a Python implementation of the 
Gibson-Lanni model was used to simulate the PSF [50]. The Gibson-Lanni model approximates 
the PSF of an immersion objective microscope setup and accounts for light refraction in the 
sample, coverslip and medium [51]. A non-linear least squares regression curve fit was used to 
approximate the simulated PSF intensity profiles with Gaussian functions. This method uses an 
algorithm that adjusts the Gaussian parameters to optimize a fitted function on the simulated 
PSF intensity profile by minimizing by the squares of the residuals. The fitted standard 
deviations σax and σlat approximate the scales of the axial and lateral PSF intensity profiles, 
respectively. The scale of the additional lateral blurring operation σlat,blur was derived from the 
fact that variances – simply the squares of the standard deviations – of Gaussian functions are 
additive, as shown in formula 3. It is important to note that this blurring operation inherently 
reduces the lateral resolution of the image.  

𝜎 ୪ୟ୲,ୠ୪୳୰
ଶ =  𝜎ୟ୶

ଶ − 𝜎୪ୟ୲
ଶ (𝟑) 

After both the voxel size and the PSF are made isotropic, the images are ready for further 
analysis. The result of the full image preparation process on the nuclear lamina is shown in 
figure 8. 

a c 

b 
b 
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Figure 8. Lateral cross-section of the nuclear lamina, in this case the maximum of lamin A/C 
and lamin B1 signal, before and after the image preparation process. a. The nuclear lamina 
before image preparation, with anisotropic voxel size and signal blur. b. The nuclear lamina 
after image preparation, with isotropic voxel size and signal blur. 

2.2.2 Labeling of valid nuclei 

A single FOV may contain multiple nuclei. Since we are only interested in these nuclei, we first 
segmented the nuclei by their nuclear lamina to isolate relevant regions for analysis. Labeling 
nuclei by their nuclear lamina posed a challenge, because the nuclear lamina only forms a shell 
around the nucleus with low intensities across the inner portion of the nucleus. To address this 
issue, the axial maximum intensity projection (MIP) of the nuclear lamina, in this case the 
maximum of lamin A/C and lamin B1 signal, was used to detect nuclei in each FOV. The MIP 
produced a two-dimensional representation of the nuclei, which solved the aforementioned 
challenge posed by the hollow morphology of the nuclear lamina. 

Nuclei in the MIP were segmented with an Otsu intensity threshold [52]. Otsu’s method splits 
the intensity histogram of the MIP into two classes, which are considered to be the populations 
of background and foreground signal. The algorithm used for Otsu’s method maximizes the 
inter-class variance – between the two classes – and minimizes the intra-class variance – within 
each class – to find the optimal threshold separating foreground and background signal. This 
technique is often used for thresholding problems in fluorescence microscopy, as it separates 
fluorescent signal from background noise relatively accurately. The resulting binary images 
contained small background artifacts. To remove these artifacts, all objects smaller than the 
typical size of a nucleus were removed, which for this dataset was determined to be 100 μm2. 
It is important to note that this minimum size for a typical nucleus is highly dependent on both 
the cell type and the flatness of the nuclei in the sample.  

A label was assigned to each nucleus to be able to perform the curvature analysis per nucleus. 
The nuclei in the two-dimensional binary image were labeled using the appropriate 2-
connectivity approach as illustrated in figure 9. After all initial labels were assigned, the labels 
adjacent to the edge of the image were recorded to be removed later in the process. 
Subsequently, all labels were expanded over a distance indicated by the user-defined parameter 
d. Any pixels within the expansion range of multiple labels were assigned to the label closest 
to that pixel. After this expansion was completed, the previously recorded edge-adjacent labels 
were removed. This order of actions is important for two reasons. Firstly, edge-adjacent labels 
must be expanded to constrain the expansion of neighboring labels. Secondly, recording the 
edge-adjacent labels after expansion is completed, would result in the unnecessary removal of 
additional nuclei close to the edge.  

a b 
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Figure 9. Two different types of connectivity for labeling pixels in an image. The pixel to be 
labeled is depicted in black and the pixels checked for existing labels are depicted in orange. a. 
1-connectivity combines pixels that are horizontally or vertically connected. b. 2-connectivity 
combines pixels that are horizontally, vertically or diagonally connected. 

Finally, the labels were applied to the three-dimensional isotropic images by projecting the two-
dimensional labels in the axial dimension. To isolate each nucleus for analysis, the intensity 
values outside the label were set to 0. The remaining intensities of the nucleus were normalized 
per nucleus. This individual normalization is important to compensate for fluorescence intensity 
differences between different nuclei and different FOVs. The result of labeling valid nuclei in 
a typical dataset is shown in figure 10. 

 

 

 

 

 

 

Figure 10. Labeling of valid nuclei 
for a typical dataset. The nuclear 
lamina, in this case a combination of 
lamin A/C and lamin B1, is depicted 
in green, and two separate labels are 
depicted in opaque orange and purple. 
Neighboring nuclei are separated 
properly and edge-adjacent nuclei are 
not labeled. 
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2.2.3 Segmenting the nuclear lamina 

2.2.3.1 Rough segmentation 

The nuclear lamina were segmented, since we are only interested in its local curvature and 
intensity. However, creating a continuous mask for a relatively non-uniform hollow object such 
as the nuclear lamina posed a significant challenge. For this analysis, a method called unsharp-
masking was used [36]. This technique emphasizes local contrasts and detects edges of a three-
dimensional non-uniform object. The first step was to compute a Gaussian blurred version Ib of 
the nuclear lamina, in this case the maximum of lamin A/C and lamin B1 signal. The scale σm 
of this blurring operation is a critical parameter for the segmentation method. The image Ib was 
multiplied and shifted by parameters α and β, respectively, to obtain the threshold image It as 
described in formula 4 and shown in figure 11. Here, parameter α is a compression factor for 
the dynamic range of Ib and β is a minor positive shift to compensate for this compression. 
Together, these parameters determine how much contrast is retained in It. 

𝑰୲ = 𝛼 𝑰ୠ + 𝛽 (𝟒) 

A third parameter, denoted as ic, can be deduced from these two parameters by formula 5. It is 
conventional to set the parameters α and ic and subsequently deduce β from these values, as the 
former two have a more direct interpretation for the segmentation process. The parameter α is 
interpreted as the measure of accuracy of It compared to the isotropic image of the nuclear 
lamina. The parameter ic is the cut-off intensity, at which the edges of the mask will be defined. 
The parameter ic is usually denoted as a fraction of the global maximum intensity of Ib. 

𝑖ୡ =
𝛽

1 − 𝛼
 (𝟓) 

The image It was subtracted from the original isotropic image, resulting in the unsharp-masking 
image as shown in figure 11. A zero-threshold was applied on the unsharp-masking image to 
obtain a binary mask. For each labeled nucleus, only the largest component of the mask was 
kept, resulting in a single mask per nucleus. This mask is referred to as the rough segmentation. 

Figure 11. Local intensity profiles of three images relevant for the segmentation process of the 
nuclear lamina with the unsharp-masking method. The isotropic image, the threshold image (It) 
and the unsharp-masking image are compared. To obtain the rough segmentation of the nuclear 
lamina, a zero-threshold was applied on the unsharp-masking image. Figure adapted from [36]. 
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2.2.3.2 Fine segmentation 

The rough segmentation includes many low-intensity voxels for each ‘true’ voxel of the nuclear 
lamina, which obscure the correlation between curvature and intensity. The mask by rough 
segmentation has a width of several voxels and thus covers many voxels that do not cover the 
nuclear lamina as shown in figure 12, since the thickness of the nuclear lamina is only 
approximately 14 nm [21]. A thinner mask was needed to only include the voxels that cover the 
nuclear lamina.  

Figure 12. Cross-section of masks by rough 
segmentation, depicted in opaque magenta, 
and fine segmentation, depicted in white, for 
the nuclear lamina, depicted in green. Many 
low-intensity voxels around the maximum 
intensity ridge are included in the mask by 
rough segmentation for each ‘true’ voxel at the 
maximum intensity ridge. The mask by fine 
segmentation is localized to the maximum 
intensity ridge of the nuclear lamina. 

To create a thinner mask for the nuclear lamina, a steerable filter for surface detection was used 
on the nuclear lamina, in this case the maximum of lamin A/C and lamin B1 signal [53]. Non-
maximum suppression (NMS) and thresholding were applied on this filtered image. A Python 
implementation for this approach was present in the lab’s repository. Steerable filters are linear 
combinations of basic filter kernels, as shown in figure 13, and can be used to find local 
response and orientation of specific structures, such as curves and surfaces in three-dimensional 
images [53], [54]. The scale of this kernel is specified by the parameter σs. The response and 
optimal orientation of the kernel, which represents the normal vector of the detected surface, 
were recorded for each voxel. NMS was applied on the response and orientation values. This 
method selects the maximum response voxel in the direction of the normal vector. 
Subsequently, a zero-threshold was applied on the NMS image, resulting in a binary image 
representing all surfaces detected in the isotropic image. The intersection of the masks by rough 
and fine segmentation was computed and the largest component of this combination was 
retained. This method resulted in a narrow surface-like mask localized on the maximum 
intensity ridge of the nuclear lamina. This new mask is referred to as the fine segmentation. 

Figure 13. Two types of three-dimensional steerable filter kernels for detection of image 
structures. Positive kernel factors are depicted in black and negative kernel factors are depicted 
in grey. a. The kernel for curve detection. b. The kernel for surface detection. Figure adapted 
from [53]. 

a b 
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2.2.4 Computation of curvature 

A method for surface curvature estimation in three-dimensional grey-scale images was used 
[35]. Firstly, the blurred gradient structure tensor (GST) was calculated for the nuclear lamina, 
in this case the maximum of lamin A/C and lamin B1 signal. The GST field of an n-dimensional 

image is the outer product of its gradient vector field ∇ሬሬ⃑ 𝐼 as shown in formula 6 and results in a 
tensor field with n×n matrices. Each matrix element represents the product of two first-order 
partial derivatives Ix,y,z. Two parameters are relevant for the calculation of the blurred GST field. 
Firstly, the parameter σg represents the scale of the Gaussian derivative function for the gradient 
vector elements. Secondly, the parameter σt represents the scale of the Gaussian kernel that is 
used to blur the individual GST elements over all three dimensions of the image. Once the 
blurred GST field was calculated, the eigenvectors and corresponding eigenvalues were 
computed for each GST matrix in the tensor field. For this thesis, a fast and accurate Python 
algorithm from the lab’s repository was used. The resulting eigenvectors were sorted by the 
magnitude of their respective eigenvalues. The highest eigenvalue for each GST matrix 
corresponds to the eigenvector representing the normal vector 𝑣⃑୬, which is perpendicular to the 
local surface. The two remaining eigenvalues correspond to the eigenvectors representing the 
two principal directions of the surface 𝑣⃑ଵ and 𝑣⃑ଶ, which are parallel to the local surface, 
perpendicular to each other and contain the principal curvatures κ1 and κ2, respectively.  

GST = ቌ

𝑰୶ 𝑰୶ 𝑰୶ 𝑰୷ 𝑰୶ 𝑰୸

𝑰୷ 𝑰୶ 𝑰୷ 𝑰୷ 𝑰୷ 𝑰୸

𝑰୸ 𝑰୶ 𝑰୸ 𝑰୷ 𝑰୸ 𝑰୸

ቍ =  ∇ሬሬ⃑ 𝑰 ⨂ ∇ሬሬ⃑ 𝑰 (𝟔) 

Usually, the principal curvatures can be computed by taking the magnitude of the derivative of 
the normal vector in the principal directions. However, Knutsson mapping was applied to the 
normal vector field before the principal curvatures were computed [55]. An implementation of 
Knutsson mapping is present in the MATLAB environment DIPimage [56], of which a Python 
implementation was used. Knutsson mapping takes the outer product of the normal vectors and 
divides it by the magnitude of the normal vector to generate a tensor field from a vector field, 
as shown in formula 7. This step was required, as the nuclear lamina is a hollow shell and not 
a solid object. The normal vectors on both sides of the shell have opposing directions, implying 
a discontinuity in the derivatives of the normal vector field along the maximum intensity ridge 
of the shell. Applying Knutsson mapping on the normal vectors lifts this discontinuity. 

𝑴 =
𝑣⃑୬ ⨂ 𝑣⃑୬

‖𝑣⃑୬‖
 (𝟕) 

The magnitudes of the directional derivatives of the tensor field in the principal directions are 
proportional to the absolute principal curvatures |𝜅ଵ| and |𝜅ଶ|, as shown in formula 8. A 
Gaussian derivative function was used with scale parameter σt. The magnitude of the derivative 

tensor field is proportional to the principal curvatures by a factor of √2 caused by the uniform 
stretch property of Knutsson mapping. The product of the absolute principal curvatures |𝜅ଵ| 
and |𝜅ଶ| represents the absolute Gaussian curvature |𝐾| as described by formula 2. The sign of 
the principal curvatures was lost during the computation, but can be recovered afterwards in the 
case of a closed grey-scale shell as described in section 2.2.5.  

ห𝜅ଵ,ଶห =
1

√2
 ฮ∇ሬሬ⃑ ௩ሬ⃑ భ,మ

𝑴ฮ (𝟖) 
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The computation of absolute principal curvatures has a limit, which is determined by the 
resolution of the image. Specifically, the principal curvature cannot be reliably computed when 
a radius of curvature R1,2 is smaller than the radius of the PSF of the image. The lower limit for 
the radii of curvature Rmin and the upper limit for the absolute principal curvature |𝜅୫ୟ୶| were 
calculated from the NA and maximum excitation wavelength λmax of the microscopy setup with 
formula 9, using the approximation that PSF radius is half of initial axial PSF extend. Despite 
the use of axial PSF extend, the calculated limit is valid for all three dimensions as the PSF of 
the image was made isotropic as described in section 2.2.1.  

1

|𝜅୫ୟ୶|
= 𝑅୫୧୬ =

2 𝜆୫ୟ୶

NAଶ
 (𝟗) 

The curvature limit also implies that the scale σh of the combined blurring operations for 
curvature computation should be smaller than Rmin, to prevent these operations from influencing 
the computed curvature values too much. The curvature scale σh can be calculated as described 
in formula 10 by using the variance addition rule from formula 3. 

𝜎 ୦
ଶ =  𝜎୥

ଶ +  𝜎୲
ଶ + 𝜎୩

ଶ (𝟏𝟎) 

2.2.5 Sign recovery for principal curvatures 

A solid representation of the nucleus is required to recover the sign for the principal curvatures. 
To this end, we used DAPI signal from DNA inside the nucleus. A thresholding operation was 
applied on the three-dimensional DAPI image using Otsu’s method as described in section 
2.2.2. Holes in the binary image were closed and only the largest component of each nucleus 
was retained. The resulting binary image was blurred with a Gaussian kernel defined by the 
curvature scale σh computed previously by formula 10, as this is also the blurring scale of the 
previously computed curvature.  

The sign recovery for principal curvatures is based on the isophote curvature [35], [37]. First, 
the Hessian matrix H was computed for each voxel of the image. The Hessian is similar to the 

GST, but differs by applying the cross product on the gradient vector ∇ሬሬ⃑  before using the 
derivative operation on the image I, as shown in formula 11. The scale of the Gaussian 
derivative function is defined by σh as previously calculated with formula 10. For any n-
dimensional image, the Hessian field results in a tensor field of n×n matrices. Each matrix 
element represents a second-order partial derivative Ixx,xy,….  

𝑯 = ቌ

𝑰୶୶ 𝑰୶୷ 𝑰୶୸

𝑰୷୶ 𝑰୷୷ 𝑰୷୸

𝑰୸୶ 𝑰୸୷ 𝑰୸୸

ቍ = (∇ሬሬ⃑  ⨂ ∇ሬሬ⃑ ) 𝑰 (𝟏𝟏) 

To compute the principal isophote curvatures, the Hessian was rotated to align with the principal 
directions of the object surface. Then, the the directional derivatives in the principal directions 
were extracted from the Hessian and their two eigenvalues were computed. A simple way to 
calculate these eigenvalues was to compute the quadratic forms Q1 and Q2 of the Hessian for 
each principal direction vector 𝑣⃑ଵ and 𝑣⃑ଶ, respectively, as shown in formula 12. These quadratic 
forms are the principal isophote curvatures of the solid object.  

𝑄ଵ,ଶ = 𝑣⃑ଵ,ଶ
୘

 𝑯 𝑣⃑ଵ,ଶ (𝟏𝟐) 



15 
 

The correct sign of the principal curvature is the opposite of the isophote solution, because of 
intrinsic properties of the second derivative of a curve. For any convex structure such as the 
outside of a spherical nucleus, the second-order derivative will be negative, while the principal 
curvature should be positive. Likewise, the second-order derivative of a concave surface will 
be positive while the principal curvature should be negative. Because of this paradox, the 
opposite sign is applied to the principal curvatures κ1 and κ2 obtained in section 2.2.4, thereby 
recovering the sign of the principal and Gaussian curvatures. 

It was decided not to apply sign recovery for the principal curvatures in the main result analysis, 
and the absolute Gaussian curvature was used instead. This decision was based on the low 
quality of sign recovery for the main dataset. A supplementary analysis including sign recovery 
is presented in appendix I. 

2.2.6 Finding robust parameters 

Parameter values for a number of steps in the image analysis pipeline had to be determined. 
These parameters were tuned to make the results more robust and stable for the main dataset. A 
robust value for any parameter depends on image properties such as voxel size, signal blur, 
object size, signal intensity and signal-to-noise ratio. Additionally, some parameter values were 
inherently limited. The segmentation parameter α is a compression factor between 0 and 1 [36], 
the cut-off intensity ic is a fraction of the maximum intensity of Ib [36], the blurring scales σg 
and σk have a minimum value of 1 voxel [35], [57] and the curvature scale σh has a minimum 
value of 2.7 voxels for any sampling rate below 3× Nyquist rate [58].  

For a number of parameters, a stable or linear regime was found in their value range. Within 
this regime, the parameter was optimized for computational time and other desirable features. 
Parameters with a stable regime were determined with a tuning algorithm. Initial parameters 
were chosen as a starting point, after which each parameter was tuned individually and the 
effect on the resulting image was quantified. Based on these results, the initial parameters were 
adjusted to the most optimal value in the stable or linear regime of the parameter. As a 
verification, the entire process was repeated with the adjusted parameters and the effect on the 
resulting image was quantified again. If needed, the parameters were adjusted and verified until 
robustness was accomplished.  

2.2.7 Analysis of curvature-intensity correlation 

Photon emission from a population of fluorescent emitters follows a Poisson distribution. As 
we did not record photon count n but normalized lamin B1 intensity iB1, the intensity signal 
from the nuclear lamina was multiplied by a scaling factor c. The intensity measurements imply 
that n ∉ ℕ, so the factorial of the Poisson distribution was approximated with a gamma function. 
The shape of Poisson distribution j is dependent on parameter μj and height hj. The resulting 
Poisson function is shown in formula 13 and describes the measured intensity spread of any 
population of fluorescent emitters. The sum of two Poisson functions was fitted on the intensity 
histogram of lamin B1. A non-linear least squares regression curve fit was used, as previously 
described in section 2.2.1. The two individual Poisson functions represent the two lamin B1 
meshwork states described in section 1.3.  

𝑃௝(𝑛) = ℎ௝  
𝜇௝

௡ 𝑒ିఓೕ

𝑛!
, 𝑛 = 𝑐 𝑖୆ଵ (𝟏𝟑) 
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The correlation between curvature of the nuclear lamina and the depletion of lamin B1 was 
found by studying the height change of the two Poisson functions for increasing curvatures. 
Firstly, the Gaussian curvature was computed from the principal curvatures with formula 2. All 
segmented voxels were sorted in bins with increasing Gaussian curvature. For each curvature 
bin, the intensity histogram for lamin B1 was computed. A new double Poisson function was 
fitted for each curvature bin by keeping parameters c and μj constant and only adjusting heights 
hj. Poisson functions are inherently normalized as probability density functions, so the fraction 
of signal from the high-intensity population for each curvature bin was calculated with formula 
14. This fraction, or so-called occupancy, corresponds to the probability Phigh of the lamin B1 
signal being in the high-intensity state at the specified curvature.  

𝑃୦୧୥୦ =
ℎ୦୧୥୦

ℎ୦୧୥୦ + ℎ௟௢௪
 (𝟏𝟒) 

The sigmoid probability function of formula 1 was fitted on the computed probabilities Phigh by 
a non-linear least squares regression curve fit as previously described in section 2.2.1. For this 
curve fit, each point was also compensated by its standard error. This error was approximated 
by the binomial standard deviation σbin as described by formula 15, which depends on the 
probability Phigh and voxel count Nvoxels of the curvature bin. The fitted parameters for this curve 
fit were recorded and represent the different energy variables from formula 1. 

𝜎ୠ୧୬ = ඨ
𝑃୦୧୥୦ (1 − 𝑃୦୧୥୦)

𝑁୴୭୶ୣ୪ୱ
 (𝟏𝟓) 
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3 Results 

In this section, the results from the image analysis pipeline are described for the main dataset. 
First, we present robust parameter values for the dataset. Then, the application of curvature 
estimation and the robust parameter values are tested on artificial structures. Lastly, the full 
pipeline is applied on the main dataset and the results are shown. The main dataset provided 13 
FOVs with a total of 76 segmented nuclei. The maximum intensities of lamin A/C and lamin 
B1 were combined to represent the nuclear lamina for labeling, segmentation and curvature 
computation. The largest excitation wavelength λmax = 561 nm was considered to simulate the 
PSF of this representation, as previously shown in figure 7, resulting in isotropic blurring scale 
σiso = 0.14 μm.  

3.1 Setting robust parameters 
The data analysis pipeline required a number of parameters to be tuned. Here, we describe the 
parameter values found to be most robust. First, the optimal parameters for labeling and 
segmentation operations are described. This is followed by a section on optimal parameter 
values for the curvature estimation algorithm. It is important to note again that robust parameter 
values are highly dependent on dataset properties and should always be reconsidered for new 
datasets. 

3.1.1 Labeling and segmentation parameters 

We tuned the parameters discussed in the methods for optimal nuclear lamina labeling and 
segmentation. First, we determined the optimal value for the label expansion distance d. This 
parameter determines the range around each nucleus for which the curvature will be computed. 
To reduce computational time, it was considered optimal to limit this distance as much as 
possible. However, the computed curvature for the nuclear lamina also depends on intensities 
beyond the mask, which are required for derivative computation and subsequent blurring 
operations. Therefore, the label must be expanded over a large enough distance to allow for the 
inclusion of these neighboring intensities. We determined a robust value for d to be one that 
stabilized the mean absolute Gaussian curvature within the mask by fine segmentation of the 
nuclear lamina. The result is shown in figure 14a and the final value d = 4 μm was chosen.  

There are three parameters to be set for the rough segmentation of the nuclear lamina: the 
blurring parameter σm, the cut-off intensity ic and segmentation accuracy α. These parameters 
mainly influence the volume of the mask by rough segmentation. The parameters α and ic have 
a range of 0 to 1, as they represent a compression factor and an intensity fraction, respectively. 
The mask volume grows by increasing σm and α or decreasing ic. In the stable regime of these 
parameters, the volume of the mask is approximately linearly dependent on each parameter. 
This is referred to as the linear regime and shown in figure 14b-d. Minimizing σm reduces 
computational time, minimizing ic closes holes in the mask and maximizing α increases the 
accuracy of the edges of the mask. However, for extreme values of σm, ic and α, artifacts occur, 
causing a nonlinear change of the mask volume. Thus, optimal values for the segmentation 
parameters are found at the edges of their linear regimes. Robust parameters are set at σm = 0.9 
μm, ic = 0.25 of the maximum intensity of Ib and α = 0.9.  
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Figure 14. Robustness for labeling and segmentation parameter values. N = 76 nuclei. a. The 
mean absolute Gaussian curvature for the fine segmentation of the nuclear lamina for different 
values of parameter d. A robust value of d = 4 μm was chosen. b-d. The mean volume of the 
mask by rough segmentation as a fraction of the total image volume for different values of 
segmentation parameters. b. A robust value of σm = 0.9 μm was chosen. c. A robust value of ic 
= 0.25 of the maximum intensity of Ib was chosen. d. A robust value of α = 0.9 was chosen. 

Fine segmentation of the nuclear lamina requires the additional parameter σs. The parameter σs 
represents the scale of the steerable filter which is used to detect the surface of the nuclear 
lamina. The mask volume by fine segmentation is not linearly dependent on this parameter, nor 
does the parameter show a stable regime. Therefore, the parameter was chosen based on the 
results of a typical dataset as shown in figure 15. Low values for σs created a webbing structure 
in the mask, caused by noise in the image. High values of σs shifted the detection of curved 
surfaces inwards. This is not desirable, as it causes the mask to move away from the maximum 
intensity ridge of the nuclear lamina. We found the optimal value to be σs = 0.3 μm. 

 

c 

b a 

d 
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Figure 15. Cross-section of the nuclear lamina, in this case the maximum of lamin A/C and 
lamin B1 signal and depicted in green, with the mask by fine segmentation, depicted in magenta, 
for σs = 0.15 μm, σs = 0.3 μm and σs = 0.45 μm. We decided σs = 0.3 μm to be a robust value. 

3.1.2 Curvature parameters 

The computation of curvature involves a third set of parameters: the Gaussian kernel scales σg, 
σt and σk. These parameters determine the scale of gradient derivatives, GST blurring and 
normal vector derivatives, respectively. The lowest reasonable value for σg and σk is 1 voxel 
and gives the most accurate results as shown by previous studies [35], [57]. Thus, these 
parameters were set at σg = σk = 0.090 μm, which is the isotropic voxel size of the supplementary 
dataset in appendix II, to keep the scale for curvature computation constant between the main 
and supplementary datasets. The parameter σt determines the scale for the blurring operation on 
the GST matrix elements. Increasing this value results in decreased noise but also reduced 
detail. Figure 16 shows a typical dataset for three values of σt and based on these results, an 
optimal value of σt = 0.4 μm was chosen. The parameter σh can be derived from these three 
parameters as previously described in formula 10 and results in σh = 0.420 μm. This meets both 
the minimum requirement of 2.7 voxels [58], as it is larger than 0.183 μm, and the maximum 
requirement calculated with formula 9, as it is below Rmin = 0.565 μm.  

Figure 16. Maximum intensity projections of the absolute Gaussian curvature of the nuclear 
lamina for σt = 0.2 μm, σt = 0.4 μm and σt = 0.6 μm. We decided σt = 0.4 μm to be a robust 
value. 

σs = 0.30 μm σs = 0.15 μm σs = 0.3 μm σs = 0.45 μm 

σt = 0.2 μm σt = 0.4 μm σt = 0.6 μm 
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3.2 Testing on artificial structures 
Artificial structures were used to validate the image analysis pipeline and the robust parameters 
found in section 3.1. The artificial structures have dimensions similar to the nuclei of HeLa 
cells, and voxel size of 0.061×0.061×0.061 μm identical to the isotropic voxel size of the 
dataset. Anti-aliasing was applied to smoothen the edges of the binary representations and the 
structures were subsequently blurred with σiso = 0.14 μm to resemble the isotropic PSF of the 
datasets. The robust parameters from section 3.1 were used for the analysis pipeline.  

Firstly, the curvature of a hollow sphere was computed. The cross-section of a hollow sphere is 
shown in figure 17a with the computed curvatures for its rough segmentation in figure 17b. As 
can be seen, the Gaussian curvature slightly increases internally, because the corresponding 
radius of curvature decreases. The theoretical curvature for this hollow sphere is 0.041 μm-2, 
which was computed from its average radius using formula 2. As shown in figure 17b, the 
computed curvatures closely resemble this theoretical curvature. 

Figure 17. Anti-aliased hollow sphere blurred with σiso = 0.14 μm to test curvature computation. 
a. Cross-section of hollow sphere used to test curvature computation. b. The computed 
curvature for the rough segmentation of the cross-section of the hollow sphere. The theoretical 
curvature is 0.041 μm-2. 

Secondly, the curvature of a hollow torus was computed to validate the sign recovery procedure. 
The hollow torus and its lateral cross-section are shown in figure 18a and figure 18b, 
respectively. Figure 18c shows the computed Gaussian curvature for this hollow torus. The 
theoretical inner curvature is -0.165 μm-2 and the theoretical outer curvature is 0.091 μm-2. As 
shown in figure 18c, the computed curvatures closely resemble these theoretical curvatures. 

a b 
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Figure 18. Anti-aliased hollow torus blurred with σiso = 0.14 μm to test the sign recovery 
procedure. a. Three-dimensional representation of hollow torus. b. Lateral cross-section of 
hollow torus. c. The computed curvature for the rough segmentation of the cross-section of the 
hollow torus. The theoretical inner curvature is -0.165 μm-2 and the theoretical outer curvature 
is 0.091 μm-2. 

  

b 

c a 
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3.3 Absolute Gaussian curvature and lamin B1 intensity 
Sign recovery for principal curvatures is not applied for the main results analysis, because the 
quality of sign recovery was not sufficient. As shown in figure 19a, DNA frequently did not 
form a uniform and solid representation for a nucleus, especially for mitotic cell nuclei. Many 
of these nuclei contain condensed chromosomes resulting in an uneven distribution of DNA 
throughout the nucleus and thus an irregular shape of the recorded DAPI signal. The irregular 
shape causes the detection of negative isophote curvature where there is none as shown in figure 
19b. A supplementary analysis of the main dataset including sign recovery is presented in 
appendix I. 

Figure 19. Signal from DNA and the computed Gaussian curvature for several nuclei, ranging 
from relatively accurate to inaccurate sign recovery due to decreasing quality of sign recovery. 
a. Three-dimensional representation of DNA inside the nucleus by attenuated maximum 
intensity projection of processed DAPI signal. b. Maximum intensity projection of computed 
Gaussian curvature for the nuclear lamina. 

a 

b 
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We analyzed the relation between absolute Gaussian curvature and lamin B1 intensities for the 
fine segmentation of the nuclear lamina for all recorded nuclei. Based on formula 8 and our 
microscope characteristics from section 2.1, we determined the upper computation limit for the 
principal curvatures in this dataset to be |𝜅୫ୟ୶| = 1.769 μm-1. Filtering out all voxels with 
absolute principal curvatures exceeding this value, reduced the dataset by 1.7%. From these 
filtered principal curvatures, the absolute Gaussian curvature was computed using formula 2. 
Figure 20a shows a logarithmic two-dimensional histogram of the absolute Gaussian curvature 
and intensity of the filtered dataset, with the mean, median and upper 95th percentile intensities 
at all curvatures. Figure 20b shows the total intensity histogram of the filtered dataset and figure 
20c shows the logarithmic total absolute Gaussian curvature histogram of the filtered dataset.  

Figure 20. Absolute Gaussian curvature and lamin B1 intensity for the fine segmentation of the 
nuclear lamina, filtered with |𝜅୫ୟ୶| = 1.769 μm-1. N = 12 909 976 voxels. a. Two-dimensional 
histogram for absolute Gaussian curvature and normalized lamin B1 intensity, with the mean, 
median and upper 95th percentile intensities for all curvatures. b. The total intensity histogram 
for the filtered dataset. c. The total absolute Gaussian curvature histogram for the filtered 
dataset.  

 

c 

b a 
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Since we are particularly interested in higher curvature regions, we focus on higher curvature 
data only. Therefore, the absolute Gaussian curvature was restricted with a lower curvature limit 
of 0.15 μm-2. This restriction reduced the total dataset by another 86.9%. The decision to 
exclude absolute Gaussian curvatures below 0.15 μm-2 was based on two observations. Firstly, 
figure 20a shows that intensity statistics dramatically shift for this curvature range. Secondly, 
figure 21 shows that the intensity histograms of these two curvature ranges differ a lot and no 
double Poisson distribution can be found for the low-curvature intensity histogram. Because 
there is a high quantity of low-curvature data, this data would obscure the double Poisson 
distribution that is present for higher curvatures. Assuming formula 1, the intensity of lamin B1 
at low curvatures is not governed by the amount of curvature and thus does not need to be 
considered when studying the correlation between curvature and intensity.  

Figure 21. Comparison of normalized intensity histograms for absolute Gaussian curvatures 
below and above 0.15 μm-2. A double Poisson distribution can be found for high-curvature 
intensities but not for low-curvature intensities. N = 11 418 604 voxels for low curvatures and 
N = 1 491 372 voxels for high curvatures. 

The double Poisson function was fitted on the total intensity histogram of the reduced dataset 
as shown in figure 22a. For the probability function described by formula 1, parameters lp = 
0.38 μm and Lfil = 0.5 μm were used based on the theory of section 1.2 [21], [32] and binomial 
standard deviations were computed as described by formula 15. The fraction of high-intensity 
voxels for each curvature, the so-called occupancy, and the fitted probability model following 
formula 1 are shown in figure 22b. The cut-off Gaussian curvature Kc was computed with the 
ratio E/a = 0.69 μm-1, as described in section 1.3 and by formula 2, resulting in Kc = 0.48 μm-2. 
The majority of lamin B1 depletion occurs around the cut-off Gaussian curvature Kc, between 
the absolute Gaussian curvatures 0.2 μm-2 and 0.8 μm-2. The upper and lower bound for the 
sigmoid probability function in figure 22b are A = 0.96 and B = 0.41, respectively. These bounds 
imply that the occupancy of the high-intensity population is 96% for the low-curvature regime 
and 41% for the high-curvature regime. Figure 22c shows the intensity histogram and fitted 
Poisson functions for several curvature ranges between 0.15 μm-2 and 0.90 μm-2 to illustrate the 
occupancy change for this critical curvature range.  
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Figure 22. Intensity histograms and fitted probability model for the dataset, filtered with |𝜅୫ୟ୶| 
= 1.769 μm-1 and restricted with a lower absolute Gaussian curvature limit of 0.15  
μm-2. N =  1 491 372 voxels. a. Total intensity histogram with the fitted double Poisson function 
and component Poisson functions as described in formula 13. b. The occupancy of the high-
intensity population, with standard deviations as described in formula 15, with the fitted 
probability model as described in formula 1. c. Intensity histograms for several curvature ranges 
with the fitted double Poisson function and component Poisson functions as described in 
formula 13. Total voxel count N is noted at each histogram.  

c = 18 ± 0.65 
h1 = 4.9e4 ± 4.1e4 
h2 = 2.2e5 ± 6.3e4 
μ1 = 3.6 ± 0.32 
μ2 = 7.6 ± 0.22 

A = 0.96 ± 4.0e-3 
B = 0.41 ± 5.5e-3 
E = 5.7 ± 0.15 kBT 
a = 8.3 ± 0.23 μm kBT 

h1 = 1.9e4 ± 6.2e2 
h2 = 1.6e5 ± 7.5e2 

 
 

h1 = 1.1e4 ± 2.7e2 
h2 = 3.8e4 ± 3.2e2 

 

h1 = 6.4e3 ± 1.4e2 
h2 = 1.2e4 ± 1.7e2 

 

h1 = 4.0e3 ± 97 
h2 = 5.2e3 ± 1.2e2 

 
 

h1 = 2.7e3 ± 73 
h2 = 2.7e3 ± 88 

 

c 

b a 

N = 31307 

N = 972634 

N = 266210 

N = 102562 

N = 52686 
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4 Conclusion and discussion 

This thesis provides a reliable quantitative image analysis pipeline to test the relation between 
the curvature of the nuclear lamina and signal intensity in three-dimensional images. The results 
of this thesis also reveal a connection between Gaussian curvature of the nuclear lamina and its 
depletion of lamin B1 intensity following a two-state distribution, as hypothesized in section 
1.3. Whereas previous studies have set the groundwork for the probability distribution model 
that corresponds to our data, we report for the first time a bimodal distribution as a consequence 
of curvature [18], [19]. First, we discuss this depletion model for the lamin B1 meshwork and 
its implications on the current knowledge of the nuclear lamina. Then, the robustness of pipeline 
parameters and the limitations of the applied image analysis pipeline are discussed. Finally, we 
describe recommendations for future studies based on the work presented in this thesis. 

4.1 Lamin B1 depletion at high curvatures 
We have found a bimodal distribution of lamin B1 intensity that correlates to curvature of the 
nuclear lamina. The high-intensity population in this distribution is considered an undisturbed, 
high-density lamin B1 meshwork and the low-intensity population is considered a low-density 
or depleted lamin B1 meshwork disturbed by curvature of the nuclear envelope. It is shown that 
for increasing curvature of the nuclear lamina, the lamin B1 meshwork shifts from the high-
density state to the low-density or depleted state. This shift follows the probability model 
described by formula 1. The fitted parameters for the probability model are E = 5.7 kBT and a 
= 8.3 μm kBT as previously shown in figure 22b. These values resemble those found in other 
studies, which range between E = 4.7 kBT – 5.1 kBT and a = 8.2 μm kBT – 20 μm kBT [18], [19]. 
Additionally, the cut-off Gaussian curvature Kc = 0.48 μm-2 resembles the computed values 
from prior studies, which range between Kc = 0.05 μm-2 – 0.40 μm-2 [18], [19]. The analyzed 
dataset shows a slightly slower decline of undisturbed lamin B1 quantity for increasing 
curvatures. This difference can be caused by biological differences between datasets, such as 
staining quality or variations in gene expression. The results of each study can also be 
influenced by data acquisition, such as PSF extend or voxel size. 

The morphologies of the two different intensity states of the lamin B1 meshwork are still 
unclear. It is possible that the low-intensity state represents full depletion of lamin B1, or it 
could represent a disturbed lamin meshwork with lower lamin B1 density. The latter is 
supported by the observation that the low-intensity lamin B1 state still shows a relatively high 
mean intensity μ1 = 3.6. If the low-intensity state was fully depleted from lamin B1, we would 
expect its mean to be closer to 0. Such a disturbed low-density state would be able to replace 
the high-density state at high-curvature locations in the nuclear envelope. The low-density state 
would also be less stable, as high-curvature regions in the nuclear lamina show more ruptures 
[17], [18], [19]. Another possible explanation for the high mean intensity could be the existence 
of small patches of stable high-intensity meshwork at high-curvature locations. The latter is 
supported by the occupancy of 41% for the high-density state in the high-curvature regime. 
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The observed curvature dependency of the lamin B1 density provides new insight into the 
mechanisms regulating the structural integrity of the nuclear lamina. The quantity of lamin B1 
influences the rigidity of the nuclear envelope [11], [33] and the structure of other lamin 
meshworks [25], [26]. Therefore, curvature of the nuclear envelope must play an important role 
in the regulation of mechanical support for the nucleus. Additionally, curvature might be a 
relevant factor during the initiation of NEBD, by weakening the nuclear lamina. The mitotic 
invagination described in section 1.1 might be a cellular process to accelerate NEBD by 
applying additional curvature on the nuclear lamina to deplete and destabilize the lamin B1 
meshwork, and subsequently rupture the nuclear lamina.  

4.2 Robustness and limitations of data analysis  
The obtained segmentation parameters in section 3.1.1 are in agreement with prior literature, 
showing the validity of our segmentation pipeline and parameter determination procedure [36]. 
The blurring scale σm = 0.9 μm is equal to the previously proposed axial blurring scale, but 
much larger than the previously proposed lateral blurring scale of 0.06 μm. However, since our 
images were made isotropic before further analysis using the axial PSF extend, only the axial 
blurring scale provides a relevant comparison. The cut-off intensity ic = 0.25 is lower than the 
previously proposed value ic = 0.33. A lower value for ic closes any potential holes and broadens 
the mask, thereby increasing the volume of the mask. In this case, a lower value for ic was 
advantageous, as the rough segmentation was later combined with the fine segmentation. This 
combination nullified any extra width of the rough segmentation, but retained the additional 
closure of holes. The segmentation accuracy α = 0.9 is identical to the proposed value and 
appears to be effective for rough segmentation of the nuclear lamina. 

The main limitation of the described image analysis pipeline is the need for a base level of 
intensity from the nuclear lamina. Any areas in the nuclear lamina without signal from lamin 
A/C or lamin B1 are not segmented. Additionally, curvature computation for these areas is 
unreliable, as the curvature is estimated from the local grey-scale values. This limitation creates 
a bias for areas in the nuclear lamina where lamin signal is present. The bias results in the 
exclusion of low-density patches and holes in the nuclear lamina and reduces the overall 
quantity of low-intensity data. This reduction possibly causes the relatively high mean intensity 
μ1 = 3.6 of the low-density lamin B1 state and the relatively high occupancy of 41% for the 
high-density lamin B1 state at high curvatures as mentioned in section 4.1. The curvature and 
lamin B1 density at the missing low-intensity areas would be of particular importance to the 
results of this thesis, as they could provide insight into the effect of curvature on low lamin B1 
densities. 

Using the MIP of the nuclear lamina for the labeling of nuclei caused an additional limitation. 
Where two nuclei overlap or are directly adjacent, they could not be distinguished. Watershed 
segmentation proved to be inadequate to address this issue, as the nucleus shape and signal 
intensity were too irregular. The resulting fusion of nuclei had two unwanted consequences. 
Firstly, normalization is applied over the set of fused nuclei instead of the individual nuclei. 
Secondly, the curvature of the fused nuclear lamina is analyzed instead of the individual 
nuclear lamina. This can result in the computation of extreme curvatures at the locations 
where the nuclear lamina of two cells are fused. However, neither consequence likely had a 
significant impact on the global dataset analysis, as most nuclei had a comparable maximum 
intensity and curvature computation was only affected at very small, localized regions. 
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The parameters Lfil = 0.5 μm and lp = 0.38 μm for the probability model, previously mentioned 
in section 3.3, are based on the most commonly observed quantities in physical studies [21], 
[32]. These quantities are not very exact and, especially for lp, a range of previously recorded 
lengths exists. However, the entire bending energy term in formula 1 is relatively insignificant 
to the final shape of the sigmoid probability function. The binding energy term contributes a lot 

more to the exponential term due to its dependence on √𝐾 instead of K. The relative uncertainty 
for the values of parameters Lfil and lp can therefore be deemed irrelevant to the final results. 

4.3 Recommendations for future research 
This thesis provides a deeper understanding of the structure of the nuclear lamina. However, 
further research is needed into the function of curvature during initiation of NEBD. Additional 
curvature might be induced by nuclear envelope structures like the mitotic invagination 
discussed in section 1.1. This added curvature does not seem to be required for successful cell 
division, but it might play a vital role in the accelerated breakdown of the nuclear lamina and 
subsequent NEBD. Moreover, little to no studies cover the curvature dependency of other lamin 
isoforms. It is known that lamin A/C depletion is mostly dependent on strain rate of curvature 
instead of curvature quantity [17], [19], but no depletion model has been proposed for this 
meshwork yet. Lamin B2 is severely understudied and more studies are needed to uncover its 
role in the structural integrity of the nuclear lamina.  

More research is needed to further investigate the lamin B1 meshwork and its behavior for high 
curvature of the nuclear lamina. The analysis of negative Gaussian curvature in this thesis is 
limited and a more effective way to recover the sign of curvature is required, for example by 
using a better three-dimensional solid representation of the nucleus. There are approaches to 
obtain this solid representation from the nuclear lamina, requiring a completely closed shell, 
which was not the case for many nuclei in our dataset [59]. Creating a closed shell 
representation for the nuclear lamina would also eliminate the bias for high intensities described 
in section 4.2. Additionally, future research could investigate the physical properties behind the 
fitted parameters for the probability model described in formula 1, such as the binding energy 
of the lamin B1 meshwork. Lastly, further studies can elaborate on other processes that cause 
density differences for lamin B1. Figure 21 shows a distinct intensity histogram for lamin B1 
at curvatures below 0.15 μm-2, where lamin B1 density is possibly governed by a different 
process. Moreover, the disturbed state of the lamin B1 meshwork might represent a novel low-
density meshwork state and more research is necessary to investigate this possibility. This thesis 
lays a solid foundation for any of the future research directions discussed. 
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Appendix I 

Here we describe a supplementary analysis of the main dataset where we include sign recovery 
for the principal curvatures. The full analysis presented here was performed in a similar manner 
as the absolute Gaussian curvature analysis described in section 3, unless specified otherwise. 
Figure S1a shows a logarithmic two-dimensional histogram of the Gaussian curvature and 
lamin B1 intensity of the filtered dataset, with the mean, median and upper 95th percentile 
intensities at all curvatures. Figure S1b shows the total intensity histogram of the filtered dataset 
and figure S1c shows the logarithmic total Gaussian curvature histogram of the filtered dataset. 
A total of 32.0% of the segmented voxels in this dataset represent a negative Gaussian 
curvature. 

Figure S1. Gaussian curvature and lamin B1 intensity of the dataset, filtered with |𝜅୫ୟ୶| = 
1.769 μm-1. N = 12 909 976 voxels. a. Two-dimensional histogram for Gaussian curvature and 
normalized lamin B1 intensity, with the mean, median and upper 95th percentile intensities for 
all curvatures. b. The total intensity histogram for the filtered dataset. c. The total Gaussian 
curvature histogram for the filtered dataset.  

The lower Gaussian curvature limit of 0.15 μm-2 reduced the total dataset by 89.2%. The double 
Poisson function was fitted on the total intensity histogram of the restricted dataset as shown in 
figure S2a. The high-intensity occupancy for each curvature and the fitted probability model 
following formula 1 are shown in figure S2b. The cut-off Gaussian curvature Kc was computed 
with the ratio E/a = 0.70 μm-1, as described in section 1.3, and formula 2, resulting in Kc = 0.49 
μm-2. The majority of lamin B1 depletion occurs around the cut-off Gaussian curvature Kc, 
between Gaussian curvatures 0.2 μm-2 and 0.8 μm-2. The upper and lower bound for the sigmoid 
probability function in figure S2b are 0.96 and 0.46, respectively. These bounds imply that the 
occupancy of the high-intensity population is 96% for the low-curvature regime and 46% for 
the high-curvature regime. Additionally, figure S2c shows the intensity histogram and fitted 
Poisson functions for several curvature ranges between 0.15 μm-2 and 0.90 μm-2.  

c 

b a 
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Figure S2. Intensity histograms and fitted probability model for the dataset, filtered with |𝜅୫ୟ୶| 
= 1.769 μm-1 and restricted with a lower Gaussian curvature limit of 0.15 μm-2. N =  1 168 418 
voxels. a. Total intensity histogram with the fitted double Poisson function and component 
Poisson functions as described in formula 13. b. The occupancy of the high-intensity 
population, with standard deviations as described in formula 15, with the fitted probability 
model as described in formula 1. c. Intensity histograms for several curvature ranges with the 
fitted double Poisson function and component Poisson functions as described in formula 13. 
Total voxel count N is noted at each histogram. 

 

c = 19 ± 0.58 
h1 = 3.6e4 ± 4.4e3 
h2 = 1.9e5 ± 3.0e3 
μ1 = 3.7 ± 0.22 
μ2 = 7.9 ± 0.09 

A = 0.96 ± 2.9e-3 
B = 0.46 ± 5.0e-3 
E = 6.4 ± 0.16 kBT 
a = 9.1 ± 0.24 μm kBT 

h1 = 1.4e4 ± 5.6e2 
h2 = 1.4e5 ± 6.8e2 

 
 

h1 = 7.8e3 ± 2.2e2 
h2 = 3.3e4 ± 2.7e2 

 

h1 = 4.7e3 ± 1.1e2 
h2 = 1.0e4 ± 1.4e2 

 

h1 = 3.0e3 ± 71 
h2 = 4.3e3 ± 86 

 
 

h1 = 2.0e3 ± 50 
h2 = 2.2e3 ± 61 

 

c 

b a 

N = 23285 

N = 785652 

N = 210317 

N = 77446 

N = 39031 
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Parameter Prior studies Main analysis Supplementary analysis 
E 4.7 – 5.1 kBT 5.7 kBT 6.4 kBT 
a 8.2 – 20 μm kBT 8.3 μm kBT 9.1 μm kBT 
Kc 0.05 – 0.40 μm-2 0.48 μm-2 0.49 μm-2 

Table S1. Comparison of several fitted parameters for the probability model described by 
formula 1 between prior studies, the main analysis and the supplementary analysis with sign 
recovery. 

All supplementary results closely resembled those found from the absolute Gaussian curvature 
as shown in table S1. The dataset was smaller as negative Gaussian curvatures are not used. 
Additionally, it is important to state again that the sign recovery was only moderately successful 
and these results do not represent reliable data as shown in figure 19. However, the analysis of 
Gaussian curvature with sign recovery still shows that the studied probability model holds for 
this case. 
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Appendix II 

In addition to the main dataset described in section 3, the analysis was performed on 
supplementary dataset. This dataset has a larger voxel size of 0.090×0.090×0.299 μm and 
provided 12 FOVs with a total of 34 segmented nuclei. The voxel size is significantly larger 
than the Nyquist rate mentioned in section 2.1, which makes the analysis of the supplementary 
dataset less reliable. The supplementary dataset also did not contain DNA information, 
rendering sign recovery for the principal curvatures impossible. Hence, the analysis was 
performed only on the absolute Gaussian curvature. The full analysis was identical to the 
absolute Gaussian curvature analysis described in section 3, unless specified otherwise. 

 A number of parameters were re-evaluate for the supplementary dataset due to differences in 
acquisition settings, such as the increased voxel size. Figure S3 shows that, although the 
robustness of σm seems to differ slightly, robust parameters for the supplementary dataset can 
be set identical to those for the main dataset as described in section 3.1. Thus, the parameter 
values are chosen to be d = 4 μm, σm = 0.9 μm, ic = 0.25 of the maximum intensity of Ib and α 
= 0.9. Lastly, as the voxel size for this dataset is different, so is the lower limit for parameter σh. 
The minimum required value is 2.7 voxels [58], in this case 0.243 μm, which is still met by 
previously determined value σh = 0.420 μm. 

Figure S3. Robustness for labeling and segmentation parameters, N = 34 nuclei. a. The mean 
absolute Gaussian curvature within the fine segmentation of the nuclear lamina for different 
values of the parameter d. A robust value of d = 4 μm was chosen. b-d. The mean volume of 
the rough segmentation as a fraction of the total image volume for different values of 
segmentation parameters. b. A robust value of σm = 0.9 μm was chosen. c. A robust value of ic 
= 0.25 was chosen. d. A robust value of α = 0.9 was chosen. 

c 

b a 

d 
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Filtering out all voxels with absolute principal curvatures exceeding 1.769 μm-1, reduced the 
dataset by 1.3%.  Figure S4a shows a logarithmic two-dimensional histogram of the absolute 
Gaussian curvature and lamin B1 intensity of the filtered dataset, with the mean, median and 
upper 95th percentile intensities at all curvatures. Figure S4b shows the total intensity histogram 
of the filtered dataset and figure S4c shows the logarithmic total absolute Gaussian curvature 
histogram of the filtered dataset.  

Figure S4. Absolute Gaussian curvature and lamin B1 intensity of the dataset, filtered with 
|𝜅୫ୟ୶| = 1.769 μm-1. N = 12 909 976 voxels. a. Two-dimensional histogram for absolute 
Gaussian curvature and normalized lamin B1 intensity, with the mean, median and upper 95th 
percentile intensities for all curvatures. b. The total intensity histogram for the filtered dataset. 
c. The total absolute Gaussian curvature histogram for the filtered dataset.  

The lower absolute Gaussian curvature limit of 0.15 μm-2 reduced the total dataset by 84.8%. 
The double Poisson function was fitted on the total intensity histogram of the restricted dataset 
as shown in figure S5a. The high-intensity occupancy for each curvature and the fitted 
probability model following formula 1 are shown in figure S5b. The cut-off Gaussian curvature 
Kc was computed with the ratio E/a = 0.41 μm-1, as described in section 1.3 and by formula 2, 
resulting in Kc = 0.17 μm-2. The majority of lamin B1 depletion occurs around the cut-off 
Gaussian curvature Kc, between absolute Gaussian curvatures of 0.1 μm-2 and 0.3 μm-2. The 
upper and lower bound for the sigmoid probability function in figure S5b are 1.00 and 0.53, 
respectively. These bounds imply that the occupancy of the high-intensity population is 100% 
for the low-curvature regime and 53% for the high-curvature regime. Figure S5c shows the 
intensity histogram and fitted Poisson functions for several curvature ranges between 0.15  
μm-2 and 0.90 μm-2.   

c 

b a 
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Figure S5. Intensity histograms and fitted probability model for the dataset, filtered with |𝜅୫ୟ୶| 
= 1.769 μm-1 and restricted with a lower absolute Gaussian curvature limit of 0.15  
μm-2. N = 558 364 voxels. a. Total intensity histogram with the fitted double Poisson function 
and component Poisson functions as described in formula 13. b. The occupancy of the high-
intensity population, with standard deviations as described in formula 15, with the fitted 
probability model as described in formula 1. c. Intensity histograms for several curvature ranges 
with the fitted double Poisson function and component Poisson functions as described in 
formula 13. Total voxel count N is noted at each histogram. 

c = 18 ± 0.55 
h1 = 2.0e4 ± 1.2e3 
h2 = 3.9e4 ± 1.0e3 
μ1 = 3.9 ± 0.12 
μ2 = 7.4 ± 0.26 

A = 1.00 ± 0.16 
B = 0.53 ± 7.5e-3 
E = 4.2 ± 1.5 kBT 
a = 10 ± 2.1 μm kBT 

h1 = 1.1e4 ± 2.2e2 
h2 = 2.7e5 ± 2.5e2 

 
 

h1 = 4.0e3 ± 59 
h2 = 5.6e3 ± 70 

 

h1 = 1.8e3 ± 54 
h2 = 2.4e3 ± 64 

 

h1 = 1.1e3 ± 30 
h2 = 1.3e3 ± 35 

 
 

h1 = 6.9e2 ± 22 
h2 = 8.6e2 ± 26 

 

c 

b a 

N = 8899 

N = 201043 

N = 53190 

N = 24426 

N = 13937 
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Parameter Prior studies Main dataset Supplementary dataset 
E 4.7 – 5.1 kBT 5.7 kBT 4.2 kBT 
a 8.2 – 20 μm kBT 8.3 μm kBT 10 μm kBT 
Kc 0.05 – 0.40 μm-2 0.48 μm-2 0.17 μm-2 

Table S2. Comparison of fitted parameters for the probability model described by formula 1 
between prior studies, the main dataset and the supplementary dataset. 

The results from the supplementary dataset corresponded to the findings from other studies but 
differed from the main results in section 3.3 as shown in table S2 [18], [19]. Unfortunately, a 
large part of the depletion range was not considered as a lower absolute Gaussian curvature 
limit of 0.15 μm-2 was set, implying that valuable information was lost with this restriction. It 
is also important to note that the sample size of this dataset is smaller, with only 34 nuclei 
instead of 76 nuclei and only half the number of segmented voxels. A second restraint for this 
dataset is the larger voxel size, falling outside the near-optimal range around the Nyquist rate 
as described in section 2.1. This might have caused the formation of curvature artifacts, as the 
intensity signal is discretized around the edges of the nuclear lamina. However, the analysis of 
this supplementary dataset still shows that the global probability model holds for different 
datasets and acquisition settings. 


