
Detect chewing episodes with an Inertial Measurement Unit (IMU) sensor
around the ear

Vivian Nguyen

Supervisors: Przemysław Pawełczak, Vivian Dsouza

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Vivian Nguyen
Final project course: CSE3000 Research Project
Thesis committee: Przemysław Pawełczak, Vivian Dsouza, Hayley Hung



Abstract
Tracking food intake provides a valuable source of
infor- mation to gain insights in dietary habits for
the health indus- try. Currently, the main method to
track food intake to is do it manually. To take a step
towards tracking food intake manually, this these
aims to answer the following research question:
”How to detect chewing episodes with an IMU sen-
sor around the ear?”. The IMU collect x, y, z axis
data for the accerelometer an gyrscope. The data
of the axis was downsampled to 20Hz and passed
through a low-pass filter. Chewing detecting was
done by determining chewing episode in time win-
dows of 30 seconds. Feature were extracted from
those time windows. Then random forest, decision
tree, k-neareast neigbours, support vector machine
and logistic regression machine learning models
were used to classify the data, for which f1-scored
higher than 0.8 have been achieved. Therfore it
can be concluded is it posisble to detect chewing
episodes with a single IMU around the ear. Fea-
ture selection and performance analysis has been
done, and it seem to be that features that use auto
correlation and Fast Fourier Transform (FFT), play
a significant role increasing the classification per-
formance. They are computationally expensive and
are not ideal for embedded system. However there
is room for finding features that are less computa-
tionally expensive.

1 Introduction
Tracking food intake provides a valuable source of infor-

mation to gain insights in dietary habits for the health indus-
try. The health industry can utilise this information, to better
understand a persons well-being and find a more suitable di-
agnosis or treatment. Another example is to track whether
daily nutrients or medicines have been taken. Tracking food
intake results in measurements of the amount and type, the
time and duration of consumption and the nutritious value of
the food taken.

Currently, the main method to track food intake to is do
it manually. A potential new method could be to make use
of earables, ”devices that attach in, on, or in the immediate
vicinity of the ear to offer functionalities beyond basic audio
in- and output.” [8]. Earables are ideal for the following rea-
sons. Firstly, because an earable is placed around the ear, sen-
sors can better pick up movements that happen during eating.
Secondly, the adoption of earables can be easier and faster
since headphones, earphones and earbuds are already part of
everyone’s daily life. And lastly, automatically tracking food
intake seems more desired, as opposed to manual tracking, as
it provides convenience and possibly more precision.

Detecting food intake consists of multiple steps. The first
step is to determine whether a user is taking in food, see figure
1. Chewing detection is part of this first step, and the main
focus of this thesis. Previous thesiss have done research in
detecting chewing with sensors such as IMU’s, microphones,

piezzo-electric sensors and more. Experiments have been
done with various combinations of sensors at different loca-
tions of the body. However no research has been done with a
single IMU sensor that was placed around the ear to detect
chewing episodes.

The main research question for this thesis is:

”How to detect chewing episodes with an IMU sensor
around the ear?”.

With an earable being an embedded system, a section will
be dedicated detecting chewing episodes with a simple low-
power algorithm for an embedded platform with a single IMU
sensor around the ear.

This thesis will explain the methodology and the experi-
ments that were conducted to answer the research question.
The results that were obtained, as well as the conclusions that
were derived from the results will be presented. At the end
of the thesis future recommendations and improvements are
provided

2 Related work
Various researches have been conducted in the past and the-
siss are published on experiments related to chewing detect-
ing.

Various methods
Chewing detection has been done by counting the chews, as
researched by M Farooq and E. Sazonov [4].

Another way of detecting chewing was by determining
whether chewing was happening in a certain time frame, in-
vestigated by Abdelkareem Bedri et al. [1] and Roya Lotfi et
al. [5].

Temiloluwa Prioleau et al. [7] and N. A. Selamat and
S.H.Md. Aki [9] have analyzed articles that perform chew-
ing detection and have made side by side comparisons. A lot
of different sensors and combinations of sensors have been
used, such as a piezzo-electric senso [4] [3], microphone [5],
IMU [1] [5]. Temiloluwa et al. [7] have depicted a clear dia-
gram of the steps of detecting food intake in their thesis. See
image 1 for this diagram. Notice that this thesis focuses the
first part, ’chewing’.

In R.R.Choouhury’s paper, opportunities of earables are
explored on a surface level. Also, the question has been raised
whether ”today’s hardware architecture mostly suffice, or is
a new clean-slate thinking necessary.” [2]. Is it important to
think about this at a future stage, when chewing detecting
integrated into an earable. User experience is also a crucial
aspect to consider, since that heavily determines the use of a
device or product.

Similar setup
Both Abdelareem Bedri et al. [1] and Roya Lofti et al.[5]
use IMU sensors and have a similar approach to this thesis.
Both thesis detect chewing episodes using time windows to
classify chewing. Interestingly Abdelkareem Bedri et al.[1]
uses 30s 1-sec-sliding time windows, and Roya Loft et al.[5]
use 3s non-overlapping windows. Both used video recordings
as the ground truth to label the data.



Abdelkareem Bedri et al[5] uss an IMU and a microphone
on a device ”in” the ear”, like a earphones. They have used
logistic regression, decision tree and random forest as clas-
sification methods. They concluded that using the IMU data
better detected chewing for soft and hard foods, as compared
to microphone data, and that the combination of both sensors
data worked best.

Roya Lofti et al.[1] use an IMU sensor behind the ear, on
the temporalis muscle to be more precise. With 13 features
for each axis of collected data, they used sequential forward
floating selection to make a feature selection, and applied the
random forest classification model. An extra IMU on the back
was used to cancel out ”large body motions”. With this setup
of the two IMUs for their ”outside-the-lab-study”, it raises
the question how only one IMU behind the ear will perform,
which this thesis aims to answer.

Figure 1: ”Overview of automatic food intake monitoring system”
[9], (fig. 1)

3 Methodology
To answer the research question the methodology to con-

duct the research can be split into two parts. The first part
discusses how the data was gathered with the IMU sensor
and explains the classification method to classify the data into
chewing or not chewing. The second part will be dedicated
to detecting chewing episodes with a simpler low-power al-
gorithm for an embedded platform with a single IMU sensor
around the ear.

3.1 Part 1: Experiment
Hardware components and software
The IMU is the Qwiic 9DoF IMU (ICM-20948). This is
an IMU that measures x, y, z axis rotations with its gyro-
scope and x, y, z axis accelerations with its accelerometer.

The micro-controller to which the IMU is attached is the
NUCLEO-L433RC-P.

The programming language that was used is Python.
Python is commonly used for data processing and machine
learning and has many useful libraries that can be used. The
C language would be ideal in case of using an IMU with the
micro-controller on an embedded system.

With the IMU attached to the micro-controller, which itself
is attached to a computer with a data and power transmittable
cable, the IMU data will be collected on the computer. The
computer will run the needed algorithms written in Python to
analyse the data.

Data collection
The data should be classified into chewing and not chewing,
thus data needs to be from activities from both classes. The
chosen activities are eating, walking, reading out loud, and
stationary activities such as watching a video or studying.
The collected data will be labeled into two classes. Only the
eating activities will be labeled as ’chewing’. All the other
activities will be labeled as ’not chewing’.

Feature selection
Inspired by the Abdelkareem Bedri et. al [1] and Dan Morris
et al. [6], the following features were chosen to extract from
the data:

• Standard deviation

• Mean

• Variances of the duration between each zero-crossing

• RSM of the power signal

• The number of zero-crossings

• The variance of the power signal

• The number of peaks after autocorrelating the data

• The number of prominent peaks after autocorrelating the
data

• The number of ”weak” peaks after autocorrelating the
data

• The value of the max peak after autocorrelating the data

• The first peak after the first zero-crossing after autocor-
relating the data

• Dominant frequency, after applying FFT

• Value of dominant frequency, after applying FFT

With 6 axis x 13 features = 69 total features for each object
in the dataset. Sequential Forward Selection (SFS) will be
done to do select a set of most influential features do decrease
the feature set size. The SFS will provide an approximation
of a set of features that give the highest performance.

Data processing
To classify the gathered data over the measured time period,
a 30 second window will be used for which the selected fea-
tures will be computed. The window will be labeled as either
chewing or not chewing, assigned to the class that happened
the majority during the window timeframe. Inspiration was



taken from Abdelkareem et al. [1] where time windows of
30 seconds with a slide of 1 sec were used. In a performance
graph they showed that 35 seconds window performed most
optimal in their experiment. However to the fact that data col-
lection was easier done in 30 second, 30 seconds time win-
dows were chosen. And to minimize the sample windows to
process, the choice was made to do use tumbling instead of
sliding windows.

3.2 Part 2: Analysis
The second part will be dedicated to analysing and consider-
ing the required factors to think about when integrating chew-
ing detection in an embedded system

With the code written in Python and it being run on a com-
puter, it is difficult to say how the algorithm would behave
on an embedded system. This is due to the fact that an-
other lower level programming language such as C, which
is more suitable for embedded systems, may have a faster
runtime. The embedded system may also have a different
memory space, as well as different battery life and number
of CPUs. If implemented in an earable, which also provide
other functionalities, a balance should be found in how each
of those use the runtime, memory space and power.

No measurements will be done on how much memory or
clock cycles the code uses. Nevertheless, to accommodate
further research in how chewing detection can best be imple-
mented in an embedded system, alteration of the classification
method have been done and their performance is computed.
When working towards a working embedded system, being
attentive to the used memory space, runtime, and battery life,
the classification performance can be taken into account to
determine which trade-offs to make. As well as the time
of computation, energy consumption and memory it takes to
store and compute the algorithm. Especially if the chewing
of food intake detecting is to be integrated into an earable,
which also has different functionalities.

4 Experiment
This section discusses how the experiment was conducted.

4.1 Sensor setup
The chosen location of this sensor was above and behind the
left ear, on the temporalis muscle, as in [1]. Since only only
one sensor was in my possession, the left ear had been chosen.
Because the wires were not so long and the ports on my laptop
are on the left side. The IMU sensor is not integrated into an
earable/wearable device. Thus creative ways were needed to
attach the sensor to the allocated location. One solution was
sticking it with tape to the skin. A downside of this is that it
was not comfortable while doing the chosen activities. When
removing the sensor, the skin got sensitive and got hair stuck
to it. Another solution was sewing the IMU sensor to the
hairband. This was a lot more comfortable and useful, and
thus was the actual used setup. [see image 2]

Since the sensor had to be attached to the laptop, it was
difficult to move unrestrictedly. Because of this, it was hard
to do the chosen activities continuously. To simulate as if

the activities were done continuously, the activities were done
one by one, and later merged into one data set.

Figure 2: Sensor setup, sewn in headband

4.2 Data preparation
After an activity was measured with the worn sensor, the data
of the 6 axis were written to a textfile. See the table 1 for
the activities that were measured during the experiment. If a
similar activity was done or item was eaten, the sensor was
reattached to such the the session could be marked as a seper-
ate activity. This allows the data set and test set to consist of
different data. Table 2 shows the performance of all chosen
machine learning algorithms for different train-test set splits.
The performance was achieved by tuning the hyperparame-
ters with gridsearch on the f1-score.

The data was processed in the following order: down-
sampling to 20Hz, applying the low filter for each axis, mov-
ing axis data to oscillate around the 0-axis, section the data set
into time windows of 30 seconds and compute features. For
which the low-pass filter parameters were fs=20 and Wh=4,
and the autocorrellation had a lag of 250. See figure 3 for the
pipeline and see figures 4, 5, 6, 7 for an example of some of
the pipeline steps. It shows the downsampling, low-pass fil-
tering, autocorrelating, and finding the number of peaks after
autocorrelation.

4.3 Data classification
The chosen machine learning models that were applied are
random forest (RF), decision trees (DT), logistic regres-
sion (LR), support vector machines (SVM) and k-nearest-
neighbors (KNN) to do the binary classification. Tumbling



Table 1: Activities per person

Activities per person
Eating Talking Walking Studying/Video/Phone

scrolling
P1 24.5 min 11 min 11 min 24 min
P2 5,5 min 8 min 9 min 12 min
P3 2 min 4 min 7 min 5 in
P4 6 min 3,5 in 4 min 5 min
total 34 min 26.5 min 31 min 46 min

Figure 3: Pipeline algorithm

time windows of 30 have been used. The scikit python li-
brary was uses. Gridsearch, an algorithm in scikit that finds
the optimal set of hyperparameters was used to tune the ma-
chine learning models. Table 1 shows that chewing/eating is
approximately 25% of all the data. Due the the imbalanced
data set, the Gridsearch performance was based on the f1-
score. Precision and recall is needed to compute the f1-score,
as opposed to the accuracy, where if all the data gets classified
to the biggest class, an accuracy of 75% would be achieved.
See appendix A for the used Gridsearch parameters per algo-
rithm.

4.4 Analysis
The following change has to be made to the machine learn-
ing pipeline: Decrease the amount of features used. Use se-
quential forward feature selection (SFS) to determine which

Figure 4: Example of pipeline steps for detecting number of auto-
correlation peaks, for a 30sec time window on an arbitrary axis when
eating a cookie.

Figure 5: Example of pipeline step for detecting number of autocor-
relation peaks

feature sets to use and determine which features are most im-
portant to the classifcation. Sets of size 1, 2, 3, 5, 10, 20, and
all features have been computed using SFS Feature sets were
also computed consisting of all except the auto-correlation
features, all except the FFT features and all except both FFT
and autocorrelation features. Besides the computation time
and memory it cost to compute the features, putting the new
data into the trained classification model in the embedded sys-
tem has to be considered too.

5 Results
See table 2 for the performance of the chosen algorithms.

The performance was measured by the accuracy and the f1-
score. The split of the train and test set are also shown. 4
splits were done for the train and test set and tested on win-
dows with all features. Various splits resulted to different
performance scores. The first two splits are most sensible
data splits, where training has been done on various partici-
pants, and testing on an unknown participant, with a roughly
75%-25% split. Looking at these two splits, Random forest



Figure 6: Example of pipeline step for detecting number of autocor-
relation peaks.

Figure 7: Example of pipeline step for detecting number of autocor-
relation peaks

performs has the best f1-score. Testing on p2 gave a lower
peformance than on testing on p3 and p4 together. Perhaps
the data of p2 looked a lot more different than those of the
other participants, due to different body motions.

With the second split, more analysis have been conducted.
One extra analaysis has been done where sample windows
had all features, all except features that use autocorrelation,
all except features that use FFT and all except features that
use autocorrelation and FFT. This was done to see the impact
of autocorrelation and FFT features, since both are quite com-
putationally heavy. Table 3 shows the performance. Interest-
ingly, random forest with an f1-score of 0.81 and k-nearest
neighbors with a f1-score of 0.62, perform better without au-
tocorrelation or FFT features. Overall, the autocorrelation
features seem to achieve a higher performance than the FFT.
However it is important to remember that there are more fea-
tures that use auto correlation, which probably impacted this.
But if this not take up more space, or time or energy from
an embedded system, the many more features autocorrelation
has, should be no issue.

With this second train-test split, sequential forward feature
selection has been done too. In appendix C, D, E, F, G the
selected feature sets can be found. An interesting observation
is that the acceleratormeter axis’ were the most frequently
selected axis to extract a feature from. KNN and DT seem to
use the gyroscope data relatively more compared to the other
models.

The f1-score for all of the models significantly increases
when the feature set goes from 5 to 10. It is also that when
going from 5 to 10 features, more FFT or autocorrelation fea-
tures are chosen. And they mostly only go up when going

from 10 to 20 features, where even more FFT or autocorrela-
tion features are selected. With too many features, namely all
78, and somethings already 30, the performance decreases.

From all the performance analysis, with the highest f1-
scores being above 0.8, it seems it is possible to conclude
that chewing detecting can indeed be done with a single IMU
around the ear. Autocorrelation and FFT features are compu-
tationally heavy, however they seem to have a significant ef-
fect of the classification performance. This is not ideal for in-
tegrating chewing detecting into an embedded system. How-
ever, there seems to be room for further research and discover
whether other features or tweaking parameters can minimize
or remove the use of autocorrelation and FFT features, using
also more user data.

Also see table

6 Conclusion
With the IMU data has been collected. The axis data has been
downsampled to 20Hz and passed through a low-pass filter.
Chewing detecting was done by determining chewing episode
in time windows of 30 seconds. Feature were extracted from
those time windows. Then random forest, decision tree, k-
neareast neigbours, support vector machine and logistic re-
gression machine learning models were used to classify the
data, for which f1-scored higher than 0.8 have been achieved.

Feature selection with sequential forward feature selection
and performance analysis has been done, and it seem to be
that features that use auto correlation and Fast Fourier Trans-
form (FFT), play a significant role increasing the classifica-
tion per- formance. They are computationally expensive and
are not ideal for embedded system. However there is room
for finding features that are less computa- tionally expen-
sive. Also, with more data from more participants the per-
formance might increase too. However, overall it can be con-
cluded that detecting chewing episode is possible with a sin-
gle IMU around the ear. And further research may lead to
more promising result towards truly detecting food intake in
an earable.

7 Improvements and recommendations
Working on this research paper and conducting the experi-
ment have been done in a span of 9 weeks. With this limited
time period, points of improvements - that were identified be-
fore, during and after the experiment - are to be mentioned,
as well as recommendations for future work. The following
can be found below:

• With having access to one IMU sensor for one ear, it
could be interesting to detect chewing with IMU sensors
on both ears, and how this has an effect on the classifi-
cation, as well as integrating in to an embedded system.
Could the sensors alternately do the detecting to save
battery or memory, or would one sensor be better, con-
sidering the overall usage?

• Considering the time span of the research, data was col-
lected on 4 participants. Collecting and using data from
more people can provide a more generalized result.



• Research could be done to find the best place to attach
the sensor, as well as a contructed way to attach the sen-
sor at that specific location, such that how the user wears
or places the sensor, does not or minimally influence the
sensor location.

• This research determines when a user is chewing or not,
with time windows. However chewing does not directly
correlate with how much someone eats, because people
may take different bite-sizes, or take a different amount
of chews before they swallow. Determining how much
someone chews or eats can be an interesting research
topic. This as well as determining what someone eats.
(Refer back to figure 1 for food intake steps)

• This research has done performance analysis. The next
step would be to actually implement it on the embedded
system and see the effects on speed, power and mem-
ory. This also rises the question of how much of the
earable should be embedded, and how much can actu-
ally be done on/moved to an external device, especially
assuming that an interface will be needed.

• The data was collected by doing particular activities and
adding the data sets together. A more accurate represen-
tation of real life daily activities would have been to do
the activities after one another, doing the activities si-
multaneously. A video recording could be used as the
ground truth to label the data.

• Different or additional features could be have been cho-
sen, aswell as different (hyper)parameters.

• As this thesis tried to find a low power and low memory
algorithm for embedded systems, can this chewing de-
tection be used as a prompt to start further food intake
analysis, for those that might be more demanding on the
embedded system? Is it possible to find a more lower
powered and lower memory algorithm, maybe one that
does not use machine learning?

8 Responsible Research
Responsible research is a broad term that discusses among
others, the validity of the research and ethical concerns. The
following subsections will touch upon these topics for this
particular research project.

8.1 Reproducibility
The codebase of the project can be found in a (private)
GitHub repository. With both the GitHub repository and this
thesis, it is to be believed that enough information is provided
such that the experiment can be reproduced.

8.2 Ethical concerns
Especially with the IMU sensor being integrated in a wear-
able device, ethical concerns need to be considered. With the
IMU sensor collecting data from its 6 axis, along with the
time of measurements, the collected data during this experi-
ment does not seem to be of a sensitive nature.

At a later stage, if food intake detection becomes highly
accurate, other parties might take advantage of this knowl-
edge. For example insurance companies asking for a higher
insurance rate if they know someone has unhealthy dietary
habits. Or advertisement companies showing more tailored
advertisements. It is thus important this private data is pro-
tected. If a person feels overall uncomfortable with this col-
lection of data, the possibility should be available to activate
or deactivate food intake detection.

8.3 Data
All 4 participants who’s data has been collected have con-
sented to participating in the experiment, as well as their data
being used for the thesis and it being published. It has to be
mentioned that 3 of those participants are involved in this or
a similar research project.

8.4 Validation
Regarding the testing and validation of the desired feature
extraction, example plots were used to manually verified if
it produced the desired output. Some measured activities
showed a not working accelerometer z-axis. These data sam-
ples were ommitted

References
[1] Abdelkareem Bedri, Richard Li, Malcolm Haynes,

Rai Prateek Kosaraju, Ishaan Grover, Temiloluwa Pri-
oleau, Min Yah Beh, Mayank Goel, Thad Starner, and
Gregory Abowd. Earbit: Using wearable sensors to
detect eating episodes in unconstrained environments.
2017.

[2] Romit Roy Choudhury. Earable computing: A new area
to think about. 2021.

[3] Muhammad farooq and Edward Sazonov. Detection of
chewing from piezoelectric film sensor signals using en-
semble classifiers. 2016.

[4] Muhammad farooq and Edward Sazonov. Linear regres-
sion models for chew count estimation from piezoelectric
sensor signals. 2016.

[5] Roya Lotfi, Heorge Tzanetakis, Rasit Eskicioglu, and
Pourang Irani. A comparison between audio and imu
data to detect chewing events based on an earable device.
2020.

[6] Dan Morris., T. Scott Saponas, Andrew Guillory, and Ilya
Kelner. Recofit: Using a wearable sensor to find, recog-
nize, and count repetitive exercises. 2014.

[7] Temiloluwa Prioleau, Elliot Moore, and Maysam Gho-
vanloo. Unobtrusive and wearable systems for automatic
dietary monitoring. 2020.

[8] Tobias Röddiger, Christopher Clarke, Paula Breitling
anf Tim Schneegans, Haibin Zhao, Hans Gellersen, and
Micheal Beigl. Sensing with earables: A systematic lit-
erature review and taxonomy of phenomena. 2022.

[9] Nur Asmiza Selamat and Sawal hamid Md. Aki. Auto-
matic food intake monitoring based on chewing activity:
A survey. 2020.



Table 2: Performance of the algorithms with different train-test splits

peformance
Algorithm Train set Test set Accuracy f1-score

Random forest
p1, p3 , p4 p2 0.65 0.60

Random forests
p1, p2 p4, p3 0.89 0.76

Random forest
p1 p2, p3, p4 0.74 0.33

Random forest
p2, p3, p4 p1 0.71 0.42

Random forest
p1, p2, p3, p4 p1, p2, p3, p4 0.72 0.58

Decision Tree
p1, p3 , p4 p2 0.64 0.59

Decision Tree
p1, p2 p4, p3 0.65 0.59

Decision Tree
p1 p2, p3, p4 0.65 0.27

Decision Tree
p2, p3, p4 p1 0.61 0.28

Decision Tree
p1, p2, p3, p4 p1, p2, p3, p4 0.67 0.48

Log. Reg.
p1, p3 , p4 p2 0.68 0.5

Log. Reg.
p1, p2 p4, p3 0.87 0.78

Log. Reg.
p1 p2, p3, p4 0.74 0.43

Log. Reg.
p2, p3, p4 p1 0.75 0.63

Log. Reg.
p1, p2, p3, p4 p1, p2, p3, p4 0.69 0.57

Sup. Vec. Mach.
p1, p3 , p4 p2 0.53 0.49

Sup. Vec. Mach.
p1, p2 p4, p3 0.73 0.65

Sup. Vec. Mach.
p1 p2, p3, p4 0.57 0.34

Sup. Vec. Mach
p2, p3, p4 p1 0.58 0.55

Sup. Vec. Mach.
p1, p2, p3, p4 p1, p2, p3, p4 0.58 0.48

K-NN
p1, p3 , p4 p2 0.74 0.61

K-NN.
p1, p2 p4, p3 0.80 0.59

K-NN.
p1 p2, p3, p4 0.68 0.52

K-NN.
p2, p3, p4 p1 0.64 0.28

K-NN.
p1, p2, p3, p4 p1, p2, p3, p4 0.69 0.57



Table 3: Performance: all, no autocorrelation, no FFT, no autocorrelation and no FFT

peformance

Algorithm All feat No autocorrelation No FFT No autocorrelation and no FFT

Random forest
accuracy=0.89
f1-score=0.75

accuracy=0.80
f1-score=0.61

accuracy=0.87
f1-score=0.73

accuracy=0.92
f1-score=0.81

Decision Tree
accuracy=0.80
f1-score=0.61

accuracy=0.65
f1-score=0.59

accuracy=0.65
f1-score=0.59

accuracy=0.65
f1-score=0.59

Log. Reg.
accuracy=0.87
f1-score=0.78

accuracy=0.89
f1-score=0.82

accuracy=0.89
f1-score=0.82

accuracy=82
f1-score=0.67

Sup. Vec. Mach.
accuracy=0.45
f1-score=0.38

accuracy=0.69
f1-score=0.62

accuracy=0.79
f1-score=0.67

accuracy=0.73
f1-score=0.65

K-NN
accuracy=0.80
f1-score=0.59

accuracy=0.80
f1-score=0.59

accuracy=0.79
f1-score=0.61

accuracy=0.79
f1-score=0.62



A Gridsearch parameters: for computing all
features

Features that were used in gridsearch, per algorithm:

Random forest:
• n estimators: [100, 20, 50] (removed 200 when doing

sequential feature selection due to runnning time)
• criterion: [’entropy’, ’gini’] (removed ’gini’ when doing

sequential feature selection due to runnning time)
• max dept’: [None, 1, 2, 3, 10, 20]
• min samples leaf: [1, 2, 3, 5]
• min samples leaf: [1, 2, 3]
• class weight: [’balanced’, None] (removed None when

computing Seq. Feat. Selection due to runnning time)

Decision tree:
• criterion: [’gini’, ’entropy’]
• max depth: [None, 1, 2, 3, 10, 20]
• min samples leaf: [1, 2, 3, 5]
• min samples leaf: [1, 2, 3]
• class weight: [’balanced’, None]

Logistic regression:
• penalty: [’l1’, ’l2’, ’elastic’, None]
• C: [0.001, 0.009, 0.01, 0.09, 1, 5, 10, 25]
• class weight = [’balanced’, None]
• random state: [0, None]
• solver: [’liblinear’, ’lbfgs’]

K-nearest neighbors:
• n neighbours: [3, 5, 8, 10, 20]

Support vector machine:
• kernel: [’rbf’, ’sigmoid’, ’poly’]
• C: [1, 2, 3, 300, 500]
• max iter: [1000, 100000, -1]

See next page for chosen parameters per train-test set.



Chosen hyperparameters after GridSearch (scikit)
Algorithm Train set Test set Parameters

Random forest
p1, p3 , p4 p2 class weight=balanced, criterion=entropy, max depth=2,

min samples leaf=2, n estimators=100

Random forest
p1, p2 p4, p3 class weight=balanced, criterion=entropy, max depth=None,

min samples leaf=2, n estimators=100

Random forest
p1 p2, p3, p4 class weight=None, criterion=entropy, max depth=10,

min samples leaf=2, n estimators=50

Random forest
p2, p3, p4 p1 class weight=balanced, criterion=entropy, max depth=10,

min samples leaf=3, n estimators=100

Random forest
p1, p2, p3, p4 p1, p2, p3, p4 class weight=None, criterion=gini, max depth=None,

min samples leaf=1, n estimators=50

Decision Tree
p1, p3 , p4 p2 class weight=None, criterion=entropy, max depth=2,

min samples leaf=2

Decision Tree
p1, p2 p4, p3 class weight=balanced, criterion=entropy, max depth=2,

min samples leaf=1

Decision Tree
p1 p2, p3, p4 class weight=balanced, criterion=entropy, max depth=20,

min samples leaf=3

Decision Tree
p2, p3, p4 p1 class weight=balanced, criterion=entropy, max depth=None,

min samples leaf=2

Decision Tree
p1, p2, p3, p4 p1, p2, p3, p4 class weight=None, criterion=gini, max depth=10,

min samples leaf=1

Log. Reg.
p1, p3 , p4 p2 C=0.01, class weight=None, penalty=l1, random state=0,

solver=liblinear

Log. Reg.
p1, p2 p4, p3 C=0.01, class weight=balanced, penalty=l2, random state=0,

solver=lbfgs

Log. Reg.
p1 p2, p3, p4 C=5, class weight=balanced, penalty=l2, random state=0,

solver=lbfgs

Log. Reg.
p2, p3, p4 p1 C=0.01, class weight=None, penalty=l1, random state=0,

solver=liblinear

Log. Reg.
p1, p2, p3, p4 p1, p2, p3, p4 C=25, class weight=balanced, penalty=l1, random state=None,

solver=liblinear

Sup. Vec. Mach.
p1, p3 , p4 p2 C=1, kernel=linear, max iter=100000

Sup. Vec. Mach.
p1, p2 p4, p3 C=1, kernel=linear, max iter=100000

Sup. Vec. Mach.
p1 p2, p3, p4 C=1, kernel=linear, max iter=1000

Sup. Vec. Mach
p2, p3, p4 p1 C=1, kernel=linear, max iter=100000

Sup. Vec. Mach.
p1, p2, p3, p4 p1, p2, p3, p4 C=1, kernel=linear, max iter=100000

K-NN
p1, p3 , p4 p2 n neighbors=15

K-NN.
p1, p2 p4, p3 n neighbors=3

K-NN.
p1 p2, p3, p4 n neighbors=20

K-NN.
p2, p3, p4 p1 n neighbors=3

K-NN.
p1, p2, p3, p4 p1, p2, p3, p4 n neighbors=8



B Gridsearch parameters: all features, no autocorrelation, no FFT, no autocorrelation and no
FFT

Features that were used in gridsearch, per algorithm:

Random forest:
• All: class weight=None, criterion=’entropy’, max depth=None, min samples leaf=2, n estimators=50
• No autocorr.: class weight=’balanced’, criterion=’entropy’, max depth=10, min samples leaf=3, n estimators=20
• No FFT: class weight=None, criterion=’entropy’, max depth=10, min samples leaf=2, n estimators=50
• No autocorr and no FFT: class weight=None, criterion=’entropy’, max depth=None, min samples leaf=2,

n estimators=50

Decision tree:
• All: class weight=None, criterion=’entropy’, max depth=20, min samples leaf=3
• No autocorr.: class weight=’balanced’, criterion=’entropy’, max depth=2, min samples leaf=1
• No FFT: class weight=’balanced’, criterion=’entropy’, max depth=2, min samples leaf=1
• No autocorr and no FFT: class weight=’balanced’, criterion=’entropy’, max depth=2, min samples leaf=2

Logistic regression:
• All: C=0.01, class weight=’balanced’, penalty=l2, random state=0, solver=lbfgs
• No autocorr.: C=1, class weight=’balanced’, penalty=l1, random state=0, solver=liblinear
• No FFT: C=0.09, class weight=’balanced’, penalty=l1, random state=0, solver=liblinear
• No autocorr and no FFT: C=0.01, class weight=’balanced’, penalty=l2, random state=0, solver=lbfgs

K-nearest neighbors:
• All: n neighbors=3
• No autocorr.: n neighbors=3
• No FFT: n neighbors=3
• No autocorr and no FFT: n neighbors=3
Support vector machine:
• All: C=1, kernel=linear, max iter: 100000
• No autocorr.: C=1, kernel=linear, max iter: 100000
• No FFT: C=1, kernel=linear, max iter: 1000
• No autocorr and no FFT: C=1, kernel=linear, max iter: 100000



C RF performance with Sequential Feature Selection

RF - Performance after Sequential forward feature selection (SFS)
→ Number of features #1 #2 #3 #5 #10 #20 #30
↓ Features
f1 - mean 1
2 - stand. dev. 0
f3 - variance 1 0, 1, 3, 4
f4 - rand. mean sqr. 1 1 1 2
f5 - nr zero-cross. 2
f6 - var. zero-cross. 1 5
f7 - peak freq (FFT) 4 0
f8 - peak power (FFT) 2 2 2
f9 - nr. auto-corr. peaks 2 2
f10 - weak peaks (ac)
f11 - prominent peaks (ac)
f12- max autocorr. value (ac)
f13 - first peak after zero-cross.
(ac)

Random forest
• accuracy:
• f1-score:

0.73
0.64

0.87
0.79

0.85
0.73

0.90
0.82

0.94
0.89

The number in the table refer to the axis of the IMU:
0 : x-axis accelerometer
1 : y-axis accelerometer
2 : z-axis accelerometer
3 : x-axis gyroscope
4 : y-axis gyroscope
5 : z-axis gyroscope

Random forest:
• Nr. of features 1: class weight=’balanced’, criterion=’entropy’, max depth=1, min samples leaf=1, n estimators=20
• Nr. of features 2: class weight=’balanced’, criterion=’entropy’, max depth=3, min samples leaf=2, n estimators=20
• Nr. of features 3:class weight=’balanced’, criterion=’entropy’, max depth=3, min samples leaf=3, n estimators=100
• Nr. of features 4: class weight=’balanced, criterion=’entropy’, max depth=10, min samples leaf=1, n estimators=50
• Nr. of features 10: class weight=balanced’, criterion=’entropy’, max depth=20, min samples leaf=2, n estimators=100
• Nr. of features 20: not determined due to long runtime
• Nr. of features 30: not determined due to long runtime



D DT performance with Sequential Feature Selection

DT - Performance after Sequential forward feature selection (SFS)
→ Number of features #1 #2 #3 #5 #10 #20 #30
↓ Features
f1 - mean 0 0 0 0 0, 4
2 - stand. dev. 0 4 0, 1
f3 - variance 4 4 0, 4 4 4 0, 4, 5
f4 - rand. mean sqr. 1 1 1 1 1, 2 1, 4 0, 1, 2, 3
f5 - nr zero-cross. 0, 2
f6 - var. zero-cross. 0, 1, 4, 5
f7 - peak freq (ffT) 0 0, 2, 3 0, 1, 3
f8 - peak power (ffT) 3
f9 - nr. auto-corr. peaks 3 3 0, 3
f10 - weak peaks (ac) 0 0, 1, 2, 3,

4
0, 5

f11 - prominent peaks (ac) 0 1, 2, 3, 4 0, 1, 2
f12- max autocorr. value (ac) 4
f13 - first peak after zero-cross.
(ac)

4, 5 0, 1

Decision tree
• accuracy:
• f1-score:

0.75
0.65

0.76
0.67

0.76
0.67

0.76
0.67

0.89
0.80

0.75
0.65

0.89
0.80

The number in the table refer to the axis of the IMU:
0 : x-axis accelerometer
1 : y-axis accelerometer
2 : z-axis accelerometer
3 : x-axis gyroscope
4 : y-axis gyroscope
5 : z-axis gyroscope

Decision tree parameters:
• Nr. of features 1: class weight=’balanced’, criterion=’gini’, max depth=2, min samples leaf=1
• Nr. of features 2: class weight=’balanced’, criterion=’gini’, max depth=3, min samples leaf=1
• Nr. of features 3:class weight=’balanced’, criterion=’gini’, max depth=3, min samples leaf=1
• Nr. of features 4: class weight=’balanced, criterion=’gini’, max depth=3, min samples leaf=1
• Nr. of features 10: class weight=None’, criterion=’entropy’, max depth=10, min samples leaf=2
• Nr. of features 20: class weight=’balanced’, criterion=’gini’, max depth=2, min samples leaf=3
• Nr. of features 30: class weight=’balanced’, criterion=’gini’, max depth=20, min samples leaf=3



E LR performance with Sequential Feature Selection

Log. Reg. - Performance after Sequential forward feature selection (SFS)
→ Number of features #1 #2 #3 #5 #10 #20 #30
↓ Features
f1 - mean 0 0
2 - stand. dev. 2 1, 2
f3 - variance 1, 2
f4 - rand. mean sqr 1 1 1 1, 2 0, 1, 2
f5 - nr zero-cross. 3 3 3 3
f6 - var. zero-cross. 1 1 1 1 1 0, 1
f7 - peak freq (ffT) 0 0 0
f8 - peak power (ffT) 2
f9 - nr. auto-corr. peaks
f10 - weak peaks (ac) 0 0,1 0, 1, 4
f11 - prominent peaks (ac)
f12- max autocorr. value (ac) 0, 3
f13 - first peak after zero-cross.
(ac)

0 0, 2

Logistic Regression
• accuracy:
• f1-score:

0.77
0.62

0.75
0.65

0.77
0.69

0.77
0.69

0.80
0.72

0.87
0.78

0.
0.

The number in the table refer to the axis of the IMU:
0 : x-axis accelerometer
1 : y-axis accelerometer
2 : z-axis accelerometer
3 : x-axis gyroscope
4 : y-axis gyroscope
5 : z-axis gyroscope

Logistic regression:
• Nr. of features 1: C=0.001, class weight=’balanced’, penalty=l2, random state=0, solver=liblinear
• Nr. of features 2:C=0.001, class weight=’balanced’, penalty=l2, random state=0, solver=lbfgs
• Nr. of features 3: C=0.001, class weight=’balanced’, penalty=l2, random state=0, solver=lbfgs
• Nr. of features 4: C=0.001, class weight=’balanced’, penalty=l2, random state=0, solver=lbfgs
• Nr. of features 10: C=0.009, class weight=’balanced’, penalty=l2, random state=0, solver=lbfgs
• Nr. of features 20:
• Nr. of features 30:



F KNN performance with Sequential Feature Selection

KNN - Performance after Sequential forward feature selection (SFS)
→ Number of features #1 #2 #3 #5 #10 #20 #30
↓ Features
f1 - mean 4 4 4
f2 - stand. dev. 3 3 3 3, 5 3, 5 3, 5 3, 5
f3 - variance
f4 - rand. mean sqr. 2 2 2 2, 3 2, 3 2, 3
f5 - nr zero-cross. 5 5 2, 5 2, 5 2, 5
f6 - var. zero-cross. 0 0 0, 3
f7 - peak freq (ffT) 0 0, 1, 2 0, 1, 2, 3
f8 - peak power (ffT)
f9 - nr. auto-corr. peaks 2 2 2 2
f10 - weak peaks (ac) 0, 1 0, 1, 2, 3
f11 - prominent peaks (ac) 0, 1 0, 1, 2,3
f12- max autocorr. value (ac) 0, 1 0, 1, 2, 3
f13 - first peak after zero-cross.
(ac)

0, 1 0, 1, 2, 3

K-nearest neighbor
• accuracy:
• f1-score:

0.77
0.61

0.83
0.0.7

0.89
0.79

0.92
0.84

0.97
0.94

0.97
0.94

0.97
0.94

The number in the table refer to the axis of the IMU:
0 : x-axis accelerometer
1 : y-axis accelerometer
2 : z-axis accelerometer
3 : x-axis gyroscope
4 : y-axis gyroscope
5 : z-axis gyroscope

K-nearest neighbor:
• Size 1: n neighbors=20
• Size 2: n neighbors=3
• Size 3:n neighbors=3
• Size 4: n neighbors=5
• Size 10: n neighbors=5
• Size 20: n neighbors=5
• Size 30: n neighbors=5



G SVM performance with Sequential Feature Selection

SVM - Performance after Sequential forward feature selection (SFS)
→ Number of features #1 #2 #3 #5 #10 #20 #30
↓ Features
f1 - mean 1
2 - stand. dev. 1 1 1 1, 3
f3 - variance 1 1 1 1 1 1, 2, 4
f4 - rand. mean sqr. 2 2 1, 2
f5 - nr zero-cross.
f6 - var. zero-cross. 0 0 0 0, 4, 5 0, 4, 5
f7 - peak freq (ffT) 0 0 0, 1, 4 0, 1, 2, 4
f8 - peak power (ffT) 7
f9 - nr. auto-corr. peaks 5 5 5
f10 - weak peaks (ac) 4 1, 2, 4 0, 1, 2, 4
f11 - prominent peaks (ac) 3 2, 3, 5
f12- max autocorr. value (ac) 2 2 2 2 2 1, 2, 4 1, 2, 4
f13 - first peak after zero-cross.
(ac)

1, 4 1, 3, 4 1, 3, 4

Suport Vector machine
• accuracy:
• f1-score:

0.68
0.58

0.69
0.62

0.69
0.62

0.69
0.62

0.87
0.76

0.86
0.78

0.82
0.71

The number in the table refer to the axis of the IMU:
0 : x-axis accelerometer
1 : y-axis accelerometer
2 : z-axis accelerometer
3 : x-axis gyroscope
4 : y-axis gyroscope
5 : z-axis gyroscope

Support vector machine:
• Nr. of features 1: C=500, kernel=linear, max iter: 1000
• Nr. of features 2: C=300, kernel=linear, max iter: 100000
• Nr. of features 3: C=300, kernel=linear, max iter: 100000
• Nr. of features 4: C=3, kernel=linear, max iter: 100000
• Nr. of features 10: C=500, kernel=linear, max iter: 100000
• Nr. of features 20: C=500, kernel=linear, max iter: 100000
• Nr. of features 30: C=1, kernel=linear, max iter: 100000

For gridsearch, the following three kernels were omitted [’rbf’,’sigmoid’, ’poly’] due to long runtime. This seemed a sensible
choice, since the previous gridsearch optimal parameters all contained the ’linear’ kernel.


	Introduction
	Related work
	Various methods
	Similar setup


	Methodology
	Part 1: Experiment
	Hardware components and software
	Data collection
	Feature selection
	Data processing

	Part 2: Analysis

	Experiment
	Sensor setup
	Data preparation
	Data classification
	Analysis

	Results
	Conclusion
	Improvements and recommendations
	Responsible Research
	Reproducibility
	Ethical concerns
	Data
	Validation

	Gridsearch parameters: for computing all features
	Gridsearch parameters: all features, no autocorrelation, no FFT, no autocorrelation and no FFT
	RF performance with Sequential Feature Selection
	DT performance with Sequential Feature Selection
	LR performance with Sequential Feature Selection
	KNN performance with Sequential Feature Selection
	SVM performance with Sequential Feature Selection

