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Summary

This thesis addresses a critical and often overlooked challenge: quantifying the carbon emissions gener-
ated by large-scale post-disaster reconstruction efforts. In the wake of natural disasters, rapid rebuilding
is essential to restore critical infrastructure and housing. However, this urgency leads to a pronounced
carbon spike due to the energy-intensive production and transportation of materials such as concrete,
steel, and other construction inputs. Such emissions not only intensify the greenhouse effect but also
contribute to a reinforcing cycle, where increased emissions exacerbate climate change and, in turn,
drive the frequency and severity of future disasters.

Using Antakya, Turkey -a city severely affected by the 2023 Turkey-Syria earthquake- as a case study,
this research develops and a framework to estimate the carbon footprint of post-disaster reconstruction.
By using Life Cycle Assessment (LCA) studies and employing Monte Carlo simulations, the research
quantifies the carbon footprint of reconstructing approximately 38,000 buildings in Antakya while ana-
lyzing the sensitivity of the outcomes to variations in critical input parameters.

The analysis indicates that the reconstruction of the Antakya could result in emissions between 12.6
and 14.2 million tonnes of CO2 an amount comparable to the annual emissions of small countries like
Slovenia or Lithuania, and roughly 3% of Turkey’s total emissions. Preliminary estimates suggest that
the societal costs of these emissions could reach up to $1 billion, underscoring a hidden burden that is
rarely considered in disaster recovery planning.

While the model provides a transparent and practical tool for preliminary decision-making in post-disaster
contexts, several limitations warrant further investigation. Notably, the model simplifies complex con-
struction processes by consolidating various emission sources into a single CO2 factor, and it does not
yet account for the potential emission reductions from recycling construction waste.

In conclusion, this thesis presents a methodological approach that can be adapted- but also further refined
in the future- to quantify the emissions from post-disaster reconstruction, as demonstrated in the An-
takya case study. By translating abstract assumptions about the environmental impact of reconstruction
into tangible, measurable estimates, the study clarifies the significance of this phenomenon. This mea-
surable basis facilitates a better understanding for policymakers and decision-makers, making it easier
to incorporate environmental cost considerations into disaster management strategies and planning.

i



Contents

Summary i

1 Introduction 1
1.1 Carbon Cost of Post-Disaster Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Knowledge Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 4
2.1 Calculating Emissions from the Building Sector . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Building Life Cycle Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Methodologies of LCA Building Implementation . . . . . . . . . . . . . . . . . . 6

2.2 Construction Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Post-Disaster Re-Construction Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Potential Impact of re-construction emissions to the environment and society . . . . . . 9
2.5 Mitigation of construction emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Uncertainty Analysis in a Policy Context . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 Uncertainty Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Case Study: Antakya 15

4 Method 18
4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Gross Floor Area & Number of Floors . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 CO2 Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Gross Floor Area & Number of Floors . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 CO2 Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Assigning Uncertainty Ranges for Model’s Input . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 Gross Floor Area - Fixed Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Number of Floors or Density - Ranges . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 CO2 Factor - Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Calculate CO2 Emissions via Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 Monte Carlo One At a Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Monte Carlo Simultaneously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.3 Sobol Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Social Cost of Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Policy Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6.1 A. Policy Pathways: Using sustainable construction practices . . . . . . . . . . . 34
4.6.2 B. Policy Pathways: Energy-efficient vs traditional buildings . . . . . . . . . . . 35

5 Results 37
5.1 Raw Data Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Cleaned and Processed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Uncertainty Ranges Assigned to Model Inputs . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Results of CO2 Emissions Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Results: Monte Carlo One at a Time (OAT) . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Main Results: Monte Carlo Simultaneously . . . . . . . . . . . . . . . . . . . . . 43
5.4.3 Sobol Sensitivity Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Social Cost of Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Policy Pathways Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ii



Contents iii

5.6.1 A. Policy Pathways: Using sustainable construction practices . . . . . . . . . . . 45
5.6.2 B. Policy Pathways: Energy-efficient vs traditional buildings . . . . . . . . . . . 46

6 Discussion 48
6.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusions 54
7.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.1 Sub-questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.2 Main Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Policy Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Appendix 67
A.1 Chapter: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Chapter: State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Chapter: Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.4 Chapter: Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4.2 Assigning Uncertainty Ranges for Model’s Input . . . . . . . . . . . . . . . . . . 73
A.4.3 Calculate CO2 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4.4 Social Cost of Carbon - Alternative method . . . . . . . . . . . . . . . . . . . . . 78
A.4.5 Policy Pathways: Building Sustainable houses . . . . . . . . . . . . . . . . . . . . 79

A.5 Chapter: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.5.1 Raw Data Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.5.2 Results of CO2 Emissions MC Simulations . . . . . . . . . . . . . . . . . . . . . 81
A.5.3 Mathematical explanation of narrow distributions . . . . . . . . . . . . . . . . . 85
A.5.4 Social Cost of Carbon Results - Alternative results . . . . . . . . . . . . . . . . . 89
A.5.5 Sustainable house . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Figures

2.1 Standard life cycle stages and modules, adopted from EN 15978:2011 (NSAI). The focus
of the project is specifically on the emissions produced during the Product and Con-
struction Process stages (collectively known as the Construction Phase) of the (LCA)
which can be distinguished with a red underline. . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Schematic representation of the focus area within the broader framework of Life Cycle
Assessment (LCA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Carbon spike as illustrated in the work of Röck et al. 2020. Comparison of the carbon
spike from buildings following current energy performance regulations and highly energy-
efficient buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Occurrence of mitigation strategies based on the work of Pomponi and Moncaster 2016. 11
2.5 Details of the mitigation strategies (MSs) identified in the literature. . . . . . . . . . . . 11

3.1 The map illustrates the area impacted by the earthquake as recorded until 2:30 pm local
time on February 7th, 2023. Source CNN . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Map of damage to Antakya after the Turkey-Syria earthquakes in February 2023. @Foster
+ Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Satellite images before and after the earthquake in Hatay (taken from Google Satellite). 16

4.1 Flowchart of the Research Method, where it shows how the output of each step is the
input of the next step. More details relating to each step can be found in Figures A.3 . 19

4.2 Overview of LCA literature review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Flowchart outlining Step 2 of the methodology for spatial data. . . . . . . . . . . . . . . 21
4.4 Flowchart outlining Step 2 of the methodology for literature review meta-analysis. . . . 22
4.5 Visualization of the Data Pre-processing workflow in the Literature Review Meta-Analysis

Methodology for the CO2 Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Boxplot of CO emission factors from various studies included in the analysis.

The first four boxplots represent benchmark studies identified through snowball sampling
during the literature review. The last two (in orange and red) reflect aggregated ranges
derived from multiple studies focused on Southern Europe and Turkey, respectively. . . 25

4.7 Flowchart of the process to transform the density into number of floors . . . . . . . . . . 26
4.8 Transformation of boxplots into probability distributions. The figure displays the result-

ing normal distributions derived from the 6 boxplot ranges. The same approach was also
applied to generate uniform and triangular distributions and can be found in Figures A.8,
A.9 and A.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.9 Mixture Distribution based to the CO2 Factor for different normal distribution ranges . 30
4.10 Flowchart illustrating how the parameter ranges summarized in Figure A.11 are used in

the analysis. Each range was tested to assess the influence of either the Number of Floors
or the CO2 Factor, by varying one parameter at a time while holding the other constant
(OAT), while only a few ranges have been used for the main results. . . . . . . . . . . . 31

5.1 Antakya reconstruction plans based on the data from Hatay Metropolitan Municipality
Hatay Metropolitan Municipality 2024 (see A.4). Color coded based on the type of
landuse, with gray the residential buildings.0 . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Map Visualization of the provided Spatial Data with a zoom in. The larger colored areas
correspond to data from the housing.shp shapefile, while the smaller shapes represent
building footprints from the Buildings.shp dataset, both color-coded by density. . . . . 39

5.3 Preliminary Analysis Distribution plots for the key parameters of th model . . . . . . . 39
5.4 One at a time variation of Density Ranges (without discrete probability density) for the

Range 3 - Combined Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



List of Figures v

5.5 Range 3 - Combined Approach but with Weighted Probability . . . . . . . . . . . . . . 41
5.6 Monte Carlo Simulation with all the possible distributions . . . . . . . . . . . . . . . . . 42
5.7 Main Results from Monte Carlo Simulations with a variance in both of the parameters. 43
5.8 Sobol sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 Total CO2 emissions under different shares of sustainable/TOKI -based construction . . 45
5.10 Break even point at 24 years with CO2 Factor for construction equal to the mean value of

393 kg CO2 eq/m2 while showing the range for CO2 factor from 257-530 kg CO2 eq/m2.
The y-axis on the right shows the total tonnes of CO2 for a building of a 5 multi-storey
building of 745 m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.11 Break even point at 13, 24 and 36 years based on the minimum, mean and maximum
value of the CO2 Factor range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1 The progressive transition of levels of uncertainty from determinism to total ignorance
as depicted in the work of Haasnoot 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Antakya’s growth based on the work of X . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Research Method with more detailed information . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Reconstruction Plans as provided from the Hatay Municipality . . . . . . . . . . . . . . 72
A.5 Regions with climate Csa Reyes et al. [2019] . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.6 Flowchart of the step 3 from the research method. Assigning Uncertainty ranges for

model’s parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.7 Distribution of floors of the 2 datasets that have been used. . . . . . . . . . . . . . . . . 74
A.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.9 Triangular Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.10 Triangular Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.11 All possible ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.12 Histogram of the social cost of carbon based on the work of Tol 2023 . . . . . . . . . . . 78
A.13 Scenarios of the energy efficient measures as taken from the work of Saleh et al. [2024] . 79
A.14 The raw spatial data obtained from the Hatay Municipality, representing the digitized

version of the reconstruction plans shown in Figure ??. Key columns for analysis include
Density and Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.16 One at a time variation of Density Range (without discrete probability density) . . . . . 81
A.17 One at a time variation of Density Range (without discrete probability density) . . . . . 82
A.18 OAT variation of the CO2 Factor Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.19 Distribution of the CO2 Factor for "Mix", "Broad" and "DeWolf" distribution. . . . . . . 87
A.20 Monte Carlo Simulations with an increasing sample of buildings . . . . . . . . . . . . . . 88
A.21 Coefficient of Variance for three ranges of the CO2 Factor . . . . . . . . . . . . . . . . . 89
A.22 Distribution of the CO2 Factor for "Mix", "Broad" and "De Wolf" distribution. . . . . . 89
A.23 Histogram of the social cost of carbon that the rebuilding of Antakya could potentially

have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Tables

4.1 Overview of studies used to define CO2 emission factor ranges for Monte Carlo simula-
tions. The first four rows are benchmark studies covering a large sample of buildings
and specific LCA phases. The South Europe and Turkey rows aggregate multiple studies
reviewed in this thesis; while exact LCA phases arent specified, all include at least A3
phase, which represent the bulk of the construction emissions. . . . . . . . . . . . . . . . 24

4.2 Density Classifications, Floor Possible, and Floor Distributions for Each Range . . . . . 28
4.3 Scenarios where the CO2 Factor is constant and the Number of Floors is varying . . . . 31
4.4 Scenarios where the Number of Floors is constant and the CO2 Factor is varying. All of

the above scenarios can be found in detail, in table A.3 . . . . . . . . . . . . . . . . . . 32
4.5 CO2 Emission Simulation Scenarios: Number of Floors and CO2 Factor Ranges . . . . . 32
4.6 Baseline and Sustainable Reconstruction Scenarios: CO2 Factor Ranges and Proportions 35
4.7 Summary of operational emissions across different sustainable building scenarios. Emis-

sions are calculated per square meter per year and reflect the effectiveness of each strategy
relative to the baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Scenarios where the CO2 Factor is constant and the Number of Floors is varying . . . . 40
5.2 Scenarios where the CO2 Factor is constant and the Number of Floors is varying . . . . 41
5.3 Scenarios where the Number of Floors is constant and the CO2 Factor is varying. All

scenarios in detail can be found it table A.3 . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Sensitivity indices (ST, S1, S2) and confidence intervals for each variable. . . . . . . . . 44

A.1 Description of the main types of LCA analysis . . . . . . . . . . . . . . . . . . . . . . . 68
A.2 Key Metrics for Building Density and Area . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.3 Scenarios for CO2 Emission Simulations: Number of Floors and CO2 Factor Distributions 77

vi



1
Introduction

Natural disasters leave behind more than just immediate devastation. Beyond the tragic loss of life and
widespread displacement, they destroy infrastructure on a massive scale, triggering urgent reconstruction
efforts. These rebuilding activities, while essential for recovery, come with steep environmental costs,
ranging from pollution and deforestation to a marked increase in carbon emissions.

Even under normal circumstances, the construction industry is a major contributor to global carbon
emissions. In post-disaster scenarios, however, the environmental impact of rebuilding is greatly am-
plified. Reconstruction projects require vast amounts of natural resources and rely heavily on energy-
intensive materials like steel and cement, which are notorious for their high emission levels. In the rush
to restore communities, environmental concerns are often sidelined, resulting in a pronounced carbon
spike during the initial phase of rebuilding. This surge not only exacerbates climate change but also
perpetuates a feedback loop, where escalating emissions contribute to the increasing severity and fre-
quency of disasters. Despite its critical importance, the carbon footprint of large-scale reconstruction
remains under-explored.

This thesis addresses this gap by developing a method to estimate the carbon emissions associated with
post-disaster reconstruction under uncertainty. It applies this method to the case of Antakya, Turkey
-a city severely affected by the 2023 Kahramanmaras earthquake - to quantify the emissions impact
of rebuilding. The case of Antakya presents a timely and critical opportunity to study these impacts.
With more than 38,000 buildings already underway to be constructed, it offers real -world relevance
and data to support this analysis.

1.1. Carbon Cost of Post-Disaster Recovery
Understanding the carbon cost of reconstruction requires more than tracking operational emissions. It
demands attention to construction-phase emissions -especially embodied carbon- released during the
urgent and large-scale use of materials. This is being supported by recent research that increasingly
highlights the significance of embodied emissions-those resulting from material extraction, transporta-
tion, and manufacturing-which predominantly occur during the construction phase.

This concern is amplified in post-disaster scenarios, where reconstruction efforts trigger a concentrated
release of emissions over a relatively short period (typically one to five years). The duration depends
on factors such as the disasters severity, the accessibility of the affected area, available resources, and
the efficiency of coordination among stakeholders. For example, the reconstruction following the 2008
Wenchuan Earthquake in China saw the completion of most efforts within three years, including nearly 2
million rural housing units, 290,000 urban housing units, and numerous repairs (Johnson and Olshansky
2016). Similarly, substantial progress was achieved within five years after the 2011 Great East Japan
Earthquake, despite the extensive damage caused by the tsunami across 216 square miles (Cho 2014).
In the case of the 2001 Gujarat Earthquake in India, over 70% of reconstruction and repair work was
completed within two years, with more than 911,000 houses repaired and 201,000 newly built by 2006
(Johnson and Olshansky 2016).

1



1.2. Knowledge Gap 2

The release of vast amount of emissions in the relative short duration of construction is often referred to
as the "carbon spike". To evaluate these emissions, it is essential to estimate the carbon footprint of re-
construction activities. The standard method for assessing the carbon emissions of construction projects
is through Life Cycle Assessment (LCA). While LCA is not specifically designed for post-disaster re-
construction, it remains the most widely accepted framework for quantifying the environmental impact
of buildings, including emissions generated during the initial (re)-construction stage.

Methods for Estimating Carbon Emissions Life Cycle Assessment (LCA) is the most commonly
used method for estimating the carbon emissions generated from construction activities, particularly
in the context of building reconstruction (Bastos et al. 2014). LCA offers a comprehensive evaluation
of a building’s environmental impact throughout its entire lifecycle, from raw material extraction to its
end-of-life phase (Cai et al. 2022). In the context of post-disaster reconstruction, LCA focuses on the
emissions released up to the point when construction materials arrive at the construction site, encom-
passing stages A1 to A5. These stages include raw material extraction, manufacturing, transportation,
and on-site construction processes.
The main types of Life Cycle Assessment (LCA) are process-based LCA, input-output (IO) LCA, and
hybrid LCA. Process-based LCA focuses on specific processes and materials, providing detailed assess-
ments of a products life cycle but can be data-intensive and may overlook broader economic interactions
(Bastos et al. 2014). IO-LCA uses economic input-output tables to estimate environmental impacts
across industries, offering a more macro-level perspective but often with less specificity. Hybrid LCA
combines both methods, leveraging the detailed analysis of process-based LCA and the comprehensive
scope of IO-LCA to provide a more accurate and complete assessment of environmental impacts Syngros
et al. 2017.
By applying LCA in this context, researchers can gain a more holistic understanding of the carbon cost
associated with reconstruction activities, thereby informing more sustainable recovery strategies.

1.2. Knowledge Gap
While significant progress has been made in addressing operational emissions, there is a growing realiza-
tion of the urgent need to tackle construction emissions (Röck et al. 2020; Pomponi and Moncaster 2016;
Pöyry et al. 2015). Unlike operational emissions, which accumulate gradually over a buildings 50-100
year lifespan, construction emissions are released in a short time-frame, contributing immediately and
significantly to atmospheric CO2 levels.

Reconstruction efforts following natural disasters exacerbate this issue due to their scale and urgency.
Vast amounts of materials, energy, and labor are required within compressed time-frames, leading to
a pronounced "carbon spike" (Bastos et al. 2014). It is expected that events that show this carbon
spike are gonna be increased as the increasing frequency and intensity of natural disasters, driven by
climate change, are expected to further compound these challenges (on Climate Change IPCC). Not
only natural disaster but also rebuilding after conflicts can also play a significant role. For instance, the
reconstruction of Gaza is projected to generate emissions comparable to the annual carbon footprints
of Sweden or Portugal, amounting to around 60 million tonnes (Benjamin Neimark 2024). While, the
increasing frequency and intensity of natural disasters, driven by climate change, are expected to further
compound these challenges (on Climate Change IPCC).

This has sparked a growing importance of post-disaster reconstruction (PDR) research, but most of the
literature has focused on areas such as waste management od PDR (Habib 2019), stakeholder analysis
(Xiaodong et al. 2014), and the "build back better" framework (Ismail et al. 2014). Studies directly
investigating the carbon footprint of reconstruction are limited and usually concentrate on emissions
associated with temporary structures and shelters, like in the work of Ali and Mourshed 2021 and
Ogo 2018) where they looked to the carbon footprint of constructing temporary shelters in for Syrian
refugees and to the seekers of shelters after the Great East Japan earthquake, respectively.

An exception is the work of Pan et al. 2014, which estimated the carbon emissions of permanent
housing reconstruction after the Great East Japan Earthquake by multiplying the reconstruction area
by a fixed CO2 factor per square meter. Similarly, Benjamin Neimark 2024 applied a standardized CO2

factor to calculate emissions from rebuilding destroyed structures in Gaza. While these studies provide
straightforward methodologies, they fail to account for the inherent uncertainties in reconstruction
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activities, such as variations in CO2 factors across materials, regional practices, the final number of
housing units or square meters.

This underscores a significant gap in understanding and quantifying the carbon footprint of post-disaster
reconstruction-particularly when accounting for the inherent uncertainties that reconstruction projects
inevitably entail. Without this measurement, we remain in the dark about the true magnitude of the
problem, unable to make fully informed decisions or hold accountable those overseeing reconstruction
activities. As climate change exacerbates the frequency and severity of natural disasters, and with
ongoing conflicts leading to widespread destruction, understanding how to address the environmental
impact, at least in terms of carbon footprint, it is a necessary step towards pressuring for sustainable
reconstruction practices.

1.3. Research Questions
To address the gap in understanding and measuring the carbon footprint of rapid and large-scale
reconstruction efforts following disasters, this thesis is guided by the following central research question:

How do large-scale post-disaster reconstruction efforts, such as those in Antakya, Turkey, impact
carbon emissions?

Additionally, the study aims to address the following relating research sub-questions:

1. What are the primary factors necessary to consider in the environmental assessment of the carbon,
and how do uncertainties associated with these factors influence the final estimates?

2. How can the carbon footprint of post-disaster reconstruction efforts be calculated for the case
study in Antakya?

3. How following different policy pathways for housing can influence the total carbon footprint of
new constructed houses?

4. What are the societal and environmental implications of the carbon emissions generated by post-
disaster reconstruction efforts - for the case study of Antakya-?



2
State of the Art

This literature review examines the carbon footprint of post-disaster reconstruction, focusing on the
building sector’s contribution to carbon emissions. Given the limited research specifically addressing
emissions from post-disaster scenarios, the review begins by exploring how CO2 emissions from the
broader construction sector are calculated in existing literature. It highlights the critical role of em-
bodied emissions -often underestimated compared to operational emissions- and investigates the unique
challenges posed by post-disaster reconstruction efforts. The review also addresses the environmental
and social consequences of construction-related emissions, emphasizing their severity. Finally, strategies
for mitigating these emissions and promoting sustainable reconstruction practices are discussed.

2.1. Calculating Emissions from the Building Sector
Post disaster reconstruction is known to be a complex, dynamic and unpredictable (Alawag et al. 2024).
While its urgency and scale present unique challenges, the carbon footprint of reconstruction closely
mirrors that of conventional construction activities in the building sector. Since, research specifically
addressing reconstruction-related emissions is limited, it is helpful to examine how carbon emissions are
calculated in traditional building construction.

Life Cycle Assessment (LCA) is widely recognized as the most robust and comprehensive method for
quantifying emissions associated with buildings (Säynäjoki et al. 2017, Anand and Amor 2017). LCA
systematically evaluates "the environmental aspects and potential impacts throughout a product’s life
cycle, from raw material acquisition through production, use, and disposal" (European Commission,
Joint Research Centre 2010). While LCA spans all phases of a buildings lifecycle, emissions from the
construction phase are consistently a key focus.

In recent years, the number of LCA studies and reviews has grown significantly (Anand and Amor 2017).
These studies now cover a wide range of contexts, including variations in building function, material
usage, climate, and geographic conditions (Atmaca and Atmaca 2022).

2.1.1. Building Life Cycle Stages
As shown in the conceptual diagram, in Figure 2.1, Life Cycle Assessment is split in three main stages,
each capturing distinct phases of a buildings lifecycle emissions.
The construction phase (A1-A5) encompasses emissions from the extraction, transportation, and
manufacturing of raw materials, which are then processed into construction materials. These materials
are transported to construction sites, adding emissions from logistics, and further emissions arise from
on-site activities. This phase accounts for both the direct emissions from construction processes and
the embodied carbon embedded in the materials themselves Dixit et al. 2012.
The operational phase (B1-B7) includes emissions associated with building use, such as heating,
cooling, lighting, and appliance operation, over a typical lifespan of 50 to 100 years. Traditionally, this
phase was considered the largest contributor to lifecycle emissions, accounting for up to 90% (Pom-
poni and Moncaster 2016, Robati et al. 2019). Even though, advancements in energy efficiency and

4
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stricter building standards have significantly reduced operational emissions, operational emissions are
still considered the largest contributor to the buildings lifecycle (Monteiro et al. 2016, Guan et al. 2016,
Dixit et al. 2012). The end-of-life phase (C1-C4) involves emissions from building demolition, trans-
portation of materials, and their subsequent disposal or recycling. This phase presents opportunities
to mitigate emissions by reusing and recycling materials, as highlighted by studies on circular economy
approaches Chung 2017.

Figure 2.1: Standard life cycle stages and modules, adopted from EN 15978:2011 (NSAI). The focus of the project is
specifically on the emissions produced during the Product and Construction Process stages (collectively known as

the Construction Phase) of the (LCA) which can be distinguished with a red underline.

As the thesis focuses on emissions at the construction stage, it is important to examine the specific
steps involved within this phase. The construction phase, can be delineated into five steps. Initially,
it entails the extraction of diverse raw materials, followed by their transportation to manufacturing
facilities. There, these materials undergo a multifaceted process that transforms them into construction
products. This segment of the process accounts for the highest energy consumption and consequently
produces the most emissions, with estimates averaging around 90% of the entire construction phase
(Xiaodong et al. 2014,Zhang and Wang 2016). This is attributed to both fuel-related emissions, such
as those arising from the use of fossil fuels to heat raw materials, and non-fuel-related emissions, which
may stem from chemical reactions (eg. release carbon dioxide).
The process from A1 to A3 encompasses what is termed embodied emissions and aligns with the Inven-
tory of Carbon and Energy (ICE) methodology, which measures emissions "from cradle-to-gate" and is
considered the standard approach for calculating them in most of the LCA studies.
However, emissions related to the construction phase do not cease here, as the construction products
must be transported from manufacturing facilities to the on-site construction location (A4). The studies
show a great variety regarding the transportation emissions. Nevertheless, on average the percentages
do not exceed 10% and many times there are considered negligible (Bastos et al. 2014,Atmaca and
Atmaca 2015). Finally, the energy consumed on-site for operating equipment to install products and
construct the building can be deemed negligible, constituting less than 1% of the total emissions in
most cases (Robati et al. 2019).

Manufacturing is the primary driver of emissions during the construction phase, with cement leading the
way. Cement is a cornerstone material in construction, valued for its affordability and indispensability in
building projects. Estimates typically range between 30% and 60% of total GHG emissions in the total
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embodied emissions (Programme 2023-09). In 2022, global cement manufacturing alone was responsible
for 1.6 billion metric tonnes of CO2 emissions, accounting for approximately 8% of the world’s total CO2

emissions Forum 2024. Following cement, steel constitutes another significant product, accounting for
approximately 20% to 40% of emissions. Lastly, materials such as brick and aluminum also contribute
to emissions, albeit to a lesser extent (Programme 2023-09).
The proportion of embodied emissions attributed to all the above material-products is ranging as the
manufacturing processes vary from conventional process to adaptation of new eco-technology ( eg. filter
the emissions, re-using heat) but also from different types of materials (eg. many different types of
cement).

Figure 2.2: Schematic representation of the focus area within the broader framework of Life Cycle Assessment (LCA).

2.1.2. Methodologies of LCA Building Implementation
To calculate the emissions that a building emits during construction (and not only), a Life Cycle As-
sessment (LCA) needs to be conducted. The International Organization for Standardization (ISO) has
provided some standards to guide LCA practice (ISO 2006). There are two methods within LCA that
are different in nature but can be claimed to follow or fulfill the requirements of the ISO standard: pro-
cess LCA and input-output (IO) LCA (Säynäjoki et al. 2017). Each method offers distinct advantages
and limitations, influencing their applicability based on study objectives and data availability.

Process LCA The traditional method for conducting a Life Cycle Assessment (LCA) is process LCA
Suh et al. 2004. Process LCA is a detailed, bottom-up approach that evaluates the environmental
impacts of each stage in a product’s lifecycle by modeling the flows of materials, energy, and emissions.
The method involves gathering specific data for each process and aggregating it to assess environmental
impacts. For example, to calculate emissions from cement manufacturing (stage A3), one would collect
data on the electricity and fuel consumed during production and multiply it by the quantity of cement
used in the construction. An example of an application is the study by Zabalza Bribián et al. 2009, which
used Process LCA to evaluate the environmental performance of concrete, wood, and steel structures in
residential buildings. While the goal is to include all major material and energy flows Bilec et al. 2010,
process LCAs often exclude upstream processes due to data shortages and the significant workload
required for detailed modeling Matthews et al. 2008.

Input - Output LCA On the other hand, Input-Output(IO) LCA examines the interconnectedness
of economic activities across different sectors of the economy. Introduced by Leontief 2018 in the 1970s,
IO LCA uses input-output tables that document economic transactions between industries. More
specifically it shows the purchase flows between economic sectors and the value added by each sector,
thus enabling allocation of the environmental output of each sector to the studied system according
to monetary values. This approach provides more holistic view of the environmental consequences
of economic production and consumption patterns, and achieves (at least theoretically) full system
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completeness Suh et al. 2004. Furthermore, performing IO LCAs is also time-effective and assessment
models are often available free of charge Hendrickson et al. 2010. It tends to be less precise at the process
level and may include broad estimates that lack specificity Stiebert et al. 2019. As Pöyry et al. 2015
mentions the method is usually based on national average sectors and is therefore unable to distinguish
different manufacturing processes of similar products from each other. Thus, IO LCA is not a suitable
method for comparing different products within one industry Suh et al. 2004.

Hybrid LCA To address the limitations of Process LCA and Input-Output (IO) LCA, the Hybrid
LCA method was developed. This approach integrates the detailed, process-specific data of Process
LCA with the broader economic scope of IO LCA, combining the strengths of both methodologies Hen-
drickson et al. 2010. The framework proposed by Treloar et al. 2000 demonstrated that Hybrid LCA
enables reliable environmental assessments while requiring less time and fewer resources than standalone
Process LCA Pöyry et al. 2015.
For example, Hong et al. 2015 used Hybrid LCA to assess the environmental impacts of residential
and commercial buildings in South Korea, Pierobon et al. 2019 used Hybrid LCA to compare cross-
laminated timber (CLT) structures with conventional concrete buildings, demonstrating the potential
for significant reductions in embodied emissions. Similarly, Omar 2018 applied Hybrid LCA to industri-
alized building systems in Malaysia, finding improved accuracy in energy and emissions quantification
compared to other LCA approaches, while Bilec et al. 2010 Bilec et al. 2010 demonstrated the utility
of Hybrid LCA in evaluating the life cycle emissions of a parking garage construction project. While
Hybrid LCA is often regarded as the most effective method for assessing environmental impacts in
complex systems Crawford 2011, Stiebert et al. 2019 argues that its application remains limited due to
the sophistication and complexity of integrating diverse datasets.

Table A.1 summarizes the advantages and disadvantages of all of the three approaches, as adapted from
Stiebert et al. 2019.

2.2. Construction Emissions
Academic and policy efforts have historically focused almost exclusively on addressing operational emis-
sions (Pöyry et al. 2015). For example, policies have emphasized lowering the energy requirements of
buildings through building codes and the promotion of low-energy design strategies (Skillington et al.
2022). To illustrate better with an example, 41 countries have implemented mandatory residential
building codes targeting operational energy use, and at least 85 countries have introduced energy cer-
tifications, ratings, or labels for buildings to encourage energy-efficient designs (IEA 2019). Similarly,
the European Unions 2020 mandate for all new buildings to comply with nearly Zero Energy Building
(nZEB) standards (EU 2010).

While reducing operational energy use is essential, it is increasingly evident that these efforts alone
are insufficient to meet global climate targets (Pomponi and Moncaster 2016). Recent research high-
lights that construction emissions, particularly embodied emissions, represent a substantial and often
overlooked share of the building sectors total carbon footprint.

This growing focus on construction emissions can be attributed to two key factors. Firstly, advance-
ments in building’s energy efficiency have shifted the balance of lifecycle emissions. As operational
emissions decline due to improved efficiency measures, the relative significance of construction-
phase emissions grows (Robati et al., 2019). Historically, it was posited that the ratio of embodied
to operational impacts in building lifecycles was approximately 1:10 (Ramesh et al. 2010); however, this
assumption is now outdated. For example, Röck et al. 2020 conducted a literature review of over 650
buildings and found that construction processes contribute approximately 20% of total lifecycle green-
house gas (GHG) emissions in standard buildings (those meeting minimum energy efficiency standards).
For highly energy-efficient buildings, embodied emissions constitute an even larger share, ranging from
45-50% of total lifecycle emissions. Other studies confirm this trend. Crawford 2011 found that em-
bodied emissions could exceed 50% of a buildings lifecycle emissions, while Ibn-Mohammed et al. 2013
reported cases in the UK where these emissions reached up to 70%. Similarly, Chastas et al. 2016
identified ranges from 26% in low-energy buildings to nearly 100% in nZEBs.

Secondly, the temporal allocation of emissions has become a critical consideration (Säynäjoki
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et al. 2012). Unlike operational emissions, which are distributed over a building’s 50-100-year lifespan,
construction-related emissions are concentrated within a short period, typically during the first two to
three years of a buildings life. This results in a carbon spike, where a substantial amount of GHGs
is released in a brief time-frame, creating a steep initial rise in the emissions profile. Over time, the
rate of emissions declines significantly during the operational phase. Figure 2.3, adapted from Röck
et al. 2020, illustrates an example of this concept by comparing standard and advanced energy-efficient
buildings. In standard buildings, the "break-even" point -where cumulative operational emissions equal
upfront construction emissions- occurs in around 10 years (Figure 2.3a). For energy-efficient buildings,
this point can be delayed to 35 or even 50 years (Figure 2.3b), depending on the analysis method. This
carbon spike can account for up to one-third of total GHG emissions over a 50-year lifecycle, even for
buildings designed to minimize operational emissions.

Figure 2.3: Carbon spike as illustrated in the work of Röck et al. 2020. Comparison of the carbon spike from buildings
following current energy performance regulations and highly energy-efficient buildings.

2.3. Post-Disaster Re-Construction Emissions
The carbon spike of construction becomes even more pronounced in the context of post-disaster where
reconstruction of critical infrastructure and buildings require vast amounts of materials, energy, and
labor in a compressed time-frame. The situation is expected to worsen in the coming years as climate-
induced disasters become more frequent and severe due to the escalating climate crisis (on Climate
Change IPCC). According to the United Nations, the number of major disasters globally rose dra-
matically from 4,212 between 1980 and 1999 to 7,348 between 2000 and 2019, alongside a substantial
increase in economic lossesfrom $1.63 trillion to $2.97 trillion (United Nations Office for Disaster Risk
Reduction (UNDRR) 2020). These numbers indicate that the increase of natural disasters, aligns with
a higher number of collapses or damaged buildings and infrastructure.

For example in Australia, the 2019-2020 "Black Summer" bushfire season destroyed more than 3000
homes and damaged an additional 1,000 structures, requiring extensive reconstruction efforts that
significantly increased emissions (Wood 2020). Similarly, Hurricane Beryl in 2024 caused near-total
destruction on the Caribbean island of Carriacou, where 98% of the homes were damaged or destroyed,
displacing approximately 20,000 people (hur 2024).
In Norway, projections suggest that rising sea levels, combined with increased precipitation and flooding,
could damage more than 110,000 buildings located less than 1 meter above normal sea level by 2100
(Almas and Hygen 2012). In the United States, Hauer et al. 2016 estimate that rising sea levels could
expose 3.4 million homes to 10% of the population or a higher risk of flooding by 2100, potentially
displacing more than 13 million people.
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The need to build additional housing for these displaced populations has spurred a growing body of
research, on post disaster reconstruction (PDR) topics. Yi and Yang 2014 review on PDR literature,
found that the number of papers per year increased from 25 in 2002 to 126 in 2012. Notably, a sharp
growth between 2009 and 2011 was observed, likely driven by the global focus on major disasters
such as Chinas Wenchuan earthquake in mid-2008 and Japans tsunami in early 2011. More recently,
a bibliometric analysis of PDR research from 2010 to August 2021 found fluctuations in the rate of
published papers but with an overall increasing trend (Baarimah et al. 2021).

Research on Post-Disaster Reconstruction (PDR) primarily focuses on themes such as waste manage-
ment (Szu-Hsien 2018; Habib 2019), stakeholder analysis, resource allocation, infrastructure challenges,
resilience, and vulnerability (Ismail et al. 2014), reconstruction approaches, sustainable reconstruction
(Ismail et al. 2014), and governance (Xiao et al. 2022).

However, while the rapid increase in emissions from reconstruction activities is acknowledged, very few
studies directly calculate or analyze the associated carbon footprint in the PDR field. For instance,
Yi and Yang 2014 reported that they didn’t find any study focusing on the carbon footprint of PDR
activities. Similarly, Ongpeng et al. 2019, after searching keywords like reconstruction and carbon
footprint, identified only three papers. Among these, Zhong et al. 2024 applied a partial Life Cycle
Assessment (LCA) (limited to construction phases A1-A5) to simulate carbon emissions from urban road
network restoration after flooding.While Zuo et al. 2018 looked to how to reducing carbon emissions
related to the transportation of minerals in UK comparing road and railways, with not direct connection
though to post disaster reconstruction.

Several studies looking to the carbon footprint of PDR focus on the effect of temporary structures
or shelters (Kuittinen 2016). Ali and Mourshed 2021 compared two types of temporary housing -
prefabricated and container shelters-used in Syrian refugee camps. Using a comparative LCA approach,
the study found that container shelters exhibited a 3.89% higher embodied carbon footprint than
prefabricated structures, despite both having the same base area. Furthermore, the work of Ogo 2018
estimated the total embodied carbon of shelter materials in the 2010 Haiti Earthquake reconstruction.
The LCA revealed that the amount of emissions, is nearly equivalent to the host countrys annual
emissions.

Except of looking to the carbon footprint of temporary structure there are few studies looking directly
to the carbon footprint of permanent housing and infrastructure. Pan et al. 2014 estimate the carbon
footprint of housing reconstruction, following the Great East Japan Earthquake. Emissions were cal-
culated by multiplying the reconstruction area by a fixed CO2 factor per square meter. While this
method provided a straightforward estimation, it failed to account for the uncertainties inherent in
reconstruction activities Lastly, Ongpeng et al. 2019 proposed a Mixed Integer Linear Programming
(MILP) model to minimize urban reconstruction carbon footprints by optimizing contractor allocation.
Emissions were calculated by taking into account the parameters ofv(distance, emission factor, material
weight). By using as a case study Philippines, they show that having local and no local construction
companies in the region of the reconstruction project resulted to an increase of 36.89% carbon footprint
(from 27,675 tons of CO2 to 20,216.25 tons of CO2).

Insights of the carbon footprint of reconstruction efforts can also be retrieved from post-conflict settings.
For instance, the reconstruction of Gaza was estimated to generate around 60 million tonnes of CO2

emissions, comparable to the annual emissions of countries like Sweden or Portugal Benjamin Neimark
2024. Similarly, Mihai 2023 examined the carbon impact of rebuilding Ukraine, underscoring the
environmental consequences of such large-scale reconstruction efforts.

2.4. Potential Impact of re-construction emissions to the environ-
ment and society

Environmental Cost The added carbon footprint due to (re)-construction can perpetuate the cli-
mate change problem, creating a cycle where increased emissions contribute to more frequent and severe
climate-related disasters (on Climate Change IPCC). For example, hurricanes, floods, and wildfires be-
come more intense and common as global temperatures rise, which in turn leads to more instances of
post-disaster recovery that generate additional carbon emissions Lemke et al. 2007.
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The extraction of raw materials for reconstruction also has profound ecological consequences. For
instance, Sovacool et al. 2018 emphasize how large-scale resource extraction during reconstruction ex-
acerbates environmental degradation, often leaving ecological scars long after human recovery efforts
have subsided.
The process of rebuilding generates also significant construction waste, including hazardous debris. Im-
proper waste management of disaster debris, which often includes hazardous materials, exacerbates
these issues by contaminating soil and water, stressing local ecosystems Srinivas and Nakagawa 2008.
Additionally, Félix et al. 2013 found that temporary housing solutions, which are often hastily con-
structed, contribute to increased waste and long-term environmental footprints, particularly in regions
lacking robust waste management systems.
Similarly, the removal of sand and gravel from riverbeds disrupts marine ecosystems, reduces water
quality, and affects aquatic food chains (UK Green Building Council 2024). Moreover, construction ac-
tivities can release pollutants into the soil, adversely affecting its quality and harming plant and animal
life (Sandil and Kumar 2022).

In summary, reconstruction imposes significant environmental costs, with carbon emissions driving a
damaging climate feedback loop, but also causing ecological harm from material extraction and waste
mismanagement.

Social Cost Beyond environmental harm, the emissions added due to large-scale reconstruction also
affect society - not only locally- but globally. This can be due to alterations in agricultural productivity,
human health risks, property damages from increased flood risk, and changes in energy system costs,
or other economic disruptions that result from the additional CO2 contributing to climate change.

One way to assess the impact on the society is through the Social Cost of Carbon (SCC). The SCC is
a famous economic concept used to quantify the monetary value of the long-term damage caused by
emitting one tonne of carbon dioxide (CO2) into the atmosphere. The SCC is expressed in terms of
dollars per tonne of CO2 and serves as a critical metric for policymakers and economists to evaluate
the benefits of reducing greenhouse gas emissions versus the costs of implementing such reductions.
The calculation of the SCC is complex and involves modeling factors such as; agricultural productivity
loss, scenarios for population, economy and emissions, changes in vulnerability and relative prices with
development; the rate of degradation of carbon dioxide from the atmosphere; the rate and level of
global warming; the uncertainties about impacts and risk aversion, and the discount rate;Taconet et al.
2021,Tol 2023. The effect of any of these factors can create wide variances between different values on
other models. For example, the discount rate is considered a critical factor influencing SCC estimates
and determines the present value of future climate damages. Higher discount rates reduce the present
value of future harms, yielding lower SCC estimates, while lower rates increase the SCC Kaufman et al.
2020.

Model estimates of the SCC vary substantially. For example, Nordhaus 2014 estimated the SCC to be
approximately equal to $43 per ton, while Wang et al. 2019 reported a wide range of values, spanning
from -$50 to $8752 per ton of carbon. Additionally, Tol 2023 highlighted that in the past decade, SCC
estimates have risen from $9 to $40 per ton for high discount rates and from $122 to $525 per ton for low
discount rates. This variability underscores the influence of underlying assumptions and methodologies
on SCC estimates.

2.5. Mitigation of construction emissions
Understanding the significance of emissions from the construction sector, Pomponi and Moncaster 2016
sought to address how they could potentially be mitigate. By reviewing systematically the existing
literature (having a final cut of 77 papers), they identified 17 distinct mitigation strategies as extracted
from the studies and are summarized in Table 2.5. 1.

Table 2.5 highlights that the most extensively researched mitigation strategy involves using materials
with inherently lower embodied energy (EE) and embodied carbon (EC) (Mitigation Strategy 1). Alter-
native materials such as timber, bamboo, or wood have been proposed to replace high-carbon materials

1While Pomponi and Moncaster 2016’s focus was limited to embodied emissions, it is important to note that these
emissions constitute at least 90% of total construction-related emissions Xiaodong et al. 2014
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MS Description
1 Practical guidelines for a wider use of low-EC materials

2 Better design

3 Reduction, re-use and recovery of EE/EC intensive con-
struction materials

4 Tools, methods, and methodologies

5 Policy and regulations (Governments)

6 Refurbishment of existing buildings instead of new built

7 Decarbonization of energy supply/grid

8 Inclusion of waste, by-product, used materials into build-
ing materials

9 Increased use of local materials

10 Policy and regulations (Construction sector)

11 People-driven change (key role of all BE stakeholders)

12 More efficient construction processes/techniques

13 Carbon mitigation offsets, emissions trading, and carbon
tax

14 Carbon sequestration

15 Extending the building’s life

16 Increased use of prefabricated elements/off-site manufac-
turing

17 Demolition and rebuild

Figure 2.5: Details of the mitigation strategies (MSs) identified in the literature.
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like concrete and steel, which are known for their intensive carbon footprint Yu et al. 2011. For instance,
Venkatarama Reddy 2009 examined stabilized mud blocks as a substitute for load-bearing brickwork
and reported a nearly 50% reduction in embodied costs. While, You et al. 2011 found that steel-
concrete structures, when compared to masonry-concrete structures, could achieve a 4.2% reduction in
CO2 emissions.

Another prominent strategy is optimizing building design (Mitigation strategy 2 with 48 papers found).
This includes adopting better design practices, and integrating life cycle assessments (LCA) early in
the design phase. The high influence that a better design can have, was shown in the work of Acquaye
and Duffy 2010, where he conducted an input-output analysis of Irelands construction sector, revealing
that improved design practices could reduce indirect emissions by 20%.

The third most common strategy explored is reduction, re-use and recovery of EE/EC intensive con-
struction materials. The difference with the first strategy can be subtle. Strategy 1 is more about
substituting a material with another. While material optimization aims to reduce the use of an inten-
sive carbon material either by reusing, recovering, or blending it with another material to use less of
the intense. For instance, García-Segura et al. 2014 noted a 720% reduction from substituting Portland
cement with blended alternatives.

Some other mitigation strategies include the use of more advanced tools and methodologies, such as
Building Information Modeling (BIM) and LCA software, or government policies and regulations to
facilitate the transition to lower embodied carbon materials. Dhakal 2010 documented that policy-
driven changes in construction practices reduced emissions by 50% in Japan and China. Overall it
is agreed that policies that either set standards for embodied carbon, or implement carbon taxes, or
provide incentives for the use of low-carbon materials can encourage the adoption of sustainable practices
across the construction sector.

In terms of building utilization, refurbishment of existing structures is highlighted as a more sustainable
option compared to new construction, as retrofitting preserves the embodied energy of existing materials,
significantly reducing the need for new materials and the associated emissions. In accordance with that
Gaspar and Santos 2015 assessed the potential saving for a detached house in Portugal built in the late
1960 s, concluding that refurbishment would be 22% more efficient than demolition and rebuild, while
Power 2010 show that the EC of an average refurbishment project to bring an existing house up to
modern standards is around one third of that of a new house.

Furthermore, some other strategies to address the emissions, although less well researched is integrating
waste and by-products into construction materials aligns with circular economy principles. Intini and
Kühtz 2011 found that using recycled PET for thermal insulation in residential building could lower
environmental impacts by 46% of the embodied emissions. Reducing transportation emissions through
local material use is another effective measure; Crishna et al. 2011observed that between 2% up to an
84% reduction in emissions can be saved based on the stone type and the country of origin, and mainly
than importing it.

Overall, Pomponi and Moncaster 2016) concluded that a pluralistic approach is necessary, as no single
mitigation strategy is sufficient to achieve a significant reduction in embodied carbon. They found that
over 80% of the studies reviewed combine at least two strategies to effectively mitigate CO2 emissions.
This underlines the need for a holistic approach to addressing embodied carbon in the construction
industry.

2.6. Uncertainty Analysis
From the few reviewed studies that analyzed the carbon footprint in reconstruction, no evidence was
found of uncertainty analysis being applied to any parameter. This omission aligns with the standards
for conducting LCA, which do not mandate uncertainty analysis ISO 2006. However, even in cases
where parameter values are directly adopted, such as the CO2 factor for Japan Pan et al. 2014 or
the ton CO2/ton-kilometer factor used in disaster simulations in the Philippines Ongpeng et al. 2019,
uncertainty analysis remains absent.

Uncertainty analysis involves quantifying the uncertainty in model inputs, parameters, or outputs to
understand its impact on the model’s behavior and outcomes. It aims to identify, assess, and reduce
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uncertainty in modeling processes, which is crucial for ensuring the reliability and robustness of model
predictions Helton and Davis 2003.

2.6.1. Uncertainty Analysis in a Policy Context
Uncertainty analysis is vital for understanding the robustness of models, especially in complex systems
such as climate modeling, engineering design, and policy analysis. More specifically, for the latter, it
helps modelers and decision-makers assess the confidence in model predictions and the potential range
of outcomes under varying conditions. For policymakers, it informs risk assessment, guides resource
allocation, and supports decision-making under uncertainty by highlighting areas where more data or
research is needed (Der Kiureghian and Ditlevsen 2009).

In the white paper of Haasnoot 2011, they categorize type of uncertainty about the model based on
location, level, and nature.

Location: The location of where the uncertainty is detected. For instance it can be Contextual
Uncertainty, meaning that external forces or changes outside policymakers’ control, such as economic
shifts or climate change, which affect the system being modeled. Otherwise, it can be System Re-
sponse Uncertainty. In this case, the uncertainty is about how the system responds to external forces
and policy interventions, often stemming from model structure uncertainty or parameter uncertainty.
Moreover, Model Parameter Variability can exist due to limited or imprecise data, calibration is-
sues, or inherent randomness in the system. Lastly, Stakeholder Preference Uncertainty, which
refers to uncertainty regarding the relative importance and preferences of stakeholders involved in the
policy-making process, which can change over time (Walker and Marchau 2003).

Level of Uncertainty: Ranges from complete determinism (where everything is known precisely) to
total ignorance (where nothing is known) and four levels in between (A.1). The level of uncertainty and
the challenge they create when modeled are famously captured by Donald Rumsfeld answer at a U.S.
Department of Defense news briefing; As we know, there are known knowns these are things we know
we know. We also know there are known unknowns that is to say we know there are some things we do
not know; but there are also unknown unknowns the ones we don’t know we don’t know. It is the latter
category that tends to be the difficult one (Upton and Cook 2014).

Nature of Uncertainty: Includes aleatory (inherent variability) and epistemic (lack of knowledge).
Aleatory uncertainty is irreducible, while epistemic uncertainty can be reduced through further research
and data collection (Walker and Marchau 2003).

2.6.2. Uncertainty Analysis Methods
The uncertainty of some levels, location, and nature can be successfully be explored and understood
with mathematical methods and models. Several methods exist for uncertainty analysis, each suitable
for different modeling contexts. One of the most common is Monte Carlo Simulation (MCS). This
is one of the most widely used methods for uncertainty analysis. It involves running the model many
times (often thousands of times) with randomly sampled inputs based on their probability distributions
(Janssen 2013). The outcomes form a distribution that represents the uncertainty in the model’s
predictions. A more efficient sampling method than basic random sampling used in Monte Carlo
simulations is Latin Hypercube Sampling (LHS). LHS divides the range of each input variable into
equally probable intervals and ensures that the entire input space is explored systematically (Rajabi
et al. 2015). In comparison with Monte Carlo, it provides better coverage of the input space with fewer
samples compared to simple random sampling, which can reduce computational costs but still requires
a large number of model evaluations for high-dimensional problems (Song and Kawai 2023). Moreover,
Bayesian Uncertainty Analysis incorporates prior knowledge (in the form of prior distributions)
along with observed data to update the probability distributions of the uncertain parameters. Bayesian
methods use Bayes’ theorem to combine prior information with evidence from data to produce a posterior
distribution (Becker et al. 2012). It allows the incorporation of expert knowledge and prior data into
the analysis, providing a systematic framework for updating uncertainty. Computationally intensive,
especially when dealing with complex models or a large number of uncertain parameters (Liang and
Mahadevan 2015).
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While uncertainty analysis focuses on quantifying the uncertainty in model outputs given uncertain
inputs, sensitivity analysis determines how changes in model inputs affect the outputs. Sensitivity
analysis identifies the most influential factors on the model’s behavior, guiding model refinement and
uncertainty reduction efforts (Saltelli and Annoni 2010). The Three Common Sensitivity Analysis
Modes:

• Factor Prioritization: Identifies the uncertain factors that have the most significant impact on
model output variability. It helps prioritize efforts to reduce uncertainty in the most influential
factors, thereby reducing output variability.

• Factor Fixing: Aims to identify factors that have negligible impact on the model output, allowing
them to be fixed at nominal values to simplify the model and reduce computational effort without
significantly affecting the results.

• Factor Mapping: Examines how variations in inputs affect the output.

The literature reviewed demonstrates significant progress in measuring and mitigating emissions in
the construction sector, particularly through the widespread use of Life Cycle Assessment (LCA) meth-
ods. Numerous studies have developed reliable frameworks to quantify both operational & embodied
emissions, and a broad set of mitigation strategies is being explored. However, studies that isolate the
impact of the construction phase remain limitedand those focused specifically on post-disaster recon-
struction are even rarer.

Research specifically addressing the carbon footprint of post-disaster reconstruction (PDR) remains
sparse. When such studies do exist, they often rely on overly simplified methodssuch as applying a
fixed CO2 factor per square meterwithout accounting for the variability and uncertainty that define
real reconstruction scenarios. The urgency, scale, and unpredictability of post-disaster contexts make
emissions highly dynamic, yet the literature largely fails to capture this complexity or its resulting
carbon impact.

Moreover, as climate-induced disasters grow in frequency and severity, the role of reconstruction as a
contributor to emissions has been largely overlooked. One noticeable omission in the current literature
is the lack of uncertainty analysis, even though parameter uncertainty is particularly relevant in post-
disaster settings, where data is often incomplete or evolving.

Therefore, there is a need for models that can estimate emissions with confidence and hence support
decision-making in post-disaster recovery planning.
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Case Study: Antakya

On February 6th, Turkey and Syria experienced two devastating earthquakes within nine hours of each
other. The first quake, with a magnitude of 7.8 Richter (R), struck southern Turkey near the northern
border of Syria, while the second, measuring 7.5 R, hit approximately 95 kilometers southwest (See
Figure 3.1). The regions vulnerability to seismic hazards was well-known due to its tectonic setting,
influenced by the Dead Sea and East Anatolian faults, as well as the Cyprus arc. This susceptibility
was tragically confirmed by the recent earthquakes, which reached a maximum Mercalli intensity of XII,
indicating extreme devastation (Mendoza et al. 2018).

Figure 3.1: The map illustrates the area impacted by the earthquake as recorded until 2:30 pm local time on February
7th, 2023. Source CNN

The impact on Turkey was profound, affecting nearly 16 million people, with 9.1 million experiencing
direct consequences and a confirmed death toll surpassing 50,000 (Ahmed et al. 2023). Beyond human
casualties, extensive infrastructure damage was reported across 11 provinces in southwest Turkey, in-
cluding Hatay, Kahramanmaras, Sanliurfa, Diyarbakir, Adana, Adiyaman, Malatya, Osmaniye, Kilis,
and Elazig. The destruction was exacerbated by side effects that amplified ground motion, leading to
resonance in mid-rise and high-rise buildings (Song et al. 2024).

The Disaster and Emergency Management Presidency (AFAD) reported that approximately 710,000
buildings sustained significant damage, with roughly 280,000 structures collapsed/severe damage. This
disaster surpassed the destruction caused by the 1999 Marmara Earthquake, which had been a pivotal
moment for improved disaster preparedness, urban planning, and societal awareness. This highlights

15
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the vulnerability of the regions constructed environment and underscores the inadequacy of certain
seismic code standards in specific areas (Ozturk et al. 2023).

Antakya bore the brunt of the 7.8 R magnitude earthquake, with the estimated destroyed infrastructure
to range between 60-80% (for instance see map of damage assessment in figure 3.2 taken from Foster+
Partners that defines as demolished/heavily damaged 65% of the buildings).

Figure 3.2: Map of damage to Antakya after the Turkey-Syria earthquakes in February 2023. @Foster + Partners

Figure 3.3: Satellite images before and after the earthquake in Hatay (taken from Google Satellite).

Antakya historically known as Antioch, has a rich cultural and historical heritage, spanning over two
millennia. It was a prominent city in the ancient world, serving as a center for Hellenistic culture and
playing significant roles during the Roman, Byzantine, and Ottoman periods. This history has resulted
in a diverse cultural and architectural landscape, reflecting the city’s role as a crossroads for various
civilizations and religions. Its status as a melting pot of diverse religious communities has shaped a
unique cultural tapestry, evident in its religious monuments and practices (Dalrymple 1997).

The growth as an urban center has been marked by its function as the administrative heart of Hatay
province during the early years of the Republic of Turkey (Ozdemir 2024). Prior to 1939, the city
saw enhancements in health, education, and infrastructure, which attracted rural populations and
contributed to its expansion. By the mid-20th century, the city’s population reached approximately
27,000, establishing Antakya as the largest city in the province. Initially, its growth was fueled by
agriculture and related industries. However, from the 1970s onward, the services sector expanded,
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driven by international trade and investments in health, education, and administration (Çetin 2013).
This expansion led to suburbanization and unregulated construction, often lacking adequate engineering
standards. By 2009, the population exceeded 200,000, reflecting rapid urbanization that has introduced
various infrastructural challenges (Yüksel 2021). As of 2022, the population had grown to approximately
400,000 (Turkish Statistical Institute 2022).

It is part of a seismically active region, at the intersection of the African, Arabian, and Anatolian
tectonic plates. This geological setting makes the area prone to significant seismic activity. The East
Anatolian Fault, one of the most active fault lines in Turkey, runs near the city, contributing to its
history of frequent and sometimes severe earthquakes. The tectonic dynamics of this region result
in a complex pattern of seismicity, including both shallow and more profound seismic events. These
conditions have historically led to numerous earthquakes in and around Antakya, with some of the most
notable occurring in antiquity, such as the earthquakes in 115 AD. and 526 AD., both of which caused
widespread destruction and loss of life. The ongoing tectonic movement continues to pose a risk for
future seismic events, something that was confirmed in the recent devastating earthquake.

Analyzing the environmental implications of reconstruction efforts, in terms of emitted CO2 in the
atmosphere, in a city such as Antakya can provide valuable insights to understand the broader environ-
mental impact of post-disaster rebuilding efforts, while it could highlight the need to decision-makers
for considering more sustainable and resilient reconstruction policies.



4
Method

In this section, the methodology for estimating the carbon footprint of post-disaster reconstruction is
outlined (Figure 4.1 ), and the way it was applied to the case study of Antakya, Turkey is presented.

First step was the collection of data. The focus was on three key parameters: (1) Gross Floor Area
(GFA), which refers to the ground floor area of a building in square meters; (2) the Number of Floors per
building; and (3) the CO2 Factor, which represents the carbon emissions released into the atmosphere
after constructing 1 meter square of a building, (expressed in kg CO2eq/m

2). For the case study, Gross
Floor Area and the Number of Floor were collected from spatial data from the Hatay Municipality,
and the CO2 Factor through literature review. Interestingly enough, there was discrepancy in the
literature regarding which of the construction stages were taking into consideration at each paper (from
A1 to A5) when calculating the CO2 Factor range. However, all studies consistently included the
embodied emissions during the manufacturing stage (A3), that is considered to be the stage during the
construction phase that is responsible for the vast majority of CO2 emissions.

In Step 2, the collected data underwent cleaning and processing to ensure it is ready for use in the
model.

In step 3, a range of values was assigned to the variables with uncertainty. In an ideal scenario-such
as a controlled, small-scale construction project-each model parameter could be potentially assigned a
precise, fixed value. However, in large-scale construction projects, data are often incomplete or imprecise,
meaning that the models parameters do not have one precise value. The model is designed to handle
such uncertainties by accepting either fixed values or a range of possible values where the true value of
the parameter is likely to lie. In the next step (step 4), the variables are fed into the model to estimate
the total CO2 emissions. For each building, the model calculates the product of Gross Floor Area (GFA)
(units: m2), the Number of Floors (integer), and the CO2 Factor (kg CO2eq/m

2) to determine the total
emissions for that building. This process is repeated for all buildings in the dataset, and the individual
emissions are summed to yield the total CO2 emissions for the entire case study area. Mathematically,
this process is represented by the following equation:

TotalCO2 =

n∑
i=1

GFAi × Floorsi × CO2Factori (4.1)

where i represents each building and n is the total number of buildings. To account though for the
uncertainty in the model’s parameters, the model applies equation 4.1 through the use of Monte Carlo
(MC) simulations. Initially, MC simulations are run by varying One parameter At a Time (OAT)
while holding the others constant. Additionally, Sobol indices are calculated to quantify the influence
of each parameter. Finally, a comprehensive MC simulation is conducted with all variables varying
simultaneously. The findings from MC simultaneously form the main results of the study.

To assess the broader significance of these emissions, the Social Cost of Carbon (SCC) is calculated by
using the main results from the MC simulations.

18
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Having understood the societal and environmental impacts of these emissions, it is important from
a policy analysis perspective to develop strategies that could potentially mitigate the effect of post-
disaster reconstruction. In this study, we evaluate two potential policy approaches: one focuses on
promoting sustainable construction practices, and the other emphasizes the construction of energy-
efficient buildings.

Figure 4.1: Flowchart of the Research Method, where it shows how the output of each step is the input of the next
step. More details relating to each step can be found in Figures A.3

4.1. Data Collection
First step consists of gathering data for the key parameters.
The building’s footprint, defined by the Gross Floor Area and Number of Floors, represents the total
square meters of a building. This information is typically available in urban planning documents such
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as city master plans1, planning permits, or construction reports. Gross Floor Area is usually presented
in square meters or in digital formats (e.g., shapefiles or GeoJSON), which can easily be converted to
the required units for analysis.

The Number of Floors variable provides an indication of the buildings vertical scale, though it may not
always specify the exact number of floors. Common metrics for expressing this dimension are outlined
in Table A.2.

Unlike building footprint data (FFA and Number of floors), the CO2 Factor is typically not included
in reconstruction or master plans. This value is determined by the building’s specific characteristics,
varying based on factors such as construction materials, transportation logistics, and building practices.
Data for the CO2 factor is generally obtained from Life Cycle Assessment (LCA) studies or if it has
been conducted an environmental product declaration (EPD) 2.

4.1.1. Gross Floor Area & Number of Floors
In the case study of Antakya, for the variables Gross Floor Area and Number of Floors were derived
from spatial data collected by digitizing high-resolution images of reconstruction plans provided by the
Hatay Metropolitan Municipality (figure A.4). This raw spatial data were provided in various shapefiles
with with each entry/row corresponding to a building that will be constructed in Antakya.

4.1.2. CO2 Factor
The CO2 Factor was determined through a comprehensive literature review focusing on Life Cycle
Assessments (LCAs) of residential buildings (diagram of the literature review can be seen in figure 4.2).
Two main strategies were employed for the search: keyword-based queries and the snowball technique.
The predefined keyword strings were used across multiple academic databases, with the primary focus
on Google Scholar, ScienceDirect, and Scopus. The snowball technique helped expand the search by
identifying additional relevant studies through citations, references, and expert reports.

Initially, over 200 papers were identified. These papers were filtered in two stages: first by publication
year, prioritizing studies published after 2000, and then through abstract review. Studies on non-
residential structures, such as dormitories (eg. Huberman and Pearlmutter 2008), temporary refugee
housing (Atmaca 2017), or schools (Muñoz et al. 2017), were excluded to ensure the focus remained on
residential buildings.

Next, the review narrowed to papers relevant to the climate of Hatay, Turkey. According to the Köppen
climate classification system3, Hatay has a "hot dry-summer" Mediterranean climate (Csa). Therefore,
LCAs from regions with similar climates, including Morocco, Algeria, Portugal, southern Spain, France,
Italy, Greece, Lebanon, and Israel, were considered (see figure A.5). This final step narrowed the
selection to 34 relevant papers, which were then subjected to meta-analysis to derive the CO2 Factor.

1A Master Plan is a strategic document outlining long-term goals for land use, infrastructure, housing, and sustain-
ability, guiding future urban development.

2EPDs are a form of life cycle assessment and are the standard way of quantifying the impact of a product or system on
the environment. Declarations may include: Manufacturer, Company Information,Product Identification Information,Life
Cycle Assessment (LCA) Methodology,Product Category Rules (PCR), Data on raw material acquisition, Content of
materials, Chemical substances, Efficiency and energy use, Emissions (to air, soil, and water), Waste generation, Analysis
of the LCA Results

3The Köppen climate classification is a widely used system that divides climates into five main groups based on seasonal
precipitation and temperature patterns Rubel and Kottek 2011.
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Figure 4.2: Overview of LCA literature review.

4.2. Data Pre-processing
4.2.1. Gross Floor Area & Number of Floors
The process of preparing spatial data for analysis involved three key steps: data cleaning, data trans-
formation, and preliminary analysis, as illustrated in Figure 4.3 which consists of Data Cleaning, Data
Transformation, and Preliminary Analysis.

Figure 4.3: Flowchart outlining Step 2 of the methodology for spatial data.

Data Cleaning The initial raw data, provided in multiple shapefiles representing different aspects
of the reconstruction plans, and hence they needed to be merged. This process combined data relating
to the geographical boundaries, land use categories, residential zones, and detailed building data into
a single comprehensive dataset. Next, the handling of missing data was addressed. If possible, the
missing values on columns with key information was filled by reviewing the available data, otherwise
the data were excluded from the research. To ensure the dataset was relevant to the studys objectives,
irrelevant columns and rows that did not contribute to the analysis, such as non-residential buildings or
unnecessary information, were removed. Finally, spatial consistency was ensured by standardizing all
data to the same Coordinate Reference System (CRS), specifically the 2D geographic CRS: EPSG:4326.
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Data Transformation The next step was to ensure the data was in the correct units. The Gross Floor
Area was provided as coordinate points outlining the building’s footprint. This was easily converted to
square meters (m2) using straightforward geometric calculations, with no uncertainty introduced.

The Density column, which needed to be converted into Number of Floors, was more challenging.
Density was classified as low, medium, or high, each corresponding to a range of building stories. Since
exact floor counts were unavailable, ranges were assigned to each category in step 4. For cases requiring
a fixed floor count, average values were set as: 2 floors for low, 5 for medium, and 9 for high Density.

Preliminary Analysis To inspect the data and spot potential anomalies a preliminary analysis was
conducting.
The spatial data were mapped onto a geographic representation, assisting to the data inspection. First,
a map displaying the urban plan of Antakya was produced, showing various zones such as industrial
areas, commercial spaces, social infrastructure, mixed-use regions, and protected areas. Additionally, a
map focusing exclusively on residential buildings was created, with each building color-coded based on
itsDensity classification (low, medium, or high). To ensure consistency with the housing.shp dataset, a
comparative map overlay was performed, checking whether each low, medium, or high-density building
(building.shp file) corresponded correctly to the designatedDensity zones of the housing.shp file.
Then, the range and distribution of the spatial data values was examined. Specifically, a histogram was
created to compare the number of buildings categorized by low, medium, and highDensity. Addition-
ally, the square area of each residential building was analyzed to assess whether most buildings had a
similar totalGross Floor Area and to identify any outliers. This analysis helped verify the accuracy and
consistency of the dataset.

4.2.2. CO2 Factor
Literature Review gave 34 papers, of residential buildings in countries with a similar climate as Turkey.
The meta analysis process is summarized in figure 4.4 and visualized in figure 4.5.

Figure 4.4: Flowchart outlining Step 2 of the methodology for literature review meta-analysis.
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Figure 4.5: Visualization of the Data Pre-processing workflow in the Literature Review Meta-Analysis Methodology
for the CO2 Factor

Data Cleaning The 34 papers from literature review were systematically organized into an Excel
database. For each study the key characteristics were recorded such as geographic location, type of
building (eg. single-family homes versus multi-storey buildings), the LCA phases that were considered
(from A1-A5 at each paper), Source of material intensity values (eg. ICE Version 2.0), and building
size and shape (e.g., floor area, number of stories).
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For each paper, it was assessed whether sufficient data were provided to calculate emissions per square
meter of Gross Floor Area (GFA) or Net Floor Area (NFA). For this study, the difference between GFA
and NFA was considered negligible4. Studies with unclear definitions of these functional equivalents
were excluded, as it would not be possible to calculate the CO2 factor (in kg CO2eq/m

2).
Additionally, papers reporting on the same building-often by the same author-were removed to avoid
duplication (e.g., Mangan and Oral 2015 and Mangan and Oral 2016). Papers set in unique environ-
mental conditions, such as the Negev desert (Huberman and Pearlmutter 2008), were also excluded due
to the peculiarities of their context.
To ensure comparability, a harmonization process was used to standardize results to a common refer-
ence unit: tonnes of CO2 per square meter (kg CO2eq/m

2). All values were normalized to this unit by
adjusting for the reference study period and the specific square meter area used in each study.

Meta Analysis Finally, the meta-analysis categorized studies into two groups: one focusing on build-
ings in Turkey and another on buildings in Southern Europe. Benchmark works such as those by
De Wolf et al. 2015, Röck et al. 2020, Wolf et al. 2020, Simonen et al. 2017 were also reviewed, as they
compiled extensive databases on embodied emissions. The results from these studies are summarized
in Table 4.1, and are illustrated as box-plots in Figure 4.6.

Name of the Paper Year Author Phase Average
Value

Number of
Buildings

Material quantities and
embodied carbon dioxide in
structures

2015 De Wolf A1-A3 330 41

Analyze Embodied Carbon,
Database of Embodied Quantity
Outputs: Lowering Material
Impacts Through Engineering

2020 De Wolf A3 284.5 129

Embodied Carbon Benchmark
Study: LCA for Low Carbon
Construction (washington.edu)

2017 Simonen A1-A5 363.5 222

Embodied GHG emissions of
buildings The hidden challenge
for effective climate change
mitigation - ScienceDirect

2020 Rock A1-A5 282.5 87

South Europe - - - 524.5 127
Turkey - - - 400.5 65
Overall - - - 351.79 684

Table 4.1: Overview of studies used to define CO2 emission factor ranges for Monte Carlo simulations. The first four
rows are benchmark studies covering a large sample of buildings and specific LCA phases. The South Europe and

Turkey rows aggregate multiple studies reviewed in this thesis; while exact LCA phases arent specified, all include at
least A3 phase, which represent the bulk of the construction emissions.

Preliminary Analysis Figure 4.6 presents a comparison of seven different CO2 factor ranges, includ-
ing four from benchmark studies, two from the current research (South Europe and Turkey), and one
representing the LCA of TOKI buildings. The box-plots illustrate the interquartile range (Q1 to Q3),
showing where 25% to 75% of the values fall, while the black whiskers extend to indicate the full range,
including outliers.

4GFA refers to the total floor space within a building, including areas like walls, columns, and common spaces, while
NFA refers only to the usable area, excluding structural elements such as walls and corridors.
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Figure 4.6: Boxplot of CO emission factors from various studies included in the analysis. The first four
boxplots represent benchmark studies identified through snowball sampling during the literature review. The last two
(in orange and red) reflect aggregated ranges derived from multiple studies focused on Southern Europe and Turkey,

respectively.

Among the studies, Röck et al. 2020 exhibits the widest range, from 165 to 665 kg CO2eq/m
2, indicating

significant variability. This is followed by the studies of Simonen et al. 2017 and Wolf et al. 2020, which
also show broad distributions, suggesting diverse practices and outcomes within their samples.

In contrast, the TOKI projects, represented by Kayaçetin and Tanyer 2020, show a much lower and
more concentrated CO2 factor, with a median value of only 271 kg CO2eq/m

2 and minimal spread. 5

The distributions for South Europe and Turkey, which were developed in this thesis, generally align with
existing literature, exhibiting though higher medians and broader IQRs, but remain within a similar
range as the other studies. Comparing the values of LCA in Turkey with the South Europe, the former
has a narrower spread which maybe is the result that includes fewer studies. Overall, the CO2 factor
across all studies falls between 150 and 650 kg CO2eq/m

2, a range that was explored in the uncertainty
analysis.

4.3. Assigning Uncertainty Ranges for Model's Input
Depending on the source and accuracy of the data, the model can accept two types of inputs: either
a fixed value for each building or a range of values(conceptual diagram of the process can be found in
figure A.6).

4.3.1. Gross Floor Area - Fixed Values
The Gross Floor Area (GFA) for each building was provided in the raw data and can be directly
transformed into square meters without introducing any uncertainty into the model. This gives a fixed

5TOKI houses are part of a government-led initiative to deliver affordable housing, particularly targeting low- and
middle-income families. These projects often involve the construction of entire neighborhoods, complete with necessary
infrastructure like schools and parks. The design of TOKI houses is typically standardized and cost-effective, enabling
the rapid construction of housing units across Turkey. This approach is especially prevalent in areas affected by natural
disasters or undergoing significant urban renewal, where there is an urgent need for new, affordable housing solutions.
Given the extensive rebuilding efforts expected after the recent earthquake, it is anticipated that a large proportion of the
new housing will be constructed by TOKI, although the share of buildings to be reconstructed is remains unknown. The
CO2 factor for TOKI projects, as observed in the study, is notably lower and shows less variability compared to other
types of housing projects. However, this consistency is also certainly affected by the fact that in comparison with all the
other studies, TOKI range was based in one single study.
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and precise value for each building that will be constructed. 6

4.3.2. Number of Floors or Density - Ranges
The Density provided in the raw data is a categorical variable that needs to be converted into Number
of Floors for quantitative analysis. For instance, the categorical value of "low density," needs to be
convert into a quantitative value, such as 2 floors. Since this precise information is not included in the
dataset, uncertainty is introduced into the model when Density is being translated to Number of Floors.
The process of this transformation is explained below and is visualised in figure 4.7.

Figure 4.7: Flowchart of the process to transform the density into number of floors

To convert Density into exact floor counts, a search was made to find reliable data that can define
what constitutes low, medium, and high density in Turkey. Two key datasets were found: the 2021
survey from the Turkish Statistical Institute (TUIK) (Turkish Statistical Institute 2021) and a field
study conducted in Antakya (Ozdemir 2024). These datasets provided statistics on the distribution
of building floors in Turkey and Antakya, respectively. The detailed statistics can be found in figure
A.7. The methodology involves matching the distribution of building density in the provided spatial
data to the distribution found in these datasets. For instance, if 30% of the buildings in the spatial
data are classified as having low density, it is cross-reference with the TUIK data, where the 30% of
the buildings with the lowest-density consist the buildings, for example having 1 or 2 floors. Similarly,
this comparison is repeated using the Antakya-specific dataset to ensure a localized view (below more
details of how each range was defined).

From these sources, four different ranges are developed, each establishing distinct ranges for converting
Density into Number of Floors: (i) Range 1 uses data from the national TUIK survey, (ii) Range 2
is based on detailed fieldwork in Antakya, (iii) Range 3 combines insights from both the national and
local datasets, and (iv)Range 4 is an arbitrary case, based on visual observations from Google Maps.

1. Range 1: TUIK Survey National
The first range is grounded in the 2021 Survey on Building and Dwelling Characteristics conducted
by the Turkish Statistical Institute (TUIK) [Turkish Statistical Institute, 2021]. This survey
provides a comprehensive overview of the distribution of building floors across Turkey, making it
a reliable source for national trends.

6However, it’s important to note that the GFA is based on data provided by the municipality, which could change
over time. To maintain consistency in this case study though, the model treats the provided data as certain, focusing on
parameters with explicit uncertainty.
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According to the TUIK survey, 29% of residential buildings across Turkey have 1 or 2 floors, 62%
have 3 to 8 floors, and 9% have more than 9 floors. This distribution is reflective of the broader
Turkish urban environment, encompassing both urban and rural areas. In our dataset, the low-
density category comprises 31.6% of the buildings, which aligns closely with the TUIK figure for
1 or 2 floors. The middle-density category in our data represents 66.2%, also consistent with the
TUIK range of 3 to 8 floors. High-density buildings make up 2.2% of our data, slightly lower than
the TUIK figure for buildings with more than 9 floors. Based on this data, we defined theDensity
classifications as follows:

• LowDensity: 1 or 2 floors
• MiddleDensity: 3 to 8 floors
• HighDensity: 9 to 12 floors

2. Range 2: Fieldwork in Antakya
The second range is based on a detailed field study conducted by Ozdemir [2024], which focused
specifically on Antakya. This study examined the structural characteristics of buildings in the
city following the Kahramanmara Earthquakes and included an in-depth survey of 2,650 buildings
across six central neighborhoods in Antakya.

The findings from this study provide a more localized perspective, particularly relevant to An-
takya’s urban context. According to the study, 36% of the residential buildings in these neigh-
borhoods have 1 to 3 floors, 62% have 4 to 8 floors, and only 2% have more than 9 floors. These
figures align closely with our dataset’s proportions: 31.6% of the buildings fall into the low-density
category, 66.2% into the middle-density category, and 2.2% into the high-density category. It is
important to note that this study focused primarily on the city center, where buildings tend
to have more floors than in the suburbs. Therefore, while the data is highly relevant, it may
slightly overestimate the proportion of middle-density buildings. Based on this data, we defined
theDensity classifications as follows:

• LowDensity: 1 to 3 floors
• MiddleDensity: 4 to 8 floors
• HighDensity: 9 to 12 floors

3. Range 3: A Combined Approach The third range seeks to balance the insights from both
the national and local datasets. The TUIK survey, while comprehensive, might overgeneralize the
distribution of floors, especially in a city like Antakya, where high-rise buildings are less common.
On the other hand, the fieldwork study by Ozdemir [2024] provides valuable local insights but
focuses primarily on the city center, potentially underestimating the prevalence of low-density
buildings in less central areas.

Therefore, the combined range integrates the strengths of both datasets. We assume that the
overall distribution of building floors in Antakya falls somewhere between the national average
and the city center’s characteristics. This range uses the following classifications:

• LowDensity: 1 or 2 floors
• MiddleDensity: 3 to 8 floors
• HighDensity: 9 to 12 floors

4. Range 4: Arbitrary

We also developed an "Arbitrary Range" based on visual observations from Google Maps, where
building floors was investigated by "judging by the eye". This approach, while subjective, allows
us to explore whether potential discrepancies might arise whenDensity classifications are made
without empirical evidence.
TheDensity classifications for the Arbitrary Range are:

• LowDensity: 1 to 3 floors
• MiddleDensity: 4 to 7 floors
• HighDensity: 8 to 11 floors
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Range 1 and Range 3 may initially appear identical because they share the same range of floor values,
but they differ when weights are applied. In this analysis, we consider two approaches for selecting a
value from these ranges. One where the selection is random, meaning each floor count has an equal
chance of being chosen, and another where weights are applied. For instance, when the model encounters
the "low density" classification in both Range 1 and Range 3, it knows that this can be 1 or 2 floors. If
the selection is random, there is a 50% chance of choosing either 1 or 2 floors. However, when weights
are applied, the probabilities change -there might be a 40% chance of selecting 1 floor and a 60% chance
of selecting 2 floors.

Overall, we apply four different ranges across two cases (see Table 4.2): one where all floor counts within
each range are equally probable, and another where weighted probabilities are used, based on external
data from Table A.7. This comparison helps us understand how different assumptions about building
density affect the distribution of floor counts and, consequently, the model’s outcome.

Range Density Floor Range 1 2 3 4 5 6 7 8 9-12
Range 1 Low 1-2 41% 59% - - - - - - -
TUIK Survey Medium 3-8 - - 23.9% 22.4% 20.9% 19.4% 9.0% 4.5% -

High 9-12 - - - - - - - - 25% each
Range 2 Low 1-3 30.0% 42.0% 28.0% - - - - - -
Antakya Field Work Medium 4-8 - - - 42.0% 24.0% 15.0% 13.0% 6.0% -

High 9-12 - - - - - - - - 25% each
Range 3 Low 1-2 45% 55% - - - - - - -
Combined Approach Medium 3-8 - - 22.7% 24.2% 22.7% 15.2% 10.6% 4.5% -

High 9-12 - - - - - - - - 25% each
Range 4 Low 1-3 33.3% 33.3% 33.3% - - - - - -
Arbitrary Medium 4-7 - - - 25% 25% 25% 25% - -

High 8-11 - - - - - - 25% 25% 25% each

Table 4.2: Density Classifications, Floor Possible, and Floor Distributions for Each Range

4.3.3. CO2 Factor - Ranges
Table 4.1 provide the ranges that will be inserted to the variable of the CO2 Factor (except the TOKI
range). In the meta-analysis shown in Figure 4.6, each boxplot represents the interquartile range (25-
75%) of the CO2 Factor values (Q1 to Q3). While boxplots are useful for visualizing data spread and
variability, they provide limited information about the underlying distribution of the data.

A straightforward approach might be to assume a uniform random distribution, given that no additional
distributional details are available. However, Life Cycle Assessment (LCA) studies often reveal that CO2

Factors are not uniformly distributed ([Simonen et al., 2017]). In many cases, emissions cluster around a
central value, which is more accurately represented by a normal distribution with a symmetrical spread
around the mean. That said, material choices, policy standards, or regional practices can sometimes
create asymmetry, leading to skewed distributionseither left- or right-skewed.

Therefore, to account for these possibilities, and in the absence of specific distributional data, we tested
four potential distribution types for each boxplot: uniform, normal, and skewed distributions (both left
and right). This approach ensures a broader understanding of variability.

Uniform Distribution
Initially, uniform random distributions were applied using the first quartile (Q1) and third quartile (Q3)
as boundaries, with the broad distribution also considered (Figure A.8).

Normal Distribution
The normal distributions were generated under the assumption that the lowest and highest values
from each study correspond to Q1 and Q3, respectively. These values are assumed to follow a normal
distribution. The mean is calculated as the average of the two quartiles, and the standard deviation is
estimated by dividing the range (Q3 - Q1) by four (highest − lowest

4
). Results are shown in figure 4.8.
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Figure 4.8: Transformation of boxplots into probability distributions. The figure displays the resulting normal
distributions derived from the 6 boxplot ranges. The same approach was also applied to generate uniform and triangular

distributions and can be found in Figures A.8, A.9 and A.10.

Triangular Distributions
Lastly, the triangular distribution both for left and right skew was created. The first quartile (Q1) and
third quartile (Q3) served as the lower and upper bounds, while the peak of the distribution was set
at one standard deviation (±1σ) from the mean. For left-skewed distributions, the peak was placed at
(mean−σ), and for right-skewed distributions, it was positioned at (mean+σ). This approach allowed
for asymmetry in the data, reflecting real-world variability in emissions. The resulted distribution plots
are presented in figures A.9 and A.10.

Additional Ranges Used in the Main Analysis
In addition to these 6 ranges, two more were added. One is the "broad" range, which spans from 134 to
665 kg CO2eq/m

2, and represents the minimum and maximum values observed across all six boxplots.
Second is the "mixture" range, that integrates all the 6 distributions. It is created by assigning equal
weights to the distributions from the six boxplots, except for the Turkish distribution, which was given
a higher weight due to its regional significance. The results for the -normal- "mixture" are depicted in
figure 4.8 (but also see Figures A.8, A.9, A.10). These two ranges the mixture and the broad provide
the most comprehensive representation of the underlying dataset. Therefore, they have been selected
as the primary input ranges for the main analysis.
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(a) Normal distribution of the different ranges explored in
the literature review of LCA (b) Mixture Distribution

Figure 4.9: Mixture Distribution based to the CO2 Factor for different normal distribution ranges

4.4. Calculate CO2 Emissions via Uncertainty Analysis
In this step, Monte Carlo simulations were employed to estimate CO2 emissions, as this method ef-
fectively accounts for uncertainties in key parameters. The Monte Carlo approach involves repeatedly
calculating CO2 emissions, with each simulation drawing random values from the assigned uncertainty
ranges (that were established in the previous Step). By conducting thousands of simulations, the method
generates a distribution of the value of all the thousand outcomes, showing the range and probability
of different emission estimates.

This study applies two primary approaches: the One-at-a-Time (OAT) method, where a single variable is
altered while all others are held constant, and the Simultaneous Variation approach, in which variables
are varied concurrently (see schematic explanation in figure 4.10). Additionally, a Sobol sensitivity
analysis is considered as an optional technique to quantify the relative contribution of each uncertain
variable to the overall variability of the results.
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Figure 4.10: Flowchart illustrating how the parameter ranges summarized in Figure A.11 are used in the analysis.
Each range was tested to assess the influence of either the Number of Floors or the CO2 Factor, by varying one

parameter at a time while holding the other constant (OAT), while only a few ranges have been used for the main
results.

4.4.1. Monte Carlo One At a Time
The Monte Carlo One-at-a-Time (OAT) method shows the influence of each individual variable on the
output (total CO2 emissions) by varying one parameter at a time, while keeping all other parameters
constant. These simulations were performed for all the different uncertainty ranges of each parameter
(Table 4.3).

Scenario
No.

OAT or
Simultane-

ous

Number of Floors Value CO2 Factor Value Distribution
Type

1 OAT Range 1: TUIK Fixed at 400 kg CO2eq/m
2 Random

2 OAT Range 2: Antakya Field Work Fixed at 400 kg CO2eq/m
2 Random

3 OAT Range 3: Combined Approach Fixed at 400 kg CO2eq/m
2 Random

4 OAT Range 4: Arbitrary Fixed at 400 kg CO2eq/m
2 Random

5 OAT Range 1: TUIK Fixed at 400 kg CO2eq/m
2 Weighted

6 OAT Range 2: Antakya Field Work Fixed at 400 kg CO2eq/m
2 Weighted

7 OAT Range 3: Combined Approach Fixed at 400 kg CO2eq/m
2 Weighted

8 OAT Range 4: Arbitrary Fixed at 400 kg CO2eq/m
2 Weighted

Table 4.3: Scenarios where the CO2 Factor is constant and the Number of Floors is varying

Next, Monte Carlo simulations using the OAT method were performed with the Number of Floors
fixed at its average value, while the CO2 Factor was varying. Simulations were conducted for each
distribution type -uniform, normal, left-skewed triangular, and right-skewed triangular distributions
-using the possible ranges for the CO2 Factor (the six boxplots, the broad range and the mixture range).
For each distribution type, the results were displayed as histogram plots, capturing the spread and
likelihood of different emission outcomes for each case.
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Scenario
No.

OAT or
Simultaneous

Number of Floors Value CO2 Factor Value (kg
CO2eq/m2)

Distribution Type

9-15 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Broad Range Random
16-23 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Mixture & Broad

Range
Normal

24-31 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Mixture & Broad
Range

Triangular - Left Skew

32-39 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Mixture & Broad
Range

Triangular - Right Skew

Table 4.4: Scenarios where the Number of Floors is constant and the CO2 Factor is varying. All of the above scenarios
can be found in detail, in table A.3

4.4.2. Monte Carlo Simultaneously
After separately analyzing the full range of uncertainties for the two parameters, the next step is
to estimate CO2 emissions while accounting for the simultaneous uncertainty in both variables. In
the OAT approach, the calculations were relatively manageable, with (4 ranges x 2 distributions for
Number of Floors as shown in Table 5.3)+(8 ranges x 3 distributions + 7 ranges x 1 distribution for CO2

Factor as shown in Table 5.3). So in total 39 different scenarios. However, varying both parameters
simultaneously significantly increases computational complexity, requiring the evaluation of (4 ranges x
2 distributions)Œ(8 ranges x 4 distributions)=256 potential scenarios. Therefore, running 256 scenarios,
over a thousand of simulations for each scenario with a dataset of the magnitude of 40,000 rows can be
computationally expensive.

Therefore, to balance accuracy and efficiency, we performed MC Simultaneously only for the most
prominent uncertainty ranges. The following characteristics were used for this refined simulation:

• Number of Floors: The range was selected from Scenario 3, which integrates data from both
a national database covering all of Turkey and a more localized database focused on the center
of Antakya. Within Scenario 3, the weighted distributions were chosen to best represent the
uncertainty.

• CO2 Factor Range: The simulation utilized the distribution from the mixture distribution
(257-530 kg CO2eq/m

2) and a broader distribution that extends the range further (134-650 kg
CO2eq/m

2), capturing more variability in potential emissions.

An example of how the code for MC Simultaneously looks like can be found in .

Scenario
No.

OAT or
Simultaneous

Number of Floors Value CO2 Factor Value (kg
CO2eq/m2)

Distribution Type

40 Simultaneous Range 3 - Weighted Mixture (257-530 kg CO2eq/m2) Weighted
41 Simultaneous Range 3 - Weighted Broad Range (134-665 kg

CO2eq/m2)
Weighted

Table 4.5: CO2 Emission Simulation Scenarios: Number of Floors and CO2 Factor Ranges

4.4.3. Sobol Sensitivity Analysis
Sensitivity analysis is crucial for understanding the influence of different input parameters on a model’s
output. The reasons of applying Sobol when we have already investigate the parameters through Monte
Carlo can be summarized in 3 reasons. First, Sobol quantifies the contribution of each parameter to the
total variance (S1 value) beyond merely observing outcome ranges. Second, it identifies and measures
interactions between parameters (ST value), revealing how they may affect each other to the final
outcome. Third, Sobol serves as a comparative tool to validate and refine the findings from the Monte
Carlo analysis.

In this case study, only two uncorrelated parameters were used. However, Sobol was still included
for completeness and to anticipate future applications of the model. Its inclusion also allows for an
interesting comparison with Monte Carlo results, showing how the two methods may differ in capturing
model sensitivity.

Sobol analysis is rooted to the concept of the Shapley value from Game Theory and mathematically
it decomposes the total variance V (Y ) of the model’s output into contributions from individual inputs
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and their interactions. The general form for the decomposition of variance is as follows:

V (Y ) =

k∑
i=1

Vi +
∑

1≤i<j≤k

Vij + · · ·+ V12...k

where:

• Vi represents the contribution of the i-th parameter alone,
• Vij represents the contribution from the interaction between parameters i and j,
• V12...k represents the contribution from the interaction among all k parameters.

Since the model contains only two parameters(k = 2), the exact formulas can be simplify as follows:

1. Total Variance:
V (Y ) = V1 + V2 + V12

where:

• V1 is the variance contribution of parameter X1 (Density),
• V2 is the variance contribution of parameter X2 (CO2factor),
• V12 is the variance contribution due to the interaction between X1 and X2.

2. First-Order Sobol Indices: The first-order Sobol index Si measures the proportion of the
output variance attributed to a single input parameter Xi

• For X1:
S1 =

V1

V (Y )

• For X2:
S2 =

V2

V (Y )

This index represents the direct effect of Xi (Density) on the output (total CO2 emissions).
3. Total-Order Sobol Indices: The total-order Sobol index STi captures the contribution of Xi to

the output variance, including both its direct effects and its interactions with other parameters:

• For X1:
ST1 = 1− V∼1

V (Y )

• For X2:
ST2

= 1− V∼2

V (Y )

Here, V∼1 and V∼2 represent the variance of the output excluding the variance caused by X1 and
X2, respectively.

For the case study, the Sobol analysis was conducted by using the CO2 range derived from the mixture
distribution, combined with theDensity range from the Combined Approach (Range 3) with an equal
random distribution.

4.5. Social Cost of Carbon
This section converts the estimated CO2 emissions from the reconstruction of Antakya into monetary
terms, in order to reflect their broader societal and environmental costs.

The process begins with the mean CO2 emissions derived from the main Monte Carlo simulation results,
expressed in tonnes. These emissions are then multiplied by the Social Cost of Carbon (SCC), a
widely accepted economic metric that estimates the long-term societal damage caused by emitting
one additional tonne of CO2 into the atmosphere. The SCC reflects impacts such as health effects,
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agricultural losses, property damage from increased flood risk, and other climate-related disruptions
(see Section 2 for further discussion).

The societal cost is then obtained by multiplying the mean CO2 emissions by the standardized SCC
value. For example, if the main results show that the reconstruction releases 30 tonnes of CO2 and the
SCC is $1 per tonne, the resulting cost would be $30.

Given that SCC estimates vary widely, due to differences in models and future assumptions -such as
discount rates- a benchmark value of $185 per tonne 7 is adopted in this study, based on a widely
recognized study of Rennert 2022. This value is 3.6 times higher than the U.S. government’s previous
estimate of $51 per tonne and reflects updated damage functions and socioeconomic projections.

While applying a single SCC value supports consistency and comparability in the analysis, the un-
certainty surrounding this metric is acknowledged. To account for this, an alternative methodology
incorporating a range of SCC values is provided in Appendix A.4.4.

4.6. Policy Pathways
This section examines potential policy pathways to reduce the carbon footprint of post-disaster recon-
struction. Specifically, focuses on two key approaches.

The first approach calculates the total CO2 emissions (with Monte Carlo) simulations, by applying a
reduced CO2 factor to a percentage of the buildings that will be reconstructed. This way, it represents a
scenario where sustainable construction practices have been followed. These results are then compared
to a baseline scenario where a uniform CO2 factor is applied to all buildings (see Step 4).

The second approach assesses whether adopting a policy of constructing energy-efficient homes, could,
in the long term, offset the carbon footprint that is generated during the reconstruction process. This
is achieved by comparing the CO2 factor of construction with that of building operation.

4.6.1. A. Policy Pathways: Using sustainable construction practices
There are multiple sustainable construction practices, and a systematic review by Pomponi and Mon-
caster 2016) outlines the practices that are most commonly explored in literature. However, selecting a
policy from the ones that Pomponi and Moncaster 2016 propose, would require a detailed investigation,
something that goes beyond the scope of this study. Therefore, for this analysis, we consider as
sustainable construction practices, any approach that reduces the value of the CO2 factor
parameter.

Baseline scenario
The methodology begins by establishing a baseline scenario that represents standard reconstruction
practices. Therefore, from the existing ranges, we selected the CO2 emission factor that ranges from
134 to 655 kg CO2eq/m

2 ("broad" normal distribution), as the most broad range (and also one of the
two ranges that was presented as main results in step 4). 8.

Sustainable scenarios
To explore more sustainable alternatives, three sustainable reconstruction scenarios are introduced. In
each scenario, a specified share of buildings is constructed using a lower emission factor range of 264290
kg CO2eq/m2, while the rest remain within the baseline range. This lower range is based on empirical
data from Kayaçetin and Tanyer 2020, which specifically assessed the embodied carbon in TOKI (Toplu
Konut Idaresi) housing.

TOKI projects, developed by Turkeys Housing Development Administration, are government-led initia-
tives aimed at providing affordable housing. These projects often involve large-scale, rapid construction
of standardized residential units using prefabricated reinforced concrete. Centralized design and pro-
curement processes allow for reduced material waste and transportation needs, contributing to lower
embodied emissions compared to typical building methods Kayaçetin and Tanyer 2020.

72020 dollars, at a 2% discount rate
8Meaning that in the Monte Carlo Simulations for the baseline scenario, for each building a value was taken randomly

from the normal distribution of the range (134,655)
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The design of TOKI houses is typically standardized and cost-effective, enabling the rapid construction
of housing units across Turkey. This characteristic is especially useful in areas affected by natural
disasters or undergoing significant urban renewal, where there is an urgent need for new, affordable
housing solutions. Given the extensive rebuilding efforts expected after the recent earthquake, it is
anticipated that a large proportion of the new housing is or will be constructed by TOKI, although the
share of buildings to be reconstructed is remains unknown. This, in combination with the availability
of emissions data, makes TOKI a relevant case study for exploring low-carbon construction pathways.

It is important to note, however, that this choice is based on practical considerations rather than an
endorsement of TOKI as a universally ideal solution. The social and architectural implications of such
standardized developments are further discussed in later sections.

In Scenario 1, 15% of the buildings are constructed using the lower CO2 emission factor, while 85%
follow standard practices. Scenario 2 assumes 30% of buildings adopt the lower emission factor, with
70% using the standard approach. In Scenario 3, 50% of the buildings are rebuilt with the lower CO2

emission factor, and the remaining half follows the standard practices. All of the described scenarios
can be seen in table 4.6.

Scenario CO2 Factor Range (kg
CO2eq/m2)

Proportion of Buildings
Using Lower CO2 Factor

Description

Baseline 134 - 655 (broad normal
distribution)

0% (all buildings use standard
practices)

Represents standard reconstruction
practices, where all buildings adopt

the higher CO2 emission range.
Scenario 1 15%: 264 - 290 (TOKI

range)
85%: 134 - 655 (standard

range)

15% 15% of buildings are built using lower
CO2 factors based on TOKI houses,
while the majority follow standard

practices.
Scenario 2 30%: 264 - 290 (TOKI

range)
70%: 134 - 655 (standard

range)

30% 30% of buildings adopt the lower CO2
emission factor, while the rest use

standard practices.

Scenario 3 50%: 264 - 290 (TOKI
range)

50%: 134 - 655 (standard
range)

50% Half of the buildings use lower CO2
factors, reflecting a significant shift
toward sustainable reconstruction

practices.

Table 4.6: Baseline and Sustainable Reconstruction Scenarios: CO2 Factor Ranges and Proportions

By comparing the results of these scenarios to the baseline, helps to quantify the possible reductions
in carbon emissions, if sustainable reconstruction practices were adopted. If significant, it could be an
argument for following sustainable rebuilding efforts.

4.6.2. B. Policy Pathways: Energy-efficient vs traditional buildings
This section examines whether constructing energy-efficient homes can - over time- offset the carbon
emissions generated during post-disaster reconstruction. While energy-efficient homes are effective at
reducing operational emissions, the critical question is whether, and when, these operational savings can
offset the initial "emissions spike" from construction. To address this, we introduce four energy-efficiency
scenarios and compare them against a baseline scenario, over the whole lifespan of a building.

The baseline scenario represents a traditional building that was not affected by the earthquake, and
thus doesn’t emit any emissions during construction. The building model used is a five-story residential
structure with a total area of 745 m2.

The four alternative scenarios involve reconstructing the same building (with identical characteris-
tics in terms of floors and area) but with different energy-efficiency upgrades. Scenario A involves the
installation of photovoltaic (PV) panels, Scenario B includes vertical-axis wind turbines (VAWT), Sce-
nario C incorporates green walls, and Scenario D combines all of these three measures. These scenarios
are based on the work of Saleh et al. 2024, who provided detailed data on energy consumption and
CO2 emissions for a five-story building in Antakya (figures of the building for each scenarios can be
found in Figure A.13 and a table with the calculation of the annual operation emissions in 4.7). The
original data, presented in units of kWh/year/m2, were converted to tonnes of CO2/m2 using a common
conversion factor of 0.000233.
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Therefore, for each energy-efficient scenario (A to D), we assigned a different operational CO2 emission
factor. In addition to operational emissions, construction emissions were modeled for all of the scenarios
(except the baseline where construction emissions are 0). The construction emission was selected equal
to 399 kg CO2eq/m

2, a value that is the mean value of the mixture distribution (a range used in
the main results and is a combination of the 6 distributions as extracted from the literature, see 4.6).
Construction emissions are considered to be emitted the first two years of the building’s lifespan and
operational emissions for 48 years. Having in total a building with a lifespan of 50 years.

The plot that was constructed, shows on the x-axis the building’s year and on the right y-axis shows
the Cumulative CO2 emissions up to that year, by summing the annual operational emissions with the
initial construction emissions. By plotting the four energy efficient scenarios and the baseline scenario,
we define the break-even point. The break even point is identified as the year when the cumulative CO2

emissions from the baseline scenario equaled or exceeded those from any other scenarios.

Scenario Description Annual Operational Emissions
(CO2/m2/year)

Baseline (Business as
Usual)

Assumes no buildings are destroyed or
rebuilt; emissions begin from year 0

without intervention.

0.043

PV Panels Incorporates photovoltaic panels to
generate electricity on-site.

0.035

VAWT (Vertical-Axis
Wind Turbine)

Uses small-scale wind turbines for
supplementary power generation.

0.039

Green Wall Adds a vegetated facade that enhances
insulation and passive cooling.

0.041

All Measures
Combined

Combines PV panels, wind turbines,
and a green wall to maximize energy

efficiency.

0.030397

Table 4.7: Summary of operational emissions across different sustainable building scenarios. Emissions are calculated
per square meter per year and reflect the effectiveness of each strategy relative to the baseline.



5
Results

5.1. Raw Data Insights
The data for this study was sourced from two main avenues. First, spatial data provided by the
Hatay Municipality contained information on two of the three key model parameters: Gross Floor
Area and Number of Floors. This raw spatial data was provided in the form of shapefiles (.shp),
each representing different elements of the reconstruction plans. Four primary shapefiles were used:
Border Antakya, defining the geographical limits of the city; Landuse, detailing categories such as
residential, commercial, and industrial zones; Housing, providing information on large residential areas;
and most importantly, Buildings, which contains detailed data on all individual structures to be rebuilt.
Each entry in the Buildings shapefile corresponds to a specific building, with attributes for density
(low, medium, or high) and its geometry in a Coordinate Reference System (CRS), specifically the 2D
geographic CRS: EPSG:4326. Figure A.14 shows how the raw data looked like.

The second source of data came from a literature review aimed at determining the CO2 Factor
parameter. This review yielded 34 relevant studies. These studies were all Life Cycle Assessments
(LCA) of residential buildings from the below countries: Turkey, Greece, Lebanon, Italy, Spain, and
Portugal. At this stage, the papers were not yet evaluated for completeness regarding the specific CO2

Factor (in kg CO2/m2).

5.2. Cleaned and Processed Data
The raw data have been merged in one shapefile with 47,263 rows, each corresponding to a building. As
illustrated in Figure 5.1, the spatial plan reveals that 84% of the designated buildings will be residential
(colored gray), with the remaining 16% will be allocated to industrial zones, commercial spaces, social
infrastructure, mixed-use areas, and protected regions. This distribution aligns closely with data from
the Turkish Statistical Institute (TUIK) [Turkish Statistical Institute, 2024], which reports that 85%
of land use in Turkish cities is residential. Therefore, the data accurately reflect the typical land use
distribution in urban Turkey.

37
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Figure 5.1: Antakya reconstruction plans based on the data from Hatay Metropolitan Municipality Hatay
Metropolitan Municipality 2024 (see A.4). Color coded based on the type of landuse, with gray the residential

buildings.0

After merging the datasets, an analysis was conducted to identify missing values. Approximately 15%
of the dataset had missing values in the Density column. Upon further inspection, most of these missing
values were linked to non-residential buildings, which were excluded from the analysis, as this study
focuses solely on residential buildings. For the remaining 1% of residential buildings with missing
Density values, the information was imputed using the housing.shp shapefile. The missing Density
values for individual buildings were assigned based on the area’s density that the building is located
(Figure 5.2, which overlays building’s density and area’s density on the same map). The Geometry
column was transformed into square meters to calculate the Gross Floor Area, and no missing values
were identified in this process.

After cleaning the dataset, we conducted a preliminary analysis to explore building density patterns
(Figure 5.2). A color-coded map was generated to represent density categories: low (green), medium
(yellow), and high (red). These categories were based on both building density and area density, which
were found to align completely across the two datasets. Non-residential buildings, shown in black, were
excluded from the density classification as they are not residential buildings.

The analysis showed that most residential buildings fall into the medium-density category (yellow),
with a noticeable concentration on the eastern side of the city center. Low-density buildings (green)
are primarily located on the city’s outskirts, as well as in the historical center, which is characterized
by traditionally low-density structures (see Figure A.2). High-density buildings (red) are relatively rare
and dispersed sporadically across the city.
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Figure 5.2: Map Visualization of the provided Spatial Data with a zoom in. The larger colored areas correspond to
data from the housing.shp shapefile, while the smaller shapes represent building footprints from the Buildings.shp

dataset, both color-coded by density.

Histograms of key columns were then created for analysis. First, for the Number of Floors, -expressed
at this stage as density categories-, a histogram of low, medium, and high-density values was generated.
The results showed that medium-density buildings account for 66.2% of the total residential buildings,
low-density buildings make up 31.6%, and high-density buildings represent only 2.2%. Additionally, a
histogram of the total square meters of buildings was created and is presented in Figures 5.3b and A.15,
revealing that the vast majority of residential buildings have a ground floor area between 50 and 200
m2.

(a) Bar-graph of the Density values (b) Histogram of the Gross Floor Area per building

Figure 5.3: Preliminary Analysis Distribution plots for the key parameters of th model

5.3. Uncertainty Ranges Assigned to Model Inputs
In Step 3 of the methodology, uncertainty ranges were defined for key model parameters. Table A.3
provides a summary of all the assigned ranges, while Figure A.11 offers a schematic overview of the
possible values for the two parameters subject to uncertainty: Number of Floors and CO2 Factor. In
total, 8 distinct ranges were identified for the Number of Floors parameter, and 36 for the CO2 Factor, all
of which were used to calculate potential variations in total CO2 emissions for Monte Carlo Simulations.
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5.4. Results of CO2 Emissions Calculation
To incorporate uncertainty into the models parameters, Monte Carlo simulations were run for all the
different uncertainty ranges.

The results begin with the One-at-a-Time Monte Carlo method (Scenarios 1-39) where a single variable
is altered to assess how changes in each parameter affected the outcome. Once their individual effects is
understood, then for the most probable ranges for each parameter, we run Monte Carlo Simultaneously.
That means that both variables were varied simultaneously (Scenario 40 and 41) to observe the
combined influence and a final estimation for the amount of CO2 emissions. Additionally, the Sobol
sensitivity analysis results are provided to quantify the contribution of each uncertain variable to the
overall variability of the outcomes, enabling a comparison with the One-at-a-Time method.

5.4.1. Results: Monte Carlo One at a Time (OAT)
Number of Floors

Scenario
No.

OAT or
Simultane-

ous

Number of Floors Value CO2 Factor Value Distribution
Type

1 OAT Range 1: TUIK Fixed at 400 kg CO2eq/m
2 Uniform

2 OAT Range 2: Antakya Field Work Fixed at 400 kg CO2eq/m
2 Uniform

3 OAT Range 3: Combined Approach Fixed at 400 kg CO2eq/m
2 Uniform

4 OAT Range 4: Arbitrary Fixed at 400 kg CO2eq/m
2 Uniform

Table 5.1: Scenarios where the CO2 Factor is constant and the Number of Floors is varying

Scenario 1 to 4: Uniform probability In this simulation, for each scenario, the selection of the
number of floors within a given density category (low, middle, or high) was based on equal probability
(see Table 5.1). This implies that within each density category(eg. low), every possible floor number
from has an equal chance of being selected during the Monte Carlo simulations. For instance in Scenario
1, when a building has a low density, there is an equal random probability of being 1 or 2 floors.

The results are based on 1000 simulations and are illustrated in Figure A.17. In these plots, the first
three vertical axes represent the transformation of Density categories into specific floors. The final
vertical axis on the right side of the plot represents the total CO2 emissions (measured in tonnes)
resulting from all the different combinations of floors. Figure A.17 specifically presents the results for
Scenario 3 and Scenario 4, while detailed figures for each scenario are available in Figure 5.4.

Figure 5.4: One at a time variation of Density Ranges (without discrete probability density) for the Range 3 -
Combined Approach

Some key observations can be drawn from Figure 5.4 and the respective plots of the other ranges.

Firstly, the total CO2 emissions exhibit a wide range, with outcomes spanning from approximately
10 million tonnes to nearly 20 million tonnes. This significant spread underscores the impact that
different floor configurations can have on overall emissions. More importantly, the results underscore
how evolving reconstruction plans, which may shift floor area allocations or change zoning regulations,
can significantly alter total emissions outcomes. Floor count decisions directly influence built area,
material use, and structural loadall of which drive embodied emissions. As urban plans develop and
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densities are adjusted (whether for regulatory, economic, or social reasons), these shifts can scale up to
have a major environmental impact. Therefore, the flexibility or uncertainty in floor planning becomes
a key factor in emissions forecasting and carbon accounting in post-disaster reconstruction.

Moreover, when comparing the different ranges, including Range 4 (which was arbitrarily defined),
there is no substantial difference in the overall ranges of the CO2 emissions. This suggests
that the particular definitions of the ranges (Range 1-Range 4) have a relatively minor impact when
probabilities are not weighted. In other words, the similarity in outcomes across the scenarios, indicates
that the equal probability assumption leads to a similar distribution of results, regardless of the scenario
specifics.

Scenario
No.

OAT or
Simultane-

ous

Number of Floors Value CO2 Factor Value Distribution
Type

5 OAT Range 1: TUIK Fixed at 400 kg CO2eq/m
2 Weighted

6 OAT Range 2: Antakya Field Work Fixed at 400 kg CO2eq/m
2 Weighted

7 OAT Range 3: Combined Approach Fixed at 400 kg CO2eq/m
2 Weighted

8 OAT Range 4: Arbitrary Fixed at 400 kg CO2eq/m
2 Weighted

Table 5.2: Scenarios where the CO2 Factor is constant and the Number of Floors is varying

Scenario 5 to 8: Weighted Probabilities In this simulations, for each scenario, the selection of the
number of floors within a given density category (low, middle, or high) was guided by the distributions
outlined in Table 5.2. Then the same parallel plots were generated as shown in Figure 5.5.

Figure 5.5: Range 3 - Combined Approach but with Weighted Probability

Key observation from the results of Figure 5.5 (and Figures A.17a, A.17b and A.17d)is that the the
incorporation of probability-weighted distributions significantly reduces the variability of
the outcome (total CO2 emissions) compared to the previous simulations using equal probability
distributions A.17). In this case, across all Scenarios, the final CO2 output ranges between 12.6 and
13.9 million tonnes, a vast reduction from the earlier range of 10 to 20 million tonnes.

Second, the introduction of probabilities does not result in a significant difference in the overall
output across the selected scenarios (Scenarios 5 to 9). The most notable variation occurs
between the combined approach (Range 3, Scenario 7) and the arbitrary selection (Range 4, Scenario
8), as shown in Figures A.17c and A.17d. Range 3 produces CO2 outputs ranging between 12.6 and
12.7 million tonnes, while Scenario 4 ranges between 13.8 and 13.9 million tonnes. However, these
differences remain within the expected range of uncertainty.

In summary, introducing probability-weighted distributions reduces the variability of CO2 emissions
across the scenarios.

CO2 Factor This section presents the results of a Monte Carlo One-At-A-Time (OAT) analysis, where
the Number of Floors is fixed (Low = 2, Medium = 5, High = 9) and the CO2 Factor varies, as defined in
Step 3. Due to limited information for each range, four distribution types were tested-uniform, normal,
left-skewed, and right-skewed-.
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Scenario
No.

OAT or
Simultaneous

Number of Floors Value CO2 Factor Value (kg
CO2eq/m2)

Distribution Type

9-15 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Broad Range Random
16-23 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Mixture & Broad

Range
Normal

24-31 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Mixture & Broad
Range

Triangular - Left Skew

32-39 OAT Low = 2, Middle = 5, High = 9 6 Boxplots & Mixture & Broad
Range

Triangular - Right Skew

Table 5.3: Scenarios where the Number of Floors is constant and the CO2 Factor is varying. All scenarios in detail can
be found it table A.3

First, for the 8 different ranges, we used uniform probability to compare them. Uniform probability
is the standard way when there is not additional information about the range (only the minimum and
maximum values are know) as it is for this case study. The results for these scenarios (Scenarios 9-15),
as shown in Figure A.18a.

However, a review of the literature indicates that many ranges exhibit overlap near their central values
(Figure A.8), suggesting that the data may cluster around a mean. This pattern aligns with the
assumptions of a normal distribution, where most values concentrate near the center, gradually
decreasing in likelihood as they deviate from the mean. As such, for the same 8 ranges we compare
then with a normal distribution(Scenarios 16-23), with results presented in Figure 5.6.

Given the possibility that the distribution may not be perfectly symmetrical, additional tests were con-
ducted using left-skewed and right-skewed triangular distributions (Scenarios 32-39). These
tests aimed to capture potential asymmetries in the data. The results of these tests are displayed in
Figures A.18c and A.18b.

Figure 5.6: Monte Carlo Simulation with all the possible distributions

In Figure 5.6, along with Figures A.18a and A.18c, and A.18b each range of CO2 factors consistently
produces a narrow peak in the density plot of total emissions. This observation is significant, as it might
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seem intuitive to expect overlapping total emissions due to the overlap in CO2 factor ranges themselves.
However, the separation between emissions distributions remains clear. This effect results from the
stabilizing influence of aggregating emissions over a large number of buildings and repeated simulations,
which narrows the distribution of total emissions for each CO2 factor range. This is explained in detail
in section A.5.3.

5.4.2. Main Results: Monte Carlo Simultaneously
The next step focuses on the primary case where uncertainty in both key parameters, the number of
floors and the CO2 emission factor, is considered simultaneously. These scenarios differ from earlier
simulations in two important ways.

Firstly, this is the only stage where both parameters vary simultaneously in the Monte Carlo simulations.
Varying both together is computationally intensive, which is why this approach was not applied to all 41
ranges tested previously. Secondly, while the earlier simulations were designed to assess the individual
influence of each parameter in isolation, this step tries to estimate a more realistic total emissions
outcome, without caring about the individual contribution of each parameter to the final result.

As shown in Table 4.5 and Figure 4.10, the main results are drawn from two scenarios. In both, the
number of floors is defined using Range 3, which applies a weighted distribution based on the combined
approach data range. For the CO2 factor, two distributions are considered: a broad range of 134650 kg
CO2eq/m2 in Scenario 40, and a narrower, mixed distribution of 257530 kg CO2eq/m2 in Scenario 41.

The results from running again Monte Carlo for 1,000 simulations can be seen in Figures 5.7.

(a) Monte Carlo Results with CO2 Factor varying based to
the mixture distribution (257-530 kg CO2/m

2)
(b) Monte Carlo Results with CO2 Factor varying based to

the broad distribution (134-650 kg CO2/m
2)

Figure 5.7: Main Results from Monte Carlo Simulations with a variance in both of the parameters.

The results presented in Figure 5.7 provide the main estimation of the CO2 emissions associated with
the reconstruction of Antakya, incorporating the inherent uncertainties in both the CO2 Factor and
building density.

For each plot in Figure 5.7, we calculated the 90% interval that gave the ranges of (14.1, 14.2) and
(12.6, 12.7) with units tons of CO2. Combining them into one by taking the minimum and maximum
value from both, we ended up with the range of (12.6,14.2) and has a mean value of 13.4 CO2 tonnes.
To put this figure into perspective, 13 million tonnes of CO2 represent approximately 3% of Turkey’s
total annual emissions.

5.4.3. Sobol Sensitivity Analysis Results
To gain a deeper understanding of the uncertainty in CO2 emissions calculations for the reconstruction
of Antakya, a Sobol sensitivity analysis was conducted. Unlike the previous Monte Carlo One-At-
A-Time (MC OAT) approach, which allowed us to observe the effect of each parameter on the final
emissions outcome, the Sobol analysis provides insight into the relative influence of each parameter
without producing a specific total emissions result. Instead, Sobol quantifies how much each parameter
contributes to the overall variance in emissions.
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The Sobol analysis was conducted with both parametersCO2 factor and Number of Floorsallowed to
vary. The CO2 factor was tested across two distributions: the mixture range and a broad range. For
the Number of Floors parameter, the Combined Approach (Range 3) was applied with an equal random
distribution.
The results for the mixture range, shown in Figure 5.8 and detailed in Table 5.4.

Metric Number of Floors CO2 Factor Interaction

ST 0.857 0.174 -

ST Confidence 0.067 0.017 -

S1 0.827 0.143 -

S1 Confidence 0.068 0.036 -

S2 (Interaction) - - 0.031

S2 Confidence - - 0.093

Table 5.4: Sensitivity indices (ST, S1, S2) and confidence intervals for each variable.

In the table 5.4 (or otherwise the results visualized in Figure 5.8), Number of Floors emerges as the
dominant factor influencing the variance in total CO2 emissions, with a total sensitivity index (ST) of
0.857. In other words, it means that Number of Floors parameter is responsible for 85.7% of the total
variance in the output of a model. This is substantially higher than the CO2 Factor, which has an ST
of 0.174 1.

The first-order sensitivity index (S1) closely aligns with the total sensitivity, indicating that the interac-
tion between Number of Floors and the CO2 Factor is minimal, as reflected by a low interaction term
(0.031). Moreover, the narrow confidence intervals further confirm the robustness of these estimates,
indicating that the sensitivity analysis results are reliable.

On the surface, these findings suggest that the density parameter overwhelmingly drives the output
variance. However, this results seem to contradict with the results of the Monte Carlo simulations
of One At a Time where also the influence of parameter’s variation to the outcome’s variation was
examined (explained in detail in the Discussion section).

5.5. Social Cost of Carbon
This section presents the estimated Social Cost of Carbon (SCC) associated with the CO2 emissions
resulting from the reconstruction of Antakya. Based on Monte Carlo simulation results, the estimated
CO2 emissions fall within an uncertainty range of 12.6 to 14.2 million tonnes, with a mean value of 13.4
million tonnes.

As outlined in the methodology, a benchmark SCC value from Rennert 2022 is used to quantify the
societal impact. Applying this SCC value to the mean emissions estimate of 13.4 million
tonnes leads to a total societal cost of approximately $2.37 billion. In other words, the
estimated long-term economic damages to society from the CO2 emissions generated by the rebuilding
process in Antakya amount to around $2.4 billion. For context, the total estimated cost of reconstruction
following the Turkey-Syria earthquake (across all affected regions, not just Antakya) is roughly $100
billion.

It is important to emphasize, however, that the SCC is not a fixed value. It varies significantly depending
on the underlying assumptions used in its calculation, including the choice of model, discount rate, and
climate scenario. For a more detailed analysis that incorporates this uncertainty, refer to the alternative
methodology presented in Appendix A.5.4. Moreover, the SCC serves as a tool for informing policy

1It must be noted that the ST doesnt need to add up to 1 because ST includes both the direct effects and the interaction
effects of a variable. This is because some of the variance in the output might be accounted for by the interaction between
multiple variables, leading to overlap in the contribution to variance, which can cause the sum of ST values to be greater
than 1.
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decisions, an estimation, it does not directly reflect the actual costs that individuals or businesses will
bear.

5.6. Policy Pathways Evaluations
5.6.1. A. Policy Pathways: Using sustainable construction practices
As described in the Methodology section, additional Monte Carlo simulations were performed to evaluate
the potential reduction in CO2 emissions when incorporating lower-carbon construction methods.

Traditional construction is modeled using a CO2 emission factor following a normal distribution between
134 and 655 kg CO2eq/m2.

In contrast, sustainable construction is represented using a narrower, lower range of 264290 kg CO2eq/m2,
based on values derived from TOKI (Toplu Konut Idaresi) housing. TOKI housing projects, imple-
mented by Turkeys Housing Development Administration, use prefabricated reinforced concrete and
standardized designs. These methods enable faster construction, reduce material waste, and minimize
emissions from transport and site workresulting in a lower embodied carbon footprint compared to
conventional methods. While not a universal model for sustainability, the TOKI approach offers a
documented example of low-emission construction that is planned for large-scale use in the Antakya
reconstruction.

To explore its impact, three scenarios were modeled in which 15%, 30%, and 50% of buildings follow
the lower TOKI-based emission factor, with the remainder following the baseline distribution.

Figure 5.9: Total CO2 emissions under different shares of sustainable/TOKI -based construction

The graph illustrates how different proportions of Sustainable/TOKI houses affect total CO2 emissions
during the construction phase. In the baseline scenario, shown in purple, where no TOKI buildings are
considered, CO2 emissions are at their highest, as expected, with the mean emissions being approxi-
mately 13.5 million ton of CO2 (highlighted also by the dashed black line). When 15% of the buildings
are TOKI houses (green), CO2 emissions decrease by 4.46%, as indicated by the leftward shift in the
density curve. Increasing the proportion to 30% (orange) results in an 8.94% reduction in emissions,
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with a more pronounced shift to the left. The most significant reduction, 14.92%, occurs when 50% of
the buildings are TOKI houses (blue), showing the greatest leftward shift and the lowest CO2 emissions.

These findings suggest that increasing the proportion of sustainable buildings, such as TOKI houses in
the case of Antakya, could significantly reduce emissions. However, while this reduction is promising, it
is essential to acknowledge the criticisms of TOKI buildings, which are usually perceived as lacking aes-
thetic diversity and disregarding Turkey’s architectural heritage (Devrim 2016), a concern particularly
relevant for Antakya, a city with significant historical and cultural value.

5.6.2. B. Policy Pathways: Energy-efficient vs traditional buildings
This section presents the results of the different policy pathways modeled to assess their impact on
carbon emissions in post-disaster reconstruction. Various scenarios, including the use of sustainable
technologies like PV panels, vertical-axis wind turbines, and green walls, are analyzed to determine how
effectively they reduce operational emissions. These specific scenarios have been selected because the
operational emissions of each scenario have been calculated for the specific area of Hatay, in the work of
Saleh et al. 2024. The results focus on identifying the break-even point, where emissions savings from
these measures outweigh the initial carbon cost of construction and are presented in Figure 5.10.

Figure 5.10: Break even point at 24 years with CO2 Factor for construction equal to the mean value of 393 kg CO2

eq/m2 while showing the range for CO2 factor from 257-530 kg CO2 eq/m2. The y-axis on the right shows the total
tonnes of CO2 for a building of a 5 multi-storey building of 745 m2

In Figure 5.10, the shaded areas indicate the range of the CO2 Factor, while the vertical lines mark
the break point for the mean value of 393 kg CO2 eq/m2 (more details about the shade area for each
scenario can be found in Figure A.24). In the figure, only two scenarios demonstrate a lower cumulative
CO2 impact compared to the baseline scenario over time.

PV Panels (Break-Even in 37 Years): In this scenario, where photovoltaic (PV) panels were
integrated into the building, the break-even point was reached after 37 years. This indicates that
the operational CO2 savings generated by the PV system would offset the embodied emissions from
construction after nearly four decades. The relatively long time frame reflects a gradual accumulation
of savings, despite the reduction in annual emissions provided by the panels. However, this estimate is
sensitive to assumptions about the lifespan and performance of PV technology. If panels are replaced
earlier than expected, or if future technologies offer higher efficiency or lower embodied emissions, the
actual break-even point could differ significantlyeither improving or worsening the outcome.

A better result is presented for the "All Measures Combined (Break-Even in 24 Years)", which
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combines all energy-saving measures -PV panels, Vertical-Axis Wind Turbines (VAWTs), and a green
wall-and achieves a break-even point in 24 years. Although this scenario reaches break-even sooner than
PV panels alone, it underscores that even with multiple energy-saving technologies, which collectively
reduce emissions by nearly 30% over a 50-year period, it still takes a substantial amount of time to
fully offset the initial emissions from construction. Additionally, as shown on the right y-axis in Figure
5.10, over a 50-year lifespan, a traditional building is projected to emit approximately 1,640 tonnes of
CO2 (mean value), whereas an energy-efficient building is estimated to emit about 1,365 tonnes (mean
value).

However, we must note that the break even point is highly sensitive to the CO2 factor. Further analysis
in Figure 5.11 shows that under optimal conditions, with a low CO2 construction factor, the break-even
point can be achieved in as little as 13 years. In contrast, with a higher construction CO2 factor of
530 kg CO2 eq/m2, the break-even is delayed to 36 years. This variation demonstrates the significant
impact that the construction CO2 factor has on overall emissions, despite being concentrated in only
the initial two years of the building’s life.

Figure 5.11: Break even point at 13, 24 and 36 years based on the minimum, mean and maximum value of the CO2

Factor range.



6
Discussion

6.1. Key Findings
Total CO2 Emissions The total emission for reconstructing Antakya will be between 12.6 to 14.2
million tonnes of CO2. This result was calculated by using Monte Carlo Simulations, where both key
parameters -Number of Floors and CO2 Factor- were varied simultaneously (as shown in section 4.4.2).

To put this into perspective, this amount represents approximately 3% of Turkey’s total annual
CO2 emissions or it is equivalent to emissions from about 3 million passenger vehicles driven
for one year. It is important to note that these figures pertain only to the reconstruction of Antakya
(of approximately 38,000 residential buildings) and do not encompass the broader region affected by the
earthquake. If we extend this analysis to estimate the carbon footprint of rebuilding efforts across Turkey,
considering the need to reconstruct at least 500,000 buildings, the total CO2 emissions respectively will
range from 150 to 169 million tonnes, which would account for about 29.6% of Turkey’s annual CO2

emissions. This amount is approximately equal to the total annual carbon emissions of a country like
Netherlands or Philippines (Crippa et al. 2022).

Social Cost of Carbon Quantifying CO2 emissions from reconstruction serves not only as a numeri-
cal estimate but as a foundation for understanding the broader societal costs of these emissions. In this
study, we applied the Social Cost of Carbon (SCC) framework to Antakyas reconstruction, estimating
that rebuilding could impose societal costs of approximately $ 2.4billion.

This figure underscores the practical relevance of incorporating carbon accounting into disaster recov-
ery planning. It reveals that reconstruction, while necessary, carries a substantial environmental and
economic burden that is often invisible in conventional cost assessments. These emissions represent a
form of deferred societal costexternalized and spread over timewhich can no longer be ignored in light
of global climate goals.

However, this analysis also brings to light a fundamental trade-off. On one hand, there is an urgent
need to meet housing demand and restore infrastructure for affected communities. On the other, there
is the long-term monetary and environmental cost associated with carbon emissions. Balancing these
competing priorities is a key challenge for policymakers. Recognizing this tension does not mean halting
reconstruction, but rather encourages strategies that can reduce emissionssuch as adopting low-carbon
building materials, improving energy efficiency, or integrating sustainability into rebuilding plans.

Ultimately, integrating SCC into disaster recovery frameworks can help policymakers make more in-
formed decisions by attaching a tangible economic value to carbon emissions. This allows for more
holistic cost-benefit analyses and strengthens the case for sustainable reconstruction practices that
protect both people and the climate.

Uncertainty Analysis In comparison with the few previous studies on the carbon footprint of post-
disaster reconstruction, such as Pan et al. 2014, this thesis advances the methodology by incorporating

48
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uncertainty analysis. Here, parametric uncertainty analysis is central to the approach, providing not
only greater confidence in the models outcomes but also a deeper understanding of the outcome’s vari-
ation. Using both Monte Carlo OAT and Sobol Analysis, this study examined the impact of parameter
uncertainty on the total emissions estimate.

A key insight concerns the Number of Floors parameter. The Hatay Municipality provided initial
data on building density (low, medium, high) that was converted into number of floors by using trans-
formation ranges. These ranges were defined in multiple ways, from using detailed, pre-earthquake
distribution floors data to arbitrary estimates based on Google Maps street views. Surprisingly, despite
this contrasting levels of precision, these methods yielded to similar estimates.
More importantly though, the output (total CO2 emissions) varied widely, from 8.1 to 20.5 million
tonnes. To address this sensitivity, we applied weighted probabilities, which substantially narrowed the
emissions range between 12.6 and 13.9 million tonnes. Therefore, these findings suggest that uncer-
tainty parameter is possible to be mitigated by applying weighted probabilities. However, the potential
challenge is the availability of data for defining weighted probabilities , which may vary by case study.
Usually though, some reliable statistics at the city, provincial, or national level, can be retrieved 1.

For the second uncertain parameter, the CO2 Factor, eight distinct ranges were defined, analyzed,
and compared using uniform, normal, and skewed probability distributions. Despite significant overlap
among these CO2 Factor ranges (Figure 4.9b), the Monte Carlo simulations produced outputs with
narrowly distributed, bell-shaped histograms and low standard deviations (Figure 5.6). The underlying
reason for this behavior is discussed in detail in Section A.5.3.
What is crucial to highlight here is that in scenarios where the total building area is substantial and
remains relatively consistent across simulations, selecting a single CO2 Factor may give the impression
of low sensitivity to this parameter. However, when multiple CO2 Factor ranges are plausible, precision
becomes essential, as even small shifts in the parameter range can result in significant differences in
emissions outcomes.

The results discussed above were obtained using Monte Carlo simulations with a One-At-A-Time (OAT)
approach, supplemented by Sobol analysis for comparison. Sobol confirmed that no correlation between
the parameters exists, but also revealed that Number of Floors accounted for 85.7% of the total variance
in the model’s output with the CO2 Factor contributed only for the 17% of the total variance in the
model’s output.
This comes in contrast with the results of the MC OAT, where it was seen the sensitivity of the model
to the range of the CO2. This is because Sobol can only be applied with an equal random distribution
across ranges, and the CO2 Factor is restricted to a single range, something that as said already leads to
small standard deviation. Therefore, while Sobol indicates that Number of Floors is the most influential
parameter, this conclusion is true only when based on one singular range for the CO2 Factor and a
relatively loosely defined Density.

Sustainable Policy Pathways

Scenario of sustainable construction practices Through uncertainty analysis (Monte Carlo OAT
of CO2 Factor), it was possible to explore whether integrating sustainable construction methods could
meaningfully reduce the total CO2 emissions associated with the reconstruction of Antakya. A simplified
model was created to estimate how emissions change under different adoption rates of sustainable
building practices.

The lower CO2 factor used in the sustainable scenarios (264-290 kg CO2eq/m2) was selected based on
a published empirical study by Kayaçetin and Tanyer 2020, which specifically measured the embodied
emissions of TOKI (Toplu Konut Idaresi) housing. TOKI was chosen not because it represents an
ideal form of sustainable development, but because it is a real, documented case with both available
data and anticipated large-scale application in Antakyas post-earthquake reconstruction. This makes
it a pragmatic reference point for modeling, particularly in the absence of more localized life-cycle
assessments for alternative low-emission construction techniques.

1Please note that this approach assumes the reconstructed city will maintain a building density similar to that of the
pre-disaster environment, whether at a local or broader scale.
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The results demonstrate that increasing the proportion of buildings that are build following sustainable
practices by 15%, 30%, and 50% can reduce CO2 emissions by 4.46%, 8.94%, and 14.92%, respectively
(5.9). This can be a significant reduction to the total CO2 emissions that could potentially lead to a
smaller environmental impact of this large scale disaster. However, this considered a very preliminary
analysis, being mostly a proof of usefulness of the model, that shows how the environmental benefit
of sustainable building practices can be crudely estimated.

Moreover, adopting TOKI houses as the sustainable model introduces a further dimension to the dis-
cussion: the intersection of sustainability with cultural and aesthetic considerations. TOKI housing
is practical and cost-effective, making it a viable choice in large-scale, resource-constrained rebuilding
efforts. Yet, TOKI buildings are frequently critiqued for their perceived lack of architectural diversity
and for neglecting Turkeys cultural heritage (Devrim 2016).

In Antakya, a city known for its historical and cultural significance, the use of standardized TOKI-style
buildings may accelerate reconstruction and lower carbon emissions, but at the potential cost of erasing
it’s architectural identity. This underscores the need to reconcile environmental performance with social
and cultural values.

Scenario of energy-efficient vs traditional buildings Another approach to reducing the car-
bon impact of reconstructing focuses not on using sustainable construction practices, but on building
energy-efficient houses. This analysis examines whether the initial CO2 emissions from construction
can eventually be offset by the reduced operational emissions of advanced, energy-efficient buildings.
Section 5.6.2 explores this by applying a CO2 Factor for construction ranging from 257 to 530 kg CO2

eq/m2 and using operational emission values from Nakamura et al. 2024.

By comparing a traditional five-story building with a new, energy-efficient building (offering a 30%
reduction in operational emissions), the analysis shows that it will take an average of 24 years to offset
the initial construction emissions, which are produced within just 2 years of construction.
Additionally, the payback period for offsetting these initial emissions varies significantly, ranging from
13 to 36 years, depending on the initial CO2 (construction) Factor. If the average CO2 (construction)
Factor is around 250 kg CO2 eq/m2, the offset occurs in 13 years. However, if the average CO2

(construction) Factor is around 530 kg CO2 eq/m2, the offset period extends to 36 years. This variability
underscores the importance of addressing the initial carbon spike from construction.

Both of these findings are consistent with existing literature on the significance of the carbon spike in
construction. Several studies emphasize the growing share of emissions released during the construction
phase over a buildings lifespan Robati et al. 2019, such as Röck et al. 2020. For instance, Röck et al. 2020
shows that in specific cases, embodied emissions can account for up to 50% of total lifecycle emissions in
energy-efficient buildings, while Pöyry et al. 2015 stresses that focusing solely on operational emissions
underestimates the full climate impact of the built environment. Moreover, the aspect that construction
emissions have a more direct and immediate impact on climate crisis than future emissions, is something
that also needs to be taken into consideration when shaping policies.

6.2. Model Evaluation
The primary purpose of the model is to estimate the post disaster carbon emissions, in a real case
study, using Monte Carlo simulations. It achieves this by combining three key parameters: Gross Floor
Area, Number of Floors, and the CO2 Factor. To account for uncertainty, the model allows inputs to
be provided as either fixed values or ranges. These ranges, defined by the modeler, can be continuous
or discrete, weighted or unweighted, and follow specific probability distributions or remain uniformly
random. This flexibility makes the model adaptable to various case studies, enabling it to handle
missing or uncertain data effectively.

While this adaptability is a strength, its value depends on whether the models results can be considered
reliable. Reliability is closely tied to accuracy, but validating accuracy is inherently challenging. In
practice, the true carbon emissions from reconstruction are unlikely to ever be calculated, making
direct comparisons between the models output and actual values impossible. Nevertheless, the model
compensates for this limitation by incorporating uncertainty analysis. With only three input parameters,
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it is feasible to assess the influence of each variable on the final output, providing transparency and
confidence in the results.

However, while the model can handle uncertainty effectively, the quality of the results is closely tied to
the quality of the input data (garbage in - garbage out). Limited or poorly defined data can significantly
affect the precision of the outputs. This was evident with the Number of Floors parameter in Section
5.4.1. Initial data for this variable were poorly defined, resulting in emissions estimates ranging widely
from 8 to 18 million tonnes of CO2. Such a broad range is not particularly useful. It was only after
incorporating complementary data to reduce the uncertainty in this parameter that the results became
more precise and meaningful. This demonstrates that while the model can handle uncertainty, its ef-
fectiveness depends on the availability and quality of data to constrain that uncertainty. Therefore, to
improve model accuracy, the use of better data-not necessarily more, but higher quality. For example,
access to detailed floor plans or exact pre-disaster building heights would reduce the need for proba-
bilistic assumptions. Similarly, localized, project-specific CO2 factors from regional LCA studies would
improve precision over generalized literature values. These enhancements would reduce uncertainty and
make the model outputs more actionable.

The computational cost also emerged as a practical challenge. While Monte Carlo simulations are
effective for representing uncertainty, they are time-intensive. Running simulations where multiple
parameters vary simultaneously required several hours per scenario. For example, running the full
simulation set for the main resultswhere both parameters varytook between 7 and 8 hours on a standard
machine. This can potentially be improved by using more focused method such as LHS that usually can
produce similar results to Monte Carlo with fewer iterations, and hence greatly reducing computation
time while maintaining variability.

The ease of obtaining reliable data varies across the three parameters. The CO2 Factor is not
typically provided directly but can often be derived from Life Cycle Assessment (LCA) studies. There
is a plethora of LCA studies in the literature, offering emission factors for a wide range of materials
and construction scenarios. While LCA methods face some criticism regarding that the methodology is
not be standarise across literature (Source), they remain the main way for estimating building carbon
footprints. For highly specific case studies, however, finding precise CO2 Factor values may become
challenging due to the peculiarities of the case study in the type of materials, climate, or construction
practices used.
For Gross Floor Area and Number of Floors, the availability of data often depends on local sources such
as governments, municipalities, or engineering firms. In the Antakya case study, data from the Hatay
Municipality, though incomplete, were supplemented with broader sources like national statistics. To-
gether, these sources produced reliable estimates. For large-scale disasters, which often affect extensive
areas and populations, data collection is typically more robust. Technological advancements, such as
high-resolution satellite imagery and AI-driven damage assessments, are also improving the precision
and accessibility of data. By employing these tools, it becomes feasible to approximate the pre-disaster
built environment and estimate reconstruction emissions effectively.

The model serves as a practical tool for preliminary decision-making in post-disaster reconstruc-
tion, offering transparent and straightforward estimates that are easily comprehensible to policymakers
and stakeholders. Its simplicity ensures accessibility, enabling users to quickly understand how the
results are derived. However, while the model provides a methodology for estimating the total CO2

emissions caused by reconstruction, this alone is insufficient for shaping comprehensive policies. Ef-
fective policy development requires comparing various scenarios to evaluate the impact of different
approaches on total emissions.

Although this thesis explores sustainable construction scenarios, the models limitations restrict its use
to preliminary analyses. Key constraints, detailed in the section below, include oversimplification of con-
struction processes, exclusion of parameter interdependencies, and the omission of critical factors such
as cost and time constraints. While these estimates are basic and insufficient as standalone arguments,
they provide a valuable starting point for identifying and evaluating promising policy pathways.

This narrow approach restricts its capacity to explore the nuanced impacts of different policy pathways
on overall carbon emissions. However, the model’s primary aim is to highlight the significance of CO2

emissions in post-disaster reconstruction rather than delve into specific policy details. It serves as a
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preliminary step, providing a broad estimate of the potential scale of impact that sustainable practices
could have (Röck et al. 2020). This approach underscores the urgency of considering carbon emissions
but stops short of offering detailed guidance on how specific policies should be crafted or implemented
to achieve emissions reductions.

The model is best suited for estimating CO2 emissions and calculating the Social Cost of Carbon (SCC)
with a level of confidence, which was the primary objective of the thesis. However, its application in
policy comparison would require further development and refinement. The true value of the model lies
in demonstrating how CO2 emissions and uncertainty can be effectively combined to analyze real-world
reconstruction scenarios. Its application to a case study shows how even with data gaps, meaningful
insights can be generated, offering a practical framework to guide decision-making in similar large-scale
projects.

6.3. Limitations
There are several limitations regarding the model. Firstly, there is anoversight of Recycling and
Waste Management side of the situation. The model’s CO2 factor does not account for the potential
reduction in emissions from recycling the vast amount of construction waste generated after a disaster.
For example, in the case study of Antakya, the debris is estimated to be over 100 million cubic meters
(or about 200 million tons). This volume, presents a significant opportunity for material reuse and
recycling, which can considerably lower the embodied carbon in new construction materials. Recently,
the United Nations Development Programme (UNDP) and the Ministry of Environment, Urbanization,
and Climate Change (MoEUCC) have completed two model facilities for the safe processing and recy-
cling of this debris (18 months after the disaster UNPD, Relief Web). Incorporating recycling practices
could potentially lower the embodied carbon in new construction materials, but thorough research is
necessary to understand up to what level.

In addition, by consolidating various emission sources into a single CO2 factor, the model
simplifies complex interactions within the construction process. While this approach offers a practical
estimate, it may overlook critical aspects such as the use of low-carbon materials, energy-efficient
construction methods, and regional variations in material sourcing, all of which can significantly impact
the overall carbon footprint. The model could potentially evolve in a way that include multiple ranges
implemented in once to the model, based on specific assumptions about the embodied emissions or
transportation of the materials.

The uncertainty inherent in the Social Cost of Carbon index also poses challenges. Another important
limitation, emphasized in the results, is the complexity of defining the Social Cost of Carbon (SCC)
and the variability in the monetary cost estimates it produces. While the model incorporates SCC
to illustrate the long-term societal costs of carbon emissions, these estimates are highly sensitive to
assumptions about future economic growth, technological advancements, and climate impacts. Even
small changes in variables like the discount rate can lead to significant fluctuations in the results, making
it challenging to assign a precise monetary value to reconstruction-related emissions.

The limitations of the model extend to the way that energy-efficient buildings emissions were
calculated. While the model explores the use of energy-efficient buildings, it does not consider that
constructing such buildings might initially involve a higher CO2 factor due to the use of sophisticated
materials and technologies (Röck et al. 2020). Moreover, the analysis focuses primarily on technologies
like PV panels, VAWTs, and green walls, that the values of reduction of the operational emissions
were derived only from one study (which was specifically looking though to a building in Antakya).
In addition, the sustainability scenarios are evaluated as static snapshots without considering future
advancements. Changes in building standards, material technologies, and the energy grid over time
can significantly alter the operational emissions of buildings. For example, as the energy grid becomes
greener, the operational emissions from buildings with renewable energy technologies may decrease more
rapidly than anticipated. This dynamic aspect is not reflected in the current model. Lastly, covering
other practices such as advanced insulation or smart energy management systems is necessary to be
looked to have a holistic approach.

Finally, the models integration of sustainable reconstruction policies is limited, as it simplifies
complex dynamics by merely adjusting the CO2 factor within predefined scenarios. It does not fully
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capture the complexities of policy implementation or the diverse benefits of emerging sustainable con-
struction practices and materials science innovations. Moreover, the model overlooks the potential for
increased CO2 emissions resulting from the use of materials with higher embodied energy in sustainable
buildings (Giordano et al. 2015).



7
Conclusions

7.1. Research questions
7.1.1. Sub-questions
What are the primary factors necessary to consider in the environmental assessment of
the carbon, and how the uncertainties associated with these factors, influence the final

estimates?

In the environmental assessment, total emissions were calculated using three primary parameters: Gross
Floor Area (GFA), Number of Floors, and the CO2 Factor, each contributing to the final outcome with
varying degrees of uncertainty.

Gross Floor Area (GFA) represents the total floor space to be reconstructed. As in this thesis,
detailed data were provided, no uncertainty analysis was performed to see how it will influence the
outcome. However, in other case-studies, incomplete data or discrepancies between planned and actual
reconstruction could introduce uncertainty to that parameter.

Secondly the Number of Floors parameter shows how many floors each building will be, and when
multiplied with the GFA gives the total reconstructed area. For Antakya’s case, specific values for
floors were unavailable, and density categories (low, medium, high) were provided instead. Hence
having limited information about this parameter, and transforming it to quantitative ranges, the study
revealed significant sensitivity to this variable. More specifically, loosely defined ranges (meaning for
example low density can be 1 or 2 floors ) caused wide variability in emissions estimates (8.1 to 20.5
million tonnes). However, this can be mitigated when applying weighted probabilities (low density will
be 60% more likely 1 floor than 2 floors). Applying weighted probabilities reduced the outcome’s range
to be only between 12.6 to 13.9 million tonnes.

Lastly, the third parameter was the CO2 Factor, defined as how much carbon is emitted per square
meter of building constructed. The influence of the CO2 Factor on the outcome is complex. When
defined as a single range, it has minimal influence to the outcome. However, the situation changes when
multiple ranges are introduced. Monte Carlo simulations (OAT) revealed that slightly different factor
distributions could result in distinct CO2 total emissions results, even when ranges overlap largely. This
sensitivity becomes critical in large datasets, where the CO2 Factor’s influence to the result can rival
that of the Number of Floors.

How can the carbon footprint of post-disaster reconstruction efforts be calculated for the
case study in Antakya?

The carbon footprint of post-disaster reconstruction in Antakya was calculated using the three men-
tioned parameters: Gross Floor Area (GFA), Number of Floors, and the CO2 Factor. Gross Floor
Area was treated as fixed parameter, derived from the spatial data provided by the Hatay Metropolitan
Municipality. For Density, the spatial data provided information regarding the percentage of building
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with the categorical value of low, medium, and high and hence there was uncertainty to convert these
values to number of floors. For each category, a discrete range of values was assigned. The CO2 Factor,
representing the carbon emissions per square meter, was extracted from a comprehensive review of Life
Cycle Assessment studies, considering mainly two ranges: a broad range (134-655 kg CO2 eq/m2) and
a narrower range (257-530 kg CO2 eq/m2), while also the CO2 Factor for the studies of Antakya is
considered.

The combination of these parameters was used to estimate total emissions through Monte Carlo simu-
lations, capturing uncertainties in Number of Floors and CO2 Factor. The calculated emissions ranged
between 12.6 and 14.2 million tonnes of CO2, with a mean value of 13.4 million tonnes. The implemen-
tation of this framework in Antakya demonstrates its applicability and utility of the model. Moreover,
uncertainty analysis for the case study showed that it can handle limited data, and produce results that
are reliable and practical. Therefore, this indicate that the developed framework’s could be useful for
similar reconstruction projects.

What are the societal and environmental implications of the carbon emissions generated
by post-disaster reconstruction efforts - for the case study of Antakya-?

Environmentally, the additional CO2 emissions into the atmosphere exacerbate the greenhouse ef-
fect, contributing to global warming. This, in turn, leads to more frequent and severe climate-related
disasters, such as floods, hurricanes, and wildfires. The emissions generated during reconstruction,
whether from material production, transportation, or construction processes, create a reinforcing loop:
as climate change drives more disasters, the need for reconstruction grows, thereby increasing emissions
further. In the case of Antakya,the reconstruction efforts are estimated to add between 12.6-14.2 million
tonnes of CO2 to the atmosphere.

These emissions carry also societal implications1. By taking a standard value for the SCC -even
though that can range widely- these emissions could result in societal costs of approximately $2.4
billion. These costs represent long-term economic damages, including environmental degradation, health
impacts, and climate-related disruptions. While essential for recovery, such emissions highlight the
hidden burden borne by society. Integrating these costs into disaster management discussion, could
potentially emphasize the need for sustainable and climate-resilient rebuilding strategies to support
both environmental and societal well-being.

How following different policy pathways for housing can reduce the total carbon
footprint of new constructed houses?

This thesis explored two key pathways: incorporating sustainable construction practices and promoting
energy-efficient building technologies.

The first approach examined the potential impact of adopting sustainable construction practices.2 Sce-
narios were analyzed where 15%, 30%, and 50% of houses were built sustainably. For Antakya, the
results showed that total CO2 emissions could be reduced by 4.46%, 8.94%, and 14.92%, respectively.
Therefore, this policy could offer considerable reductions in emissions during the construction phase,
directly addressing the carbon footprint at its source.

The second approach evaluated the long-term benefits of constructing energy-efficient homes compared
to the previous existing "traditional designs". By incorporating technologies that reduce operational
emissions by up to 30%, the analysis found that these energy-efficient buildings could offset their initial
construction emissions over an average of 24 years. Notably, the "offset" period varies widely from 13
to 36 years (see Figure 5.10), based on initial construction emissions -produced within just two years.
Overall it showed that it is indeed possible to offset the construction emissions but is massively depend
on the construction factor.

1With societal impacts, we consider the effects on human health, economic stability, and social welfare from the released
of additional carbon into the atmosphere.

2Examples of sustainable practices considered are summarized in Table X. Options X-X2 and X will be translated to
the model as a lower CO2 factor.
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These scenarios provide a preliminary understanding of sustainable reconstruction policies, serving as
indicators of promising options rather than standalone decision-making tools. While they highlight the
most viable approaches, further research is needed to fully assess and optimize their impact.

7.1.2. Main Research Question
How do large scale post disaster reconstruction efforts, such as those in Antakya, Turkey, impact

carbon emissions?

Large-scale post-disaster reconstruction can significantly impact carbon emissions, creating a sharp and
concentrated carbon spike over a short timeframe. Reconstruction activities primarily rely on materials
like concrete and steel, which are energy-intensive to produce and transport. This results in embodied
emissions that are released predominantly during the initial two-three years of rebuilding, making this
period a critical contributor to the overall environmental burden of the disaster.

In the case of Antakya, where approximately 38,000 buildings are being reconstructed, the emissions
are estimated to range between 12.6 and 14.2 million tonnes of CO2, equivalent to the annual emis-
sions of countries like Slovenia, Lithuania and Puerto Rico. The emissions generated also highlight a
climate feedback loop, where reconstruction efforts contribute to global warming, intensifying climate-
related disasters that, in turn, necessitate further reconstruction and emissions. Although the Antakya
earthquake was not climate-induced, its emissions mirror the pattern seen in climate-related disasters,
emphasizing the inter-connectedness of reconstruction and climate change.

Overall, large-scale post-disaster reconstruction efforts significantly contribute to carbon emissions due
to the rapid consumption of energy-intensive materials and resources needed for rebuilding. The An-
takya case clearly illustrates the magnitude of this impact. When we quantify the emissions, we find
that those generated by a single cityjust one part of the affected regioncan rival the annual emissions
of entire small countries, thereby exacerbating climate change and its consequences.

7.2. Contribution
This thesis was motivated by the observation that little research has examined the environmental
impacts of large-scale reconstruction projects completed in a short time frame. To address this gap, a
method was developed to estimate the carbon emissions associated with such efforts, incorporating the
inherent uncertainties due to limitations in the available data. This method was applied in a real-world
context through a case study in Antakya, Turkey.

The study quantifies the emissions from rebuilding approximately 38,000 buildings, estimating them
to be comparable to the emissions of 3 million cars. Additionally, the social cost of these emissions is
calculated at around $1 billion, -based on a moderate estimation-, highlighting the significant societal
burden of reconstruction activities. By providing a measurable assessment of the environmental impact
of reconstruction, this study shifts the discussion of what is the environmental impact of reconstruction,
from vague assumptions to a tangible, specific value. These values serve as a foundation for targeted
policy interventions, aligning with the principle that "you cannot reduce what you do not measure."

7.3. Policy Implications
The findings highlight the significant environmental impact of reconstruction and its role in the climate
feedback loop, where disasters lead to rebuilding, generating emissions that exacerbate climate change.
By quantifying emissions from Antakya’s reconstruction, this study underscores the importance of
integrating measurable environmental considerations into recovery planning. Policymakers can utilize
the proposed framework to advocate for sustainable practices, including low-carbon materials, debris
recycling, and energy-efficient construction methods. The results also emphasize the necessity of resilient
urban planning and disaster prevention strategies to reduce the need for future large-scale rebuilding.
By providing a concrete estimate of reconstruction emissions, the study draws attention to the often-
overlooked environmental consequences of disaster recovery, which are becoming increasingly critical as
climate -and conflict- related reconstruction increase.
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7.4. Further Research
Incorporating Waste Disposal and Recycling The Turkey-Syria earthquake generated over 100
million cubic meters of debris from collapsed buildings, representing a substantial source of recyclable
materials. Recently, facilities have been established by the UNDP and the Ministry of Environment,
Urbanization, and Climate Change to recycle this material UNPD, Relief Web). However, the model
developed in this thesis does not account for the potential reductions in CO2 emissions from reusing
debris materials.
Future research should focus on developing a systematic approach to incorporate recycling scenarios into
the model. This would allow for a comparative assessment of emissions with and without recycling prac-
tices, quantifying the potential environmental benefits of integrating these methods into reconstruction
workflows. By addressing this gap, future work could enhance the models capacity to provide a more
accurate and comprehensive evaluation of the environmental impacts of post-disaster reconstruction.

Break-down of the CO2 Factor In addition, further research could explore the relationship be-
tween building height and the CO2 factor, as high-rise buildings may exhibit different emissions profiles
compared to low-rise structures due to economies of scale in material usage and construction practices.
This analysis would offer a more nuanced understanding of how design choices, such as the number of
floors, influence emissions. Moreover, the CO2 factor could be refined by breaking it down into distinct
values for each phase of construction, aligned with the A1-A5 stages in Life Cycle Assessment (LCA).
This would involve separately accounting for emissions from material production (A1-A3), transporta-
tion (A4), and construction processes (A5). To achieve this, region-specific LCA data would need to
be collected, capturing local variations in material sourcing, transportation distances, and construction
methods. While such an approach would enhance the precision and granularity of the model, it would
also introduce additional complexity and uncertainty due to the high data requirements.

Integrating SCC into Cost-Benefit Analysis The model could be expanded to include the Social
Cost of Carbon (SCC) within a cost-benefit analysis. This would involve comparing the emissions and
costs of different construction scenarios, such as a baseline reconstruction approach versus a sustainable
alternative. By assigning a monetary value to emissions in each scenario, alongside the construction
costs, policymakers could better understand the trade-offs involved. This comparison would help high-
light the economic and societal advantages of sustainable reconstruction, providing a clearer picture of
both immediate and future costs and benefits. Such an addition would make the model more practical
for decision-making and policy development.
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A.1. Chapter: Introduction
A.2. Chapter: State of the Art

Figure A.1: The progressive transition of levels of uncertainty from determinism to total ignorance as depicted in the
work of Haasnoot 2011
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LCA Type Description Advantages Disadvantages
Process
LCA

Most common LCA
type, based on bottom-
up data on the energy
and material flows for
specific processes.

Easy to determine each
process that is con-
tributing to emissions.

Impossible to include all pro-
cesses that emit GHGs, and
choices must be made about
what to include and how
to define the system bound-
ary. While some databases,
such as ecoinvent, model in-
frastructure associated with
the transforming activities
(e.g., equipment manufactur-
ers that supply cement, steel,
and wood manufacturing fa-
cilities), it is difficult to
know precisely what is in-
cluded in the system bound-
ary, and omissions may create
an apples-to-oranges compar-
ison.

InputOutput
LCA

Based on a top-
down approach using
national statistical in-
formation on monetary
transactions between
sectors. Economic
inputs to a sector,
such as the building
industry, are trans-
formed into energy
and emission flows
using a partitioning
and accounting of
energy and emissions
for the full economy.

Does not suffer from
truncation error (i.e.,
excluding potential
sources of emissions
such as services like
banking, advertise-
ments, and legal ser-
vices), as all emission
flows are portioned
and included.

Unsuitable for comparing the
relative performance of differ-
ent types of building mate-
rials. Associated with mon-
etary transactions that pre-
sume an average input emis-
sion factor based on all the
comprised sectors, which may
or may not represent the
structural building element in
question. Does not include
carbon sequestration, a criti-
cal element in building LCA.

Hybrid
LCA

Combination of both
process and inputout-
put LCA.

Balances advantages of
both process and in-
putoutput LCA.

Limited use because of sophis-
tication and complexity.

Table A.1: Description of the main types of LCA analysis
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A.3. Chapter: Case Study

Figure A.2: Antakya’s growth based on the work of X
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A.4. Chapter: Method

Figure A.3: Research Method with more detailed information
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Name Explanation Formula Units

FAR (Floor Area Ratio) the ratio of a building’s total floor area to
the size of the plot on which it is built. For
example, a FAR of 2.0 means the buildings
total floor area is twice the ground floor area.

FAR = Gross Floor Area
Plot Area

-

Dwelling Units Per Acre
(DU/acre)

Primarily used in residential projects to
describe the number of housing units per
unit of land area, indicating population
density within a specified region.

Dwelling Units Density =
Number of Housing Units

Land Area

DU/acre or
DU/hectares

Number of Stories or Building
Height

Represents building height, often regulated
by zoning laws. It can be expressed either in
terms of number of stories or absolute height
in meters or feet.

- Number of Floors,
meters or feet

Qualitative Density Categories Categorizes buildings into qualitative density
terms such as low, medium, and high, often
without a precise quantitative definition but
generally corresponding to development
intensity.

- -

Table A.2: Key Metrics for Building Density and Area
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A.4.1. Data Collection
Gross Floor Area & Number of Floors

Figure A.4: Reconstruction Plans as provided from the Hatay Municipality
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CO2 Factor

Figure A.5: Regions with climate Csa Reyes et al. [2019]

A.4.2. Assigning Uncertainty Ranges for Model's Input

Figure A.6: Flowchart of the step 3 from the research method. Assigning Uncertainty ranges for model’s parameters.
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(a) Distribution of floors based on the Turkish Statistical
Institute [2021] (b) Distribution of floors based on the Ozdemir [2024]

Figure A.7: Distribution of floors of the 2 datasets that have been used.

Number of Floors or Density

(a) (b)

Figure A.8

(a) (b)

Figure A.9: Triangular Left
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(a) (b)

Figure A.10: Triangular Right

Figure A.11: All possible ranges

CO2 Factor

A.4.3. Calculate CO2 Emissions
Scenario
No.

OAT or
Simulta-

neous

Number of Floors CO2 Factor Distribution

1 OAT Low (1-2), Medium (3-8), High
(9-12)

Fixed at 400 kg
CO2/m2

Random

2 OAT Low (1-3), Medium (4-8), High
(9-12)

Fixed at 400 kg
CO2/m2

Random

3 OAT Low (1-2), Medium (3-8), High
(9-12)

Fixed at 400 kg
CO2/m2

Random
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4 OAT Low (1-3), Medium (4-7), High
(8-11)

Fixed at 400 kg
CO2/m2

Random

5 OAT Low (1-2) [41%, 59%], Medium
(3-8) [23.9%, 22.4%, 20.9%,

19.4%, 9.0%, 4.5%], High (9-12)
[25% each]

Fixed at 400 kg
CO2/m2

Weighted

6 OAT Low (1-3) [30%, 42%, 28%],
Medium (4-8) [42%, 24%, 15%,

13%, 6%], High (9-12) [25%
each]

Fixed at 400 kg
CO2/m2

Weighted

7 OAT Low (1-2) [45%, 55%], Medium
(3-8) [22.7%, 24.2%, 22.7%,
15.2%, 10.6%, 4.5%], High

(9-12) [25% each]

Fixed at 400 kg
CO2/m2

Weighted

8 OAT Low (1-3) [33.3%, 33.3%, 33.3%],
Medium (4-7) [25%, 25%, 25%,
25%], High (8-11) [25% each]

Fixed at 400 kg
CO2/m2

Weighted

9 OAT Low = 2, Medium = 5, High =
9

De Wolf (240-420 kg
CO2/m2)

Random

10 OAT Low = 2, Medium = 5, High =
9

De Qo (150-397 kg
CO2/m2)

Random

11 OAT Low = 2, Medium = 5, High =
9

Simonen (204-525 kg
CO2/m2)

Random

12 OAT Low = 2, Medium = 5, High =
9

Rock (165-665 kg
CO2/m2)

Random

13 OAT Low = 2, Medium = 5, High =
9

Southern Europe
(397-652 kg CO2/m2)

Random

14 OAT Low = 2, Medium = 5, High =
9

Turkey (312-489 kg
CO2/m2)

Random

15 OAT Low = 2, Medium = 5, High =
9

Broad Range (134-665
kg CO2/m2)

Random

16 OAT Low = 2, Medium = 5, High =
9

De Wolf (240-420 kg
CO2/m2)

Normal

17 OAT Low = 2, Medium = 5, High =
9

De Qo (150-397 kg
CO2/m2)

Normal

18 OAT Low = 2, Medium = 5, High =
9

Simonen (204-525 kg
CO2/m2)

Normal

19 OAT Low = 2, Medium = 5, High =
9

Rock (165-665 kg
CO2/m2)

Normal

20 OAT Low = 2, Medium = 5, High =
9

Southern Europe
(397-652 kg CO2/m2)

Normal

21 OAT Low = 2, Medium = 5, High =
9

Turkey (312-489 kg
CO2/m2)

Normal

22 OAT Low = 2, Medium = 5, High =
9

Mixture (257-530 kg
CO2/m2)

Normal

23 OAT Low = 2, Medium = 5, High =
9

Broad Range (134-665
kg CO2/m2)

Normal

24 OAT Low = 2, Medium = 5, High =
9

De Wolf (240-420 kg
CO2/m2)

Triangular
Left-Skewed

25 OAT Low = 2, Medium = 5, High =
9

De Qo (150-397 kg
CO2/m2)

Triangular
Left-Skewed

26 OAT Low = 2, Medium = 5, High =
9

Simonen (204-525 kg
CO2/m2)

Triangular
Left-Skewed

27 OAT Low = 2, Medium = 5, High =
9

Rock (165-665 kg
CO2/m2)

Triangular
Left-Skewed
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28 OAT Low = 2, Medium = 5, High =
9

Southern Europe
(397-652 kg CO2/m2)

Triangular
Left-Skewed

29 OAT Low = 2, Medium = 5, High =
9

Turkey (312-489 kg
CO2/m2)

Triangular
Left-Skewed

30 OAT Low = 2, Medium = 5, High =
9

Mixture (257-530 kg
CO2/m2)

Triangular
Left-Skewed

31 OAT Low = 2, Medium = 5, High =
9

Broad Range (134-665
kg CO2/m2)

Triangular
Left-Skewed

32 OAT Low = 2, Medium = 5, High =
9

De Wolf (240-420 kg
CO2/m2)

Triangular
Right-Skewed

33 OAT Low = 2, Medium = 5, High =
9

De Qo (150-397 kg
CO2/m2)

Triangular
Right-Skewed

34 OAT Low = 2, Medium = 5, High =
9

Simonen (204-525 kg
CO2/m2)

Triangular
Right-Skewed

35 OAT Low = 2, Medium = 5, High =
9

Rock (165-665 kg
CO2/m2)

Triangular
Right-Skewed

36 OAT Low = 2, Medium = 5, High =
9

Southern Europe
(397-652 kg CO2/m2)

Triangular
Right-Skewed

37 OAT Low = 2, Medium = 5, High =
9

Turkey (312-489 kg
CO2/m2)

Triangular
Right-Skewed

38 OAT Low = 2, Medium = 5, High =
9

Mixture (257-530 kg
CO2/m2)

Triangular
Right-Skewed

39 OAT Low = 2, Medium = 5, High =
9

Broad Range (134-665
kg CO2/m2)

Triangular
Right-Skewed

40 SimultaneousLow (1-2) [45%, 55%], Medium
(3-8) [22.7%, 24.2%, 22.7%,
15.2%, 10.6%, 4.5%], High

(9-12) [25% each]

Mixture (257-530 kg
CO2/m2)

Normal

41 SimultaneousLow (1-2) [45%, 55%], Medium
(3-8) [22.7%, 24.2%, 22.7%,
15.2%, 10.6%, 4.5%], High

(9-12) [25% each]

Broad Range (134-665
kg CO2/m2)

Normal

Table A.3: Scenarios for CO2 Emission Simulations: Number of Floors and CO2 Factor Distributions

1 # Define ranges for floors based on density with probabilities
2 density_to_floors_My = {
3 ’low ’: ([1 , 2], [0.45 , 0.55]) , # Low density floors with probabilities
4 ’middle ’: ([3 , 4, 5, 6, 7, 8], [0.23 , 0.24 , 0.23 , 0.15 , 0.11 , 0.04]) , # Middle

density floors with probabilities
5 ’high ’: ([9 , 10, 11, 12] , [0.25 , 0.25 , 0.25 , 0.25]) # High density floors with

probabilities
6 }
7

8 # Define the number of simulations
9 n_simulations = 1000

10

11 # Run Monte Carlo simulation
12 results_free = []
13 for i in range ( n_simulations ):
14 total_$CO_2$ = 0
15 for idx , row in gdf. iterrows ():
16 # Select the number of floors based on the density and its corresponding

probabilities
17 if row[’new_dens ’] == ’low ’:
18 floors = np. random . choice ( density_to_floors_My [’low ’][0] , p=

density_to_floors_My [’low ’][1])
19 elif row[’new_dens ’] == ’middle ’:
20 floors = np. random . choice ( density_to_floors_My [’middle ’][0] , p=

density_to_floors_My [’middle ’][1])
21 elif row[’new_dens ’] == ’high ’:
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22 floors = np. random . choice ( density_to_floors_My [’high ’][0] , p=
density_to_floors_My [’high ’][1])

23

24 $CO_2$_factor = np. random . normal (0.3995 , (0.665 - 0.134) / 4)
25 $CO_2$_factor = np.clip( $CO_2$_factor , 0.134 , 0.665) # Ensure $CO_2$ factor

stays within the specified range
26 total_sqm = floors * row[’area_sqm ’]
27 $CO_2$_emissions = total_sqm * $CO_2$_factor
28 total_$CO_2$ += $CO_2$_emissions
29 results_free . append ( total_$CO_2$ )
30

31 # Convert results to DataFrame for analysis
32 results_free_df = pd. DataFrame ( results_free , columns =[’total_$CO_2$ ’])
33

34 # Plot the distributions of the results as a histogram
35 plt. figure ( figsize =(10 , 6))
36 plt.hist( results_free_df [’total_$CO_2$ ’], bins =50 , color =’#3 F7774 ’, edgecolor =’black ’)
37 plt. title (’Monte␣Carlo␣Varying␣Both␣Parameters |␣$CO_2$␣Factor␣=␣(134 ,657) GWP␣’)
38 plt. xlabel (’Total␣$CO_2$␣Emissions␣(ton)’)
39 plt. ylabel (’Frequency ’)
40 plt.grid(True)
41 plt.show ()

A.4.4. Social Cost of Carbon - Alternative method
As explained in the main text, estimating a definitive SCC value is inherently complex, as it varies
widely across models depending on their underlying assumptions. To address this uncertainty, the
distribution of SCC values compiled in a meta-analysis by Tol [2023] is utilized. Tol synthesized 5,905
SCC estimates from 207 academic studies published before 2022. The resulting distribution is shown
in Figure A.12.

Figure A.12: Histogram of the social cost of carbon based on the work of Tol 2023

The histogram illustrates the distribution of total costs (x-axis, in USD) associated with the reconstruction-
related emissions, with the y-axis representing the probability density. The distribution is highly pos-
itively skewed, covering a wide rangefrom near $0 to around $200 per tonne of COthough it extends
beyond $1,400.

To integrate this SCC distribution with the CO emissions estimate, each SCC value is multiplied by
the mean CO emissions derived from the main results.
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While a simple 90% interval using the 5th and 95th percentiles might appear suitable to summarize the
central range, this method can be misleading in the case of a highly skewed distribution. It discards the
tails without considering where values are most densely concentrated, potentially excluding a substantial
portion of the core of the distributionparticularly when the lower tail contains high-density values.

To provide a more informative summary, a highest density interval (HDI) is used. A kernel density
estimate (KDE) is applied to identify the mode of the distribution, and an interval is defined that
includes all values with a density above 50% of the peak. This HDI approach is more appropriate for
skewed distributions, as it highlights the region where values are most concentrated, offering a clearer
picture of the central tendency.

A.4.5. Policy Pathways: Building Sustainable houses

(a) Scenario A: Thin-film G Œ B 500 Bifacial PV module
mounted on the case building.

(b) Scenario B: IceWind turbines mounted on the building
(developed by the Saleh et al. [2024]).

(c) Green wall for three sides of building except in the south
direction.

Figure A.13: Scenarios of the energy efficient measures as taken from the work of Saleh et al. [2024]

A.5. Chapter: Results
A.5.1. Raw Data Insights

Figure A.14: The raw spatial data obtained from the Hatay Municipality, representing the digitized version of the
reconstruction plans shown in Figure ??. Key columns for analysis include Density and Geometry.
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Figure A.15
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A.5.2. Results of CO2 Emissions MC Simulations
OAT - Number of floors

(a) Scenario 1 TUIK Survey

(b) Scenario 2: Antakya Field Work

(c) Scenario 3 Combined Approach

(d) Scenario 4: Arbitrary

Figure A.16: One at a time variation of Density Range (without discrete probability density)

From the above plots, it can be seen that the categorical value middle density from the spatial data,
is the most important input category. Specifically, as illustrated in Figure ??, when the maximum
floor count in the middle-density category is capped at 8 floors, -the highest value within the 3 to 8
floors range-, the resulting CO2 emissions are among the highest observed. However, even when the
highest floor value is selected within the high-density category (12 floors), the total CO2 emissions can
still vary significantly, ranging between 8 to 20 million tonnes (??). This variability indicates that the
middle-density category has a stronger influence on overall emissions, which aligns with expectations,
as the majority of buildings fall into this category, while the high-density buildings (accounting for just
2%) have a minimal impact (Figure 5.3a).
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(a) Scenario 5: Range 1 - TUIK Survey

(b) Scenario 6: Range 2 - Antakya Field Work

(c) Scenario 7 - Range 3 Combined Approach

(d) Scenario 8: Range 4- Arbitrary

Figure A.17: One at a time variation of Density Range (without discrete probability density)
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OAT - CO2 Factor

(a) Monte Carlo - Uniform distribution

(b) Monte Carlo Triangular right skewed

(c) Monte Carlo Triangular Left Skewed

Figure A.18: OAT variation of the CO2 Factor Range
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A.5.3. Mathematical explanation of narrow distributions
The characteristics of the resulting distributions that need to be explained, are:

• Why the distributions are narrow and do not overlap.
• Why they follow a bell-shaped curve.

Narrow distributions
To address the first question, a mathematical explanation was developed and subsequently validated
through testing. Essentially, the narrow distribution of CO2 emissions can be attributed to two main
factors: the large number of buildings and the fact that each building’s area is constant (or at least
bounded - see Figure A.15). When you aggregate emissions from many buildings, the random fluc-
tuations tend to cancel each other out, which means that the overall variability relative to the mean
decreases (Coefficient of Variance). In other words, the more buildings you include, the closer the total
emissions get to their expected value, resulting in a much narrower distribution.

Below, follows the mathematical explanation:
Assume that for each building i, the CO2 emission is given by

Xi = Ai · fi, (A.1)

where:

• Ai is the constant (deterministic) area of building i, and
• fi is a random variable representing the CO2 factor with mean µ and variance σ2.

The total emission for n buildings is:

Tn =

n∑
i=1

Xi =

n∑
i=1

Aifi. (A.2)

By the linearity of expectation, we have

E[Tn] =

n∑
i=1

E[Xi] (A.3)

=

n∑
i=1

AiE[fi] (A.4)

= µ

n∑
i=1

Ai (A.5)

= µSn, (A.6)

where

Sn =

n∑
i=1

Ai.

Since the fi are independent, the variance of the sum is the sum of the variances:

Var(Tn) =

n∑
i=1

Var(Xi) (A.7)

=

n∑
i=1

A2
i Var(fi) (A.8)

= σ2
n∑

i=1

A2
i (A.9)

= σ2 Qn, (A.10)
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where

Qn =

n∑
i=1

A2
i .

Thus, the standard deviation of Tn is

σTn =
√
Var(Tn) = σ

√
Qn. (A.11)

The coefficient of variance or -relative error is defined as the ratio of the standard deviation of Tn to its
expected value:

σTn

E[Tn]
=

σ
√
Qn

µSn
. (A.12)

For a large number of buildings:

An =
1

n

n∑
i=1

Ai and A2
n =

1

n

n∑
i=1

A2
i .

Then, we can approximate:
Sn ≈ nAn and Qn ≈ nA2

n.

Substitute these into the expression for the relative error:

σTn

E[Tn]
≈ σ

√
nA2

n

µnAn

(A.13)

=
σ

µ
·
√
A2

n

An

· 1√
n
. (A.14)

• The term σ
µ is the coefficient of variation for the individual CO2 factor fi; it reflects the inherent

variability of the CO2 factor relative to its mean.

• The term
√

A2
n

An
measures the dispersion of the building areas. If all buildings have the same area,

then A2
n = A

2

n and this term is equal to 1. Here, even though the buildings do not have the
same area,

√
A2

nandAnhavethesameorderofmagnitudeTheterm 1√
n

shows that as the number
of buildings n increases, the relative error decreases proportionally to 1/

√
n.

Thus, the final expression for the relative error is:

σTn

E[Tn]
≈ σ

µ
·
√
A2

n

An

· 1√
n
.

This shows that the relative error of the outcome (i.e., the spread of the distribution relative to the
mean) decreases as 1/

√
n, causing the distribution of the total emissions to become narrower as the

number of buildings increases.

To check this theory, the results will be examined for consistency with the proposed explanation.
This is achieved by analyzing three distributions of the CO2 Factor that exhibit significant overlap:De
Wolf, Mix, and Broad ranges (Figure A.21).
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Figure A.19: Distribution of the CO2 Factor for "Mix", "Broad" and "DeWolf" distribution.

For each distribution, 1,000 simulations are conducted with a limited number of buildings. The objective
is to determine whether increasing the number of buildings leads to a progressively narrower distribution.
To assess this, simulations are performed with sample sizes (i.e., number of buildings) of 10, 100, 1,000,
20,000, and 30,000 as seen in Figure A.20.
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Figure A.20: Monte Carlo Simulations with an increasing sample of buildings

A similar trend can be observed by examining the behavior of the coefficient of variance (CV) percentage
as the number of buildings increases. For the same three distributions, the CV is defined as the the
standard deviation divided by the mean. Having a low CV shows that the relative variance is decreasing.
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Figure A.21: Coefficient of Variance for three ranges of the CO2 Factor

Both figures seems to have the expected behavior as the number of buildings increase.

Normal distributions
Central Limit Theorem appears to account for the observed normal distribution of results across various
underlying distributions - normal, uniform, and triangular (see Figures A.18a, A.9, and A.10). More
specifically, the theorem states that the probability distribution of the means of different samples (in
this case the resulted mean from each simulation) drawn from the same population (same range of the
CO2 factor) tends to approximate a normal distribution (as visualized in Figure A.22). In this analysis,
1,000 simulations were performed, yielding a histogram of 1,000 sample means that demonstrates this
tendency toward normality.

Figure A.22: Distribution of the CO2 Factor for "Mix", "Broad" and "De Wolf" distribution.

A.5.4. Social Cost of Carbon Results - Alternative results
As explained in the methodology, the SCC distribution compiled by Tol 2023, can be translated into a
distribution of the estimated cost (in US dollars), that society will carry. The resulting histogram, is
shown in Figure A.23.
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Figure A.23: Histogram of the social cost of carbon that the rebuilding of Antakya could potentially have

As the plot indicates, the high-density interval (HDI) around the mode of the distribution captures a
cost range of $0.00 to $2.86 billion, with the mode at $0.94 billion. This interval represents the range
within which the majority of the potential cost values are concentrated. In other words, the estimated
economic damages that society pay over time, due to the release of 13.4 million tonnes of CO2 emissions
(mean value of main results) from the rebuilding process in Antakya will range between 0 to 2.86 $
billion dollars, with the highest probability to be around 0.94$ dollars (based on the SCC values).
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A.5.5. Sustainable house

• (a) (b)

(c) (d)

Figure A.24
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