
Active Multi-Camera Navigation in
Video Surveillance Systems

Master’s Thesis

July 2012

Marnix Kraus

Active Multi-Camera Navigation in
Video Surveillance Systems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Marnix Kraus
born in Delft, the Netherlands

Computer Graphics Group
Department of Media and Knowledge Engineering
Faculty EEMCS, Delft University of Technology

Delft, the Netherlands
www.ewi.tudelft.nl

c© 2012 Marnix Kraus. All rights reserved.

Active Multi-Camera Navigation in
Video Surveillance Systems

Author: Marnix Kraus
Student id: 1358332
Email: m.kraus@student.tudelft.nl

Abstract

Active cameras are increasingly used to extend the area coverage and to
improve image quality in video surveillance. With such a pan-tilt-zoom camera,
operators can control its rotation around two axes and can use an optical zoom
to get a better shot. Although multiple video streams are monitored simultane-
ously on a large grid of displays, they lack spatial correlations that the operators
can rely on. In stressful situations, such as during the pursuit of a target, it is
hard for the operator to maintain situation awareness while controlling cameras
and switching between them.

In this work, an interface is presented that helps the operator in controlling
the cameras while maintaining spatial knowledge of the environment. Its design
extends the work of De Haan et al. [de Haan 10] on augmented surveillance
interfaces, which only uses static video cameras. First, pan-tilt-zoom camera
operation is integrated by providing the user with new camera controls and
visual feedback methods. Second, the special hardware joystick is replaced by
a simple mouse and keyboard control in order to have a seamless integration
with the overall system. Finally, the user is assisted in steering multiple active
cameras by automatically determining and focusing an optimal camera based
on user-indicated target location and movement direction.

As active cameras allow live interaction by the operator, it is difficult to
experiment and consistently perform evaluations using real-life surveillance sys-
tems. Therefore, the prototype interface is implemented upon a simulator which
generates virtual scenarios and live content. Evaluation measures are designed
to measure situation awareness and performance of the operator during the pur-
suit of a target. In the evaluations performed, the prototype was found to have
a better learning curve, a better ease of use and user performance is increased in
comparison to a classical interface. These findings indicate that the presented
interface can enhance operator performance in surveillance control rooms that
monitor vast and complex areas.

Thesis Committee:

Chair: Prof. Dr. Ir. F.W. Jansen, Faculty EEMCS, TU Delft
University supervisor: Dr. Ir. G. de Haan, Faculty EEMCS, TU Delft
External supervisor: Ir. M.G. van Elk, Managing Director at S&T Vision
Committee Member: Prof. Dr. M. Neerincx, Faculty EEMCS, TU Delft

ii

Preface

This project is the third episode of a series on interactive video surveillance. It
involves interactive images and pan-tilt-zoom camera controls. When I started on
finding a subject for my thesis, I was mainly interested in computer game devel-
opment. Although the available topics were fine, they were not really appealing to
me. Fortunately, the TU Delft has a separate computer graphics group that also
performs research in other types of visualizations. Gerwin de Haan introduced me
to some of his topics of research. Especially video surveillance caught my attention,
because of its high level of user interaction. I was eager to find new solutions that
could be used in real life.

This thesis went exactly as I expected how it would be like to write such a large
report about only one topic. The difficulty was at a good level and the amount of
work could easily be altered to fit inside the planned hours for this project. I had
the most fun evaluating the system with the kids from ROC Mondriaan, supervised
by Rob Elsing.

The field trip to video surveillance center CIV in collaboration with Michel van
Elk from S&T and TNO has given me new insights on my own project by letting
me into one of their brainstorm sessions. I hope that they have also found some
interesting pieces to continue their own study.

Special thanks to my parents and sister for being the first ones to test my pro-
totype. We had a good laugh.

Marnix Kraus
Delft, the Netherlands

July 13, 2012

iii

Contents

Preface iii

Contents v

1 Introduction 1

1.1 Domain Analysis . 1

1.2 Problem Description . 3

1.3 Project Overview . 7

2 Analysis and Literature Study 11

2.1 Related Work . 11

2.2 Sources of Inspiration . 19

2.3 Approach . 27

2.4 Discussion . 29

3 Video Surveillance Simulator 31

3.1 Characters . 31

3.2 Cameras . 33

3.3 Implementation . 34

3.4 Discussion . 34

4 Single PTZ Camera Control 37

4.1 Joystick . 37

4.2 Mouse Alternatives . 37

4.3 Discussion . 40

5 Multi-Camera Navigation 43

5.1 Background . 43

5.2 User Input . 44

5.3 Camera Filtering and Metrics . 45

5.4 Interaction . 50

v

Contents

5.5 Visual Feedback . 52
5.6 Discussion . 53

6 Inter-Camera Navigation 55
6.1 Transition Technique . 55
6.2 Zoom Integration . 58
6.3 Visual Feedback . 58
6.4 Discussion . 60

7 Implementation 63
7.1 Game Engine . 63
7.2 Content Pipeline . 64
7.3 Vital Classes . 65
7.4 Discussion . 66

8 Evaluation 67
8.1 Test Setup . 67
8.2 Logging . 72
8.3 Target Group . 73
8.4 Test Results . 74
8.5 Discussion . 81

9 Discussion and Conclusion 83
9.1 Summary . 83
9.2 Conclusion . 84
9.3 Future Work . 85

Bibliography 89

A Class Diagram 93

B Evaluation Questionnaire 97

C SPSS Output 105

vi

Chapter 1

Introduction

Camera surveillance systems are widely utilized in the daily routines of companies
that want to keep their safety standards high. The number of surveillance cameras
worldwide comes to a rough estimate of five million devices and that amount is
still rapidly expanding [Keval 09]. The main purpose of video surveillance is to
ensure safety and security in a given area. Not only by preventing crime, but also
by observing the area for other calamities that could occur. It is the aim for the
operators that control and survey these cameras to maintain overview of the situation
and respond swiftly when anything exceptional happens. A common task that comes
with major difficulties is the pursuit of persons via cameras in particular. This
project makes an effort in researching and overcoming the problems that the camera
supervisors have during their work. This introductory chapter provides a first glance
at the domain of the project, the problem description and the research goals of
interest.

1.1 Domain Analysis

Camera operators work in small teams behind their desks. They look out for calami-
ties and suspicious acts and persons. Each operator focuses on a particular region by
viewing a number of monitors displayed in a matrix (Figure 1.1). The average num-
ber of simultaneous views differs from five to fifteen and is still increasing over the
years [Keval 09]. Some TV monitors are split into even smaller images, depending
on the importance and detail the operator needs. The monitors themselves show no
spatial relationship of any kind, only the numbering of the cameras is in a somewhat
logical order. Expanding the system with extra cameras in between would already
disturb this logical ordering. So, expansion of the initially installed set of cameras
is not easy to perform.

1.1.1 Surveillance Equipment

On the operator’s desk is a spot monitor and a special camera joystick. These two
tools are used to control each camera independently. The installed cameras in most

1

1. Introduction

Figure 1.1: A matrix of CCTV monitors. Static monitors show the overview, a PTZ monitor stands
in front of the operator. From http://ipcctv-solutions.com.

CCTV systems nowadays are pan-tilt-zoom (PTZ) cameras and are also referred to
as active cameras. These devices can be controlled in two rotational axes and also
have an optical zoom functionality that can be used to enhance the objects on screen
by decreasing the field of view. The pan-axis is used to rotate around the camera’s
up-axis and the tilt-axis is used to pitch the camera’s lens up and down (Figure 1.2).
The joystick controls the pan and tilt function by pushing the stick around in its
socket. The zoom functionality is often controlled by rotating the stick around its
center.

A small numerical keypad next to the joystick is used to type in the numbers
of the different cameras. Whenever the operator wants to control a certain camera,
that camera has to be displayed in the spot monitor first. To do so, the user types
in the number of the camera and confirms the number with a return statement (i.e.
by pressing the Enter-button). The camera numbers are displayed on the images in
the large matrix view, so it is easier for the operator to access them.

1.1.2 Task Analysis

During the shift of a camera surveillance operator there are a number of tasks that
the operator performs. The activities can be divided into reactive and proactive
tasks [Keval 09]. While proactive tasks involve observation and gaining a global

2

1.2. Problem Description

Figure 1.2: The pan-tilt-zoom camera can pan horizontal, tilt vertical and zoom its optical lens.

overview of the activities in the area, reactive tasks involve following targets and
locating direct calls on screen from officers in the field. A task inventory performed
by TNO Soesterberg led by C. Schilder and W.D. Ledegang shows the different tasks
that operators can perform during their daily operations (Table 1.1).

It can be seen that the reactive tasks all include fast handling of controls and
require multitasking qualities from the operator. The operators are bound to time
and have a high workload during these tasks. They use different communication
means to inform the officers on the site, which makes multitasking an even more
desired quality for an operator.

The time that each of the different types of task occupy depends on the day of the
week and the time of day. The weekends are often full of reactive tasks, while the rest
of the week is mostly occupied by proactive tasks. This implies that the weekends
bring along higher stress levels to operators. Figure 1.3 shows the ratios between
weekends and weekdays in an average control room. In the weekends, reactive tasks
may even take up to 65 percent of the total work shift.

1.2 Problem Description

Now that the domain of the camera surveillance operator is defined, a problem
description can be created from the trouble that the operators have during their
daily work. Especially the reactive tasks that the operators have to go through are
highly stressful [Keval 09] and therefore interesting. The users have a hard time

3

1. Introduction

Task Description Type

Monitoring Look out in the area via the video screens. Proactive

Surveillance Perform a focused round through an area based on
expectations and hot spots.

Proactive

Search Try to find persons based on a description or pic-
ture.

Reactive

React to alarms React to an alarm and navigate to the alarm on
screen.

Reactive

Follow After detecting a person on suspicious behavior, fol-
low that person through the area. Also:

• Communicate with people on site.
• Pass camera images to other operators.
• Register incidents.

Reactive

Rewind and look back Directly rewind to a certain point in the video and
provide a description of the suspect or situation.

Reactive

Search for old events Rewind through old images whenever someone asks
for old incidents.

Proactive.

Table 1.1: The task routine of the camera operator. Courtesy of TNO Soesterberg.

Day shift Weekend shift

0

20

40

60

80

100

w
or
k
sh
if
t
o
cc
u
p
at
io
n
(i
n
%
)

Average operator workday

Proactive tasks
Reactive tasks
Administration

Figure 1.3: The average day of a surveillance operator. Weekend shifts consume more time for
reactive jobs. Data from Keval [Keval 09].

4

1.2. Problem Description

doing their job when performing reactive tasks, like following a running person on
screen. It was found that a number of problems cause the high workload level of
the employees: Participants in the tests by Keval indicated that the cameras are
illogically ordered, that some cameras are placed at bad positions, and the ratio of
operator to camera is too high. Not only does failure result in low efficiency and
performance; losing a target that is being chased embarrasses operators in front of
their colleagues and employer.

1.2.1 Definitions

The causes that induce failure can be derived from the comprehensive concept of
situation awareness (SA). Situation awareness is the level of perception that a person
has about the environment and everything in the area of interest [Matheus 03]. A
concept that contributes to situation awareness is spatial knowledge. Already in 1982,
Thorndyke [Thorndyke 82] proposes two mental models within the spatial knowledge
domain that are also present in video surveillance: orientation and navigation. In
video surveillance, the word navigation is equivalent to steering and switching to
the correct location in the area in order to find things. This is an action with
focus on solving a route from the current location to the new location on screen,
where orientation is a more mental concept of awareness. The operator has to figure
out what the current screen is showing and where that could be in the real world.
Figure 1.4 shows both concepts in a figurative way, emphasizing on the differences
between the two. If the operator is not able to use both concepts of orientation and
navigation in a correct manner during a stressful situation, failure in task is likely
to happen.

Two other definitions of interest that occur in literature are exocentric and ego-
centric. Exocentric systems keep the user separated from the interface, as in a
third-person view or a map overview. Egocentric systems make the user of the sys-
tem a part of the world. The user is an entity in the world in some way or another
(e.g. by means of a first-person camera or virtual reality).

1.2.2 User Scenarios

A typical example of a problematic situation is the following scenario. A person is
walking down the street and the operator has a view on the target from behind. By
zooming in, the person can still be spotted on a long distance. Suddenly, the target
decides to walk around the corner and the operator has lost its target. When such
a scenario occurs, the operator has to switch to a new camera that is just around
that corner. By means of orientation, the operator has to think of which camera is
a good choice. If he knows the cameras by heart, he can easily switch around the
corner. Afterwards, the camera still has to be positioned correctly to find the target
once more (Figure 1.5). In another case, if the operator is on unfamiliar territory,
he will have to return to the large matrix view of images and search for a camera
where he can actually see the target. It is possible that there is no such camera,

5

1. Introduction

(a) In orientation issues, one is looking for in-
formation in relation to itself. In this example:
“In which street is this camera that I am looking
through?”

(b) In navigation issues, one searches for the
route to see a certain object. In this example:
“How do I steer my cameras to get a closeup of
the face?”

Figure 1.4: Two examples of issues that operators face in the concepts of (a) orientation and (b)
navigation.

because cameras are incorrectly oriented. The operator is completely dependent on
the current rotation of the cameras (Figure 1.6). Alternatively, the operator could
look at a map and find the number of the camera that is around the corner.

During the latter scenario, the chance at mode errors is high. This means that
there is a high risk at doing an action that does not comply with the current state
of the system (e.g. the user looks at the matrix view and tries to steer one of those
images with the joystick, instead of the spot monitor). The sequence of actions is
long and there is a high chance of losing the target.

1.2.3 System Centralization

Currently most control rooms have their own regions to control. There are a number
of regions that can be viewed on the monitors so that the operators can do their
surveillance rounds. Only a limited number of areas is assigned per control room.
Future plans of the surveillance companies are to centralize and merge these small
control rooms into larger ones. There will be more different regions that can be
viewed and multiple operators can share their regions. This is a good idea for
optimization of the work flow, because the work can be shared among more persons.
But a disadvantage of this approach is the fact that the operators should memorize
more regions and camera numbers. The learning trajectory is relatively long and
will only increase this way. If there would be a way to not learn all camera numbers

6

1.3. Project Overview

(a) The operator sees a woman with a dog in cam-
era 3. The woman is about to walk around the
corner.

(b) The operator knows the camera number of
the camera that has a better view and types in
‘5’.

(c) The camera still needs adjustment, so the
camera is panned, tilted and zoomed to get a
closeup of the woman.

Figure 1.5: An example problem in the daily work of the operator in unfamiliar areas: The operator
does not know the area and has to search for the target once lost.

by heart, it would be an improvement to the system. Learning the actual camera
numbers would be obsolete for this particular task.

1.3 Project Overview

To narrow down the scope of the project, the task of following will be the our focus.
There is a lot to enhance to the task sequence and a more advanced system is wanted
by operators to improve their efficiency. The operators have issues with switching
to the correct cameras, especially when the environment is unknown to them. The
goal of this project is to design a new prototype that aids the operators in their task
of following. The system should not take over, but only enhance the possibilities for
the user.

The project is approached from a computer science point of view with a practical
perspective on solutions. First, a literature research is performed to investigate the
already existing alternatives for the matrix view. A prototype implementation is
designed and created by laying focus on the difficulties that the operators have with
PTZ cameras. Finally, user evaluations take place to see if the newly designed
interface is better than the old matrix system by means of performance, usability

7

1. Introduction

(a) The operator sees a woman with a dog in cam-
era 3. The woman is about to walk around the
corner.

(b) The operator does not know the camera num-
ber and has to look through all images in the
grid.

(c) The operator types in the number if he has
found the subject. The camera still needs to be
adjusted to get a good shot.

Figure 1.6: An example problem in the daily work of the operator: The operator knows the envi-
ronment and can switch easily, but has to readjust the camera.

and learning curve. The questions that are of interest to come to such a system are
the following.

Research Question 1. What intuitive types of camera controls can be used to steer
a single PTZ camera? How do these controls mix with a complete system that also
lets the user switch between other cameras?

We are looking for a new way of steering to see if the joystick controls that are
used nowadays can be replaced or enhanced with something intuitive. This new
style of control should be able to be integrated in the overall system.

Research Question 2. What alternative navigation methods can be used to im-
prove active multi-camera video surveillance systems during intense situations and
in which ways do they improve video surveillance systems or the user?

This project aims for a new way to navigate through the range of cameras avail-
able without remembering all camera numbers. A number independent method is
of interest that can improve the performance and the usability of the system.

Research Question 3. In what way can the new system be effectively tested on low
costs and a high number of iterations?

8

1.3. Project Overview

PTZ cameras are expensive and require live interaction with the user. A way
to effectively perform user tests is of interest. Not only for this test, but also for
evaluations in the future.

In the upcoming chapters, we will show how these questions evolve into new
interface concepts for operators and how requirements can be met to actually come to
an overall prototype, that implements both solutions for the concepts of navigation
and orientation in spatial knowledge and situation awareness.

This report defines and structures the literature study and user analysis, and
designs documentation and implementation features of the final product. Chapter 2
will describe a literature study of published references and other interesting public
material. System ideas are formed into a plan and features are defined to imple-
ment into the prototype. Chapter 3 introduces a low cost system to perform user
evaluations that is used as an input for the system to be designed.

The system is defined into three main features, which are described in Chapters 4
to 6. Chapter 7 will elaborate on the implementation of the system. Evaluation
results from user tests and the setup to perform these tests can be found in Chapter 8.
Chapter 9 finalizes this report with discussions, conclusions and recommendations
for the continuation on this branch of research.

9

Chapter 2

Analysis and Literature Study

Before the new system can be designed to aid the operators in their task, there are a
number of subjects to discuss first. Preparations have to be made by analyzing the
currently used systems, users and scenarios, and by studying literature, research, and
products that are already on the market. This chapter will first provide a literature
survey of related work, then some extra sources of inspiration and afterwards an
initial design approach for the new prototype.

2.1 Related Work

Before designing the new system, we will have a look at research that has already
been done by other researchers with a similar vision towards video surveillance. The
subjects described in this section do not only show the work on the scope of pursuing
targets by cameras, but also focuses on other tasks that can be of influence on the
design.

2.1.1 Multi-Camera Interfaces

The demand for both a better cognition on orientation and navigation creates a wish
for new interfaces that provide spatial information on the multitude of cameras in
an area. Numerous studies have led to alternative views for the matrix view and
have shown that especially orientation problems can easily be addressed.

2D and 3D Image Representations

The use of 2D maps is a concept that is proven to work for over centuries. It gives
the reader a certain feeling of awareness, because there is a relation between the
image and the spatial context of the real world. Extra information in the map (e.g.
icons and colors) can make it clearer to understand or make it more confusing to
read, depending on the density of data shown on the map. The use of maps is a
clear example of an exocentric approach.

11

2. Analysis and Literature Study

In 2006, Girgensohn et al. [Girgensohn 06] presented a map structure showing
relevant cameras in a certain area. The cameras of relevance differ dynamically due
to the user’s input position on the map. The cameras that can view that position
the best will be highlighted and enlarged. Also, association lines are drawn between
the camera images and the positions on the map. The colors on the map also comply
with the colors around the images (Figure 2.1).

In addition to the associated views in a 2D map, Wang et al. [Wang 07] made
use of a 3D model of the environment. Because the videos are inside the 3D model,
instead of associated outside like in Figure 2.1, this technique is referred to as embed-
ded video (Figure 2.2). Subsequent to their research in 2007, Wang et al. [Wang 08]
also performed tests that combined association lines with 3D views. It was a combi-
nation of their own work and that of Girgensohn et al. (Figure 2.3). Their research
shows an exocentric way to represent a spatial relationship in 3D. This means that
multiple stories were also possible to use in this design by Wang et al. The orienta-
tion of the cameras was only displayed by a simple arrow, which did not seem to be
sufficient. Subjective tests showed that the methods were ‘easy to learn’ and that
the mental workload was low.

Relevant Cameras

When pursuing a target through video images, it is often hard to switch from one
camera to the other while keeping the destined target in sight. After switching from
one camera to another, there is always a time interval of reorientation. Even if the
user knows the camera numbers by heart and types in the correct number for the
new camera, as described in Section 1.2.2, he does not know what to expect exactly
in the new image. The cameras could be oriented in any direction.

To prevent this from happening, new interfaces have been designed that use
previews or in-view images. Figure 2.4 shows how to look through a camera that is
actually behind a wall. The original camera image is enhanced with an augmented
image of the hidden camera. The 3D orientation between both cameras is taken
into account, which makes it logical for the operator what to expect in the following
camera image if he/she wishes to switch the spot monitor. This technique was
introduced by Furmanski et al. [Furmanski 02] and was later introduced as tunneled
video by Veas et al. [Veas 10].

The technique of tunneled video only handles camera images that can be viewed
inside each other. The previewed camera has to be inside the viewport of the main
camera and has to have a similar view direction. But there are more cases where
this is not the case, but these cases cannot be solved by tunneled video. Cameras
are set up to see a wide range of the environment. It is not likely that two cameras
have a similar scope. An alternative technique is a mosaic approach. Multiple
articles [Girgensohn 07, de Haan 10, Veas 10] conclude that a mosaic technique as
in Figure 2.5 shows clearly which cameras are available in the neighborhood, based
on their relative position to the current camera. It solves the issue for cameras being
outside of the current viewport.

12

2.1. Related Work

Figure 2.1: A map with associated cameras and video streams. The color codes reappear in borders
of the view and indicators on the map. From Girgensohn et al., 2006.

Figure 2.2: A multi-storey model with video em-
bedding. The viewports are placed on billboard
planes, which results in high situation awareness,
but removes the orientation of the camera. From
Wang et al., 2007.

Figure 2.3: A 3D associated view. The images
are associated with the positions of the corre-
sponding cameras. From Wang et al., 2008.

13

2. Analysis and Literature Study

Figure 2.4: The wall on the left is marked as see-
through. The user can see what is in the next
camera view without actually going there. From
Furmanski et al., 2002.

Figure 2.5: The mosaic view shows the current
camera, but also cameras that are in the vicin-
ity. The small image represents a preview of the
camera that is somewhere in front of the current
camera. From De Haan et al., 2010.

Instead of showing a preview image of the camera, it can also be represented by
an object, or glyph. De Haan et al. [de Haan 10] show how to use arrow glyphs in a
perspective view to indicate how to navigate to neighboring cameras. The cameras
themselves are coupled via a graph to make sure that not all cameras in the scene
are shown at the same time, but only the relevant ones. But as already shown by
Girgensohn et al. [Girgensohn 07], the connections between neighbors can also be
calculated on the basis of their view frustum, position and rotation. Figure 2.6
shows how the user is able to navigate to neighboring cameras by clicking on the
glyphs in the screen.

The use of these glyphs was later extended to a dynamic cylindrical shape that
could be moved over the ground. A 3D model of the environment was used as a
basis to register mouse events on the ground. When the user confirmed to be on
a certain point of interest (POI), the arrow glyphs that were already in the scene
got attached to the cylinder. The user could now click on the desired camera. The
system would also show a preview of that camera before transferring to there. Color
association made it easier to separate all the different preview images on screen.
Figure 2.7 shows the use of the cylindrical glyph. What is interesting about this
technique, is the fact that it is not image based anymore. The user picks a point in
3D space and the system calculates the interesting cameras for that point.

14

2.1. Related Work

Figure 2.6: The arrows shown in the image cor-
respond to neighboring cameras. The user can
click the arrow to fly to that camera.

Figure 2.7: The cylinder glyph is placed on the
ground place of a 3D model. When the user
clicks, it shows the available cameras that have
the point of interest in their field of view. From
De Haan et al., 2010.

Camera Transitioning

In the current video surveillance management systems camera switches are imple-
mented as direct changeovers. The new camera is instantly shown when the operator
types in the camera number to go to on the spot monitor. This extremely fast tran-
sition lowers the level of situation awareness and lets the user reorient every time
a switch takes place. We have already seen that previews can solve this problem
partially, but there is still no physical transition that makes a relation with the real
world and cameras among each other.

With the three techniques of mosaics, tunnels, and glyphs described above in
Figure 2.3 come also new ways of transitioning. Instead of a direct replacement of the
image, a smooth transition is made that gives a better understanding of orientation
and navigation. Orientation because the new image comes slowly into focus, which
gives the user time to settle down. Navigation because the new transitions show an
animation where spatial knowledge is kept alongside. Figure 2.8 shows how both
tuneling, mosaics, and glyph transitions can be animated over time from one camera
to the other.

De Haan et al. [de Haan 09] describe three different ways of transitions: zooming,
panoramic (i.e. strafing) and orbiting (Figure 2.9). These three types of transition
have different approaches to keep situation awareness optimized and use different an-
imation curves. The technique of orbiting, which is a special case because of the large
distance between the cameras, was later improved by De Haan et al. [de Haan 10].
The transition was not animated in linear world space, but in linear screen space.
This gives more ease and rest in the image and the user is able to keep focused on
the point of interest (Figure 2.10).

The techniques described above have not been researched with any of the asso-

15

2. Analysis and Literature Study

Figure 2.8: Three different transition techniques to get from one camera to another. By Veas et al.
divided into egocentric and exocentric, while De Haan et al. describe all three techniques as ego-
centric. From Veas et al., 2010.

ciated or embedded videos yet. It does not seem to be plausible to do so either,
because of the large difference in approach between the exocentric maps and ego-
centric transitions. Although all the above techniques look promising, there have
been no attempts of integration with PTZ cameras yet.

2.1.2 Single PTZ Camera Controls

Active cameras are used in most surveillance systems nowadays, because of its high
flexibility and wide range of view. The camera can rotate around 360 degrees and
can narrow its viewport angle down to get objects up close. But so far, the studies
performed on multi-camera interfaces have been focusing on static cameras, as active
cameras also come with more complexity. The operator should be able to steer all
three axes of the camera and does not always know how the camera is oriented. So
both concepts of orientation and navigation return in a single PTZ camera as well.

The default control for PTZ cameras is the joystick (Figure 2.11). These are
custom made joysticks that have a rotating stick as a third axis, which is often used
for zooming. The joystick is beneficial for high precision steering commands, but
also requires good skills to use it. Research on joysticks has mainly been performed
in the field of teleoperations. Zhu et al. [Zhu 11a] designed smaller joysticks that
were less unwieldy and required less effort than the usual joysticks. The joystick is
similar to a half gamepad and showed that it gives at least the same results as the

16

2.1. Related Work

(a) Zooming in: a view tran-
sition results in a narrowing of
the view.

(b) Panoramic: a view transi-
tion results in a sliding view.

(c) Orbiting: a view transi-
tion results in a rotation of
the view.

Figure 2.9: The three different actions as described by De Haan et al. From left to right: zoom,
translation, rotation. From De Haan et al., 2010.

(a) Linear interpolation of the viewing parameters in world space can result in a curved movement
of the POI on the screen, which is difficult to keep track of.

(b) The POI follows a straight line on the screen as a result of linear interpolation of its position
in image space.

Figure 2.10: Linear interpolation gives a strange result relative to the POI, but transfers in a more
logical way in screen space. From De Haan et al., 2010.

17

2. Analysis and Literature Study

Figure 2.11: A common PTZ joystick controller
with extra function buttons that can pick the
active camera to be controlled and set camera to
preset orientations. From http://worldeyecam.

com

Figure 2.12: A virtual PTZ joystick. Zooming is
implemented as simple buttons on the right. The
mouse is controlled within the left square. From
http://serialporttool.com.

common joystick, while the ergonomics of the device have improved.

Also virtual versions of the standard joystick have been manufactured (Fig-
ure 2.12). They can be controlled by using the mouse as a stick. The third axis
for zooming is often implemented with simple buttons, which degrades the precision
and ease of use of the device. One advantage of the digital joystick is the possibility
to easily upgrade the device, while hardware is always bound to its initial form.

Other options for hardware support include Wii remotes [Goh 08], eye tracking
devices [Zhu 11b], haptic devices [Ott 06], speech recognition [Chen 07], and ges-
tures [Iannizzotto 05]. All of which are still in an experimental stage and do not
have the precision of the joystick or are cumbersome to work with. The operator
is dependent on the hardware he/she is working with and these should therefore be
reliable devices.

2.1.3 Automated Systems

The majority of the research in video surveillance is on automation. Research groups
try to create systems where task load is minimized by taking away tasks from the
user and assigning them to the system. Multiple studies [Krahnstoever 08, Shah 07,
Singh 07, Yao 08] have created systems that could identify persons and follow them
through the environment by tagging the persons. Figure 2.13 shows how persons in a
subway station are labeled on three different cameras, based on image detection and
spatial data. The information can be used to calculate which camera has to be shown
to the operator in order for him/her to get a good shot at the suspect. A tracking
system by Calderara et al. [Calderara 09] is also able to use path prediction. Based
on already tracked persons, the likelihood of the path of a newly tracked person is
calculated. The information could be used to calculate the next camera to show
(Figure 2.14).

18

2.2. Sources of Inspiration

Figure 2.13: The targets are identified in three different cameras and labeled with the same number
and color. The system contains a shared mental model. From Yao and Odobez, 2008.

Figure 2.14: The system is given a dataset of paths. From there, the system learns predictive routes.
From Calderara et al., 2009.

One research that does take PTZ cameras into account was performed by Qureshi
and Terzopoulos [Qureshi 07, Qureshi 09, Qureshi 11]. They presented a system that
let PTZ cameras to be steered automatically; each camera has its own target to fol-
low. Whenever another camera could have a better view in the target, responsibility
was taken over by the other camera. This is referred to as camera hand-off. The
system could operate fully automated, which makes the user somewhat obsolete.
Figure 2.15 shows how the responsibilities between three overlapping PTZ cameras
are handled. The system only works in the current time frame and does not take
any predictions into account; something that Kim and Kim [Kim 08] did include
later on.

2.2 Sources of Inspiration

Besides from the scientific work described in Section 2.1, other sources of inspiration
can be of use to create a new prototype for video surveillance interfaces. This section
will provide a number of globally used software applications that show interfaces
based on navigation through maps, documents, and 3D worlds.

19

2. Analysis and Literature Study

Figure 2.15: The cameras are able to cooperate on the scheduling of focus. Left: The part of a
person and the visible parts in each camera. Right: The final scheduling of the target, while the
cameras have wider overlapping viewports. From Qureshi and Terzopoulos, 2009.

2.2.1 Document Navigation

Common software applications for document reading use the mouse to interpret hand
gestures. These gestures are then translated into document navigation to scroll the
document around. This technique is also used in image editing programs.

The hand tool is an example that can be found in Adobe Reader1. The hand
tool is used like an actual hand; holding the paper firmly will let the paper move
in the same direction as the hand (Figure 2.16). The paper moves absolute to the
mouse.

A contrary technique can be found in every program that uses a scroll bar (e.g.
Microsoft Word, Adobe Reader, or Mozilla Firefox). By clicking the middle mouse
button in the view, a reference point appears on the spot of the mouse. Moving
the mouse pointer away from the reference point increases the speed at which the
viewport moves around. In this technique (shown in Figure 2.17), the viewport
is moved and not the document. The viewport moves relative to the mouse by
increasing the speed vector of the viewport.

An often used zoom technique that focuses around the mouse is called box zoom-
ing. The user picks a point on the screen and stretches a box from that point. The
resulting view is confirmed by releasing the mouse button. The technique is often
found in CAD applications and image editing programs as shown in Figure 2.18.

2.2.2 Google Street View

One particular piece of software that has similarities to video surveillance is Google
Street View (GSV), but whit a different utilization purpose. The application shows

1Part of Adobe Systems Incorporated

20

2.2. Sources of Inspiration

Figure 2.16: The common hand tool. Grab the paper and drag it around. The hand stays at the
same place on the paper as it was initially grabbed.

Figure 2.17: While reading a document, the middle mouse button is used to move the viewport
around. The user picks a reference point on screen and moves the mouse away from that point.
The viewport comes along with the mouse. Or in other words, the paper moves in the opposite
direction.

21

2. Analysis and Literature Study

(a) The user spans a rectangle from the up-
per left corner to the lower right.

(b) The system makes a new viewport that
only shows the selected area.

Figure 2.18: The box zoom functionality lets a user choose an area of interest, which is then
enhanced as the only visible area. From http://www.photoshopessentials.com

a way to navigate from camera to camera in a 3D world by means of mouse and
keyboard. The images used by GSV are photographs in a panoramic bubble, which
gives a similar look and feel as PTZ cameras.

Camera Orientation

Navigating around by rotating in a single bubble feels (and in essence is) the same
as rotating a PTZ camera around its axes. The technique used by GSV originates
from the hand tool described in Section 2.2.1, but is extended to a 3D perspective.
The user picks a point in space, which can be the ground or a wall. Moving the
mouse will rotate the camera in a way that the mouse is still on that same position
in space after movement has taken place. It feels as if you move the earth, instead
of the camera itself. The control is focused on the point of origin, instead of the
destination. An example of such a motion can be found in Figure 2.19.2

Multi-Camera Navigation

In order for the user to go from one place to another, GSV uses a circle that is placed
on the ground surface of an underlying 3D model. By clicking on that position, the
system will find the best possible panorama photo close to that point. The best
possible camera is simply calculated by finding the closest panorama bubble in world
space, which does not always give the expected result.

When GSV performs a transition to a new bubble, the rotation of the camera
is maintained. So the user is still looking in the same direction after the transition.
This gives good results on a straight road, but if a user would like to turn around

2For a reproduction of the images: http://bit.ly/LW6adF

22

2.2. Sources of Inspiration

(a) The user clicks and drags with the left mouse button to the right of the screen.

(b) The user releases the mouse button when the preferred rotation is reached.

Figure 2.19: Google Street View lets the user drag the environment around the current bubble.
After dragging, the mouse is still on the same position in the environment. From http://maps.

google.com

the corner of a street, the maintained rotation is useless. Figure 2.20 demonstrates
how such a transition around the corner can give erroneous results.3 A system with
a higher workload than GSV could never permit to lose the target in this manner.

The user is not only able to click on the ground surface, but can also perform
a similar action by placing the mouse on a wall segment of a building. The under-
lying 3D model calculates the normal vector of the wall and the circular cursor is
transformed into a square for user feedback. When the user clicks on the segment,
a different algorithm is used to calculate the best bubble. Again, the closest bubble
to the point is picked. But since the system knows the normal of the wall, it can
also calculate the rotation of the camera to look at the segment.

The bubble selection technique of GSV can be compared to the work by De Haan et al. [de Haan 10].

3For a reproduction of the images: http://bit.ly/LyQSMs

23

2. Analysis and Literature Study

In that work, the cylindrical shape is present and available cameras are calculated
with the use of the point of interest. However, GSV does not ask for a confirmation
on where to go, but picks a new bubble by itself. GSV is designed for non-stressful
situations, which makes it possible to just browse around the environment without
being in a hurry. The advanced system of De Haan et al. cannot afford to lose track
of the target.

Image Transitions

GSV is not a real 3D application, but a web application that provides algorithms to
display panorama pictures. When performing a transition from one bubble to the
other, it cannot actually leave the bubbles. The algorithm performs an interpolation
from one image to the other. The transition is not precise and shows glitches during
the animation. The advantage however is the egocentricity of this approach. The
user does not leave the images and the interpolation does animate some kind of speed
by skewing and stretching the image. Figure 2.21 shows a frame of the animation
used in GSV.

Onscreen Information

Besides from the circular pointer on screen, a couple of other indicators are present to
aid the user in its navigation task. GSV is used to display streets and is embedded in
the Google Maps application. GSV has access to map data and uses this information
to display an overlay on the panorama picture (Figure 2.22). The information is not
accurate, but gives the user extra information about accessible areas. The data used
by GSV has been recorded by a car, and it is therefore convenient for the user to
click on the streets and not on the sidewalks. Doing so will make the expectations of
the user more trivial, which is a good thing. Clicking in small corners will not give
good results, because the chance that there is a bubble in that position is small.

2.2.3 Google Panoramio

Another service by Google is called Panoramio. This service makes use of GPS
data among similar photographs. The technique is similar to the tunneling effect
described in Figure 2.3. By moving the mouse over the photograph, different quad-
rangles appear where similar pictures have been taken. The GPS data is used to
place the picture on the correct position and with the correct orientation. Extra
images that do not overlap with the current picture are indicated by arrows on the
edges of the screen. Figure 2.23 shows how a transition takes place within Panoramio
to get closer to a building. Research on similar techniques have been performed by
Snavely et al. [Snavely 08].

24

2.2. Sources of Inspiration

(a) The user is on an intersection and wants to
take a left turn. The red rectangle indicates the
position of the mouse cursor.

(b) Google Street View maintains the orientation
after a bubble transition. This is an unwanted
effect.

(c) The desired rotation of the camera should be
similar to this view.

Figure 2.20: Google Street View does not handle rotation, since it only receives a position as input
and cannot calculate the desired rotation. From http://maps.google.com

25

2. Analysis and Literature Study

Figure 2.21: A frame capture of the light tunnel that Google Street View uses to animate the
transition between bubbles.

Figure 2.22: Google Street View shows an extra overlay of the streets and shows clickable glyphs
for the user to go to the nearest bubble down that street.

26

2.3. Approach

Figure 2.23: An image transfer in Google Panoramio. Left: Panoramio shows a quadrangle of the
new image orientation and a clickable arrow that goes to another picture. Center: A transition is
made by blended two images and shearing them over linear time. Right: The new image shows
what was in the quadrangle on the left.

2.2.4 TNO Slim Toezicht

During the analysis phase, a visit was paid to S&T Vision. This company cooperates
with TNO to form new video surveillance control rooms and user interfaces. Their
focus is similar to the work of Girgensohn et al. [Girgensohn 07], where they use
map structures and indicators to give operators more situation awareness. Their
first design was manufactured for demonstration purposes in 2007 and can be found
at Centrum voor Innovatie & Veiligheid4. The system makes use of the orientation
of the cameras and displays the information on an interactive map that is used in
combination with the old matrix view (Figure 2.24). The design is an enhancement
on the current video surveillance systems.

CIV uses data from the industrial area Overvecht for the demonstration system.
The environment contains only six cameras in an area of 1 km2. This data can be
used for real-life scenarios during the design process.

2.3 Approach

This section provides an initial approach for the design of the project. The designed
solutions are a continuation on the research project supervised by De Haan and
therefore takes the work of De Haan et al. [de Haan 10] as starting point for the
design.

The system from De Haan et al. is a project that can be implemented in the near
future and is a full aid for the user. There are no automated processes to take tasks
away, but only new interface options. The current issues involve the complexity of
the system and the visual feedback that should show how a camera is oriented and
what the user will see in the next camera.

4Also known as CIV: http://www.hetciv.nl

27

2. Analysis and Literature Study

Figure 2.24: An early version of the TNO Slim Toezicht project in association with S&T Vision.
All video screens are color coded. The color codes are used to associate the images with points
on the screen. Bottom left: A low resolution image of the final version that is currently active in
Utrecht. The camera cones show the view direction of the PTZ camera.

28

2.4. Discussion

Google Street View does not seem to have a problem with the expectancy by
users, because the cameras inside the panoramic bubbles can freely rotate. GSV
does not show any previews of the camera images or other feedback on where the
user will go, but the density of bubbles in the area is so high that it is no real issue.

A logical next step would be to integrate PTZ cameras into a similar interface
of De Haan et al., which they also indicate as future work in the paper. Some of
the features should be redesigned to lower the complexity of the system. GSV is a
perfect source of inspiration to do so, although there are still some unsolved issues
in GSV as well. The complexity of the PTZ camera should be avoided by making a
system that is driven by the point of interest and not by images and direct camera
controls. The point of interest will be the focus of this design.

The system of De Haan et al. can be combined with PTZ cameras if it is possible
to show the user how the camera is rotated and what it will show, and if the system
can calculate a good rotation for the upcoming camera. The active cameras should
still be able to be controlled manually. Evaluation research will show if it is still an
option to use the joystick or if an integration with mouse and keyboard would be a
better choice.

The design can be divided into three main components. The following chapters
will elaborate on their algorithms and design. The following features will define the
main focus of the system:

• PTZ Camera Control: Controlling a single active camera by some means
of hardware manually.

• Multi-Camera Navigation: Picking a point in space and decide which cam-
era has a better perspective on that view.

• Inter-Camera Transitioning: The way that the user receives feedback from
the system on how he got from one camera to the other. This can be done by
a direct switch, image manipulation, or by animating a flight from one camera
to the other in world space.

Another important factor that has already been mentioned in Section 1.3 is the
high cost of a surveillance system. Chapter 3 therefore describes how a simulator is
implemented to lower the costs for user evaluations.

2.4 Discussion

The three subjects described in this section (i.e. multi-camera interfaces, PTZ cam-
era controls, and automated systems) show the research fields that are currently
active in video surveillance. Multi-camera interfaces have been discussed with both
exocentric and egocentric fundamentals. The egocentric approaches keep a high
level of spatial knowledge, which makes the user more maneuverable through the
area. The exocentric approaches make good use of the total overview, which lets

29

2. Analysis and Literature Study

users make correct replications of the situation over time (e.g. the user is able to
reconstruct the path that the target walked through the area).

Control rooms are often equipped with simple joysticks. They provide a high
precision mechanism to control the PTZ camera around its axes. Other experimental
hardware options will not be ready for use in the short term. Software that is
controlled by the common mouse and keyboard is simple to update. The mouse and
keyboard are also well known by a large amount of the target group.

Automated tracking is an interesting concept, but is not flawless. The starting
point of this thesis is to aid the user in their daily routines and especially in their
tasks of pursuing and following. Taking the task away from the user will not aid
them, but replace them. The techniques are still in an experimental phase, which
makes that usage on the short term is unreliable.

Document reader software uses the mouse as prior navigation tool. Although
the implementations of documents readers are made in 2D, a 3D representation is a
small step. The PTZ camera only has two axes to rotate about, which means that
a PTZ camera only has a 2D rotation. A mapping from the document reader tools
to a PTZ interface is therefore one-to-one.

Google Street View shows an inventive way to navigate between 3D oriented
panorama bubbles. It would be an idea to replace the static panorama images with
live camera feeds instead. The navigation techniques are proven to be intuitive,
because of the wide global use of the product. Although, it is not certain if the
interface still holds in situations with higher stress levels. The extra onscreen infor-
mation gives users an extra tool to maintain situation awareness. If the images are
not clear enough for any reason, the user can also orient on the streets provided by
the Google Maps overlay.

By creating a follow-up on the system of De Haan et al. and taking some tech-
niques from Google Street View, a simple, intuitive and interactive PTZ camera
system can be created. Especially mouse features are of interest, so that the gap
between new and old gets larger for evaluations.

30

Chapter 3

Video Surveillance Simulator

Before going deeper into the main features of the system design, a basis is needed to
build the system on. A major issue with PTZ cameras is the ability for testing. Fast
high quality cameras are expensive, especially when you need more than one. Static
cameras in a research project still have the possibility to use old video streams that
run in sync, but PTZ cameras are dynamic and depend on the user’s input. An
alternative is required to have a dynamic test environment that is reusable. This
chapter shows how to implement such a system.

A game engine will be used to implement a simulated environment with crowds
and scenes. The characters will be simplified to minimalist characters that are still
distinguishable from one another. The images can then be streamed to the interface
in order to let the user interact with them. Using a simulator reduces all costs for
camera hardware and specific surveillance systems and video managements systems.
There are no difficulties with special interfaces for specific cameras, which is normally
a time consuming job to implement.

The game engine can make the images more realistic by adding some post effects
to the images that will correspond to real camera images. Examples of useful post
effects are fish eye cameras, Gaussian noise, and blur. Figure 3.1 shows the kind of
images that the implemented simulator provides to the new system and how post
effects are used to improve realism.

3.1 Characters

The persons walking around in the scenario are simple 3D models that consist of a
cylinder and a sphere on top of it. They have separate materials for hair, face, and
body. The three colors are standardized to specific diverse colors.

The skin colors are specified by means of a chart called the Von Luschan scale1.
Colors 7, 13, 19, 26, and 34 have been used from Figure 3.2 to provide some variety
in skin color. The hair colors are five distinct colors from an image that describes
different hair colors in RGB colors for Adobe Photoshop (Figure 3.3). The body

1http://en.wikipedia.org/wiki/Von_Luschan%27s_chromatic_scale

31

3. Video Surveillance Simulator

(a) A clean image without any effects. The video
stream looks unnatural for a surveillance camera.

(b) The same image as used in (a), but with a fish
eye effect added to it. The center is enlarged, the
sides are pushed towards the edges of the image.

(c) The final video stream that will be used by the interface for simulation. The image contains
both fish eye and noise effects.

Figure 3.1: The simulator filmed out of one camera. The persons walking around are simple, but
distinguishable. Top: Different stages of post effects. Bottom: The final video stream. These
images originate from the new prototype itself.

colors are qualitative colors from the ColorBrewer2 application. These colors are
very distinct from one another. The used colors can be found in Figure 3.4.

All persons in the environment are able to perform actions as well. Instead of
animating the person, a shiny star is summoned above their head (Figure 3.4). This
was implemented to have more dynamics in the environment and can also be used
to let the operator perform extra tasks.

The persons are also equipped with a path finding and collision avoidance al-
gorithm. The algorithms are already implemented by the game engine and only
require a navigation mesh to operate. The navigation mesh is calculated by the
game engine as well, given a 3D mesh of the environment.

2http://colorbrewer2.org

32

3.2. Cameras

Figure 3.2: The Von Luschan scale indicates
types of skin color from all over the world.

Figure 3.3: Diverse hair colors used by the sim-
ulator. Courtesy of Bruce Beard.

Figure 3.4: All shirt colors represented in the simulator. The colors are derived from the Color-
Brewer application. The person in the middle shows a rotating star above its head to indicate that
it is performing an ‘action’.

3.2 Cameras

The cameras themselves are the interactive objects in the simulator. The user is
able to communicate with the simulator via the cameras by rotating and zooming
with the cameras and requesting the selected camera. The cameras are similar to
real world cameras and have the same properties for speeds and angles. The camera
can be constrained to an angular range, which is especially used to only tilt the
camera 180◦, instead of going upside down. The diversity of constraints and speeds
can be found in Figure 3.5. The values used are derived from the Bosch AutoDome
800 Series HD PTZ Camera.3 One thing that will not be implemented is the delay
that is caused by the distance from camera to control room and the delay that
is caused by the motors inside the PTZ camera. These forms of constraints are
important to take into account when going towards a real system. But for now,
direct responding cameras will have more benefit during evaluations. The costs
of implementing motor delays costs time and there are higher priorities for first
prototype testing that should be done first, before spending too much time into

3Instruction manual of the Bosch AutoDome 800 Series HD: http://stna.resource.bosch.
com/documents/Data_sheet_enUS_2474750603.pdf

33

3. Video Surveillance Simulator

pan speed 1 – 200◦/s
pan range 360◦ continuous
tilt speed 1 – 200◦/s
tilt range −90◦ – 90◦

field of view 1◦ – 55◦

zoom speed 60◦/s

1 10 20 30 40 50 55

1

50

100

150

200

field of view (in ◦)

p
an

/t
il
t

ro
ta

ti
on

sp
ee

d
(i

n
◦ /

s)
Figure 3.5: Specifications of the PTZ camera used in the simulator. Pan and tilt speed vary with
the angle of the field of view. The graph shows the linear function between field of view and the
rotation speed.

something that is not that beneficial in this phase of the research.

3.3 Implementation

The simulation is a feature that should be able to run by itself, only outputting
images to use. That is, it should not be dependent on user input or implementation
features that are especially designed for the prototype. The simulator should also
be able to run with a classic matrix view. Therefore, an MVC model is a logical
choice. Here, the model is the simulation and the system can run the simulator via
an API. In a perfect design, the simulator would be a separate system that could
run by itself only providing images through a network port or something similar.
That would make it possible to also let other computers perform the rendering. But
to avoid the high cost for building a perfect design, a local simulation is run inside
the prototype. More details on the implementation of the overall system and the
camera representatives can be found in Chapter 7.

3.4 Discussion

The high costs of real life video surveillance systems can be caught easily by creating
a simulator. The simulator has a higher replay value, which means that users can
perform the same scenario multiple times. There is no need to let a real person
walk through the environment just for a test. One could also alter weather and
lighting conditions or make special events happen, like fire hazards or car accidents.
Other reasons for simulation involve privacy issues and the data size of the streamed
videos.

34

3.4. Discussion

The simulator used in this project can only be run locally, but networking facil-
ities would make it possible to create a special simulation server that only focuses
on delivering images to the interface.

Delays are not implemented into the system, because the time that it takes
cannot be wasted on something that is not yet beneficial in this stage of the research.

35

Chapter 4

Single PTZ Camera Control

To be sure that the complete system has a good work flow, research has to be
performed on the alternatives of the joystick. The joystick itself will also be taken
into account as an option for the final prototype. Chapter 2 already showed that
mouse and keyboard can be considered as an alternative with many possibilities in
control.

4.1 Joystick

Currently almost only hardware joysticks are used in video surveillance systems to
steer an active camera. The joystick is highly accurate and has three axes to steer
the three axes of the camera. The hardware controller demands a lot of effort,
because the stick to apply force on is long and requires all fingers. Zooming occurs
by pushing against a rotational spring, which can be experienced as hefty.

Another downside to this device is the lack of focus on screen. There is no cursor
that aids the user in fixation on the point of interest. A crosshair in the center of
the screen would overcome this problem partially, but the camera should therefore
always be able to rotate in complete freedom. The user cannot simply point to
something interesting.

4.2 Mouse Alternatives

This section shows three different interfaces that use the mouse to control the cam-
era, which are inspired by the documentation provided in Section 2.2. The tech-
niques for zooming are discussed separately, since they can all be applied to the
mouse techniques as separate modules.

The mouse is an effective tool for interactive software, because the focus point
can be controlled in absolute ways, while the joystick can only apply relative forces
to an object.

37

4. Single PTZ Camera Control

(a) The red border indicates that the mouse is
locked and the camera will be moved instead of
the mouse.

(b) Moving the mouse to the right will also let
the camera rotate to the right.

Figure 4.1: The shooter game control maps the movement of the mouse directly to a rotation of
the camera. The point of focus is always centered on screen. The orange arrow shows the direction
of the mouse. The arrows on the right show the rotation that the camera makes. The icon inside
the mouse is the icon displayed as mouse cursor.

4.2.1 Shooter Game Control

One could imagine a camera as the head of a person. This is often done in first-
person shooter games. The controls in these games are simple mouse movements.
The controls are absolute, which means that keeping the mouse still will also keep
the camera still.

The controls are clear and simple and people that play games surely know how
to work with this interface. This technique has a similar downside to the joystick
interface; the point of interest is in the center of the screen. To overcome this issue,
the point of interest can be unlocked by pressing the spacebar. But doing so will
stop the camera from moving. There are two different states where the user can
be in; the steering mode and the focus point mode. As a visual feedback on the
difference in the two states, the image is provided with a large red border when
controlling the camera as seen in Figure 4.1.

4.2.2 Hand Tool Control

The next control is similar to the control discussed in Section 2.2.2 that was designed
by Google. The user is able to grab the world and rotate the camera by moving
the mouse. After rotating, the mouse is still on the reference point in the world.
Figure 2.19 in Section 2.2.2 already showed how this was achieved in GSV. Figure 4.2
explains the algorithm in an illustrative way on how the tool was implemented in
the prototype.

In addition to the solution provided by Google Street View, an inertia factor was
added to give the camera a smoother feel. The user can give the camera a small
whip to have it move in a certain direction. The interface is designed to use a focus

38

4.2. Mouse Alternatives

(a) The user grabs a position in the world with
the left mouse button.

(b) The user releases the mouse button and the
cursor opens the hand. The rotation is finished.

Figure 4.2: The hand tool control lets the user grab the environment and drag it around. The
cursor keeps pointing to the same position in world space. The orange arrow shows the direction
of the mouse. The arrows on the right show the rotation that the camera makes. The icon inside
the mouse is the icon displayed as mouse cursor.

point, which is in line with the focus of this research. Disadvantages of the algorithm
have to be found during user evaluations.

4.2.3 Document Viewer Control

The opposite behavior of the hand tool can be achieved with the middle-mouse tool
described in Section 2.2.1. Instead of altering the ground, the viewport moves along
with the mouse. Usually, the left mouse button is used for text selection, but since
there is no need to select text, the left mouse button is used as movement button.

Whenever the user clicks and drags with the left mouse button, a small dot is
shown on the clicked screen position. This is the reference point for the user and is
used to calculate the acceleration, depending on the mouse distance to that point.
The mouse pointer will change in an arrow that shows the acceleration direction of
the camera. Pulling the mouse farther away from the point will increase rotation
speed to that direction. The steering direction behaves opposite to the hand tool
control. Figure 4.3 shows how the tool is used to rotate the camera and how it
differs from the hand tool.

This technique has the same properties as the hand tool control and will probably
also have similar advantages and disadvantages.

4.2.4 Zoom Controls

Panning and tilting can be controlled by moving the mouse around, since it has
exactly two axes, but there is no third axis on the mouse by simple hand movement
or rotation. However, most mice have a scroll wheel that can be used for this
purpose. Scrolling the wheel can be directly mapped onto changing the field of view
of the camera. Using inertia will make that process smooth for the user.

39

4. Single PTZ Camera Control

(a) The user grabs a screen position with the
mouse. A dot appears on that position and the
user drags the cursor to the right from that point.
Acceleration is given towards the direction of the
small gray arrow cursor.

(b) The user releases the mouse button and the
cursor shows a compass cursor, indicating that
the camera is still decelerating.

Figure 4.3: The document tool uses a relative control scheme by adding an acceleration vector to
the camera relative to the point indicated by the user. The orange arrow shows the direction of
the mouse. The arrows on the right show the rotation that the camera makes. The icon inside the
mouse is the icon displayed as mouse cursor.

Secondly, the zoom could also occur towards the mouse cursor on screen. This
technique is often used in document viewers as well. The downside is that zooming
then also alters pan and tilt levels of the camera in order to center the mouse cursor.
Doing so could confuse the user, since the axes are no longer separate control parts.

Similar to the second option is the box zoom technique explained in Section 2.2.1.
From a rectangle drawn by the user, the viewport can be calculated and the camera
can be oriented to exactly fit that viewport as shown in Figure 4.4.

Scrolling the wheel and box zooming can exist next to each other as long as there
is a free button to use for the box zoom. For a simple implementation, one could
first press ‘B’ on the keyboard and then draw the rectangle.

4.3 Discussion

The controls that use the mouse instead of the joystick will have more freedom in
creating an overall system that is based on De Haan et al. The mouse is flexible to
use and has different modes by means of holding a certain mouse button. One could
also steer the mouse pointer with the joystick, but that has been proven to become
unhandy. For example, game consoles almost never use a mouse pointer to control
the menu. Also, combining mouse and joystick will cause mode errors, because the
user has to switch hardware and can therefore be holding the wrong device.

In the final implementation, camera controls will be controlled with the left
mouse button and evaluations will show which of the implementations is preferred
by the target group.

40

4.3. Discussion

(a) The user drags a box from the upper left of
the screen to the bottom right of the screen. A
selection box is drawn to indicate the area to
zoom towards.

(b) The selected area is fit inside the viewport
once the user releases the mouse. The zoom
mode is left, the user can perform other tasks
with the mouse again.

Figure 4.4: The box zoom functionality lets the user pan, tilt, and zoom with only one gesture.
The user indicates a screen area of interest. The camera tries to fit its viewport around it. The
icon inside the mouse is the icon displayed as mouse cursor.

41

Chapter 5

Multi-Camera Navigation

The solutions for single cameras provided in Chapter 4 do not solve the scenarios
described in Section 1.2 to navigate through multiple cameras. Whenever someone
walks in screen and then disappears behind a wall, there is no way to see that person
with the current camera. The user needs to switch its view on the spot monitor to
another camera that is able to see behind the wall.

This chapter first elaborates on user input, then continues on which cameras to
show to the user, in what ways the user can control the system, and finally on what
visual feedback is provided to aid the user in its choices.

5.1 Background

Since this project is targeting for a tool to aid the users in their tasks, a new interface
is designed to let the operator make their choices swift and determined. The current
system that is used in most control rooms lets the user pick a number and the image
on the spot monitor changes. But changing the camera is not always enough, since
the cameras used in the system are PTZ cameras that are always oriented in a default
rotation. It is often the case that the operator picks a camera and subsequently has
to change the orientation of the camera before getting a good shot and retrieving
the target back on screen. Camera switching is only image based and has nothing to
do with spatial knowledge or spatial relationships between cameras. The operators
only rely on their knowledge of the environment.

The system by De Haan et al. [de Haan 10] shows two features to get from one
camera to another by means of spatial selection: Clicking on projected glyphs in
space, and selecting a point of interest on the ground and clicking one of the con-
nected glyphs that show up (Figure 5.1). The first technique is useful for cameras
that do not have overlap in their view range. This is often the case in environments
that only have static cameras installed. An underlying graph is used to manually
calibrate the system for neighboring cameras, which takes time to install per envi-
ronment. The use of PTZ cameras alone makes the use of projected glyphs obsolete.
PTZ cameras can rotate around in 360 degrees, which implies an overlap with all

43

5. Multi-Camera Navigation

(a) The arrow glyphs in the image are clickable
and correspond to the neighboring cameras.

(b) The cylinder attaches neighboring arrows
that have the point of interest in their viewport.
The user selects one of them by making a di-
rection gesture towards the desired camera and
releases the mouse button.

Figure 5.1: The two techniques used for camera selection by De Haan et al. Both figures show that
the glyphs used can be drawn in perspective to the actual world.

other cameras in the scene. With this assumption, the focus can be put solely on
point of interest-navigation.

This new design uses user input, position and direction of the target, to filter and
calculate interesting cameras in the neighborhood. It is up to the user which camera
is the best to look at. So the system aids the users in their choices, but does not
take over the full task of automated following and targeting. A confirmation from
the operators is always required by the system before changing the spot monitor.

5.2 User Input

The cylinder cursor designed by De Haan et al. is reused in this project for user
input. It represents a human target to follow and is useful for interaction with
the operator. It has the size of a person and is used as an overlay on the camera
image, but in real world perspective. The user indicates the point of interest with
the cylinder, but actually indicates a small area of interest. The new design spans
a collision model over the cylinder that will later be used for visibility calculations.

When a person is walking or running in the environment, it is often not enough
to only know the position of the target. Therefore, a second input parameter of
direction is required to make better calculations in what camera is interesting. Sec-
tion 2.1.3 already showed that automated tracking software makes a good effort on
indicating the walking direction of the target. The human eye is even more advanced
in estimating the direction of a walking person by just looking at the video screen.
And since the user has already indicated the POI, it should not be too much work

44

5.3. Camera Filtering and Metrics

to also give a direction to the cylinder by means of a gesture.
Section 5.4 shows how these controls work in detail. For now, the input param-

eters of position and movement direction are defined to use by the system as input.
The input is used to filter the cameras in the environment by means of a metric.
That score is then used to give feedback to the user on which cameras are probably
interesting.

5.3 Camera Filtering and Metrics

The number of available cameras on any point in space is significantly bigger within
an environment with active cameras than in one with static cameras. But that does
not imply that all cameras can see all points. There could be occluding objects
that make it impossible for a camera to see a certain point. To avoid that occluded
cameras are shown as a logical option for the user, a filtering should be performed
to only include good cameras.

There are three criteria to filter out the cameras that are not of interest: distance,
visibility and direction. All three filter options are elaborated and refined to an
algorithm in this section. The filtering calculations will use a metric score and weigh
the three measures per camera. The user receives feedback on the final metrics of
the camera in a direct way and will be able to make a choice instantly.

5.3.1 Distance

A camera that is close to the POI is assumed to be a good camera to pick. The
operator is able to see the target up close while maintaining a large field of view
(Figure 5.2). The metric for distance to the POI is normalized between the farthest
and the closest camera to the POI. Every camera receives a metric score from 0 to
1 with the following formula found in Equation (5.1). The scores are later used in
the overall weight calculations.

pdist(cam,poi) = 1− d(cam)− d(min)

d(max)− d(min)
(5.1)

Where min and max are the closest resp. farthest camera positions in the environ-
ment to the POI and d is the distance function:

d(c) = ‖c− poi‖

5.3.2 Visibility

The second measure takes the obstacles in the world into account. For this technique
to work, a 3D model of the environment is required, which reveals the occlusions
by sampling rays in the collision model. If one would only look to the POI itself,

45

5. Multi-Camera Navigation

distance score (0–1)

(closest) 1 1.0
2 0.4

(farthest) 3 0.0

Figure 5.2: Three cameras looking at the same target. The scores per camera are listed in the table
on the right. The camera that is closest receives the highest score, because that camera can get a
better closeup of the target and has a better future for zooming in at the target. The camera that
is farthest away receives the a score of 0.

one ray would be sufficient. But that would not tell much about the visibility of the
target, since a person or any other object is bigger than a single point. The operator
is often interested in a small area instead. In this case, the cylinder.

Points in the collision object shown in Figure 5.3 are uniformly taken and rays
are shot from the camera to the target points. Then, the number of hits back on the
cylinder is counted and the number of rays that hit something else or even nothing.
The rays that hit the cylinder indicate what the camera can see of the cylinder.
This method is not completely accurate, but is fast and gives a good estimate of
the visibility of the area of interest. The ratio of good against incorrect rays can be
expressed as a normalized metric between 0 and 1 with the following formula found
in Section 5.3.2.

Normally, the user is not only interested in the position of the target, but also in
the future path of the target. To take into account any short term future positions,
the direction indicated by the user is used to span a larger collision object similar
to the one in Figure 5.4. By sampling rays in this larger collision object, cameras
with less occlusion with respect to the future direction of the target score higher.
So taking the future into account does not change the algorithm, only the area of
interest. This method could be improved by taking other samples from the collision
model that are uniformly spread over screen space, instead of world space.

46

5.3. Camera Filtering and Metrics

Algorithm 1 The visibility is calculated by performing raycasts to a random point
in the collider and taking the percentage of rays that is not obstructed by other
objects.

pvis(cam, col) =

∑
hit

n

Where n is the number of raycasts and a hit is calculated as follows:

hit =

{
1 if raycast(−→ray) = r

0 otherwise

−→ray = −−−−→cam r

r =

U(xmin, xmax)
U(ymin, ymax)
U(zmin, zmax)


Where r is a random vector inside the collider col and −→ray is the direction vector
from the camera cam to r.

Figure 5.3: The bounding box of the point of interest. Dimensions: 1.5m× 1.5m× 1.8m.

47

5. Multi-Camera Navigation

(a) Sampling rays onto this area will return a
visibility of around 70%.

(b) Sampling rays onto this area will return a
visibility of around 20%

Figure 5.4: The visibility of every camera is calculated by sampling rays onto the user selected area
that indicates the movement direction of the target. The arrows indicate the gesture that the user
has made.

5.3.3 Angle

The operator is often not only interested in seeing a target, but would also like to
influence from which side the object is viewed. Given that the task of the operator is
to pursuit a target, it is likely often desired to view the person from behind. Viewing
a person from the back makes it easier for the operator to anticipate on quick actions
by the target and implies that a future camera is easier to access, since it is in the
field of view.

The angle between the target’s direction and camera can be used to calculate
a metric for the viewing direction. Aligning the camera parallel to the target’s
direction will give a high score, while aligning the camera in the complete opposite
direction will give a low score (Figure 5.5). To exclude the height of the camera, the
angle is calculated in the XZ-plane only. The formula to get a normalized metric
score for the angle is depicted by Equation (5.2).

pang(cam,dir,poi) = 1− θd,dir
π

(5.2)

θd,dir = arccos(d̂ · ˆdir)

d̂ =
poi− cam

‖poi− cam‖

5.3.4 Final Metric Score

Given the above three measurements, a metric score for each camera is calculated.
This is achieved by weighing the three measures to come to a final score. If the

48

5.3. Camera Filtering and Metrics

angle score
(0–1)

1 0.8
2 0.2

Figure 5.5: Two cameras that look towards the target that goes to the right. The camera that
is best aligned with the direction vector receives a higher score, because the user expects to get
behind the target. The figures in the table on the right give an estimate of their respective scores.

visibility measure would be more accurate, it could have been used to filter out
cameras that are totally occluded. Since this is not the case, visibility is also taken
into the overall weighting factor.

p = wdist · pdist + wvis · pvis + wang · pang with
∑
x

wx = 1

A grounded reason for the chosen weights may not be valid. Experimental testing
resulted in the following values as found in Table 5.1. The value for visibility and
angle are high. The high visibility weight is useful to filter out cameras that are
behind walls or other occluding objects. The high angle weight is required to make
the direction measure do its work. Leaving this value low would result in high scoring
cameras that look in a complete opposite direction. The low weight for distance is
fine, because the cameras have zoom options to bring objects closer and have no real
hinder of being far away. These weights were tested in environments between 20m2

and 1000m2 and gave similar results in means of giving the best expected camera
the highest score. One could tweak the weights to their own preferences while using
the system.

wdist wvis wang

0.172 0.420 0.408

Table 5.1: Weight scores defined by experimental gathering.

49

5. Multi-Camera Navigation

(a) The user selects a point to start the arrow to
drag.

(b) By holding the right mouse button, an arrow
shows up. The user drags the arrow in the direc-
tion the target is walking (i.e. in the direction he
wants to look).

Figure 5.6: By dragging an arrow from the point of interest, the user inserts position and direction
into the system. The algorithm instantly calculates the winning camera. Releasing the right mouse
button will initiate the transfer to the camera marked in cyan.

5.4 Interaction

While working with the system, the user is able to perform one out of three actions.
All actions result in a switch of camera, but use different input parameters for the
calculations of the filtering system.

5.4.1 Direction Gesture

The first action takes all three parameters of visibility, direction and distance into
account. The user picks a point in space with the cylinder and confirms the position
by holding the right mouse button. At that moment, a directional arrow is drawn
from the initial position to the mouse. When the user moves the mouse, the size
and direction of the arrow move along. The action can be confirmed by letting go of
the right mouse button, which will initiate the camera transfer. The action can also
be canceled by pressing the left mouse button while holding the right mouse button.
This input method is illustrated in Figure 5.6. The camera that will be chosen by
the system is depicted in cyan.

5.4.2 Direct Jump

The user can also restrict the filter calculations to only distance and visibility; the
user does not care from which angle the target is viewed. Whenever the user performs
a double click with the left mouse button, the angle parameter is left out of the scope,
since there is no direction vector provided by the user. The dedicated camera will
perform a rotation to look at the POI and the spot monitor will switch camera. This
user input is very quick, because the user only has to perform two fast clicks after
one another.

50

5.4. Interaction

(a) The user selects a point to double click on.
Double click will only work if one of the arrows
is colored in cyan, indicating a winning camera.

(b) The new camera focuses the point of interest
in the center of the screen.

Figure 5.7: Double clicking on the point of interest while a cyan arrow is shown is faster than
dragging an arrow. It costs less effort and can still give the desired expected results.

In this mode, the user is not able to pick a camera by hand, but the camera is
automatically chosen by the system. To avoid confusion, interactive real-time user
feedback has to be provided before the double click takes place. Figure 5.7 illustrates
what to expect from this method.

5.4.3 Free Selection

One could imagine the user is not always satisfied with the choice that the system
makes, because he/she would like to see something from a specific point of view.
This can be achieved by holding the ‘Shift’-key while performing the right mouse
button drag method. When doing so, only the angle metric is taken into account.
The visual feedback that the user gets shows a disc of all choices of all cameras. Since
visibility is not used as a scoring factor anymore, all cameras in the environment are
shown to the user. By letting go of the right mouse button, while holding shift, the
highlighted camera is selected.

The issue with this approach is that the user often does not know that the
selected camera is almost completely occluded. By providing more options to the
user the system becomes more complex. The issue could be solved by showing some
kind of preview of what the camera will see. But doing so would imply that all
cameras need to rotate towards the POI, which is not desired. For instance, when
the cameras are recording other events at that moment. Controlling all cameras at
the same time is prone to conflicts. Another idea is to cache a preview that will be
showed to the user instead. This optimization was not implemented in the system,
because of time issues and the low number of cameras per environment that were
used for testing. Figure 5.8 shows how this method differs from the normal right
mouse button drag.

51

5. Multi-Camera Navigation

(a) Dragging an arrow with the right mouse cal-
culates camera scores by visibility, angle and dis-
tance.

(b) Dragging an arrow with the ‘Shift’-button
and the right mouse button calculates scores by
angle only.

Figure 5.8: By holding the ‘Shift’-button during a right mouse drag, all cameras show up as a disc.
The user can directly pick which camera is desired by drawing the arrow in the same direction as
the colored line.

5.5 Visual Feedback

As already stated, the cylinder from De Haan et al. [de Haan 10] is used in this
project to give the user a feeling of depth in the image. It makes the point of
interest stand out and lets the user focus on that point.

The glyphs created by De Haan et al. that attached themselves to the cylinder
on confirmation have been left out. Instead, new simple arrows are connected to
the cylinder, coming from all available cameras in the environment. To be sure that
the scene does not get too cluttered with arrows, the lines of cameras with a score
lower than 0.1 are clipped. This value can always be altered and was only used for
testing purposes.

The scores for each camera are indicated by a color and transparency scheme.
After all, the user is not interested in the specific scores of each camera, but in the
differences between the cameras and the eventual camera that will be selected by the
system. The divergent color scheme from Figure 5.9 was used with a specific color
for the winning camera.1 Cameras with a high score become green, average scoring
cameras are white, and bad cameras become red. Figure 5.10 shows an example case
in the implemented design. The best camera that will eventually be selected by the
system, given the position and/or direction is given a cyan like color to distinguish
it from the rest.

The cylinder is enhanced with a directional arrow. The direction is used for the
calculations of the camera filtering system described above. The arrow can be found
in Figure 5.10 as well. The arrow is also drawn in perspective to the camera, which
gives more dimension to the image. The length of the arrow also indicates the size
of the collision object. In other words: the longer the arrow, the more future path

1The color scheme was generated by the Color Brewer Tool from Pennsylvania State University:
http://colorbrewer2.org

52

5.6. Discussion

Figure 5.9: Scoring colors from 0 to 1. Cyan is used to indicate the actual winner that will be the
next camera on the spot monitor.

Total Score
(0–1)

1 0.4
2 0.9
3 0.7
4 0.6

Figure 5.10: All cameras receive a score, based on distance, visibility and angle. The colors match
with the color scheme in Figure 5.9. The white arrow drawn by the user indicated the movement
direction of the target to follow. The dotted circle is the origin point from where the user starts
the drag motion.

and certainty is ensured by the user as input for the system. The arrow is only
drawn while the user holds the right mouse button. At the origin of the arrow, only
a small circle is left where the cylinder was. The cylinder itself stays attached to
the mouse, since the end of the arrow is used as the look-at-point.

For extra situation awareness, a small minimap was also added to the screen.
The minimap rotates along with the view direction of the camera and centers on
the camera position. The user gets a better understanding of how the cameras are
connected in an overview. Although, the implementation of the minimap is still
primitive and should be developed further before usage. The minimap was not used
during the evaluations described in Chapter 8.

5.6 Discussion

This chapter showed how the user is able to switch between cameras with a sim-
ple click-and-drag method. It takes minimal effort and still gives the user enough
freedom to pick the camera he/she wants. Depending on the method used by the
user, holding the ‘Shift’-key or by double clicking, different sets of cameras are high-
lighted by the system. The different methods can be interpreted as different levels
of freedom for the user.

53

5. Multi-Camera Navigation

The diverging color scheme with an outlying cyan color for the optimum gives
the user clarity on what to expect, depending on the user’s input. The cylinder
and arrow give perspective to the image and give the user feedback on the input
parameters for the calculations.

Other measures than distance, visibility and angle were investigated as well, but
these three are significant to the user and are the only ones that can be calculated
with just a position and direction. Otherwise, extra input has to be provided by
the user, which also takes more time. Since these three measures give sufficient
freedom, the other options were left out. Other measures that were considered
during the design process are: size of the target, other users that use the cameras
as well, control rights, paths and speed.

54

Chapter 6

Inter-Camera Navigation

So far, a system has been defined that lets the user rotate a single PTZ camera
around and navigate between multiple cameras. The system is able to switch images
on the spot monitor, but the change is still instant and shows no relationship between
the cameras. This can cause confusion. The user’s situation awareness is kept,
because the user assumes himself to be inside the environment. Traveling from one
camera to another should therefore take some traveling time.

To gain some time for the camera to look at the correct look-at point and for
the user to gain a better understanding of the spatial relations between the cameras,
an exocentric animation is used to get from one camera to another as described by
Veas et al. [Veas 10]. Instead of a direct switch, the user is taken on a flight by
a turtle (actor) that is separated from the spot monitor image and which leaves
the camera image on a 3D plane with correct rotation. This technique was also
implemented in the systems from De Haan et al. [de Haan 09] and later improved
in De Haan et al. [de Haan 10].

This chapter briefly describes the technique and indicates new improvements
that have to be made to integrate PTZ cameras into this technique.

6.1 Transition Technique

The already existing technique that was implemented by De Haan et al. couples
two cameras to each other by flying through the underlying 3D model. The camera
images are drawn in the 3D model as if it were large TV screens. De Haan et al.
describe three methods to transition from one camera to another, as already shown
in Figure 2.7: zooming, panoramic (strafing), and orbiting. The three ways of
transitioning have been considered as separate cases up until now, because static
cameras have less freedom in motion. The use of PTZ cameras gives more freedom
and more overlap to the cameras. This means that both system and user can have
their focus on the POI alone, instead of extra glyphs on the screen that define various
transition cases that do not overlap in viewport.

Only the orbiting technique is suitable for a POI-driven transition that is used

55

6. Inter-Camera Navigation

(a) The target walks to the
right, the left camera is cur-
rently selected on the spot mon-
itor.

(b) The user can rotate along
with the target.

(c) The user double clicks on
the target to get a closer view.
The new camera rotates directly
to the point of interest.

Figure 6.1: Because the camera is able to pan along with the target, there is always an overlap
between two cameras. There is no arrow glyph required to represent a camera that is off screen.
The camera can steer it in screen again.

(a) The spot monitor shows the camera on the
left. The user double clicks on the target. The
next camera is inside the viewport of the current
camera.

(b) The transition can be performed by orbiting
around the point of interest while the distance is
linearly interpolated to the new camera.

Figure 6.2: Because the user is always forced to input a point of interest, a zoom operation is the
same as an orbit operation, but the angle of the orbit is small.

in the new design and can be reused in both zooming and panoramic transitions as
well. Figures 6.1 and 6.2 show why both zooming and panoramic transitions are
made obsolete when using PTZ cameras only.

Now that every transition is an orbital transition, the transition from one camera
to the other always keeps the point of interest on screen for the user to reference.
This keeps the user conscious of the current position of the actor. The POI is
translated in linear screen space, while the actor makes a circular motion around
the POI in world space. The animation equation can be found in Algorithm 2 and
is illustrated in an example in Figure 6.3.

56

6.1. Transition Technique

Algorithm 2 The following steps are performed each frame of the animation with a
time span of [0–1]. a and b define the current resp. destination camera. The values
of b update over the time span. org and dest define ‘original’ and ‘destination‘.
These values are pre-calculated and do not change during the animation.

1. Animate the rotation of the actor by a spherical linear interpolation:

r = slerp(rorg, rdest, t)

2. Animate the field of view of the actor:

fov = lerp(fovorg, fovb, t)

3. Animate the position of the actor:

Once) Calculate viewport coordinates of the POI through camera a:

vpa = worldToViewport(poi)

a) Calculate viewport coordinates of the POI through camera b:

vpb = worldToViewport(poi)

b) Interpolate the viewport coordinates of the POI. The distance between
camera a and b is calculated separately to maintain a linear distance
animation:

vpt = lerp(vpa,vpb, t)

vpt =

 vpt.x
vpt.y

lerp(vpa.z,vpb.z, t)


poit = viewportToWorld(vpt)

c) Define the final position by adding the difference between the POI’s over
time:

posactor = posactor + poi− poit

57

6. Inter-Camera Navigation

Figure 6.3: The animation from the outer camera to the inner camera. The distance is linearly
interpolated, the actor keeps focusing on the POI.

6.2 Zoom Integration

The camera image that is left by the actor is placed in 3D space. Since the user is
focusing on the POI, the canvas’ is placed at a distance to exactly intersect with
the POI and is given the size to exactly span the viewport. The canvas of the new
camera to transfer to is placed in the same manner. The images themselves are
blended by a transparency function, also defined by De Haan et al. as defined in
Figure 6.4.

The system is not finished by only adjusting the pan and tilt levels of a camera
to look at the correct position. The PTZ camera also has a zoom axis that can be
user to get a better focus. When transitioning from one camera to another, the user
expects the new camera to show the target at a similar size as it was in the previous
camera. Since the distances are different between the cameras, the zoom level has
to be adjusted to gain an equal target size.

The plane of the current camera has been set to the POI and so is the plane
of the new camera. The plane of the current camera has a certain size to fill the
field of view completely, which can be calculated by Algorithm 3. The inverse of
Algorithm 3 can be used to calculate the field of view for the new camera, while
keeping the size of the new camera’s plane equal to the one of the current camera
(Algorithm 4).

6.3 Visual Feedback

Extra visuals are implemented to gain situation awareness during a transition. Not
only the canvasses that show the camera images are drawn, but there is also a

58

6.3. Visual Feedback

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

animation time (t)

o
p
ac
it
y
(f
(t
))

fA(t) = 1− sin2(π2 ((1− t)2 + 1))

fB(t) = 1− sin2(π2 (t
2 + 1))

Figure 6.4: Opacity blending of the two canvasses that view the video streams during a transition.
The opacity of camera a is reduced to 0, while the canvas of camera b shows itself.

Algorithm 3 The height of the canvas size can be calculated by taking the distance
to the POI and current field of view.

h
α = 29◦

POI

da = 10

The red canvas height can be calculated by taking the dis-
tance to the projected POI and the current angle of the
field of view.

d = ‖cam− projfwd(poi)‖
h = 2d tanα

59

6. Inter-Camera Navigation

Algorithm 4 Proof that fovB can be calculated from distances to the POI and the
old field of view fovA alone.

hdaα

(a) The view frustum of camera A with the image
canvas at distance dA

h

db

β

da

α

(b) The view frustum of camera B with the im-
age canvas at distance dB

To find β from α:

α = known β =?

dA = known dB = known

h = known

α =
h

2dA
β =

h

2dB

h = α2dA

β =
α2dA
2dB

β = α
dA
dB

wireframe representation of the underlying 3D model present (Figure 6.5). This
makes it easier for the user to reference cameras in the world.

During the transition, the direction arrow and the cylinder stay visible as ghost
objects. Whenever the transition is over, the ghost object is slowly faded out. This
makes that the user can keep a reference and is not directly dependent on the image
itself. During the fade out, a new cylinder is attached to the mouse, so the user can
already move on with its tasks (Figure 6.6).

6.4 Discussion

The transition model defined by De Haan et al. is a good alternative for the direct
image switch on the spot monitor and keeps situation awareness levels higher during
the transition. The user is able to keep a better focus on the point of interest and
is able to make a spatial relation between two cameras.

60

6.4. Discussion

Figure 6.5: A blended image to show how the un-
derlying wireframe model corresponds with the
simulated real world.

Figure 6.6: The old cylinder fades away, while a
new cylinder is already attached to the mouse.

Extensions have been made to resolve the zoom levels of the camera and the
different types of transitions have been brought down to only one, which makes the
expectation pattern less extensive. Zoom level adjustment makes it possible to keep
a target at the same size after the transition. This comes in handy when someone
has zoomed in very closely and transitions to a camera that is closer.

61

Chapter 7

Implementation

To give a bit more in-depth information on the system prototype, this chapter elab-
orates on the implementation of the application. The cameras run on a simulator,
which makes the choice for a development environment more flexible. There are no
dependencies on hardware camera interfaces, which makes that every aspect of the
system can run locally. Therefore, a game engine is a good choice, since it has many
3D features already included, which saves up a lot of time.

7.1 Game Engine

Most projects created in the Computer Graphics group of the TU Delft are done in
open source applications. The mainly used product is OpenSceneGraph1. Although
OpenSceneGraph is a great solution for making 3D interfaces, it does not provide the
desired visual features and tricks that the simulator needs. Another less important
issue is my lack of experience in C++. A game engine in another language would
make me perform much more efficient.

The choice has been made to create the prototype in Unity3D2. This is a game
engine that contains many cool features like: crowd simulation, light mapping, real-
time shadows, and post-effects. These extras can be used to create convincing
environments and people for the operators to perform their tasks. The scenarios do
not have to be perfect or look like real life images, but the images must be sufficient
for the user to estimate depth and perspective and they have to give the user a
feeling of looking through an actual surveillance camera.

The Unity3D engine compiles both C# and Javascript files. For this project,
C# was chosen as the primary programming language. The engine can be used for
free, but some important features are only available in the pro version. A student
license was bought for 80 euros granting access to the pro features for a year. A
screenshot of the development environment can be found in Footnote 2.

1http://www.openscenegraph.org
2http://www.unity3d.com

63

7. Implementation

Figure 7.1: The development environment of Unity3D includes a custom compiler for C# code and
also lets the user interact with simple tools to set up scenes.

7.2 Content Pipeline

In order to get the system to work with an environment, a 3D model of that scenario
is required. The 3D model is used for collision detection with the mouse, as well
as for collision detection with the visibility rays described in Section 5.3.2. The
simulator also needs a 3D model in order to draw the area that the people walk in,
so the simulator also needs materials and textures attached to the 3D model. The
simulator also requires some extra information inside the model. Namely, waypoints
to indicate scenario paths that the persons should follow and camera objects to
position and orient the cameras.

The 3D model is created in a 3D editing application. In this case, in Blender3.
It is then exported to a format of choice.4 The exported model is imported into
Unity3D and is used to build a scene. A little script creates a configuration file
that contains data about the desired camera controls, the starting camera, and the
number of persons in the scenario. It is also possible to set different collision models
for mouse and visibility collision. This is convenient for clicking through thin walls,
while scores for visibility are still maintained. The scene is saved and a navigation
mesh is generated. The scene can be loaded into the simulator at startup via the

3http://www.blender.org
4Unity3D supports various 3D modeling extensions: .fbx, .dae, .3ds, .dxf, .obj

64

7.3. Vital Classes

configuration files.

7.3 Vital Classes

This section describes a couple of code classes that are important for the system
to work properly. The classes have a tight relationship, but the simulator is kept
separate from the rest. Appendix A shows a class diagram with the most important
features to give an overview of the system.

7.3.1 Camera Management

One of the two controllers that is used in the MVC model is the CameraManager

class. The camera manager maintains the cameras and controls which images are
shown to the user. It also maintains the scores that each camera receives each frame
relative to the point of interest.

It contains the imported method: GoToPoint(). This method inputs position
and direction and performs the actual transition of cameras. It orients and zooms
the new camera to the correct position and fires an event to let the actor start its
animation.

7.3.2 PTZ Camera

The PTZCamera class contains the information that a real surveillance camera also
contains. It is the model in the MVC model and maintains maximal and minimal
speeds and angles. The camera can be steered by angle and speed, but the system
can also give a direction vector where the camera should rotate towards. The camera
class fires events for certain happenings like zooming, panning, and tilting. But also
when stopped, since the cameras have a small inertia factor to break their motions.

The cameras could have been implemented even more realistic by inserting a
delay into the motors, but this project requires a clean environment for the first
evaluations to see if the designed approach would even work in the first place.

7.3.3 Interaction Manager

The InteractionManager and camera manager have a tight relationship, since the
interaction manager wants to know everything about the camera scores and the
cameras in the environment. The interaction manager maintains all visuals and
is the second important controller in the MVC model. It controls the actor that
animates through the environment and lets the user take control of the camera in
the spot monitor for manual steering. It receives the user input from keyboard and
mouse via the View classes.

The Actor class contains the algorithm described in Section 6.1 for animating
the transition and tells the system when the animation is finished to unblock the
manual camera controls.

65

7. Implementation

The view part of the system consist of a ViewManager class and some classes
that contain GUI elements (e.g. buttons for options, the minimap, and the weighting
factors). It also registers the input from the user and propagates it to the interaction
manager.

7.4 Discussion

The Unity3D game engine gives a huge advantage during the implementation phase,
because desired, but hard to implement, features are already implemented into the
system. Especially crowd simulation and lighting has saved a large amount of time.

The main infrastructure is not complicated and uses a simple MVC model to
maintain a separation between the user, the visuals and the simulator. The simulator
is designed to work with other interfaces as well. This is convenient for doing
comparison testing with the classic matrix wall system.

66

Chapter 8

Evaluation

The only real measure that one could make for this system is the usability for the
user and the performance of the user during his/her task. User tests will have to
show if the system is significantly better than the current systems and if the user
prefers working with it. This chapter shows such an evaluation performed by a
specific target group, how the tests are set up, what measures are of interest, and
how the test results can be interpreted.

8.1 Test Setup

The tests performed for this prototype are evaluations to see if the basic features
described in the previous chapters are useful for the user. There is a lot more to test
than what is raised here, but it is a showcase of what can be done with the system
and the simulator. The limitation in time does not allow us to perform any more
evaluations at the moment. The following test sequence only takes 20 minutes to
complete.

8.1.1 Test Sequence

To evaluate the main features of the system, a within-subject evaluation was per-
formed to measure the difference between the current system and the new prototype.
The tests to perform include the task of steering a single camera and doing a stress
test of the overall system to see if a target can be followed throughout the scene. An
evaluation will be performed in four tasks for the participant. The first two tests are
about steering a camera, the last two are about transitioning between the cameras.
Both sets of tests are provided to the participant in a random order to prevent an
order effect (Figure 8.1). The tasks involving the old system show a replica of the
matrix view that also uses the simulator to generate images. This makes the tests
more balanced. The simulator’s spot monitor can be controlled with the joystick.

67

8. Evaluation

Time (20 min)

Joystick
test Mouse test Grid view

test
Prototype

test

Fill in
questionnaire

Fill in
questionnaire

Random sequence Random sequence

Figure 8.1: The sequence of tests that every participant takes. The participant performs the single
camera tests in a random order, fills out the questionnaire and does the other two multi-camera
tests in a random order as well.

8.1.2 Measures

In order to find a significant difference between the common system and the new
prototype, measurements are required. The interesting topics of this project involve
the objective statements: productivity, performance and speed. And the subjective
measures: stress levels, situation awareness, and ease of learning. The objective
measures are defined in Table 8.1. The table gives an overview of tasks that the
user performs and relevant information that comes from the task. The subjective
information can be retrieved by letting the participant fill in a questionnaire, which
compares the old system to the new. The questionnaire can be found in Appendix B.

8.1.3 Scenarios

In the first two tests, the participant is evaluated on steering and precision skills.
The participant gets to see the environment through one camera and controls it,
waiting for the target person to appear. The target person is distinguishable from
the rest by its distinctive yellow body color, where all the other persons wear pastel
colored shirts (Figure 8.2).

All persons show shiny stars above their heads about every ten seconds. A star
represents an action in real life. The user should be able to recognize the stars,
because it shows that the user is paying attention to the target. The task for the
test is therefore to count the number of stars that the target shows over its lifetime.

The environment used for the test is an intersection in an industrial area in
Utrecht at the Mississippidreef and Nevadadreef. The joystick test and the mouse
test both have a different camera position, but they film the same streets. The cam-
eras are 20 meters away from each other. Figure 8.3 shows a map of the intersection
and a screenshot of the environment.

In the second set of tests, the same task is assigned to the participant to count
the stars of the target. But this time, the participant has access to multiple cameras.
The cameras are set up in a logical order, because this is usually the case in real

68

8.1. Test Setup

Measure Observation
Method

Achieved
Information

Claim to Prove

Total time to
find the target.

Use a timer to
check the time.

If it is easy to stroll
around with the
camera and the
user is not lost, the
person will be
found much easier.

Navigating the
camera around is
easy to perform
and flexible.

Number of times
that the target is

out of sight.

Count the number
of times that the
target is not visible.

If the user is able to
keep the camera
focused on the
target.

The camera is easy
to steer in a stable
way.

The total time
that the user has

lost sight of the
target.

Use a timer to
measure the time
intervals between
visible and not
visible.

If the user is able to
retrieve the target
when lost.

The user is aware of
the orientation of
the camera during
steering operations.

Let the user
count the

number of stars
that the target

spawns.

Let the user count,
write down the final
number.

If the user pays
attention and is
focused on the
target.

The user is still
capable of
performing visual
tasks while steering
the camera.

Table 8.1: The measures to be performed by the observer.

life environments as well. All cameras look in the same direction at start up. The
environment used for this particular test is a model of the complete Nevadadreef in
Utrecht. The scene holds six cameras spread along the street. Figure 8.4 shows a
map of the street and the cameras and a screenshot through one of the cameras.
Both tests in this set use the same environment and the same cameras. This could
lead to a learning effect, but the time to create an extra environment with similar
properties takes too much time and effort.

8.1.4 Matrix View Replica

In order to get a good comparison between the new prototype and the old system,
a similar control scheme was built on top of the simulator. The user is able to steer
the cameras with the joystick and can switch the cameras with the keyboard. By
typing in a number on the keypad and pressing the ‘Enter’-button, the camera will
change directly to the new number. The other camera images are shown next to the
spot monitor, as shown in Figure 8.5.

8.1.5 Hardware

The test was set up in pairs for faster testing. So two computers were required to
let both participants work at the same time. The monitors were set up close to each

69

8. Evaluation

Figure 8.2: The target person to be followed has a distinctive yellow color.

(a) A picture of the environment in bird’s-eye
view. Left marker: camera for mouse techniques.
Right marker: joystick camera.

(b) A screenshot from out of the mouse camera.

Figure 8.3: The first test takes place in a single street on a crossroad.

70

8.1. Test Setup

(a) A picture of the environment of interest in
bird’s-eye view. The markers represent camera
1–6 from left to right.

(b) A screenshot from out of camera 1 into the
main street.

Figure 8.4: The second test takes place in a long street with a number of side alleys.

Figure 8.5: The replica of the matrix view shows the available cameras with their numbers on the
left. The spot monitor is on the bottom right of the screen.

71

8. Evaluation

Figure 8.6: The test setup in a classroom at ROC Mondriaan. The tests are performed in couples.
A video camera is placed behind the participants to film the monitors.

other so that only a single camera was required to film the actions of the participants
while performing the tasks. The image of the setup can be found in Figure 8.6. The
joystick used has three axes, which made it possible to perform the zoom actions
with a turn in the wrist, just like in the actual systems.

8.2 Logging

The measurements required to make conclusions require timing of events. Doing
this manually as an observer for pairs would be too intensive and probably not even
feasible. To avoid stress on the observer’s side, a logging system was built in the
simulator. The logger keeps track of visibility of the target person and actions that
the user performs.

The logger returns an XML file containing the actions of the user and includes a
timestamp on every entry. The log file can then be used to compare the old system
to the prototype for one user.

A log viewer was created to show a quick overview of the events during a session.
The information is displayed in a timeline and each different sort of event has its
own row (Figure 8.7). The overview is used to make the XML more human readable.
The logger is also able to synchronize two XML files for comparison.

Visibility was measured by performing three raycasts to the target person origi-
nation from the camera, going to the bottom, middle, and head of the target. This
is the only coupling that the simulator has with the rest of the system. This means
that not only images are outputted from the simulator, but also extra information
about the scenario. One could argue about the design, since there is no clear sep-
aration anymore. But on the other hand is the information vital for evaluation
purposes.

72

8.3. Target Group

Figure 8.7: The log viewer is able to sync two log files in time in order to compare the old techniques
with the newly designed ones.

8.3 Target Group

The archetype users described in Section 1.1 is still a large and diverse group of
CCTV operators. The professional operators that use the current system are occu-
pied people that do not have a large amount of time to participate in user evaluations.
They are the actual target group to evaluate, but are often occupied in their daily
work and most companies only have a small number of employees available. There-
fore, an alternative group has to be approached that has an eye for detail; potential
future video surveyors.

The ROC Mondriaan in The Hague is a school that facilitates a large group of
students in security and surveillance. This educational institute is specialized in
private security services which involve the field of surveillance, administrative tasks
and handling in calamities. Video surveillance is not a core subject in the course
program, but is often taught during internships. The students in this facility have a
good eye for detail and obscure behavior, but do not have much experience with the
current systems on the market. This makes them perfect as a test group and can be
regarded as representatives for the common video operator with limited experience.

The students of the institute have a majority of men (i.e. about 70%) and have

73

8. Evaluation

1 2 3 4 5 6 7 8
0

5

10

15

20

Participant #

C
u
m
u
la
ti
ve

ex
p
er
ie
n
ce

sc
or
e

Cumulative system experience per participant

PC Experience
Game Experience
Google Street View Experience
CCTV Experience

Figure 8.8: Cumulative scores on experiences with related systems. Each category has a range of
1–5.

a range of ages between 16 and 21 years old. In this range of ages, a majority is
likely to know how a computer works and most of the students have probably played
computer games in their life. This could be effecting the results, but probably in a
good way. The test results in Section 8.4 will reveal more on this topic.

8.4 Test Results

The tests at the institute resulted in eight participants in the user evaluations. This
is not a large number, but there were not enough students available at the time. This
section elaborates on the test results from the questionnaire and the measurements
performed by the logger. The questionnaire was filled out during the evaluations to
save time, so the system could reload the application for another session.

8.4.1 Questionnaire

The questionnaire found in Appendix B consists of statements about the different
tests that the participants had to perform. The questions compare the current
system with the new prototype. Every question covers a concept that was enhanced
by the new design.

Beforehand, a couple of experience questions are asked to see if there are any
differences in the target group in computer and game experience. Figure 8.8 show
that the level of computer experience is high; every person has daily experience with
the pc. There is less diversity in the group than expected, but that is fine with this
small number of participants.

74

8.4. Test Results

Single Camera Control: Joystick vs. Mouse

The statements asked in the questionnaire check which functionalities of the PTZ
camera are best controllable by either one of the interfaces. Besides, statements were
asked on precision, learning curve, and stability of the camera. Since all participants
did not have much experience with the joystick interface either, the learning curve
question is valid for them to answer. Figure 8.9 displays the average results of the
statements comparing both joystick and mouse facilities. Both joystick and mouse
controls score high in all statements and have a high average, indicating that both
methods are sufficient to work with. Panning, tilting and zooming work well in both
cases. The camera reacts as the user expects and both controls are easy to learn.
Both controls are smooth and stable to handle and are swiftly enough to work with.
The user is aware of its situation, although the mouse control scores higher by half
a point on average.

By performing a paired sample t-test, it is possible to see if the differences
between the scores of each question are significantly different or not. The output
from this test performed in SPSS can be found in Appendix C. The significance scores
of the t-test give high results at a confidence interval of 95% on all variables. It is
likely that there is no significant difference in preference (taverage(7) = −0.348, p =
0.738) between the joystick and the mouse controls for a single camera (Table 8.2).
The significance levels for the correlations between the variables are also low (p(7) ≥
0.150) due to the low number of participants. Only correlations for ease of learning
are of a significant level (r(7) = −0.731, p = 0.039), but the t-test indicates that
there is probably no significant difference in learning effect between joystick and
mouse (t(7) = −0.0188, p = 0.857).

The participants indicated during the tests that the mouse control is not well
adjusted in its zoom functionalities, because it zooms too swiftly. The mouse controls
are also known to take more effort when used in comparison to the joystick. Some
users indicated that the mouse is easy to pick up, since there is no confusion on
what can happen, while the joystick could easily be confused by inverting the axes
mentally.

Multi-Camera Control: Matrix View vs. New Prototype

The questions to be answered on multi-camera navigation focus on handling and
switching between multiple cameras. All statements in the questionnaire start with:
“When I switch from one camera to another...”. Again, the questions incorporate
all features that should have been improved in the new prototype.

The differences in average scores between the matrix view and the new prototype
are more divergent that the single camera control scores. Figure 8.10 show the
differences in scores between both interfaces. It can be seen that the matrix view
scores below average on most items, where the new interface scores in ranges from
‘sufficient’ to ‘good’. The matrix view makes users confused on their whereabouts
and focus target. It seems that the prototype aids the user in keeping focus on the
target object and looking on the right position. The user is also less dependent on

75

8. Evaluation

P
an

T
ilt

Z
oo
m

E
xp
ec
ta
ti
on

L
ea
rn
in
g

P
re
ci
si
on

Sm
oo
th

St
ab
le

Sp
ee
d

Si
tu
at
io
n
A
w
ar
en
es
s

Very Bad

Bad

Neutral

Good

Very Good

Questions asked in the questionnaire

A
ve
ra
ge

op
in
io
n
o
n
a
L
ik
er
t
sc
al
e

H
ig
h
er

is
b
et
te
r

Test Set 1: Single Camera Control Questions

Joystick
Mouse

Figure 8.9: Average scores of the separate questions in the questionnaire on single camera control.

Variable Correlation Correlation
Significance

t (df = 7) T-test
Significance

Pan −.241 .566 .284 .785

Tilt −.185 .660 −.370 .722

Zoom −.415 .307 −.764 .470

Expectation −.378 .356 −.957 .370

Learning −.731 .039 −.188 .857

Precision −.184 .663 −.196 .850

Smooth −.426 .292 .344 .741

Stable −.557 .152 −.205 .844

Speed −.426 .292 .509 .626

Situation
Awareness

.298 .473 −1.930 .095

Average −.559 .150 −.348 .738

Table 8.2: T-Test, Correlation and Significance values of the paired sample t-test for the single
control questionnaire. None of the significance values are low enough to conclude on hard measures.

76

8.4. Test Results

Very
Bad

Bad Neutral Good Very
Good

Know where I am

Know what I see

See target directly

Know origin

Direct Adjustment (inv)

Screen position

Expectation

Get lost (inv)

Number dependent (inv)

Average opinion on a Likert scale
Higher is better

Q
u
es
ti
on

s
as
k
ed

in
q
u
es
ti
o
n
n
ai
re
.

Test Set 2: Multi-Camera Control Questions

Joystick

Mouse

Figure 8.10: Average scores of the separate questions in the questionnaire on multi-camera control.

camera numbers, which means that they have to remember less information about
the environment, so they can have more focus on their actual task.

The paired sample t-test in Appendix C confirms the differences in the question-
naire. The significance levels are low enough (t(7) ≤ −2.646, p ≤ 0.033) to show
that there is a significant difference in most of the questions (Table 8.3). But also
in this case, the correlation significance levels (p(7) ≥ 0.233) between the variables
is too high, which is confirmed by the low number of participants. The only three
questions that are likely to have no significant difference are about the animation
path from one camera to another (t(7) = −0.703, p = 0.508), the direct adjustment
of the camera after the transition (t(7) = −0.228, p = 0.826), and getting completely
lost after switching (t(7) = −0.730, p = 0.493). This could also be of missing values
in the entries.

Conversations with the participants made clear that the new system was def-
initely preferred. Although it uses a mouse instead of a joystick, it is still fairly
integrated into the rest of the interface. Some would prefer an integration with the
joystick, although they could not directly tell how that would be possible to imple-
ment. Only one participant insisted on using the matrix view. The person found
out how all cameras were oriented in the same direction and found a trick to easily
switch a number lower every time the target got off screen. The participant did not
need to readjust the camera afterwards and minimized the number of switches and
steering by learning quickly about the environment.

77

8. Evaluation

Variable Correlation Correlation
Significance

t (df = 7) T-test
Significance

Know where I am .000 1.000 −3.265 .014
Know what I see .183 .664 −2.646 .033

See target directly .181 .698 −3.055 .022
Know origin −.519 .233 −.703 .508

Direct adjustment
(inv)

.029 .946 −.228 .826

Know screen
position

.717 .045 −4.965 .002

Expectation .277 .506 −2.966 .021
Get lost (inv) −.035 .941 −.730 .493

Number dependent
(inv)

−.289 .488 −3.528 .010

Average −.062 .883 −3.351 .012

Table 8.3: T-Test, Correlation and Significance values of the paired sample t-test for the multi-
camera questionnaire. Correlation values are too low for most variables, but the t-test does have
some significant values.

8.4.2 Quantitative Results

The log files produced by the logger module in the system can be used to calculate
the measures defined in Section 8.1.2. The information on visibility and number of
stars can be calculated by a script, but the problem is that not all information is
as accurate as it should be. Therefore, the calculations are manually calculated to
make sure that the data represents what the user has actually seen. The recorded
videos of the tests were used as a reference while doing so. The four measures are
visualized in Figures 8.11 to 8.14, which show the time to find a person, the number
of times that a person was lost, the ratio of stars noticed by the user, and the ratio
of time that the target was off screen.

Single Camera Control: Joystick vs. Mouse

The questionnaire already showed that there is no large difference in ease of use
between the joystick and mouse. The results in the log files show similar results.

The time to find the target person was biased by cooperation between the two
participants and a learning effect of the environment. The participants expected that
the target would appear from the same direction, and it did. Therefore, the majority
of the entries was excluded for the calculation of ‘time to find a target’. Figure 8.11
shows that the time to find the person is lower in the joystick situation, but the videos
show that this is not a case of better handling of the camera. A paired sample t-test
on these three entries show that the significance level (t(2) = −0.848, p = 0.486) is
too high to say that there is a significant difference. The other variables measured
include all eight entries, but also show that none of the measurements contribute

78

8.4. Test Results

Single
Camera

Multi-
Camera

10

15

20

Performed test set

T
im

e
n

ee
d
ed

to
fi

n
d

th
e

ta
rg

et
(s

)

Comparison of time needed to find the target

Joystick
Mouse

Figure 8.11: A comparison of the average time that is needed to find a target person in the envi-
ronment. In the multi-camera test set, users are more likely to find the person fast with the new
prototype.

Single
Camera

Multi-
Camera

0

1

2

3

4

Performed test set

#
of

ti
m
es

ta
rg
et

w
a
s
lo
st
.

(l
ow

er
is

b
et
te
r)

Comparison number of times target was lost

Joystick
Mouse

Figure 8.12: A comparison of the average number of times that the user loses its target out of sight.
Lower is better.

79

8. Evaluation

Single
Camera

Multi-
Camera

0

0.2

0.4

0.6

0.8

1

Performed test set

R
a
ti
o
of

st
a
rs

n
ot
ic
ed

(h
ig
h
er

is
b
et
te
r)

Comparison ratio of stars noticed

Joystick
Mouse

Figure 8.13: A comparison of the numbers of stars that is found divided by the total number of
stars that the participant could have seen. In the multi-camera test set, users miss out on stars
more easily in the matrix view. Higher is better.

Single
Camera

Multi-
Camera

0.8

0.9

1

Performed test set

R
at
io

of
ti
m
e
ta
rg
et

in
si
g
h
t

(h
ig
h
er

is
b
et
te
r)

Comparison ratio of time target was on screen

Joystick
Mouse

Figure 8.14: A comparison of the time ratio that the target is on screen and visible by the operator.
In the multi-camera test set, users spend more time in retrieving the target with the matrix view.
Higher is better.

80

8.5. Discussion

significantly (p(7) ≥ 0.170) to the performance of both methods. Figures 8.12 to 8.14
also shows that the differences between both methods are not that big.

Multi-Camera Control: Matrix View vs. New Prototype

One of the largest differences between the matrix view and the prototype is the active
attitude of the user. The time needed to find the target is significantly lower t(7) =
3.398, p = 0.011) in the new prototype (Figure 8.11). This also accounts for the
number of losses during a session (t(7) = 2.646, p = 0.033). And while Figure 8.14
would infer that the total off screen time is significantly lower in the prototype, the
t-test tells otherwise and shows that there is no real difference (t(7) = 2.068, p =
0.077). And like in all other measures above, the correlations between the variables
are actually too low (p ≥ 0.258) to accept these assumptions. Only the correlation
of the number of losses can be seen as acceptable (r(7) = 0.762, p = 0.028).

8.5 Discussion

The test results and questionnaires indicate that the mouse and joystick are both
as preferable to use in a single camera. Although, some participants commented
that the mouse worked more intuitive, but also with more effort. If any of the
other designed controls will have a better influence on this factor has still to be
researched. The difference in performance of both control is negligible small. More
research should be performed to find the real differences in performance and ease of
use.

The new prototype seems to do a good job in both performance and ease of
use. Both bar charts and significance levels show that the new prototype has better
scores on all fronts. The user approaches that target with a more active attitude and
switches more between cameras in order to find the target. A feeling of defeat occurs
more often in the matrix view. The prototype system scores significantly higher in
the questionnaire and users seem to be more aware of their situation, whereabouts
and point of focus. An important improvement is the ease of learning, which is
probably due to the independence of the camera numbers.

8.5.1 Reliability

The statements in the questionnaire answer the same construct of usability per
system. By using the method of Cronbach’s alpha, it is possible to see if the questions
asked are reliable for the construct to measure. Appendix C contains the output
that SPSS has generated on the Cronbach’s alpha calculations. A reliability of 0.7
or higher can be considered as good reliability. Table 8.4 shows that all constructs
measured in the questionnaire have acceptable alpha values.

81

8. Evaluation

Classic System Prototype System Mean

Single Camera Test 0.903 0.945 0.924

Multi-Camera Test 0.811 0.706 0.759

Table 8.4: The Cronbach’s alpha values for each set of questions in the questionnaire. All values
are greater than 0.7 and so are the mean alpha values, indicating that the questions are reliable.

8.5.2 Future Testing

The evaluations performed for this research only prove that a part of the system
has improved the task description so far. The number of tests that can still be
performed with the new system and simulator is endless. This evaluation has only
shown one mouse control, while two others were also implemented. The measures
only indicate the performance and attention of the users, bot not the activity. This
could be measured, since the logger also outputs information on camera activity and
the number of actions that the user performs.

As for an idea of future evaluations, the following subjects could be of interest
to improve the system even further. The list below is just a reference list that could
be useful for more evaluations and it shows the power of the simulator, where no
hardware cameras are required and where the number of environments and scenarios
has no limit and low costs.

• Test the other two camera controls and compare all measures between the four
types of controls.

• Repeat the tests performed above with more users to make the correlation
significant.

• Evaluate the activity of the user and the effort it takes to perform certain
actions.

• Let the participants learn how to user either system for a longer period of
time and evaluate once more on the familiar environment, but also on new
environments.

• Use more occluded and less occluded environments to see if there are any
differences in usage.

• Evaluate environments with more and with less cameras.

• Evaluate environments with a sparse number of cameras or with a denser
coverage

• Test for any differences between gamers and non-gamers and other target
groups that involve video surveillance.

• Evaluate the differences between known and unknown areas.

82

Chapter 9

Discussion and Conclusion

9.1 Summary

In this work, an effort was made to improve the performance and usability of video
surveillance systems. In particular, for the task of pursuing and following a person
around the area. The task analysis showed that this task is one of the hardest and
most stressful tasks that the operator can perform during the day. The user of the
surveillance system lacks situation awareness and spatial knowledge and is often
ashamed for losing the target out of sight. Future plans of system centralization
make it vital that a new system does not rely on camera numbers anymore.

The work of De Haan et al. [de Haan 10] was used as a starting point and was
extended by the integration of PTZ cameras. The navigation tools from Google
Street View were used as inspiration to create similar techniques for PTZ cameras.
Document viewer techniques were also used as a reference for camera controls.

The system simulates video images through a game engine. Which cuts the costs
for live PTZ cameras, video management systems and actors to play test scenarios
repeatedly. Properties of actual cameras were used to reenact the behavior of the
cameras in the environment.

The PTZ controls to steer with the camera that have been implemented are:
the simple joystick, a shooter game control, the hand tool control, and a document
viewer control that simulates the middle mouse button found in document viewers.
Only the joystick and hand tool have been tested during evaluations, because both
are familiar to people who play games and have used Google Street View. Zooming
with the mouse was implemented as a simple scroll wheel that alters the field of
view.

Navigating from one camera to another is achieved by clicking on the ground
of a 3D model that lies in sync with the image. The user picks a point of interest
and makes a gesture with the mouse to indicate in which direction the target to
follow is moving. The system calculates the most interesting cameras and returns
visual feedback continuously. The user can already see what camera will be chosen
before releasing the mouse. The user only needs to use the mouse and two buttons

83

9. Discussion and Conclusion

to control the entire system.

The measures of interest that the system uses to calculate the best camera are:
distance, visibility and view angle. The distance is used to rate the closest camera
as best. The visibility measure is calculated by sampling rays to the point of interest
from each camera to see which camera has the best view. To make sure that the
gesture of the user is used as an input, a final measure of angle is used to see if the
camera aligns with the direction of the gesture. The scores are weighted to give an
overall score. The winning camera will be switched onto the spot monitor.

The transition techniques used by De Haan et al. were re-implemented, but also
simplified. The three different cases have collapsed into a single case of orbiting,
since PTZ cameras always have an overlap with one another. The destination camera
calculates its field of view from the field of view of the origin camera and the size of
the 3D canvas that is used to draw the video stream on. The target to be followed
stays at equal size after transitioning to the new camera.

The Unity3D engine was used to implement both simulator and prototype for
reasons of performance and already implemented features. Post-effects were used on
the images from the simulator to make the effect of a real surveillance camera more
realistic.

The evaluations have taken place at ROC Mondriaan, an educational institute
for safety and security, with a group of security students that have minor experience
in video surveillance, but major experience in field surveillance. Within-user test
sessions revealed that the new mouse interface is just as preferable as the joystick
control and that the new prototype is significantly better in both performance, ease
of use and learning with multiple cameras. The user has a more active attitude
in finding the target and changing between cameras. The user is not afraid to do
so. The user is not reliable on camera numbers anymore, which makes the learning
curve less steep for users that have no experience in a particular environment yet.

9.2 Conclusion

The project introduces a new way of interacting with multiple cameras at the same
time in the environment without being dependent on specific orders or numbers.
Evaluations showed that the learning curve is not as steep as for the matrix view and
that mouse interaction is preferred by the user over typing numbers. The research
questions asked in Section 1.3 will now be answered to come to a final conclusion.

Research Question 1. What intuitive types of camera controls can be used to steer
a single PTZ camera? How do these controls mix with a complete system that also
lets the user switch between other cameras?

The joystick control is the most common control in video surveillance nowadays.
Alternatives are found in document viewers. They provide an equal number of
degrees of freedom and are therefore capable to also steer a PTZ camera. The
evaluations performed in Chapter 8 showed that there are no significant differences

84

9.3. Future Work

between the joystick and mouse controls, making it assumable that both controls
are just as easy to use for steering a PTZ camera.

The mouse controls can easily be implemented into a multi-camera system. Only
a mouse is required to control the complete system. The evaluations showed that
a complete system with the mouse is easier to learn and use than the classic grid
system with a joystick.

Research Question 2. What alternative navigation methods can be used to im-
prove active multi-camera video surveillance systems during intense situations and
in which ways do they improve video surveillance systems or the user?

Instead of typing in a number to get to the following camera, users can now
make a transition based on spatial knowledge and relationships. A point of interest
is chosen in the perspective of the camera and the user flies towards a newly selected
camera that was indicated beforehand by colored arrows. The point of interest is
always visible during the transition. This system lays focus on point of interest
instead of manual image recognition.

The new prototype improves interaction with the user on a basis of performance,
ease of use, and situation awareness. The user is more aware of its position in relation
to other cameras and prefers to use the new system rather than the old matrix view.
The user is less likely to lose its target while using the new prototype.

Research Question 3. In what way can the new system be effectively tested on low
costs and a high number of iterations?

The costs of the prototype were reduced by implementing a simulator that pro-
vides real-time video images. Characters walk through the environment performing
actions. These characters can be used for scenarios during evaluations. The cameras
in the scenarios act like real life cameras with similar response properties. Scenarios
are reduced in cost, since there is no need to hire real people that have to be followed
through the cameras. Another advantage is the ability to replay scenarios infinitely
many times, resulting in a less biased evaluation.

9.3 Future Work

Enhancing this research even further mostly involves evaluations and tweaking of
this new prototype. This section sums up interesting topics that are still to be
researched. Some of the improvements that still have to be done do not require
much research and can easily be implemented, others are harder and need some
more investigations on the situation.

Short-term Improvements

At the moment, the user is only able to pick a place on the ground and drag a gesture
from there. When the user places the mouse on a wall, nothing will happen. The

85

9. Discussion and Conclusion

user is obstructed in its controls. This problem should be solved by implementing
some kind of a wall transition as well.

The weighted measures to filter cameras works, but is not fully optimized in what
it should do. By improving the visibility measure to a more accurate instrument, it
would be possible to actually clip cameras that do not see the object at all. Creating
such a technique will have to map the collision object to screen space and measure
the total surface ratio on screen.

Visibility could also be improved by involving a gradient in the movement ges-
ture. Now, rays are sampled over the whole arrow object and only a ratio is checked.
But the user creates an uncertainty by creating longer arrows. Therefore, the tip of
the arrow is a less confident point than the base of the arrow. One could think of
extra weights in the ratio of each ray sample.

Sometimes, users make a wrong decision. In the current system, it is possible to
return to the previous camera by typing in the previous number. The new prototype
sometimes requires a full 180◦ turn and then a correct mouse gesture. An undo-
action could optimize user performance.

The transition that is used to get from one camera to another works fine for
cameras that are quite close to each other, but cameras that have a far range some-
times make a circular motion with a radius of 100m. The data from CIV that covers
1 km2 with only six cameras shows exactly this problem. The number is large and
sometimes confusing when both cameras are low near the ground. This could be im-
proved with a flyover that takes off the ground first, still keeping the point of interest
on screen. How this track should be calculated precisely has to be researched.

As already mentioned in Section 4.2.4, the scroll zoom technique only adjusts
the field of view. It does not focus on the mouse cursor, as commonly implemented
in document viewers. This could be another improvement to make to the zoom
controls.

Also, the previews that were implemented by De Haan et al. have been left out.
It would be an idea to cache all cameras with panorama images to show a static
preview of the scene.

The side products of this projects can definitely be improved. The debugger
could even output more information and calculate more precise information on vis-
ibility and camera transfers. But as mentioned before, the visibility calculations
should be improved first.

The simulator could be improved with animated characters that actually do real
life actions, instead of spawning stars.

Long-term Improvements

In this project, the assumption was made that all cameras are active cameras and
that all cameras therefore have an overlap. This simplifies the problem and gives
more freedom for implementations. But some systems have both active and static
cameras. Some of the glyph implementations of De Haan et al. should probably
return to make a more complete system.

86

9.3. Future Work

Similar to that, real camera images have been left out for ease of implementa-
tion. Using real cameras will probably resolve in other problems that have not been
foreseen just yet, like camera calibration, precision and delay. The simulator could
be implemented with a delay to see if the interaction is the same, but it will never
cope with the randomness of real electric motors.

Final Words

It can be seen that most of the implementations needed here are small tweaks, or
large features that should first be tested. The simulator could help in doing so to
improve the design further before actually implementing expensive features with real
cameras and such.

Especially improving the debugger could help in creating a more streamlined
evaluation phase for large groups of people. A lot of things were still to be done
manually in this project’s evaluation phase and that could definitely be optimized.

Most of the time will be required to get better test results on a variety of inter-
esting topics as described in Section 8.5.2. Hopefully interesting results will show
up that will provide more information on improving video surveillance even further.
As a final thought, I would like to recommend merging the new interface with the
classic matrix grid. The new system only uses the mouse, but a combination with
number ticking looks like a plausible all-round solution.

87

Bibliography

[Calderara 09] Simone Calderara, Andrea Prati & Rita Cucchiara. Video surveil-
lance and multimedia forensics. In Proceedings of the First ACM
workshop on Multimedia in forensics - MiFor ’09, page 13, New
York, New York, USA, 2009. ACM Press.

[Chen 07] Jessie Y. C. Chen, Ellen C. Haas & Michael J. Barnes. Human
Performance Issues and User Interface Design for Teleoperated
Robots. IEEE Transactions on Systems, Man and Cybernetics,
Part C (Applications and Reviews), vol. 37, no. 6, pages 1231–
1245, November 2007.

[de Haan 09] Gerwin de Haan, Josef Scheuer, Raymond de Vries & Frits H.
Post. Egocentric navigation for video surveillance in 3D Virtual
Environments. In 2009 IEEE Symposium on 3D User Interfaces,
pages 103–110. IEEE, 2009.

[de Haan 10] Gerwin de Haan, Huib Piguillet & Frits Post. Spatial Navigation
for Context-Aware Video Surveillance. Technical Report 5, TU
Delft, September 2010.

[Furmanski 02] Chris Furmanski, Ronald Azuma & Mike Daily. Augmented-
reality visualizations guided by cognition: perceptual heuristics for
combining visible and obscured information. In Proceedings. In-
ternational Symposium on Mixed and Augmented Reality, pages
215–320, Maliby, CA, 2002. IEEE Comput. Soc.

[Girgensohn 06] Andreas Girgensohn, Frank Shipman, Anthony Dunnigan, Thea
Turner & Lynn Wilcox. Support for effective use of multiple video
streams in security. In Proceedings of the 4th ACM international
workshop on Video surveillance and sensor networks - VSSN ’06,
page 19, New York, New York, USA, 2006. ACM Press.

89

Bibliography

[Girgensohn 07] Andreas Girgensohn, Tony Dunnigan, Don Kimber, Jim
Vaughan, Tao Yang, Frank Shipman, Thea Turner, Eleanor Rief-
fel, Lynn Wilcox & Francine Chen. DOTS. In Proceedings of the
15th international conference on Multimedia - MULTIMEDIA
’07, page 423, New York, New York, USA, 2007. ACM Press.

[Goh 08] A. H. W. Goh, Y. S. Yong, C. H. Chan, S. J. Then, L. P. Chu,
S. W. Chau & H. W. Hon. Interactive PTZ camera control system
using WII remote and infrared sensor bar. In Proceedings of
World Academy of Science, Engineering and Technology, numéro
Cii, pages 127–132, 2008.

[Iannizzotto 05] Giancarlo Iannizzotto, Carlo Costanzo, Francesco La Rosa &
Pietro Lanzafame. A multimodal perceptual user interface for
video-surveillance environments. In Proceedings of the 7th inter-
national conference on Multimodal interfaces - ICMI ’05, page 45,
New York, New York, USA, 2005. ACM Press.

[Keval 09] Hina Uttam Keval. Effective design, configuration, and use of
digital CCTV. PhD thesis, University College London, 2009.

[Kim 08] Jiman Kim & Daijin Kim. Probabilistic camera hand-off for vi-
sual surveillance. In 2008 Second ACM/IEEE International Con-
ference on Distributed Smart Cameras, numéro 7-11 Sept. 2008,
pages 1–8, Stanford, CA, September 2008. IEEE.

[Krahnstoever 08] Nils Krahnstoever, Ting Yu, Ser-Nam Lim, Kedar Patwardhan
& Peter Tu. Collaborative real-time control of active cameras in
large scale surveillance systems. In Workshop on Multi-camera
and Multi-modal Sensor Fusion Algorithms and Applications -
M2SFA2 2008, 2008.

[Matheus 03] Christopher J. Matheus, Mieczyslaw M. Kokar & Kenneth Ba-
clawski. A core ontology for situation awareness. Information
Fusion, 2003. Proceedings of the Sixth International Conference
of, vol. 1, pages 545–552, 2003.

[Ott 06] Renaud Ott, Mario Gutiérrez, Daniel Thalmann & Frédéric Vexo.
Advanced virtual reality technologies for surveillance and security
applications. In Proceedings of the 2006 ACM international con-
ference on Virtual reality continuum and its applications - VR-
CIA ’06, volume 1, page 163, New York, New York, USA, 2006.
ACM Press.

[Qureshi 07] Faisal Z. Qureshi & Demetri Terzopoulos. Surveillance in Virtual
Reality: System Design and Multi-Camera Control. In 2007 IEEE

90

Bibliography

Conference on Computer Vision and Pattern Recognition, pages
1–8. IEEE, June 2007.

[Qureshi 09] Faisal Z. Qureshi & Demetri Terzopoulos. Planning ahead
for PTZ camera assignment and handoff. In 2009 Third
ACM/IEEE International Conference on Distributed Smart
Cameras (ICDSC), pages 1–8. IEEE, August 2009.

[Qureshi 11] Faisal Z. Qureshi & Demetri Terzopoulos. Distributed Video Sen-
sor Networks. In Bir Bhanu, Chinya V. Ravishankar, Amit K.
Roy-Chowdhury, Hamid Aghajan & Demetri Terzopoulos, edi-
tors, Distributed Video Sensor Networks, chapitre 19, pages 273–
287. 2011.

[Shah 07] Mubarak Shah, Omar Javed & Khurram Shafique. Automated
Visual Surveillance in Realistic Scenarios. IEEE Multimedia,
vol. 14, no. 1, pages 30–39, 2007.

[Singh 07] Vivek K. Singh, Pradeep K. Atrey & Mohan S. Kankanhalli.
Coopetitive multi-camera surveillance using model predictive con-
trol. Machine Vision and Applications, vol. 19, no. 5-6, pages
375–393, July 2007.

[Snavely 08] Noah Snavely, Rahul Garg, Steven M. Seitz & Richard Szeliski.
Finding paths through the world’s photos. ACM Transactions on
Graphics, vol. 27, no. 3, page 1, August 2008.

[Thorndyke 82] Perry W. Thorndyke & Barbara Hayes-Roth. Differences in spa-
tial knowledge acquired from maps and navigation. Cognitive Psy-
chology, vol. 14, no. 4, pages 560–589, October 1982.

[Veas 10] Eduardo Veas, Alessandro Mulloni, Ernst Kruijff, Holger Regen-
brecht & Dieter Schmalstieg. Techniques for view transition in
multi-camera outdoor environments. In Proceedings of Graphics
Interface 2010 on Proceedings of Graphics Interface 2010, pages
193–200, 2010.

[Wang 07] Yi Wang, David M. Krum, Enylton M. Coelho & Doug A. Bow-
man. Contextualized videos: combining videos with environment
models to support situational understanding. IEEE transactions
on visualization and computer graphics, vol. 13, no. 6, pages
1568–75, 2007.

[Wang 08] Yi Wang, Doug Bowman, David Krum, Enylton Coalho, Tonya
Smith-Jackson, David Bailey, Sarah Peck, Swethan Anand,
Trevor Kennedy & Yernar Abdrazakov. Effects of video placement
and spatial context presentation on path reconstruction tasks with

91

Bibliography

contextualized videos. IEEE transactions on visualization and
computer graphics, vol. 14, no. 6, pages 1755–62, 2008.

[Yao 08] Jian Yao & Jean-marc Odobez. Multi-Camera Multi-Person
3D Space Tracking with MCMC in Surveillance Scenarios. In
M2SFA2, page 12, 2008.

[Zhu 11a] Dingyun Zhu, Tom Gedeon & Ken Taylor. Exploring camera
viewpoint control models for a multi-tasking setting in teleoper-
ation. In Proceedings of the 2011 annual conference on Human
factors in computing systems - CHI ’11, page 53, New York, New
York, USA, 2011. ACM Press.

[Zhu 11b] Dingyun Zhu, Tom Gedeon & Ken Taylor. Moving to the centre:
A gaze-driven remote camera control for teleoperation. Interact-
ing with Computers, vol. 23, no. 1, pages 85–95, January 2011.

92

Appendix A

Class Diagram

This appendix shows a simplified version of the class structure used in the prototype.

93

95

Appendix B

Evaluation Questionnaire

97

31 mei 2012

Evaluatieformulier na tests camerabeveiligingssysteem

TU Delft

Je hebt nu zowel een systeem gebruikt zoals het nu in het bedrijfsleven wordt gebruikt en een nieuw systeem
dat is ontwikkeld door de TU Delft. Door middel van deze vragenlijst kunnen we zien wat je beter vond
werken en waarom.

Eerst stellen we een aantal vragen over je achtergrond, daarna gaan we in op de twee systemen.

1. Geslacht

Man Vrouw

2. Leeftijd:

3. Opleiding

MBO Niveau 1

MBO Niveau 2

MBO Niveau 3

MBO Niveau 4

Anders, namelijk:

4. Maak je weleens gebruik van de computer?
Het maakt niet uit voor welke doeleinden. Het is van belang om te kijken of je een beetje ervaring hebt
met computers.

Minder dan 1 keer per maand

Minder dan 1 keer per week

Meer dan 1 keer per week

Bijna elke dag

Echt elke dag

5. Speel je weleens computerspelletjes?

Nee / Bijna nooit

Ja, kleine spelletjes op het internet / smartphones

Ja, ik speel weleens een groot computerspel / consolespel

Ja, ik speel best vaak een groot computerspel / consolespel

Ja, ik zie mezelf als een echte gamer

1

6. Heb je weleens gebruik gemaakt van Google Maps en het daarin gebouwde Google Street
View?
Google Street View is dat oranje mannetje in Google Maps waarmee je foto’s op straat kunt bekijken.
(Zie plaatje voor een voorbeeld)

Nee, nog nooit

Ja, maar ik zou niet meer weten hoe het ook alweer werkt

Ja, dat gebruik ik heel soms

Ja, ik weet wel hoe het werkt

Ja, en ik kan er goed mee overweg

7. Heb je weleens achter een beveiligingssysteem gezeten?
Heb je weleens achter camera’s gezeten en ze bestuurd? Bijvoorbeeld op stage.

Nee, nog nooit

Nee, alleen een keer meegekeken

Ja, ik heb zelf camera’s gestuurd

Ja, ik heb zelf ook verdachte mensen gevolgd

8. Vond je het oude systeem lijken op het beveiligingssysteem dat je zelf al eens hebt gezien?
Alleen invullen als je Ja had bij vraag 7 of als je weleens hebt meegekeken.

1 2 3 4 5
Nee, verre van 2 2 2 2 2 Ja, het kwam in de buurt

2

Sturen met de camera

De volgende twee vragen vergelijken de joystickbesturing en de muisbesturing met elkaar.

9. Geef aan wat je vindt van de joystick op de volgende onderdelen.

Slecht Matig Neutraal Voldoende Goed
Zijwaarts bewegen 2 2 2 2 2

Op en neer bewegen 2 2 2 2 2
In- en uitzoomen 2 2 2 2 2

Het doet wat ik verwacht 2 2 2 2 2
Makkelijk te leren 2 2 2 2 2

Precisie 2 2 2 2 2
Soepele beweging van de camera 2 2 2 2 2
Stabiliteit (of het veel slingerde) 2 2 2 2 2

Snelheid 2 2 2 2 2
Ik weet waar ik naar kijk tijdens het sturen 2 2 2 2 2

10. Geef aan wat je vindt van de muisbesturing op de volgende onderdelen.

Slecht Matig Neutraal Voldoende Goed
Zijwaarts bewegen 2 2 2 2 2

Op en neer bewegen 2 2 2 2 2
In- en uitzoomen 2 2 2 2 2

Het doet wat ik verwacht 2 2 2 2 2
Makkelijk te leren 2 2 2 2 2

Precisie 2 2 2 2 2
Soepele beweging van de camera 2 2 2 2 2
Stabiliteit (of het veel slingerde) 2 2 2 2 2

Snelheid 2 2 2 2 2
Ik weet waar ik naar kijk tijdens het sturen 2 2 2 2 2

3

Wisselen tussen camera’s

De volgende vragen gaan over de tweede test die je hebt gedaan met het volgen van het mannetje.

11. Geef aan wat passend is voor het oude systeem.
Als ik wissel van camera, dan...

Helemaal
mee oneens

Een beetje
mee oneens

Neutraal Een beetje
mee eens

Helemaal
mee eens

weet ik precies waar ik ben 2 2 2 2 2
weet ik precies wat ik zie 2 2 2 2 2

zie ik direct het doel dat ik
aan het volgen was

2 2 2 2 2

zie ik hoe ik van de ene
camera naar de andere

kwam

2 2 2 2 2

moet ik de camera direct
weer bijsturen

2 2 2 2 2

weet ik naar welke plek op
het scherm ik zou moeten

kijken

2 2 2 2 2

zie ik wat ik wilde zien 2 2 2 2 2
raak ik snel de weg kwijt 2 2 2 2 2
ben ik afhankelijk van de

cameranummers en hoe de
camera’s opgehangen zijn

2 2 2 2 2

12. Geef aan wat passend is voor het nieuwe systeem.
Als ik wissel van camera, dan...

Helemaal
mee oneens

Een beetje
mee oneens

Neutraal Een beetje
mee eens

Helemaal
mee eens

weet ik precies waar ik ben 2 2 2 2 2
weet ik precies wat ik zie 2 2 2 2 2

zie ik direct het doel dat ik
aan het volgen was

2 2 2 2 2

zie ik hoe ik van de ene
camera naar de andere

kwam

2 2 2 2 2

moet ik de camera direct
weer bijsturen

2 2 2 2 2

weet ik naar welke plek op
het scherm ik zou moeten

kijken

2 2 2 2 2

zie ik wat ik wilde zien 2 2 2 2 2
raak ik snel de weg kwijt 2 2 2 2 2
ben ik afhankelijk van de

cameranummers en hoe de
camera’s opgehangen zijn

2 2 2 2 2

4

13. Bij het nieuwe systeem gebruikte ik graag:
Meerdere antwoorden mogelijk.

Het dubbelklikken om te wisselen

De rechter muisknop om een pijl te tekenen

De muisbesturing om de camera te sturen

5

Appendix C

SPSS Output

This appendix includes the SPSS output used in Chapter 8. The following list is
the list of variables that relate to the questions found in Appendix B.

Single Camera Questionnaire

Variable Description

js pan/m pan User satisfaction on camera panning.

js tilt/m tilt User satisfaction on camera tilting.

js zoom/m zoom User satisfaction on camera zooming.

js expect/m expect Does the system do what the user expects?

js learning/m learning Is this control easy to learn?

js precision/m precision Does the camera listen precisely to your gestures?

js smooth/m smooth Do the camera controls feel smooth while moving?

js stable/m stable Is the camera image rumbling while moving?

js speed/m speed Is the control responsive to user’s gestures?

js sa/m sa Situation Awareness: Is the user aware of its position in the
world?

js avg/m avg The average score of the above variables.

105

C. SPSS Output

Multi-Camera Navigation Questionnaire

Variable Description

old sa/new sa Situation Awareness: Is the user aware of its posi-
tion in the world?

old see/new see If the user knows what he/she is looking at.

old seeTarget/new seeTarget Does the user see the target person directly after a
camera switch?

old seePath/new seePath Does the user know how he got from one camera to
another?

old adjust inv/new adjust inv Is the user likely to readjust the camera after a tran-
sition?

old screenPos/new screenPos Does the user know where to look on screen after a
transition?

old expect/new expect Is the system behaving as expected by the user?

old lost inv/new lost inv If the user was easily lost during the session.

old numbers inv/new numbers inv Dependency on the camera numbers.

old avg/new avg The average score of the above variables.

Test Measures (* = 1,single-cam / 2,multi-cam)

Variable Description

c* tFind/n* tFind Time needed to find the target person.

c* nLost/n* nLost Number of times that the user loses the target out of sight. Mea-
sured from the first finding to a point where the user is unable to
see the target anymore.

c* rStars/n* rStars The ratio of stars that the user has counted against the total num-
ber of stars that the user could have seen.

c* rLost/n* rLost The ratio of time that the target was off screen.

106

Test Set 1: Single Camera Controls

Questionnaire T-Test

Paired Samples Statistics

Mean N Std. Deviation

Std. Error

Mean

Pair 1 js_pan 4,13 8 ,641 ,227

m_pan 4,00 8 ,926 ,327

Pair 2 js_tilt 3,88 8 ,991 ,350

m_tilt 4,13 8 1,458 ,515

Pair 3 js_zoom 3,75 8 1,035 ,366

m_zoom 4,25 8 1,165 ,412

Pair 4 js_expect 3,75 8 1,035 ,366

m_expect 4,38 8 1,188 ,420

Pair 5 js_learning 4,13 8 ,991 ,350

m_learning 4,25 8 1,035 ,366

Pair 6 js_precision 3,63 8 1,061 ,375

m_precision 3,75 8 1,282 ,453

Pair 7 js_smooth 3,88 8 1,126 ,398

m_smooth 3,63 8 1,302 ,460

Pair 8 js_stable 3,50 8 ,756 ,267

m_stable 3,63 8 1,188 ,420

Pair 9 js_speed 4,25 8 ,886 ,313

m_speed 4,00 8 ,756 ,267

Pair 10 js_sa 4,00 8 ,926 ,327

m_sa 4,63 8 ,518 ,183

Pair 11 js_avg 3,8875 8 ,69783 ,24672

m_avg 4,0625 8 ,91016 ,32179

Paired Samples Correlations

 N Correlation Sig.

Pair 1 js_pan & m_pan 8 -,241 ,566

Pair 2 js_tilt & m_tilt 8 -,185 ,660

Pair 3 js_zoom & m_zoom 8 -,415 ,307

Pair 4 js_expect & m_expect 8 -,378 ,356

Pair 5 js_learning & m_learning 8 -,731 ,039

Pair 6 js_precision & m_precision 8 -,184 ,663

Pair 7 js_smooth & m_smooth 8 -,426 ,292

Pair 8 js_stable & m_stable 8 -,557 ,152

Pair 9 js_speed & m_speed 8 -,426 ,292

Pair 10 js_sa & m_sa 8 ,298 ,473

Pair 11 js_avg & m_avg 8 -,559 ,150

Paired Samples Test

Paired Differences

t df Sig. (2-tailed) Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

Lower Upper

Pair 1 js_pan - m_pan ,125 1,246 ,441 -,917 1,167 ,284 7 ,785

Pair 2 js_tilt - m_tilt -,250 1,909 ,675 -1,846 1,346 -,370 7 ,722

Pair 3 js_zoom - m_zoom -,500 1,852 ,655 -2,048 1,048 -,764 7 ,470

Pair 4 js_expect - m_expect -,625 1,847 ,653 -2,169 ,919 -,957 7 ,370

Pair 5 js_learning - m_learning -,125 1,885 ,666 -1,701 1,451 -,188 7 ,857

Pair 6 js_precision - m_precision -,125 1,808 ,639 -1,636 1,386 -,196 7 ,850

Pair 7 js_smooth - m_smooth ,250 2,053 ,726 -1,466 1,966 ,344 7 ,741

Pair 8 js_stable - m_stable -,125 1,727 ,611 -1,569 1,319 -,205 7 ,844

Pair 9 js_speed - m_speed ,250 1,389 ,491 -,911 1,411 ,509 7 ,626

Pair 10 js_sa - m_sa -,625 ,916 ,324 -1,391 ,141 -1,930 7 ,095

Pair 11 js_avg - m_avg -,17500 1,42302 ,50312 -1,36468 1,01468 -,348 7 ,738

Test Set 2: Multi-Camera Controls

Questionnaire T-Test

Paired Samples Statistics

Mean N

Std.

Deviation

Std. Error

Mean

Pair 1 old_sa 2,38 8 ,916 ,324

new_sa 4,00 8 1,069 ,378

Pair 2 old_see 3,38 8 ,916 ,324

new_see 4,38 8 ,744 ,263

Pair 3 old_seeTarget 2,43 7 1,618 ,612

new_seeTarget 4,43 7 ,976 ,369

Pair 4 old_seePath 3,71 7 ,951 ,360

new_seePath 4,29 7 1,496 ,565

Pair 5 old_adjust_inv 2,25 8 1,035 ,366

new_adjust_inv 2,38 8 1,188 ,420

Pair 6 old_screenPos 2,63 8 ,916 ,324

new_screenPos 3,75 8 ,707 ,250

Pair 7 old_expect 3,25 8 ,463 ,164

new_expect 4,13 8 ,835 ,295

Pair 8 old_lost_inv 2,71 7 1,380 ,522

new_lost_inv 3,29 7 1,496 ,565

Pair 9 old_numbers_inv 2,00 8 ,926 ,327

new_numbers_inv 4,00 8 1,069 ,378

Pair 10 old_avg 2,7691 8 ,67394 ,23827

new_avg 3,8681 8 ,59683 ,21101

Paired Samples Correlations

 N Correlation Sig.

Pair 1 old_sa & new_sa 8 ,000 1,000

Pair 2 old_see & new_see 8 ,183 ,664

Pair 3 old_seeTarget &

new_seeTarget

7 ,181 ,698

Pair 4 old_seePath & new_seePath 7 -,519 ,233

Pair 5 old_adjust_inv &

new_adjust_inv

8 ,029 ,946

Pair 6 old_screenPos &

new_screenPos

8 ,717 ,045

Pair 7 old_expect & new_expect 8 ,277 ,506

Pair 8 old_lost_inv & new_lost_inv 7 -,035 ,941

Pair 9 old_numbers_inv &

new_numbers_inv

8 -,289 ,488

Pair 10 old_avg & new_avg 8 -,062 ,883

Paired Samples Test

Paired Differences

t df Sig. (2-tailed) Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

Lower Upper

Pair 1 old_sa - new_sa -1,625 1,408 ,498 -2,802 -,448 -3,265 7 ,014

Pair 2 old_see - new_see -1,000 1,069 ,378 -1,894 -,106 -2,646 7 ,033

Pair 3 old_seeTarget -

new_seeTarget

-2,000 1,732 ,655 -3,602 -,398 -3,055 6 ,022

Pair 4 old_seePath - new_seePath -,571 2,149 ,812 -2,559 1,416 -,703 6 ,508

Pair 5 old_adjust_inv -

new_adjust_inv

-,125 1,553 ,549 -1,423 1,173 -,228 7 ,826

Pair 6 old_screenPos -

new_screenPos

-1,125 ,641 ,227 -1,661 -,589 -4,965 7 ,002

Pair 7 old_expect - new_expect -,875 ,835 ,295 -1,573 -,177 -2,966 7 ,021

Pair 8 old_lost_inv - new_lost_inv -,571 2,070 ,782 -2,486 1,343 -,730 6 ,493

Pair 9 old_numbers_inv -

new_numbers_inv

-2,000 1,604 ,567 -3,341 -,659 -3,528 7 ,010

Pair 10 old_avg - new_avg -1,09896 ,92771 ,32799 -1,87454 -,32338 -3,351 7 ,012

Test Set 1: Single Camera Controls

Measures Statistics and Correlations

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 c1_tFind 14,1417 3 1,10837 ,63991

n1_tFind 21,1690 3 15,12279 8,73115
Pair 2

c1_nLost ,25 8 ,463 ,164

n1_nLost ,75 8 ,886 ,313
Pair 3

c1_rLost ,0067 8 ,01320 ,00467

n1_rStars ,9123 8 ,07853 ,02777
Pair 4

c1_rLost ,0067 8 ,01320 ,00467

n1_rLost ,0105 8 ,01646 ,00582

Paired Samples Correlations

 N Correlation Sig.

Pair 1 c1_tFind & n1_tFind 3 ,719 ,489

Pair 1 c1_nLost & n1_nLost 8 ,174 ,680

Pair 2 c1_rStars & n1_rStars 8 -,451 ,262

Pair 3 c1_rLost & n1_rLost 8 -,169 ,689

Test Set 2: Multi-Camera Controls

Measures Statistics and Correlations

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 c2_tFind 18,4035 8 7,95839 2,81372

n2_tFind 7,6091 8 2,28796 ,80891

Pair 2 c2_nLost 3,88 8 1,642 ,581

n2_nLost 2,88 8 1,356 ,479

Pair 3 c2_rStars ,6823 8 ,27519 ,09730

n2_rStars ,8311 8 ,25773 ,09112

Pair 4 c2_rLost ,1457 8 ,09955 ,03519

n2_rLost ,0808 8 ,04347 ,01537

Paired Samples Correlations

 N Correlation Sig.

Pair 1 c2_tFind & n2_tFind 8 -,334 ,418

Pair 2 c2_nLost & n2_nLost 8 ,762 ,028

Pair 3 c2_rStars & n2_rStars 8 ,341 ,408

Pair 4 c2_rLost & n2_rLost 8 ,454 ,258

Test Set 1: Single Camera Controls

Measures Paired Samples T-Test

Paired Samples Test

Paired Differences

t df Sig. (2-tailed) Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

Lower Upper

Pair 1 c1_tFind - n1_tFind -7,02737 14,34673 8,28309 -42,66663 28,61188 -,848 2 ,486

Pair 2 c1_nLost - n1_nLost -,500 ,926 ,327 -1,274 ,274 -1,528 7 ,170

Pair 3 c1_rStars - n1_rStars ,05645 ,14228 ,05030 -,06250 ,17540 1,122 7 ,299

Pair 4 c1_rLost - n1_rLost -,00386 ,02277 ,00805 -,02290 ,01518 -,479 7 ,646

Test Set 2: Multi-Camera Controls

Measures Paired Samples T-Test

Paired Samples Test

Paired Differences

t df Sig. (2-tailed) Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

Lower Upper

Pair 1 c2_tFind - n2_tFind 10,79444 8,98603 3,17704 3,28194 18,30695 3,398 7 ,011

Pair 2 c2_nLost - n2_nLost 1,000 1,069 ,378 ,106 1,894 2,646 7 ,033

Pair 3 c2_rStars - n2_rStars -,14880 ,30617 ,10825 -,40476 ,10716 -1,375 7 ,212

Pair 4 c2_rLost - n2_rLost ,06486 ,08869 ,03136 -,00929 ,13901 2,068 7 ,077

Test 1 Reliability

Joystick

N of Items
Cronbach's

Alpha

10,903

Reliability Statistics

Cronbach's
Alpha if Item

Deleted

Corrected
Item-Total
Correlation

Scale
Variance if

Item Deleted
Scale Mean if
Item Deleted

js_pan

js_tilt

js_zoom

js_expect

js_learning

js_precision

js_smooth

js_stable

js_speed

js_sa ,895,63140,41134,88

,880,87938,26834,63

,891,72241,12535,38

,881,82136,28635,00

,913,36742,50035,25

,885,77538,21434,75

,880,84536,98235,13

,899,57240,12535,13

,908,42142,28635,00

,894,69242,50034,75

Item-Total Statistics

Mouse

N of Items
Cronbach's

Alpha

10,945

Reliability Statistics

Cronbach's
Alpha if Item

Deleted

Corrected
Item-Total
Correlation

Scale
Variance if

Item Deleted
Scale Mean if
Item Deleted

m_pan

m_tilt

m_zoom

m_expect

m_learning

m_precision

m_smooth

m_stable

m_speed

m_sa ,947,63076,85736,00

,947,56874,83936,63

,938,78366,28637,00

,936,83863,71437,00

,939,78564,98236,88

,932,92066,26836,38

,935,85465,07136,25

,938,78566,55436,38

,936,85861,14336,50

,938,81569,41136,63

Item-Total Statistics

Page 1

Joystick/Matrix View

%N

Valid

Excluded
a

Total

Cases

100,08

25,02

75,06

Case Processing Summary

a. Listwise deletion based on all
variables in the procedure.

N of Items
Cronbach's

Alpha

9,811

Reliability Statistics

Cronbach's
Alpha if Item

Deleted

Corrected
Item-Total
Correlation

Scale
Variance if

Item Deleted
Scale Mean if
Item Deleted

old_sa

old_see

old_seeTarget

old_seePath

old_adjust_inv

old_screenPos

old_expect

old_lost_inv

old_numbers_inv ,769,71932,00023,00

,768,67329,06722,67

,834-,10041,36721,83

,781,61032,70022,50

,887-,31344,56722,83

,748,90030,26721,33

,717,93523,50022,50

,745,89929,76721,83

,804,40434,96722,83

Item-Total Statistics

Mouse/Prototype View

%N

Valid

Excluded
a

Total

Cases

100,08

12,51

87,57

Case Processing Summary

a. Listwise deletion based on all
variables in the procedure.

N of Items
Cronbach's

Alpha

9,706

Reliability Statistics

Page 2

Cronbach's
Alpha if Item

Deleted

Corrected
Item-Total
Correlation

Scale
Variance if

Item Deleted
Scale Mean if
Item Deleted

new_sa

new_see

new_seeTarget

new_seePath

new_adjust_inv

new_screenPos

new_expect

new_lost_inv

new_numbers_inv ,607,73522,23831,29

,537,87217,23831,71

,651,64926,00031,00

,658,62926,61931,43

,763-,03730,47632,86

,689,36424,00031,00

,682,37726,81030,86

,730,01630,81030,86

,726,13528,57131,29

Item-Total Statistics

Page 3

