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Nonexistence of pure S- and P-polarized surface waves at the interface between
a perfect dielectric and a real metal
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It is known that, at optical frequencies, a simple interface between a perfect dielectric and a real metal can sustain
the propagation of surface plasmon polaritons only for P-polarized electromagnetic waves, being S-polarized
surface plasmons are prohibited. In this work, we formally show that, strictly speaking, both polarization states
are in fact prohibited and that only P-polarized pseudosurface waves are allowed, which is what is encountered
in the applications. The existence of such pseudosurface modes allows one to reconcile theory and experimental
evidence, but also sets limits for them to be considered as modes bound to the interface.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) are collective oscilla-
tions of electrons in metals which are coupled to electromag-
netic waves and typically appear at metal-dielectric interfaces.
At optical frequencies, the importance of such oscillations
mostly resides in a resulting strong-field enhancement on
a nanometer scale which has found plenty of important
applications in different fields such as nanosensing, light
harvesting, lighting, and super-resolution near-field imaging,
and has given birth to the very active current research
field called plasmonics [1–10]. Typically, the origin of such
collective modes is proven by looking for possible solutions
of Maxwell equations in the presence of an interface between
a dielectric and a metal, when no sources for the field are
present in the region of interest and there are no incident
fields. This leads to the well-known dispersion curve for
surface plasmons reported by several authors already (see,
among others, [11,12]). From this approach also follows the
known property that SPPs can only be excited by means of
P-polarized light, with S-polarized surface plasmon polaritons
being prohibited. In the present work, we take a deeper look at
the existence conditions of SPPs and at the formal derivation of
the dispersion curve of SPPs. More specifically, we will focus
on the common case of an interface between a perfect dielectric
and a real metal and we will show that, under the assumption
usually made to derive the dispersion curve of SPPs, none
of the two polarization states, S or P, can in fact give rise
to a perfect surface wave. The origin of such nonexistence
is, however, different for the two polarization states which
allows one to reconcile theoretical findings and experiments
by resorting to the approximations typically found in the
literature. As will be clearer later in the paper, the main goal
of our work is just to point out that, on a formal point of view,
attention should be paid when introducing any simplification
in the underlying physical model, since this can often lead to
a solution which is no longer admissible. This is even more
important if one aims to improve the agreement, not only
qualitative but also quantitative, between theory, experiments,
and numerical simulations, as pointed out by Barnes in a recent
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review on this subject [13]. Also, a more careful look at the
foundations can lead to new interesting physical predictions
as well, as recently reported by Norrman et al. [14] in a work
where the inadequacy of approximate solutions usually found
in the literature along with a new type of backward-propagating
surface waves are discussed.

The paper is organized as follows. In Sec. II, we define
the reference framework, the general properties, and the
geometry for the materials involved. Additionally, we recall
the conditions, coming directly from Maxwell equations and
the jump conditions at the interface for the electric and
magnetic fields, which a surface wave must satisfy to exist. In
Sec. III, the case of a perfect surface wave is considered, i.e.,
a wave that propagates only parallel to the interface, and we
prove that such a wave cannot exist, whatever its polarization
state. In Sec. IV, the case of a pseudosurface is considered.
Finally, in Sec. V, the results of our work are summarized.

II. SURFACE WAVE AT THE INTERFACE BETWEEN
A PERFECT DIELECTRIC AND A REAL METAL

Let us suppose that we want to find conditions under
which a monochromatic surface wave can exist at the interface
between a dielectric, characterized by the relative electric
permittivity ε1 = ε1r + iε1i , complex magnetic permeability
μ1 = μ1r + iμ1i , and electric conductivity σ1, and a metal
endowed with relative electric permittivity ε2 = ε2r + iε2i ,
magnetic permeability μ2 = μ2r + iμ2i , and electric conduc-
tivity σ2. All of these quantities are, in general, functions
of the angular frequency ω, but we will not indicate this
dependency explicitly throughout the paper. Additionally, we
will consider the dielectric to be ideal (i.e., absorption free),
which is equivalent to saying that ε1i = σ1 = 0. A simple
sketch of the interface geometry is shown in Fig. 1. In any of
the two homogeneous regions, the field should, of course, be
a proper solution of Maxwell equations [for a monochromatic
wave of angular frequency ω, the time dependence is assumed
to be given by the factor exp(−iωt), ω > 0, which is omitted
throughout this paper],

∇ × E(r) = iωμ0μlH(r), (1)

∇ × H(r) = −iωε0εlE(r), (2)
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FIG. 1. Simple sketch of an interface between two media. In the
case where medium 1 is a perfect dielectric, σ1 = 0 and ε1 is purely
real.

where l = 1,2 denotes one of the two media. These equations
must be complemented by the boundary conditions at the
interface between mediums 1 and 2. We are interested in a
unique solution that is evanescent in both domains, i.e., in the
dielectric and the metal. In order to do so, we need to discuss
separately the two orthogonal polarizations states, S and P.

A. Conditions for the existence of S-polarized surface waves

With reference to Fig. 1, an S-polarization configuration
involves only Ey(x,z),Hx(x,z), and Hz(x,z) field components,
with Ey(x,z) essentially playing the role of the potential. We
can write the expression of Ey in both media as

E(1)
y (x,z) = A

(1)
E exp (ik1 · r), (3)

E(2)
y (x,z) = A

(2)
E exp (ik2 · r), (4)

with k1 = (k1x,0,k1z) and k2 = (k2x,0,k2z) (generally com-
plex) wave vectors and r = (x,y,z). A

(1)
E and A

(2)
E are the

complex amplitudes for the two fields. The indexes 1 and
2 refer to the first and second mediums, respectively. The x

components of the magnetic field in both media are given by
Eq. (1),

H (1)
x (x,z) = −A

(1)
E

k1z

ωμ0μ1
exp (ik1 · r), (5)

H (2)
x (x,z) = −A

(2)
E

k2z

ωμ0μ2
exp (ik2 · r). (6)

First of all, at the boundary (x,z = 0), the tangential compo-
nents of the magnetic and electric fields should be continuous.
For S-polarized waves, this means that Ey and Hx are
continuous. The continuity for the electric fields implies

A
(1)
E = A

(2)
E , (7)

while that for the magnetic fields leads to the condition

k1z

μ1
= k2z

μ2
. (8)

Since in this work we will only be dealing with natural
materials, we can further simplify the problem by setting,
from now on, μ1r = μ2r = 1 and μ1i = μ2i = 0 at optical
wavelengths. However, we would like to recall that at longer
wavelengths, or in the presence of properly designed metama-
terials, such simplification might not apply and the analysis
for S and P polarization becomes somehow specular. Under
these assumptions, Eq. (8) leads to k1z = k2z. Additionally,
the tangential components of the wave vector kx should be
preserved as well, namely, k1x = k2x . However, using the
conditions k2

z + k2
x = ω2μ0ε0εl , with again l = 1,2, it is easy

to check that the conservation of both kx and kz is possible only
in the case where the two media are actually the same, which is
a possibility already excluded from the beginning. This forces
one to exclude the existence of a surface wave associated to a
S-polarization state, which is a well-known result. In the next
section, we address the P-polarization case, which requires
somehow a more careful analysis.

B. Conditions for the existence of P-polarized surface waves

In the P-polarization case, the magnetic field has only one
component different from zero, which is Hy in our case. In
both domains, we can write the solution as a plane wave,

H (1)
y (x,z) = A

(1)
H exp (ik1 · r), (9)

H (2)
y (x,z) = A

(2)
H exp (ik2 · r), (10)

where now A
(1)
H and A

(2)
H are the complex amplitudes for the

two magnetic field components. As done before, it is better to
list all of the conditions that the solutions (9) and (10) have to
satisfy.

First of all, at the boundary (x,z = 0), the tangential
components of the magnetic and electric fields should be
continuous. For P-polarized waves, this means that Hy and
Ex are preserved. Ex , in both domains, can be derived from
Hy by means of the relations

E(1)
x (x,z) = −A

(1)
H

k1z

ωε0ε1
exp (ik1 · r), (11)

E(2)
x (x,z) = −A

(2)
H

k2z

ωε0ε2
exp (ik2 · r). (12)

Continuity of the Hy components at z = 0 implies that

A
(1)
H = A

(2)
H , (13)

while the continuity of the Ex components leads to the
condition

k1z

ε1
= k2z

ε2
. (14)

Also, from any of the two boundary conditions for the fields,
we have that the x component of the wave vectors must be
preserved, that is,

k1x = k2x. (15)
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Generally speaking, k1 and k2 are both complex vectors. This
means that it is possible to write them as

k1 = k1x x0 + k1y y0 + k1zz0 = β1 + iα1, (16a)

k2 = k2x x0 + k2y y0 + k2zz0 = β2 + iα2, (16b)

with β1,β2,α1,α2 ∈ Re3,

β1 = β1x x0 + β1y y0 + β1zz0, (17a)

β2 = β2x x0 + β2y y0 + β2zz0, (17b)

and

α1 = α1x x0 + α1y y0 + α1zz0, (18a)

α2 = α2x x0 + α2y y0 + α2zz0, (18b)

where β represents the propagation vector of the generic wave,
while α denotes the decaying vector. From Eqs. (16)–(18) and
the assumption that only the Hy component is present, we have
that

k1x = β1x + iα1x, (19a)

k1y = 0, (19b)

k1z = β1z + iα1z, (19c)

and

k2x = β2x + iα2x, (20a)

k2y = 0, (20b)

k2z = β2z + iα2z. (20c)

Since the fields in Eqs. (9) and (10) have to be solutions of the
Helmholtz equation, the following conditions follow:

k1 · k1 = ω2μ0ε0ε1, (21a)

k2 · k2 = ω2μ0ε0ε2. (21b)

For the medium 1 (dielectric), this leads to

β1
2 − α1

2 = ω2μ0ε0ε1r , (22a)

β1 · α1 = ω2μ0ε0ε1i

2
= 0. (22b)

It follows that, in the dielectric, either there is no decaying
(α1 = 0) or the propagation and the decaying vectors are
perpendicular to each other. Since we can always choose
a Cartesian reference framework where k1y = k2y = 0 (as
indeed we have done in this section), Eqs. (22) can be written
in the equivalent way as

β2
1x + β2

1z − α2
1x − α2

1z = ω2μ0ε0ε1r , (23a)

β1xα1x + β1zα1z = 0. (23b)

For the metal, we can write, in the same way,

β2
2 − α2

2 = ω2μ0ε0ε2r , (24a)

β2 · α2 = ω2μ0ε0ε2i

2
, (24b)

and, in terms of Cartesian components,

β2
2x + β2

2z − α2
2x − α2

2z = ω2μ0ε0ε2r , (25a)

β2xα2x + β2zα2z = ω2μ0ε0ε2i

2
. (25b)

Since, in the metal, ε2i �= 0, it follows that β2 and α2 cannot
be perpendicular to each other. This implies that, in a metal,
the wave is propagating along β2 while it is attenuating along
the direction of α2. Finally, before concluding the section, we
need to specify some facts on the signs for the real and the
imaginary parts of the wave vectors in both half spaces. The
solutions we are looking for must decay when moving away
from the interface. This means that it must be α1z � 0 and
α2z � 0 in order to have physically realizable fields. In the
same way, a wave propagating along the z direction in both
half spaces should have β1z � 0 and also β2z � 0, respectively.

III. P-POLARIZED PURE SURFACE WAVES: NO
PROPAGATION ALONG THE z DIRECTION (β1z = 0)

To be a true surface wave, the solution given in Eqs. (9) and
(10) should not propagate in the z direction. This means that
the real part of k1z must vanish, namely, β1z = 0. However,
it is possible to prove that this solution cannot exist. In fact,
Eq. (A.8b) would become

β1xα1x = 0. (26)

Since β1x has to be different from zero (otherwise no wave
would exist), we must conclude that α1x = 0 as well. Since
the boundary condition in Eq. (15) can be separated into a real
and imaginary part,

β1x = β2x, (27a)

α1x = α2x, (27b)

we get the condition α2x = 0, too. Hence, to summarize, the
request β1z = 0 leads to

β1 = (β1x,0,0), (28a)

α1 = (0,0,α1z). (28b)

For the wave into the metal, we can have

β2 = (β2x,0,β2z), (29a)

α2 = (0,0,α2z). (29b)

Additionally, Eqs. (A.8) and (A.10) become

β2
1x − α2

1z = ω2μ0ε0ε1r , (30a)

β1xα1x = 0, (30b)

and

β2
2x + β2

2z − α2
2z = ω2μ0ε0ε2r , (31a)

β2zα2z = ω2μ0ε0ε2i

2
. (31b)
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There is still a further condition, derived from Eq. (14), that
has not been discussed yet. That condition leads us to the
following complex equation:

iα1z

ε1r

= β2z + iα2z

ε2r + iε2i

, (32)

which can be separated into a couple of equations,

α1z

ε1r

= α2zε2r − β2zε2i

ε2
2r + ε2

2i

, (33a)

β2zε2r = −α2zε2i . (33b)

Equations (30), (31), and (33) are five equations for only
four unknowns, β1x,β2z,α1z,α2z. By combining Eqs. (31b) and
(33b), one easily gets

β2z =
√

−ω2ε2
2i

2c2ε2r

= k0

√
−ε2

2i

2ε2r

, (34)

where c is the speed of light in vacuum and k0 = ω/c. It is
evident that in order to have a solution (i.e., β2z real), we must
have ε2r < 0, a condition attainable by using metals working
below their plasma frequency. From the same equations, we
get α2z, which reads

α2z = −k0ε2r

√
− 1

2ε2r

. (35)

We see that, under the same requirement, ε2r < 0, α2z is
positive as well, as it should be to not have a diverging solution
in the metal (which is defined in the half space z > 0).

Once β2z and α2z are known, we can get α1z from Eq. (33a),

α1z = −k0ε1r

√
− 1

2ε2r

. (36)

Again, we see that α1z is negative, as it should be to not have
a diverging wave into the dielectric (domain z < 0). Finally,
we can compute the dispersion curve for this wave, which is
the remaining unknown β1x . We are, however, left with two
equations to determine βx : Eqs. (30a) and (31a). From the first
of the two, we get

β2
1x = −k2

0ε1r

ε1r − ε2r

2ε2r

, (37)

while Eq. (31a) leads to

β2
1x = k2

0

ε2
2r + ε2

2i

2ε2r

. (38)

In order to find a valid value for βx = β1x = β2x , both Eqs. (37)
and (38) should lead to the same solution, which is clearly not
possible, considering that Eq. (38) has no real solution for β1x

since ε2r < 0. We can say that this is a direct consequence
of having only four unknowns to be determined by solving
a system of five independent equations. If we combine the
results of Sec. II A with what has been obtained in the present
section, we can conclude that it is not possible to have a pure
surface wave (i.e., endowed with a β1z = 0) at the interface
between a real metal and a perfect dielectric, no matter which
polarization one is dealing with.

This result represents the main message of our work. We
would, however, like the reader to notice how this conclusion
is a consequence of two distinct facts for the two polarization
states. For S-polarized waves, it comes from three incompatible
conditions (conservation of kx and kz at the interface, along
with the conservation of the complex amplitudes AE) and
is essentially a consequence of the lack of contrast for
the magnetic permeabilities of natural materials at optical
wavelengths. On the other hand, for P-polarized waves, it is
the lack of solutions for the dispersion relations in Eqs. (37)
and (38), which does not allow the pure surface mode to exist.
This conclusion appears to be in conflict with the myriad of
studies performed so far on this subject, both theoretical and
experimental, which have started from the assumption that
a P-polarization-induced SPP does exist. In fact, phenomena
induced by SPP excitation have been predicted and observed.
One way to try to solve this apparent inconsistency can be
based on including some absorption for the dielectric, i.e., an
imaginary part of the electric permittivity ε1i �= 0 should be
considered from the very beginning of the analysis. However,
this would not justify the outcomes of experiments performed
in air or vacuum. More importantly, we will show in the
appendix A that even a ε1i �= 0 does not lead to an ideal surface
wave. A reconciliation between theory and experiments is
possible by surrendering the concept of pure surface wave
without resorting to the presence of a lossy dielectric. In
this approach, one considers a wave characterized by some
propagation along the normal to the interface between the two
media, but whose dynamics is still mostly dominated by the
propagation along the surface. This second approach results in
the usual derivation for SPPs.

In the next section, we briefly recall such derivation in order
to comment on similarities and differences with respect to the
ideal solutions presented in this section.

IV. P-POLARIZED PSEUDOSURFACE WAVES (β1z �= 0)

In this section, we will drop the condition β1z = 0. This
means that the wave in the dielectric side cannot be a pure
surface wave since some propagation along the normal to the
interface in the dielectric must be present as well. When the
z component of the complex wave vector also has a real part
(β1z) in the dielectric, the calculations become much more
complex and it is convenient to proceed without separating the
wave vectors in a real and imaginary part. Since this derivation
is presented in several references (see, for instance, [12]), we
will skip all of the details in this case. The conditions (22) and
(24) can be written as

k2
1x + k2

1z = k2
0ε1 (39)

and

k2
2x + k2

2z = k2
0ε2. (40)

These two relations, together with Eq. (14), lead to the
following solutions, for kx = k1x = k2x , k1z, and k2z:

k2
1z = k2

0
ε2

1

ε1 + ε2
, (41a)

023834-4



NONEXISTENCE OF PURE S- AND P -POLARIZED . . . PHYSICAL REVIEW A 89, 023834 (2014)

k2
2z = k2

0
ε2

2

ε1 + ε2
, (41b)

k2
x = k2

0
ε1ε2

ε1 + ε2
, (41c)

which lead to [15]

k1z = −k0
ε1r[

(ε1r + ε2r )2 + ε2
2i

]1/4

× exp

[
−i

1

2

(
arctan

ε2i

ε1r + ε2r

+ π

)]
, (42a)

β1z = k0
ε1r[

(ε1r + ε2r )2 + ε2
2i

]1/4 sin

[
1

2
arctan

ε2i

ε1r + ε2r

]
,

(42b)

α1z = −k0
ε1r[

(ε1r + ε2r )2 + ε2
2i

]1/4 cos

[
1

2
arctan

ε2i

ε1r + ε2r

]
.

(42c)

Equations (42) have been derived under the assumption that
ε2r < 0 (metal) and ε1r + ε2r < 0. Also, the choice of the sign
for β1z and α1z has been made in order to have a wave decaying
away from the interface and an energy flow going from the
interface towards the dielectric [see also the expression of the
Poynting vector, given by Eq. (49)]. Equation (41c) is usually
called the dispersion curve for plasmons.

At this point, it is useful to look at one specific example to
have an idea of the order of magnitude of these quantities. In
the case of silver, at λ = 633 nm, we have ε2 = −18.28 +
0.48i [16]. If the dielectric is vacuum (ε1 = 1), we get
β1z = −0.0033366k0 and α1z = −0.24042k0. This leads to
a penetration distance, in the dielectric (vacuum), equal to

d1z = 1

|α1z| � 419 nm � 0.66λ, (43)

with an equivalent wavelength, for the wave propagating along
z in medium 1, equal to

λz = 2π

|β1z| = 189 μm � 299λ. (44)

Using the dispersion curve for kx (see also, for instance,
Ref. [12], p. 386), one gets that the corresponding component
of the real part of the wave vector along x is

βx = 1.0285k0 (45)

(as is well known, since in βx > k0, this solution cannot be
excited by a free-space propagating wave). The equivalent λx

reads

λx = 2π

βx

� 0.615 μm = 0.972λ. (46)

Also, we have

αx = 0.000781k0, (47)

with a penetration distance along x equal to

dx = 1

αx

� 129 μm � 204λ. (48)

Hence, although the wave is not an ideal surface wave as
those described in the previous section, its behavior does not
depart too much from it. In fact, the propagation along the z

axis exists, but it is characterized by an equivalent wavelength
λz in the dielectric much longer than its penetration depth
in the same medium (dz), leading to an almost negligible
propagation into the dielectric itself. On the other hand,
the propagation along the interface is characterized by a
penetration depth (dx) much longer than the wavelength along
the x axis. It follows that such pseudosurface wave is strongly
confined along the z direction and mostly propagates along
the surface, which agrees well with the picture of a surface
mode. However, although small, the propagation along the z

direction can never be neglected. By doing so, one would end
up with an approximated solution that, from what we have
seen in the previous section, does not exist. It is important
to point out another main difference between an ideal surface
and this pseudosurface wave. While a perfect surface wave
would preserve its nature, the nature of the pseudosurface
wave strongly depends on the values taken by the electric
permittivities of the two media involved. In order to clarify
this aspect, let us look at the propagation of the energy along
the z and x directions, in medium 1.

The Poynting vector S is defined as

S = 1

2
Re(E × H	). (49)

For a P-polarized pseudosurface wave, this leads to (in the
dielectric side)

S = 1

2
|AH |2 exp (−2|α1x |x) exp (2|α1z|z)(β1x x0 + β1zz0),

(50)
where x0 and z0 represent the unit vectors. We see that there
is an energy flux flowing along the z and x axes. The field
propagates almost parallel to the interface (i.e., |β1x | � |β1z|)
and the ratio between the components of the Poynting vector,
along z and along x, is

ρ = |Sz|
|Sx| = |β1z|

|β1x | (51)

and depends only on the ratio between the real parts of the
wave vectors along the z and x direction, respectively. In the
case of the interface between vacuum and silver considered
before, at λ = 633 nm, this leads to a ratio ρ � 3.2 × 10−3.

However, we should bear in mind, on one hand, that the
only conditions we required for such a pseudosurface wave to
exist were

ε2r < 0, (52a)

ε1r + ε2r < 0, (52b)

and that, on the other hand, the dependency of ρ on the
material properties is not linear. We saw that there is always
some energy flowing along the normal to the surface of
separation between the perfect dielectric and the metal, with
the component of the Poynting vector along z usually small
compared to that along the surface. However, this strongly
depends on the electric permittivity of the dielectric compared
to that of the metal. In order to clarify this, in Fig. 2(a), we show
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FIG. 2. (Color online) Ratio ρ = Sz/Sx between the z compo-
nent (normal to the interface) and x component (parallel to the
interface) of the Poynting vector in the dielectric side as a function
of variable ε2i ,ε1r/|ε2r |. λ = 633 nm. ε2r is set to the value −20 and
ε1r is varied in a range of values such that the condition ε1r + ε2r < 0
is always fulfilled. (b) A slice of the 2D map, cut at the value for
ε2i = 0.49 corresponding to the example of silver discussed in the
text.

a plot of ρ as a function of ε1r/|ε2r | and ε2i , for an interface
between a dielectric medium of varying real permittivity
ε1r ∈ (1,19) and metal with ε2r = −20 and ε2i ∈ (0,2). The
values of ε1r and ε2r are such that it always holds ε1r + ε2r < 0.
The wavelength is again λ = 633 nm. From the figure, it is
evident that the ratio between β1z and β1x does not remain
unaffected by a change of ε1r and/or ε2i . In fact, it is easy
to see that as the ratio ε1r/|ε2r | increases, the flux along z

becomes more and more relevant and the wave tends to lose
its surface-wave nature. Similar effects are observable when
the metal becomes less and less ideal. We have found that
ρ can increase by about one order of magnitude by properly
changing the material properties. For the reader’s convenience,
in Fig. 2(b), we show a slice of the two-dimensional (2D)
map, cut at the value for ε2i = 0.49 corresponding to the
example of silver discussed above, where the increase of ρ

as a function of the ratio of the permittivities ε1r/|ε2r | can be
better appreciated. In Fig. 3, we plot the ratio between the x

and z components of the decaying vector α in the dielectric,

ε 2i
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FIG. 3. (Color online) Ratio αx/α1z between the x component
(parallel to the interface) and the z component (normal to the
interface) of the decaying vector in the dielectric side as a function
of variable ε2i ,ε1r/|ε2r |. λ = 633 nm. ε2r is set to the value −20 and
ε1r is varied in a range of values such that the condition ε1r + ε2r < 0
is always fulfilled. Interestingly, while for less dense dielectrics the
decaying along the normal is stronger than that along the surface, for
a set of values of the ratio ε1r/|ε2r |, the wave is more confined along
the x than along the z direction. Additionally, there is an intermediate
region where the field is strongly localized in both directions. (b) A
slice of the 2D map, cut at the value for ε2i = 0.49 corresponding to
the example of silver discussed in the text.

again as a function of ε1r/|ε2r | and ε2i . Interestingly, we notice
that while for low values of the permittivity of the dielectric
the confinement along the z direction is much more marked
than that along the x direction, it is possible to find a proper
combination of values for ε1r and ε2r such that the wave
results are confined along both directions. This is the case, for
instance, of the interface between gallium phosphide and gold
at λ = 633 nm, where one finds ε1r = εGaP = 11.0113 and
ε2 = εAu = −11.7532 + i1.2595 (one should notice that the
condition ε1r + ε2r < 0 still applies) [16]. With these values,
one obtains αx/α1z � 0.5, which results in a penetration
distance dx = 0.037λ and dz = 0.02λ. In other words, the
mode becomes a sort of strongly spatially localized hot spot,
bound on the surface between the two media.
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V. CONCLUSIONS

To summarize, we have explicitly shown that no perfect
surface waves can exist at the interface between a real
metal and a perfect dielectric at optical wavelengths, a case
which covers all situations where the generation of SPPs
is invoked. This holds for S- and for P-polarized waves.
It is possible to recover the existence of only P-polarized
pseudosurface waves, under specific conditions for the ma-
terials involved and by including some propagation along the
normal to the interface. For many practical cases of interest,
such pseudosurface waves effectively mimic the ideal case.
However, the denser the dielectric and the less ideal the metal
becomes, the more a pseudosurface wave departs from the ideal
SPP.
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APPENDIX: P-POLARIZED SURFACE WAVES
AT THE INTERFACE BETWEEN A LOSSY DIELECTRIC

AND A REAL METAL

In this Appendix, we would like to show that even the
inclusion of a lossy dielectric in medium 1 does not lead
to the existence of an ideal surface-wave solution in the
same medium. For the P-polarization case, we will have the
magnetic components, in both domains,

H (1)
y (x,z) = A

(1)
H exp (ik1 · r), (A1)

H (2)
y (x,z) = A

(2)
H exp (ik2 · r), (A2)

while for the electric components, we have

E(1)
x (x,z) = −A

(1)
H

k1z

ωε0ε1
exp (ik1 · r), (A3)

E(2)
x (x,z) = −A

(2)
H

k2z

ωε0ε2
exp (ik2 · r). (A4)

Continuity of the Hy and Ex leads to the conditions

A
(1)
H = A

(2)
H (A5)

and
k1z

ε1
= k2z

ε2
, (A6)

respectively. In the dielectric, we have

β1
2 − α1

2 = ω2μ0ε0ε1r , (A7a)

β1 · α1 = ω2μ0ε0ε1i

2
. (A7b)

The presence of ε1i �= 0 implies now that in medium 1
also, the propagation and decaying vectors can no longer be
perpendicular to each other. Equations (A7) can be expanded
as

β2
1x + β2

1z − α2
1x − α2

1z = ω2μ0ε0ε1r , (A8a)

β1xα1x + β1zα1z = ω2μ0ε0ε2r

2
. (A8b)

For the metal, nothing changes and we will still have

β2
2 − α2

2 = ω2μ0ε0ε2r , (A9a)

β2 · α2 = ω2μ0ε0ε2i

2
, (A9b)

and, in terms of Cartesian components,

β2
2x + β2

2z − α2
2x − α2

2z = ω2μ0ε0ε2r , (A10a)

β2xα2x + β2zα2z = ω2μ0ε0ε2i

2
. (A10b)

If we now impose the condition β1z = 0, we get the following
sets of equations to be satisfied at the same time,

iα1z

ε1r + iε1i

= β2z + iα2z

ε2r + iε2i

, (A11a)

β2
1x − α2

1x − α2
1z = ω2μ0ε0ε1r , (A11b)

β1xα1x = ω2μ0ε0ε1i

2
, (A11c)

β2
1x + β2

2z − α2
1x − α2

2z = ω2μ0ε0ε2r , (A11d)

β1xα1x + β2zα2z = ω2μ0ε0ε2i

2
, (A11e)

where we have also used the fact that β1x = β2x and α1x = α2x .
Hence, we are again left with a system of five independent
scalar equations in the four unknowns, β1x,α1x,β2z,α2z, anal-
ogously to what we obtained in Sec. III for the case of an
ideal dielectric. In order to find a solution for any choice of the
permittivities, one needs to include another unknown, which
is, in fact, represented by β1z �= 0.
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