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Abstract

In recent years, neural networks (NNs) have seen a surge in popularity due to their
ability to model complex patterns and relationships in data. One of the challenges of
using NNs is the requirement for large amounts of labelled data to train the model
effectively. In many real-world applications such as radar, labelled data may be scarce
due to the high cost of acquiring measurements together with privacy and security
concerns.

To overcome the lack of data, researchers have resorted to data augmentation (DA),
a technique that aims to solve the problem at the root by generating new training
samples by leveraging the available ones. In computer vision, image transformations
and generative networks are used to perform DA. These techniques, however, may lead
to the production of physically unfeasible samples that may hinder the generalization
capabilities of classifiers in domains where the data has an underlying physical meaning.

Physics-informed machine learning aims to incorporate physical prior knowledge
and governing equations of the target domain into the machine learning pipeline to
improve the performance of NNs in fields with limited available data but with well-
defined physical models. In this thesis, physics-informed DA in the radar domain is
addressed to improve the task of classifying armed and unarmed walking individuals
through micro-Doppler spectrograms.

To begin with, the usage of model-driven micro-Doppler radar simulations to im-
prove the existing generative augmentations is investigated. After introducing several
generative NN architectures, the quality and diversity of the produced synthetic spec-
trograms are evaluated together with their effect on the downstream classification task.

Next, the impact of visual transformations on micro-Doppler spectrograms is stud-
ied. Their effect on the underlying physics of the micro-Doppler spectrograms and their
impact on feature extraction is assessed. Based on the results, a new DA technique is
devised to improve the feature extraction process by informed segmentation of the input
spectrogram, halving the size of the NN model and reducing the risk of overfitting.
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Introduction 1
1.1 Motivation

Neural networks (NNs) [1] and data-driven approaches have surged in popularity in
recent years. Due to their ability to perform feature extraction and inference directly
from the data, NNs have seen application in numerous fields, such as computer vision
[2, 3], healthcare [4], and natural language processing [5]. Among these, the domain of
radar (radio detection and ranging) has not been an exception [6]. In fact, NNs have
been employed to solve various problems in the field of radar, such as waveform design
[7–9], resource allocation [10, 11], and automatic target recognition [12–14]. For the
latter, in particular, NNs managed to achieve great improvements over other machine
learning (ML) approaches and have been showing excellent results when classifying
synthetic aperture radar (SAR) images [15–17], micro-Doppler spectrograms [13,14,18]
and high-resolution range profiles [19–21].

Different from other domains such as computer vision, the amount of available data
in the radar field may be too scarce to guarantee the reliable training of NNs. This
scarcity can lead to classifiers with little generalisation capabilities, which will hence
experience worsened performances when classifying unseen data samples.

The cause of the lack of available training data in the radar domain is of a dual
nature. On one hand, acquiring new labelled measurements requires a lot of equipment,
personnel and time, which makes the entire procedure difficult under budget and time
constraints. On the other hand, samples of certain targets and situations may not
be easily acquirable. These include, for example, images of vehicles and armaments
belonging to foreign countries in defence scenarios.

To overcome these challenges, researchers have been exploring new techniques to
improve the generalisation abilities of NNs, such as data augmentation (DA) [22]. DA
aims to tackle the problem of lack of data at its root, by generating new training samples
from the available ones. In computer vision, techniques such as flipping, cropping,
stretching and rotating are commonly used to create new training images. However,
when it comes to two-dimensional data in the radar domain, such as spectrograms or
SAR images, these transformations clash with the physical nature of the data and are
likely to produce physically unfeasible samples.

As a consequence, researchers have also explored the usage of generative models to
produce synthetic data in radar scenarios. Generative models are particular NNs such as
generative adversarial networks (GANs) [23] and variational autoencoders (VAEs) [24].
These architectures aim to learn the underlying distribution of the available data and to
generate new synthetic samples by sampling such distribution. For this reason, despite
being trained using real data, GANs and VAEs are still not guaranteed to produce
physically feasible samples and may require additional measures to evaluate and filter
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the outputs [25].
Besides the generative tools, the radar domain offers a consolidated theoretical

framework and is equipped with plenty of tools for simulating radar scenarios and
producing theoretical returns for specific input parameters. However, if model-driven
simulations are too distant from real measured samples, these may not prove helpful
to tackle the classification tasks [26]. This stems from the fact that, in order to remain
computationally feasible, the theoretical models must consider several simplifications
of the scenario they are trying to represent. Despite these simplifications, however,
theoretical simulations may still retain sufficient physical information to contribute to
the augmentation process.

In several fields, to enhance the performance of NNs and ensure the physical feasi-
bility of the produced results, NNs have been enhanced with domain-specific knowledge
regarding the physics of the area of application. This approach is known as physics-
informed machine learning (PIML) [27], where physics refers to prior knowledge such
as governing laws, properties and simulations of the target domain. PIML is adopted in
those domains with limited data but available physical models, and aims to incorporate
prior physical knowledge into the NN architectures. In the case of GANs and VAEs, the
structure of the network and the loss function are commonly designed to be adapted
to the physics of the problem, ensuring better physical feasibility of the output. In the
scope of exploring PIML for DA in the radar domain, it would be of interest to study
a way to combine the physical content of the simulations with the generative power of
NNs to obtain synthetic samples that are physically plausible.

In this thesis, we answer the following main research questions:

• Can simulations generated from theoretical models be enhanced and used to im-
prove the performance of NN classifiers in the radar domain?

• Can micro-Doppler spectrograms be augmented using image transformations that
are aware and compatible with the physical content of their target?

As a way to assess the effect of the proposed augmentations, the downstream task of
classifying micro-Doppler spectrograms of armed and unarmed individuals for surveil-
lance purposes will be utilised.

In this document, chapter 2 will provide information regarding the related work
and background knowledge for this thesis and chapter 3 will describe the data used for
the experiments discussed in this work. Chapter 4 will go over the research done to
explore augmentations via physics-informed generative NNs, while chapter 5 will cover
all the experiments regarding image manipulation for DA in the radar domain. Finally,
chapter 6 will summarize the conclusions and provide some ideas for future work.

2



Literature Review 2
2.1 Deep Learning

Deep learning (DL) [28] is a subfield of ML that involves the use of algorithms and
models that are composed of multiple layers of interconnected nodes. When compared
to classic feature-based methods, DL aims to solve the process of defining, selecting
and evaluating the features using a single multi-layer architecture.

Neural networks (NNs) are a type of DL algorithm designed to recognize patterns
and make decisions in a way that is similar to how the human brain does, by extracting
features from the input data and combining them to recognize complex relationships
and patterns. To is done by a stack of multiple layers that perform operations such
as multiplications, convolutions, poolings, or activations. The multilayer architecture
also allows the optimization of parameters such as the kernels of the convolutions and
the multiplication weights. This is done via backpropagation [1] of the gradient of a
defined loss function with respect to the model parameters. In such a way, NNs are
able to leverage the available data to learn complex non-linear relationships between
input and output data.

2.2 The Problem of Overfitting

Together with NNs’ rise in popularity comes the growing need for large labelled datasets.
In fact, when NNs are trained using only a limited amount of data, their ability to
infer the relationship between inputs and outputs is heavily reduced and could lead
to overfitting [29]. Overfitting occurs when a NN learns to fit perfectly the training
data. In presence of overfitting, the model tends to memorize the desired output
associated with each training sample rather than learning the underlying patterns and
relationships between input and output data. When this happens, the NN will present
an excellent level of performance on the training data but will struggle to generalize to
unseen samples, leading to mediocre results in real application scenarios.

For this reason, it is crucial to monitor the performance of the trained model using
unseen data in the form of a validation dataset on which the generalization capabilities
of the model can be assessed during training. One way to diagnose overfitting is by
looking at the output loss when passing the training data and the validation set through
the model over different epochs. In ML, an epoch is a complete cycle through the
dataset during the training phase.

Figure 2.1 shows plausible loss curves for a NN model. In the first 60 epochs
the training and validation losses decrease jointly in both figure 2.1a and figure 2.1b,
meaning that the optimization process is leading to improved performance for both the
training and the unseen validation data. After the 60th epoch, however, figure 2.1b
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shows an increase in the validation loss that is not matched by the training one, meaning
that while the model is optimizing its weights to perform its task on the training data it
is worsening its performance on the unseen validation samples. This indicates a loss in
the generalization capabilities of the model, which is the main symptom of overfitting.

(a)

(b)

Figure 2.1: Training and validation loss curves for a neural network classifier over subsequent
training epochs. (a) shows curves corresponding to a correct fitting of the training data while
(b) shows signs of overfitting from epoch 60

To keep leveraging the powerful feature extraction capabilities of NNs, researchers
have resorted to several strategies which enable good generalisation capabilities in data-
scarce scenarios. These can include basic regularization techniques applied during the
training as well as more sophisticated approaches that affect the whole pipeline. In
recent work in the radar domain, two of the most common ways to deal with the lack
of training data have been transfer learning and data augmentation.
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2.3 Transfer Learning

In machine learning, transfer learning (TL) aims to leverage the volume and quality of
data in a source domain to enhance the performance of NNs in a data-scarce domain
referred to as the target domain.

While [30] and [31] provide extensive reviews on the topic of transfer learning and its
different categorizations, in the scope of this thesis, only inductive TL will be discussed,
as it has the widest range of applications in the classification of micro-Doppler radar
spectrograms. In the inductive TL approach, a large volume of available labelled data
in the source domain is leveraged to induce a predictive model that is applied to the
target domain.

In practice, when applying inductive TL a model is trained first on data that belongs
to a source domain that has an abundance of training samples. After this first training
phase, where the layers of the model are initialized and are able to extract the relevant
features from the data, the model is fine-tuned on the target dataset that has only
limited data available. In such a way, the prior knowledge on a more NN-friendly
domain can be leveraged, reducing the risk of overfitting the model to the samples of
the limited target dataset.

In the task of classifying radar images, due to the visual nature of the time-Doppler
spectrograms and SAR images, TL models are typically pre-trained using visual images
and are then used to classify the target spectrograms. In [32, 33], for example, the
authors apply the AlexNet model [34] trained on the ImageNet dataset [35] to classify
SAR images and micro-Doppler spectrograms respectively. The implicit assumption in
their works is that the features extracted from the visual images in the ImageNet data
will be also relevant for the classification of samples in the radar target domain.

In fact, in order to apply TL successfully, the required condition is that the target
domain and the domain used for pre-training must share some degree of similarity with
each other. Unfortunately, there is no clear criterion for determining whether a source
domain retains valuable and transferable knowledge for the target domain, as it all
comes down to the use case that is being studied.

If the assumption of similarity does not hold or is weak, there is the risk that the
transferred model will see a large reduction of performance in the target domain. This
phenomenon is called negative transfer [36] and is particularly present for inductive TL
when the relevant features of the source domain do not match the ones of the target
data. While improvements have been proposed to avoid negative transfer [37], the
effectiveness of TL is still completely dependent on the application case, as it is tied to
the relationship between the source and target domain.

2.4 Data Augmentation

Unlike TL, DA aims to tackle data scarcity at its root. DA, in fact, is an umbrella
term that covers all those techniques that aim to generate new training samples from
the limited available ones. [22] and [38] provide an extensive review of DA for images
in DL scenarios. In the following sections, different approaches to DA will be covered,
with special attention to literature focusing on the augmentation of micro-Doppler
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spectrograms in the radar domain.

2.4.1 Image Manipulation

Image manipulation is a form of DA that relies on applying visual transformations to
the limited samples of the available dataset in order to generate new data to train the
model with. Transformations that fall under this category include flipping, cropping
and rotation of the images, as well as adding noise and changing characteristics such
as contrast and brightness. More sophisticated augmentations involve the random
swapping of neighbouring pixels or erasing random patches from the training images.
Figure 2.2 shows different augmentations applied to a visual image.

(a) Original image (b) Augmented images

Figure 2.2: (b) shows different augmentations of the original image depicted in (a). The
augmentations include (first row) random cropping, (second row) rotations and (third row)
changes in brightness and colour hue. The source image is taken from [39].

The objective of image manipulation is to generate new training samples that share
the core high-level features of the original ones, but present them in a different reali-
sation. In a classification task, this is done in order to direct the focus of the classifier
on relevant features rather than non-characterizing aspects of the input. For instance,
rotating the training samples can aid an NN-based classifier to extract the defining
feature of those samples, making the classification robust to different orientations at
which the input may appear.

Without this kind of augmentation, there is the risk for a classifier to tie non-defining
properties of the training samples to the desired output label. For example, a classifier
tasked with the identification of different objects and trained only with images of red
cars may struggle to correctly classify cars of different colours, because the training
process resulted in a dependency between a non-characterizing feature such as the
colour and the output label. With data augmentation, instead, the input training data
is used to condition the classifier to be robust to a certain property by indirectly guiding
the models’ attention to relevant features using artificially diversified training samples.
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Image manipulation has the advantage of being simple to implement and cheap
in terms of computational effort, but they also need to be applied consciously with
respect to the labels and the meaning of target data. For example, in the common
ML problem of MNIST [40] digit classification, rotating a ’6’ digit could turn it into
a ’9’ digit, effectively changing its classification label. In addition to that, the axes of
images that are related to physical representations typically have a physical meaning
that cannot be ignored. In the particular case of radar spectrograms, for example,
they represent time and frequency. It is clear that applying transformations such as
rotations will completely destroy the underlying physical meaning of these axes and
with that the spectrogram’s representation.

While the impact of these transformations on the classification task cannot be known
a priori, it is clear that applying image manipulation must be done consciously with
respect to the meaning of the target image. In the radar literature, several examples
of DA by means of image manipulation can be found.

In their work, Kern and Waldschmidt [41] perform image manipulation on micro-
Doppler spectrograms trying to be mindful of the physics of the problem. In particular,
they apply a scaling in both frequency and time to generate new spectrograms from the
available data, achieving an increase of up to 4% in the achieved accuracy in data-scarce
scenarios. In the frequency domain, they apply a rescaling of the Doppler components
related to the outer limbs but keep the frequencies related to slower-moving body parts
unaltered to obtain more realistic spectrograms. They also apply compression and
expansion in time, which for spectrograms of walking people, corresponds to a shorter
and longer duration of the gait cycle.

According to the nature of the human walking motion [42], a reduction in the dura-
tion of the gait cycle of a subject should imply an increase in the mean velocity along
the frequency axis. In [41], however, this factor is not accounted for, meaning that the
only way to physically justify the gait speed change is in a variation of the target’s
height. While the approach doesn’t necessarily make the new samples physically de-
funct, it is very likely to produce spectrograms of individuals with unrealistic heights
that will never appear in experimental recordings.

She et al. [43] apply time shifts, frequency shifts and disturbances in frequencies
to augment spectrograms of different human activities. Random disturbances can help
model the random components that can vary between different measurements of the
same activity, such as slight differences in the body shape or clothing. Timeshifts, on
the other hand, change the starting point on the time axis of the activity and apply a
horizontal translation to the micro-Doppler signatures.

A frequency shift, however, is used to consider the different velocities at which the
activities can be carried out, which would as well affect the nature of the spectrogram in
the time dimension. Similarly to the observations made for [41], a change in the velocity
should, for example, also affect the duration of the activity, which is not accounted for
in [43].

In order to improve the classification of micro-Doppler signatures belonging to dif-
ferent targets, Al Hadhrami et al. [44] apply flipping along the time axis and circular
time shifts to generate new training spectrograms. Flipping a spectrogram along the
temporal axis, however, is very likely to produce a micro-Doppler signature that com-
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pletely lacks any physical feasibility, as the sequential nature of any motion is altered
without any regard for the frequency.

The circular shift, on the other hand, can be a more feasible augmentation for
micro-Doppler signatures that present a repetitive nature, such as the ones belonging
to walking humans or rotating drone blades. In this case, a circular shift would produce
a feasible sample at the price of introducing a discontinuity in the point where the
spectrogram wraps around itself.

While an improvement is achieved in classification accuracy using the reviewed aug-
mentations, it is still unclear whether including more physically plausible augmentations
could bring further improvement in generalization capabilities.

In this thesis, two of the reviewed augmentations, namely the rescaling in time and
frequency and the circular timeshift, will be implemented to assess their impact on the
classification task and on the feature extraction performed by the classifier.

2.4.2 Neural Style Transfer

Neural style transfer (NST) is a technique that aims to synthesise a stylised image from
two different input images, one providing the semantic content and high-level features,
and the other providing the overall style of the image [45]. The final product is an
image that shares the subject of the first input but is presented with the texture and
low-level visual features of the second input. An example of NST applied to a visual
image is shown in figure 2.3.

(a) Content image (b) Style Image (c) NST output

Figure 2.3: (c) The result of applying neural style transfer on (a) a visual image from [39]
used for as content and (b) Composition VII by Wassily Kandinsky used as style.

In the scope of DA, NST can be applied to help a NN classifier separate the high-
level content of the input from the low-level context information, by augmenting the
same content image in the training set with multiple styles. In image classification
tasks, it is not unusual for samples of the same class in a dataset to be acquired in
similar scenarios. For example, different pictures of camels could happen to always be
taken in a desert landscape. This could hurt generalization, as the NN classifier may tie
context information such as the background or lighting condition to the class output,
and fail to classify the same object if presented in a different environment or with a
different illumination.
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In [46] and [47], the authors apply several styles to the same target images, ef-
fectively augmenting their dataset by reiterating the same high-level content overlaid
with different low-level style features. By being presented with the same content under
different contexts, the classifier learns to untangle the information on the target from
its style and is able to achieve better results, especially when classifying images that
belong to domains with different textures and low-level features.

While NST has been widely applied to visual images, the leap to physically char-
acterised domains is not straightforward. In fact, in this case, there is first a need to
determine what can be considered the content of a sample and what is instead part
of the style. One possible assumption is to consider physical prior information and
simulated data as the high-level content input, while experimental realisations would
carry the style in the form of detailed physics, non-idealities and artefacts that are not
modelled in the theoretical framework.

The problem with this approach lies in the process of extracting the style and
content information. In the visual domain, this is done using the features computed
by the layers of a NN trained on an ample dataset, such as Visual Geometry Group
(VGG) [48]. Similarly to what happens in transfer learning, however, there is no
guarantee that a network trained on visual images will be able to extract the proper
content and style information from a sample belonging to the target domain, especially
if the expectation is for the content to be related to the physical characteristics of the
input image. For these reasons, applying style transfer to physically structured images
is not immediate and may require developing a proper and application-specific way of
acquiring relevant features to compute the style and content information.

Vishwakarma el al. [49] utilise NST to add the texture of measured micro-Doppler
spectrograms to simulated ones to improve the recognition of different human activities.
In their work, the authors utilise the simulations as the source of content and the layers
of a pre-trained VGG to extract the style information from the real measurements. The
goal of this method is to transfer the contributions of effects such as target-dependent
multipath, occlusions, noise and other artefacts that appear in the measurement to
the clean simulated spectrogram. This leads to an increased fidelity of the simulations
and hence a better accuracy in the downstream classification task when training the
classifier with both augmented and measured spectrograms.

While the results show an improvement for the specific application, by relying on
a pre-trained network to infer the style there is no guarantee that the content and
style information extracted will match the physical features considered relevant for the
task. Similarly to what happens in transfer learning, if the source domain where the
feature extraction network is pre-trained doesn’t match the target domain, there may
be the risk of negative transfer. In the NST scenario, this would imply that the content
and style information may be incorrectly inferred, leading to the transfer of irrelevant
features to the content image and an overall worsening in the quality of the output.

In addition to that, the NST approach described in [49] is a 1-to-1 optimization
process, meaning that each augmented spectrogram is generated by augmenting a sin-
gle simulation with the information coming from a single measurement. However, as
in general more than one measurement is available, an advanced augmentation tech-
nique may consider computing the style information by combining multiple available
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measurements.
In view of these limitations, this thesis will not include further research on the topic

of NST.

2.4.3 Generative Neural Networks

Generative NNs are a particular subset of ML models that are designed to generate
new samples that are similar to a given set of training data. These models are typically
trained to learn a mapping from an input random distribution (typically uniform or
Gaussian) to the underlying posterior distribution of the training data. By randomly
sampling the input distribution is then possible to generate new output samples that
will be different from the training ones but will show similar features, and can hence
be used to effectively augment the original available data. Generative NN typically
includes architectures such as VAEs [24] and GANs [23]. In the scope of this work,
GANs will be the model of choice for performing DA with generative networks.

The original formulation of the GAN structure, by Goodfellow et al. [23], comprises
two separate models. The first is a generator G that takes a white Gaussian noise
vector z as input and produces a synthetic sample G(z) as output. The second is a
discriminator D that takes an image sample x as input and outputs the probability
D(x) of the image being a real sample from the training set or a fake sample produced
by G.

The two models G and D are then trained in an adversarial manner. The discrim-
inator D is presented with real and synthetic samples and is trained to maximize the
probability of labelling the inputs from the training set as real and the ones produced
by G as fake. On the other hand, G is trained to maximize the probability that its
generated samples are labelled as real by D. Mathematically, this can be written as
the following minimax problem:

min
G

max
D

Ex[log(D(x))] + Ez[log(1−D(G(z)))]

where E is the expectation with respect to the subscripted variable. The minimax cost
of the GAN problem is also referred to as critic loss. Ideally, after a successful training
phase, the two networks will reach a state of balance where the D will have to guess
the origin of x randomly with an accuracy of 50%, as the generated images G(z) will
look exactly like samples from the training set. Figure 2.4 illustrates the architecture
of a GAN.

Despite their potential, the training process for GANs is known to be unstable [51].
Typical issues that appear when training GANs are ones such as vanishing gradients
and mode collapse. The first issue arises when the gradients of the parameters with
respect to the loss function become very small, resulting in slow or stalled learning.
The second, instead, arises when the generator learns to produce an image G(z) that
is able to fool D, and learns to map all the z sampled from the Gaussian noise to that
image. This leads to the whole framework getting stuck in an “optimal” point and
losing all of its generative properties. To mitigate these effects, new training strategies
and architectures have been developed such as the Wasserstein-GAN (WGAN) [52] and
the WGAN with gradient penalty (WGAN-GP) [53].

10



Figure 2.4: General structure of a generative adversarial network, where the generator G
takes a noise vector z as input and produces a synthetic output G(z). The discriminator
takes both the synthetic input G(z) and true sample x as inputs and predicts whether they
are real or fake. Image taken from [50]

In the radar domain, [54–56] use GANs to generate micro-Doppler spectrograms
belonging to individuals performing different activities. While the final tasks may vary
slightly, the approach relies on training the GAN via the available training set and
producing the output by randomly sampling the latent space. The generated synthetic
spectrograms are then used to train a classifier together with the available data to
improve the performance in the downstream task.

While GANs hold very powerful generative capabilities, there is usually little to no
control over the physical feasibility of the generated samples. In fact, the statistical
similarity between the real and synthetic samples does not imply conformity with the
physical properties of the target domain.

Erol et al. [25] produce several augmented samples using GANs and VAEs. After
the generation of the synthetic spectrograms, the authors sieve the generated samples
by using different criteria. First, they establish a series of high-level physical rules and
exclude all the samples that do not comply with them. Secondly, they compute the
bounds of the principal components obtained via principal component analysis. They
then remove all the generated samples that lie outside of these bounds, obtaining a set
of synthetic spectrograms that are overall more consistent with the kinematics of the
real measurements. By relying only on the synthetic spectrograms that comply with
the sieving criteria the authors are able to achieve better performance in classifying
human activities using augmented data compared to the accuracy obtained using the
unfiltered generated samples. The results show indeed that physical feasibility is im-
portant for generalization purposes and that GANs without proper supervision may
produce kinematically unfeasible samples.

While this approach leads to improved performance in the downstream classification
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task, there could be greater benefits in enforcing physical knowledge directly in the
training process and design of the ML model. For this reason, this thesis will further
employ GANs to explore ways of embedding physical information in generative models.

2.4.4 Simulated Data

The thorough study of the radar domain has yielded well-characterized governing laws
that can be used to model different sensing scenarios. If an accurate model of the
target is provided, the backscattering of the radar waves can be computed through the
available equations. The spectrograms constructed by processing the results of such
computations are what are referred to as simulated spectrograms.

When constructing a simulation, several assumptions can be made, which determine
the degree of complexity and the fidelity of the simulation with respect to a real exper-
imental spectrogram. These can range from simplified radar returns of approximated
kinematic models of the targets to a full-wave study of the electromagnetic scenario. As
more complex targets with non-rigid bodies are considered, the computational complex-
ity grows considerably due to factors such as the evolution in time and the interaction
between different moving parts.

In the case of a walking individual examined in this thesis, the multiple reflections
between different body parts, the different reflectivity of clothing and skin, the shape of
the limbs and the shadowing that they can cause during the movement are all factors
that make accurately simulating such scenario a difficult task. For these reasons, simpler
conditions are usually assumed. For example, the human body can be assumed to be
made of limited scatterers with known reflectivity or multi-path and shadowing effects
between different limbs. While these assumptions succeed in limiting the computational
complexity, they also reduce the fidelity of the simulations, which, depending on the
context, may not be sufficient for the target application.

Huizing et al. [26] consider theoretical simulations of micro-Doppler spectrograms
of drones, obtained by using simple kinematic models. In their work, the authors show
that by only relying on such simulations to train a downstream classifier the achieved
accuracy becomes mediocre, when compared to the one achieved using experimental
spectrograms.

On the other hand, by using simulated data Tang et al. [57] are able to improve
the recognition of different human activities in data-scarce scenarios. To achieve this,
they utilise radar simulations generated from motion-captured kinematic data. Motion
capture uses cameras to track and record the movement of several points in space. In
this case, 25 LED markers were used to track the movement of body parts of individuals
performing several activities [58]. The movement of these points in space is then used
to generate the radar returns for the specific activity and radar parameters, such as
the carrier frequency, pulse repetition interval or the aspect angle with respect to the
subject.

While these techniques can yield high-quality simulations when compared to theo-
retical kinematic models, they still require real motion-captured measurements of dif-
ferent subjects. Moreover, measuring the motion-capture data allows for the simulation
of different parameters related to the radar but doesn’t provide a way to change the
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attributes of the subjects such as height or speed at which the activity is performed
other than by manually altering the position of the captured markers.

Simulations made from theoretical models, on the other hand, allow more freedom
when choosing the target parameters but yield spectrograms that are too distant from
the real measurements and would need further enhancement to be beneficial in the
downstream classification task.

2.5 Physics-Informed Machine Learning

Physics-informed machine learning is a term that covers all those techniques aimed at
incorporating prior physical knowledge into ML models [27, 59, 60]. In this context,
the word physics indicates information such as domain-specific properties, simulations
and governing equations. By embedding the proper physical prior knowledge into the
NN framework, researchers look to develop physics-inform neural networks (PINNs),
which have already been employed to tackle problems such as solving partial differential
equations [61], fluid modelling [62] and geophysical image inversion [63].

PINNs bring several advantages over regular NNs. Despite their capabilities, regular
NN-based approaches struggle to extract easily interpretable features from the available
data. By incorporating physical information in the architecture of the NN, the model
can be guided into learning how to gather and analyze specific characteristics of the
input data that are physically meaningful for the domain of the application.

Additionally, fully data-driven approaches may overfit the available data, leading to
poor generalization performance and biased predictions. The physical prior information
that is provided to PINNs, on the other hand, will result in theoretical constraints to
aid ensure that the model is able to learn proper underlying relationships and that the
produced output complies with the governing laws of the domain of application.

This is particularly relevant in data-scarce scenarios, where the training of a model
on a limited amount of observations can be guided and constrained to improve the
generalization capabilities and to focus the attention on physically meaningful features.

The analysis presented in [27] defines three approaches to embed physics in ML
models and refers to them as introducing observational, inductive and learning biases:

• Observational biases are provided through the input training data of the model.
While many physical and engineering sciences don’t have access to large labelled
datasets, these may be integrated with simulations or data that is produced by
domain-specific augmentations, in order to preserve the physical feasibility of the
original data.

• Inductive biases are introduced by making tailored decisions on the architecture
of an ML model. In the case of NN architectures, by appropriate design of the
input, the layers and the graph of the network, the extraction of domain-specific
features with appropriate properties can be enforced. While the inductive bias
approach is robust and guaranteed to enforce the prior information, it is often
difficult to implement for complex physical laws and is usually used to enforce
more simple geometrical properties such as symmetries.
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• Learning biases are enforced by ad-hoc choices in the learning process. Gen-
erally, this involves a domain-specific design of an appropriate loss function and
constraint on the weights. These approaches do not strictly enforce physics, but
by adding penalties based on the domain’s governing laws the convergence towards
physically-compliant solutions is favoured.

In the radar domain, observational bias has been already employed in the form of
DA using simulated data.

On the other hand, it can be argued whether image manipulations fit under the label
of physics-informed techniques. In fact, these augmentations do not directly introduce
physical prior knowledge into the training data, but rather exploit invariances of the
target data without interfering with its physical content. Since the reviewed approaches
and the image manipulation proposed in this work do not directly leverage physical
information but are designed to be compliant with the physical feasibility of the micro-
Doppler spectrograms, they will be referred to as physics-aware techniques, rather than
physics-informed.

In the scope of physics-informed techniques, Rahman et al. [64] propose a multi-
branch GAN architecture to embed physical information in the process of generating
spectrograms for the classification of different human activities. In particular, two
branches are added to the discriminator of the adversarial architecture and are re-
sponsible for extracting the upper and lower envelope of the spectrograms, which are
then used in the discrimination process. This approach falls under the category of
both inductive and learning bias, as the architecture is modified to extract a physically
meaningful feature in the form of the envelope, but also the critic loss is adapted to
take into account the envelope of the generated spectrogram.

The results show that the physical information contained in the envelope of the
spectrograms can help produce more physically compliant samples, which can also lead
to better performances when used to train NN-based classifiers. However, the shape of
the envelope can only be applied to the specific domain of activity recognition, where
it can be used to characterise different human actions.

In the scope of this work, the embedding of domain-specific physics in the task of
classifying armed and unarmed walking individuals will be investigated. In particular,
the focus will be on inducing an observational bias in generative NNs via the training
data by using the available theoretical simulations. In addition to that, the effect of
using physics-aware image transformations and the observational bias that is induced
by them in the downstream classifier will be assessed.

2.6 Use Case: Classification of Armed and Unarmed Person-
nel

In order to assess the effectiveness of the different data augmentation techniques, the
downstream task of classifying armed and unarmed walking personnel [65, 66] will be
utilised. As of today, cameras are widely used for surveillance in the security domain,
due to their limited cost and the fact that visual images can be easily interpreted by
a human operator without any special training. Regardless of this, surveillance radars
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hold many benefits, especially in the defence domain. First of all, a radar detector can
work regardless of the weather, in conditions of low visibility or at night, contrary to
typical camera systems. Moreover, radars can also be employed in situations where
privacy is a concern. Despite these benefits, radar spectrograms and images cannot be
directly interpreted by an untrained operator, which gives the motivation to research
an automated way to detect signatures belonging to individuals carrying weapons.

While the classification task holds important practical applications, the focus of
the work presented in this thesis will be on the augmentation process. In this regard,
the expectation is that the approaches proposed in the scope of this work may be
successfully adapted to other use cases involving spectrograms of walking humans or
different targets such as drones.

2.7 Literature Summary and Thesis Objective

After reviewing several techniques to address the deployment of NNs in domains with
limited available training data, it has emerged that multiple directions exist from which
the problem can be tackled. In particular, DA has seen a lot of applications because
of its ability to deal with the problem at its source and hence being compatible with
most of the DL solutions and architectures.

However, in the radar domain, visual transformations are hindered by the difficulty
of implementing such approaches while preserving the physical feasibility of the tar-
get images. To the best of the author’s knowledge, most of the examples of image
manipulation applied to micro-Doppler spectrograms do not consider the effect of the
augmentation on the underlying physical model and do not assess the effect of the
feature extraction process.

When considering automatic target recognition and human activity classification
through micro-Doppler spectrograms, most of the available DA literature revolves
around generative NNs in the form of GANs and VAEs. While these approaches ensure
some degree of similarity between the generated samples and the original ones, there
is no guarantee of the physical feasibility of the augmented data. To the best of the
author’s knowledge, only a few examples exist of trying to improve the physical feasibil-
ity of GAN-generated spectrograms, none of which rely on the theoretical simulations
available in the radar domain.

The goal of this work is to explore physics-informed data augmentation for radar
micro-Doppler spectrograms. This will be done by studying ways to enhance the avail-
able theoretical simulations in order for them to be employed for DA in a downstream
classification task. In addition to that, this thesis will also tackle the issue of physics-
aware image transformations for the radar domain, by reviewing two of the existing
techniques and proposing new alternatives for the classification of micro-Doppler human
signatures.

Summarising the main contributions of this work:

• To provide insight into the usage of theoretical simulations to aid generative DA
approaches. In particular, several generative augmentation techniques are pro-
posed and their limitations with respect to their generative potential will be dis-
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cussed, by evaluating the quality and diversity of the produced spectrograms and
their impact on the downstream classification task.

• To analyse recent work on visual transformations for DA in the radar domain, with
respect to their impact on the achieved accuracy in the downstream classification
task and on the feature extraction process. A new augmentation is then proposed
for the task of classifying spectrograms of armed and unarmed individuals by
leveraging the cyclic nature of the walking motion.

Figure 2.5 shows a scheme of the review literature and in red the areas of contribu-
tion of this thesis.

Figure 2.5: Overview of the different solutions presented in the literature study. Shown in
red are the areas of contribution of this work
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Dataset 3
3.1 Micro-Doppler

3.1.1 The Doppler effect

A monostatic radar is a device used to both transmit an electromagnetic signal to
an object and receive the reflected response from the object itself. The time elapsed
between transmission and reception of the reflected signal can be used to measure the
radial distance of the object from the radar. For a non-static object, the received
signal will present a frequency shift if compared to the transmitted signal, due to a
phenomenon known as the Doppler effect.

The magnitude of the Doppler frequency shift is proportional to the radial velocity
of the target with respect to the radar transceiver in the direction of the radar line of
sight (LOS) and can be used to determine the speed at which an object is approaching
the transceiver.

In the case of a static radar and a target moving away in a radial direction from the
source with velocity v, the frequency of the received signal fr can be expressed as

fr =
1 + v/c

1− v/c
f (3.1)

where f is the transmitted frequency of the signal and c is the speed of light. Note that
as a convention the velocity will be assumed positive when the target is moving away
from the radar and negative in the opposite scenario.

If the velocity of the target is small compared to the speed of light c, then the
relativistic effects can be ignored and the Doppler frequency shift fd = fr − f can be
expressed in Hz as

fd = −2v

c
f (3.2)

The Doppler frequency shift is commonly observed in the frequency domain, by
looking at the Fourier transform (FT) of the transmitted and received signal. In the
frequency domain, the peak components are used to find the different Doppler frequency
shifts of the individual targets.

3.1.2 Micro-Doppler

The Doppler frequency shift described in Section 3.1.1 is commonly referred to as bulk
Doppler, as it is associated with the motion of the entire target in the radar LOS
direction.
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Real targets will usually present an extra layer of modulation on top of the bulk
Doppler shift, called micro-Doppler effect [67], which is caused by any component of
the target that has an oscillatory or vibrating motion. Examples of this effect include
the modulation induced by the rotation of the blades of a helicopter, the swinging of
the limbs of a walking person or the vibration that an engine induces on the body of a
vehicle.

As the micro-Doppler effect is tightly associated with the structure and nature of the
observed object, it can be used to identify and classify targets seen by radar systems.
In this context, the cumulative micro-Doppler effect presented by a target, represented
in the joint time and Doppler frequency domain, is referred to as its micro-Doppler
signature.

3.1.3 STFT

Due to the non-stationary nature of the micro-Doppler effect, good visualization of the
phenomenon cannot be achieved by direct application of the Fourier transform on the
received signal. To better represent signals with time-varying frequency content the
Short-Time Fourier Transform (STFT) is introduced. The STFT consists of applying
the classical FT to a time-limited window of the original signal, in which ideally the
frequency content of the signal can be considered constant. In such a way, by taking the
FT of consecutive windows of the original signal, one may construct a representation
of the evolution of the spectral density over time. Mathematically, the discrete STFT
of a digitised signal x[n] is defined as:

STFT (m, k) =
N−1∑
n=0

x[n]w[n−mH] exp(
−2πjk(n−mH)

N
) (3.3)

where w is a window function of length N and H is the size of the hop in samples
between subsequent windows. The properties of the STFT are determined by three
parameters related to the window choice. These are namely the window duration, the
window type and the overlap between consecutive windows.

When varying window length, shorter windows will provide better resolution in time
but a worse resolution in frequency when compared to longer windows, as they are able
to better capture variations in the frequency content over time. On the contrary, longer
windows allow for better frequency resolution but make tracking changes in time more
difficult, leading to a worse resolution in time. In addition to that, the type of window
used can offer different properties in terms of resolution depending on the chosen shape,
and an overlap between different windows can be introduced to smoothen the changes
in frequency over time, and usually varies between 30% and 80%.

Finally, after calculating the complex STFT, the variation of the spectral content as
a joint function of time and frequency is usually shown using the spectrogram, defined
as |STFT (m, k)|2.
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3.2 Experimental Setup

The experimental radar measurements were acquired in the scope of the work described
in [65]. The measuring campaign was performed using the AMBER radar system,
a frequency-modulated continuous wave radar that operates in the X-band. More
information about the radar parameters is provided in section B.1.

Measurements were made of people walking towards the radar with their hands free
and people walking with a metal pipe in both of their hands to mimic a rifle. For the
experiments, a total of 35 test subjects were recorded performing both activities twice.

After removing some faulty measurements, 931 spectrograms of 1.5s are extracted
from the original measurements. The frames are taken with matching initial gait phases
and contain around 1.5 gait cycles, or three steps, varying based on the height and ve-
locity of the subjects. Out of the 931 spectrograms, 445 belong to the walking class
and 486 to the rifle one, making them 48% and 52% of the whole dataset, respectively.
Despite the slight difference in the number of available samples, the classification prob-
lem will be treated as balanced as no significant bias is observed towards the class with
the most spectrograms available.

In addition, the number of spectrograms per subject can also be considered balanced.
On average, 27 experimental spectrograms are available for each tested individual.

In the processing phase, each spectrogram is first converted to dB scale and then
scaled again such that every bin in time and frequency has a magnitude between 0 and
1 by using the value of the greatest and smallest bin of the spectrogram. This achieves
the goal of making the spectrogram bound, which improves the training of NN models,
by removing any potential bias that could occur by having unbounded values of the
inputs.

Figure 3.1 shows spectrograms from the two classes. The vertical axis represents
the velocity corresponding to the received Doppler shift. The velocity is considered
negative when directed towards the radar, and positive when away.

Visually, the two classes share similar features. Intuitively, we would expect a person
walking hands-free to show a more prominent return related to the movement of the
arms. Fig 3.1a highlights the return associated with the movement of the arms, which
is indeed slightly more evident in the case of a person walking without carrying an
object. However, not all subjects show such features, as there could easily be walking
individuals that keep their arms by their sides or in their pockets.

3.3 Simulated Data

The simulations used in this thesis are generated according to the theoretical model
described in [68]. To characterize the motion of walking individuals, the global human
walking model proposed by Boulic et al. [42] is used. In [42], the model of human
motion is described as a combination of translations and rotation of several reference
points over the time of a gait cycle, which is the term used to refer to the cyclic pattern
of movement that occurs while walking. Fig 3.2 shows the reference points used to
describe the human walking model.

To compute the radar backscattering of the walking individual, each body segment
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(a) (b)

Figure 3.1: Framed spectrograms from the measured datasets belonging to (a) a subject
walking hands-free and (b) one carrying a rifle. The micro-Doppler response from the arm is
highlighted in (a).

Figure 3.2: Reference points used to generate the human walking model [68]

is modelled as a perfectly electrically conducting ellipsoid of appropriate size. Using the
theoretical RCS of each ellipsoid and its position and rotation over time, the cumulative
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backscattering from all the moving body parts is then obtained and used to compute
the spectrogram. Figure 3.3 shows a simulated spectrogram where the contribution of
the different limbs is highlighted.

Figure 3.3: Simulated spectrogram generated using the model proposed in [68]. Part of the
returns from the foot, the arm and the torso are highlighted.

The simulations include no random component and are completely determined by
a set of two kinematic parameters. These are namely the mean velocity at which
the person moves and the gait cycle duration, which is the duration of the cyclic
pattern of movement that occurs while walking. To obtain the final dataset, these two
parameters are extracted from each experimental spectrogram and used to generate a
paired simulated one. The process to extract the kinematic parameters is described in
Appendix B.2. As no theoretical simulation is available for the rifle class, the pairing
is still done using simulation produced using the global human walking model. Paired
simulated spectrograms are also generated for a third class of spectrogram of individuals
carrying a backpack that was recorded in [65]. While the spectrograms belonging to
the third class are not used for classification purposes in this thesis, their kinematic
parameters are extracted to generate simulations that will be used to test the proposed
augmentations. In such a way, the parameters used to generate the simulation are
ensured to belong to an experimental distribution.

The assumptions made to generate simulated spectrograms according to [68] show
several gaps when compared to a real scenario. First of all, a perfectly reflecting
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ellipsoid may not be an accurate model for human joints, as it ignores the actual shape
and reflectivity of the limbs. Secondly, the shadowing of one body part by means of
another one is ignored, as well as second-order reflections, which are indeed affecting
real experimental spectrograms. Thirdly, the simulated spectrograms repeat perfectly
during each gait cycle, while spectrograms belonging to real subjects inevitably show
variations between different cycles, due to subtle changes in the motion of the subjects
from step to step.

Despite these simplifications, simulated spectrograms still show much of the fre-
quency content that appears in experimental ones and could prove to be a reasonable
starting point for applying augmentation techniques in the radar domain.
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Generative Augmentations
from Simulations 4
In this chapter, the focus will be on studying different approaches in which theoretical
simulations can be enhanced for DA purposes. The goal of these augmentations is to
leverage the information contained in the simulations and the available experimental
measurements to produce physically feasible augmented spectrograms.

After introducing the tools for assessing the proposed techniques, the different ap-
proaches will be presented and a final comparison will be shown.

To keep this dissertation lighter, only a brief overview of the training and augmen-
tation process is given for each proposed method. More details on the architectures
and the training parameters can be found in appendix C.

4.1 Evaluation Method

The first evaluation criterion for the proposed augmentations will be the visual quality
of the generated synthetic samples. The expectation is that a good synthetic spectro-
gram shall show similar visual features when compared to the experimental spectro-
grams, as the classifier will potentially rely on those to infer the class label.

In the experimental work discussed in this section, both classes will be augmented
using separate generative networks. To keep the dissertation concise, only samples from
the walking class will be shown and evaluated, but the same remarks and conclusions
regarding the visual quality of the synthetic spectrograms could be reached by looking
at the rifle class.

When developing generative models, a common issue is mode collapse, which hap-
pens when only a single synthetic sample that optimizes the task is produced and all the
variability in the generated output is lost. To evaluate the possibility of this happen-
ing, the structural similarity index metric (SSIM) is utilised [69]. The SSIM measures
the similarity between images by taking into account factors that are perceived by the
human eye such as luminance, contrast and structure of the image, and used in [25] to
also determine the similarity between micro-Doppler spectrograms. The SSIM between
two images X and Y is defined as

SSIM(X, Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)

where µ and σ2 denote the mean and variance of the pixels of the subscripted images,
σXY is the covariance of X and Y , and c1 and c2 are two small constants to stabilize the
division. To assess the variability of a models’ output, the SSIM between all the possible
pairs of generated synthetic spectrograms will be compared to the SSIM scores between
the pairs of experimental samples. In addition to that, to better evaluate the similarity
of the micro-Doppler signatures, only the frequency content between -6 m/s and -1
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m/s will be considered, as it happens to comprise most of the returns coming from the
limbs of the walking individuals. The distribution of the SSIM between every pair of
experimental spectrograms belonging to the walking class is shown in figure 4.1. As can
be seen, the SSIM between different experimental spectrograms lies between 0.2 and
0.7. Good synthetic samples will have a similar distribution of the SSIM. A distribution
with higher SSIM scores will indicate that the generative model is producing samples
that are too similar to each other up to the extreme of mode collapse, where only one
sample is produced.

Figure 4.1: Distribution of the SSIM between every pair of experimental spectrograms be-
longing to the walking class

Finally, as a final metric of evaluation, the quality of the proposed generative aug-
mentations will be assessed by their impact on the downstream classification task in
section 4.7

4.2 Convolutional Mapping

In order to augment the simulations, a NN mapping is designed by stacking a series of
convolutional layers. The goal of the mapping is to augment the simulations generated
by using theoretical models with the information available in the form of experimental
spectrograms.

A deterministic NN with a fixed input cannot generate the random noise and arte-
facts of the measurements. However, the systematic interactions between different limbs
that are not considered in the simulation scenario could potentially be learned by such
a model using the available experimental data.

To achieve this, the convolutional mapping will be trained on the matching pairs
of simulations and measurements provided in the dataset. To train the mapping, the
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simulations belonging to the training set are fed into the convolutional network. The
synthetic output is then compared to the paired experimental spectrogram which is
used as the ground truth for the training. The loss computed is the mean-squared
error (MSE) between the pixels of the two spectrograms, defined as

MSE(S,M) =
1

NfNt

Nf∑
i=1

Nt∑
j=1

(Si,j −Mi,j)
2

where Nf is the number of frequency bins, Nt is the number of time bins, S and M are
the synthetic and measured spectrograms respectively and the i, j subscripts denote
the entry corresponding to the i-th frequency bin and the j-th time bin.

After computing the MSE, the loss is backpropagated through the network and the
training step is concluded. Figure 4.2 shows a schematic of the process just described.

Once the network is properly trained, new synthetic spectrograms will be generated
by enhancing new simulations that possess a different set of mean velocities and gait
cycle durations.

Figure 4.2: Overview of the training process of the convolutional mapping. The blue bounding
box highlights the fact that the input simulations have to be paired with experimental samples
that share the same physical parameters in order to compute the MSE loss.

This approach can be seen as the decoder part of an autoencoder [70], where the
simulations act as a regularized latent vector in the parameter space of mean velocity
and gait cycle duration. In this way, the synthetic output will also show the same
parameters as the input simulation, ensuring its physical feasibility together with more
realistic features given by the trained convolutional layers.

To assess the result, the first metric will be the visual quality of the spectrogram.
Figure 4.3 shows an example of augmented spectrograms against their input simula-
tion and the paired experimental spectrogram used as ground truth. As can be seen,
the synthetic spectrograms appear blurry when compared to the experimental ground
truths. This is most likely due to the MSE loss, as is also pointed out in [25]. By
minimizing the error across different samples during the training process, the convolu-
tional mapping learns to model an average style of the reference measurements, which
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Figure 4.3: Visual demonstration of the spectrogram generated via convolutional mapping.
Synthetic spectrograms (middle row) are generated from the respective input simulation (top
row). The bottom row shows the experimental spectrograms paired to the respective input
simulation and act as ground truth to compute the MSE.

results in a visually blurred texture in the final output. In addition to that, due to
the limited diversity that can be achieved by the simulations, very similar inputs are
mapped to experimental outputs that instead show a greater degree of diversity, up
to the limit where the same simulation is mapped to multiple experiments. Together
with the MSE loss, this could lead the model to produce synthetic spectrograms with
a visually blurred style.

In addition to that, the generative potential of the simulations comes only from
varying the mean velocity and gait cycle duration of the target. While these two pa-
rameters are enough to fully determine the theoretical simulation, they cannot fully
grasp the variability of the experimental measurements, which show slight differences
between different gait cycles. Using the proposed mapping, in fact, augmenting the
same simulation twice would lead to two identical synthetic spectrograms. In theory, a
perfect augmentation would be able to recreate the variations in the gait that happen
when a person executes the same walk twice. It is clear, however, that a fully determin-
istic mapping cannot model this effect and hence some kind of controlled randomness
has to be added during the generation process.

When looking at the differences between the synthetic spectrograms generated by
the convolutional mapping, figure 4.4 shows that the similarity between pairs of syn-
thetic spectrograms is significantly higher than the one between experimental ones.
This may mean that the convolutional mapping is indeed producing an averaged syn-
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thetic output in order to minimise the MSE loss. As a consequence, the simulations
are mapped to very similar synthetic spectrograms, which lack resolute enough visual
features to be distinguishable from each other.

Figure 4.4: Distribution of the SSIM between each pair of synthetic spectrograms generated
via the convolutional mapping and between pairs of experimental spectrograms.

To address these gaps there is a need to change the nature of the model used to
augment the input simulation network. In view of its generative power, the adversarial
training scheme will be explored, where instead of a reconstruction loss a discriminator
network is used to determine the quality of the synthetic spectrograms during the
training phase.

4.3 GANs

As the first step in analysing adversarial training for DA purposes, the classical GAN
approach is explored. For this initial case, only the experimental data will be used,
without any support from the theoretical simulations.

In the scope of this thesis, the WGAN-GP architecture will be employed [53]. A
diagram of the training process is shown in figure 4.5. The input latent space made
of a vector of 100 independent normally distributed variables is sampled and then fed
through the generator network, which produces the synthetic outputs. These are then
sent to the discriminator, which tries to distinguish between the artificial spectrograms
and the real experimental ones. After that, the critic loss associated with the dis-
criminator’s ability to distinguish real and synthetic spectrograms is computed and
backpropagated to update the weights of both networks accordingly. The discrimina-
tor is trained to maximize its ability to detect synthetic and real spectrograms, while
the generator is optimized in an adversarial fashion to better fool the discriminator.
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Figure 4.5: Overview of the training process of a GAN.

Figure 4.6 shows samples of the spectrograms generated with a GAN. As can be
seen, the synthetic spectrograms resemble closely the experimental ones in terms of
visual features. In particular, the random nature of the latent vector used as input
allows the generator to successfully model the noise and artefacts present in the experi-
mental spectrograms, as well as the meaningful frequency content of the micro-Doppler
signature.

Figure 4.6: A comparison between real experimental spectrograms (top row) and synthetic
ones (bottom row). The synthetic spectrograms were produced by random sampling of the
generator’s latent space. The experimental spectrograms are included here for comparison
and are used only in the training phase of the GAN.

While GAN may suffer from mode collapse and resort to the generation of a single
synthetic output, the visual examples seem to prove otherwise. Even the distribution
of the SSIM scores illustrated in figure 4.7, shows that the degree of similarity between
the synthetic spectrograms matches the one between the experimental ones, meaning
that the GAN-generated samples possess a realistic variability.

To asses the physical feasibility of the generated spectrogram, figure 4.8 shows the
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Figure 4.7: Distribution of the SSIM between each pair of synthetic spectrograms generated
via GAN and between pairs of experimental spectrograms.

separate and joint distribution of the two kinematic parameters of the walking indi-
viduals for both synthetic and experimental spectrograms. Apart from a few outliers,
the distributions are almost overlapping, meaning that while no particular measure
to enforce physical feasibility was adopted, the pairs of mean velocities and gait cy-
cle durations of the generated spectrograms do not seem to blatantly contradict the
underlying kinematic model.

Despite this, the usage of simulations could still prove useful in making the train-
ing phase more stable and producing better synthetic samples, with control over the
output’s physical parameters. For this reason, the rest of this chapter will focus on a
physics-informed generative approach to produce synthetic spectrograms from theoret-
ical simulations while leveraging the proven benefit of using a critic loss instead of the
MSE.
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(a) (b)

(c)

Figure 4.8: Comparison between the distributions of (a) gait cycle duration, (b) mean velocity
separately of 500 experimental and synthetic spectrograms. (c) shows the joint distribution
of the two parameters across the analysed spectrograms.

4.4 GANs from simulations

To incorporate the theoretical simulations in the process of generating synthetic spec-
trograms, the classic GAN architecture is modified to use the simulations as a starting
point for the generator.

This approach resembles the work done by image translation networks such as
Pix2Pix [71] and CycleGANs [72], which have been used to tackle problems where
an input image has to be mapped to its respective representation in another domain.
Examples of this include translating images from black and white to coloured or trans-
forming pictures taken during the day into the same picture taken at night.

Despite the similarity of these translation tasks to the one of transforming simulated
spectrograms into experimental ones, across several experiments the architectures de-
scribed in [71] and [72] experienced severe mode collapse, and were not able to produce
any reasonable output for the use case presented in this thesis.

For this reason, a custom architecture was designed to perform the task of augment-
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ing simulated spectrograms into experimental ones. This follows the same principle as
the classical GAN, but instead of utilising random noise as the latent vector, consid-
ers the simulated spectrogram as its input space, as was done for the convolutional
mapping. This allows the generator to start from a point that is already closer to the
final solution, which may help by making the generation process more stable and by
propagating the input physical parameters to the output. The discriminator is left
unchanged from the classic GAN approach, and in the training phase, it will learn to
discriminate between samples from a batch of experimental data and a batch of paired
synthetic ones. In principle, the pairing that was needed for the convolutional mapping
is not required when using adversarial training. For the models proposed in this thesis,
the matching between simulations and measurements will however be kept to ensure a
better propagation of physical parameters from the input to the output. The study of
the case where no matching between experiments and simulations is available is left for
future research.Figure 4.9 shows the structure of the proposed model.

Contrary to the convolutional mapping using the MSE loss, this model employs an
adversarial architecture to tackle the problem of the blurry output caused by the MSE
loss. Note that an MSE loss could be introduced between the synthetic output and
the experiment paired with the simulation. This is done to increase the fidelity of the
output in the Pix2Pix architecture. In the experiments carried out in the scope of
this thesis, this additional MSE loss resulted in additional blurriness of the generated
spectrogram and was hence not employed for these studies on GANs using simulations.

Figure 4.9: Overview of the structure of the GAN realised using simulations as latent vectors.

A few examples of synthetic spectrograms generated using the GAN approach from
simulations are shown in figure 4.10. As expected, the critic loss employed for the
adversarial architecture is successful in removing the blurriness that appears in the
output when using the MSE loss. However, the generated spectrograms still appear
visually distant from the experimental ground truth. In particular, while the envelope
of the spectrogram can be clearly distinguished, the components related to the limbs of
the subjects cannot be separated from the rest of the torso, and this could be an issue
for improving the performance in the downstream task.

Figure 4.11 shows that by using a discriminator to compute the loss, a lower similar-
ity between the synthetic outputs can be achieved when compared to the convolutional
mapping case.

As was happening in the convolutional mapping case, however, using only the simu-
lations as an input limits the generative properties of the model, as augmenting the same
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Figure 4.10: Visual demonstration of the spectrogram generated via a GAN with simulations
as an input. Synthetic spectrograms (middle row) are generated from the respective input
simulation (top row). The bottom row shows the experimental spectrograms paired to the
respective input simulations and act as ground truth for comparison.

simulation twice will produce exactly identical synthetic spectrograms. To increase the
ability of the GAN learning to reproduce imperfections and variations between the gait
cycles, there is still the need to investigate possible ways to add generative potential to
the augmentation model.
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Figure 4.11: Distribution of the SSIM between each pair of synthetic spectrograms generated
via GAN from simulations and between pairs of experimental spectrograms.

4.5 GANs from simulations plus noise

The most straightforward way to add generative properties to the network responsible
for augmenting the simulations is to add noise to the input. To do this, the training
step of the network is modified to include the addition of white Gaussian noise to the
spectrograms every time an input is passed forward into the network, to mimic the
sampling done in the classical GAN approach. Figure 4.12 shows a diagram of the
training process.

The idea of adding noise to the input simulations can be seen as a hybrid approach
between the simulation-only case and the classical GAN approach. When the variance
of the overlayed noise is 0, then the network will behave as the previously illustrated
simulation augmentation, while when the noise power overwhelms the input image,
then the generator will behave as a GAN with an input latent vector with as many
variables as the number of bins in the spectrogram. For this approach, the variance
of the noise was chosen to be 0.1, as it was observed to be a good balance between
the quality of the generated spectrograms and their variability for different instances
of noise.

The visual quality analysis, different from the previous cases, is performed on the
visual differences of different synthetic spectrograms generated from the same simulated
one. This is done to highlight the effect of introducing the addition of noise to the
input in the training step. Figure 4.13 shows five synthetic spectrograms generated by
feeding the input simulation into the generator after adding different instances of white
Gaussian noise.

While the synthetic spectrograms do not seem to differ substantially in nature, the
addition of noise generates slight discrepancies in the envelope across different steps and
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Figure 4.12: Overview of the structure of the GAN realised using simulations overlayed with
noise as input.

Figure 4.13: Visual demonstration of the spectrograms generated via a GAN with simulations
plus noise as an input. Synthetic spectrograms (middle row) are generated from the input
simulation (top row) and 5 different instances of overlayed noise. The bottom row shows the
experimental spectrogram paired to the respective input simulation and acts as ground truth
for comparison.

in the Doppler velocity of the limbs, which however don’t seem to bring a considerable
improvement in quality when compared to the experimental reference.

Figure 4.14 shows that indeed the overlayed noise contributes to decreasing the
similarity of the generated spectrograms significantly below the similarity between ex-
perimental ones. While this may be an advantage in terms of mode collapse, it could
also mean that the noise is impacting the quality of the synthetic spectrograms neg-
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atively. While typically the dimension of the noise latent vector in a GAN is limited
to a few hundred, the noise overlayed to the spectrogram has almost 5000 variables.
This can result in the latent space containing several irrelevant or redundant dimen-
sions, leading to difficulties in learning the appropriate mapping. As a consequence,
the quality of the output may be worsened when compared to architectures that use
smaller random input vectors.

Figure 4.14: Distribution of the SSIM between each pair of synthetic spectrograms generated
via GAN from simulations plus noise and between pairs of experimental spectrograms.
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4.6 Multi-branch GAN

To reduce the disadvantages of a too large latent space, the architecture can be modified
to include two different processing branches. The first will focus on augmenting the
theoretical simulation input, while the second one will process a vector of 100 normally
distributed random variables, such as the one utilised in the classical GAN approach.
The output of the two branches will be then summed to obtain the generated synthetic
spectrogram. Figure 4.15 illustrates the architecture of the proposed generative model.

Figure 4.15: Overview of the structure of the GAN realised using two generator branches
responsible for processing the input simulations and a random noise vector.

Intuitively, this approach tries to bias the network towards separating a contribution
to the physical content from the input simulation and a contribution related to random
effects which are modelled via the noise input. Note, however, that this bias is not
enforced apart from the changed architecture, and the generative process is left free
to choose what kind of contribution shall the simulation and the random noise input
bring.

Figure 4.16 shows different augmentations of the same input theoretical simulation
using different instances of the noise vector. The different Doppler components are
distinguishable, especially the one associated with arm movement. In addition to that,
the variation between different realisations of the augmentation is noticeable, both in
the shape of the envelope and in the returns of the different limbs.

The similarity between generated spectrograms is also again closer to the one be-
tween experimental ones, as figure 4.17 clearly shows.

To assess the processing operated by the two branches, the generated spectrogram
can be decomposed into the contribution from coming from the two different inputs.
Figure 4.18c and 4.18d show the output of the simulation branch and noise branch
respectively. As can be seen, the simulation is used to reconstruct the background of
the image, both in the frequency bins without any micro-Doppler signature and in the
area around the return of the torso. Most of the visual features of the final output,
instead, are modelled by the noise input, reinforcing the hypothesis that a random noise
input is fundamental to modelling the variations in the experimental spectrograms.

36



Figure 4.16: Visual demonstration of the spectrograms generated via a GAN with multi-
ple generator branches. Synthetic spectrograms (middle row) are generated from the input
simulation (top row) and 5 different instances of input noise. The bottom row shows the
experimental spectrogram paired to the respective input simulation and acts as ground truth
for comparison.

37



Figure 4.17: Distribution of SSIM between each pair of synthetic spectrograms generated via
multi-branch GAN and between pairs of experimental spectrograms.
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(a) (b)

(c) (d)

Figure 4.18: Overview of the input and outputs at different stages of the multi-branch GAN
architecture. (a) The input simulation is fed into the network to produce (b) the synthetic
spectrogram. (c) The output of the simulation branch is responsible for the background of the
image while (d) the output of the noise processing branch reconstructs most of the Doppler
returns of the limbs.
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4.7 Effect on the downstream classification task

The final evaluation will be done by assessing the performance of a classifier trained
with augmented data in the downstream classification task. Using the available ex-
perimental spectrograms a generative network is trained to produce several synthetic
ones. As the augmentation needs to be class dependent, one generative network per
class will be trained, with the purpose of generating synthetic samples belonging to
each class separately. Note that available simulations only belong to walking individ-
uals, hence when generating synthetic samples for the rifle class from simulations the
augmentation process will also have to enforce the specific class label on top of the
experimental measurements’ visual features. While architectures such as conditional
GANs (C-GANs) [73] and auxiliary-classifier GANs (AC-GANs) [74] exist to tackle
multi-class generation, the separate augmentation approach is chosen. Due to the
greater complexity and training instability of these architectures, the usage of C-GANs
and AC-GANs is left for future research.

A convolutional NN is chosen as the model to perform the classification task and
assess the improvement achieved with the different augmentations. Appendix A gives
more insight into the process of designing a classifier for the downstream task adopted
in this thesis.

To properly evaluate the classification, 20% of the total amount of data will be
reserved for testing purposes only. Out of the remaining experimental data, 20% will
be used for validation and the remaining part will be used for training the classifier.
In order to assess the impact of the generative augmentations on the generalization
capabilities of the downstream classifier, the split between the training, validation and
test set will be done subject-wise, to ensure the maximum degree of independence
between the training and test data. To achieve more significant results, the experiments
will be run over 10 different random splits of the dataset. The achieved accuracy for
each split is then averaged to obtain the final scores.

In addition to that, to evaluate the effect of the augmentations under various de-
grees of data scarcity, the training dataset for both the classifier and the generative
augmentation will be progressively reduced by removing subjects.

For each size of the training set, the classifier is first trained with the available
experimental data to establish a baseline. After that, the same data is used to train the
generative augmentation under test. The generative network is then used to produce
new synthetic samples that, on top of the available experimental ones, are used to
train another instance of the downstream classifier. The newly achieved accuracy using
the synthetic data is then compared with the baseline value. Figure 4.19 shows the
augmentation and classifier training pipeline.

In the case of augmentations that employ theoretical simulations, the synthetic
spectrograms are generated using a set of 500 input simulations. For the ones that
employ noise in the generation process, two noise instances are sampled per input
simulation, leading to the production of 1000 synthetic spectrograms. In the case of
the classic GAN approach, 1000 spectrograms are generated by sampling the random
input variables.

Figure 4.20 shows diagrams of the splitting of the dataset for different levels of
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Figure 4.19: Overview of the augmentation pipeline used to assess the impact of generative
augmentations.

data scarcity, without augmentation in 4.20a and with augmentation in 4.20b. Note
that the reduction in the training set applies both to the classifier and the generative
network, which is done to correctly evaluate how the effectiveness of the generative
augmentations scales with the amount of available data.

(a)

(b)

Figure 4.20: (a) Splitting of the dataset to account for different degrees of data scarcity, (b)
when also including synthetic data. The blue and yellow portions are used for training, while
the red one is used for testing. The green portion represents the experimental data that is
progressively removed to simulate a data-scarce scenario. The validation set is taken from
20% of the experimental data assigned for training shown in blue.

In the scope of this work, accuracy will be used as a metric for the classification task.
In a practical scenario, it could be argued that detecting an armed individual is more
crucial than correctly classifying unarmed ones, and hence metrics such as precision,
recall or the F1-score should be considered.

While this argument is true, in view of the balanced nature of the two classes and to
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allow for better comparison between this thesis and work carried out in other scenarios
in the literature, accuracy was picked as the sole metric of assessment.

Figure 4.21 shows the accuracy achieved in the classification task for different levels
of scarcity when the proposed augmentations are utilised to augment the training set.

Figure 4.21: Accuracies achieved in the downstream task using different generative augmen-
tations, averaged over 10 data folds. The standard deviations are omitted for clarity.

As can be seen when training with more than 40% of the available data the aug-
mentations do not bring any improvement in the downstream task. Despite their visual
quality, the synthetic spectrogram may fail to capture and reproduce useful features for
the classification task and contributing to adding more confusion in the classification
process.

On the other hand, when utilising less than 40% of the data the synthetic spec-
trograms seem to be beneficial to the classification task. Note that the training data
available for classification is the same as the training data used for the augmentations.
As the amount of available subjects decreases, so does the accuracy of the classifier and
the quality of the spectrograms produced via the generative networks. Visual examples
of the quality of synthetic spectrograms with respect to the amount of training data
are provided in appendix C.

Despite this phenomenon, the augmented samples still prove useful in regularizing
the learning in data-scarce situations and preventing overfitting. When it comes to the
benefit of using simulations, however, no real advantage is found over the classic GAN
approach, except for a small increase in accuracy when using 10% of the available data
and augmenting with a GAN from simulations without any introduction of noise.

This lack of benefit from using the simulation may be due to the too-abstract nature
of the model used. Instead of providing a physically reasonable starting point for the
generative networks, the simulations may be constraining the augmentation process
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too much by limiting its generative potential and requiring the introduction of noise to
achieve a better output quality.

In addition to that, the observational bias introduced by using the simulations
doesn’t strictly ensure that the physical parameters of the theoretical input will be
propagated to the output.

Table 4.1 shows the error between the input parameters of the simulation and the
output synthetic spectrogram. Apart from the error that is introduced by the parameter
estimation process described in B.2, both the mean velocity and gait cycle duration of
the output are slightly different from the ones of the input.

Model Mean velocity error Gait cycle duration error

Convolutional Mapping 4.4% 2.4%

GAN from simulations 7.8% 7.1%

GAN from simulations and noise 8.5% 9.6%

Multi-branch GAN 7.7% 6.6%

Table 4.1: Mean relative error of mean velocity and gait cycle duration between synthetic
outputs and input simulations

In particular, convolutional mapping seems to perform better in this sense, as there
the MSE loss enforces reconstruction between simulations and experimental spectro-
grams with matched parameters. On the other hand, augmentations that rely on
adversarial training seem to have a greater error for the produced parameters.

This can be related to multiple reasons. First, the visual properties of the synthetic
spectrograms may affect the parameter estimation process, as the peaks and the torso
component may not always be as clear as in the experimental spectrograms.

Secondly, for approaches that rely on noise, the error could stem from the fact that
the components used for the estimation of the parameters, namely the envelope and
the torso, are influenced more by the noise input rather than the simulation. For this
reason, a mismatch between the input and output parameters could be introduced in
the augmentation process.

To improve on this, future work could focus on adding a loss term or an adaptation
in the architecture to penalise such mismatch in the input and output parameters, to
ensure better reconstruction and enable better-targeted generation for synthetic spec-
trograms with specific parameters. Further research could also investigate adversarial
training without matched pairs of experiments and simulations, to assess whether the
proposed approaches could manage to reliably propagate the physical parameters of
the input when discriminating the synthetic spectrograms from measurements with
different mean velocity and gait cycle duration.

Furthermore, it would be of interest to assess whether an augmentation model
trained on experimental data with only a subset of the kinematic parameters would
be able to produce reasonable outputs when augmenting simulations with parameters
outside of the training set. This could be useful in the case where measurements are
only available for targets with determined parameters, and synthetic spectrograms of
targets with a different set of parameters need to be generated. An example of this
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could include a defence scenario where only measurements of allied drones are available,
and knowing the physical specification of enemy unmanned aerial vehicles (UAV) could
allow the generation of synthetic spectrograms that could be used to train a classifier
responsible for target detection.

Another important factor to point out is that for the specific problem of classifying
armed and unarmed individuals, the physical parameters are not correlated with the
class of the target. This means that even if the generative augmentations are able to
produce physically feasible spectrograms, these may not contribute to improving the
downstream classification task unless they properly capture the relevant features for
determining the class of the spectrograms.

On top of that, both of the classes are augmented using theoretical simulations
of walking individuals, which in the rifle case introduces the extra difficulty for the
augmentation to also learn how to enforce the class-specific features in the generated
spectrograms.

For these reasons, generative augmentations, even if physically informed by the use
of simulations, struggle to provide any concrete benefit in the classification task.

To obviate most of the problems of generative augmentations, image manipulation
will be investigated, with particular attention to their role with respect to the underlying
physics of the micro-Doppler spectrograms.
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Image Manipulation for Radar
Spectrograms 5
In this chapter, image manipulations will be explored as an alternative DA technique
to generative networks. Compared to the latter, image transformations are computa-
tionally cheaper and can be applied without regard to the amount of available data.
However, their application can easily compromise the underlying physical content of
the spectrograms and has to be carefully studied.

With this in mind, while not directly leveraging the governing laws of the target
domain, these visual augmentations can be designed to be physics-aware and coherent
with the underlying physical content of the data representation.

In this thesis, two techniques from the literature, namely rescaling in time and
frequency and circular time shift will be compared with a third technique that exploits
the cyclic nature of the walking motion.

5.0.1 Rescaling in time and frequency

The rescaling in the time and frequency domain applied in [41] aims to generate new
samples by considering variations in the gait of the subjects. The time rescaling mimics
a variation in the pace and the duration of the gait cycle of the subject. The rescaling in
frequency, on the other hand, implies a faster swing of the outer limbs such as legs and
arms. These transformations modify the arm component that is considered relevant to
classification by stretching and compressing it in time and frequency, but in doing so
they do not alter the original class label.

Figure 5.1 shows examples of rescaling in the frequency and time domain. For both
the time domain and frequency domain, the rescaling factors chosen are 0.8, 1 and
1, 2. To preserve more physical feasibility, the augmentation in the frequency domain
is applied only to the frequencies outside the range that comprises the return from the
torso, which was chosen to be between -2.1 m/s and -0.9 m/s.

It is important to note that different from the work presented in [41], in the scope of
this thesis the rescalings are directly applied to the magnitude of the final spectrogram
rather than to the raw IQ radar returns. While the latter approach is more accurate and
doesn’t require any pixel interpolation, the former is closer to the visual transformations
applied in the computer vision domain. Nonetheless, the motivation behind the two is
the same and the outcome is comparable.
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(a) Original

(b) Stretch in time domain (c) Compression in the frequency domain

(d) Stretch in the frequency domain (e) Compression in the time domain

Figure 5.1: Examples of rescaling in time and frequency domain.
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5.0.2 Circular time shift

A circular shift in time has the benefit of preserving the features and characteristics
of the target’s signature. By changing the initial phase and moving the different gait
cycles around, this augmentation can make the classifier less prone to fitting the entire
spectrogram and focus more on the relevant features of the two classes. A circular
shift in time will also introduce a discontinuity, which however may not necessarily
negatively impact classification.

(a) Original

(b) Shift of 0.5s (c) Shift of 1s

Figure 5.2: Examples of circular shifts in time domain.

Figure 5.2 illustrates an example of a circular timeshift applied to an experimental
spectrogram. In the scope of this thesis, two circular shifts of 0.5s and 1s will be used
to augment the training dataset.
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5.1 Evaluation

To evaluate the impact of visual augmentation a similar process to the one utilised for
generative augmentation is employed.

A classifier is trained using the available experimental data and the classification
accuracy is then compared to the one achieved by the same classifier trained on the
experimental spectrograms and their augmented versions. The experiment is repeated
by progressively removing part of the training data, and for each size of the training
sets, it is repeated for 100 different subject-wise splits of the data.

Figure 5.3 shows the classification accuracy when training with the available exper-
imental samples and their augmentations. As can be seen, the rescaling and timeshift
augmentations have a similar impact on classification, apart from marginal differences.
For both of them, a considerable gain is achieved when using limited training data,
which goes up to 13% when using 10% of the subjects for training. The gain from
the augmentations saturates as the available training data increases, leading only to
marginal improvements when using more than 60% of the data for training.

Figure 5.3: Mean and standard deviation of accuracy scores over 100 data folds using different
augmentation techniques.

While altering the underlying parameters of the walking person or introducing dis-
continuities in the spectrogram, these augmentations are successful in increasing the
final classification accuracy with all degrees of data scarcity.

This may be due to the fact that these augmentations do not alter the defining
features of the two classes, and by leveraging invariances such as the duration of the
steps, velocity of the limbs and the position and order of different steps in time, they
regularize the training process of the model and help it better identify the relevant
features to separate the two classes.

48



(a) (b)

(c) (d)

(e)

Figure 5.4: Saliency maps for different classifiers. (a) The input spectrogram of a walking
person is classified. The different saliency maps are shown when using (b) a classifier trained
on 80% of the available subjects, (c) 10% of the available subjects, (d) 10% of the available
subjects but after applying the rescaling augmentation and (e) 10% of the available subjects
after applying the circular timeshift augmentation. The red dashed lines show the separation
between different steps.
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To better understand the effects of these augmentations, the saliency maps of the
different classifying scenarios can be examined. Saliency maps show the magnitude of
the gradients of the class score with respect to every pixel of the input spectrogram and
are a way to measure the contribution of different areas of the input sample towards
the predicted label [75].

Figure 5.4 shows the saliency maps of the classifier in different classification scenarios
when using the experimental spectrogram shown in figure 5.4a as an input. Each of
the saliency maps represents the absolute value of the gradient of the output label with
respect to every input pixel, which is scaled in the [0,1] range based on the maximum
and minimum gradient for each image. To smoothen the saliency map, a Gaussian
filter is applied.

Figure 5.4b shows how when training with all the available subjects the classifier is
clearly able to recognize the distinctive feature of the arm for a walking person. When
restricting the number of training subjects to 10% of the total available amount, figure
5.4c shows that the classifier is unable to pinpoint the same features, but relies on the
returns of multiple limbs as well as the background between different steps, which leads
to the original input being classified as belonging to a rifle carrier.

When including the rescaled data in the training set, however, figure 5.4d shows
that the feature extraction resembles again the case when most of the data is used and
the output label is corrected, meaning that the augmentation successfully mitigates
the lack of training data. An important contribution to the gradient can be observed
coming from the envelope of the central step of the spectrogram. This may be due to
the fact that when augmenting the data by stretching the spectrograms in frequency,
the component of the arm may be moved to higher frequencies and be confused with
the return of the leg in the original non-augmented spectrogram. However, this phe-
nomenon doesn’t seem to affect the improvement in classification, not in this example
nor in the general trend.

When applying the circular time shift augmentation, similar conclusions can be
drawn. As shown in 5.4e, the augmentation again brings the focus back to the micro-
Doppler component of the arm, hence correcting the output class label.

Despite these augmentations succeeding in improving the downstream classification
task in data-scarce scenarios, the question remains open of whether a visual transfor-
mation that better complies with the physical model of the walking subject may bring
an ulterior improvement.

5.2 Classification of a single step

Since the classifier seems to already focus on the features of a single step, a new aug-
mentation scheme can be realised by segmenting the input in order to classify each gait
element separately. This approach has several benefits:

• The risk of the classifier learning dependencies between different steps is removed.
As one gait element may hold enough information to characterize the target as
being unarmed or not, splitting the input into different segments prevents the
classifier from overfitting and memorising the whole spectrogram. From the per-
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spective of physics-informed machine learning, this can be seen as applying an
inductive bias through which the classifier is informed of the cyclic nature of the
walking motion and its attention is artificially pointed to the features of the single
element of the gait.

• By reducing the size of the input, the number of parameters of the NN classi-
fier decreases and the amount of training samples grows, leading to less risk of
overfitting.

• Separating the different steps also opens up new possibilities for the label predic-
tion task, as the information from different steps belonging to the same original
spectrogram can be combined to reach a unanimous decision.

To implement the segmentation, the spectrograms are split by means of a window
centred around the peaks of a sinusoidal curve that is fitted to the spectrogram’s enve-
lope, using the procedure described in section B.2. Figure 5.5 shows the visual result
of framing individual steps. To assess the performance in the downstream task, the
structure of the classifier is not changed and is kept the same as the one shown in
section A.1 used for the previously introduced augmentations.

When classifying the individual steps separately, figure 5.6 shows that there is a
gain in accuracy in data-scarce scenarios, which can be related to the reduction in
the model’s number of parameters and the increase in the number of training samples
that comes from splitting the original spectrograms. However, when using 60% of the
available data or more, the average accuracy is slightly lower. This can be explained
because, in the presence of enough training data, the classifier that evaluates the whole
frame can rely on multiple steps at the same time to make its final decision.

When looking at the saliency maps of the single steps, figure 5.7 shows that just
applying the inductive bias to artificially inform the classifier of the cyclic nature of
the input is enough to direct the attention to the relevant feature of the spectrogram,
explaining the gain in accuracy for data-scarce scenarios observed in figure 5.6. When
classifying the single steps there is also a discrete amount of relevancy found in the
upper and lower envelope of the gait element. While no clear explanation was found
for this phenomenon, it is not to exclude that the NN classifier may find features that
are useful to separate the two classes that are not evident to a human observer.

While the inductive bias is already enough to produce improvements in data-scarce
regimes, an ulterior benefit can be achieved when the information regarding the fact that
different steps belong to the same experimental spectrogram is utilised. In particular,
the softmax output of the classifier of different steps can be combined so that the final
classification decision is made using the information belonging to several steps, as it is
done implicitly by the layers of the classifier when classifying the entire spectrogram
frame. To achieve this, the steps belonging to the same test spectrogram are passed
through the classifier to obtain the classification output of the softmax layer. After
that, these are averaged together and a threshold is applied to make the final decision
on the target’s class. The results are shown in figure 5.6, where this approach shows
an improvement in accuracy even when using the full training dataset.

The improvement comes from the fact that while one step may be classified wrongly,
a correct classification of the other steps belonging to the same frame may compen-

51



(a) Original

(b) Three separate steps

Figure 5.5: Illustration of the process of dividing the spectrogram into separate steps

sate for it, leading to an overall increased accuracy in the test phase. In such a way,
the softmax output of the classifier for each step is used as a confidence measure to
determine the label of the entire spectrogram. By summing the contribution of each
step before thresholding, the information from the different steps is combined equally
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Figure 5.6: Mean and standard deviation of accuracy scores over 100 data folds when using
a classifier trained on single steps, with independent and combined assessment.

but is not to exclude that weights could be applied to the sum to account for different
reliabilities, that could be due, for example, to the amount of noise and clutter present
in the single step.

Figure 5.8 compares this approach to the rescaling and the circular timeshift aug-
mentations. The gain in accuracy between the first two and the classification of the
single steps is marginal but consistent between 1% and 2%. Augmenting the single
steps, however, has the benefit of reducing the complexity of the model by shrinking
the input size, achieving the same results with less than half of the parameters required
to classify the full spectrograms.

In addition to that, classifying the single steps has the benefit of being more flexible
when it comes to adjusting the input size. While when classifying the whole spec-
trogram changing the input size to account for more observation time would require
retraining the classifier from scratch, classifying extra steps would only imply consider-
ing additional inputs, without any need for retraining nor any increase in the number
of parameters of the classifier.

5.2.1 Conclusion

Image manipulations such as the one discussed in this thesis proved a computationally-
efficient solution for improving the performance in the downstream classification task,
especially in scenarios with a low amount of training data. Despite meddling with the
underlying physical nature of the micro-Doppler spectrograms, these transformations
do not alter the features that make the classification possible and hence can help the
classifier focus on the important micro-Doppler components. In particular, classifiers
trained with few samples will tend to overfit the data and try to learn how to classify
the whole spectrogram without isolating the underlying features of the data. This
can be done by using augmentations which provide new samples with unvaried class-
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(a)

(b)

Figure 5.7: (a) Three steps belonging to the same original spectrogram and (b) their respective
saliency maps when using a classifier with 10% of the training data available

related features. To improve on the physically reasonable augmentations provided in
the literature, an inductive bias is applied to the classifier by separating the single steps
in the input in order to direct the classifier’s attention to the feature of the single step.

This also comes with a reduced number of parameters and an increased amount of
available training data, which can in general help protect the classifier from overfitting.

Finally, when reaching the final classification decision by combining the steps belong-
ing to the same original frame, the physics-informed inductive bias leads to a marginal
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Figure 5.8: Mean and standard deviation of accuracy scores over 100 data folds using different
augmentation techniques.

but consistent gain in the accuracy achieved in the downstream task.
Despite all these benefits, this type of augmentation can only be applied in the case

of a cyclic micro-Doppler signature, which is not the case for many problems of human
activity recognition and automatic target recognition. However, further research could
attempt to adapt the proposed approach for applications that involve micro-Doppler
signatures of UAVs or helicopters, where the rotating blades could show a cyclic motion
as do the limbs of walking humans.
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Conclusions 6
Data augmentation is a widely-used technique for increasing the size and variety of a
dataset, which can be particularly useful in data-scarce scenarios. It has the potential
to improve the performance and generalization capabilities of ML models in situations
where real data is difficult to collect, such as in the radar domain.

Physics-informed machine learning aims to leverage the physical knowledge and
the governing laws of the problem at hand to design tailored models that are more
efficient than traditional ones in domains with limited available data and well defined
physical frameworks. The role of physical information in the process of augmenting
micro-Doppler spectrograms has been explored in this thesis.

In the first part of this work, several generative networks that make use of the
theoretical simulations available in the radar domain were devised. While capable of
producing synthetic spectrograms with physics matching the input simulations, the
proposed generative networks did not achieve consistent improvements over the classic
GAN approach when comparing the achieved accuracy in the downstream classification
task used as a benchmark. This may be due to the fidelity of the simulations, that de-
spite being physically feasible are still too distant from real experimental spectrograms
to be beneficial for the generation of synthetic micro-Doppler signatures.

In the second part of this thesis, the application of image manipulation to micro-
Doppler spectrograms was discussed. More insight was provided on two augmentations
from the literature and their effect on the downstream classifier. It was seen that
by providing augmented samples to the network, its attention could be brought to
the relevant features for discerning the two classes in data-scarce scenarios. Based on
these results, a new augmentation scheme was proposed, where the input is segmented
to artificially bias the focus of the network. By using this new input, a small but
consistent improvement in the classification accuracy was achieved, with the benefit of
a considerable reduction in the number of parameters and increased flexibility in the
final class assessment.

6.1 Future Work

To expand on the work presented in this thesis, several steps could be taken.
First, the extrapolation capabilities of the generative augmentations with respect to

the parameters that characterize the theoretical simulations should be assessed. This
study could provide insight into how the physical parameters of the simulations are seen
and extracted by the augmentation network. In addition to that, it could prove useful
in the scenario where experimental data of certain situations with specific physical
parameters are lacking, as the simulations for that particular case could be used to
generate physically compatible synthetic spectrograms.
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For this purpose, the loss and the structure of the classifiers could be adapted to
include terms based on the walking person’s parameters, to increase the fidelity and
matching between the parameters of the theoretical simulation inputs and the synthetic
outputs.

Next, the impact of the generative augmentations schemes proposed in this work
could be re-assessed using a classification task where the physical parameters of the
simulations are relevant for the classification label, such as for the identification of
micro-Doppler signatures of UAVs. In this case, having access to new synthetic spec-
trograms with different physical parameters could have a different effect on the final
accuracy achieved in the downstream classification task.

Finally, the use of C-GANs and AC-GANs could be considered as an alternative to
having to train separate models for augmenting different classes. In particular, there
is the need to verify that the architecture is capable of extracting the characterizing
features of both classes and is able to produce synthetic samples accordingly.

When it comes to visual augmentation, there are a few directions in which the
classification of different steps could be improved.

First, it would be of interest to research how the different approaches to combine the
decision made by the classifier on different steps can be used to improve the prediction
of the class. In this thesis, a simple sum was used, but different combination techniques
could be adopted to make sure that the right relevance is given to each step, for example
by estimating the noise and clutter present in the spectrogram of the single gait element.

Finally, in this thesis, the combination of different augmentation was not explored.
In general, the gain from visual augmentations tends to saturate when increasing the
number of augmented samples in the training set. Still, it would be of interest to test
the boundaries of how much the proposed augmentations can push the average accuracy
achieved in the classification task.
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Classification A
In order to assess the impact of the developed augmentations, there is a need of defin-
ing the specifics of the downstream classification task. In particular, the design and
parameters of the classifier have to be addressed.

In sections A.1, A.2 and A.3 three different approaches to classification will be
discussed.

A.1 Non-NN Classifier

The classical machine learning approach to classification is to design multiple features
from the data that can be used to infer the target class. The designed features should
be relevant to the task at hand and should also be as independent as possible, to avoid
increasing the dimensionality of the problem without adding extra information.

To tackle the task of detecting armed and unarmed individuals, 13 features are
extracted from the available experimental data. These comprise the mean, variance and
range of the unnormalized spectrogram’s magnitude and the mean and variance of the
first left and right singular vectors obtained by performing singular value decomposition
on the magnitude of the spectrogram [76]. In addition to that, the mean and variance
of the Doppler centroid and bandwidth are computed [77]. For each time bin j, the
Doppler centroid and bandwidth are defined respectively as

fc(j) =

∑
i v(i)S(i, j)∑

i S(i, j)

and

Bc(j) =

√∑
i(v(i)− fc(j))2S(i, j)∑

i S(i, j)

respectively, with v(i) being the radial velocity associated with the i-th Doppler bin,
and S(i, j) the value of the spectrogram for the i-th Doppler bin and j-th time bin.
These represent the centre of mass and the spread of the spectrogram’s amplitude over
time and could prove helpful in distinguishing signatures where the arms are moving
freely and ones where the movement of the arms is constrained by the weapon.

The extracted features are standardized to have zero mean and unitary variance and
are then classified using algorithms from the radar literature [77, 78]. Linear support
vector machine (SVM) ( [79], naive Bayes [80], linear discriminant analysis (LDA) [81]
and K-nearest neighbours (KNN) [82] algorithm with K equal to 5 will be used for
this analysis. The algorithms are implemented using the scikit-learn [83] open-source
library. The average classification score achieved on the test set over 20 different splits
of the data is reported in Table A.1. As can be seen, linearly combining the features
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via LDA and linear SVM seem to give the best accuracy, which is however still quite
limited.

Model Average Accuracy Score

Linear SVM 64%

Naive Bayes 58%

LDA 63%

KNN 56%

Table A.1: Performance of different non-NN classifiers

The classification score could be improved by designing more ad-hoc features, by
better selecting the available ones, or by employing NNs to implement the feature
extraction and classification pipeline. Due to their potential and usage in the field of
micro-Doppler classification, the option of employing NN classifiers will be explored.

A.2 Transfer Learning

Among NN approaches, TL can prove effective to tackle classification in domains that
suffer from the lack of training data.

For the downstream classification task analysed in this work, six widely-used clas-
sifiers for TL purposes, trained on the ImageNet dataset [35], will be fine-tuned using
spectrograms of armed and unarmed walking personnel. The six models will include
the VGG16 and VGG19 models [48], Resnet50V2 and 152V2 [84], InceptionV3 [85] and
XCeption [86]. All the models are implemented using the TensorFlow [87] open-source
library.

Fine-tuning is achieved by first freezing the weights of the convolutional layers
trained on ImageNet. Subsequently, two final dense layers with ReLU activation func-
tions and one output layer with Softmax activation are appended to the pre-trained
convolutional layers and fine-tuned on the target spectrograms. Each one of the six
models is tested using three different input shapes, the original size of the spectrogram
(72x72). 128x128 and 224x224. The last two are obtained by zero-padding the input
samples. In addition to that, three shape configurations of the dense layers are consid-
ered, 512 and 256 nodes, 1024 and 512, and 2048 and 1024. The last dense layer with
the softmax activation is always kept with two nodes, equal to the number of classes in
the target dataset. Table A.2 shows the parameters used for training the TL models.
The learning rate determines the step size for each iteration of the optimization process
while the batch size determines the number of training samples on which the gradient
is computed at every iteration.

For all the classifiers and the augmentations proposed in this thesis the Adam [88]
optimizer will be used to perform stochastic gradient descent and train the weights.
The parameters β1 and β2 control the exponential decay of the moving average of the
gradient and squared gradient that is used to adjust the learning rate.

To train the TL models, an early stopping strategy with a patience of 20 epochs is
employed. If no improvement in validation accuracy is achieved after 20 epochs, the
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training is interrupted and the best-performing model is restored.
Binary cross-entropy is used as a loss function. This is defined as

LCE(y, p) = −ylog(p)− (1− y)log(1− p)

where y is the class label (0 for the rifle class and 1 for the walking class) and p is the
softmax output related to the rifle class.

Parameter Value

Optimizer Adam with β1 = 0.9 and β2 = 0.999

Learning Rate 2e-5

Epochs 200 with early stopping

Batch size 32

Table A.2: Training parameters of the convolutional classifier

Table A.3 shows the best classification accuracy across all the scenarios for every
model. All the scores lie between 60% and 65% with Resnet152V2 being the best-
performing model. Even for the best-performing model, when comparing the target
domain score with the top-1 accuracy of 79% [84] achieved on Image-net, there is a
considerable loss in terms of test accuracy which could be due to negative transfer.
This is likely a consequence of the differences between the visual images contained

Model Best Accuracy Score

Resnet50V2 64%

Resnet152V2 65%

InceptionV3 64%

XCeption 64%

VGG16 62%

VGG19 62%

Table A.3: Performance of different transfer learning models

in ImageNet and the micro-Doppler spectrograms. By freezing the weights of the
convolutional layers of the pre-trained models, it is implicitly assumed that the features
can be extracted from the source and the target data alike. The poor classification
performance, however, shows that it may not be the case, justifying the possibility of
designing and training a classifier directly on the target domain.

A.3 Convolutional classifier

As a third way of tackling the downstream classification task, an ad-hoc convolutional
NN classifier is designed. This approach has the benefit of automatically performing
feature extraction without having to rely on data from different domains. There is the
risk, however, that due to the scarce amount of available spectrograms, the classifier
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may overfit the training data and show worsened accuracy when classifying unseen
data.

Figure A.1 shows the structure of the classifier. In the proposed architecture, every
convolutional and dense layer is followed by a ReLU activation. In addition, the dense
layers also employ dropout [89] of 0.1 to prevent overfitting.

Table A.4 shows the parameters used for training the convolutional classifier. Cross-
entropy is chosen as the loss function for this architecture.

The classifier is implemented using the TensorFlow [87] open-source library.
To assess the classifier, the same scheme utilised in the experimental work of this

thesis is adopted: 20% of the data is reserved for training purposes, while of the re-
maining spectrograms 20% is used for validation and the rest for end-to-end training.
To assess the robustness of the classifier in data-scarce scenarios, 10% of the data is
progressively removed and new training is performed. At each data point, the down-
stream accuracy over 10 subject-wise splits of the data is averaged to get the final
result. Note that the structure and training parameters are kept the same for every
amount of available training data.

Figure A.2 shows the final average accuracy and standard deviation for different
amounts of training data. When using 80% of the data for training and validation the
classifier achieves an average accuracy of 80%, which surpasses the performance of the
feature-based and TL approaches. Even when removing part of the training set, the
convolutional classifier still outperforms other classification methods when using only
30% of the available data.

This is due to the ad-hoc classifier being able to automatically extract the relevant
feature that can separate the two classes. While the proposed hand-crafted features
and the ones inferred from the visual domain can be used only to limitedly separate the
data, the convolutional classifier is able to properly identify the characterising aspects
of the walking and the rifle class.

For this reason, this classifier will be chosen as the one used for assessing the impact
of the proposed augmentations in the downstream classification task.

Parameter Value

Optimizer Adam with β1 = 0.9 and β2 = 0.999

Learning Rate 2e-5

Epochs 60

Batch size 32

Table A.4: Training parameters of the convolutional classifier
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Figure A.1: Structure of the convolutional classifier
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Figure A.2: Mean accuracy and standard deviation of the convolutional classifier over 10 data
splits for different levels of data scarcity
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Acquiring the Dataset B
B.1 Radar Parameters

This section describes the parameters of the radar used to acquire the experimental data
in [65]. The measurements were performed using the AMBER radar system, which is
a frequency-modulated continuos-wave radar that operates in the X band. For this set
of experiments, the carrier was set to 9.8 GHz.

The waveform used was a frequency chirp with a sweep repetition frequency of 2.5
kHz over a bandwidth of 100 MHz. To compute the radar spectrograms, a Blackman
window of 0.1 seconds with an overlap of 80% was applied to the radar sequence.

B.2 Generating the simulations

This section will cover the In order to generate simulations that match the physics of
the problem there is a need to understand what are the physical parameters that are
required to uniquely determine a simulation.

[42] defines the relations between the different parameters of the simulation, nor-
malized by the height of the thigh Ht. As the model is intended to be representative
of the average walking human being, this normalization ensures a framework that can
be easily scaled on the height of the subject, as Ht is linearly related to the subject’s
height [42].

In this view, the normalized velocity is defined as

vr =
v

Ht

(B.1)

where v is the average velocity of the motion. vr is empirically related to the relative
length of a cycle, as

Lr,c = 1.346
√
vr (B.2)

The absolute temporal duration of a gait cycle Dc can then be found by dividing
the relative spatial length of a cycle by the relative velocity as

Dc =
Lr,c

vr
. (B.3)

Combining B.2 and B.3 yields the relationship between the relative velocity and the
cycle duration

vr =

(
1.346

Dc

)2

(B.4)
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If the average walking speed is known, then Ht and all the other parameters can be
computed with the only knowledge of the gait cycle duration Dc. Thus, the two param-
eters that need to be extracted from the measurements to have matching simulations
are the cycle duration Dc and the average walking speed v.

(a) Gait cycle duration estimation (b) Mean velocity estimation

Figure B.1: Examples of the estimation process of the characterising parameters of the micro-
Doppler simulation

The two parameters can be extracted directly by analysing the real spectrograms. To
obtain the gait cycle duration Dc, a threshold is applied to the normalized spectrogram
to isolate the Doppler response coming from the subject from the background noise.
Secondly, the envelope of the response is extracted, and a sinusoid is fitted to it, as
shown in figure B.1b. The gait cycle duration is then assumed to be equal to twice the
period of the sinusoidal envelope.

To estimate the average walking speed, the average velocity of the torso across
time is considered. First, the envelope of the return of the torso is extracted, which is
assumed to be the strongest backscatter, around -2 m/s. The average velocity is then
estimated as the temporal average over the frame window, as shown in figure B.1b.

Once the mean velocity v and the gait cycle Dc are known, using B.1 and B.4, the
characterising parameters vr andHt can be obtained to produce the matched theoretical
simulation.
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Generative Models C
This chapter will provide additional information and analysis on the generative models
presented in chapter 4. In particular, more details on the structure and the training
parameters will be given. In addition to that, plots showing the decrease in visual
quality when removing training data will be provided.

All the proposed generative models have been implemented using the TensorFlow
[87] open-source library.

C.1 Convolutional Mapping

Figure C.1 shows the structure of the convolutional mapping. Which was obtained by
stacking successive convolutional layers with ReLU activations. Over different experi-
ments, the depth of 22 layers was found to be achieving good visual results. A smaller
amount of layers has been found to lead to worse visual results, while with more layers
the mapping learns to map similar simulations to few outputs, further worsening the
variability of the output.

The maximum amount of channels for the convolutional layers was fixed to 32, as
wider layers left most of the extra output features not utilised.

Figure C.1: Structure of the convolutional mapping

Table C.1 shows the training parameters for convolutional mapping.
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Parameter Value

Optimizer Adam with β1 = 0.9 and β2 = 0.999

Learning Rate 1e-4

Epochs 1500

Batch size 32

Table C.1: Training parameters of the convolutional mapping

Figure C.2 shows visual examples of the generated spectrograms when the size of
the training set decreases.

Figure C.2: Synthetic spectrograms generated with convolutional mapping when trained with
progressively decreasing amount of samples

C.2 GAN

Figure C.3 shows an overview of the structure of the GAN network, divided into gen-
erator and discriminator. Each convolutional layer, unless differently specified by the
activation layers coloured in blue, employs a leaky ReLU activation function with slope
set to 0.2 for negative values.
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In addition, every layer of the generator apart from the last one also uses batch
normalization [90] with a momentum of 0.8, to improve the training process as suggested
in [52]. A dropout with a factor of 0.15 is also added after every layer of the generator.
For the discriminator, only a dropout of 0.25 is utilised after each layer.

(a) Structure of the generator (b) Structure of the discriminator

Figure C.3: Structure utilised for the proposed GAN approach

Table C.2 shows the training for both the generator and discriminator of the GAN
network.

Parameter Value

Optimizer Adam with β1 = 0.5 and β2 = 0.9

Learning Rate 1e-4

Epochs 1000

Batch size 32

Table C.2: Training parameters of the GAN generator and discriminator

Figure C.4 shows visual examples of the generated spectrograms when the size of
the training set decreases.
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Figure C.4: Synthetic spectrograms generated with GAN network when trained with progres-
sively decreasing amount of samples

C.3 GAN from simulations

When generating synthetic spectrograms using the adversarial training scheme and
simulation as an input, the architecture is kept similar to the regular GAN approach.
In particular, the same discriminator shown in figure C.3b is used for this approach.
The generator is adapted to process the input simulation and its structure is shown in
figure C.5. Again each convolutional layer is followed by a leaky ReLU with slope 0.2
for negative values. Batch normalization with a momentum of 0.8 and dropout with a
rate of 0.15 is used after every convolutional layer except for the last.

Table C.3 shows the training parameters for the proposed architecture.

Parameter Value

Optimizer Adam with β1 = 0.5 and β2 = 0.999

Learning Rate 8e-5

Epochs 600

Batch size 32

Table C.3: Training parameters of the convolutional mapping
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Figure C.5: Structure of the generator used in the GAN from simulations approach

Figure C.6 shows visual examples of the generated spectrograms when the size of
the training set decreases.

C.4 GAN from simulations plus noise

For the GAN from simulations plus noise, the same structure and parameters as the
noiseless case are used. The only difference between the two approaches stands in the
fact that during the training ad testing, the input is overlayed with white gaussian
noise with a variance of 0.1.

Figure C.7 shows visual examples of the generated spectrograms when the size of
the training set decreases.

C.5 Multi-branch GAN

In the multi-branch GAN approach, both the branch processing the noise and the
branch processing the input simulation have to be designed. For the noise process-
ing, the same structure used for the regular GAN shown in C.3a is adopted. For the
simulation processing, a new architecture illustrated in figure C.8 is employed.

Note that this structure is different from the one used to process the simulations
in the previous adversarial approaches involving simulations. As this new network
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Figure C.6: Synthetic spectrograms generated with GAN with simulations as input when
trained with progressively decreasing amount of samples

includes a branch responsible for processing a noise input, using a shallower structure
to process the simulation yielded better visual results.

Figure C.9 shows visual examples of the generated spectrograms when the size of
the training set decreases.

72



Figure C.7: Synthetic spectrograms generated with GAN with simulations plus noise as input
when trained with progressively decreasing amount of samples

Figure C.8: Structure of the generator for the simulation branch in the multi-branch GAN
approach
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Figure C.9: Synthetic spectrograms generated with GAN with simulations plus noise as input
when trained with progressively decreasing amount of samples
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