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ing (CS) theory, we take the Cramer Rao Lower Bound (CRLB) and
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lize gridless reconstruction algorithms, noiseless global matched filter
(NL-GMF) and atomic norm minimization (ANM), to estimate tar-
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Abstract

Nowadays, indoor ranging and localization have become necessary in daily life. Due to
the multi-path propagation and noise in the indoor environment, phase domain ranging
method using multi-frequency has been proposed which achieves accurate estimation of
indoor target. However, as the indoor communication is usually carried on Bluetooth
Low Energy (BLE) or Zigbee, high efficiency is indispensable in the face of limited
bandwidth and measuring time. Thus, in this thesis, we aim to reduce the number of
frequencies used in the ranging while keeping an acceptable estimation accuracy. We at
first build the signal model and study the ambiguity range of the problem. Then based
on the estimation theory and the concept of compressive sensing (CS) theory, we take
the Cramer Rao Lower Bound (CRLB) and the matrix coherence as the criteria and
select the optimal subset on given tone set. To test the performance of selected subset,
we utilize gridless reconstruction algorithms, noiseless global matched filter (NL-GMF)
and atomic norm minimization (ANM), to estimate target distance with the subset
in both simulated data and real data and provide the mean square error (MSE), the
estimation probability and the successful estimation probability in various estimation
conditions.
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Introduction 1
The informatization and intelligentization of the industry requires the development of
the Internet of Things (IoT). As a key technique of the IoT, ranging and localization
becomes an increasingly important research field in recent years. In terms of the mea-
surement range, the ranging and localization systems can be classified into the indoor
ones and the outdoor ones.

Indeed, the use of the satellites has greatly improved the performance of the outdoor
localization systems, so that the outdoor localization can work on a global scale with a
deviation of only a few meters, such as the global navigation satellite systems (GNSS).
In the GNSS systems, the receiver receives the signals broadcast from the satellites and
calculates the location of the receiver based on these signals. Currently, the receivers
are not expensive that they can be widely used.

However, in the indoor situation, ranging quality such as high efficiency, low cost
and good accuracy are required[2]. Due to the request of low cost, the indoor commu-
nication process is usually achieved by means of Bluetooth Low Energy (BLE)[3] or
Zigbee[4] in Industrial Scientific Medical band (ISM band) which makes the available
bandwidth limited. And within a building, the multi-path propagation should also be
considered because of the reflection of transmitted signals against walls[5][6]. Due to
these characteristics of indoor ranging, the system GNSS for outdoor localization is not
suitable anymore.

Thus, instead of GNSS, the wireless sensor network (WSN)[7] are always used for
indoor localization which enables high accuracy at low cost. In the WSN, the location
is estimated by measuring the distance between the target and each anchor, where the
anchor represents a network node with known location. The distance measurements
are mainly carried out in three domains, the time domain, the power domain and the
phase domain. In the time domain, the distance can be estimated by measuring the time
of flight (ToF) or the time difference of arrival (TDoA). Using the time information,
Ultra Wide Band (UWB) can achieve high accuracy in ranging[8][9] but the Non line
of sight paths will cause great impact on the estimation result[10]. Chirped spread
spectrum(CSS) can also be used in the estimation and it utilizes the ISM band[11].
But to achieve a good accuracy it has to occupy the whole ISM band which may cause
conflict with other methods. Except the time information, power information of the
received signal can also be used in the distance measurement because the power of
the received signal strength(RSS) decreases with increasing distance. Received signal
strength indicator(RSSI) are often used in the ranging of power domain[12][13] but
the measurement of RSSI is sensitive to the multi-path propagation in the indoor
situation[14].

Consequently, although the indoor ranging can be achieved by methods measuring
ToF or RSS as shown in the above, the estimation may not be accurate enough due to
multi-path propagation or band limit. To achieve good accuracy in limited bandwidth
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and in multi-path propagation situation, in 2012, a method which uses signal phase
information with multiple frequencies is implemented[1][15]. The ranging procedure is
presented in the figure 1.1. As shown, to obtain the distance between device A and
device B, the carrier signal is sent after each other in multiple tones from device A. The
two devices have their own clock references which are not synchronized. So the device B
needs to send the received carrier signal back to correct the error caused by the clocks.
Then the device A receives the signal which contains phase difference information and
is able to calculate the distance between two devices.

Figure 1.1: Sketch of multiple frequency ranging procedure.[1]

The carrier signal used here is a pure sinusoidal tone which is unmodulated and has
constant envelope, so the impact of the radio channel on the carrier signal for one tone
f and a free space connection can be expressed by:

h(f, r) = a(r)e−j2πfr/c (1.1)

where f is the radio channel frequency, r is the distance between devices, c is the
propagation velocity and a(r) is the absolute amplitude of the signal which also contains
distance information. The device A receives Kf measurements of the channel impact
thus the equation (1.1) can be extended into case of multiple tones f0, f1, ..., fKf−1

where Kf is the number of tones used in the ranging procedure:


h(f0, r)
h(f1, r)

...
h(fKf−1, r)

 = a(r)


1

z(τ)
z(τ)2

...
z(τ)Kf−1

 = a(r)zKf (τ) (1.2)

In the equation (1.2), z(τ) = e−j2π∆fτ and its phase slope contains information of
the distance, τ = r

c
, ∆f is the frequency step size between tones, fn = n∆f , n =

0, 1, ..., Kf − 1.
In addition, the indoor scenario contains multi-path propagation which means the

carrier signal received by the device A is not only from the line-of-sight (LOS) direction
but also from the non-line-of-sight (NLOS) directions. If we represent those distances
between two devices in multi-path case by rN = [r0, r1, ..., rN−1] where we assume
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r0 < rn, n = 1, 2, ..., N − 1, r0 will be in LOS and the others are in NLOS. Then the
final received carrier signal can be obtained by extending equation (1.2):


h(f0, rN)
h(f1, rN)

...
h(fKf−1, rN)

 =


1 1 · · · 1

z(τ0) z(τ1) · · · z(τN−1)
z(τ0)2 z(τ1)2 · · · z(τN−1)2

...
...

. . .
...

z(τ0)Kf−1 z(τ1)Kf−1 · · · z(τN−1)Kf−1



a(r0)
a(r1)

...
a(rN−1)


=
[
zKf (τ0) zKf (τ1) · · · zKf (τN−1)

]
a(rN)

(1.3)

where rn and τn are the distance and time delay between two devices in the n-th path,
τn = rn

c
, rN = [r0, r1, ..., rN−1], τN = [τ0, τ1, ..., τN−1], z(τn) = e−j2π∆fτn , n = 0, ..., N−1.

N is the number of paths in the indoor condition. In a noisy environment, the signal
model can also be written as:

hKf =
[
zKf (τ0) zKf (τ1) · · · zKf (τN−1)

]
a(rN) + n = ZKfa(rN) + n (1.4)

where n is the environment noise. For simplicity, we regard the noise n as white
Gaussian noise and present its intensity by variance σ2. The signal-to-noise ratio (SNR)
is calculated by SNR = Es

σ2 where Es is the carrier signal power in each path. Then
generally, in this multi-path condition, each element in the final received signal vector is
the superposition of all the multi-path components according to the equation (1.3). And
each ray is assumed to have a constant magnitude for the frequency band of interest.
The line of sight (LOS) component always has the smallest delay and, in general, the
largest amplitude.

The ranging method utilized phase information with multiple frequencies has good
accuracy and low cost and is easy to implement[15]. However, the bandwidth is limited
and if we use small ∆f , there will be many tones used to communicate. Since the carrier
signal is sent and measured sequentially by device A, this will be a long procedure which
is against the requirement of high efficiency. Thus, to save time, we would like to reduce
the number of tones used while keeping estimation accuracy available. To be clear, we
explain our scheme in the model. As introduced, in the original method, Kf tones are
selected uniformly on the given bandwidth from f0 to fKf−1 and are used to measure.
Then the unique index set of tones can be expressed by CKf = [0, 1, · · · , Kf − 1] and is
called full set in our report. If we reduce the number of tones used, only M tones in CKf
are employed for example, we need to select a subset of CKf with M elements, which
can be expressed by M � Kf , CM ⊂ CKf . Then the whole ranging and localization
process will be improved in both efficiency and cost. But the subset of CKf with M
elements is not unique. How to decide the number M , how to choose the optimal subset
CM among all subsets of CKf with M elements and what evaluation criterion of the
selection we should use are the topics to study in the thesis. Mathematically, the goal
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of our study can be formulated as an optimization problem:

min M

s.t. G(CM) ≤ GTr

given G(CKf ) < GTr

(1.5)

where G(·) is the evaluation function of subset, G(CKf ) is the evaluation of full set CKf
and GTr is the evaluation threshold. With various evaluation criterion, the function
G(·) and its threshold can be different.

In this report, the equation (1.5) can be solved in two ways. From the perspective of
estimation theory, we would like to reduce the estimation error in the ranging procedure
and the criterion Cramer-Rao Lower Bound (CRLB) can indicate variance of estimation
error in a specific model. CRLB is the easiest criterion to determine in estimation and
is high relative to the data model[16]. In our case, the data model depends on the
tone selection CM . Thus we can use this characteristic of CRLB to select the optimal
selection which has the minimal number of elements and meets the desired CRLB. The
optimal subset CM is searched by a greedy algorithm with certain CRLB threshold,
GCRLB−Tr and the CRLB of subset CM is presented by evaluation function GCRLB(CM)
in our report.

Apart from the viewpoint of estimation theory, the accuracy of the distance infor-
mation extraction from fewer measurements should also be considered. To make sure
the estimation result is exact enough for practical use, the compressive sensing (CS)
method[17] [18] is used in the tone selection process. The selection can be regarded
as the construction of dictionary matrix which is an essential point in reconstruction
procedure and low coherence among matrix columns is required to guarantee the re-
construction accuracy. Therefore, the matrix coherence can be chosen as a criterion
in subset selection and is written as GCo(·). Because CRLB and coherence are two
different criteria and have their own calculation method, there will be a new threshold
for the criterion coherence which is written as GCo−Tr. And for different criteria, the
optimal subset selected will also be different theoretically.

To test the reliability of these selected subsets, we use them in estimation procedure
and use CS reconstruction algorithms to do the estimation in different conditions. The
classical CS reconstruction approach used to solve linear atom decomposition problem
with finite atom candidates, where the atoms are the columns in the dictionary matrix.
By decomposing the received signal with these atoms linearly, we are able to get a
amplitude vector which is the signal we would like to recover. If the received signal
can not be decomposed by these finite atoms, the error would be caused which is also
called atom grid[19]. The first algorithm to solve the grid problem is presented in [20]
and several more useful algorithms are proposed since 2011[21][22]. In this study, the
gridless reconstruction algorithms used to test subset performance are noiseless global
matched filter (NL-GMF) [19] and atomic norm minimization (ANM) [23].

The thesis is organized as follows; Chapter 2 provides the Distance information ex-
traction process with full tones and influence of parameters; Chapter 3 and Chapter 4
propose the criteria, CRLB and matrix coherence, respectively to solve the tone selec-
tion problem and simulation results and comparison are provided as well; in Chapter
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5, the selected optimal tone subsets based on different criteria are tested and compared
by CS gridless reconstruction algorithms with both simulated data and real data. The
conclusions of the study are provided in the Chapter 6.
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Distance information
extraction with MUSIC
algorithm 2
To extract the distance information accurately in the multi-path environment, multiple
tones are used as the communication channel and estimation algorithm is applied to
deal with the measurements. The most frequently used estimation algorithm is MUlti-
ple SIgnal Characterization (MUSIC) algorithm[24]. In this section, MUSIC algorithm
is introduced and applied in full tone measurements which can be regarded as a compar-
ison with the follow-up study. And some critical parameters in the estimation process
are studied to determine the ambiguity range.

2.1 MUSIC algorithm

The MUSIC algorithm is one of the most used algorithms to determine unknown pa-
rameters based on measurements received at antenna array. It is an unbiased estimator
and can asymptotically estimate the number of received signals, the direction of arrival,
the noise strength and so on[24]. In our case, we use the MUSIC algorithm to extract
the delay information in received measurements. To introduce the MUSIC algorithm,
we at first provide the covariance matrix S of our received vector hKf in full set tones:

S = E{hKfh
H
Kf
} = E{ZKfa(rN)aH(rN)ZH

Kf
}+ E{nnH} (2.1)

We assume that the incident signals and the white Gaussian noise are uncorrelated
and the noise has zero mean. Because ZKf is deterministic, the above equation can be
written by:

S = ZKfE{a(rN)aH(rN)}ZH
Kf

+ E{nnH} = ZKfPZH
Kf

+ σ2I (2.2)

where P = E{a(rN)aH(rN)}, σ2 is the covariance of the noise signal, I is the Kf ×Kf

unit matrix. The eigenvalues λi and eigenvectors vi of S can be expressed by:

Svi = λivi, for i = 1, 2, ..., Kf (2.3)

where the eigenvalue is ranked by their values, λ1 is the largest eigenvalue and v1 is
the eigenvector corresponding to λ1. Then there is:

ZKfPZH
Kf

vi = λivi − σ2Ivi = (λi − σ2)vi, for i = 1, 2, ..., Kf (2.4)

In classical MUSIC algorithm, the rank of P is equal to the number of incident
signals N and there exists λi = σ2 for i = 1, 2, ..., N which makes ZKfPZH

Kf
vi = 0 or

ZH
Kf

vi = 0. Then the eigenvectors vi for i = 1, 2, ..., N are orthogonal to the space
spanned by the columns of matrix ZKf and these N dimensional subspace spanned
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by the incident signal is called signal subspace and the Kf −N dimensional subspace
spanned by the noise vector is called noise subspace or null-subspace.

However, in our case, hKf is a vector and each element of it is a linear combination
of all the multi-path components. Although we have signals from multiple paths, we
only have one snapshot of the measurement and the rank of ZKfa(rN)aH(rN)ZH

Kf
is

always 1, given equation (2.1). With unknown number of paths, i.e. N is unknown, we
are not able to estimation the target distance through classical MUSIC algorithm.

To solve this problem, we reformulate the single snapshot model to multiple mea-
surements model by forming a Hankel matrix based on the approach in [25]:

HKf =


h(f0, rN) h(f1, rN) · · · h(fL, rN)
h(f1, rN) h(f2, rN) · · · h(fL+1, rN)

...
...

. . .
...

h(fKf−L−1, rN) h(fKf−L, rN) · · · h(fKf−1, rN)

 (2.5)

where L ≈ Kf/3. Then covariance matrix of HKf is Ŝ of size (Kf − L) × (Kf − L).

When the signal hKf is noiseless i.e. σ is 0, the rank of Ŝ will be N . The so-called null-

subspace V̂n will be formed by (Kf−L−N) eigenvectors vi, i = N,N+1, ..., (Kf−L−1)

and the size of V̂n is (Kf − L)× (Kf − L−N).
By calculating the MUSIC cost function of a series of time delay τ :

JMUSIC(τ) =
zHKf (τ)zKf (τ)

zHKf (τ)V̂nV̂
H

n zKf (τ)
(2.6)

where zKf (τ) is a steering vector of delay τ , we can obtain the relationship between
cost function value and delay τ which is called inverse pseudo spectrum.

In the inverse pseudo spectrum, the orthogonality between null-subspace and steer-
ing vector at each τ value is shown. Higher cost function value shows that the steering
vector is more orthogonal with the null-subspace and vice versa. The corresponding
delays of peaks in the inverse pseudo spectrum represent the delays in each path. The
peak corresponding to the minimum delay is in the LOS direction and is the one we
need. Then the indoor ranging will be achieved by calculate the distance with the
minimum delay.

However, in practice, it is not easy for us to know the number of paths, i.e. N . So
we will use the latter half of the eigenvalues to construct the null-subspace. And the
whole procedure of the MUSIC algorithm is provided in the algorithm 1.

2.2 Simulation results

In this section, we will do simulations on the MUSIC algorithm and study the impact of
some critical parameters. The ambiguity range of the model will also be calculated. As
the parameters in the model is complex, we will start with simple case using normalized
Bandwidth.
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Algorithm 1 MUSIC algorithm

Input: Step size and range of steering vector zKf (τ), frequency step size ∆f , tone set
CKf , received signal hKf , L
Output: Estimated time delay τ0

1: Construct the Hankel matrix HKf by hKf and calculate its covariance matrix Ŝ.
2: Calculate the eigenvectors vi of the covariance matrix for i = 1, 2, ...,Kf − L. Construct

the null-subspace matrix V̂n by bKf−L2 c eigenvectors vi, i = bKf−L2 c + 1, bKf−L2 c +
2, ...,Kf − L.

3: Calculate the cost function JMUSIC(τ) and find the maximum in the inverse pseudo
spectrum JMUSIC−max.

4: Choose peaks with magnitude larger than 0.6 × JMUSIC−max as the candidates. Select
the candidate with the smallest delay as the final result and output the delay which is τ0

2.2.1 Normalized frequency

To make the study simple, normalized frequency is used in the preliminary sim-
ulation. The available bandwidth in our case is 80MHz and by doing Min-Max
Normalization[26], the frequency 80MHz is transformed into unit 1 and the frequency
step size becomes a number between 0 and 1, i.e. ∆f ∈ (0, 1]. The bandwidth with
the normalized frequency will be calculated by BW = Kf ×∆f .

In this simulation, we set ∆f = 0.0001, number of tones used is Kf = 10000,
the delays τN are set as [3, 3.1, 3.2, 3.3]s and the amplitude of the n-th ray is set
a(rn) = e−n, n ∈ [0, 1, 2, 3], the search range of MUSIC algorithm is [0, 10]s and the
delay step size of steering vector is 0.01s. When using additional Gaussian white noise
with σ2 = −100dB, the inverse pseudo spectrum is shown in Figure 2.1. Select the
local maximal values that are larger than 0.6× JMUSIC−max as candidates and choose
the one with smallest delay among the candidates, where JMUSIC−max is the global
maximum in the search range. Then as shown, the final estimated delay in LOS is 3s
which is very exact.

i) Frequency step size

If we only change the frequency step size to ∆f = 1, there will be BW = Kf ×∆f =
10000. Keep the other parameters fixed and the result of MUSIC algorithm is presented
in Figure 2.2.

As shown in the figure 2.2, although we use bandwidth much more than available, the
estimation result is still inaccurate because of the ambiguity. The delay is calculated by
τ = r

c
= 1

2π∆f
mod 1

∆f
, given equation(1.1) thus the unambiguous scope is τunam = 1

∆f
.

In the figure 2.1 when ∆f = 0.0001, the unambiguous scope is τunam = 1
∆f

= 10000s

and the set delays [3, 3.1, 3.2, 3.3]s are in the scope. In the figure 2.2, the unambiguous
scope is τunam = 1

∆f
= 1s for ∆f = 1 and the set delays are obviously beyond the scope

which caused an ambiguous result. Thus we can conclude that the unambiguous scope
depends on the frequency step size and in unambiguous condition the frequency step
size may not influence the estimation result.
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Figure 2.1: Inverse pseudo spectrum for Kf = 10000, ∆f = 0.0001, σ2 = −100dB, τN =
[3, 3.1, 3.2, 3.3]s.

ii) Delay interval

If we only change the set delays to [3, 3.0001, 3.0002, 3.3]s, there will be BW = Kf ×
∆f = 1. Keep the other parameters fixed, the inverse pseudo spectrum of MUSIC
algorithm is provided in Figure 2.3. The final estimated τ0 is 3s which is correct but
we can see that the inverse pseudo spectrum can not show all the paths. It is because
the difference between set delays are smaller than the step size of the steering vector
in MUSIC algorithm, i.e. the resolution of the MUSIC algorithm.

If we reduce the delay step size of the steering vector and keep the search range of the
MUSIC algorithm the same, the calculation load will increase rapidly. If we reduce the
delay step size and the search range together, the calculation load can be acceptable
but the new search range may not cover all useful information in the measurement
date. Thus, to have an accurate result and a reasonable calculation load, these two
parameters, the delay step size in steering vector and the search range, should be set
properly according to the prior information.

It is also noteworthy that the estimation result is still accurate because we only
choose the local maximum larger or equal to 0.6× JMUSIC−max. If we only choose the
local maximum with smallest delay the estimation will no long be correct which shows
that the method we used to choose estimated delay is more robust.
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Figure 2.2: Inverse pseudo spectrum for Kf = 10000, ∆f = 1, σ2 = −100dB, τN =
[3, 3.1, 3.2, 3.3]s.

Figure 2.3: Inverse pseudo spectrum for Kf = 10000, ∆f = 0.0001, σ2 = −100dB, τN =
[3, 3.0001, 3.0002, 3.3]s.
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iii) Noise variance

If we change the noise variance σ2 while keeping the other parameters fixed, we can get
the result of mean delay error in Figure 2.4. The σ2 is set as 20dB, 15dB, ...,−100dB
and for each σ2 value the estimation procedure is run 10 times. The mean delay error is
the absolute difference between the set LOS delay 3s and the mean among 10 estimated
delays for each σ2.

As shown in the Figure 2.4, we can see that the estimation accuracy is highly
correlated to the noise condition. When the noise variance is higher than 0dB, the
mean error decreases while the σ2 decreases. But for σ2 < 0dB, the mean error is
always close to zero. Thus we can conclude that the noise has negative relationship
with the estimation accuracy in high σ2 values. And MUSIC algorithm is a good
method to do the ranging in good environment condition.

Figure 2.4: Mean delay error for various σ2, ∆f = 0.0001, τN = [3, 3.1, 3.2, 3.3]s.

2.2.2 Practical frequency

In this part, we start to consider the tone selection problem by using practical frequency.
The frequency band we can use is 2.4GHz − 2.48GHz and the bandwidth is 80MHz.
Assume there are three propagation paths and the distances between the two devices
over each path are rN = [0.9, 3, 5]m. With the propagation speed c = 3× 108m/s, the
delay over each path is calculated by τN = rN

c
= [3, 10, 16.7]× 10−9s. And the devices

are placed in a environment with Additional Gaussian white noise. The noise is zero
mean and has variance σ2.
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Except the above numbers, a proper frequency step size ∆f should be chosen
to avoid ambiguity. If the range of Kf is the interval (1, 10000], we have ∆f =
Bandwidth

Kf
∈ (8 × 103Hz, 8 × 107]Hz and the unambiguous scope is τunam = 1

∆f
∈

[1.25−8, 1.25 × 10−4)s. Thus in this simulation, the result will not be ambiguous if
we use Kf ∈ (1, 10000]. The relationships between accuracy of estimation result and
different parameters are discussed below.

i) Fixed frequency step

If we keep the frequency step size at ∆f = 8×103Hz, we have Kf = 10000. To use less
tones in the ranging, we can take first M elements in the full set CKf = [0, 1, ..., 9999]
and study the influence of the number M . In the simulation, the M is changed from
100 to 10000 with step size 100 and estimation procedure is run 10 times for each M .
The delay step size of steering vector in MUSIC algorithm is 0.01m

c
and the search range

of the MUSIC algorithm is [0m
c
, 10m

c
]. Set σ2 = −100dB. The mean distance error of

each M is the absolute difference between the set LOS distance 0.9m and the mean
among 10 estimated distances. The relation ship between M and the mean distance
error is provided in the figure 2.5.

Figure 2.5: Mean distance error for σ2 = −100dB, various M , Kf = 10000, ∆f = 8×103Hz,
rN = [0.9, 3, 5]m.

As we can see in the figure 2.5, the mean square error decreases when the number
M increases. The reason is that with fixed ∆f , the bandwidth depends on M by
BW = M×∆f . And the estimation accuracy of distance is relative to the bandwidth by
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daccuracy = c
2BW

[27]. With wider bandwidth, daccuracy will be lower and the estimation
accuracy will be improved. And in the figure, there is a floor between M = 0 and
M = 2000. The reason of this floor may be that we do not have enough bandwidth in
low M value and the MUSIC algorithm can only estimate 2 peaks instead of 3 which
causes a deviation in the estimation.

ii) Fixed bandwidth

In the above part, we choose first M frequencies in the given bandwidth with fixed ∆f .
In this part, we fix the bandwidth and change the number Kf from 100 to 10000 with
step size 100. So the frequency step size is also changed and the full set is always used
here. In this condition, the bandwidth is constant and the tones are chosen uniformly
over the band, so ∆f should be calculated by ∆f = bandwidth

Kf
. Set σ2 = −50dB. Keeping

the other parameters the same, we have the relationship between mean distance error
and the number Kf in figure 2.6.

Figure 2.6: Mean distance error for σ2 = −50dB, various Kf , ∆f = 8×107

Kf
Hz, rN =

[0.9, 3, 5]m.

Figure 2.6 shows that the mean distance error is not related to the Kf value and
with higher σ2, the error is even lower compared to the figure 2.5. It is because we
always use whole bandwidth in this condition which makes the estimation accuracy
good. Consequently, in unambiguous range, the bandwidth is the key point to get the
correct estimation result.
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iii) Fixed frequency step and fixed bandwidth

With fixed bandwidth BW = 80MHz and fixed ∆f , the Kf will always be 10000.
If we do not take first M elements in the full set CKf = [0, 1, ..., 9999], instead, we
randomly select M elements in the full set, we can obtain a relation ship between
the mean distance error an the number M . The random selection is achieved by the
randperm function in Matlab. The M is changed from 100 to 10000 with step size 100
and estimation procedure is run 10 times for each M . Keeping the other parameters
the same, the result is provided in the figure 2.7.

Figure 2.7: Mean distance error for various M , σ2 = −100dB, ∆f = 8 × 103Hz, rN =
[0.9, 3, 5]m, Kf = 10000.

As we can see, the result becomes accurate with increasing Kf but is still much worse
compared to Figure 2.5 and 2.6. The reason is that the random selection may destroy
the data structure and increase the rank of Hankel matrix. In noiseless condition, when
we uniformly select the tones, the interval between tones are equal and more than N
columns in Hankel matrix are linearly dependent. Then the rank of the Hankel matrix
is N which is equal to the number of paths. If we randomly select the tones, the
interval between each tones are not equal and the columns in Hankel matrix are not
linearly dependent which may increase the rank of Hankel matrix. MUSIC algorithm
need to utilized the rank of the Hankel matrix to estimate N path delays. Thus for
random selection, MUSIC algorithm is not suitable anymore and new methods should
be considered. Also we can see that below M = 1000 the mean error is low. It is
because below M = 1000, MUSIC algorithm do not have any output, so we set the
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estimated distance to 0m in this case which makes the mean error around 0.9m.

2.3 Conclusion

This chapter mainly introduces the frequently used estimation algorithm, MUSIC al-
gorithm, and provides simulation results of parameter study.

With normalized bandwidth 80MHz, we study the impact of the frequency step
size ∆f , the delay interval and the noise variance. The unambiguous range depends
on the frequency step size by τunam = 1

∆f
and the noise variance has positive relation

with the estimation accuracy. The delay step size of the steering vector in MUSIC
algorithm also has influence in the estimation and the computational load. To balance
the accuracy and computational load, it is better to have some prior information which
can be helpful in parameter setting.

When using practical bandwidth 80MHz, we consider the tone selection problem
roughly in unambiguous range. If the used tones are selected uniformly on the available
bandwidth, wider bandwidth is essential for accurate estimation. If we randomly select
tones on the given full set, the estimation will have large error even whole bandwidth is
used. Because random selection will destroy the data structure while uniform selection
will not and the data structure has influence on the MUSIC algorithm.

Based on the conclusions above, the optimal tone selection methods and criteria are
studied and new methods of data reconstruction and range estimation will be used in
the following chapters.
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Optimal tone selection with
CRLB 3
As mentioned in the introduction, the indoor ranging problem based on the signal
model (3) is a typical estimation problem and in the estimation theory, the CRLB
is the easiest criterion to calculate. The CRLB is able to indicate possible estimation
error which can be a criterion to the problem. Thus in this chapter, we use the criterion
CRLB to determine the number of elements in the subset and to choose the optimal
tone subset CM . We at first introduce the CRLB and its derivation, then provide its
calculation method and do the selection simulations.

3.1 Cramer Rao Lower Bound

Cramer-Rao lower bound was proposed by Harald Cramer and Calyampudi Radakr-
ishna Rao in about 1945[28][29]. It is a lower bound of the estimation error variance in
an estimation problem. To be more clear, as an evaluation metric of estimation prob-
lem, CRLB can indicate how accurate we can estimate a parameter in a given data
model[30][31][32][16]. With high CRLB, the variance of the estimation error is high
and the estimation result is more possible to have large error. For the indoor ranging
problem, it is essential that we do the distance measurement accurately which means
CRLB can be a suitable criterion for our case.

In our model, we are interested in the LOS path delay τ0 and we regard the delays
in other paths as the nuisance parameters. So the general unknown targets will be the
delay vector τN and the measurement vector is hKf of the full set CKf . As the data are
all complex value and the noise in the model is the white Gaussian noise, we can write
the probability density function (PDF) of the delay vector τN when the measurements
hKf is given:

p(τN |hKf ) =
1

(πσ2)Kf
exp

[
− 1

σ2
(hKf − ZKfa(rN))H((hKf − ZKfa(rN)))

]
(3.1)

where σ2 is the known noise variance and the amplitude a(rN) is also known. The
PDF p(τN |hKf ) specify the probability of τN value falling within a particular range
of values when given hKf . The PDF is also called likelihood function. If we take the
logarithm of the PDF, we will obtain the log-likelihood function s(τN |hKf ) is:

s(τN |hKf ) =
∂lnp(τN |hKf )

∂τN
(3.2)
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The variance of the log-likelihood function is called the Fisher information:

IKf (τN |hKf ) = −E

[
∂2lnp(τN |hKf )
∂τN∂τHN

]
= E

[
∂lnp(τN |hKf )

∂τN

∂lnp(τN |hKf )
∂τHN

]
(3.3)

which is a N × N matrix. And the Fisher matrix is non-negative and additive for
independent measurements.

If assume the PDF p(τN |hKf ) satisfies the regularity condition, i.e.

E

[
∂ln(τN |hKf )

∂τN

]
= 0, for all τN (3.4)

then the variance of any unbiased estimated parameter τ̂N satisfies:

varKf (τ̂N |hKf ) ≥
1

−E
[
∂2lnp(τN |hKf )

∂τN∂τ
H
N

] =
1

E
[
∂lnp(τN |hKf )

∂τN

∂lnp(τN |hKf )

∂τHN

] =
1

IKf (τN |hKf )

(3.5)
And the lower bound in the above equation is called Cramer-Rao lower bound of full set
CKf . Thus, with known noise variance and amplitude vector, the evaluation function
of criterion CRLB can be expressed as follows:

GCRLB(τ̂N |hKf ) =
1

IKf (τN |hKf )
(3.6)

3.1.1 CRLB calculation for single path

To calculate the CRLB of single path, we at first introduce the close-form solution
of CRLB in [31]. For multi-path case, if the amplitudes a(rN), the noise variance σ2

and the structure of the matrix ZKf are known, we can have the following close form
solution of CRLB in full set CKf :

GCRLB(τ̂N |hKf ) =
σ2

2
{Re[ΛHDH(I− ZKf (Z

H
Kf

ZKf )
−1ZH

Kf
)DΛ]}−1 (3.7)

where

Λ =


a(r0) 0 · · · 0

0 a(r1) · · · 0
...

...
. . .

...
0 0 · · · a(rN−1)

 (3.8)

D =
[
ζKf (τ0) ζKf (τ1) · · · ζKf (τN−1)

]
(3.9)

ζKf (τn) =
∂zKf (τn)

∂τn
(3.10)
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In the equation (3.7), GCRLB(τ̂N |hKf ) indicates the estimation accuracy when the
delay vector is τN and is a N × N matrix. The n − th element in its diagonal is the
variance of error when estimating n− th path delay, i.e. the first diagonal elements is
the error variance in LOS direction.

Then, in the analysis of CRLB, it is easier to start with the single path case, which
means there is only one path in the indoor environment and N = 1. In this case, the
delay vector τN can be any delay scalar τn. In this report, we assume that if N = 1, we
only have the LOS path and τN = τ0. Take the CRLB of full set CKf as an example,
we have:

Λ = a(r0) (3.11)

ZKf = zKf (τ0) =
[
1 elτ0 e2lτ0 · · · e(Kf−1)lτ0

]T
(3.12)

D = ζKf (τ0) =
[
0 lelτ0 2le2lτ0 · · · (Kf − 1)le(Kf−1)lτ0

]T
(3.13)

where l = (−j2π∆f). Thus, the CRLB for single path and full set is:

GCRLB(τ̂0|hKf ) =
σ2

2
{Re[ΛHDH(I− ZKf (Z

H
Kf

ZKf )
−1ZH

Kf
)DΛ]}−1

=
σ2

2
{Re[a2(r0)DHD− a2(r0)DHZKf (Z

H
Kf

ZKf )
−1ZH

Kf
D}−1]

=
σ2

2
[a2(r0)4π2∆f 2Kf (Kf − 1)(2Kf − 1)

6
− a2(r0)4π2∆f 2Kf (Kf − 1)2

4

=
σ2

2
[(a2(r0)4π2∆f 2)

K3
f −Kf

12
]−1

=
3σ2

2(a2(r0)π2∆f 2)(K3
f −Kf )

(3.14)

where

DHD = −(l2 + 4l2 + ...+ (Kf − 1)2l2) = −l2(1 + 22 + ...+ (Kf − 1)2)

= −l2Kf (Kf − 1)(2Kf − 1)

6
= 4π2∆f 2Kf (Kf − 1)(2Kf − 1)

6

(3.15)

ZH
Kf

ZKf = Kf (3.16)

DHZKf = −l − 2l − ...− (Kf − 1)l = −lKf (Kf − 1)

2
= j2π∆f

Kf (Kf − 1)

2
(3.17)

In the equation (3.15) to (3.17), we substitute l by (−j2π∆f) and use the sum equation

of number series: 1 + 2 + ...+ (Kf − 1) =
Kf (Kf−1)

2
, the sum equation of square number

series: l2 + 4l2 + ...+ (Kf − 1)2l2 =
Kf (Kf−1)(2Kf−1)

6
.
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Consequently, with known signal amplitude, noise variance and frequency step, the
CRLB for the single path case and full set is only relative to the tone number Kf in
full set. But if subset CM is used instead of the full set, the CRLB value for the single
path will not depend on the number of elements M in the subset, but depend on the
element distribution. It is because equation (3.15) to (3.17) are simplified based on the
sum of the square number series which is only available in full set. For subset CM , the
value of DHD, ZH

Kf
ZKf and DHZKf will be decided by the subset element distribution.

Thus for the subsets with the same M and different element distribution, the CRLB
values will be different. This conclusion provides us the opportunity to choose the best
one with minimal CRLB among all subsets of CKf .

3.1.2 CRLB calculation for two paths

Although the multi-path propagation environment contains N delays, we only need to
focus on the delay in LOS direction, i.e. the smallest delay which is assumed τ0, to
achieve ranging. To estimate the smallest delay τ0 more accurate, it is necessary to
obtain a low CRLB on the estimated delay τ0.

As proven in [33], compared with using the CRLB of one target, it is more robust
and accurate to use the CRLB of two targets as the performance metric in the subset
selection problem. Thus, in this section, calculation of the CRLB of two paths is
provided.

In two-path case, we have N = 2. Assume τN = [τ0, τ1] and take the full set as an
example, we have:

Λ =

[
a(r0) 0

0 a(r1)

]
(3.18)

ZKf =
[
zKf (τ0) zKf (τ1)

]
=

[
1 elτ0 e2lτ0 · · · e(Kf−1)lτ0

1 elτ1 e2lτ1 · · · e(Kf−1)lτ1

]T
(3.19)

D =
[
ζKf (τ0) ζKf (τ1)

]
=

[
0 lelτ0 2le2lτ0 · · · (Kf − 1)le(Kf−1)lτ0

0 lelτ1 2le2lτ1 · · · (Kf − 1)le(Kf−1)lτ1

]T
(3.20)

where l = (−j2π∆f). Then the CRLB of two path case is a 2 × 2 matrix which can
be calculated following the equation:

GCRLB(τ̂0, τ̂1|hKf ) =
σ2

2
{Re[ΛHDH(I− ZKf (Z

H
Kf

ZKf )
−1ZH

Kf
)DΛ]}−1

=
σ2

2
{Re[ΛHDHDΛ− ΛHDHZKf (Z

H
Kf

ZKf )
−1ZH

Kf
DΛ]}−1

(3.21)

where

DHD =

[
−l2Kf (Kf−1)(2Kf−1)

6
−l2el∆τ10

Kf (Kf−1)(2Kf−1)

6

−l2e−l∆τ10
Kf (Kf−1)(2Kf−1)

6
−l2Kf (Kf−1)(2Kf−1)

6

]
(3.22)

ZH
Kf

ZKf =

[
Kf

1−eKf l∆τ10

1−el∆τ10

1−e−Kf l∆τ10

1−e−l∆τ10
Kf

]
(3.23)
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DHZKf =

 −lKf (Kf−1)

2
−l( e

l∆τ10−Kf e
Kf l∆τ10+(Kf−1)e

(Kf+1)l∆τ10

(1−el∆τ10 )2 )

−l( e
−l∆τ10−Kf e

−Kf l∆τ10+(Kf−1)e
−(Kf+1)l∆τ10

(1−e−l∆τ10 )2 ) −lKf (Kf−1)

2


(3.24)

and ∆τ10 = τ1 − τ0.
Then the first element in the diagonal of GCRLB(τ̂0, τ̂1|hKf ) becomes the lower

bound of the variance of estimated LOS delay:

varKf (τ̂0|hKf ) ≥ GCRLB,11(τ̂0, τ̂1|hKf ) (3.25)

where GCRLB,11(τ̂0, τ̂1|hKf ) is the first diagonal elements of GCRLB(τ̂0, τ̂1|hKf ). As we
can see from the equation (3.21)-(3.24), the CRLB of the LOS direction delay mainly
depends on the time difference ∆τ10 between two paths instead of the path delays τ0, τ1.
Also, the tone set has great influence on the CRLB of 2-path case. So in the following
part, we will use this feature of CRLB to select the optimal tone subset.

3.2 Optimal tone selection

As discussed in the above section, to ranging a target in the multi-path situation, we
only need to estimate the smallest delay, τ0. But the other paths will have impacts on
the LOS path which may cause ambiguity or inaccurate estimation. CRLB can indicate
the possible estimation error in the ranging. Thus it is necessary to minimize the CRLB
of τ0 in multi-path case which is helpful in increasing the estimation accuracy.

As mentioned, the LOS path delay is easily influenced by the other path and the
path nearest to the LOS path has the greatest impact on it. In this report, we name the
nearest path by the 2nd path. Thus, to simplify the CRLB calculation in multi-path
case, we concentrate on the estimation accuracy of the LOS path and the 2nd path.
We calculate the CRLB of these two path with changed delay difference between them.
By doing so, we try to increase the estimation accuracy of LOS path no matter how far
the 2nd path is. To achieve the goal, we set a delay grid vector τ grid = [τg1, τg2, τg3, ...]
which contains the possible delay of the 2nd path. By calculating the CRLB of τ0

and τgn, where n ≥ 1, we can minimize the weighted mean among the first diagonal
elements of CRLB matrix, which can be expressed by:

GCRLB,11(τ̂0, ˆτ grid|hM)

= F (GCRLB,11(τ̂0, τ̂g1|hM), GCRLB,11(τ̂0, τ̂g2|hM), GCRLB,11(τ̂0, τ̂g3|hM), ...)
(3.26)

where F (·) is a function calculating the weighted mean among the CRLBs values.

3.2.1 Weighted mean function

The Weighted mean function F (·) can be various and in this study, three different F (·)s
will be utilized. To show the influences of different weights in F (·)s, in figure 3.1, we
provide the relationship between ∆τ gn0 and the GCRLB,11(τ̂0, ˆτgn|hKf ), n ≥ 1 of full set
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CKf using simulation parameters: Kf = 400, c = 3 × 108m/s, ∆f = 200kHz, τ0 = 0,

grid vector τ grid = [τg1, τg2, τg3, ...] = 0.1,0.2,...,10.0]meter
c

, σ2 = 20dB.

(a) CRLBs in s2 (b) CRLBs in dBs2

Figure 3.1: relationship between ∆τ gn0 and the GCRLB,11(τ̂0, ˆτgn|hKf ), n ≥ 1 of full set.

i) mean value
The most simple and general way to calculate the CRLB of multi-path environment

is to take the mean value which can be expressed as follows:

Fmean(GCRLB,11(τ̂0, τ̂g1|hM), GCRLB,11(τ̂0, τ̂g2|hM), GCRLB,11(τ̂0, τ̂g3|hM), ...)

=
1

Ngrid − 1

Ngrid∑
n=1

GCRLB,11(τ̂0, ˆτgn|hM)
(3.27)

where Ngrid is the number of elements in the delay grid vector. The weights in the
Fmean are uniform and CRLB of each ∆τ shows same effect in the calculated CRLB of
τ0. Using the data in figure 3.1a, the CRLB of 2-path case with full set and Fmean is
1.9194× 10−18s2.

ii) logarithmic mean value
Except taking the mean to calculate the CRLB of multi-path environment, as intro-

duced in [33], we can also average the logarithmic determinant of the matrix. As the
CRLB matrix in 2-path case is a symmetric matrix, in this report we use the logarithms
of the first elements of CRLB matrix to obtain the weighted mean value which can be
expressed by the following equation:

Flog−mean(GCRLB,11(τ̂0, τ̂g1|hM), GCRLB,11(τ̂0, τ̂g2|hM), GCRLB,11(τ̂0, τ̂g3|hM), ...)

= 10
1

10(Ngrid−1)

∑Ngrid
n=1 log10(GCRLB,11(τ̂0, ˆτgn|hM ))

(3.28)

Compared to the original CRLB data in figure 3.1a, the logarithmic CRLBs in figure
3.1b have smaller difference with each other. By taking the logarithm of the CRLB,
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the small CRLB values play more important role in the averaging progress. Generally,
the large values are suppressed and small values are encouraged in the contribution of
the final logarithmic mean. Thus, using the data in figure 3.1b, the logarithmic mean
value of the CRLB is 2.2186× 10−21s2, which is much smaller than the mean value.

iii) expectation with probability of ∆τgn0

The mean and the logarithmic mean value of the CRLB both do not consider the
prior information in the subset selection procedure. To include the prior information
in the selection, we would like to use the probability distribution of ∆τn and calculate
the expectation of the CRLB value rather than the simple mean value. The calculation
can be written as:

Fexpectation(GCRLB,11(τ̂0, τ̂g1|hM), GCRLB,11(τ̂0, τ̂g2|hM), GCRLB,11(τ̂0, τ̂g3|hM), ...)

=
1∑Ngrid

n=1 p∆τ (∆τgn0)

Ngrid∑
n=1

GCRLB,11(τ̂0, ˆτgn|hM)× p∆τ (∆τgn0)

(3.29)

where ∆τgn0 = τgn− τ0, p∆τ (∆τgn0) is the probability that the 2− th path delay τgn has
time difference ∆τgn0 compared to LOS direction delay τ0 in multi-path propagation
environment. Based on the results in [34], the probability distribution of ∆τgn0 is close
to the exponential distribution. Thus we can write the following expression:

p∆τ (∆τgn0) = ηe−η∆τgn0 , τgn0 ≥ 0 (3.30)

where η is called ray arrival rate and can be set equal to the value of operational
bandwidth[34]. Thus we can have the figure 3.2 of p∆τ (∆τgn0) with simulation param-

eters: Bandwidth = 80MHz and τ grid = [0,0.1,0.2,...,10.0]meter
c

.
We can see that compared to the mean value, the expectation would concentrate

more on the paths closer to the LOS path according to the figure 3.2, which make the
result more practical. Thus, using the data in figure 3.1b and 3.2, the expectation of
CRLB with prior information is 5.4099× 10−18s2, which is bigger than the mean value
and the logarithmic mean value.

3.2.2 Greedy algorithm of optimal tone selection

In the above section, the CRLB of the LOS path delay is calculated by using three
weighted mean functions and will be used as the selection criteria in the tone selection
problem. To obtain the subset with the smallest number of tones, while ensuring the
CRLB is below or equal to the required accuracy, we use the greedy-algorithm as the
selection method.

The greedy algorithm chooses the local optimal solution in each stage intending to
find the global optimal solution after the whole operation. And in a time long enough,
the procedure of greedy algorithm will produce a final result which approximates the
global optimal result. By dividing the complex global optimization problem into a
combination of simple local optimization problems in each stage, the greedy algorithm
can provide a good approximation to the optimal solution for problems that do not
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Figure 3.2: p∆τ (∆τgn0) with Bandwidth = 80MHz and ∆τ gn0, n ≥ 1.

require much accuracy. Because the available number of tones Kf is large and the
subsets of the CKf will be too many. It is not possible for us to check CRLB of every
subsets. And the CRLB is monotonic with the number M , so the greedy algorithm will
be efficient and accurate compared to random search algorithm. Thus, for our selection
problem, the greedy algorithm is a good choice.

In our case, we can set the square of the disired accuracy as the CRLB threshold, i.e.
GCRLB−Tr. Then we calculate the CRLBs of τ0 for all possible subsets CKf−1 ⊂ CKf
and choose the minimal CRLB among them. If the chosen minimal CRLB is smaller
than the GCRLB−Tr, the corresponding subset is chosen as the selection results in this
step. If not, the selection will end and the superset will be selected eventually. By
repeating the above selection procedure, we can finally obtain a subset CM containing
the fewest elements and CRLB of τ0 smaller than the threshold. The procedure is
provided in the algorithm2.

3.3 Simulation results

In the simulation, Matlab is used to calculate the CRLB values and select the optimal
tone subset. The results are in three parts: the optimal tone subset selected according
to the CRLB of τ0 in single path case, in two paths with fixed time and in two paths
with various time difference respectively.

24



Algorithm 2 Greedy Algorithm for Optimal Tone Selection Using Criterion CRLB

Input: original set element number Kf , step size and range of delay grid vector, frequency
step size ∆f , noise variance σ2, CRLB threshold GCRLB−Tr, stage number w = Kf

Output: Optimal tone subset CM , GCRLB,11(τ̂0, ˆτ grid|hM )

1: In stage w, if the set Cw has less than 3 elements, end the algorithm and out put the
final selection CM = Cw. Else, calculate GCRLB,11(τ̂0, ˆτ grid|hw−1)s for all possible subsets
Cw−1 ⊂ Cw using one weighted mean function F (·).

2: Choose the minimal CRLB value min(GCRLB,11(τ̂0, ˆτ grid|hw−1)) and its corresponding
subset C(w−1)−min. If there are more than one minimum, choose the first one.

3: If the min(GCRLB,11(τ̂0, ˆτ grid|hw−1)) is smaller than the threshold GCRLB−Tr, w = w−1,
Cw = C(w−1)−min and go to step 1.

4: If not, end the algorithm and output the final selection CM = Cw and its corresponding
GCRLB,11(τ̂0, ˆτ grid|hw)

3.3.1 Single path case

In single path case, the CRLB of LOS direction delay τ0 can be calculated by equation
3.14 in full set. Using subset CM , we can also calculate the CRLB and the selection is
carried out by greedy algorithm. In the simulation, the signal energy is set as Es = 1,
thus the SNR can be calculated by SNR = 10log10( 1

σ2 ) where σ2 is the noise variance.

Kf = 400, τ0 = 4m
c

= 1.33 × 10−8s, ∆f = 200kHz, SNR = [0, 5, 10, 15, 20, 25, 30]dB

and the required distance accuracy is 0.1m, thus GCRLB−Tr = (0.1m
c

)2 = 1.1111 ×
10−19s2. With ∆f = 200kHz, there will not be ambiguity in the estimation. Then we
can have the following result:

SNR(dB) 0 5 10 15 20 25 30

Number of
subset elements

90 24 8 3 3 3 3

CRLB value
(10−19s2)

1.1107 1.1081 1.0095 0.9458 0.2991 0.0946 0.0300

Table 3.1: Results of optimal tone subset selection for different SNRs using CRLB of τ0 in
single path case as the criterion.

To show the trend and the distribution of the selected tones more directly, we show
the above data and the distribution of the selected subset in figure 3.3 and 3.4.

As we can see from figure 3.3, with higher SNR value, the tones needed for distance
estimation become fewer. That is because the CRLB value of the single path and the
SNR value has linear dependence. Thus in low noise variance (high SNR) environment,
the CRLB value is much lower and in the selection procedure, we can discard more
tones.

In figure 3.4. the selected tones distribute in both ends because wide bandwidth
is essential to the result accuracy which has been proved in Chapter 2. To maintain
a maximal bandwidth and reach the desired accuracy, the tones have to be located in
both ends. Also it can be noticed that the selected tones are located in two blocks.
Maybe it is because in the single path case, the tones are used to estimate one target
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Figure 3.3: Number of elements in selected subset for different SNRs in single path case.

Figure 3.4: Distribution of selected tone for different SNRs in single path case.
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and two blocks are considered enough for the estimation.

3.3.2 Two paths with fixed time difference

If we use the CRLB in two paths case with fixed delay difference, we can set τ0 = 4m
c

=

1.33 × 10−8s, τ1 = 9m
c

= 3 × 10−8s, ∆τ10 = 1.67 × 10−8s. The signal energy in both
path are assumed 1, and the other parameters are set the same as in section 3.3.1. The
results are provided in the following table3.2:

SNR(dB) 0 5 10 15 20 25 30

Number of
subset elements

129 40 13 5 3 3 3

CRLB value
(10−19s2)

1.1082 1.0997 1.0632 0.9448 0.6191 0.1958 0.0619

Table 3.2: Results of optimal tone selection for different SNRs using CRLB in two paths with
fixed time difference.

To show the data more directly, we have figure 3.5 and 3.6. As shown, the SNR still
has influence on the tone selection result and high SNR can reduce the number of tones
used conspicuously. But the distribution of the selected tones are different. Although
the tones still tend to locate at the both end of the bandwidth, they are divided into
more than 3 blocks. This may be because in this case, the path is two and we need
more than 3 blocks to estimate these 2 delays.

3.3.3 Two paths with various time differences

In this part, we start to select the optimal tone subset in case that is more close
to multi-path environment. We calculate the CRLB in multi-path case by averaging
the CRLBs in 2-path case with various time differences. Then we select the optimal
subset CM with minimal GCRLB,11(τ̂0, ˆτ grid|hM). In the simulation, we study the results
under different thresholds(range accuracy), noise variances, weighted mean functions
and step sizes of delay grid vector to see their impacts. The step size of delay grid
vector is presented by distance step size ∆d in the figures for convenience. The range
of the grid vector is [0, 10]m. The signal energy is set as Es = 1 in all path, thus the
SNR is SNR = 10log10( 1

σ2 ). Kf = 400, ∆f = 200kHz.The results of selected tone
numbers are provided in the figure 3.7-3.9. And the distributions of the subsets are
provided in the Appendix A.

As shown, high SNR value will lead to a smaller number of tones in the subsets. In
the same SNR case, we have the following conclusions: if better accuracy is desired,
more tones needs to be selected in general to have more measurement data. And when
using weighted mean function Flog−mean(·), fewer tones are selected compared to results
using other function. This is because Flog−mean(·) tends to make the CRLB of τ0 smaller
than other functions do, which makes the CRLB more possible to be lower than the
CRLB threshold and we can do more iterations in the greedy algorithm. When using
function Fexpectation(·), we usually choose more tones because the probability of small
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Figure 3.5: Number of elements in selected subset for different SNRs in two paths with fixed
time difference.

Figure 3.6: Distribution of selected tone for different SNRs in two paths with fixed time
difference.
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delay difference is higher. So when calculate the expectation of CRLB among range
of delay difference, the CRLB in small delay difference is encouraged and makes the
final CRLB value larger. With larger CRLB, the greedy algorithm tends to do fewer
iterations and the number of tones selected will be larger.

In addition, the number of tones selected decreases while the distance step size
increases. The reason is that the CRLB value is higher in small delay difference and
when the ∆d increases and the sampling rate decreases, the high CRLB value is not
always sampled. Thus the calculated GCRLB,11(τ̂0, ˆτ grid|hM) becomes smaller and more
tones will be discarded in selection procedure due to more iterations.

Figure 3.7: Number of elements in selected subset in two paths with various time difference
for different SNRs, weighted mean functions, ∆ds with desired range accuracy 0.1meter.

Moreover, if we imagine that the subset selected is an antenna array, we can show
the receiving characteristic of the subset. The beam pattern provides the receiving
characteristics of the subset which is formed by the coherence calculated on the grid
delay vector. (The coherence will be introduced in the Chapter 4.) Here we only use the
subset selected in SNR = 20dB and compare them with the full set CKf and subsets
selected in the the single path and 2-path cases. The Beam patterns are provided in
figure 3.10-3.13.

We can see that, the beam patterns provide the gain of each delay value in the
receiving procedure. Compared to full set beam pattern, the beam patterns of all
selected subsets has narrow main lobe and higher side lobes. Narrow main lobe will
make the ranging process more accurate and has higher resolution in the scope of main
lobe. But the high side lobes will make the estimated result erroneous in side lobe scope.
For the single path case, 2-path case and GCRLB,11(τ̂0, ˆτ grid|hM) with Flog−mean(·),
the first side lobe of their beam pattern is more close to the main lobe which may
make the estimated results inaccurate if there exists non-LOS path with smaller ∆τ
in the environment. On the contrary, for GCRLB,11(τ̂0, ˆτ grid|hM) with Fmean(·) and
Fexpectation(·), their main lobe and side lobes are more separated. As a consequence, the
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Figure 3.8: Number of elements in selected subset in two paths with various time difference
for different SNRs, weighted mean functions, ∆ds with desired range accuracy 0.2meter.

Figure 3.9: Number of elements in selected subset in two paths with various time difference
for different SNRs, weighted mean functions, ∆ds with desired range accuracy 0.3meter.

results will be inferential with existence of large delay difference in the environment.

3.4 Conclusion

In this chapter, we introduce the expression of Cramer-Rao lower bound and derive
its calculation equation for single path case and 2-path case. Then we simplify the
CRLB calculation of τ0 in multiple paths environment to 2-path case with various time
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Figure 3.10: Beampattern comparison between full set and subsets selected with single path
CRLB and 2-path CRLB with fixed delay difference.

Figure 3.11: Beampattern comparison between full set and subsets selected with 2-path CRLB
for Fmean(·), various delay difference and accuracy.

differences ∆τn0. By regarding the CRLB of τ0 as the evaluation criterion, we are finally
able to select the optimal tone subset using the greedy algorithm.

In the simulation, we get the following observation and analysis:

i) High SNR can reduce the number of tones used and the tones selected tend
to distribute at both ends of the bandwidth to achieve the widest bandwidth during
the measurement. It is because wide bandwidth is the key point to achieve accurate
estimation which has been proved in Chapter 2.

ii) If the threshold is lower, i.e. the desired accuracy value is smaller, then more
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Figure 3.12: Beampattern comparison between full set and subsets selected with 2-path CRLB
for Flog−mean(·), various delay difference and accuracy.

Figure 3.13: Beampattern comparison between full set and subsets selected with 2-path CRLB
for Fexpectation(·), various delay difference and accuracy.

tones need to be selected to receive more data and to reach the accuracy.
iii) If Flog−mean(·) is used, then much fewer tones will be selected compared to

using Fmean(·) or Fexpectation(·) because the Flog−mean(·) tends to make the CRLB of τ0

smaller which will be more possible to be lower than the threshold. As a result, there
will be more iterations of the algorithm and more tones will be discarded.

iv) The step size of grid delay vector during the calculation of the CRLB also
influences the tone subset selection and larger step size tends to make the CRLB of τ0

smaller because the high GCRLB,11(τ̂0, ˆτ grid|hM) is not always sampled.
v) Compared to the full set, the beam patterns of selected subsets have

narrow main lobe and higher sidelobes. For single path case, 2-path case and
GCRLB,11(τ̂0, ˆτ grid|hM) with Flog−mean(·), the sidelobes are more close to the mainlobe.
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For GCRLB,11(τ̂0, ˆτ grid|hM) with Fmean(·) and with Fexpectation(·), the mainlobe and the
sidelobes are more separated. Based on the analysis of the beampatterns, the estima-
tion procedure may have good resolution but will be influenced by the non-LOS path
signal.

Generally speaking, if we want to reduce the number of tones used during multi-
frequency ranging in multi-path environment and only consider the CRLB as the cri-
terion, then, theoretically, we should use the Flog−mean(·) with large ∆d as the function
to calculated the CRLB of τ0, decide a high desired accuracy and place the targets in
high SNR environment to reach a better result. In the aspect of beampattern, if non-
LOS paths exist and have small time difference with the LOS path, we should consider
GCRLB,11(τ̂0, ˆτ grid|hM) with Flog−mean(·) as the selected criterion. If the non-LOS path
has large ∆τ compared to the τ0 path, GCRLB,11(τ̂0, ˆτ grid|hM) with Fmean(·) and with
Fexpectation(·) should be used.

However, the subsets selected above are based on the 2-path CRLB while in our
case, the ranging condition is multi-path. So the criterion, 2-path CRLB, may be not
so efficient for practical use. Also, the beam pattern of the selected subsets are not
good enough due to the high side lobes. As a consequence, in the next chapter, we are
going to use another criterion, the matrix coherence to select the tone subset and in
the Chapter 5, we will test the subsets’ performance in real estimation procedure.
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Optimal tone selection with
matrix coherence 4
In the chapter 3, we utilize the CRLB as the evaluation criterion to solve the optimal
tone selection problem as the target equation (1.5) is a typical estimation problem.
But consider the solution in another point of view, reducing the number of tones used
can be regarded as the dictionary construction problem in a compressive sensing (CS)
procedure. Thus, in this chapter, we introduce the concept of CS theory, the dictionary
matrix and the Restricted Isometry Property(RIP) at first. Then we use the matrix co-
herence to indicate the dictionary RIP and to construct the optimal dictionary matrix.
The simulation results and conclusions are also provided.

4.1 Compressive sensing theory

Usually, when we sample a signal and want to recover it accurately through the samples,
we need to follow the Nyquist rate, i.e. the sampling rate must not be lower than twice
the maximum frequency in the signal. If we use fewer samples, the reconstruction
problem will become an underdetermined linear system which do not have a unique
solution. However, with the concept of compressive sensing, we are able to recover the
signal from far few samples that transitional methods use. This is because CS utilizes
the sparsity of the signal and is able to find a sparse solution of the underdetermined
linear system which is unique. The detailed information of CS theory is provided below.

In classical compressive sensing theory, the final compressed signal y in received
terminal can be expressed by:

y = R(Cm)Φf (4.1)

where f is a q× 1 transmitted signal vector, Φ is the q× q measurement matrix. m× q
selecting matrix R(Cm) extract samples according to the coordinates Cm to construct
the final compressed signal y which has size m×1 and Cm is a subset of {0, 1, · · · , q−1}.
Clearly, m < q and the sampling rate is lower than the Nyquist rate which make the
equation (4.1) a underdetermined linear system having infinite solutions.

To be sure that we can find a unique solution of equation (4.1) by CS technology,
the following fundamental premises must exist: [17][18]:

i) The signal f is sparse in some domain which can be expressed by:

f = Ψx (4.2)

where Ψ is a q × p sparse base and x is a p× 1 k − sparse signal which means x only
has k non-zero elements, k ≤ m < q ≤ p.

Then equation (4.1) ran be rewritten as:

y = R(Cm)Φf = R(Cm)ΦΨx = R(Cm)Ax = A’(Cm)x (4.3)
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where A is the full dictionary with size q × p and A’(Cm) = R(Cm)A = R(Cm)ΦΨ is
the compressed dictionary with size m× p.

ii) The compressed dictionary must have enough Restricted Isometry Property
(RIP) to make sure its columns have incoherence.

If the above requirements are meet, then after receiving y, reconstruction methods
will be used to recover sparse signal x uniquely and original data f can be obtained via
equation (4.2).

To apply the compressive sensing method to the multi-frequency ranging case, we
can assume the measurement matrix Φ is a unit matrix and regard the hKf as f in
equation (4.2). Then hKf should be sparse in a domain, so we regard the a(rN) and
ZKf in equation (4) as the x and Ψ in equation (4.2) respectively. But the x is a sparse
vector while a(rN) is not. To build a sparse vector, we can set a grid vector of distance
rgrid = [rg1, rg2, rg3, ...] and a(rgrid) contains amplitudes of paths at grid points. Multi-
path distance rN are all at the grid point and the corresponding amplitudes in a(rgrid)
are non-zero while the other elements in a(rgrid) are zeros.For example, if the paths are
rN = [4, 9, 17]m in the multi-path condition, the a(rgrid) will be:

a(rgrid) =
[
0 ... 0 a(4) 0 ... 0 a(9) 0 ... 0 a(17) 0 ...

]T
(4.4)

Thus the new grid amplitude vector a(rgrid) is sparse and meets the requirement of
compressive sensing. The grid dictionary Z′Kf can be expressed by:

Z′Kf =
[
zKf (τg0) zKf (τg1) zKf (τg2) ...

]
(4.5)

where τ grid = [τg1, τg2, τg3, ...] =
rgrid
c

. And the final vector hKf will not be influenced
by the zeros:

hKf = ZKfa(rN) + n = Z′Kfa(rgrid) + n (4.6)

The compressed received signal hM can be regarded as y in the equation (4.3) and is
written by:

hM = R(CM)ΦhKf + n

= R(CM)Z′Kfa(rgrid) + n

= Z′Ma(rgrid) + n

(4.7)

where matrix R(CM) extracts rows in full dictionary Z′Kf according to the sampled
coordinate information in CM , CM has been introduced in the introduction which is a
subset of {0, 1, · · · , Kf − 1}, noise vector n has size M × 1, Z′M = R(CM)Z′Kf is the
compressed grid dictionary matrix. Then, in our case, the distance information can
be extracted from the estimated ĥKf via reconstruction algorithm with known hM and
ZM .

As motioned before, to have a unique sparse solution of equation (4.1), one of
the requirements is that the compressed dictionary must have enough RIP to make
sure its column have incoherence, i.e. its columns have low coherence. Then in the
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following, the concept of RIP will be introduced and several criteria that can indicate
the coherence of CS dictionary will be provided.

4.2 Optimal dictionary matrix

In real world, the target signal can not always be sparse and there are always noises
and perturbations. Thus the robustness of CS is necessary to accurately recover signals
from few measurements and noises. As stated in [17], the robustness of CS procedure
is based on two fundamental elements: the sparsity of the compressived signal and the
RIP of the compressed dictionary. For each integer k = 1, 2, ..., the isometry constant
δk is defined by:

(1− δk)‖x‖2
`2
≤ ‖A’(Cm)x‖2

`2
≤ (1 + δk)‖x‖2

`2
(4.8)

where x is a k − sparse vector.

Then if the constant δk is not too close to 1, we can say that the matrix A’(Cm)
obeys RIP loosely. As a consequence, matrix A’(Cm) can approximately preserve the
Euclidean length of the signal x and x is not in the null-space of A’(Cm). Briefly
speaking, we can also say that all subsets extracting columns from A’(Cm) are nearly
orthogonal. When it comes to the signal compression and recover, it is proved that
if A’(Cm) has RIP, there exists robust and efficient algorithms to recover the sparse
signal from limited CS measurements[17]. Thus, RIP can be a sufficient evaluation
metric to our selection problem. As RIP guarantees the incoherence among columns of
the compressed dictionary, the coherence of matrix Z′M can be a good indicator of the
dictionary RIP and low coherence is the goal we want to achieve.

4.2.1 Coherence calculation

Main indicators of the matrix coherence are the mean coherence and the maximal
coherence of the matrix.

i) Mean coherence

If we would like to reduce the average coherence among all possible column pairs in
the matrix, the GCo−mean(CM , τ grid) could be used as the criterion to indicate matrix
coherence, where τ grid is the delay grid vector, τ grid = [τg1, τg2, τg3, ...]. The coherence
of two columns in the compressed grid dictionary matrix Z′M can be calculated by:

µ(CM , n, n
′) = |z′M(τgn)Hz′M(τgn′)| (4.9)

where z′M(τgn) is the n-th column of matrix Z′M and τgn is the n − th elements in the
delay grid vector τ grid, n, n

′ ≥ 1, n 6= n′.
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As the matrix Z′M is constructed as follows:

Z′M =


z(τg1)b0 z(τg2)b0 z(τg3)b0 ...
z(τg1)b1 z(τg2)b1 z(τg3)b1 ...

...
...

. . .
...

z(τg1)bM−1 z(τg2)bM−1 z(τg3)bM−1 ...



=


e−j2b0π∆fτg1 e−j2b0π∆fτg2 e−j2b0π∆fτg3 ...
e−j2b1π∆fτg1 e−j2b1π∆fτg2 e−j2b1π∆fτg3 ...

...
...

. . .
...

e−j2bM−1π∆fτg1 e−j2bM−1π∆fτg2 e−j2bM−1π∆fτg3 ...


(4.10)

where b0, b1, ..., bM−1 ∈ CM , we can rewrite the equation (4.9):

µ(CM , n, n
′) =

∑
b∈CM

e−j2bπ∆f(τgn−τgn′ ) (4.11)

which means that the coherence of two columns in the Z′M only depends on their time
difference τgn− τgn′ and the subset CM which is similar to the CRLB calculation of two
paths. So we also use ∆τgn = τgn − τg1 to denote the time difference between the first
column and the other column, n ≥ 1. Then we have:

µ(CM ,∆τgn) =
∑
b∈CM

e−j2bπ∆f∆τgn (4.12)

and the mean value of the coherence of the compressed dictionary matrix can be written
as:

GCo−mean(CM , τ grid) =
1

Ngrid − 1

∑
∆τgn

µ(CM ,∆τgn) =
1

Ngrid − 1

∑
∆τgn

∑
b∈CM

e−j2bπ∆f∆τgn

(4.13)
where Ngrid is the number of elements in the delay grid vector τ grid.

ii) Maximal coherence
If we would like to reduce the maximum of the matrix coherence, the maximal

coherence could be used as the criterion which is calculated by:

GCo−max(CM , τ grid) = max
n,n′≥1,n6=n′

|zM(τgn)HzM(τgn′)| (4.14)

There also exists following lower bound of GCo−max(CM , τ grid) for matrix Z′M with
Ngrid ≥M [35]:

GCo−max(CM , τ grid) ≥

√
Ngrid −M

(Ngrid − 1)M
(4.15)

with equality if and only if
∑

τgn
zM(τgn)zM(τgn)H =

Ngrid
M

I, i.e. coherence among all
possible column pairs are equal.
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The above bounds are known as the Welch lower bound which is more useful for
small Ngrid. For large Ngrid, a tighter composite lower bound on GCo−max(CM , τ grid) is
proposed in [36]:

GCo−max(CM , τ grid) ≥ max(

√
Ngrid −M

(Ngrid − 1)M
, 1− 2N

− 1
M−1

grid ) (4.16)

In addition, [36] has proved that if the full dictionary Z′Kf is a complete FFT matrix,

difference set can be used as the subset CM and the matrix Z′M will reach the Welch
bound. The difference set is defined as follows: If M(M − 1) differences p − p′ take
all possible values 1, 2, ..., Nd − 1 for λ times, then the subset CM ⊂ CKf is called a
(Nd,M, λ) difference set. With proper delay step size, we can guarantee that the matrix
Z′Kf is complete and has orthogonality. Then we can apply the difference set in our
optimal dictionary construction.

4.2.2 Selection algorithm for optimal dictionary construction

In the optimal dictionary construction, if we use the mean coherence
GCo−mean(CM , τ grid) as the evaluation criterion, we can see that the coherence
of the matrix is not monotonic with the number of elements in CM . So it is not
possible to use the greedy algorithm here. And if we use the exhaust search to find
the subset with minimal GCo−mean(CM , τ grid), the subsets of the full set CKf will be
too many and the time used to test all these subsets is unacceptable. Thus we have to
use the random search algorithm to find a sub-optimal solution and we need to change
the target optimization function (5) to fit this case:

min GCo−mean(CM , τ grid) (4.17)

The random search algorithm for subset selection based on GCo−mean(CM , τ grid) is
provided in Algorithm 3.

Algorithm 3 Greedy algorithm for optimal dictionary construction using criterion
GCo−mean(CM )

Input: original full set CKf , range and step size of delay grid vector τ grid), frequency step
size ∆f , stage number w = 1, GCo−mean−tres = 1
Output: Optimal subset CM

1: In stage w, choose a subset Cw ⊂ CKf randomly which has more than 4 elements and
calculate the GCo−mean(Cw, τ grid).

2: If GCo−mean(Cw, τ grid) is smaller than GCo−mean−tres, set GCo−mean−tres =
GCo−mean(Cw, τ grid) and CM = Cw, w = w + 1;

3: If not, w = w + 1.
4: If w > 108, end the algorithm and out put the final selection CM . If not, go to step 1.

As for the other metric, the maximal coherence, we can use existing difference set
as the dictionary index which can reach the Welch bound. The maximal number of
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frequencies used in our report is 400, so we find a difference set (400, 57, 8) which meets
our requirement and can be used in the following simulations. It is noteworthy that
there exist multiple difference sets with Nd = 400 theoretically but only the difference
set (400, 57, 8) is known. That is reason why we only use difference set (400, 57, 8) in
the simulation here.

4.3 Simulation Result

In the simulation, we still use Matlab as the simulation software and use criteria
GCo−mean(CM , τ grid) and GCo−max(CM , τ grid) as the evaluation metrics. The selection
results are provided in this section.

At first, we set the delay grid vector τ grid = [0,0.1,...,10.0]m
c

where c = 3 × 108m/s.
Then we provide the beam pattern of full set matrix Z′Kf in figure 4.1:

Figure 4.1: Beampattern of full set matrix Z′Kf in grid step size 0.1m
c .

For GCo−mean(CM , τ grid), with Kf = 400, ∆f = 200kHz, we can obtain a sub-
optimal selection of tones using random search algorithm and the selected subset has
9 elements. The distribution of the subset is shown in figure 4.2.

For GCo−max(CM , τ grid), to reach the Welch bound, we need to construct a complete
FFT dictionary matrix. Thus the delay grid vector should have step size 1

Bandwidth
=

1.25×10−8s, so we have τ grid = [0, 1.25, 2.50, ..., 498.75]×10−8s. The different set used
as the CM here is (400, 57, 8). With Kf = 400, c = 3×108m/s, ∆f = 200kHz, the CM
element distribution and beam-pattern are presented in figure 4.3 and 4.4. As we can
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Figure 4.2: Distribution of elements in selected subset using criterion GCo−mean(CM , τ grid).

see in figure 4.4, the beam-pattern of difference set (400, 57, 8) conforms to the analysis
in the above section that the µ(CM , n, n

′) for all possible (n, n′) pairs are equal.

Figure 4.3: Distribution of elements in difference set (400, 57, 8).

Figure 4.4: Beampattern of matrix Z′M using difference set (400, 57, 8) in grid step size
1

Bandwidth = 1.25× 10−8s.

The beampattern of full set matrix and subsets selected above are provided in figure
4.5. In the figure, the delay grid step size is 0.1m

c
. As shown, difference set and subset

selected by GCo−mean(CM , τ grid) has wider main lobe and lower side lobes compared
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to the full set. The side lobes of subset selected by GCo−mean(CM , τ grid) is lowest as it
needs to reach a low coherence in the whole range. We can also see that the rightmost
part of the yellow line seems to be rising outside the grid vector range. It is the
GCo−mean(CM , τ grid) only supress the sidlobes and the whole beam pattern in the grid
vector range which is the range of interest. For the part outside our target range, the
beampattern may be poor but it is out of our consideration. In addition, compared to
the figure 4.2, the beam pattern line of difference set in figure 4.4 is different which is
caused by the different delay grid step sizes in grid vector.

Figure 4.5: Beampatterns of full set and selected subsets using RIP as the criterion.

4.4 Conclusion

In this section, we introduce the theory of compressive sensing and the concept of
Restricted Isometry Property of dictionary matrix. Then we use the coherence of
matrix to indicate the dictionary RIP and to construct the optimal CS dictionary Z′M .
Based on the criteria, the mean coherence and the maximal coherence, two subsets are
obtained.

If we use the GCo−mean(CM , τ grid) as the criterion, we will obtain a subset with 9
elements by random search algorithm. The beam pattern of the selected subset has
wider main lobe and low side lobes in the target range (grid vector range) compared to
full set.

If we use the maximal coherence as the evaluation metric, there exists a lower bound
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of maximal coherence which is known as Welch bound and we can only reach the Welch
bound when using difference set. In this report we use the difference set (400, 57, 8) as
the subset CM and for delay grid step size 0.1m

c
, the beam pattern of difference set has

wider main lobe and lower sidelobes compared to the full set beam pattern.
However, the selected subsets based on various criteria are theoretically optimal.

Their real performances in data reconstruction procedure is unknown. Thus we will
test the performance of the subset in data recover and estimation procedure in the next
Chapter.
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Optimal subset performance
test by gridless compressive
sensing 5
To see the performance of the selected subsets, we will use them to construct the
dictionary matrix and use the dictionary to recover the original data to achieve indoor
ranging. The accuracy of the estimated distance will be the performance indicator. The
used reconstruction algorithm will be gridless compressive sensing algorithm which will
be introduced in the next section.

5.1 Gridless compressive sensing algorithms

As mentioned in the introduction, the traditional CS reconstruction method deals with
the linear atom decomposition problem with finite atom candidates, which may cause
atom grid. To offset the possible error and ambiguity caused by the grid, we may in-
crease the sampling rate to make the grid dense enough to meet our accuracy. But the
additional computational load will be higher. To solve the grid problem efficiently, some
gridless reconstruction algorithms are proposed recently. In this section, 2 typical grid-
less reconstruction algorithms, NL-GMF and ANM are introduced and implemented.

5.1.1 Noiseless global matched filter

To introduce the Noiseless Global matched filter(NL-GMF) more clearly, we need to
introduce its base, the Basis Pursuit (BP) method[37] at first.

Suppose that the compressed received signal hM can be decomposed to the column
elements zM(τn) in matrix ZM with amplitudes â(r0), â(r1), ..., â(rβ), and β can be
arbitrary:

hM =

β∑
n=0

â(rn)zM(τn) (5.1)

Then if we can not use the atoms (column element) fewer than β to decompose the
signal hM , then the above atomic decomposition is called ideal. And the ideal atomic
decomposition of number n or other smaller number is unique if any column subsets of
ZM with 2β atoms is linearly independent. In our case, the number of columns is finite,
ZM = [zM(τ0), zM(τ1), ..., zM(τN−1)], β = N − 1, we can only solve the decomposition
problem by solving the proximal convex optimization:

min
aN

N−1∑
n=1

|â(rn)|

s.t. hM = ZM â(rN)

(5.2)
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where â(rN) is a N × 1 amplitude vector. And solving the above optimization problem
is known as Basis Pursuit method which aims to use few atoms to decompose received
signal.

To make sure the BP solution is the ideal decomposition, the dictionary ZM with
finite number of columns must obey RIP[23] and then we have to face the atom grid
problem. Noiseless Global matched filter is proposed then in [23] to solve the atom grid
problem in data recover procedure using an equivalent dual form of the BP method. It is
proved that the vector â(rN) is the optimal solution of equation (5.2) iff hM = ZM â(rN)
and there exists a vector g containing the dual parameters such that:{

|zM(τn)Hg| ≤ 1, â(rn) = 0

zM(τn)Hg = γn = â(rn)
|â(rn)| , â(rn) 6= 0

(5.3)

for all n = 0, 1, ..., N−1 where vector g has size M×1. The above conclusion is named
by Dual Null Space Property(DNSP) which also applies to dictionary with infinite
columns. And the BP method in equation (5.2) can be rewritten as follows using the
dual parameter vector:

max
g
<(gHhM)

s.t. ∀n, zM(τn)Hg| ≤ 1
(5.4)

The above optimization problem is the target function to be solved by NL-GMF
method. And the local search algorithm to implement the optimization procedure is
provided:

Algorithm 4 NL-GMF

Input: All-zero vector g0, maximal iteration number wmax, iteration index w = 1, step
size ε small enough
Output: Estimated time delay τ0, τ1, ...

1: Calculate the spectrum JNL−GMF (τ) = |zM (τ)Hgw−1| and find the peak points in the
spectrum.

2: Find the peak points τ0, τ1, ... that JNL−GMF (τ) > 1.
3: Compute a feasible direction ξ and update the vector gw = gw−1 + εξ. So that the
JNL−GMF (τ0), JNL−GMF (τ1), ... decrease and <(gHhM ) increases.

4: w = w + 1. If w > wmax, end the algorithm and output the peaks τ0, τ1, ... in
JNL−GMF (τ) = |zM (τ)Hgw−1|. If not, go to step one.

But as we can see, the NL-GMF is derived in noiseless condition which may not
be so robust in our noisy multi-path environment. So we also use another gridless
reconstruction algorithm, atomic norm minimization, as the comparison.

5.1.2 Atomic norm minimization

Except using the concept of dual vector, in [19], the concept of atomic norm is used
to solve the gridless reconstruction problem. Similar to the atom concept in NL-GMF
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method, here we assume that the dictionary matrix ZKf consists of atoms zKf (τn) for

n ∈ N and hKf =
∑N−1

n=0 â(rn)zKf (τn). Then the atomic norm of the received signal is
defined by:

‖hKf‖ZKf = inf{t > 0 : hKf ∈ tconv(ZKf ))}

= inf
â(rn)≥0

{
N−1∑
n=0

â(rn) : hKf =
N−1∑
n=0

â(rn)zKf (τn)

}
(5.5)

The atomic norm forces the matrix ZKf to have less elements. Then we can do the
semidefinite programming characterization of the atomic norm:

‖hKf‖ZKf = inf

{
1

2Kf

trace(Toep(u)) +
1

2
t :

[
Toep(u)) hKf

hHKf t

]
� 0

}
(5.6)

where Toep(u) denotes the Toeplitz matrix whose first column is the vector u, u and
t are intermediate variables.

To compress the received the received signal vector hKf which has Kf elements, we
discard Kf −M elements of the signal (actually we do not measure these discarded
elements during sensing procedure and the technology is called compressive sensing) and
the compressed received signal becomes sparse. The index of the preserved elements
is CM ⊂ CKf Then we can utilize the sparsity of the signal and solve the following
minimization problem to construct it:

min
ĥKf

‖ĥKf‖ZKf

s.t. hbn = ĥbn , for all bn ∈ CM
(5.7)

which can also be written as:

min
u,ĥKf ,t

1

2Kf

trace(Toep(u)) +
1

2
t

s.t.

[
Toep(u)) ĥKf

ĥ
H

Kf
t

]
� 0

hbn = ĥbn , for all bn ∈ CM

(5.8)

After obtaining the recovered signal ĥKf we can use the MUSIC algorithm to extract
the distance information.

5.2 Test results in simulated data

In the subset performance test, we first use the subsets obtained in the previous Chap-
ters in simulated data. The used subsets are all selected in SNR = 20dB. The
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algorithms used to test are the NL-GMF and the ANM algorithm which has been in-
troduced above. For convenience, we number the subsets in the appendix B and provide
their elements.

i) Selected subset performance in 2-path case and 3-path case

At first, we test the selected subsets by using them to estimate target distance in 2-
path environment and 3-path environment. The parameters are set as: Kf = 400,
c = 3 × 108m/s, ∆f = 200kHz, ε = 0.0003, wmax = 1000. The signal energy Es = 1
for each path and the SNR is 20dB. The delay step size of steering vector in MUSIC
algorithm is 10−10s and the search range is [0, 10−7]s. The NL-GMF algorithm is
repeated 100 times for each subset and ANM algorithm repeats 6 times for each subset.
And we take the mean square error (MSE) among the results and count the number of
result with error smaller than 0.3m to calculate the successful estimation probability:
Psuc−est = number of results with error less than 0.3m

number of all results
. We also set rN = [4, 9]m and rN =

[4, 9, 17]m respectively to see the influence of environment condition. The table 5.1
provides the MSE and successful estimation probability of the estimated distance with
2-path environment and the table 5.2 provides the MSE and successful estimation
probability of the estimated distance with 3-path environment.

Set number M
NL-GMF ANM

MSE(m2) Psuc−est MSE(m2) Psuc−est
Full set 400 0.2156 98% 0.0002 100%

subset1 3 30.6656 0% 33.9424 0%

subset2 3 2.0961 92% 6.8957 0%

subset3 137 0.0005 100% 0.0003 100%

subset4 101 0.0004 100% 0.0003 100%

subset5 28 0.0096 100% 0.0015 100%

subset6 40 0.0058 100% 0.0014 100%

subset7 12 0.0182 100% 0.0089 100%

subset8 79 0.0012 100% 0.0004 100%

subset9 132 0.0004 100% 0.0009 100%

subset10 32 0.0088 100% 0.0019 83%

subset11 5 0.0088 100% 7.7658 0%

subset12 4 0.0257 100% 5.7773 0%

subset13 4 0.0278 100% 5.7111 0%

subset14 3 332.6304 0% 6.0382 0%

subset15 3 253.5876 0% 5.6393 0%

Difference set
(400,57,8)

57 0.0007 100% 0.0025 100%

subset16 9 0.0022 100% 0.0095 100%

Table 5.1: Mean square error and successful estimation probability of estimated distance with
different algorithms, subsets in SNR = 20dB and rN = [4, 9]m.

As we can see in the tables, the reconstruction algorithm has essential influence on
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Set number M
NL-GMF ANM

MSE(m2) Psuc−est MSE(m2) Psuc−est
Full set 400 0.3816 96% 0.0004 100%

subset1 3 16.7412 0% 47.6399 0%

subset2 3 38.8103 0% 3.4935 0%

subset3 137 4.3653 64% 0.0111 100%

subset4 101 6.3003 35% 0.0071 100%

subset5 28 0.0136 100% 0.0095 100%

subset6 40 0.2837 96% 0.0038 100%

subset7 12 0.0414 100% 0.0318 100%

subset8 79 1.9275 79% 0.0035 100%

subset9 132 5.0460 53% 0.0041 100%

subset10 32 0.0574 99% 0.0023 100%

subset11 5 0.4057 0% 0.0940 33%

subset12 4 2.0927 0% 0.1588 0%

subset13 4 0.3725 0% 0.1674 0%

subset14 3 249.7305 0% 220.8214 0%

subset15 3 244.6208 0% 260.8317 0%

Difference set
(400,57,8)

57 0.0009 100% 0.0008 100%

subset16 9 0.0051 100% 1.2469 0%

Table 5.2: Mean square error and successful estimation probability of estimated distance with
different algorithms, subsets in SNR = 20dB and rN = [4, 9, 17]m.

the estimated results. For most of the subsets, using the ANM algorithm can obtain a
low MSE and for the others NL-GMF is a better choice.

Compared to the others, difference set, the full set, subset3-subset10 and subset16
have good estimation accuracy in target distance in at least one algorithm. Most of
them are selected with ∆d = 0.2m−0.3m, threshold 0.2m−0.3m, CRLB with Fmean(·)
and CRLB with Fexpectation(·).

Also, compared to the 3-path environment, 2-path environment makes the estima-
tion more accurate when using subset2-subset10. The reason is that those subsets are
selected based on the 2-path CRLB which are more suitable for 2-path case. For sub-
set 11-15, their advantages in 2-path case is not obvious because they have too few
elements which may not be able to show all of their characteristic.

It is also noteworthy that most of the MSEs of subset1-subset15 obtained by NL-
GMF are above the Cramer Rao lower bound of rN = [4, 9, 17]m and rN = [4, 9]m
which meets the estimation theory. But for ANM algorithm, some MSEs are lower than
the CRLB because the CRLB is only suitable for unbiased estimator like the global
matched filter, and the atomic norm minimization algorithm can be biased which makes
the results lower than the CRLB. Also, the amount of the data used to calculate the
MSE of ANM algorithm is too few which can also cause the error in result MSE.

Except the MSE, we can also see that the subsets having low MSE also have good es-
timation probability. And the subsets having large MSE may also have good successful
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estimation probability because the large MSE may be caused by some outliers.

Although the results of subset1-subset15 are corresponding to the CRLB theory, the
difference set which has larger CRLB has the best estimation accuracy and successful
estimation probability in the table. This indicates that the CRLB of 2 paths may not
be the optimal metric for our case.

ii) Selected subset performance in resolution

To study the estimation resolution of selected subsets, we test the subsets by setting
rN = [4, 4.1, 17]m and the obtained results are provided in the table 5.3.

Set number M
NL-GMF ANM

MSE(m2) Psuc−est MSE(m2) Psuc−est
Full set 400 0.1758 98% 0.0031 100%

subset1 3 8.6666 0% 11.8508 0%

subset2 3 0.2934 1% 0.9482 0%

subset3 137 0.0030 100% 0.0044 100%

subset4 101 0.0034 100% 0.0031 100%

subset5 28 0.0119 100% 0.0077 100%

subset6 40 0.0039 100% 0.0034 100%

subset7 12 0.0158 100% 0.0044 100%

subset8 79 0.0028 100% 0.0031 100%

subset9 132 0.0032 100% 0.0025 100%

subset10 32 0.0044 100% 0.0031 100%

subset11 5 4.7202 1% 0.5144 0%

subset12 4 3.8658 17% 0.4057 0%

subset13 4 2.0246 59% 0.3471 0%

subset14 3 115.5558 0% 228.4652 0%

subset15 3 111.0166 0% 226.9560 0%

Difference set
(400,57,8)

57 0.0024 100% 0.0025 100%

subset16 28 0.0129 100% 0.0053 83%

Table 5.3: Mean square error and successful estimation probability of estimated distance with
different algorithms, subsets in SNR = 20dB and rN = [4, 4.1, 17]m.

As we can see, compared to the results of rN = [4, 9, 17]m, the MSEs of NL-GMF
is lower and the Psuc−ests is higher in table 5.3 while the result of ANM is not better.
It is because the NL-GMF algorithm depends much on the subset’s beampattern and
ANM does not. As r0 = 4m, r1 = 4.1m both lie in the mainlobe of the subsets’
beampattern, it is not possible for algorithm to distinguish these two paths and the
estimated results would be around 4m and 4.1m. Compared to r2 = 9m, r2 = 17m will
have less interference on the LOS path estimation which leads to a small MSE. But
for rN = [4, 9, 17]m, r1 = 9m has large probability lying in the first sidelobe and the
sidelobe value is high which makes the estimated results erroneous.
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iii) Comparison between difference set, 57-element random set and uniform set

As the difference set has the best estimation performance in table 5.1-5.3, is it the
optimal result we can obtain? In this section, we would like to compare the difference
set with the sets of same number of elements but different distributions to answer the
question. We use 30 randomly chosen subsets and 1 uniformly distributed subset as
the comparison. rN = [4, 9, 17]m. The beampatterns of difference set and the uniform
distribution set are provided in the figure 5.1 and the MSEs of the estimated target
distances with different subsets using NL-GMF are provided in the figure 5.2. The
NL-GMF algorithm is repeated 100 times for each subset to obtained the MSE result.

Figure 5.1: Beampattern of uniform distributed subsets with 57 elements and difference set
(400,57,8).

As shown in the figure 5.2, the subset with uniform distribution has the best esti-
mation accuracy which indicates that although difference set has good performance in
table 5.1 and 5.3, the maximum coherence of the matrix may not be the optimal metric
for optimal dictionary construction.

iv) Comparison between subset by random search and uniform set

In the table 5.1 and 5.2, the subset16 which is selected by random search algorithm
based on the minimal average coherence has both low estimation error in most cases
and few number of elements. So is the minimal average coherence the best metric for
our case? To figure this out, we select a uniform distributed subset with 9 elements and
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Figure 5.2: MSEs of estimated distance by NL-GMF for randomly chosen subsets with 57
elements, uniform distributed subsets with 57 elements and difference set (400,57,8).

compared its performance with the subset16. The uniform distributed subset is named
the subset17. And the beampattern of the subset16 and the subset17 are presented in
the figure 5.3.

By NL-GMF algorithm, the MSE of the estimated distance with subset17 is
0.0039(m2) for rN = [4, 9, 17]m which is lower than the subset16. And in the range
of the beampattern, we can see that the beampattern of subset17 has higher sidelobes
and mean coherence. Why would it have better accuracy and will uniform distributed
subset always have the best accuracy?

To have a conclusion, we select subsets based on minimal mean coherence with
different number of elements and compare them with uniform subsets which have cor-
responding number of elements in estimation accuracy. The number of iteration times
for each random search algorithm is 107. For rN = [4, 9, 17]m, the MSEs of estimated
distance using different subsets are obtained by using the NL-GMF algorithm which
is repeated 100 times and by using ANM algorithm which is repeated 6 times. The
desired accuracy is 0.3m. The results are provided in the figure 5.4 and 5.5.

As shown in the figures, the subsets selected based on the minimal average coherence
is not always bad in distance estimation. When using NL-GMF algorithm, the selected
subset has similar accuracy with the uniform distribution subset but when using ANM
algorithm the selected subset is always better. And for both reconstruction algorithm,
the selected subset can reach the desired accuracy with fewer elements compared to the
uniform subsets.

52



Figure 5.3: Beampattern of subset16 and subset17.

Figure 5.4: MSE comparison between subsets selected by minimal average coherence and
uniform distributed subset with same number of elements using NL-GMF.
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Figure 5.5: MSE comparison between subsets selected by minimal average coherence and
uniform distributed subset with same number of elements using ANM.

v) Robustness of algorithms in noisy environment

Except the subset performance test, we would also like to see the difference between
the two algorithms. Here, we use both algorithms, the NL-GMF and the ANM, to
estimate the distance in different SNR values to see their difference. The subset used
here is the difference set. The MSEs of estimated distance is provided in the figure 5.6.

Clearly, the NL-GMF algorithm is more sensitive to the environment condition. It
can only estimate the distance more accurate than the ANM in high SNR condition
as the algorithm is more suitable for noiseless condition. Compared to the NL-GMF,
ANM method is less influence by the SNR and it has much exact results in low SNR
condition. Except the accuracy, we would also like to mention that the ANM takes
much longer time to output the result than NL-GMF does. Therefore, if the ranging
procedure is carried out in good environment (high SNR), NL-GMF could be a good
choice to save time. If we need high accuracy in noise environment, ANM algorithm
should be chosen.

5.3 Test results in real data

In the above simulations, the selected subsets are all tested in simulated data which
Gaussian white noise which is generated in ideal condition and may be different from
the environment in practice. In this section, we test the subsets with real data provided
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Figure 5.6: Average error of estimated distance by NL-GMF for SNR = [0, 5, ..., 30]dB with
difference set.

Figure 5.7: One generated multipath channel with practical conditions.
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by imec company, compare their performance and study the influence of environment
parameters. We generate one received channel with provided realistic parameters in
more practical conditions. The parameters are set as: Kf = 400, c = 299792458m/s,
∆f = 200kHz, Band = 2.4GHz − 2.48Ghz, the LOS path delay τ0 = 2 × 10−8s, the
ray arrival rate η = 1

25ns
, the Ricean K factor K = 1 which indicates the ratio between

LOS path energy and the NLOS path energy, the root mean square delay spread is
τrms−ds = 20ns which can indicate the multipath richness of a communication channel.
The generated multipath channel is a sparse channel and is shown in the figure 5.7.
E(τ) indicates the energy of each path.

Then we use the subsets selected in the previous section to extract the original
received data, apply NL-GMF and ANM algorithm to reconstruct the received data
and estimate the target distance. The NL-GMF is repeated 100 times and the ANM is
ran 6 times for each subset. Except the MSE and the Psuc−est, in this simulation we also
count the number of estimations that can output an result to calculate the estimation
probability Pest. The MSEs of the result, the Pest and the Psuc−est are provided in the
table 5.4.

Set number M
NL-GMF ANM

MSE(m2) Pest Psuc−est MSE(m2) Pest Psuc−est
Full set 400 9.6102 100% 48% 0.0007 100% 100%

subset1 3 139.5441 100% 13% 31.9220 50% 0%

subset2 3 33.0822 8% 3% 0.0226 100% 100%

subset3 137 8.2733 100% 45% 1.2755 100% 33%

subset4 101 13.7764 100% 3% 2.5944 100% 17%

subset5 28 7.4485 100% 48% 1.9049 100% 83%

subset6 40 7.4519 100% 49% 12.8612 100% 17%

subset7 12 7.3472 100% 54% 8.4023 100% 50%

subset8 79 10.1907 100% 29% 5.0524 100% 50%

subset9 132 8.1972 100% 45% 0.6911 100% 17%

subset10 32 8.3308 100% 46% 6.5895 100% 50%

subset11 5 72.0111 87% 62% 1.9084 100% 67%

subset12 4 98.1793 48% 48% 1.1494 100% 50%

subset13 4 90.0812 97% 55% 1.5392 100% 50%

subset14 3 45.8175 3% 0% 28.6836 67% 0%

subset15 3 35.5903 1% 1% 24.5387 33% 17%

Difference set
(400,57,8)

57 0.4699 100% 98% 0.0148 100% 100%

subset16 9 0.0468 100% 100% 0.0252 100% 100%

subset17 9 0.0368 100% 100% 3.8437 100% 50%

Table 5.4: Mean square error, estimation probability and successful estimation probability of
estimated distances with different subsets for 1 channel.

In general, the MSEs of estimation result of ANM is lower than the MSE ofNL-GMF
but ANM costs more time to calculate. The subset16 and the difference set are the only
subsets that have good accuracy in both algorithms. And their successful estimation
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probability is 100% which means we only need to measure the target distance for 1
time at most to get the true target distance if we use subset16 or difference set and the
channel is similar with the one in figure 5.7.

But as shown in Figure 5.2 and 5.4, the subset16 and the difference set is not
always optimal and the above conclusion is only in one channel. To show the general
performance of all subsets, in same channel parameters, we test 100 generated channels
by NL-GMF algorithm and test 18 generated channels by ANM algorithm. The MSEs,
the Pest and the Psuc−est are provided in the table 5.5.

Set number M
NL-GMF ANM

MSE(m2) Pest Psuc−est MSE(m2) Pest Psuc−est
Full set 400 5.2799 100% 67% 0.0216 100% 89%

subset1 3 55.1448 14% 0% 27.0901 56% 0%

subset2 3 33.4576 13% 1% 9.6329 94% 16%

subset3 137 3.8355 100% 64% 1.7417 100% 50%

subset4 101 4.7537 100% 58% 3.4039 100% 50%

subset5 28 4.7323 100% 53% 11.5864 100% 39%

subset6 40 4.5327 100% 50% 13.5758 100% 33%

subset7 12 4.5681 100% 50% 10.3206 100% 39%

subset8 79 5.7795 100% 47% 3.5864 100% 50%

subset9 132 4.1402 100% 69% 3.4282 100% 61%

subset10 32 7.9713 100% 45% 4.7781 100% 28%

subset11 5 76.2420 65% 17% 3.1253 100% 22%

subset12 4 57.5224 24% 3% 28.1009 94% 17%

subset13 4 71.0863 27% 4% 16.9970 89% 17%

subset14 3 40.5450 12% 1% 21.4059 83% 17%

subset15 3 44.7242 7% 0% 21.5424 89% 17%

Difference set
(400,57,8)

57 0.1200 100% 83% 0.2240 100% 83%

subset16 9 0.4245 100% 71% 0.5074 100% 33%

subset17 9 1.9492 100% 74% 2.6412 100% 67%

Table 5.5: Mean square error, estimation probability and successful estimation probability of
estimated distances with different subsets for several channels.

As shown in the table 5.5, most of the subsets are able to output an estimation result
but not able to estimate accurately. The full set, the difference set, the subset16 and
subset17 are the only subsets that have good accuracy and high successful estimation
probability. Compared to the subset17 which has uniform distribution, the subset 16
has lower MSE but lower Psuc−est which means that the subset17 tend to produce few
outliers.

In the next, we will study the influence of 3 essential parameters of the communi-
cation channel and show their impact on the estimation result.
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i) Influence of ray arrival rate

The ray arrival rate η has been introduced in the Chapter3. It can influence the NLOS
path dalay distribution. If η is high, the NLOS path delay will be more. In the test,
we set the ray arrival rate as η = 1

200
, 1

25
, 1

10
, 1

5
, 2

5
, 3

5
, 4

5
, 1 and generate 20 channels for

each η value. The subset16 and the NL-GMF is used to test the estimation result and
the other parameters are the same with above. The mean MSE and the successful
estimation probability among 20 channels of each η are provided in the Figure 5.8.

Figure 5.8: Mean MSE and the successful estimation probability among 20 channels of each
η using subset16 and NL-GMF.

As shown in the Figure 5.8, if the ray arrival rate increases, the mean MSE of
estimation result will be higher and we are less probable to obtain the true target
distance with few measurement.

ii) Influence of root mean square delay spread

The root mean square delay spread τrms−ds is an important indicator of a wireless com-
munication channel. It can represent the time difference between the LOS path and the
latest NLOS path. If τrms−ds is high, the latest NLOS path dalay has larger time differ-
ence with the LOS path delay. In this test, we set τrms−ds = 5, 10, 15, 20, 25, 30, 35, 40
and generate 20 channels for each τrms−ds. The subset16 and the NL-GMF is used to
test the estimation result and the other parameters are the same with above. The mean
MSE and the successful estimation probability among 20 channels of each τrms−ds are
provided in the Figure 5.9.
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Figure 5.9: Mean MSE and the successful estimation probability among 20 channels of each
τrms−ds using subset16 and NL-GMF.

As shown in the Figure 5.9, if the root mean square delay spread increases, the
estimation result will be more inaccurate and we need to measure more data to get the
target true distance.

iii) Influence of Ricean K factor

With higher Ricean K factor, the energy of NLOS path will has larger probability to
be higher which may cause greater interference in the LOS delay estimation. In this
test, we set the Ricean K factor as 1

8
, 1

4
, 1

2
, 1234 and generate 20 channels for each K.

The subset16 and the NL-GMF is used to test the estimation result and the other
parameters are the same with above. The mean MSE and the successful estimation
probability among 20 channels of each energy ratio value are provided in the Figure
5.10.

As shown in the Figure 5.10, if the K increases, the estimation result will be more
accurate and we can measure less times to obtain true target distance in acceptable
error.

5.4 Conclusion

In this Chapter, we use two gridless reconstruction algorithms to test the performance
of selected subsets in both simulated and real ranging procedure. We first introduce the
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Figure 5.10: Mean MSE and the successful estimation probability among 20 channels of each
K factor using subset16 and NL-GMF.

algorithms used, the noiseless global matched filter and the atomic norm minimization.
Then we do the performance test and analyze the received result. The conclusion is
listed in the follows:

i) For the subset performance test, the reconstruction algorithm used has influence
on the estimation results. Same subset may have different MSE of result when using
different algorithms to recover the data. As for the subset performance, the full set, the
difference and the subsets selected in ∆d = 0.2 − 0.3m, CRLB with Fmean(·), CRLB
with Fexpectation(·) and GCo−mean has small result MSE of at least one reconstruction
algorithm.

ii) Compared to the case of the 3-path environment, the subsets selected based
on 2-path CRLB have better performance in the case of 2-path environment. And as
difference set has the best performance among all selected subset but has high CRLB
value, it indicates that the 2-path CRLB may not be a good criterion in our case.

iii) The estimation results of NL-GMF algorithm are more influenced by the index
beam pattern compared to the ANM algorithm.

iv) The uniform distribution subset and randomly chosen subset with 57 elements
all have better performance than difference set which indicates that the maximum
coherence may not be a good criterion in indoor ranging.

v) The uniform distribution subsets and subsets selected based on minimal average
coherence with same number of elements have similar performance when using NL-GMF
algorithm and the selected subsets has better performance when using ANM algorithm.
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This indicates that minimal average coherence can be a good metric in subset selection
compared to the other criteria we tested.

vi) In the comparison between two gridless CS algorithms, the ANM takes longer
time to output the estimation result but it is robust in noise condition and has good
accuracy in low SNR environment. The NL-GMF only perform better in high SNR
environment but it can save time and provide estimated distance quickly.

vii) In the real data test, the subset16 has the best performance compared to the
other subsets we tested which indicates that in practical, the metric GCo−mean is also
suitable.

viii) Low ray arrival rate, low root mean square delay spread and high Ricean K
factor between LOS path and NLOS path all have positive influence on indoor ranging
when using NL-GMF.

Generally speaking, to achieve the goal of fewer tones used and good accuracy, we
should use minimal average coherence as the criterion to achieve the optimal frequency
selection and measure the target distance in conditions of low ray arrival rate, low root
mean square delay spread and high energy ratio.
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Conclusion and future workng 6
In the indoor ranging, a method using phase information with multiple frequencies is
used to estimate the target distance. To save the measuring time and improve efficiency,
in this thesis, we test several criteria and promote an optimal frequency selection. We
at first build a signal model of our case and calculate the ambiguity range of our model
to make sure all the estimations are carried within the ambiguity range. Then based
on the concept of estimation theory and compressive sensing, we use 2-path CRLB
and matrix coherence as the criteria to select suitable subsets of given tone set. The
selected subsets are tested in both simulated and real ranging procedure using two
gridless compressive sensing reconstruction algorithms, the NL-GMF and the ANM.
The influences of communication channel parameters are also studied. Based on the
above work, we can have the following conclusions:

i) The ambiguity range of our model is calculated by c
∆f

where c is the propa-

gation speed and ∆f is the frequency difference between two tones. And within the
unambiguous range, wide bandwidth is the key point to have good accuracy in esti-
mation procedure. The low noise variance also have positive impact on the estimation
accuracy.

ii) Random selection on the tones will destroy the data structure which makes the
MUSIC algorithm not applicable while uniform selection on the tones will not.

iii) The 2-path CRLB is correlated with the delay difference between two paths
and the subset CM . High SNR, high threshold and small step size of delay grid vector
will reduce the number of tones selected. And the selected tones tend to locate at the
both end of the bandwidth and are divided into blocks.

iv) Compared to the beam pattern of full set, selected subsets based on 2-path
CRLB tend to have beam pattern with narrower mainlobe and higher sidelobes while
difference set and subsets selected based on minimal mean coherence tend to have beam
pattern with wider mainlobe and lower sidelobe.

v) For subset performance test, the reconstruction algorithm has influence on the
estimation accuracy. The algorithm NL-GMF is more influenced by the beam pattern,
tends to have larger estimation error and is not so robust in noisy environment. The
algorithm ANM has better accuracy and is not influenced much by noise. But ANM
takes much longer time to output the estimation result compared to NL-GMF.

vi) For subset performance test, the subset selected based on 2-path CRLB have
better performance in 2-path case compared to 3-path case. But the subset with uni-
form distribution has better performance than subset selected by 2-path CRLB and
difference set. Thus 2-path CRLB and maximal coherence of matrix are not good
criteria for our case.

vii) For the subset selected based on minimal mean coherence, it only has better
performance than uniform distribution subset when using ANM algorithm. But in real
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data test, it has the best performance than all other subsets. It means that for practice,
the criterion minimal mean coherence is a good choice in the tone selection problem.

viii) For the parameters of the communication channel, low ray arrival rate, low
root mean square delay spread and high Ricean K factor have positive influence on
indoor ranging when using NL-GMF algorithm.

From the above conclusions, we can say that for our case, the minimal average
coherence is the best criterion that we tested and we can only use 9 tones instead of
400 to estimate indoor target accurately.

In the future, we are going to study more on this topic. The future work are mainly
in three points. The first one is to consider the selection problem in other point views
and test more criteria. The second one is to find other difference sets that meets
our requirements and compare them with existing subsets to find the best one. The
other point is to improve the accuracy and reduce the cost time of the reconstruction
algorithms.
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Part of Results in Chapter 3 A
In this appendix, Figure A.1, A.2 and A.3 present the element distributions in selected
subsets. These subsets are selected based on 2-path CRLB with various time difference
for different weighted mean function, ∆ds, desired range accuracy and SNRs.

Figure A.1: Distribution of selected tone in two paths with various time difference for different
weighted mean functions, ∆ds with desired range accuracy 0.1meter and SNR 20dB.
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Figure A.2: Distribution of selected tone in two paths with various time difference for different
weighted mean functions, ∆ds with desired range accuracy 0.2meter and SNR 20dB.
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Figure A.3: Distribution of selected tone in two paths with various time difference for different
weighted mean functions, ∆ds with desired range accuracy 0.3meter and SNR 20dB.
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Subset number and elements in
Chapter 5 B
In this appendix, Table B.1 and B.2 provide the name and elements of selected subsets.

Set name M
Selection
criterion

threshold
(m2)

∆d(m) CRLB (m2)

Full set 400 - -
0.1

0.1727 by Fmean(·)
1.998× 10−4 by Flog−mean(·)

0.4869 by Fexpectation(·)

0.2
0.0219 by Fmean(·)

1.854× 10−4 by Flog−mean(·)
0.0605 by Fexpectation(·)

0.3
0.0067 by Fmean(·)

1.764× 10−4 by Flog−mean(·)
0.0180 by Fexpectation(·)

subset1 3
single path

CRLB
- - 2.6919× 10−3

subset2 3
2-path CRLB with

fixed ∆τ1
- - 5.5719× 10−3

subset3 137
CRLB with
Fmean(·) 0.01 0.3 9.9846× 10−3

subset4 101
CRLB with
Fmean(·) 0.04 0.2 0.0397

subset5 28
CRLB with
Fmean(·) 0.04 0.3 0.0395

subset6 40
CRLB with
Fmean(·) 0.09 0.2 0.0881

subset7 12
CRLB with
Fmean(·) 0.09 0.3 0.0893

subset8 79
CRLB with
Fexpectation(·) 0.04 0.3 0.0397

subset9 132
CRLB with
Fexpectation(·) 0.09 0.2 0.0898

subset10 32
CRLB with
Fexpectation(·) 0.09 0.3 0.0889

subset11 5
CRLB with
Flog−mean(·) 0.01

0.1
0.2

9.6021× 10−3

8.9253× 10−3

subset12 4
CRLB with
Flog−mean(·) 0.01 0.3 9.9774× 10−3

subset13 4
CRLB with
Flog−mean(·) 0.04 0.1 0.0113
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Set name M
Selection
criterion

threshold
(m2)

∆d(m) CRLB (m2)

subset14 3
CRLB with
Flog−mean(·)

0.04
0.09

0.2
0.3

0.0375
0.0371

subset15 3
CRLB with
Flog−mean(·) 0.09 0.1 0.0445

Difference set
(400,57,8)

57 GCo−max(·) - 0.1 1.5560 by Fmean(·)

subset16 9 GCo−mean(·) - 0.1 5.1381 by Fmean(·)
subset17 9 Uniform selection - 0.1 5.7388 by Fmean(·)

Table B.1: Subset’s number

Set name M Elements

full set 400 [0 1 2 ... 398 399]

subset1 3 [0 398 399]

subset2 3 [86 349 399]

subset3 137

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 180 181 182 183 184 185 186 187 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
386 387 388 389 390 391 392 393 394 395 396 397 398 399 ]

subset4 101

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 193 194 195
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
244 245 246 247 248 377 378 379 380 381 382 383 384 385 386 387
388 389 390 391 392 393 394 395 396 397 398 399]

subset5 28
[ 0 1 2 3 4 17 189 190 191 192 229 230 231 232 233 234 235 236 237
239 240 393 394 395 396 397 398 399]

subset6 40
[ 0 1 2 3 4 5 6 7 12 200 201 202 203 205 207 224 225 226 227 228
229 230 231 232 233 234 235 236 237 238 390 391 392 393 394 395
396 397 398 399]

subset7 12 [ 0 1 17 189 233 234 235 236 237 397 398 399]

subset8 79

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 200 201 202 203 204 205
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
238 239 240 241 242 381 382 383 384 385 386 387 388 389 390 391
392 393 394 395 396 397 398 399 ]
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Set name M Elements

subset9 132

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 184 185 186 187 188 189 190 191 192 193 194 195 196 197
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
246 247 248 249 250 251 252 253 254 255 256 257 370 371 372 373
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
390 391 392 393 394 395 396 397 398 399]

subset10 32
[0 1 2 3 4 5 8 201 202 204 206 207 227 228 229 230 231 232 233
234 235 236 237 391 392 393 394 395 396 397 398 399]

subset11 5 [0 94 95 303 399]

subset12 4 [0 94 303 399]

subset13 4 [0 95 303 399]

subset14 3 [0 94 399]

subset15 3 [0 95 399]

Difference set
(400,57,8)

57

[0 1 2 9 27 36 37 41 46 49 50 69 70 72 85 93 98 100 105 118 123 138
150 157 160 164 165 175 176 179 181 182 200 203 211 213 217 224
230 233 240 242 244 250 254 258 284 300 316 328 339 345 347 350
356 362 371]

subset16 9 [8 86 109 164 215 219 294 311 394]

subset17 9 [0 50 100 150 200 250 300 350 399]

Table B.2: Subset’s elements
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Nomenclature C
h(f, r) one received signal
hKf ,hM received signals in vector form with Kf/M element according to CKf /CM
f, fn radio channel frequency, fn = (n− 1)∆f
r, rn distance between devices in n-th path
rN N path distances in vector form
a(r) absolute amplitude of the signal which contains distance information
a(rN ) absolute amplitude for N path distances in vector form
c propagation velocity
Kf the number of available frequencies
N number of rays of the multi-path propagation
σ2 noise variance
SNR signal-to-noise ratio
∆f the frequency step
τ, τn delay in the n-th ray
τN N path delays in vector form
z(τn) equals to e−j2π∆fτn , element in measurement matrix
CKf full index set with Kf elements, equal to [0, 1, ...,Kf − 1]

CM selected frequency index set with M elements, CM ⊂ CKf
zKf (τn) column of measurement matrix with Kf elements according to CKf
ZKf measurement matrix with Kf rows according to CKf
n the environment noise
G(·) evaluation function of selected tone set
GTr evaluation threshold
S covariance matrix of hKf
P equal to E{a(rN )aH(rN )}
I unit matrix
vi i-th eigenvector of S
λi i-th eigenvalue of S

Ŝ covariance matrix of HKf

HKf Hankel matrix based on hKf
JMUSIC(τ) cost function of delay τ used in MUSIC algorithm
JMUSIC−max Maximum in the inverse pseudo spectrum

V̂n null-subspace matrix of HHH

τunam unambiguous range in delay
GCRLB(·), GCo(·) evaluation function of selected tone set regarding CRLB/RIP as the

criterion
GCRLB−Tr, GCo−Tr evaluation threshold regarding CRLB/RIP as the criterion
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daccuracy estimation accuracy of distance
p(τN |hKf ) probability density function of unknown estimation targets τN with

full set measurements hKf
s(τN |hKf ) gradient of log-likelihood function of p(hKf , τN ), also known as score

function
IKf (τN |hKf ) Fisher information matrix of unknown estimation targets τN with

full set measurements hKf
τ̂N estimation of delay vector τN
varKf (τ̂N |hKf ) variance of estimated delays compared to the τN
Λ N ×Nmatrix using a(rN ) as the diagonal elements and zeros as the

other elements
ζKf (τn) consists of derivations of elements in zKf (τn), Kf × 1

D consists of ζKf (τn) for n = 0, 1, ..., N − 1

l equal to (−j2π∆f)
∆τn0 time difference between LOS path and the other path, equal to τn − τ0

τ grid,rgrid delay grid vector, range grid vector
τgn,rgn element in delay/range grid vector, n ≥ 1
GCRLB(τ̂N |hKf ) CRLB of τ̂N with full set CKf data hKf
GCRLB,11(τ̂N |hKf ) first element of GCRLB(τ̂N |hKf )

F (·) weighted mean function used to calculate CRLB of τ0 with different
weights

Ngrid number of elements in delay grid vector
p∆τ (∆τn0) probability of ∆τn in multipath propagation environment
η ray arrival rate used in p∆τ (∆τn)
w stage number in algorithm
Es signal energy, usually set as 1 in the report
y compressed signal in classical CS theory, m× 1
f transmitted signal vector in classical CS theory, q × 1
R(Cm), R(CM ) matrix extracting samples according to index set Cm/CM , size m× q/M ×Kf

Cm a subset of {0, 1, · · · , q − 1}
Φ measurement matrix in classical CS theory, q × q
Ψ sparse base in classical CS theory, q × p
x k-th sparse signal in classical CS theory, p× 1
A matrix equaling to ΦΨ, q × p
A’(Cm) matrix equaling to R(Cm)A, m× p
ĥKf estimated complete received signal hKf by measurement hM
k number of non-zero elements in k-sparse vector
δk isometry constant
µ(CM , n, n

′),
µ(CM ,∆τgngn′)

cross-correlation between n-th and n′-th column in ZM matrix with
index set CM

Z′Kf , Z′M grid dictionary

z′Kf (τgn), z′M (τgn) n− th column of grid dictionary

b, bn (n− th) element in subset CM
λ a parameter in difference set expression
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â(rn), â(rN ) estimated amplitude value/vector

γn equal to â(rn)
|â(rn)|

g a vector of dual parameters used in NL-GMF algorithm
wmax maximal iteration number in algorithm
ε step size used in NL-GMF algorithm
ξ update direction used in NL-GMF algorithm
JNL−GMF (τ) cost function of delay τ used in NL-GMF algorithm
Toep(u) a Toeplitz matrix whose first column is vector u
u an intermediate variable used in ANM algorithm
t an intermediate variable used in ANM algorithm
τrms−ds root mean square delay spread
Pest estimation probability
Pest−suc successful estimation probability
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