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Nonlinear Wind-Tunnel Wall-Interference Corrections
Using Data Assimilation

Zeno Belligoli,∗ Richard P. Dwight,† and Georg Eitelberg‡

Delft University of Technology, 2629 HS Delft, The Netherlands

https://doi.org/10.2514/1.J059558

Thispaperpresentsanovel approach for correctingwind-tunnelwall interference in thenonlinear flowregime, that is,

in the presence of phenomena such as flow separation and shocks. Themethodology uses a gradient-based optimization

to minimize the difference between experimental measurements and a Favre-averaged Navier–Stokes (FANS)

simulation. The aim is to exploit the high-fidelity experimental data to correct turbulence-modeling errors in the

FANS simulations, as well as to use the accurate angle of attack and Mach number from the FANS simulations to

correct the in-tunnel flow conditions. Theoptimization is carried outdirectly in free air, thus avoiding the requirement to

mesh the wind-tunnel walls and/or to model the ventilated-wall boundary condition. A byproduct of this method is the

availability of flow information everywhere around the test object, which augments and complements the experimental

data. The methodology is tested on two-dimensional and three-dimensional flow cases, demonstrating a significant

improvement in the agreement between experimental and numerical data.

Nomenclature

B�⋅� = projection operator
c = chord length, m
cL = lift coefficient
cp = pressure coefficient

d = vector of observations
E = total energy per unit mass, m2∕s2
E = total enthalpy per unit mass, m2∕s2
Fc = convective fluxes
Fv = viscous fluxes, kg∕�m2 ⋅ s�
J = cost function

Ĵ = error function

k = turbulent kinetic energy, m2∕s2
M∞ = freestream Mach number
Nd = number of observations
Nm = number of control variables
Pr = Prandtl number
R = ideal gas constant, �kg ⋅m2�∕�K ⋅mol ⋅ s2�
R = Reynolds-stress tensor, m2∕s2
R�⋅� = operator representing the Favre-averaged Navier–

Stokes equations
U = vector of state variables
v = velocity vector, m∕s
y� = dimensionless wall distance
α∞ = freestream angle of attack, deg
β = corrective term for the turbulence production
γ = ratio of specific heats
δij = Kronecker delta

ε = observation noise
θ = vector of control parameters
κT = thermal conductivity,W∕�m ⋅ K�
μturb = dynamic eddy viscosity, m2∕s
ρ = density, kg∕m3

σexp = observation standard deviation

σθ = control variable standard deviation
ω = specific dissipation rate, s−1

I. Introduction

T HE design of an air vehicle depends on techniques to assess
performance in free air. These can either be experimental fluid

dynamics (EFD) or computational fluid dynamics (CFD) techniques.
Normally, EFD involves an experiment in a wind tunnel, and it has
been the dominant tool for testing aeronautic designs for the majority
of the 20th century. However, due to increases in computational
speed and accuracy, there has been a steady decline in the wind-
tunnel testing time relative to the CFD testing time [1]. Currently,
CFD and EFD coexist, with the latter being used to test the design in
the most challenging regions of the flight envelope, where uncertain-
ties due approximations in the CFD models become substantial.
However, wind-tunnel experiments themselves have uncertainties.

One of the most critical is due to the presence of the wind-tunnel
walls, which alter the flowfield around the test object, making it
different from what it would be in free air. The existence of a free-air
flow giving the same forces and moments as those measured in the
tunnel is the fundamental assumption of the entire practice of wind-
tunnel corrections [2]. In presence of subsonic flow conditions, small
angles of attack, and small cross section of the test object relative to
that of the wind tunnel, then corrections can be based on linearized,
inviscid potential flow theory, hence the name linear corrections.
When one of these conditions is not satisfied, significant errors result.
Despite these considerations, the majority of wind-tunnel operators
still make use of linear corrections in the nonlinear regime or do not
correct the data at all when nonlinear effects become too strong [3].
Several techniques have been proposed for nonlinear wind-tunnel

wall-interference corrections. One of the most popular consists of
taking the difference between a turbulent CFD simulation of the test
object in the wind tunnel and in free flight [4–7] as well as using this
information to adjust the experimental Mach number, the angle of
attack, and (in some cases) force coefficients. Themain challenges of
this approach are the need to accurately model the geometry of the
wind tunnel, the boundary conditions at ventilated walls [2,8], and
the effect of turbulence. The first problem can be solved by using a
detailed CAD file of the wind-tunnel geometry, although meshing
such a domain is a time-consuming little-automated activity that
produces an extremely large number of cells, thus significantly
increasing the computational cost of the simulation. For the second
problem, there exist many different formulations of the porous/
ventilated-wall boundary condition, for which characterization of
the crossflow at the wall remains problematic [9,10]. Finally, even
if the first two problems were solved, modeling turbulent flow in the
nonlinear regime is one of the most challenging tasks for the CFD
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community because current turbulencemodels prove to be inaccurate
in those conditions [11,12]. All these factors affect the quality of the
wall-interference correction because, in essence, wall-interference
correction techniques are strictly dependent on the computational
infrastructure used to obtain them.
This study proposes a variational data assimilation (DA) approach

combining experimental and numerical results in a systematic way,
with the aim of simultaneously correcting for wind-tunnel wall
interference and errors in the Favre-averaged Navier–Stokes (FANS)
turbulence model, without needing to model the wind-tunnel geom-
etry or the boundary conditions at the ventilated walls. The method
minimizes the discrepancybetween high-fidelity experimental obser-
vations and the numerical prediction of those same quantities by
modifying the freestream Mach number, angle of attack, and a local
corrective term for the turbulence model. In this way, experimental
data are used to correct the CFD simulations and, in turn, the CFD
simulations are used to correct the Mach number and angle of attack
of the experiments, thus returning the free-air conditions correspond-
ing to the in-tunnel flowfield. The numerical optimization is carried
out directly in free air, thus simplifying the meshing process and
reducing the total number of mesh points thanks to the absence of the
wind-tunnel walls.
To our knowledge, only a few studies have addressed the problem

of wind-tunnel interference corrections by means of data assimila-
tion. The idea of injecting experimental data into computer simula-
tions for correcting wall interferencewas first introduced byMurman
[13], who proposed to minimize the difference between the exper-
imental and numerical pressures on a supercritical airfoil by using the
freestream Mach number and angle of attack as control parameters.
This approach was tested with success on synthetic data but did not
take into account the influence of viscosity in a comprehensive
manner. Only recently, Ma et al. [14] extended it to a viscous code
using a variational data assimilation procedure on two-dimensional
(2-D) airfoils in the transonic regime. Their results showed that the
methodology was able to not only to obtain pressure contours that
closely matched the experimental ones, but it was also able to obtain
accurate estimations of the lift and pitching-moment coefficients.
However, they did not take into account the errors associated with the
choice of turbulence model, which could yield misleading results for
the corrected angle of attack andMach number, especially in strongly
nonlinear conditions. This problem was acknowledged by Kato et al.
[15], who proposed a DA framework based on the ensemble Kalman
filter with the capability to estimate not only the angle of attack and
Mach number but also other parameters influencing the turbulence
model, such as the von Kármán constant. By doing this, they were
able to address the uncertainty associated with the values of (one of)
the closure coefficients of the turbulence model, thus providing
insights into the variability of the model outputs. Nevertheless, this
technique is limited in scope since the functional form of the turbu-
lence model is frozen, thus preventing corrections to the balance of
terms within the turbulence model, which is an important factor for
the accurate prediction of turbulent flows [16].
Having acknowledged this, Singh andDuraisamy [16], Duraisamy

et al. [17], Parish and Duraisamy [18], and Singh et al. [19] recently
developed a variational data assimilation framework for the correc-
tion of FANS turbulence-model errors using a corrective scalar field
as a multiplicative factor to the production term in the turbu-
lence model.
In its essence, the methodology proposed in this work combines

the ideas ofMurman [13] andMa et al. [14] with the seminal work of
Singh and Duraisamy [16], Duraisamy et al. [17], Parish and Durais-
amy [18], and Singh et al. [19] to build a variational data assimilation
technique capable of correcting the experimental angle of attack and
Mach number, as well as the model form errors in the turbulence
model. In our previous work [20,21], we carried out a preliminary
study showing the potential of this idea. Here, we formally derive the
expression of the objective function from a probabilistic point of view
(Sec. II); we apply the methodology to both 2-D and three-dimen-
sional (3-D) cases, and we compare it to linear correction methods
(Sec. III). Furthermore, we discuss the capabilities of the DA frame-
work to correctly infer unobserved quantities such as the velocity

field around the test object or the volumetric pressure field. Finally,
we summarize the main conclusions and propose further develop-
ments in Sec. IV.

II. Methodology

This section lays the foundations of the data assimilation method-
ology for correcting nonlinear wind-tunnel wall interference. Strong
nonlinear flow effects can only be described by a nonlinear model.
Because nonlinearities are often associated with transonic condi-
tions, we choose the Favre-averaged Navier–Stokes equations as
our nonlinear model (this is the standard choice for numerical sim-
ulations of compressible flows). If a sufficiently refined CAD model
andmesh are used, aswell as adequate thresholds for the convergence
of iterative numerical methods, the largest source of error in a FANS
code is due to the turbulence model [11,12]. In principle, if this error
was removed, the FANS equations would be able to exactly predict
the mean flow, and wind-tunnel experiments would become almost
redundant.
In practice, the present work uses experimental data to correct

turbulence-modeling errors, thus connecting CFD and EFD to obtain
accurate and additional information about the flow configuration
under study. To do so, we propose a variational data assimilation
framework that uses a gradient-based algorithm to optimize the
values of the freestream angle of attack, Mach number, and a correc-
tive term of the turbulence model by minimizing the difference
between sparse experimental observations and their numerical pre-
diction with a FANS code.
This is an ill-posed inverse problem for which the solution is

nonunique. Hence, while it is theoretically possible to reconstruct
the true flowfield, in practice, this seldomhappens; and the numerical
flowfield is somewhat different from the true one. The optimization
problem is

min
θ

J

subject to R�U; θ� � 0
(1)

whereJ � kdCFD�θ� − dEXPkp � kθkp; k ⋅ kp is theLp norm; dEXP

and dCFD are the experimental and numerical observations, respec-
tively; θ is the high-dimensional vector of control parameters; andR
is the operator representing the FANS equations, the turbulence
model, and their boundary conditions. The first term in J is the
difference between experimental and numerical quantities in a certain
norm, whereas the second is a regularization term that selects one
particular solution form the large space of possible ones.
Gradient-basedmethods are suited for this type of high-dimensional

optimization thanks to the adjoint approach [22,23]: a mathematical
technique that allows one to obtain the gradients of the objective
function with respect to any number of control parameters at the cost
of only one additional flow evaluation [24,25]. Thanks to the work of
Albring et al. [26,27], the SU2 [28,29] CFD software comes with a
discrete adjoint framework based on algorithmic differentiation that
makes it possible to obtain the gradients of many objective functions
with minimal source code modifications.
This work makes use of the low-memory Broyden–Fletcher–

Goldfarb–Shanno [30] optimization algorithm to update the value
of the control parameters and compute the step size of the optimiza-
tion. The initial angle of attack and Mach number can be specified to
be the in-tunnel ones, whereas the initial corrective term can be
specified in such a way that the result of the first optimization
iteration is that of a FANS simulation with an uncorrected turbulence
model. Finally, the optimization terminates when either

max�j∂iJ j� ≤ 5 ⋅ 10−5 for i � 1; : : : ; Nm

or

J q − J q�1

maxfjJ qj; jJ q�1j; 1g ≤ 10−3
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where q is the qth optimization iteration, ∂iJ is the gradient of the

objective function with respect to the ith control parameter,Nm is the

number of control parameters, and the value of the thresholds are

specified by the user.
The optimum solution gives the best agreement between the

experimental and numerical quantities, and it directly provides the

corrected values of the freestream angle of attack and Mach number

while also minimizing the error due to the approximation of the

Reynolds-stress tensor by the turbulence model. It is worth noting

that this method can work with any kind of experimental data; for

example, dEXP may be a 3-D velocity field from particle image

velocimetry, or pressure on a surface, or a combination of both.
The drawback of this methodology is that the optimization pro-

cedure is computationally time consuming, especially in three

dimensions or in the presence of complicated flow cases, and there-

fore can only be performed offline at the end of the experimental

campaign. This may not be ideal when the correctability of the data

has to be assessed during an experiment. In that case, simpler but

faster techniques should be used. In addition, nonuniqueness of the

solution and convergence to local minima tend to make the final

corrections suboptimal. Although these problems influence the accu-

racy of the corrections, and of the reconstructed flowfield, in practice,

their effect is limited, provided the objective function is regularized

and the initial value of the vector of control parameters is in a

neighborhood of the true optimum.
In the following sections, the FANS equations (Sec. II.A) and

the Bayesian derivation of the objective function (Sec. II.B) are

presented.

A. FANS Equations

The compressible Navier–Stokes equations with no source term or

domain motion are

∂tU� ∇ ⋅ Fc − ∇ ⋅ Fv � 0 in Ω; t > 0 (2)

whereΩ ⊂ R3 is the fluid domain,U � �ρ; ρv1; ρv2; ρv3; ρE�⊤ is the

vector of conservative variables, ρ is the fluid density, E is the total

energy per unit mass, and v � �v1; v2; v3�⊤ ∈ R3 is the flow velocity

in a Cartesian coordinate system. Fc and Fv are the convective and

viscous fluxes, which can be written as

Fc
i �

0BBBBBBB@

ρvi

ρviv1�pδi1

ρviv2�pδi2

ρviv3�pδi3

ρviH

1CCCCCCCA; Fv
i �

0BBBBBBBB@

⋅

τi1

τi2

τi3

vjτij�kT∂iT

1CCCCCCCCA
; i�1;:::;3 (3)

where p is the static pressure; T is the temperature; H �
h� vivi∕2 � E� p∕ρ is the total enthalpy; δij is the Kronecker

delta; and κT is the thermal conductivity for a calorically perfect fluid.

The viscous stresses are of molecular origin and can be compactly

written as

τij � μ

�
∂jvi � ∂ivj −

2

3
∂nvnδij

�
� μ

�
2Sij −

2

3
∂nvnδij

�
(4)

Assuming the fluid is a perfect gas with a ratio of specific heats

γ � �cp∕cv� and a gas constant R, the pressure is determined from

p � �γ − 1�ρ
�
E −

1

2
�v ⋅ v�

�
(5)

and the temperature is given by

T � p

ρR
(6)

When working with compressible flows, a density-weighted (or

Favre) averaging is used, with ~A � �ρA∕�ρ being the Favre-averaged
mean quantity, with A 0 0 representing the turbulent fluctuations such

that an instantaneous flow variable can be written as A � ~A� A 0 0;
and ��⋅� is the notation for Reynolds-averaged mean quantities. The
application of Favre averaging to the Navier–Stokes equations
returns the compressible Reynolds-averaged Navier–Stokes equa-
tions, which are also known as Favre-averaged Navier–Stokes equa-
tions. The FANS equations can be written as

∂t

0BBBBB@
�ρ

�ρ ~v1

�ρ ~v2

�ρ ~v3

1CCCCCA�∇ ⋅

0BBBBBBBB@

�ρ ~vi

�ρ ~vi ~v1 � �pδi1

�ρ ~vi ~v2 � �pδi2

�ρ ~vi ~v3 � �pδi3

�ρ ~vi ~H

1CCCCCCCCA

− ∇ ⋅

0BBBBBBBB@

⋅

~τi1 − ρv 0 0
i v

0 0
1

~τi2 − ρv 0 0
i v

0 0
2

~τi3 − ρv 0 0
i v

0 0
3

~vj ~τij � κT∂i ~T � ρv 0 0
j h

0 0 − ~vjρv
0 0
i v

0 0
j

1CCCCCCCCA
� 0 (7)

Aside from replacement of instantaneous variables by mean val-
ues, the only difference between the Favre-averaged and instanta-
neous momentum equations is the appearance of the correlation

−ρv 0 0
i v

0 0
j , which can also be written as −�ρ gv 0 0

i v
0 0
j [31]. The mean

energy equation presents −ρv 0 0
i v

0 0
j as well as a turbulent heat flux

ρv 0 0
j h

0 0 in addition to the terms of the instantaneous formulation.

The component gv 0 0
i v

0 0
j is a symmetric positive-definite tensor

commonly referred to as the Reynolds-stress tensor (RST). To study
the effect of turbulence on the mean flow, the Reynolds-stress tensor
can be decomposed into an anisotropic part and an isotropic part:

Rij � gv 0 0
i v

0 0
j � 2k

�
bij �

δij
3

�
(8)

where k � gv 0 0
i v

0 0
i ∕2 is the turbulent kinetic energy, 2kbij � aij is the

anisotropy tensor, and �2k∕3�δij is the isotropic part of the RST. The
relations between the components of the Reynolds-stress tensor and
the mean flow quantities are unknown. Therefore, in order to close
the system of equations, amodel for these unknown relationsmust be
introduced. Linear eddy viscositymodels (EVMs) are themost wide-
spread in industry. They are based on the Boussinesq approximation,
which reduces the effect of the anisotropic part of the Reynolds
stresses to only an added viscosity such that

gv 0 0
i v

0 0
j −

2

3
kδij ≈ −

μturb
ρ

�
∂j ~vi � ∂i ~vj −

2

3
δij∇ ⋅ ~v

�
(9)

where μturb is the turbulent (or eddy) viscosity. The Boussinesq
approximation assumes the anisotropic part of the Reynolds-

stress tensor is proportional to the mean strain rate tensor ~Sij �
�1∕2��∂j ~vi � ∂i ~vj�, leaving the turbulent viscosity as the only

unknown. Linear EVMs introduce additional transport equations
for quantities connected to μturb in order to obtain a closed system

of equations. Finally, the turbulent heat-flux vector ρv 0 0
j h

0 0 is

approximated as

ρv 0 0
j h

0 0 � −
μturbcp
Prturb

∂ ~T
∂xj

� −
μturb
Prturb

∂ ~h
∂xj

(10)

where Prturb is the turbulent Prandtl number, which is usually
assumed to be 0.90.
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When errors due to the level of discretization of the computational
mesh or the iterative convergence of the algorithms are minimized,
themodeling of the Reynolds-stress tensor becomes themajor source
of uncertainty in a CFD simulation; and it is the reason why wind-
tunnel experiments are still required. In this work, we focus on
Menter’s shear-stress transport (SST) [32] turbulence model, but
similar considerations hold for all linear EVMs. The SST model
has two transport equations: one for the turbulent kinetic energy k,
and one for the specific dissipation rate ω. Its general structure is

Dk

Dt
� Pk�k;ω;U� −Dk�k;ω;U� � Tk�k;ω;U� (11)

Dω

Dt
� Pω�k;ω;U� −Dω�k;ω;U� � Tω�k;ω;U� (12)

whereP�⋅�,D�⋅�, and T�⋅� are the production, destruction, and cross-
production terms, respectively. Following Singh and Duraisamy [16]
and Parish and Duraisamy [18], a multiplicative corrective term can
be introduced into the turbulence model in order to correct the func-
tional form of the model discrepancy. This could be easily achieved
by rewriting the production term in one of the transport equations as
β�x� ⋅ P�⋅�. Like P�⋅�, β is a spatially varying scalar field defined
everywhere in the domain. The corrective term can take values both
larger and smaller than unity, thus being able to influence the balance
of terms in the transport equation and, in turn, themean solution of the
FANS equations. After the discretization of the FANS equations, β is
represented as a high-dimensional vector, with as many elements as
the number of mesh points, and with the baseline model having an
initial value of unity, i.e., β � 1.

B. Bayesian Formulation of the Inverse Problem

Quantities d ∈ RNd measured experimentally differ from the true

values of those quantities dtrue ∈ RNd due to measurement noise and
experimental bias. We model this discrepancy statistically as

d � dtrue � ε; ε ∼N �0; σ2exp� (13)

where we assume zero bias, and we assume noise to be independent
identically distributed (i.i.d.) normal random variables with known
standard deviation σexp (obtained from the experimental procedure).

Given some flow state U��ρ;ρv;ρE;ρk;ρω�⊤ ∈U, let B:U → RNd

be a projection that extracts the measured quantities. Under most
circumstances (including here), this operator will have negligible
error so that d � B�Utrue� � ε is a reasonable generalization of
Eq. (13) (where Utrue ∈ U is the true state). However, Utrue is
unknown, and it is approximated by solving the FANS equations
including boundary conditions

R�Û� � 0 (14)

where Û ≠ Utrue, introducing a nonnegligible modeling error. Fol-
lowing the seminal work of Kennedy andO’Hagan [33] and previous
work in fluid dynamics [34,35], we could write

d � ψ�x� ⋅ B�Û� � ε (15)

where ψ ∼ GP�μψ ; rψ � is a Gaussian process needed to account for

the errors in R�⋅�. A function of the spatial location x (e.g., see
Ref. [36]), its mean μψ �⋅�, and covariance functions rψ �⋅; ⋅� must be

identified from the data (under some priors). This formulation allows
predictions of the quantity d at unmeasured locations, but it says
nothing about other quantities. For example, ifd aremeasurements of
pressure,ψ represents the model error in pressure and does not speak
to velocity.
Therefore, in this work, we deviate from Kennedy and O’Hagan’s

formulation [33] by moving the statistical term representing model
error into the operatorR. This is logical: the source of error is within
R, and identification of this error will allow us tomake predictions of

unmeasured quantities. Let this discrepancy term be θ ∈ Θ, and
modify the governing equations as

R�U; θ� � 0 (16)

By the implicit function theorem, we can specify a function
U:Θ → U so that we can construct the statistical model

d � dtrue � ε � B�U�θ�� � ε (17)

as an alternative to Eq. (15). To complete the model, it remains to
define priors on θ.
The scope of the method presented in this work is to find the

maximum a posteriori (MAP) estimate of θ, minimizing the differ-
ence between experimental data and simulated prediction, subject to
reasonable priors on the model error. This is an inverse problem and
can be formulated in a general way using Bayes’s theorem:

p�θjd� ∝ p�djθ�p0�θ� (18)

wherep0�θ� represents available knowledge about θ in the absence of
d;p�djθ� is the likelihood that represents the probability of observing
the data given a certain value of θ, modeled with Eq. (17); andp�θjd�
is the posterior probability distribution, which is the updated proba-
bility of θ informed by the data. The posterior is not a single
parameter vector but a distribution over the parameter space. There-
fore, when a representative realization of control parameters must be
chosen, one reasonable choice is the maximum a posteriori estimate
of p�θjd�. Since we assumed that the observations are i.i.d., the
likelihood function can be written as

p�djθ� � p�d1jθ� ⋅ p�d2jθ� ⋅ : : : p�dN jθ�

Furthermore, we assume that they are normally distributed with the
constant standard deviation σexp andmean given byB�θ� ≔ B�U�θ��
Hence, the likelihood is

p�djθ� �
 

1

σexp
������
2π

p
!
Nd

exp

(
−
XNd

i�1

�B�θ�i − di�2
2σ2exp

)
(19)

In case of uninformative objective priors, we have that p�θjd� ∝
p�djθ� and the MAP estimate can be found by minimizing the
negative of the exponent of the likelihood function as

min
θ

Ĵ � min
θ

XNd

i�1

�B�θ�i − di�2
2σ2exp

(20)

If, on the other hand, we choose to specify a prior probability
density function for our control parameters θ, and we assume they
are independent and normally distributed with mean given by θj;prior
for j � 1; : : : ; Nm and standard deviation σj;θ, the MAP can be

obtained as

min
θ
J � min

θ

XNd

i�1

�B�θ�i − di�2
2σ2exp

�
XNm

j�1

�θj − θj;prior�2
2σ2j;θ

(21)

The second term in Eq. (21) acts as a regularization term that
penalizes departures of the parameter vector from its presumed value.

In this work, θ � �α∞;M∞; β�⊤, where β corrects functional errors in
the FANS turbulence model, whereas the optimum α∞ and M∞ are
the interference-free angle of attack andMach number. This is a high-
dimensional vector with Nm � 2 parameters.

III. Results

In this section, the data assimilation methodology presented in
Sec. II is used to obtain thewind-tunnel wall-interference corrections
for 2-D and 3-D experiments with nonlinear effects. The selected test
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cases are the high-Mach-number small angle-of-attack experiment
on the RAE 2822 airfoil conducted by Cook et al. in 1979 [37], the

low-Mach-number high angle-of-attack experiment on the s809 air-
foil by Somers [38], and the high-Mach-number small angle-of-
attack experiment on the ONERA M6 wing [39]. While the frame-

work presented in this work can be used with different types of
experimental data (e.g., velocity, pressure, skin friction, etc.), we
choose to use only surface pressure data because these are one of the
most common types of data obtainable from experiments. For the

purpose of this work, the data of Cook et al. [37] and Somers [38] are
considered to be perfectly 2-D, and thus free of sidewall interference.
However, it should be acknowledged that sidewall effects may be

present due to the relatively small aspect ratio (AR < 4) of the wings
used for the experiments.
The initial Mach number and angle of attack for each optimization

are set to the values obtained from a conventional correction pro-
cedure. Furthermore, the results of the data assimilationmethodology
using θβ � �α∞;M∞; β�⊤ as the vector of control parameters will be

compared with those of a data assimilation using θ � �α∞;M∞�⊤ in
order to show how correcting functional errors in the turbulence

model affects the wall-interference corrections.

A. RAE 2822: Case 10

Among all the configurations tested by Cook et al. [37], the one at
M∞ � 0.75 and α∞ � 3.06 deg (case 10) presents shock-induced

boundary-layer separation, which makes it hard to find adequate
wall-interference corrections using linear techniques and has proven
challenging to simulate with CFD. A correction to these values was
proposed by Rudnik [40], who kept the same Mach number while

lowering the angle of attack to 2.80 deg. Rudnik’s correction is
adopted as the initial condition for α∞ andM∞ of the data assimila-

tion methodology. Avalue of σexp � 2.6 × 10−3 is selected in accor-

dance with the data in Ref. [37]. A standard deviation of unity is
assigned to all the other parameters.
A hybrid O-mesh geometry is used, with the far-field boundary

placed 100 chord lengths away from the airfoil to avoid reflections of

characteristic waves back into the domain. A no-slip adiabatic boun-
dary condition is imposed on the airfoil while characteristic-based
boundary conditions are specified at the far field. A layer of struc-

tured cells is wrapped around the airfoil, whereas the rest of the
domain is filled with triangular cells. Themaximum cell height in the
boundary-layer mesh is selected such that y� ≈ 1. The mesh, which
has 24,086 points with 287 edges on the airfoil surface, can be seen

in Fig. 1.
The convective fluxes are discretized with a second-order

Jameson–Schmidt–Turkel scheme [41], and the gradients for the
viscous fluxes are computed using a weighted least-squares method.

Implicit local time stepping is used to converge the simulation to a

steady-state solution, and the linear system is solved using the

iterative Generalized Minimal Residual method with a tolerance of

O�10−6� on the maximum error.

Figure 2 shows the optimization history for the case with θβ and θ
(which corresponds to the technique proposed by Ma et al. [14]).

Both techniques are capable of reducing the difference between the

numerical and experimental pressure coefficients on the airfoil com-

pared to the initial state. Both optimization histories show the same

behavior for the first 20 iterations, indicating that the bulk of the

improvements is due to changes to the angle of attack and Mach

number. However, when β is included in the vector of control

parameters, an additional reduction of Ĵ is observed thanks to small

corrections of inadequacies in the turbulence model. This comes at

the cost of a higher number of optimization iterations. Indeed, since

θβ is a high-dimensional vector with more than 20,000 control

parameters, the optimization algorithm searches in a comparatively

high-dimensional space, hence the larger number of optimization

iterations compared to the case with θ, which is only a bidimensional

vector.

Figure 3 shows the initial cp distribution for the baseline case

(obtainedwith angle of attack andMach number proposed byRudink

[40]), the final cp distributions from the optimizations with θ and θβ,
and the experimental data. The optimized results better capture the

shock location but slightly underestimate the magnitude of the pres-

sure peak at the leading edge. In addition, the optimization with θβ
accurately reproduces the pressure distribution after the shock,

a) The complete computational domain b) Close-up of the mesh topology in the airfoil region

Fig. 1 Details of the hybrid computational mesh for the RAE 2822 airfoil.

Fig. 2 Optimization histories for the RAE 2822 test case.
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whereas the optimizationwith θ still shows some disagreement due to
its inability to correct the errors due to the turbulence model.
Table 1 summarizes some of the results for this test case. We

observe that the cl and cm predicted by the data assimilation tech-
nique proposed in this work are very close to those measured in the
experiment. This is not surprising since the lift and the pitching-
moment coefficients are closely related to the pressure distribution
over the airfoil. The optimization with θβ as the vector of control

parameters reduces the value of the initial Ĵ by 50%. On the other
hand, the optimization with θ as vector of control parameters reduces

the value of Ĵ by 35%. The optimum angle of attack and Mach
number from both data assimilation techniques are higher than the
baseline case, but they substantially differ from each other, especially
in the proposed angle-of-attack correction, thus showing that includ-
ing β in the vector of control parameters has a profound effect on the
wall-interference corrections.
Finally, by looking at the boundary-layer comparison of Fig. 4, one

can observe that it is easy for the CFD solver to reproduce the
boundary-layer shape before the shock location but much harder to
do so consistently downstream of it. Indeed, the boundary-layer shape
from the optimizations agreeswellwith the experimental one at x∕c �
0.75 but not atx∕c � 0.9, andviceversa for the baseline results.This is
an indication that there might not be an equivalent free-air condition to
the in-tunnel one, and thus the results are uncorrectable, possibly due to
the presence of sidewall effects. It is also likely that the experimental
pressure coefficient is not sufficiently informative to exactly recon-
struct unobserved quantities (like the velocity field) all over the com-
putational domain. Alternatively, it could be that the flow physics
behind the shock and close to the wall cannot be completely repro-
duced by eddy viscosity models, even when corrected with the meth-
odology proposed in this work. To increase the quality of the
reconstruction of the velocity field, one could also incorporate the
experimental data for the boundary layers in the objective function and,
in general, all available experimental data. This would constrain the
optimizer to agree as best as it can with all the different sources of
experimental data used in the objective function, thus making it less
likely to observe large deviations like the one in Fig. 4d.

B. S809 Airfoil

The S809 airfoil is commonly used for the design of the blades of

horizontal axis wind turbines and was chosen by Singh and Durais-

amy [16] and Singh et al. [42] as the test case for their field-inversion

machine-learning (FIML) framework, from which the wall-interfer-

ence correction methodology presented in this paper is inspired.

Experimental data at Rec � 2 × 106, M∞ � 0.2, and at a variety of

angles of attack are available from the study of Somers [38]. In our

case, we perform the inversion at the highest angle of attack of the

database (i.e., α∞ � 14.24 deg) for which a large region of turbulent
separation due to an adverse pressure gradient is present. Note that

this value for the angle of attack was obtained using a linear correc-

tion technique and is used as initial α∞ for the optimization. Figure 5

shows the computational mesh used for this test case, which is the

same structuredCgridwith approximately 5.5 × 104 points and y� ≈
1 as in the work of Singh and Duraisamy [16]. Similar boundary

conditions as in Sec. III.A were adopted. The pressure coefficient

from the experiment of Somers [38] is chosen as training data for the

objective function and σexp � 0.02. Because extracting the data is

prone to errors in proximity of regions with high gradients, only the

suction-side pressure data in the range 0.05 < x∕c < 0.8 were used.
The same spatial and time discretizations, linear solver, and optimi-

zation algorithm as in Sec. III.A were used. Since compressibility

effects are limited, the Mach number is excluded from the control

parameters used for the correction procedures such that θ � α∞
and θβ � �α∞; β�⊤.
From the optimization history in Fig. 6, one can observe that only

correcting the angle of attack has a minimal impact on the error

between experiments and simulations. The proposed correction to the

angle of attack may very well be right; but, there is no way to assess

this since the value of Ĵ (which gives an indication of the accuracy of

the corrections) remains high because errors due to the turbulence

model are affecting the simulation results: hence the importance of

having the corrective term β among the control parameters. It is

evident that the high Ĵ is due to turbulence-modeling error; by

correcting this error, an estimate of the accuracy of the corrections

can thus be obtained.
Figure 7 shows the baseline and assimilated pressure and skin-

friction coefficients over the airfoil. The SST model overpredicts

the pressure on the suction side and predicts the location of the

separation point more downstream than in the experiments. As

already observed, correcting only the angle of attack does not change

the pressure distribution, whereas correcting the functional errors in

the turbulence model produces an almost-perfect match with the

experimental data.
The turbulent viscosities μturb for the baseline and corrected results

is showed in Fig. 8. A significant increase of its value in the wake

region is produced by the correction procedure proposed in this

paper, as shown in Fig. 8c, which indicates the presence of a stronger

turbulent flow enhancing the mixing in that region. These consid-

erations can be useful during the development phase of a product

since they complement the sparse information of the experimental

results with full-field data corresponding to the numerical simulation

that best match the experiments.
Table 2 summarizes the results for this test case. The methodology

proposed in this work is compared with the results from the baseline

case (i.e., the initial condition of the optimization with the in-tunnel

angle of attack and Mach number, as well as β equal to unity) and a

benchmark case, which only optimizes the angle of attack. Although

the corrections to the angle of attack are small, the agreement with the

experimental lift coefficient is significantly improved by the meth-

odology proposed in this work, whereas that with the pitching-

moment coefficient is slightly degraded. Hence, we can conclude

that, for this test case, no significant wall interference is present and a

linear correction procedure is appropriate. However, the data assimi-

lation methodology not only finds the corrected angle of attack but

also corrects the numerical model so that its full-field results can

be used to reliably analyze the flow dynamics of the test object.

Furthermore, the value of Ĵ can be used to estimate the reliability of

Fig. 3 Comparison of the cp distribution from the optimizations, the
experiment (exp.), and the baseline simulation (obtained by running a
turbulent CFD simulation with M∞ and α∞ from Ref. [40]).

Table 1 Comparison of results from proposed methodology with
different wind-tunnel wall-interference correction techniques used as

benchmark for the RAE 2822 case

Ĵ α∞, deg M∞ cl cm

Experimental data —— 3.19 0.750 0.743 −0.1060
Baseline 1.223 2.80 0.750 0.747 −0.1007
θ 0.7716 3.00 0.759 0.720 −0.0997
θβ 0.5983 2.90 0.758 0.736 −0.1069
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a) x/c = 0.179 b) x/c = 0.319

c) x/c = 0.750 d) x/c = 0.900

Fig. 4 Comparison of boundary layers at different x∕c locations on the upper surface of the RAE 2822 airfoil.

a) The complete computational domain for the s809 test case b) Close-up of the mesh topology in the airfoil region

Fig. 5 Details of the structured computational mesh.
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the proposed corrections based on the agreement between experi-
mental and numerical data.

C. ONERAM6Wing

TheONERAM6wing is awidely used test case for the validation of
numerical models thanks to the availability of experimental data for a
variety of flow conditions [39]. In this work, the Reynolds number
based on the mean aerodynamic chord is 11.72 × 106,M∞ � 0.8395,
and α∞ � 3.06 deg. For these flow conditions, the leading-edge
acceleration leads to supersonic flow that is terminated by a shock
wave. From there, the flow is reaccelerated to supersonic conditions
again until a second shock is formed. This creates a lambda-shaped
low-pressure area between the two shocks. A structured semispherical

mesh is used for the simulations, with the flat side being the plane of

symmetry of the domain and of the wing. Characteristic boundary
conditions are specified at the far field, and the no-slip condition is used

for thewing surface. In total, themesh has 6.6 × 105 points and a y� of
approximately unity. Experimental pressure coefficients at spanwise
locations y∕b � 0.2, 0.44, 0.65, 0.8, 0.9, 0.95, and 0.99 are used in the

error function Ĵ ; and σexp � 0.02 is used. The same spatial and time

discretizations, linear solver, andoptimizationalgorithmas inSec. III.A
are used. It is worth noting that the half-wing model was attached to a
rotating plate in the experiment, whereas a symmetry boundary con-
dition is employed aty � 0 in the numerical domain; and thismay alter
the flow physics at the wing root. Nonetheless, we attribute these
differences to wall-interference effects and focus our analysis on the
feasibility of using the proposed methodology for correcting wind-
tunnel wall interference rather than exactly reproducing the flow
physics.
The optimization history of Fig. 9 shows the typical behavior

observed so far, whereby the proposed methodology reduces the
discrepancy between the experimental and numerical data signifi-
cantly over the baseline and benchmark cases. Compared to the 2-D
cases, Ĵ is orders of magnitude higher since there are many more
experimental data points contributing to its value. As a consequence,

judging the accuracy of the corrections based on the value of Ĵ is

Fig. 6 Optimization histories for the s809 test case.

a) Pressure coefficient b) Skin-friction coefficient

Fig. 7 Comparison of the cp and cf distributions from the optimizations, the experimental data, and the baseline simulation for the s809 test case.

a) Initial condition (baseline) b) = c) = [ ]

Fig. 8 Comparison turbulent viscosity μturb for the s809 test case.

Table 2 Comparison of results from proposed methodology
with different baseline and benchmark results for the s809 case

Ĵ α∞, deg M∞ cl cm

Experimental data —— 14.24 0.2 1.083 −0.0451
Baseline 1.339 14.24 0.2 1.240 −0.0450
θ 1.331 14.21 0.2 1.239 −0.0450
θβ 0.022 14.23 0.2 1.105 −0.0440
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dependent on the number of experimental observations. To overcome

this limitation, one can simply look at the mean squared error Ĵ ∕Nm.

The methodology proposed in this work improves the agreement

with the experimental pressure distributions compared to the baseline

and benchmark cases as shown in Fig. 10: especially at y∕b � 0.2,
where it is able to correctly predict the location of the second shock.

However, there are still differences at y∕b � 0.65 and at y∕b � 0.8,
where the strength of the first shock is not fully captured. This could

be due to discretization errors, but the study of Mayeur et al. [43]

shows that this phenomenon is present even for meshes of 10 million

points. This suggests that the underestimation of the shock strength is

purely due to turbulence-model inadequacies. While our correction

procedure is able to change the balance of terms in the functional

form of the model, it is still forced to operate within the boundaries

imposed by the Boussinesq hypothesis. Hence, more general correc-

tive models like the one presented by Belligoli et al. [21] should be

examined for solving these issues.

By looking at the turbulent viscosity fields of Fig. 11, we observe no

significant differences between the initial solution and the optimum

solution found by the optimization with θ as a vector of control

parameters. On the other hand, when θβ is used, a significant change

to the μturb field close to the wing root is observed. This looks unphys-
ical, and it is probably due to different boundary conditions between the

experiment and the simulations. Indeed, the simulations employ a

symmetry boundary condition at y � 0, whereas a wall was present

at the same location in the experiment. This is an indication of the failure

of half-model testing to reproduce the properties of a symmetry plane.

Fig. 9 Optimization histories for the ONERAM6 test case.

a) Section 1 : y/b = 0.2 b) Section 2 : y/b = 0.44 c) Section 3 : y/b = 0.65

d) Section 4 : y/b = 0.8 e) Section 5 : y/b = 0.9 f) Section 6 : y/b = 0.95

Fig. 10 Comparison of cp distributions at six of the seven locations where experimental data are available.

a) Baseline b) c) = [ ]=

Fig. 11 Comparison of cp contours on the wing and μturb isosurfaces in the wake for the ONERAM6 test case.

604 BELLIGOLI, DWIGHT, AND EITELBERG

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 1

1,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

95
58

 



To complete the analysis, we report the values of Ĵ ,α∞, andM∞ in
Table 3, where we can see how only small changes to the angle of
attack and Mach number are obtained after using the framework
proposed in this work. Nonetheless, together with the corrections
to the functional errors in the turbulence model operated by β, they
contribute to reduce the least-square error Ĵ between experimental
data and corresponding numerical data by about 25%.

IV. Conclusions

The wall-interference correction methodology presented in this
work was developed for the nonlinear flow regime. For this, the
compressible FANS equations and a turbulence model for capturing
viscous phenomena are used.Agradient-based optimization problem
must be solved to obtain the optimum corrections. The progress in
computer hardware and numerical algorithms made it possible to
carry out this process within a few days at themost (depending on the
available computational resources, the number of mesh points, and
the size of the vector of control parameters). However, wind-tunnel
operators usually prefer to have online corrections to immediately
analyze whether interference is small. In this view, the nonlinear
correction technique of this work can be used as an offline tool to
obtain more accurate wall-interference corrections, as well as to
augment the experimental data with full-field information of the case
at hand.
The optimum solution found by the optimization gives the best

possible agreement with the experimental data used in the objective
function J , given the initial conditions; and the mathematical model
used. However, the solution of this ill-posed inverse problem is
nonunique. The regularization term in the objective function makes
sure that the optimum solution lies in a neighborhood of the initial
state by penalizing strong departures of the control variables from
their initial values.
One of the fundamental assumptions of the data assimilation

methodology is that the experimental data are the ground truth and
that there exists a free-air condition that gives the same in-tunnel
results. Traditionally, this assumption was not always used and linear
techniques not only corrected the flow conditions but also the force
coefficients. In the current methodology, this choice is left to the user:
based on their knowledge, they can either use the experimental data as
ground truth and use the value of the mean squared error Ĵ ∕Nm to
estimate the accuracy of the corrections, or thye can decide to accept
the numerically obtained pressure distribution in place of the exper-
imental one.
For simplicity, only experimental pressure coefficients were used

on thewing surface for the test cases of Sec. III. However, any type of
physical quantity obtainable from an experiment can be inserted in
the objective function and multiple physical quantities can coexist
(e.g., velocity and pressure). Hence, one can make use of all the
experimental data at their disposal for finding the optimum value of
the corrections.Obviously, themore data there are available, themore
information there is available for the optimizer to find the true
optimum; but, the data assimilation methodology presented in this
work can function with a very limited number of data points.
Finally, it is worth remembering that this technique does not

require representation and modeling of the wind-tunnel walls since
the optimization is directly carried out in free air. This removes a great
burden from the correction procedure, namely, that of finding an
accurate model for the ventilated boundary condition and that of

meshing the entire geometry of the wind-tunnel walls to accurately
represent the flow through the ventilated surfaces. However, the data
assimilation technique can also be used to reconstruct the in-tunnel
flowfield by including the wind-tunnel wall geometry in the
CFD mesh.
The methodology proposed in this work is more time consuming

than linear correction techniques and can only be carried out offline.
Additionally, the correction to the turbulence model is limited in
scope because it must comply with the Boussinesq hypothesis and it
can only address errors within its functional form. Future work
should focus on testing more general corrections to the errors intro-
duced by themodeling of turbulence, aswell as on the combination of
different types of experimental data (e.g., velocity and pressure) into
the same objective function. In this regard, other choices than con-
stant diagonal covariance matrices are possible and can be used to
cope with experimental data with nonuniform uncertainty.
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