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Abstract

Traditional software testing is a labor-intensive and expensive manual process.
To mitigate the high cost of manual test case generation, researchers have developed
various techniques for automated test case generation over the last few decades. These
techniques make use of static type information to determine which data types should
be used in new test cases. Dynamically typed languages like JavaScript do not provide
type information. The lack of type information poses a new challenge for test case
generation techniques.

In this thesis, we propose a novel unsupervised probabilistic type inference ap-
proach to infer data types in a test case generation context. The approach uses both
static and dynamic type inference techniques. We implemented the approach in a
novel tool called SYNTEST-JAVASCRIPT which is an extension of the SYNTEST-
FRAMEWORK. We evaluate the performance of the approach compared to random
type sampling with respect to branch coverage. The evaluation is done using a custom
benchmark of 97 units under test.

Our results show that using statically inferred type achieves a statistically signifi-
cant increase in 54% of the benchmark files compared to the baseline. The combination
of using both statically and dynamically inferred types improves the approach slightly
with a significant increase in 56% of the benchmark files compared to the baseline.
Finally, the results show that the time consumed by the static and dynamic type in-
ference is insignificant compared to the total time budget and is worthwhile given the
performance boost type inference provides.
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Chapter 1

Introduction

Traditional software testing is a labor-intensive and expensive manual process [8, 46]. At
the same time, testing is an integral part of the software engineering discipline. It pro-
vides the means to assure software quality [42, 47]. To mitigate the high cost of manual
test case generation, researchers have developed various techniques for automated test case
generation over the last few decades [8, 17, 43| 43]]. Earlier studies have shown that au-
tomated testing effectively finds real-world faults while allowing developers to spend less
time manually writing test cases [56, 57]. Search-based approaches in particular have been
shown to effectively achieve higher code coverage [35)] and have fewer smells compared
to manually-written test cases [52], and detect unknown bugs [4, 16, 25]. Most research,
however, is focused on [Statically Typed Languages (STLs)l Since[Dynamically Typed Lan-|
[guages (DTLs) have gained significant popularity over the last decade [39], it is crucial to
investigate whether the proposed techniques translate to [DTLk.

In this chapter, we will go over the problem description, the research aim, the research
significance, and the outline of the rest of the study.

1.1 Problem description

DTLk are prevalent among software developers [44,159]. They do not require explicit type
declarations, saving developers time that would otherwise be spent on developing a type
system [29]. Examples of are Python and JavaScript, which are among the most
popular languages used by developers around the world [2, 3]. However, most research on
automated test generation revolves around [STLk. These approaches rely on static type infor-
mation to generate correctly typed inputs for functions and constructor calls within the test
cases. In[DTLE, developers do not have to provide such type information, allowing devel-
opers to quickly prototype functionalities without the need for a complex type system [29]].

pose a new challenge for automated test case generation approaches. Since the
type information is unavailable, the automatic testing approach has to guess which types to
use for the inputs. Guessing the correct type in addition to generating a value that helps
increasing structural coverage, dramatically increases the search space. [Lukasczyk et al.
have recently published their tool Pynguin for test case generation for Python. Their work

1
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shows that including type information is crucial for test generation. Their tool uses type
annotations which are optional in Python. In JavaScript, such type annotations do not exist.

To address this problem, we have to infer the variable types, i.e., make accurate type
predictions. There are several ways to infer types. For example, we can evaluate the usage
of a variable to make assumptions about its type, i.e., investigate the variable’s context.

Type inference has been studied previously to convert untyped code to typed code [32,
41), 144, 1531 163]. Listing [1;1'] shows an example of such a conversion. In the example, the
function max has two parameters and a return value. In Listing[I.Ta] there is no information
present regarding the types of the parameters or return value. In Listing [T.Tb] there are type
annotations directly next to the parameters and the function indicating that the max function
requires two numbers as input and returns a number as well.

1 | function max (a: number, b: number
function max (a, b) { ) : number {
if (a < b) { 2 if (a < b) {
return a 3 return =z
} else { 4 } else {
return Db 5 return b
} 6 }
} 71}
(a) Untyped (b) Typed

Figure 1.1: Converting untyped code to typed code

Gao et al.| showed that the lack of static types within JavaScript leads to bugs that could
have been easily identified with a static type system [29]]. Converting untyped code to typed
code is thus a topic of interest because large-scale projects are more maintainable when
written in typed languages [15} [29]].

Earlier research often relies on [SA] and machine learning to infer types [32] 411 44]
53, 163]]. Training machine learning models often is expensive and requires retraining for
unseen types. This is undesirable in search-based test case generation since the goal of
test generation is to discover as many faults in the shortest amount of time. Retraining the
machine learning model whenever new code is presented is thus far from ideal.

Additionally, [SA] means the code is only analyzed and not executed. We argue that
adding [DA] techniques can provide additional information regarding the variables’ types.
We can then use this information to make more accurate type inferences.

This study proposes a novel approach to deal with during automated test case
generation. The approach uses an unsupervised type inference strategy that combines [SA]
with a novel [DA] technique. The [DA] technique consists of using [Execution Information|
from the generated test cases. During the search process, we execute the generated test
cases to evaluate their achieved coverage; thus, the [Execution Information|is available by
default. This makes the technique uniquely appropriate for type inference in a test
case generation context. Essentially, the [Execution Information|allows the evaluation of the
statically inferred type’s accuracy and adjust the inferred type accordingly. This information
allows the approach to adjust the likelihood of the type options for a specific variable.

2



1.2. Research aim

This study evaluates the impact of statically and dynamically inferred types on the test-
case generating capabilities of the SynTestElproject. The SynTest project is a framework for
automated test case generation. To evaluate the novel approach, we realized the approach
within a JavaScript-specific version of the SynTest tool. The tool is one of the contributions
of this study, and we call it SYNTEST-JAVASCRIPT.

1.2 Research aim

This study aims to:

* Investigate the performance impact of type inference on test case generation for
JavaScript.

* Measure the performance impact of using execution information to improve type in-
ference accuracy for JavaScript.

* Evaluate whether the usage of type inference can be a time inexpensive process.

The performance impact can be measured by looking at the achieved structural coverage
and the fault-detecting capabilities of the generated test cases. We evaluate whether the
process can be time inexpensive by comparing the time the type inference process used to
the total time used by the test case generation process. The general hypothesis is that the
execution information of the generated tests allows for more accurate type inference; in
addition, improving the inferred types improves the test-case generation capabilities. This
reciprocity can create a feedback loop that, in the end, improves the test-case generation
capabilities even further.

The specific research questions that follow from these research aims are listed in Chapter [6]

1.3 Research significance

The research aim is to improve search-based test case generation for[DTLk by evaluating the
importance of the availability of variable types. Below we itemize the main contributions
of this study.

* Research: By answering the research questions posed in Chapter|[6] it becomes clear
what the impact of using (SA]and/or[DA]) type inference during test case generation is.
At the time of writing this study, the state-of-the-art test case generation research does
not utilize [DA] type inference techniques. This study thus contributes by improving
the test case generation capabilities for[DTLE.

Thttps://www.syntest.org/
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* Tool: To evaluate the proposed approach, the approach is implemented by extend-
ing the SYNTEST-FRAMEWORK with a JavaScript-specific version called SYNTEST-
JAVASCRIPT. We published the tool as an open-source project on GitHubﬂ It allows
developers to use the tool for their work and personal projects. Additionally, it serves
as a basis for other researchers to build upon.

* Benchmark: In addition to the tool, we created a benchmark consisting of various
JavaScript projects. We use the benchmark to evaluate the approach. The benchmark
has been made publicly available on GitHub El Future work can use this benchmark
to compare the different test case generators.

» Replication package: We published a replication package on GitHulﬂ allowing any-
one to replicate the results from this study. The package ensures the validity and
reliability of the research.

1.4 Outline

The remainder of this study is organized as follows. First, in Chapter [2] we provide essen-
tial background information. Next, in Chapter [3] we discuss related work and identify the
research gap. Chapter [ describes the novel unsupervised type inference for test case gener-
ation approach. After that, Chapter [5] presents the implementation details of the conceived
tool that realizes the approach. Chapter [6] discusses the experimental setup used to evaluate
the approach. Chapter [7] summarizes the obtained results from the empirical evaluation.
Finally, Chapter [§|concludes the results and gives suggestions regarding future work.

Zhttps://github.com/syntest-framework/syntest-javascript
3https://github.com/syntest-framework/syntest-javascript-benchmark
“https://github.com/dstallenberg/syntest-javascript-thesis-replication-package



Chapter 2

Background

In Chapter [T, we went over the problem description and research aim of this study. This
chapter explains the core background concepts related to the subject. We will discuss soft-
ware testing, automated software testing, dynamically typed languages, and finally, type
inference.

2.1 Software Testing

Software Testing is a vital aspect of software engineering [[8]]. It allows developers to ensure
the software performs its intended purpose [42,47]]. Testing comes in many forms [60]. The
most basic type of testing is unit-level testing. Unit-level testing aims to verify the lowest
functionality level of the software by isolating the functionalities. Integration-level testing
essentially aims to test several functionalities in combination to assess whether they work
together correctly. System-level testing aims to verify the software as a whole. To ensure
that the software keeps working in the future, developers create test suites, which can be
run whenever necessary to check the code base. Continuously running such test suites after
modifying the code is called regression testing.

2.1.1 Code Coverage

Determining whether a test suite is sufficient enough to detect faults/bugs can be challeng-
ing. As guidance, software testers often use code coverage metrics [31l]. Code coverage
allows developers to see what parts of the code are reached when a test is run. In a previous
study, |[Kochhar et al. found a moderate to strong correlation between the effectiveness of
the test suite and code coverage [37]]. Here the effectiveness of the test suite is determined
by its ability to find real-world bugs.

There are several types of code coverage metrics. Each focuses on different aspects of
the code. For example, statement coverage determines what statements are covered during
certain software execution. However, code is not simply a piece of text which is executed
linearly statement after statement. Instead, code can be viewed as a graph, where each
conditional creates a t rue and a false “branch”. Branch coverage gives insight into which
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branches within the software graph are covered. There is a subsumption relation between
these two, that is, 100% branch coverage automatically means 100% statement coverage.

For this reason, it is wise to use the coverage metric highest in the subsumption hier-
archy. However, the highest metric is called path coverage. Path coverage measures how
many of the possible paths through the ”code graph” are covered. The number of possible
code paths increases exponentially with the size of the program [[65)]. This makes it ex-
tremely expensive to cover all possible code paths and questionable if it is worthwhile. For
this reason, branch coverage is often used by software developers.

2.2 Automated Test Case Generation

Current industrial practices rely on manually written tests, which requires a large amount
of time and effort from software developers [8, [17, 43]. Hence, researchers have proposed
automated test case generation solutions since the 1970s [19]. This has resulted in var-
ious techniques and tools that allow tests to be automatically generated using software.
These techniques include symbolic execution [14, 36], concolic execution [30], random
testing [18]], and search-based software testing [43]. These techniques will be explained in
more detail in the next three subsections.

Random Testing & Fuzzing

Random testing is the most straightforward technique. Tools that use this technique ran-
domly generate inputs for functions/programs. These function calls are then executed and
checked for crashes/exceptions. Random testing often does not involve creating an actual
test case, instead, the inputs which induce crashes/exceptions are stored to be later shown
to the end user. Since random testing is purely random, it does not have any guidance in
achieving high coverage or high-quality test cases.

Symbolic Execution & Concolic Testing

Symbolic execution in a software testing context aims to discover the requirements for
reaching a certain point in the software. To be more specific, what input combination
leads to the execution of certain parts of the software. The symbolic execution is done
by using symbolic values for inputs. This way, we can create constraints for reaching each
conditional branch in terms of those symbols. Concolic testing is very similar to symbolic
execution. However, it uses concrete values instead of symbols to generate concrete inputs
to maximize code coverage.

Search-based Software Testing

[Search-Based Software Testing (SBST)|techniques often have a random component similar
to random testing techniques. However,[SBST|techniques also incorporate objectives. Often
these objectives are branch objectives. Branch objectives are essentially uncovered branches
in the code. The goal of the algorithm is to cover these branch objectives. We can calculate

6
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the approach level and branch distance to guide the algorithm. The approach level equals
the number of branches between the closest covered branch and the branch objective. In
Chapter [5) we show an example of this. The branch distance is equal to the variable values
evaluated at the conditional expression of the objective branch.

[SBSTtechniques have been successfully used in literature to automatically generate test
cases at the different testing levels [43]], such as unit [26], integration [22], and system-level
testing [1L1]].

Various search algorithms have been proposed for the purpose of generating test cases.
A few examples include: whole suite [27], MIO [10], MOSA [50], and DYNAMOSA [51].
Recent studies have shown that DYNAMOSA is more effective and efficient than other
state-of-the-art genetic algorithms for unit-level test generation of Java [[16]] and Python [40]
programs.

2.3 Dynamically Typed Languages

In [STLE, type checking occurs at compile time. Conversely, type checking occurs during
run time for[DTLk. This means that the correctness of types is not verified upfront. Instead,
the types are checked only when the program is executing. Common examples of
include JavaScript, Python, Ruby, PHP, Lua, and Perl. Python and JavaScript have been
among the most popular programming languages for a number of years [2} 3.

Figure [I.1] in Chapter [I] shows the difference between a [DTL] and a [STL] The [STL]
requires a developer to explicitly state the data type of each variable when the variable is
declared. Function signatures are also required to state their return type explicitly. In[DTL}
this is not required.

The popularity of can be attributed to the flexibility offer developers [59]].
This type-flexibility allows developers to quickly write pieces of code without needing to
maintain a complex type system.

One of the downsides of is that the type errors are only detected during execution,
making [DTLk error-prone [29].

JavaScript

As mentioned, JavaScript and Python are examples of [DTLs. However, in contrast to
Python, JavaScript is a weakly-typed language. In a weakly-typed language, variables are
not bound to a specific type. In other words, weakly-typed languages make conversions
between unrelated types implicitly. In a weakly-typed language, it is allowed to, for exam-
ple, add variables of different types together. In a strongly-typed language, this would not
be allowed. For example, the expression ¢ = ”abc” 41 is not allowed in Python as we are
mixing two different types in one expression. In JavaScript, this is perfectly fine since it is
weakly-typed.
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2.4 Type Inference

Type inference is the ability to deduce the type of an expression automatically. There
are many techniques to perform type inference. These techniques can be categorized as
[Static Type Inference|and [Dynamic Type Inference}

2.4.1 Static Type Inference

[Static Type Inference]makes use of[SA]to extract information from source code. In literature,
three techniques are mainly used. These techniques are Logical Constraint Processing,
Contextual Hint Processing, and [Natural Language Processing (NLP)]

Logical constraints

In essence, logical constraints are expressions within the source code that constrain the types
of the involved variables. An example of such a logical constraint is an assignment. If, for
example, a variable is assigned a boolean literal, we know that the variable is a boolean at
that point in the code.

Contextual hints

Among developers, it is common to contain the variable’s type in the variable’s name, i.e.,
if a variable of the type “tree” contains a family tree, the variable might be named ““fami-
lyTree”. In contrast to the association between variable types and variable names is
not learned. Instead, they are based on the occurrence of the name of the type in the name
of the variable. This is a contextual hint.

Another contextual hint is the usage of the variable. The variables might be involved
in several operations and expressions. These operations and expressions can provide an
insight into what the type of the variable might be.

Natural Language Processing

INLP| often encompasses learning to associate the entire context around a variable with a
variable’s type. For[NLP] the variable’s type does not have to be specified in the variable’s
context. Instead, the type is inferred based on what the model learned to associate
with the variable’s context. For example, the word “count” is often used in variable names
which are of the numeric type. The model will learn to associate “count” with the
numeric type. Another example is processing the comments left by developers to learn
about a variable’s type. For this study, the [NLP|method has not been considered because of
reasons described in Chapter [4}

2.4.2 Dynamic Type Inference

BesidesStatic Type Inference} there also exists|Dynamic Type Inference} [Dynamic Type In-|
uses|DA|of the execution of a program to extract information on the variable’s types.

8
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[DA]can be used to, for example, infer static types using information gathered from dynamic
runs [[7]. In another study [DA]is used for type specialization [28]].






Chapter 3

Related Work

In this study, we focus on type inference for test case generation. Chapter 2] provided back-
ground on automated test case generation, [DTLE, and type inference. This chapter reviews
previous work on test case generation for[DTLk and type inference to establish the research
gap on which this study will focus.

3.1 Test Case Generation for Dynamically Typed Languages

There exist several automated test case generation tools that deal with [DTLk. This section
highlights some of these tools to discuss their aim, results, and shortcomings.

For JavaScript, the test case generation approaches can be classified by the input space
on which they operate. There are two such spaces: the event space and the value space [54]).
The event space concerns the order of events in JavaScript. The event space mostly revolved
around user interfaces, for example, the order in which certain buttons are clicked. On the
other hand, the value space is about the values that are used to execute certain functionali-
ties. Both these classifications focus on client-side JavaScript. Even more so, most of the
literature on JavaScript test case generation is focused on client-side applications. However,
unit testing for server-side JavaScript is similar to value-space-oriented approaches.

Artemis & SymJS

Artemis is one of the first test case generation tools for JavaScript [13]. It uses a feedback-
directed random testing algorithm to test JavaScript web applications. Artemis operates on
both the event space and the value space. It does not use any form of type inference.

SymJS is automatic symbolic testing framework for client-side JavaScript web appli-
cations [39]. It is based on Artemis [13]] and aims to improve the value-space exploration
using concolic execution. SymJS only accounts for two types: numbers and strings. [lanida
et al.| [58]] proposed an improvement by creating symbolic inputs based on manual type
annotations. In other words, they use the type annotations developers can define in the
documentation of the JavaScript function.

Although using documentation to extract types is a solid solution to the problem, it
requires that the documentation is written in a specific format that includes the type of the

11
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required variables. It also requires the type documentation to be very specific. For example,
if a function requires a specific type of object, it is not very helpful to list the type of the
argument as “Object”. Instead, it should specify the exact properties of the object.

JSeft

JSeft is a JavaScript test generation tool focused at creating event-based tests and function-
level unit tests [45]. In their paper, Mirshokraie et al.|focus on web application testing
and oracle generation. JSeft starts by creating a state-flow graph (SFG). This SFG is then
used to generate event-based test cases. Based on the elements of the web application, the
JavaScript function states are extracted to generate function-level unit tests. Since JSeft
works on the Document Object Model (DOM) level from which it directly extracts function
calls with arguments, it does not have to bother with inferring types. It can simply extract
the argument types from the function calls it finds. Although this makes JSeft less relevant
to this study, it does provide an interesting idea that can be used during the type inference.
We can extract hints on the types of arguments to use by looking at the calls made to a
specific function.

Jalangi

Jalangi was first introduced by [Sen et al.| [S5] as a framework for the dynamic analysis
of JavaScript. Although it is not a test case generation tool, it performs concolic testing.
Initially, the types of input values were chosen based on their immediate use in the branch
conditions used by concolic testing. In other words, the broader context in which the vari-
ables are used was not considered. [Dhok et al.|[23]] proposed type-awareness to improve the
approach. In this context, type-awareness meant that the concolic testing algorithm handled
the type constraints separately from the branch constraints. The addition of type awareness
significantly reduced the number of redundant inputs, i.e., inputs that do not achieve new
code coverage while using other argument types.

Both search-based testing and concolic testing suffer from scaling issues when the num-
ber of possible input combinations is large. The results from [Dhok et al.|indicate that being
aware of type constraints reduces the number of possible input combinations. Access to the
arguments’ type information could also prove beneficial for search-based testing techniques.

Pynquin

Pynguin is an automated unit test generation framework for Python introduced in a paper
by [Lukasczyk et al.| [40]. The paper aims to verify that test generation is also effective for
[DTLk. Additionally, the goal is to empirically evaluate the impact of type information on
Pynguin’s test generation capabilities. Pynguin uses a search-based technique and takes a
whole-suite test-generation approach. Just like SymJS, it uses type annotations added by
developers. The paper results show that search-based test generation is effective for most
of the benchmarks when working with [DTLk. The authors also conclude that incorporating
type information allows Pynguin to cover larger parts of the code. However, it is said that
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which use more complex types benefit more than which only utilize simple
types.

Summary

In summary, most automated testing tools for JavaScript are focused on client-side appli-
cations instead of Node.js El server-side applications [[13| 39} 45]. The event-space-oriented
approaches are not applicable to server-side applications. However, value-space-oriented
techniques can be applied to automated testing tools for server-side applications. Tools that
do focus on JavaScript server-side applications often only create system-level test cases by
operating on s [21} 133, 161]. The tools and approaches discussed either use only a few type
hints or ignore argument types completely. The used typed hints mostly consist of type
annotations provided by the developer.

3.2 Type inference

Type inference has been a research topic for quite some time now [9, 34]. This section will
briefly cover the field’s history and discuss the state-of-the-art techniques for type inference.

JSNice

One of the earliest studies on inferring types for JavaScript was published by |Raychev
et al.|in 2015 [53]. The study introduces a scalable prediction engine called JSNice. The
engine aims to predict the names of identifiers and the type annotations of variables. JSNice
operates by parsing the input program and converting it to a dependency network relating
unknown with known properties. Based on training data, this dependency network is then
used to infer types and names of the unknown properties.

The study is focused on the general problem of inferring program properties and thus
serves as the foundation for further type inference research.

One of the shortcomings of JSNice is that it can only predict basic JavaScript types.
This means it cannot assert that a particular variable is of a user-defined type. According to
Mir et al.|another problem with JSNice is that it is unable to consider a wide context within
a program or function, i.e., it is unable to differentiate variables in different contexts with
the same name.

JSNice validates the generated code by running the Google Closure Compiler, a tool
that type checks JavaScript with optional type annotations. However, this is not foolproof.
The Closure Compiler can only check if the given type is possible, not if it is the type that
the developer intended.

Deeptyper

DeepTyper is a deep learning model created to provide type suggestions for JavaScript [32].
It consists of GRUs (Gated Recurrent Units), a type of neural network. DeepTyper is trained

Thttps://nodejs.org/
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using a large set of projects from GitHub. These projects are used to learn
variable types in certain contexts.

In their paper |[Hellendoorn et al.|states that DeepTyper performs similar to JSNice. It is
also noted that combining the two tools provides significantly better results. In this hybrid
mode, JSNice is consulted first on a certain type. If JSNice does not have an answer Deep-
Typer is used. The author attributes the results of the hybrid mode to the two approaches
being remarkably complementary. JSNice is almost always correct about a predicted type,
but it often is uncertain and does not provide a type. DeepTyper on the other hand, does
make more predictions, but the predictions are incorrect more often. This notion shows that
when the methods used by JSNice provide an uncertain result, some additional prediction
mechanisms can help the type inference.

DeepTyper focusses on the 11000 most commonly used types. This restricts the tool
from inferring user-defined types, i.e., types defined within the source code for which we
are trying to infer types. To enable DeepTyper to learn the user-defined types, DeepTyper
would have to be retrained using the source code where those types are defined.

NL2Type

NL2Type is like DeepTyper a deep learning model [41]]. NI2Type consists of a LSTM (Long
Short Term Memory) network, a type of neural network. In contrast to DeepTyper, NL2Type
uses comments in combination with code as input to predict types. The authors |Malik et al.
have shown that it significantly outperformed both JSNice and DeepTyper. Similar to the
non-hybrid DeepTyper approach, NL2Type is a[NLP|approach.

Just as DeepTyper, NL2Type is only able to predict a defined set of types. NL2Type
works optimally for 1000 types.

LambdaNet

LambdaNet uses a combination of logical constraints and context hints [63]. Similar to
JSNice it uses the hints and logical constraints to build a dependency graph. However, in
contrast to JSNice, it uses a GNN (Graph Neural Network) to infer types. The authors of
LambdaNet note that their approach outperforms DeepTyper significantly. LambdaNet can
predict 100 different types.

Type4Py

At the time of writing this study, Type4Py is among the state-of-the-art regarding type in-
ference. Type4Py was introduced by [Mir et al.| It focuses on Python and solves the limited
type vocabulary problem by employing a deep similarity learning strategy. Type4Py out-
performs other state-of-the-art approaches such as Typilus which also uses deep similarity
learning [5]. Type4Py considers contextual and natural type hints by feeding identifiers,
code context, and visible type hints as features from which it learns type associations.
Although Type4Py can handle an unlimited amount of types, i.e., an infinitely large type
vocabulary, it cannot make predictions for types that lie beyond its pre-defined type clusters.

14
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Summary

Most related work on type inference uses machine learning to perform[NLP| The approaches
are unable to infer types that are defined in the source code by the developer. In other words,
their type vocabulary is limited to the provided training data. Additionally, the described
techniques focus on[SA]only.

3.3 Research Gap

Given the literature, we found that test case generation for JavaScript is mainly focused on
client-side applications. To the best of our knowledge, we can conclude that the current
automated test case generation approaches for[DTLk do not use full-fledged type inference
techniques.

Regarding the type inference techniques, most suffer from a fixed-size type vocabu-
lary. Without retraining the models, the techniques cannot predict user-defined types.
Retraining is expensive and thus unwanted during automated test case generation.

In this study, we propose a novel unsupervised approach to dealing with during
automated test case generation. This approach will use several of the discussed [SA]type in-
ference techniques in combination with a novel[DA]technique unique to test case generation.
The novel approach is unsupervised, does not require any training, and has an infinite-size
type vocabulary.
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Chapter 4

Unsupervised Type Inference for
Test Case Generation

Chapter 2] explained essential background information. Chapter [3] discussed related work.
This chapter will explain how different [SA] and techniques are integrated into the test

case generation for[DTLk approach.

This study evaluates the performance impact of using [Static Type Inference| for test case
generation for JavaScript. In addition, the impact of using both [Static Type Inference| and
[Dynamic Type Inference|is measured. The general idea behind this is that if we can improve
the accuracy of the inferred types by incorporating [Execution Information| from the search
process, i.e., perform[DA] the quality of the generated test cases will also improve. That is,
the approach will achieve higher structural coverage because it has more information about
the types of arguments. To evaluate this hypothesis, we propose a novel approach that inte-
grates unsupervised probabilistic type inference into the search-based test case generation
process to infer required type information.

4.1 Unsupervised Probabilistic Type Inference

The approach builds upon previous type inference studies. It relies on[SA|techniques to per-
form the initial type inference, similar to the studies discussed in Chapter[3] The techniques
used are logic-based inference combined with context-based inference. Ideally, test case
generation approaches dedicate most of their time budget to the search for high-coverage
test cases. Using machine learning techniques is thus not favorable since training such mod-
els is expensive. Since techniques generally require some form of machine learning,
we have not considered using such techniques.

In contrast to most related work, the novel approach also uses [DA] type inference tech-
niques. It considers information about the correctness of the inferred types by analyzing
[Execution Information| of generated test cases. We use this information is then used to
improve the probabilistic type models created by the [SA]type inference techniques.

Unsupervised probabilistic type inference involves four phases, as shown in Figure d.1]
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Figure 4.1: Unsupervised Probabilistic Type Inference for Test Case Generation Flowchart

The first phase consists of static analysis, with regards to type inference, of the
[Onder Test (SUT) and results in a set of extracted elements and relations. The second
phase uses the extracted elements and relations to create probabilistic type models for each
element. The third phase consists of the search process. During the search process, the type
models are used to sample inputs that result in test cases that cover branch objectives. The
generated test cases are executed during the search process. From the execution, we extract
information about the correctness of the types used in the test case. The fourth phase uses
the execution information to adjust the probabilistic type models such that they become
more accurate than before. The third and fourth phase keep interacting with each other for
as long as the budget allows or all branch objectives are covered. Since the goal is to find a
set of test cases that covers most branches and exposes bugs, the final set of test cases is the
output of the process.

In the following sections, we will discuss these phases in more detail. The first section
will go over the static analysis phase. In the second section, the probabilistic type inference
phase is discussed. The third section describes the relevant parts of the search process. The
fourth section covers the last phase of the approach. To answer the research questions stated
in Chapter [ we created five approach variants. The final section describes these different
variants.

4.2 Static Analysis

The first phase consists of inspecting the [SUT| and its dependencies to gather information
that can be used to infer types. The gathered information consists of:

* Elements: identifiers and literals.
* Relations: expressions and operations involving one or more elements.

» User-defined types: Type descriptions based on classes, interfaces, prototyped func-
tions, or object initializers.

To extract the required information, all code is converted to [Abstract Syntax Tree (AST)s.
We traverse these [AST} to find the relations and their involved elements. Additionally, all
user-defined objects are extracted from the [AST|to create object type descriptions.
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4.2.1 Elements

Elements represent the parts of the [SUT] for which we want to infer the types. An element
can be a variable identifier or literal. Identifiers are named references to variables, functions,
and properties. Literals are raw values that can be assigned to variables or constants. Since
literals directly represent a type, we do not require inference. However, as described in
Chapter 2] in [DTL}, identifiers do not have explicit types. To find out more about the type
of an identifier, we can use the context of the identifier, i.e., the relations.

4.2.2 Relations

Relations are expressions and operations involving one or more elements. They describe
how the elements are used and how they relate to other elements. Relations can tell us more
about the elements’ types. As an example relation, assume variable L is assigned R (L = R).
If R is a boolean literal, we can infer that L must also be boolean at that point in the code.

The relations are extracted from the [AST| and converted to a format that allows easy
identification. Figure f.2a|shows a smaller than relation between variable a and literal 6 on
line 2. The relation is converted and recorded as [L < R, a, 6] as shown in Figure[4.2b] A full
list of the possible relations is shown in Table[f.2] The table specifies the operator category,
the operator name, and the relation format for all operators available in JavaScript. Most of
these operations are taken from the MDN web documentation by Mozilla [[1]].

{ 1. [L_R,example,al

function example (a)
if (a < 6) {
return 0 2.[l,<IR,a,6]

}
return a 3. [L — R,example,0]

}
4. [L — R,example,d]

example (5)

91

. [L(R),example, 5]
(a) Code (b) Extracted Relations

Figure 4.2: Example of relation extraction from code

Besides the obvious relations like a binary operation or assignment expression, Table[4.2]
also contains relations like function arguments, function returns, and function calls. Record-
ing such additional relations gives extra insight into the possible types of the elements. For
example, Figure 23] shows that the example function has a parameter a. Assume we want
to infer the type a. Further in the code snippet, line 8 shows that the example function is
called using 5 as an argument, which is a numeric literal. This indicates that parameter a
might be required to be numeric. However, since JavaScript is a[DTL] we cannot say this
with certainty, i.e., the example function might allow a to be both numeric and string, or
any other type.

Often code is not as straightforward as the example given in Figure[d.2a] Code regularly
contains nested relations. Nested relations are relations where the involved elements are

19
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Operator Category Operator Name Relation

Primary Expressions This this.L
Define Function function L
Define Class class L
Define Generator Function function* L

Pause and Resume Generator Function  yield L

Delegate to another Generator Function yield* L

Define Async Function async function L
Wait for Promise Resolution/Rejection  await

Array initializer [L]
Object initializer {L:R}
Regular Expression /L/
Grouping Operator (L,R)
Left-hand-side Expressions Property Accessor LR
New new L()
Spread ..L
Increment/Decrement PostFix Increment L++
PostFix Decrement L--
PreFix Increment ++L
PreFix Increment --L
Unary Delete delete L
Void void L
Type Of typeof L
Unary Plus +L
Unary Negation -L
Bitwise NOT ~L
Logical NOT L
Arithmetic Addition L+R
Subtraction L-R
Division L/R
Multiplication L*R
Remainder L%R
Exponentiation L**R
Relational In LinR
Instance Of L instanceof R
Less than L<R
Greater than L>R
Less or Equal L<=R
Greater or Equal L>=R

20
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Operator Category Operator Name Relation
Equality Equality L==
Inequality L!=R
Strict Equality L=—==
Strict Inequality L!'==R
Bitwise Shift Left Shift L<<R
Right Shift L>>R
Unsigned Right Shift L>>>R
Binary Bitwise Bitwise AND L&R
Bitwise OR LR
Bitwise XOR L"R
Logical AND L&&R
Binary Logical Logical OR L|R
Nullish Coalescing L77R
Ternary Conditional C?L:R
Optional Chaining Optional Chaining L?R
Assignment Assignment L=R
Multiplication Assignment L*=R
Exponentiation Assignment L**=R
Division Assignment L/=R
Remainder Assignment L%=R
Addition Assignment L+=R
Subtraction Assignment L-=R
Left Shift Assignment L<<=R
Right Shift Assignment L>>=R
Unsigned Right Shift Assignment L>>>=R
Bitwise AND Assignment L&=R
Bitwise XOR Assignment L"=R
Bitwise OR Assignment L|=R
Logical AND Assignment L&&=R
Logical OR Assignment L|=R
Logical Nullish Assignment L??7=R
Destructuring Assignment [a,b] =[1,2]
Destructuring Assignment {a,b} ={a:1, b:2}
Comma Comma L.R
Function Parameter LR
Return L->R
Call L(R)

Table 4.2: JavaScript Relations (continued)

21



4. UNSUPERVISED TYPE INFERENCE FOR TEST CASE GENERATION

1. [L=R,x,yx*]
2. yx=[C?L: R,z%,6,10]
const x = (a == b ? 6 : 10)
3. z#=[L==R,a,D]
(a) Nested Relation (b) Extracted Relations

Figure 4.3: Example of nested relation extraction from code

relations themselves. In Figure[d.3a we show an example of such nested relations. Constant
x is assigned a value, so the formatted relation is equal to [L = R,x,y*]. The formatted
relation does not contain the whole right part of the assignment; instead, y* is defined. y*
is an artificial element that points to the relation that is the right part of the assignment.
The right part of the assignment turns out to be a ternary statement. y* points to [C?L :
R,z%,6,10]. Once again, an artificial element z* is created that points to the equality relation
in the conditional part of the ternary statement. Hence z* points to the final relation [L ==
R,a,b]. Although the code in Figure seems rather simple, there are three relations
involved that are contained in each other. These relations are shown in Figure [4.3b]

These nested relations provide additional insight into the types of the elements, as de-
picted in Figure .4l There are two relations present. The first is the assignment relation
between x and y*, that is, [L = R,x,y*]. Here y* points to the comparison, [L < R,a,b].
The comparison relation is nested within the assignment relation. Since the relation L < R
always results in a boolean value, we can conclude that x must be boolean at this point in
the code.

1. [L=R,x,y%]
const x = a < Db
2. yx=[L<R,a,b|
(a) Nested Relation (b) Extracted Relations

Figure 4.4: Example of type insights from nested relations

4.2.3 Scopes

As shown in the previous subsections, information about the elements’ types can be ex-
tracted from the relations in which those elements are involved. However, one important
aspect of the elements we have not yet discussed is scoping. The scope of an identifier
determines its accessibility. Figure [d.5] shows an example of what scoping does. First, the
constant x is assigned the value 5. The constant x is defined in the so-called global scope.
Next, a function is defined, which creates a new scope. This scope has access to references
of the global scope but can also have its own references, which are only available to itself
and its sub-scopes. Within the function, we observe that another constant x is defined. Note
that from this point on, every reference to x in the scope of the function refers to the newly
defined constant rather than the one from the global scope. This phenomenon is called
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variable shadowing. Briefly put, when an identifier is redeclared in a narrower scope, the
declaration in the narrower scope shadows the declaration in the broader scope. In the con-
text of the extraction phase, this shadowing principle is fundamental because variable x in
the global scope is not the same variable as the one from the function scope. They might
have different types. In this case, the x from the global scope is numerical, while the x from
the function scope is a string.

To keep track of the scope of the elements, we save the elements and relations with their
respective scope identifier. The scope identifier allows the inference techniques to couple
different types to elements with equal names.

const x = 5

function example (a) {
const x = "Hello "
return x + a

Figure 4.5: Example of variable shadowing with a function scope

4.2.4 Complex Types

In JavaScript, objects are an essential building block of the language. Objects in JavaScript
are stores of key-value pairs. Besides primitive types such as booleans or numbers, almost
everything can be represented as an object. An array can, for example, be viewed as a
special object where the keys are numbers.

In modern JavaScript versions, developers can define classes and interfaces that induce
a more object-oriented approach to JavaScript.

Since objects play such a prominent role in JavaScript, it is crucial that object types can
also be inferred. To infer what type an object is, it is required first to extract all object type
descriptions available to the[SUT] These include class and interface definitions and standard
objects like an array or a function.

4.3 Probabilistic Inference

After extracting all the elements, relations, and possible types from the [SUT] the second
phase starts. In this phase, we build a probabilistic type model for each element. This is
straightforward for elements that represent literals as the type can be directly inferred from
the literal type. However, not every element in the code is a literal. Based on the extracted
relations, we make assumptions. For example, when the relation [L = R,x, 5] is processed,
it can be inferred that at this particular point in the code, x must be of a numerical type
since it is assigned the literal value 5. It is, however, not certain that x is numerical before
or after this particular relation. Variable x might be re-assigned to another type. Hence,
a scoring system is used instead of fixing x to be numerical. The type models consist of
a map linking types to scores. If an element is possibly a certain type, then that type has
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a non-zero score in the element’s type model. We derive these scores from the extracted
relation information. Using the previous example relation: [L = R, x,5] x is assigned a point
for the numeric type. If x is later assigned a string value, it also receives a point for the
string type. The example is straightforward since the right part of the assignment is a literal
value. However, as mentioned before, JavaScript is weakly typed. The following relation
showcases this: [L+ R,x,5]. In this relation, 5 is added to x. Although the right part is
once again a literal value, we cannot say anything about x. We can make the assumption
that x is probably numerical, but it is just as likely a string. For this particular relation, it is
appropriate to give both an equal score for the string and numerical type.

4.3.1 Complex Type Resolving

In order to identify which elements of the |§LT| are objects, we check the elements for the
Property Accessor relation. We compare the accessed properties to the available object
type descriptions if an element is involved in one or more Property Accessor relations. If
there is an overlap between the element’s properties and the properties of an object type
description, we assign the type description as a possible type of the element. In Figure ??,
we show a Venn diagram of an example from one of the benchmarks. In the benchmark,
we find a complex type called Command. This Command object has several properties such
as a name, a set of arguments, a parent Command etc. In the Venn diagram, the Command
object is shown as the largest circle. Now assume that we are trying to resolve the type of
an element x. In the (hypothetical) code context of x, we observe that the name, arguments,
options, and aliases properties of x are used. We show this as the smaller circle in the
Venn diagram. There clearly is an overlap between the properties of x and the properties of
the Command type. Because of this overlap, we assign a score to the Command type for
element x.

Command Type
Properties

parent: Command
Element's

properties

showHelp:
function

name: string
arguments: array

options: array

aliases: array

Figure 4.6: Example Venn diagram of a complex type description and an elements’ accessed
properties

In addition to the matching object descriptions, an anonymous object type is created and
assigned as a possible type. This anonymous object type exactly matches the properties of
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the element. The anonymous object type is useful when there is no matching type descrip-
tion in the source code. This ensures that we can still use a matching type during the search
process.

4.3.2 Probabilities

After assigning the scores to the possible types, we use the scores to calculate the probabil-
ities of the types. The higher the score of a particular type, the higher the probability that
the element is of that type. The probability p; of type i is calculated by dividing score s; by
the total score Y ;s;, as shown in equation[d.I] The sum of probabilities adds up to 1.

Yisi
The probabilities are used during the search phase to sample arguments of the correct
type. In order to sample an argument, one of the types in the type model has to be picked.
For this study, we created two modes. We call the first|Rank-Based Samplingl mode. In this
mode, the type with the highest probability is always selected. We call the second [Propor
mode. In this mode, the type is randomly picked based on its probability,
i.e., if a type has a 50% probability of being the correct type, it has a 50% chance of being
selected.

pi 4.1

4.3.3 Type Dependencies

Next to the element types, relations themselves also have a result type. Consider for example
the relation: [L > R, a,b]. In this relation the output type is boolean no matter what the types
of a and b are. Without further context, this is not very useful. However, we often encounter
nested relations within code. For example, [L = R,c,d*] where d* equals [L > R,a,b].
Since we know that the outcome of d* is a boolean value, we can infer that ¢ must also be
a boolean. However, instead of assigning a score for boolean to ¢ we make the type of ¢
depend on the type of d*. We do this because there are relations where the outcome of the
relation depends on the involved elements. By making the types of elements dependent on
each other, we are essentially creating a type probability network.

Figure shows an example of such a type probability network. Figure shows
the source code. We consider the add function with two arguments a and . On line 2
variable c is defined to be equal to a + b. The type result of relation a + b is dependent
on the types of a and b. Variable c is directly dependent on the result of the relation. We
show the dependency relations as a directed graph in Figure In the graph, arrows
point from the dependent to the dependee. On line 3 we find a return statement returning
c. In the graph, this is shown as the return type of the add function being dependent on
the type of c¢. In the second function on line 7, we see that the add function is called with
two arguments, namely, “Hello ” and “World”. Now we can say that the type of the first
argument of add depends on the type of the literal “Hello ”. This literal is a string, which
indicates that a is probably also that type. This propagates through the entire network. The
type probability network ensures that whenever new information about the type of a certain
element becomes available, it is propagated to all linked type models. Because of the type

25



NN W=

e}

4. UNSUPERVISED TYPE INFERENCE FOR TEST CASE GENERATION

function add(a, b) {
const ¢ = a + b
return c
}
function main () {
const ¢ = add("Hello ", "
World")
print (e)
}
(a) Source code (b) Type model network

Figure 4.7: Example type model network

dependencies between elements, it is crucial that for each element, a type model is created,
and not just for the elements of interest.

4.4 Search process

The third phase of the approach is the search process. In this phase, we use a heuristic
to generate test cases with the goal of uncovering faults in the In this study, we use
an evolutionary approach. Specifically, the Dynamic Many-Objective Sorting Algorithm
(DynaMOSA) [51]] is used. As mentioned in Chapter 2] this algorithm outperforms other
algorithms when it comes to automated test case generation.

The evolutionary approach randomly generates a set of test cases. These test cases
are then evaluated by looking at how close they are to covering certain branch objectives.
The most promising test cases are selected to be part of the next generation, the others are
‘killed’. The remaining population of test cases is then used to create a new population,
the offspring. This offspring population is created by using variational operators such as
mutation and crossover on the members of the parent population. The offspring population
is then added to the total population, and the process repeats. Both during the random
generation and mutation of test cases, the type models are used to sample arguments for
function or constructor calls.

The evaluation of the test cases requires that we run the test cases against the [SUT]
While executing the test cases, exceptions might occur in the [SUT] These exceptions can
sometimes provide information on the correctness of the types of the used arguments. This
information is stored and used in the fourth phase.
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4.5 Dynamic Analysis

In the third phase, the probabilistic type models are used to create test cases with possibly
correct types. However, since the models are probabilistic, there is no guarantee that the
correct type is used. While these test cases are executed, some test cases may trigger excep-
tions in the Some might be actual bugs or intentional exceptions in the Others
are type errors indicating that there is a type mismatch somewhere in the source code. A
wrongly inferred argument type possibly causes this mismatch. During the [DA] phase, the
thrown exceptions are intercepted and processed.

Besides the type scores that indicate an element is of a certain type, each element also
has execution scores. We use these execution scores to update the adjust the type models
using the execution results of the test cases. If a TypeError exception is thrown during the
execution of a test case, we proceed to scan the error message or stack trace for variable
names that are used in the generated test case. If we find a matching variable, we assign
a negative execution score to the type that was used for that variable. In Listing [4.§] we
show an example stack trace. From the first line of this stack trace, we can conclude that
the description property of the cmd object should have been a function. In this example, the
description property was sampled as a string, so the type model of the description property
will be assigned a negative point for the type string. The type model’s execution scores
are used to calculate the type’s likelihood. The idea here is that for each TypeError that is
thrown, we adjust the type models to become more accurate.

TypeError: cmd.description is not a function

at Help.subcommandDescription (.syntest/instrumented/benchmark/
toplOnpm/commanderjs/lib/help.js:3945:16)

at _callee$ (.syntest/tests/tempTest.spec.js:5:22)

at tryCatch (node_modules/regenerator-runtime/runtime. js:63:40)

at Generator.invoke [as _invoke] (node_modules/regenerator-
runtime/runtime. js:294:22)

at Generator.next (node_modules/regenerator-runtime/runtime.js

:119:21)
at asyncGeneratorStep (.syntest/tests/tempTest.spec.js:7:103)
at _next (.syntest/tests/tempTest.spec.js:9:194
at .syntest/tests/tempTest.spec.js:9:364
at new Promise (<anonymous>)\n at Context.<anonymous> (.syntest/

tests/tempTest.spec.js:9:97)

Figure 4.8: Example stack trace of a useful type exception

To calculate the final probability p; of type i we use equation The first fraction
in the equation equals equation f.T] The second fraction represents the execution score
probability. Since the execution score, es; is either zero or negative (when a used type gives
TypeErrors), we add the absolute value of the most negative score min;(es;) to the execution
scores of all types. This ensures that the (original) most negative score now has a score of
zero, and all the other scores are positive. These modified scores are identified by es}. After
doing this, we do the same as with the regular scores, i.e., divide the es} score by the sum of
all es’ scores.
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_ s esit |min;(es;)| _ S es. 42)
Yisi Xi(esi+|mini(esi)|])  Xisi Yies

Now it must be noted that after doing this multiplication, the sum of probabilities is not

equal to 1 anymore. To fix this, we divide all probabilities by the sum of probabilities at the

end of the process.

Di

4.6 Approach Variants

Given the phases described in this chapter, we have created five different approach variants
to answer the research questions. These variants are listed in Table[d.3] The first variant acts
as the baseline to which we will compare the four other variants. The baseline does not use
any [Static Type Inference| or [Dynamic Type Inferencel The types used for the baseline are
completely random, i.e., all types have an equal probability of being used. Because no static
analysis is conducted, the baseline is only able to sample primitive types (number, boolean,
etc) and the standard JavaScript complex types, i.e. Object, Array, String. The second and
third variants only use [Static Type Inference| for their type models. In other words, they
do not use phase 4 in Figure .1} The second and third variants use [Rank-Based Sampling|
and [Proportional Sampling] respectively, as described in Section 3] The fourth and fifth
variants use both [Static Type Inference| and [Dynamic Type Inference] Again one uses the
|[Rank-Based Samplingl mode and the other uses the |[Proportional Samplingl mode.

Variant Sampling Mode Analysis Mode

Baseline - -

only|Rank-Based Sampling| Rank-Based Static Analysis
only|Proportional Sampling| Proportional Static Analysis
DA||[Rank-Based Samplingl  Rank-Based Static + Dynamic Analysis
DA(\Proportional Sampling| Proportional Static + Dynamic Analysis

Table 4.3: Overview of the approach variants
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Chapter 5

Syntest JavaScript

We described the approach in the previous Chapter [d] To evaluate the approach, we imple-
mented a tool. The tool will be referred to as SYNTEST-JAVASCRIPT. This chapter will
describe the implementation details of the conceived tool.

First, we will detail the foundation on which we build SYNTEST-JAVASCRIPT. Sec-
ond, we discuss the architecture of SYNTEST-JAVASCRIPT. Third, the process of running
SYNTEST-JAVASCRIPT is laid out. Finally, the options SYNTEST-JAVASCRIPT provides
are explained.

5.1 Foundation

SYNTEST-JAVASCRIPT belongs to the SynTest project SYNTEST is a project dedicated
to generating synthetic tests for JavaScript-based languages. The foundation of the SYN-
TEST project is the SYNTEST—FRAMEWORKH SYNTEST-FRAMEWORK consists of a li-
brary written in that provides generic interfaces to build search-based software
testing tools. The first such SYNTEST tool is called SYNTEST-SOLIDITY and as the name
implies is a tool for automated software testing of Solidity smart contractsEl [48]).
SYNTEST-FRAMEWORK acts as a common core for all SYNTEST projects. It con-
sists of a set of generic search algorithms. These search algorithms are configurable such
that they can be optimally used for any type of encoding. Next to the search algorithms,
SYNTEST-FRAMEWORK contains a few interfaces to be used in the different language-
specific SYNTEST Tools. Finally, it contains several utility classes.
SYNTEST-JAVASCRIPT is the second SYNTEST tool that builds upon SYNTEST-FRAMEWORK.
During the development of SYNTEST-JAVASCRIPT we have proposed several improve-
ments for the SYNTEST-FRAMEWORK project in order to make the project more generic
and more capable of handling any JavaScript-based language. Besides the language differ-
ence between SYNTEST-JAVASCRIPT and SYNTEST-SOLIDITY it is important to note that
SYNTEST-JAVASCRIPT is the first SYNTEST tool that focusses on For this reason,

Thttps://www.syntest.org/
Zhttps://github.com/syntest-framework
3https://docs.soliditylang.org/
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SYNTEST-JAVASCRIPT has a special module dedicated to type inference. It must also be
noted that compared to Solidity, JavaScript is a more complex and, simultaneously, flexible
language. This added complexity and flexibility required a more rigorous static analysis
and encoding structure.

Since SYNTEST-FRAMEWORK is written in[TypeScript]it is possible to create a language-
specific tool in both JavaScript and [TypeScripff However, due to the advantages that[Type-]
[Script offers during the development of large-scale applications like this, it was deemed the
more logical choice to build SYNTEST-JAVASCRIPT upon [24]. SYNTEST-JAVASCRIPT is
created using Node.js v16 which at the time of writing is the active LTS version of Node.js.

SYNTEST-JAVASCRIPT supports both CommonJS and ECMAScript Node. jsElmodules.
Currently, the resulting test cases adhere to the ECMAScript module style.

We created SYNTEST-JAVASCRIPT using Object Oriented Programming principles and
various design patterns. It is thus set up to be highly extensible. This setup allows future
developers of the tool to seamlessly replace the inner working of the various components of
the tool.

5.2 Architecture

This section gives the details of the architecture of SYNTEST-JAVASCRIPT. Figure [5.1]rep-
resents the high-level architecture of the SYNTEST-JAVASCRIPT tool. The figure consists of
a component diagram that showcases how the different components of the system interact.
The figure shows three dashed boxes containing one or more components with a common
purpose. This section will detail most of the components in Figure [5.1] First, we will dis-
cuss the components within the “Static Analysis” box. Second, the contents of the “Type
Inference” box. Finally, we will describe the leftover components. We will not discuss
the component in the “Framework” box since it is not specific to SYNTEST-JAVASCRIPT;
instead, it is part of the SYNTEST-FRAMEWORK.

5.2.1 Static Analysis

The first component group of the tool revolves around the static analysis. In Chapter [
the general idea of the static analysis is laid out. In this subsection, we will explain some
implementation details. Figure [5.1] shows that the static analysis consists of an Abstract
Syntax Tree Generator, a Control Flow Graph Generator, a Target Visitor, A Type Visitor,
and an Element & Relation Visitor.

Abstract Syntax Tree Generator

The static analysis starts by converting the source code to We used the Babel libraryﬂ
to do this. Other components of the static analysis also use this library to traverse the [AST]
using a visitor pattern.

“https:/nodejs.org/
Shitps://babeljs.io/
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Figure 5.1: Component diagram of SYNTEST-JAVASCRIPT

Control Flow Graph Generator

The next component of interest is the Control Flow Graph Generator. As the name indi-
cates, this component uses the [AST] to create a [Control Flow Graph (CFG)| A [CFG|is a
graph representation of all code paths that might be traversed during program execution.
Nodes in this graph represent pieces of code without any jumps. The directed edges be-
tween the nodes represent the jumps in the control flow. In Figure[5.2]an example of such a
[CEGis given. In Figure[5.2a the source code with numbered lines is shown. In Figure [5.2b|
the resulting with the corresponding line numbers for each node, is shown. On line
3 we encounter the first branching point, the for loop. In the [CFG]|two branches are exiting
node 3. The left-most branch is the case where i < arr.length and thus we enter the for loop
and end up on line 4. The rightmost branch is essentially the *false’ branch where we do
not enter the for loop and thus directly go to the return statement on line 8.

The generated [CFG|is used by the search process to determine how far a certain test
case is from covering a certain branch. We do this by looking at what branches the test case
covers. For example, say we execute test case X on the countZeros function in Listing[5.2a]
The coverage results show that lines 1, 2, 3, and 8 are covered, i.e. the for loop has not been
entered. Now we want to know how far we are from covering line 5. We do this by looking
at the [CFG|] We calculate the shortest paths from each of the covered nodes/lines to node 5.
It is important to note that these paths are directed, i.e., in the example, it is impossible to
go from 8 to 3. Next, of all the shortest paths we again take the shortest; in this case, the
shortest path from a covered node to 5 is the path 3, 4, 5 which has length 2. This metric is
called the approach level.
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1,2

function countZeros (arr) {
let count = 0
for (let 1 = 0; 1 <
if (arr[1] === 0)
count += 1

arr.length; i++) {
{

}
}

return count

(a) Source code (b) Control flow graph

Figure 5.2: Example of code to control flow graph translation

Target Visitor

By extracting all classes, methods, and functions, the Target Visitor gathers possible targets
from the [ASTs. We only create tests for targets that are exported in the source code. The
resulting targets contain information regarding the scope of the class/method/function, the
required parameters, and the return parameter.

Type Visitor

The Type Visitor is responsible for finding the user-defined types. As described in Chapter ]
these user-defined types are used to infer which elements should have such types. The
Type Visitor extracts classes, user-defined objects, prototyped functions, and interfaces. The
extraction results in a set of “complex objects”. It is important to note that the Type Visitor
does not exclusively look into the source code of the [Unit under Test (UuT)| Instead, it
analysis the entire code base in which the [UuT]is situated.

Element & Relation Visitor

In addition to the Type Visitor we also have the Element & Relation Visitor. This visitor
gathers all elements and the relations they are involved in from the [AST] Thus, at the end
of this visitor process, we have a complete set of all interactions between variables and
constants.
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5.2.2 Type Inference

The next component group is the Type Inference group. Although the type inference is
strongly connected to the static analysis, it requires its own component group. This group
consists of the Type Resolver and the Execution Information Integrator as shown in Fig-
ure [5.1] The most important artifact in this component group is the Type Probability Map
which is created by the Type Resolver and later modified by the Execution Information In-
tegrator. In essence, the Type Resolver performs the initial [Static Type Inference| while the
Execution Information Integrator performs the [Dynamic Type Inference]

Type resolver

The Type Resolver uses the results of the type-related static analysis; the Type Visitor and
the Element & Relation Visitor. We use these results to infer the elements’ types.

The first step of the Type Resolver is to resolve the types of each of the primitive ele-
ments. This step is relatively simple as it is evident that, for example, a string primitive is
of the type string. However, it is a crucial step to make the inference network complete.

Next, we resolve the relations. We do this in two steps. First, we try to infer the involved
elements of the relation. This is done by making assumptions about certain relations. For
example, a comparison relation likely involves numeric elements. However, this is not
always a given as JavaScript is very flexible regarding what types of elements are usable in
any relation. Another example might be that we have an equality relation. In this case, we
expect the two elements to be of the same type. We thus make the type probabilities of the
two elements loosely dependent on each other. The second step of the relation resolving is
resolving the actual relationship itself. Sometimes it is possible to infer the resulting type
of a relation without knowing the types of the involved elements. For example, the typeof
relation always returns a string. On the other hand, a return relation’s type is equal to that
of the returned element.

Finally, we resolve the “complex” elements. These consist of all elements which are
the object in a Property Accessor relation. Now, by comparing the properties that are being
accessed in the scope of the element to the properties of the “complex objects” found by
the Type Visitor, we can infer which “complex object” type belongs to which “complex”
element. Additionally, we always create one anonymous complex object type that matches
the properties being accessed. This is done such that there is always a possible type present
in the type probability map, which can be used for the test cases.

As explained in Chapter[d] the entire probabilistic inference uses a scoring system where
on every hint of an element being of a certain type, we assign a point to that type within the
type probability map of the element. Once the static analysis is finished, we use the scores
to calculate the probability of each type. We described the equation for this calculation in
Chapter 4]

The final result of the inference is a Type Probability Map per element. This probability
map consists of a probability per possible type. More likely types have a higher probability.
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Execution Information Integrator

The Execution Information Integrator is the second component used for type inference. It
is responsible for adjusting the type probability map of each element once new execution
information becomes available. This execution information is provided by executing test
cases during the search process.

Most types in an element’s type probability map are not actually applicable. This is
because the elements often only have one valid type, while the probability maps can contain
multiple. For example, an element X might have a probability map with a probability 0.3
for string and 0.7 for number. In JavaScript, it is possible to have code that allows X to be
a string or a number. However, more often than not, the creator of that code intended X to
be only one of the two. Although JavaScript is very flexible, using more complex types can
result in unexpected behavior when the wrong type is used. The code might, for example,
throw a TypeError. During the search process, these TypeErrors are caught and used to
improve the accuracy of the probabilities in the type probability map. The current version
of the tool does this by scanning the error messages for the names of parameters used by the
If there is a match, we assume that the type used for that parameter is likely wrong.
We thus give the type in question a negative point for the execution score. Note that this is a
different score than the type score. The calculation of the new type probabilities is described
in Chapter [

5.2.3 Instrumentation

As mentioned in Chapter [ the search process of test-case generation using search-based
techniques relies on branch coverage as guidance to create a sufficient test suite. We need to
know which branches are evaluated during a certain execution to track the branch coverage.
We can do this by modifying the original source code of which we want to track the cov-
erage. In Listing[5.3] you can view the modification being made. In Listing [5.3a] you can
see the source code, which consists of a simple function that returns the maximum value
of the two given arguments a and b. In this example, the if statement creates exactly one
branch. In Listing [5.3b]you can observe the resulting instrumented code. On line 2, the first
call to our track function is made. It tracks that function ’0’ has been called. Similarly, we
see on line 5 that branch *0’ is tracked. Additionally, we track that this branch’s "true’ part
has been executed. On line 8 we again see branch ’0’ being tracked, but this time the ’false’
part of the branch is executed.

In addition to the branch coverage, we also record the branch conditions and the values
of the involved elements as they are evaluated. On line 3, we show an example of this.
Here we record the condition and the values of the elements in the condition of branch 0.
This extra information allows for the calculation of the branch distance in addition to the
approach level.

For the instrumentation, we used an older version of istanbul.js|’| as inspiration. How-
ever, since istanbul.js is not meant for automated test case generation tools, some mod-
ifications had to be made to create a version that meets the requirements of SYNTEST-

Ohttps://istanbul.js.org/
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1 | function max (a, b) {
2 track (’ function’, 0)
3 record (0, "a < b’, [a, b])
4 if (a < b) {
function max (a, b) { 5 track ("branch’, 0, true)
if (a < b) { 6 return a
return a 7 } else {
} else { 8 track ("branch’, 0, false)
return b 9 return b
} 10 }
} 11 |}
(a) Source code (b) Instrumented code

Figure 5.3: Example of source code to instrumented code translation

JAVASCRIPT. For example, the original does not treat loops as branches. This creates the
problem that the approach level is not entirely correct, giving the search algorithm less
guidance. Another modification is the addition of the aforementioned recording of branch
conditions and element values.

5.2.4 Encoding

The goal of SYNTEST-JAVASCRIPT is to generate test cases, which means we are trying
to synthesize code using a genetic algorithm; this is called Genetic Programming [38]].
However, genetic programming is more than simply mutating a string until it forms a test
case. Instead, we use an encoding that describes how the test case should be formatted.
Since code can be represented as a tree (for example, an @), it makes sense to also
represent the encoding of the test cases as a tree. This encoding is a tree of statements.
Figure [5.4a] gives an example of such a tree.

The encoding is split up into four classes. The first class is the primitive class, consisting
of the Bool, Null, Numeric, String, and Undefined statements. This class contains the most
basic building blocks of the encoding. The second class is the complex class, consisting of
the Array, Object, and Arrow Function statements. These statements are more complex as
they can have child statements. An array statement, for example, can be empty but can also
be filled with, e.g., numeric statements. The object statement always has child statements in
pairs; one is the key, and the other is the value. The key statement must always be a string.
The arrow function statement only has a return statement in the current implementation.
Note that these complex statements can, next to primitive statements, also have complex
children. The third class is the root class; it consists of the function call statement and
constructor call statement. We call this class the root class because the root of the encoding
tree is always a constructor or a function call. Both these statements can hold argument
statements. Like child statements of complex statements, the argument statements are used
to provide the arguments required for the constructor or function call. The constructor call
differs from the function call as it can have children next to the required arguments. These
additional children consist of method calls from the fourth and final class. This final class
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is the action class and consists of only the method call statement. These method calls are
children of the constructor call statement. They are essentially calls to the methods of the
instantiated class.

1 |it ("getBalance method", () => {
2 const initialBalance = 300
3 const ledger = {

StringStatement R .

“Dimit 4 "Dimitri": 300
R 5 J

6 const bank = new Bank (ledger)

C all 7

“Dimitri* 300 Person Class 8 const name = "Dimitri"

9

Key Value Person
Argument Argument Argument const person = new Person (
name)

MethodCall
getBalance Method 10

[T — 11 const balance = bank.

ObjectStatement

Argument
getBalance (person)

ConstructorCall 1 2 } )

Bank Class

(a) Encoding tree (b) Decoded test case

Figure 5.4: Example of decoding an encoding to a test case

In Figure[5.4a)an example of an encoding tree is given. At the bottom of the tree, we find
the constructor call as the root. Here the Bank class is instantiated using a single argument.
This argument is an object statement containing a single key-value pair. The constructor
call also contains one method call statement named getBalance. This method call requires
one argument of the type Person, which also is a class and thus can be instantiated by
another construct call. The Person class requires a single argument, the name of the Person,
which is a string statement. The decoded test case of the example encoding tree is shown in

Listing[5.4b]

5.2.5 Sampler

We sample these encoding trees through the Encoding Sampler component. The Search
Algorithm uses this component constantly. At first, by sampling the initial population, and
later when new encodings need to be sampled to keep a high diversity. The tree structure
of the encoding allows the sampler to resample the entire encoding tree or sub-trees. The
Encoding Sampler uses the targets provided by the Target Visitor in combination with the
Type Probability Maps to sample encoding trees with the corresponding types. Although
the goal is to create test cases with types that match the source code, it is interesting to use
the wrong types every now and then. For example, using the wrong type of argument for a
certain function call can lead to unexpected executions which should not have been possible,
resulting in the discovery of a bug. Finding these kinds of bugs can be very valuable. For
this reason, the sampler samples a random type with a small probability defined by the
random_type_probability option.
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5.2.6 Evaluation

In order to evolve the population of encodings to a set of useful test cases, i.e., a set of
test cases with high branch coverage, the encodings need to be evaluated such that the most
promising encodings can proceed to the next generation. To do this evaluation, we send
the encodings to the 7est Case Runner, which uses the Encoding Decoder to convert the
encoding tree to a textual representation. The Test Case Runner then proceeds to run the
test case against the instrumented source code. Once the test case run is done, the execution
information is returned to the Encoding Evaluation component. As mentioned before, this
information is then combined with the [CFGto calculate the approach level and the branch
distance of the encoding.

5.2.7 Suite Builder

Once the budget of the search algorithm has run out, it creates the encoding archive. This
archive consists of all encodings which are key to covering certain branches or have induced
unique crashes. We then pass the archive to the Test Suite Builder, which uses the archive
and the Encoding Decoder to create the final test suite. In addition to simply putting all
the tests together, the Test Suite Builder also creates all the assertions that a proper test case
should have. These assertions consist of checks on the runtime return values of function and
method calls. Finally, if exceptions occur while executing a test case, the failing statement
is asserted to throw an exception.

5.3 Running the tool

Developers can use the tool through the easy-to-use [Command Line Interface (CLI)| that
is publicly available on the Node Package Manager repository ﬂ Another way is through
cloning the public git repositoryﬁand installing the tool by following the instructions in the
README .md. This document also includes instructions for creating a docker image specific
to running the tool.

The [CL]| is highly configurable and offers a range of options. These options will be
detailed in Chapter [ The options can be given directly as arguments to the or by
creating a .syntest. js file in the root of their repository. Within this file, each option can be
configured.

If a developer is interested in running the tool on their code, they can run the following
command after installing the package:

syntest-javascript --target_root_directory="<PATH_TO_ROOT_DIRECTORY>"
--include="<PATH_TO_TARGETS>" --search-time=120

This command will start a test case generation process with a search time of 120 seconds
per target. It will perform the static analysis using all the source code available in the given

7https://www.npmjs.com/package/ @syntest/javascript
8https://github.com/syntest-framework/syntest-javascript
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it ("test for detectUndirectedCycle’, async () => {

const _isDirected_boolean_WdyT = true;

const _graph_Graph_lk5v = new Graph(_isDirected_boolean_WdyT)

const _vertex_undefined_5ax = undefined;

expect (JSON.parse (JSON.stringify (_graph_Graph_1k5v))).to.deep.equal ({
"vertices":{},"edges":{},"isDirected":true})

try {
const _returnValue_any_wkPl = await _graph_Graph_lkb5v.

getNeighbors (_vertex_undefined_5ax)
} catch (e) {

expect (e) .to.be.an(’"error’)

Figure 5.5: Example generated test case

<PATH_TO_ROOT_DIRECTORY>. The <PATH_T0_TARGETS> can be a single file or a pattern that selects
a set of files.

Running the tool will give a bunch of information regarding the process. First, some
general information, such as the parameter settings and the included files, is given. Next,
a loading bar indicating how far we progressed with the coverage is shown. Next to this
bar, the remaining time budget is given. Finally, a small overview of the covered branches,
statements, and functions is given once the search process is done.

Once the tool is done, the results are located within the syntest folder. This folder
includes the process logs, the run statistics, and the generated test cases. An example of
such a test case is shown in Listing[5.5] These test cases adhere to the Mochaﬂformat. The
variable names are of the format <argument name>_ <type> <random string>. As shown, the
results of the function calls are checked using assertions. When an exception is expected,
we wrap the function call in a try-catch block.

The statistics in the syntest folder are created in two different formats. The first con-
tains statistics that are available at the end of the experiment. This includes different types
of structural coverage, the timing of the initialization and search, and values of certain pa-
rameters, such as the random seed that was used. The second type contains several types
of structural coverage for each generation together with a timestamp. The second type of
statistic allows for the investigation of the performance over time.

5.4 Options

As mentioned in the previous section, SYNTEST-JAVASCRIPT is highly configurable, either
through the configuration file .syntest. js or directly by giving arguments to the [CLI|

Most of the configurable options of SYNTEST-JAVASCRIPT come directly from SYNTEST-

FRAMEWORK. These are already detailed in the documentation of SYNTEST-FRAMEWORK

9https://mochajs.org/
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and will thus not be discussed in this thesis. However, some of the most important options
are worth mentioning. The first four rows in table [5.1] show these options. The last three
rows in the tablet show the configurable options unique to SYNTEST-JAVASCRIPT.

Option Argument Description

target_root_directory string The path to the root directory
include array of strings The paths/patterns to include
exclude array of strings The paths/patterns to exclude
search_time number the budget in seconds perli Ju II
type_inference_mode string The type inference mode
incorporate_execution_information boolean Incorporate Execution Information
random_type_probability number The random type probability

Table 5.1: Overview of relevant configurable options of SYNTEST-JAVASCRIPT

The first option is the path to the root directory of the[SUT} Everything in the root di-
rectory will be used during the static analysis to, for example, find types. The next option
is the include argument. This option should receive an array of string paths or patterns.
These paths/patterns will be used to find possible [UuTp. The exclude option does the ex-
act opposite; it excludes any found using the given paths/patterns. It is important to
note that the exclude option overrules the include option. The last option of SYNTEST-
FRAMEWORK is the search time option. It dictates the budget in seconds per[UuT] The first
option of SYNTEST-JAVASCRIPT is the type inference mode. This option can have one of
three possible values, namely: none, proportional, and ranked. These modes directly
correspond to the baseline, the |Proportional Samplingl and the [Rank-Based Sampling| ap-
proach variants. Next, we have the incorporate execution information option. This option
decides whether to use the execution information received from the test case execution of
the search process. Finally, the random type probability option should be a decimal number
dictating the probability that a random type is used instead of the inferred type.
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Chapter 6

Empirical Evaluation

In the previous chapter, we detailed the ins and outs of the implemented approach. In this
chapter, the experimental setup we used to evaluate the approach will be laid out. First,
we discuss the benchmark used for the evaluation. Here the choices for the benchmark
will be explained. Second, we explain the research questions that aid in achieving the
research aim. Thirdly, relevant parameters are enumerated together with the values chosen
for those parameters. In the same light, the parameters we varied during the experiments
are discussed. Next, we discuss the experimental protocol used to compare the approaches.
Finally, we describe the threats to this study’s validity and reproducibility and what we did
to minimize them.

6.1 Benchmark

We created a benchmark to evaluate the effectiveness of the conceived approach. This
benchmark consists of 5 projects, namely: Expressﬂ a web framework for Node.js. Com-
mander, jsEl a command-line framework for Node.js. Moment. jsEl a JavaScript library for
parsing, validating, manipulating, and formatting dates. JavaScript Algorithmsﬂ a library
containing popular algorithms and data structures. Lodaslﬂ a JavaScript library which pro-
vides utility functions for common programming tasks. These projects were picked based
on the number of stars on GitHub or weekly downloads from the Node Package Managerlﬂ
in the JavaScript community. Additionally, we have chosen the projects such that together,
they represent a diverse set of syntax and code styles.

We have hand-picked a subset of files from the benchmark projects to be used for this
evaluation. The files were chosen based on several factors. First, the file must contain
something testable, i.e., an exported function or class. Secondly, the file needs to have a

Uhttps://expressjs.com/
Zhttps://tj.github.io/commander.js/
3https://momentjs.com/
“https://github.com/trekhleb/javascript-algorithms
Shttps://lodash.com/

Shttps://www.npmjs.com
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[Cyclomatic Complexity (CC)| of at least 2. Since a lower [CC| means fewer linearly inde-
pendent paths through the source code, we will likely require fewer tests to achieve high
structural coverage [64]. Although, for this study, the case could be made that achieving
high coverage in files with lower [CC|is still non-trivial since that would sometimes require
correctly inferred types. For this reason, for large projects with lots of files, we chose a
subset of files with a range of [CC| values. In Tables [6.1] and [6.2] the [CC| per file is given
indicated by the CC column.

To calculate the we used Plato |Z|, which is a tool for static analysis of JavaScript
source code. In addition to the [CC| we give the number of branches indicated by the B
column. Finally, we provide the number of Source Lines Of Code indicated by the SLOC
column, also known as the physical lines of code.

For some projects, files had to be excluded or modified. For example, in the Comman-
der.js project, two files contain statements that exit the entire program; this is the intended
behavior for the project. However, the entire tool exits during test case generation when
these statements are reached. For this reason, such files should be excluded. However, it is
often the case that files within a project depend on each other. So when these dependencies
are not properly mocked and the tool tests a related file it actually also tests parts of the
excluded files. In some cases, the exiting statements are again reached. For this reason, we
modified the problematic files such that they do not exit the program. Of course, this is not
an optimal solution. For future work, a long-term solution would be to properly mock the
dependencies of the[SUT]

As previously mentioned, only files with exported functions or classes were considered
for the benchmark. These functions and classes are the that the tool is testing. The
question might arise, why not test individual class methods. Well, functions generally do
not have or modify states. On the other hand, class methods often modify the parent class’s
state. This does not apply to all code, but the consensus in the computer science community
is that class methods should interact with the class state. Otherwise, they might just as well
be static functions. So for these reasons, the approach tests either a function with just one
call to that function, or a class by calling one or more of its methods. The [UuTk per file are
given in the Tables[6.1]and [6.2]indicated by the[UuT|column. Note that there might be more
non-exported functions and classes present in the files, which increase the [CC| the number
of Branches, and the number of Source Lines Of Code.

6.2 Research Questions

This study aims to answer three questions revolving around using type inference during test
case generation. Generating meaningful tests while types are unknown is difficult. Type
inference has been researched but, to the best of our knowledge, not in the context of test
case generation for[DTLk. This leads to the first research question:

1. What is the performance impact of using inferred types versus random
types on the test coverage generated by automated test case generation

7https://github.com/es-analysis/plato
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Benchmark File UuT| CC SLOC B
Commander.js  help.js 1 50 406 66
option.js 2 20 324 18
suggestSimilar.js 1 21 100 32
Express query.js 1 5 47 6
layer.js 1 17 181 22
route.js 1 23 225 30
application.js 1 42 661 52
request.js 1 35 525 44
response.js 1 133 1169 174
utils.js 7 28 304 34
view.js 1 14 182 16
Moment.js valid.js 2 21 51 8
date-from-array.js 2 7 35 8
from-string.js 3 31 258 50
from-array.js 1 39 187 46
from-string-and-format.js | 1 24 135 32
from-string-and-array.js 1 12 67 16
from-object.js 1 4 20 4
from-anything.js 2 26 117 34
constructor.js 3 19 80 32
get-set.Js 5 16 73 22
add-subtract.js 1 10 61 14
calendar.js 2 16 53 22
compare.js 6 280 72 28
diff.js 1 15 79 12
format.js 4 16 78 26
locale.js 2 4 34 6
min-max.js 2 13 62 16
start-end-of.js 2 35 164 20

Table 6.1: Benchmark statistics breakdown
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Benchmark File CC SLOC B
JavaS?r1pt breathFirstSearch.js 1 7 75 8
Algorithms
graphBridges.js 1 5 95 8
detectDirectedCycle.js 1 5 93 8
detectUndirectedCycle.js 1 5 59 8
dijkstra.js 1 6 80 10
eulerianPath.js 1 9 101 14
floydWarshall.js 1 4 72 6
hamiltonianCycle.js 1 6 134 10
kruskal.js 1 6 62 10
prim/prim.js 1 8 73 12
stronglyConnectedComponents.js | 1 5 133 8
bfTravellingSalesman.js 1 7 104 14
Knapsack.js 1 24 195 40
CountingSort.js 1 9 78 14
Matrix.js 12 26 309 38
RedBlackTree.js 1 22 323 34
Lodash equalArrays.js 1 19 &4 24
hasPath.js 1 11 53 8
random.js 1 1173 14
result.js 1 6 53 10
slice.js 1 11 47 20
split.js 1 9 42 8
toNumber.js 1 12 65 20
transform.js 1 10 59 12
truncate.js 1 19 113 34
unzip.js 1 5 43 6
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tools?

Furthermore, because this study involves test case generation and execution, the approach
has unique access to execution information that can be dynamically analyzed. This could
lead to more accurate type prediction as it allows verification of the types. Since the use
of execution information may have an impact on the accuracy of inferred types, it could
have an impact on the performance of the test generation tool, hence the second research
question:

2. How does the incorporation of execution information impact the perfor-
mance of automated test generation tools when using inferred types?

Finally, since test case generation tools are often evaluated on their ability to generate as
much coverage as possible in a short period, it is important to investigate the time it takes
to use the type inference techniques. Thus the third and final question follows:

3. How significant is the amount of time used for the type inference?

These three research questions will be answered in Chapter [§]by analyzing the results of the
experiments, which can be found in Chapter[7]

6.3 Parameters

Complex approaches and tools like the one conceived during this study often have numer-
ous configuration options in the form of parameters. For the empirical evaluation of the
approach, choices about the values of the parameters had to be made. In this section, we
discuss the values of the parameters which are most relevant to the research aim. Some of
the values for these parameters are derived from previous work or picked for specific rea-
sons and thus not varied. The varied parameters are the ones that help answer the research
questions and have the highest impact on the performance of the approach.

6.3.1 Constant parameters

Starting with the constant parameters, the first that comes to mind is the choice of search
algorithm. Based on the findings of the related work, we concluded that DynaMOSA[51]] is
the most appropriate choice. DynaMOSA is a many-objective genetic algorithm specialized
for test-case generation. This enables DynaMOSA to deal with the scalability issues that
arise when dealing with hundreds of branch objectives.

Since DynaMOSA is adapted to deal with the scalability issues other many-objective
genetic algorithms have, it does not require an enormous population size to maintain genetic
diversity. A common default value for the population size is 50 [51]. Now since the number
of branches objectives per benchmark file is not extremely large, the default population size
of 50 was deemed sufficient.

The maximum allowed search time per [UuT] amounted to 120 seconds, which is com-
mon in literature [29, 49]]. From the results, we concluded that 120 seconds is sufficient
time to showcase the capabilities of the approach. The benchmark consists of a total of 97
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[OuTk, meaning that running a single experiment took 3 hours and 14 minutes. Additionally,
due to the stochastic nature of the approach, each experiment needs to run for at least 50
times to measure the average performance. This brings the run-time per experiment to 161
hours and 40 minutes. Of course, this can be partly parallelized, reducing the run-time.

The other configurable parameters the SYNTEST-FRAMEWORK offers were kept at their
default values.

6.3.2 Varied parameters

To answer the research questions, some parameters must be varied over the experiments.
This allows us to investigate the impact of certain parameters on the performance of the
approach.

The first parameter of interest is the “type inference mode”. As the name indicates, this
parameter decides which type inference mode is used to decide on the types of the elements.
At the time of writing, there are three modes. The first is None, which is the baseline
mode as it omits the type inference altogether. In the baseline mode, the type models are
ignored, and thus each type has an equal probability of being sampled. The second mode
is ranked, the|Rank-Based Sampling|lmode. In the |Rank-Based Samplinglmode, we always
select the type with the highest likelihood in the type model. That is, for any element,
we always sample the most likely type. The third and final mode is proportional, the
|Proportional Samplinglmode. In this mode, the algorithm samples a random type from the
type model based on the likelihoods. In other words, if a certain type has a high likelihood,
it has a high probability of being sampled. In contrast to [Rank-Based Samplingl mode in
|Proportional Samplinglmode unlikely types are not excluded from being sampled.

The second varied parameter is the ”incorporate execution information” parameter. This
parameter requires a boolean value and determines whether the approach incorporates exe-
cution information to improve the accuracy of inferred types, i.e.,[Dynamic Type Inference]
If we consider Figure [d.1] this parameter decides whether phase 4 is active or not. If this
parameter is set to false the type models are purely based on [Static Type Inferencel When
this parameter is false we refer to the approach variant as[SA}only, if it is t rue we refer to

the variant as [SAIHDAL

6.3.3 Other parameters

Due to the nature of the approach, there are a bunch of additional parameters which can be
tuned. These parameters can be found in the scoring system. As described in Chapter[d] for
a selection of relations, type scores are assigned to the involved elements. However, there
is no guarantee that these scores are representative of the real world. As a suggestion for
future work, these parameters can be tuned through some machine learning model, or by
mining massive data sets of JavaScript code to learn the actual type scores. However, there
is some beauty in the simplicity of the current model, as it is based on basic JavaScript rules
and general syntax. The use of more advanced models might result in over-fitting for certain
syntax types and in-explainable choices for type scores.
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Part Name Information

CPU 2x AMD EPYC 7H12 64-Core Processor 2x128 Threads 1.5-2.6 GHz

RAM - 256 GB

Drive - 10 Gbs networked SSD network share
0OS Ubuntu 20.04 LTS

Table 6.3: System setup specification

6.4 Experimental Protocol

As mentioned in the previous section, we ran each experiment 50 times to calculate an
average performance. This is necessary due to the stochastic nature of the approach. During
each trial each of the 97 is considered separately for 120 seconds. Meanwhile, during
those 120 seconds, every generation the number of covered objectives is recorded with the
current timestamp. After the 120 seconds are over, the final branch coverage is recorded
separately with other statistics about the run.

Each experiment was run on the same system to ensure that the hardware did not influ-
ence the results of the experiments. The relevant specifications of the system setup can be
found in Table[6.3] Each experiment was allowed to use a maximum of 8 GB of ram. This
maximum allowed a maximum of 50 experiments/trials to be run in parallel.

To compare the performance difference between the various experiment settings, the
median and the [Inter-Quartile-Range (IQR)| per experiment are calculated from the final
branch coverage. These statistics can be found in Chapter [/| For these experiments, the
median was chosen over the mean to prevent anomalies from twisting the results. We also
report the [QR]to give a sense of the spread of the results.

In addition to the median and it is crucial to determine whether the results of the
different experiments are significantly different from one another. To this end, we used the
unpaired Wilcoxon signed-rank test [20] with a threshold of 0.05. This non-parametric sta-
tistical test determines if two data distributions are significantly different. In other words, if
the data distributions are not significantly different, they might be sampled from the same
distribution. The Wilcoxon signed-rank test is combined with the Vargha-Delaney A,
statistic [62] to describe the effect size of the result, which determines the magnitude of
the difference between the two data distributions.

Since, for some benchmarks, the results in Chapteer] are inconclusive, i.e., there is no
significant difference between certain techniques, I decided to also compare the[Area Under
[the Curve (AUC)|for each of the benchmark files. If there is not a clearly superior technique
given the final coverage percentage, the values can give more insight. values
are especially insight-full when working with metrics with a clear bound such as branch
coverage, i.e., there are only so many branches within the For example, if multiple
techniques achieve 100% coverage, there is no clear winner unless we look at the [AUC|
and find that one technique achieves 100% coverage much earlier in the process. In other
words, indicates how fast a technique achieves a certain level. In this case, the
can be calculated by taking the branch coverage at each second and summing those values.
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For the values the median and [[QR] are also calculated together with the pair-wise
comparisons of the [AUC]| values between the techniques.

6.5 Threats to Validity & Reproducability

Threats to construct validity. We rely on well-established metrics in software testing to
compare the different approach variants, namely branch coverage, fault detection capabil-
ity, and running time. As a stopping condition for the search, we measured the search
budget in terms of running time (i.e., 120 seconds) rather than considering the number of
executed tests. Given that the different approach variants in the comparison use different
types of inference with different overheads, execution time provides a fairer measure of
time allocation.

Threats to internal validity. Our prototype is an extension of the open-source SYNTEST-
FRAMEWORK. Although we thoroughly tested the extension, there is no guarantee that the
code is completely bug-free. Any bugs introduced in the extension or in the integration
with SYNTEST-FRAMEWORK could potentially influence the results of the experiment and
therefore impact the validity. To minimize this risk, we published the entire code base in an
open-source code repository for other people to inspect and replicate the experiment.

Threats to external validity. An important threat regards the number of projects in the
benchmark. We selected five projects based on their popularity in the JavaScript community.
The projects are diverse in terms of size, application domain, purpose, syntax, and code
style. Further experiments on a larger set of projects would increase the confidence in the
generalizability of the study. The benchmark has a limited number of projects because of
the high cost of running experiments with so many and the difficulty of supporting
all types of syntax and code styles. There is no guarantee that the results will generalize to
other projects.

Threats to conclusion validity are related to the randomized nature of the test case gen-
eration algorithms. To minimize this risk, each experiment has been executed 50 times
with different random seeds. We have followed the best practices for running experiments
with randomized algorithms as laid out in well-established guidelines [[12]] and analyzed the
possible impact of different random seeds on the results. We used the unpaired Wilcoxon
signed-rank test and the Vargha-Delaney A, effect size to assess the significance and mag-
nitude of our results.
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Chapter 7

Results & Discussion

This thesis aims to evaluate the performance impact of using type inference for test-case
generation. Additionally, we want to investigate the performance impact of using dynamic
execution information to improve the type inference. Finally, we evaluate the significance
of the amount of time used by the type inference.

In Chapter[6] we discussed the experimental protocol used to evaluate SYNTEST-JAVASCRIPT.
SYNTEST-JAVASCRIPT is the implementation of the novel approach proposed in Chapter 4]
In this chapter, we go over the results of the experiments and discuss them to answer the
three research questions proposed in Chapter [6]

To measure the performance differences, four variants plus a baseline variant of the
approach described in Chapter 4 have been implemented as described in Chapter 5] These
four variants are compared to the baseline approach as well as to each other.

The following three sections will go over the three research questions in order. Each
section is split into a results subsection and a discussion subsection. In the results subsec-
tion, the relevant statistics of the experiments are given. In the discussion subsection, the
results are analyzed and explained.

7.1 Inferred Types versus Random Types

The first research question, as stated in Chapter [f] is:

1. What is the performance impact of using inferred types versus random
types on the test coverage generated by automated test case generation
tools?

To answer the first research question, we use the achieved structural coverage to measure

and compare the performance of the [SAlonly [Rank-Based Sampling| and [SA}only
[tional Sampling| variants against the baseline. To be more specific, we will look at the

achieved branch coverage.
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7.1.1 Results

First, we look at the total branch coverage, i.e., the branch coverage achieved at the end of
the search budget. In Table[7.1] we report the achieved median branch coverage per bench-
mark file for each variant and the baseline. Additionally, the is given. The benchmark
name and filename can be found in the table’s two leftmost columns. Next to these two
columns from left to right the median and [[QR] of: the baseline, [SA}only [Rank-Based Sam-|
[SAHDA|Rank-Based Sampling|, [SA}only [Proportional Sampling| and finally
|Proportional Sampling| are provided. Superior median values are marked gray. If there is a
tie, both variants are marked gray.

As mentioned in Chapter [] it is important to check whether the performance differ-
ences between the variants are significant. In Table the baseline is compared to the
[SAtonly[Rank-Based Sampling] variant and the [SAlonly [Proportional Sampling] variant. Ad-
ditionally, the [SA}only [Rank-Based Sampling] variant is compared to the [SAlonly
[tional Sampling| variant. The two leftmost columns of the table report the benchmark and
the benchmark file. After the first two columns, the table reports the comparisons. For
each comparison, we give the Wilcoxon signed-rank p-value to indicate the significance of
the performance difference. Additionally, we provide the Vargha-Delaney A, statistic to
give an indication of the magnitude of the performance difference. Significant p-values, i.e.
p < 0.05 are marked gray.

To answer the first research question, we only need to look at the results of the base-
line, static analysis (SA) [Rank-Based Sampling| variant, and static analysis (SA)

tional Sampling| variant.

Commander.js: Table together with Table show that on the Commander.js bench-
mark the [Rank-Based Sampling| variant significantly outperforms the baseline only on the
help.js file. On the other 2 files, the baseline outperforms the |Rank-Based Sampling|variant.
The|Proportional Sampling|variant outperforms both the baseline and the|Rank-Based Sam-|
[plinglon all 3 files.

Express: For the Express benchmark, we find that the [Rank-Based Sampling| variant sig-
nificantly outperforms the baseline on the utils.js file. The baseline outperforms the
|Based Sampling| variant on 2 files. The difference is insignificant on the other 3 files. The
|Proportional Sampling| variant significantly outperforms the baseline on 2 files. The differ-
ence is insignificant on the other 4 files. The same results can be observed when comparing
the |Proportional Sampling| variant against the |Rank-Based Sampling| variant.

JavaScript Algorithms: Although the JavaScript Algorithms benchmark consists of sev-
eral sub-benchmarks, we will discuss them as one. The tables show that the|Rank-Based Sam-
variant significantly outperforms the baseline on 9 files. It is outperformed 2 times
significantly. It performs similarly on the other 8 files. The |Proportional Sampling| variant
outperforms the baseline on 13 files and is outperformed O times. The [Proportional Sam-|
outperforms the [Rank-Based Sampling| variant 8 times significantly.
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Lodash: On the Lodash benchmark we observe that the [Rank-Based Sampling| variant sig-
nificantly outperforms the baseline on 3 files. The baseline outperforms [Rank-Based Sam-|
significantly on 1 file. There is no significant difference on the other 6 files. The
|Proportional Sampling| variant performed similarly to the [Rank-Based Sampling| variant,
however, the baseline never outperformed the |Rank-Based Sampling| variant. The
|Based Sampling| variant outperforms the |Proportional Sampling| variant significantly on 2
files.

Moment: On the Moment benchmark, we find that the|Rank-Based Sampling|variant signif-
icantly outperforms the baseline on 10 files. There is no significant difference on the other 9
files. The same results hold for the [Proportional Sampling| variant. The |Proportional Sam-|
variant outperforms the |Rank-Based Sampling| variant significantly on 1 file and is
outperformed significantly on another file.

Area Under the Curve

For some of the benchmark files, the results are similar for all variants. However, as noted
in Chapter [f] one of the variants may reach the achieved structural coverage earlier in the
process. To investigate this[AUC]is often used. However, after careful investigation of the
[AUC|results, we found no significant difference with the results found in Table[7.1] For this
reason, this study has not included the [AUC|resullts.

Summary

To summarise the findings of Table[7.1] and Table[7.2}

* The[SA}only[Rank-Based Sampling]variant outperforms the baseline 24 times of which
24 are significant. It is outperformed 7 times of which 6 are significant. It has a tie
26 times.

* The [SAtonly [Proportional Sampling] variant outperforms the baseline 31 times of
which 31 were significant. It is outperformed O times. It has a tie 26 times.

* The[SA}only[Proportional Sampling|variant outperforms the[SA}only|[Rank-Based Sani-
variant 16 times of which 16 were significant. It is outperformed 1 of which 1
significant. It has a tie 40 times.

7.1.2 Discussion

Generally, given the results, we can say that the usage of type inference during test case
generation improves the test case generation capabilities of SYNTEST-JAVASCRIPT. It is
also clear that it does not provide a benefit in some situations. We can also say that [Pro-]
[portional Sampling| clearly outperforms |Rank-Based Sampling|when only static analysis is
used to infer types. The results indicate that using the |Proportional Sampling| variant rarely
gives a disadvantage over both the baseline and [Rank-Based Sampling| variant, given the
current benchmark.
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Baseline IRank-Based Samplingl IPmpartional Samplingl

Benchmark File ‘ only m ‘ only

Median | Median | Median | Median | Median
commanderjs help.js 0.20 0.015 | 0.40 0.045 | 0.44 0.076  0.53 0.030 | 0.52 0.045
commanderjs option.js 0.44 0.111 | 033 0.056 | 0.50 0.000 0.50 0.111 | 0.50 0.000
commanderjs suggestSimilar.js 0.66 0.219 | 0.55 0.156 | 0.55 0.188 0.75 0.031 | 0.75 0.062
express application.js 0.63 0.019 | 0.62 0.019 | 0.63 0.019 0.65 0.019 | 0.65 0.019
express query.js 0.67 0.000 | 0.67 0.000 | 0.67 0.000 0.67 0.000 | 0.67 0.000
express request.js 0.30 0.000 | 0.30 0.000 | 0.30 0.000 0.30 0.000 | 0.30 0.000
express response.js 0.15 0.011 | 0.14 0.016 | 0.14 0.017 ‘ 0.15 0.011 | 0.16 0.010
express utils.js 0.56 0.029 | 0.62 0.000 | 0.62 0.000 0.62 0.029 | 0.60 0.029
express view.js 0.06 0.000 | 0.06 0.000 | 0.06 0.000 0.06 0.000 | 0.06 0.000
js algorithms graph articulationPoints.js 0.00 0.000 | 0.00 0.000 | 0.08 0.000 0.08 0.000 | 0.08 0.000
js algorithms graph bellmanFord.js 0.00 0.000 | 0.17 0.000 | 0.33 0.125 0.33 0.167 | 0.33 0.000
js algorithms graph bfTravellingSalesman.js 0.00 0.000 | 0.08 0.000 | 0.08 0.167 | 0.08 0.000 | 0.12 0.167
js algorithms graph breadthFirstSearch.js 0.25 0.000 | 0.38 0.000 | 0.38 0.000 0.38 0.000 | 0.38 0.000
js algorithms graph depthFirstSearch.js 0.17 0.167 | 0.17 0.167 | 0.17 0.000 0.17 0.000 | 0.17 0.167
js algorithms graph detectDirectedCycle.js 0.00 0.000 | 0.12 0.000 | 0.38 0.000 0.38 0.000 | 0.38 0.000
js algorithms graph detectUndirectedCycle.js 0.00 0.000 | 0.00 0.000 | 0.00 0.000 0.00 0.000 | 0.00 0.000
js algorithms graph dijkstra.js 0.00 0.000 | 0.10 0.000 | 0.20 0.000 ‘ 0.10 0.100 | 0.20 0.000
js algorithms graph eulerianPath.js 0.00 0.000 | 0.00 0.000 | 0.21 0.000 0.21 0.000 | 0.21 0.000
js algorithms graph floydWarshall.js 0.00 0.000 | 0.67 0.000 | 0.67 0.000 0.67 0.000 | 0.67 0.000
js algorithms graph graphBridges.js 0.00 0.000 | 0.00 0.000 | 0.00 0.000 0.00 0.000 | 0.00 0.000
js algorithms graph hamiltonianCycle.js 0.00 0.000 | 0.00 0.000 | 0.00 0.200 ‘ 0.00 0.000 | 0.20 0.200
js algorithms graph kruskal.js 0.10 0.000 | 0.30 0.100 | 0.30 0.000 0.40 0.100 | 0.40 0.100
js algorithms graph prim.js 0.08 0.000 | 0.17 0.000 | 0.17 0.083 0.17 0.000 | 0.17 0.000
js algorithms graph stronglyConnectedComponents.js ~ 0.00 0.000 | 0.00 0.000 | 0.38 0.500 ‘ 0.25 0.000 | 0.38 0.500
js algorithms knapsack ~ Knapsack.js 0.57 0.000 | 0.50 0.150 | 0.50 0.150 0.57 0.050 | 0.57 0.069
js algorithms matrix Matrix.js 0.74 0.046 | 0.71 0.026 | 0.74 0.053 0.79 0.079 | 0.76 0.046
js algorithms sort CountingSort.js 0.92 0.083 | 0.92 0.000 | 0.92 0.000 0.92 0.000 | 0.92 0.000
js algorithms tree RedBlackTree.js 0.21 0.000 | 0.26 0.000 | 0.26 0.000 0.26 0.029 | 0.26 0.029
lodash equalArrays.js 0.08 0.000 | 0.71 0.042 | 0.67 0.083 0.75 0.042 | 0.75 0.042
lodash hasPath.js 0.75 0.000 | 0.75 0.000 | 0.75 0.000 0.75 0.000 | 0.75 0.000
lodash random.js 1.00 0.000 | 1.00 0.000 | 1.00 0.054 1.00 0.000 | 1.00 0.000
lodash result.js 0.90 0.000 | 0.80 0.000 | 0.80 0.000 0.90 0.000 | 0.90 0.000
lodash slice.js 1.00 0.000 | 1.00 0.000 | 1.00 0.000 1.00 0.000 | 1.00 0.000
lodash split.js 0.88 0.000 | 0.88 0.000 | 0.88 0.000 0.88 0.000 | 0.88 0.000
lodash toNumber.js 0.60 0.000 | 0.65 0.000 | 0.65 0.000 0.65 0.050 | 0.65 0.050
lodash transform.js 0.83 0.000 | 0.83 0.167 | 0.83 0.250 0.83 0.000 | 0.83 0.062
lodash truncate.js 0.38 0.000 | 0.59 0.029 | 0.59 0.000 0.59 0.000 | 0.59 0.000
lodash unzip.js 1.00 0.000 | 1.00 0.000 | 1.00 0.000 1.00 0.000 | 1.00 0.000
moment add-subtract.js 0.00 0.000 | 0.71 0.071 | 0.71 0.054 0.71 0.071 | 0.71 0.071
moment calendar.js 0.05 0.000 | 0.45 0.091 | 0.45 0.000 045 0.091 | 045 0.091
moment check-overflow.js 0.05 0.000 | 0.60 0.000 | 0.60 0.050 0.60 0.000 | 0.60 0.000
moment compare.js 0.14 0.000 | 0.14 0.000 | 0.14 0.000 0.14 0.000 | 0.14 0.000
moment constructor.js 0.38 0.000 | 0.56 0.000 | 0.56 0.000 0.56 0.031 | 0.56 0.062
moment date-from-array.js 0.88 0.000 | 0.88 0.000 | 0.88 0.000 0.88 0.000 | 0.88 0.000
moment diff.js 0.00 0.000 | 0.00 0.000 | 0.00 0.000 0.00 0.000 | 0.00 0.000
moment format.js 0.08 0.000 | 0.08 0.000 | 0.08 0.000 0.08 0.000 | 0.08 0.000
moment from-anything.js 0.74 0.029 | 0.76 0.029 | 0.76 0.029 0.76 0.029 | 0.76 0.029
moment from-array.js 0.02 0.000 | 0.04 0.000 | 0.04 0.000 0.04 0.000 | 0.04 0.000
moment from-object.js 0.50 0.000 | 0.50 0.000 | 0.50 0.000 0.50 0.000 | 0.50 0.000
moment from-string-and-array.js 0.00 0.000 | 0.31 0.000 | 0.31 0.000 0.31 0.000 | 0.31 0.000
moment from-string-and-format.js 0.06 0.000 | 0.59 0.031 | 0.50 0.180 | 0.53 0.180 | 0.52 0.219
moment from-string.js 0.06 0.000 | 0.16 0.000 | 0.16 0.000 0.16 0.000 | 0.16 0.000
moment get-set.js 0.14 0.000 | 0.23 0.034 | 0.41 0.045 0.45 0.045 | 0.45 0.045
moment locale.js 0.33 0.167 | 0.33 0.000 | 0.33 0.000 0.33 0.000 | 0.33 0.000
moment min-max.js 0.12 0.000 | 0.12 0.000 | 0.12 0.000 0.12 0.000 | 0.12 0.000
moment start-end-of.js 0.10 0.000 | 0.10 0.000 | 0.10 0.000 0.10 0.000 | 0.10 0.000
moment valid.js 0.38 0.000 | 0.38 0.000 | 0.38 0.000 0.38 0.000 | 0.38 0.000

Table 7.1: Median branch coverage together with the Inter-Quartile-Range per bench- mark

file for each variant and the baseline. Superior values are marked gray
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Baseline vs Baseline vs

m only Rank-Based vs
W only Proportional

Benchmark File only Rank-Based (mly Proportional

p-value Alz ‘ p-value Alz ‘ p-value Alz
commanderjs help.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.995 (large)
commanderjs option.js 0.00 0.206 (large) 0.00 0.646 (small) 0.00 0.922 (large)
commanderjs suggestSimilar.js 0.51 0.519 (negligible) | 0.00 0.980 (large) 0.00 0.916 (large)
express application.js 0.00 0.232 (large) 0.00 0.588 (small) 0.00 0.830 (large)
express query.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
express request.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
express response.js 0.00 0.203 (large) 0.29 0.510 (negligible) | 0.00 0.801 (large)
express utils.js 0.00 0.847 (large) 0.00 0.820 (large) 0.00 0.350 (small)
express view.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
js algorithms graph articulationPoints.js 1.00 0.500 (negligible) | 0.00 1.000 (large) 0.00 1.000 (large)
js algorithms graph bellmanFord.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.840 (large)
js algorithms graph bfTravellingSalesman.js 0.00 1.000 (large) 0.00 1.000 (large) 0.08 0.530 (negligible)
js algorithms graph breadthFirstSearch.js 0.00 0.992 (large) 0.00 0.992 (large) 1.00 0.500 (negligible)
js algorithms graph depthFirstSearch.js 0.32 0.510 (negligible) | 0.05 0.540 (negligible) | 0.08 0.530 (negligible)
js algorithms graph detectDirectedCycle.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.970 (large)
js algorithms graph detectUndirectedCycle.js 1.00 0.500 (negligible) | 0.03 0.550 (negligible) | 0.03 0.550 (negligible)
js algorithms graph dijkstra.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.690 (medium)
js algorithms graph eulerianPath.js 0.00 0.610 (small) 0.00 1.000 (large) 0.00 0.890 (large)
js algorithms graph floydWarshall.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
js algorithms graph graphBridges.js 1.00 0.500 (negligible) | 0.32 0.510 (negligible) | 0.32 0.510 (negligible)
js algorithms graph hamiltonianCycle.js 1.00 0.500 (negligible) | 0.01 0.570 (negligible) | 0.01 0.570 (negligible)
js algorithms graph kruskal.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.630 (small)
js algorithms graph prim.js 0.00 1.000 (large) 0.00 1.000 (large) 0.16 0.520 (negligible)
js algorithms graph stronglyConnectedComponents.js  1.00 0.500 (negligible) | 0.00 1.000 (large) 0.00 1.000 (large)
js algorithms knapsack  Knapsack.js 0.00 0.030 (large) 0.00 0.360 (small) 0.00 0.913 (large)
js algorithms matrix Matrix.js 0.00 0.230 (large) 0.00 0.668 (medium) 0.00 0.863 (large)
js algorithms sort CountingSort.js 0.03 0.542 (negligible) | 0.01 0.572 (negligible) | 0.08 0.530 (negligible)
js algorithms tree RedBlackTree.js 0.00 0.954 (large) 0.00 0.962 (large) 0.04 0.630 (small)
lodash equalArrays.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.740 (large)
lodash hasPath.js 0.44 0.504 (negligible) | 0.01 0.585 (small) 0.00 0.597 (small)
lodash random.js 0.00 0.410 (small) 1.00 0.500 (negligible) | 0.00 0.590 (small)
lodash result.js 0.00 0.045 (large) 0.03 0.559 (negligible) | 0.00 0.953 (large)
lodash slice.js 0.01 0.570 (negligible) | 1.00 0.500 (negligible) | 0.01 0.430 (negligible)
lodash split.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
lodash toNumber.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.640 (small)
lodash transform.js 0.00 0.446 (negligible) | 0.00 0.688 (medium) 0.00 0.694 (medium)
lodash truncate.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.610 (small)
lodash unzip.js 0.03 0.550 (negligible) | 1.00 0.500 (negligible) | 0.03 0.450 (negligible)
moment add-subtract.js 0.00 1.000 (large) 0.00 1.000 (large) 0.16 0.480 (negligible)
moment calendar.js 0.00 1.000 (large) 0.00 1.000 (large) 0.32 0.497 (negligible)
moment check-overflow.js 0.00 1.000 (large) 0.00 1.000 (large) 0.26 0.586 (small)
moment compare.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment constructor.js 0.00 1.000 (large) 0.00 1.000 (large) 0.10 0.556 (negligible)
moment date-from-array.js 0.32 0.510 (negligible) | 0.32 0.510 (negligible) | 1.00 0.500 (negligible)
moment diff js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment format.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment from-anything.js 0.00 0.724 (medium) 0.00 0.814 (large) 0.00 0.634 (small)
moment from-array.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
moment from-object.js 1.00 0.500 (negligible) | 0.00 0.580 (small) 0.00 0.580 (small)
moment from-string-and-array.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
moment from-string-and-format.js 0.00 1.000 (large) 0.00 0.950 (large) 0.00 0.194 (large)
moment from-string.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
moment get-set.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 1.000 (large)
moment locale.js 0.00 0.340 (small) 0.00 0.360 (small) 0.16 0.520 (negligible)
moment min-max.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment start-end-of.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment valid.js 1.00 0.500 (negligible) | 0.08 0.530 (negligible) | 0.08 0.530 (negligible)

Table 7.2: Pairwise comparison of the baseline, IIRank Based Samplingl and IIPropor-|

[tional Sampling| variant. The Wilcoxon signed-rank p-value and the Vargha-Delaney Ap

statistic are reported. Significant p-values are marked gray
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7. RESULTS & DISCUSSION

Given the five benchmark projects, it is interesting that some benchmarks benefit more
from the inferred types than others. A deeper analysis of the benchmarks was required to
find out why this difference exists.

The Commander.js benchmark consists of classes with methods that often have one of
the user-defined objects as an argument. This explains why using type inference gives such
a performance boost for this benchmark, as using random type arguments on such methods
would often result in crashes.

Although the Express benchmark consists of functions with both primitive and complex
type arguments, the functions often only pass the arguments to other functions, i.e., there
are not many interactions with the complex type arguments. This makes it hard for the
current setup to infer the types, which could explain the relatively low benefit of using type
inference on this benchmark.

The JavaScript Algorithms benchmark contains numerous data structures and algo-
rithms. The data structures each have their own type. The algorithms, in turn, make use
of these data structures. Using type inference should thus be advantageous in achieving
high structural coverage during test case generation. However, as previously shown, the
type inference is beneficial only in 13 out of 19 files. After investigating the generated test
cases, it turns out that the type inference variants did get the type right in most cases. How-
ever, due to the complexity of the functions at hand, the approach variants could still not
cover more than the baseline. This is especially true for the 5 files where the median cover-
age is 0. To be more specific, the files in question make use of callback functions which are
passed to an external function. These callback functions contain most of the branches. At
its current state, SYNTEST-JAVASCRIPT cannot get a correct Control Flow Graph of such
functions, and thus the guidance towards the branch objectives is not functioning. In other
words, once the tool is improved to deal with this kind of complexity, we might find that the
type inference actually does provide an advantage for the benchmark files in question.

The Lodash benchmark turned out to consist of functions with mostly native JavaScript
type arguments. This explains why the type inference did not affect the performance of most
of the files. The files that were most impacted by the type inference, i.e., equalArrays.js
and truncate.js, are the two files with the most complex argument types. For example,
truncate.js was the only function that required an options object with specific attributes.

Finally, the Moment benchmark. For this benchmark, there were 9 files for which the
type inference did not give an advantage. Since the benchmark uses complex types, type in-
ference is expected to be beneficial. After analysis of the benchmark, it seems that Moment
uses a syntax where the exported functions are not stand alone as they make use of the ’this’
keyword. Instead of defining these functions as methods in a class, Moment imports all the
functions and assigns them to a moment object in the main file. This setup makes it impos-
sible to run some of the functions in isolation. Because of this, whenever a ’this’ keyword
is encountered during testing, an exception is thrown, preventing SYNTEST-JAVASCRIPT
from achieving any further coverage.
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7.2. Incorporating Execution Information

7.2 Incorporating Execution Information

The second research question, as stated in Chapter[f]is:

2. How does the incorporation of execution information impact the perfor-
mance of automated test generation tools when using inferred types?

To answer the second research question, we will again use the achieved branch coverage to
measure and compare the performance of the[Rank-Based Sampling|and|Proportional Sam-|
[pling] variants which use [Dynamic Type Inference]against the baseline. In addition, we will
compare these variants to their [SA}only counterparts. In order to make this comparison, we
again make use of Table [7.] where we can find the final branch coverage per benchmark
file. We also use Table [7.3| which contains the significance statistics of the comparison be-
tween the baseline and the variants. In addition, we use Table [7.4a and [7.4b] which
contains the significance statistics of the comparison between the [SA}only variant and the
[DA| variant of |Rank-Based Sampling|and [Proportional Sampling|respectively.

7.2.1 Results

As mentioned in the previous section, Table reports the median branch coverage per
benchmark file for each variant. Additionally, the is given. For the second research
question, we will mainly look at the results of the 5th and 7th columns, i.e., the [SAHDA]
[Rank-Based Sampling| variant and the [SAHDA|[Proportional Sampling| variant.

Table show the Wilcoxon signed-rank p-value and the Vargha-Delaney A, statistic
to indicate the significance of the performance differences between the [SAHDA] variants and
the baseline. Table and [7.4b] indicate the significance of the performance differences
between the [SARDA| variants and their [SA}only counterparts.

To answer the second research question, we will review the results per benchmark and
then summarize the findings.

Commander.js: Table [7.T] together with Table [7.3] show that on the Commander.js bench-
mark the [SAHDA|[Rank-Based Sampling] variant significantly outperforms the baseline on 2
files, one more than the [SA}only variant. We also observe from Table [7.44] that the [SAHDA|
[Rank-Based Sampling] variant outperforms its [SA}only counterpart on 2 files. The baseline
outperforms both variants on 1 file.

Both |Proportional Sampling| variants outperforms the baseline on all 3 files. From Ta-
ble[7.4b] we learn that the [SAHDA] variant is outperformed once against its [SA}only counter-
part.

The [SAHDA|[Proportional Sampling] variant outperforms the [SAHDA|[Rank-Based Sam-
significantly 2 times.

Express: For the Express benchmark, we find that the [SAHDA|[Rank-Based Sampling| vari-
ant significantly outperforms the baseline on 1 file. The baseline outperforms the
|[Rank-Based Sampling| variant on 1 files. The difference is insignificant on the other 4 files.
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7. RESULTS & DISCUSSION

The [SAHDA|Rank-Based Sampling| variant significantly outperforms the [SA}only variant on
2 files.

The [SAHDA|[Proportional Sampling] variant significantly outperforms the baseline on 3
files. The difference is insignificant on the other 3 files. The [SAHDA|Proportional Sampling|
variant outperforms the [SA}only variant significantly on 1 file.

The [SAHDA|[Proportional Sampling] variant outperforms the [SAHDA|[Rank-Based Sam-|

significantly 2 times. It is outperformed 1 time.
JavaScript Algorithms: From the tables, we observe that the [SAHDA]|[Rank-Based Sam-|
variant significantly outperforms the baseline on 12 files. It is outperformed 1 times
significantly. It performs similarly on the other 6 files. The [SAHDA|Rank-Based Sampling]
variant significantly outperforms the [SA}only variant on 7 files. They perform similarly on
the other 12 files.

The [SAHDA|Proportional Sampling| variant significantly outperforms the baseline on 13
files and is outperformed O times. The [SAHDA|[Proportional Sampling] variant outperforms
the [SA}only variant 4 times significantly. It is outperformed 1 time.

The [SAHDA|[Proportional Sampling] variant outperforms the [SAHDA|Rank-Based Sam-|

significantly 5 times.
Lodash: On the Lodash benchmark we observe that the [SAHDA|[Rank-Based Sampling]
variant significantly outperforms the baseline on 3 files. The baseline outperforms [SAHDA]
|[Rank-Based Sampling|variant significantly on 1 file. There is no significant difference on the
other 6 files. The[SAHDA|Rank-Based Sampling| variant outperforms its[SA}only counterpart
0 times and is outperformed 1 time.

The [SAHDA|[Proportional Sampling] variant significantly outperforms the baseline on 3
files and lost 0. The [SAHDA|[Proportional Sampling] performed equal to its [SA}only coun-
terpart.

The [SAMHDA|[Proportional Sampling| variant outperforms the [SAlonly [Rank-Based Sam-|

significantly 2 times.
Moment: On the Moment benchmark, we find that the [SAHDA|Rank-Based Sampling| vari-
ant significantly outperforms the baseline on 10 files. There is no significant difference on
the other 9 files. The[SAHDA|Rank-Based Sampling|variant outperforms the [SA}only variant
1 time. It is outperformed 1 time.

The [SAHDA|Proportional Sampling]variant also outperforms the baseline 10 times. The
[SAHDA|Proportional Sampling] variant outperforms its [SA}only counterpart on O files and is
outperformed significantly on 1 file.

The [SAHDA|[Proportional Sampling] variant outperforms the [SAlonly [Rank-Based Sam-|

significantly 2 times.

Coverage over Time

To give an impression of the performance differences between the different variants and the
baseline, we can look at Figure[7.1] Here the coverage over time for some of the interesting
benchmark files is shown. In Figure [7.1d| the legend is given. Figure gives a clear
example of a possible limit being reached by the [SAHDA] variants. Figure shows that
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for the hamiltoniancycle.js the coverage limit is not yet reached as the structural coverage
seems to still be climbing.
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Figure 7.1: Coverage over time comparison of the approach variants on several benchmark
files

Summary

To summarise the findings of Table [7.1] [7.3] [7.4a] and[7.4b}

* The[SAHDA|Rank-Based Sampling]variant outperforms the baseline 28 times of which

28 are significant. It is outperformed 4 times, of which 4 are significant. It has a tie
25 times.

* The [SAHDA| [Proportional Sampling| variant outperforms the baseline 33 times of
which 32 were significant. It is outperformed O times. It has a tie 24 times.

* The[SAHDA|Rank-Based Sampling|variant outperforms the[SA}only[Rank-Based Sam-
[pling]variant 12 times of which 12 are significant. It is outperformed 2 times, of which
2 are significant. It has a tie 43 times.
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* The[SAHDA|Proportional Sampling] variant outperforms the[SAlonly[Proportional Sarh-
[pling] variant 5 times of which 5 were significant. It is outperformed 4 times, of which
3 are significant. It has a tie 48 times.

* The[SAHDA|Proportional Sampling]variant outperforms the [SAHDA|Rank-Based Sam}
variant 13 times of which 13 were significant. It is outperformed 1 time, of
which 1 significant. It has a tie 43 times.

7.2.2 Discussion

Given the results, we can say that for both the |Rank-Based Samplingland|Proportional Sam-|
the incorporation of execution information (i.e., [Dynamic Type Inference)), does im-
prove their performance over the baseline. To be specific, the[SAHDA|Rank-Based Sampling]
variant outperformed the baseline 28 times while the [SAlonly [Rank-Based Sampling] variant
only outperformed the baseline 24 times. The [SAHDA] variant also lost 3 times less against
the baseline. The [SAHDA|[Proportional Sampling] variant outperformed the baseline 1 time
more compared to the [SAlonly [Proportional Sampling] variant.

Furthermore, the results show that incorporating execution information does not always
give an advantage over the [SAtonly variants. The [SAHDA|[Proportional Sampling] variant
does outperform its[SA}only counterpart 5 times, but it is outperformed significantly 3 times.
On the other hand, the [SAHDA|Rank-Based Sampling| variant outperforms its [SAlonly coun-
terpart 13 times and is outperformed 1 time. This indicates that incorporating execution
information is especially beneficial to the |[Rank-Based Sampling| approach. The nature of
the two approaches can explain this. The [Rank-Based Sampling| approach always uses the
type with the highest likelihood. If the type with the second highest likelihood is the actual
correct type, then the|Rank-Based Sampling|approach will never use the correct type. How-
ever, incorporating execution information can change the likelihoods such that the correct
type gets the highest likelihood. On the other hand, the |Proportional Sampling| approach
does not suffer from this problem. This is the case because the |Proportional Sampling| ap-
proach picks a random type proportional to the types’ likelihood. The second type might
have a lower likelihood, but it can still be picked. The [Proportional Sampling| approach
thus benefits less from incorporating execution information. However, having the highest
likelihood for the right type can still be beneficial in preventing repeated usage of the wrong
type during the search process.

In summary, the [Rank-Based Sampling| approach can get stuck with an incorrect type
if the likelihoods are not changed, which is the case if we only use static analysis. The
|Proportional Sampling| approach does not suffer from this and thus benefits less from the
incorporation of execution information (i.e.,|Dynamic Type Inference)).
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Baseline vs

Baseline vs

m m Rank-Based vs
w Proportional

Benchmark File ank-Baxed Pmportional

p-value Alz ‘ p-value Alz ‘ p-value Alz
commanderjs help.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.891 (large)
commanderjs option.js 0.00 0.846 (large) 0.00 0.811 (large) 0.00 0.424 (small)
commanderjs suggestSimilar.js 0.00 0.636 (small) 0.00 0.973 (large) 0.00 0.825 (large)
express application.js 0.00 0.249 (large) 0.00 0.581 (small) 0.00 0.801 (large)
express query.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
express request.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
express response.js 0.00 0.393 (small) 0.00 0.596 (small) 0.00 0.695 (medium)
express utils.js 0.00 0.842 (large) 0.00 0.820 (large) 0.02 0.366 (small)
express view.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
js algorithms graph articulationPoints.js 0.00 1.000 (large) 0.00 1.000 (large) 0.03 0.550 (negligible)
js algorithms graph bellmanFord.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.423 (small)
js algorithms graph bfTravellingSalesman.js 0.00 1.000 (large) 0.00 1.000 (large) 0.02 0.552 (negligible)
js algorithms graph breadthFirstSearch.js 0.00 0.992 (large) 0.00 0.975 (large) 0.16 0.480 (negligible)
js algorithms graph depthFirstSearch.js 0.03 0.550 (negligible) | 0.32 0.510 (negligible) | 0.05 0.460 (negligible)
js algorithms graph detectDirectedCycle.js 0.00 1.000 (large) 0.00 1.000 (large) 0.56 0.481 (negligible)
js algorithms graph detectUndirectedCycle.js 1.00 0.500 (negligible) | 0.03 0.550 (negligible) | 0.03 0.550 (negligible)
js algorithms graph dijkstra.js 0.00 1.000 (large) 0.00 1.000 (large) 0.32 0.510 (negligible)
js algorithms graph eulerianPath.js 0.00 1.000 (large) 0.00 1.000 (large) 0.08 0.470 (negligible)
js algorithms graph floydWarshall.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
js algorithms graph graphBridges.js 0.16 0.520 (negligible) | 0.16 0.520 (negligible) | 1.00 0.500 (negligible)
js algorithms graph hamiltonianCycle.js 0.00 0.720 (medium) 0.00 0.820 (large) 0.00 0.600 (small)
js algorithms graph kruskal.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.810 (large)
js algorithms graph prim.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.422 (small)
js algorithms graph stronglyConnectedComponents.js ~ 0.00 1.000 (large) 0.00 1.000 (large) 0.10 0.518 (negligible)
js algorithms knapsack  Knapsack.js 0.00 0.050 (large) 0.00 0.340 (small) 0.00 0.877 (large)
js algorithms matrix Matrix.js 0.00 0.336 (small) 0.17 0.497 (negligible) | 0.00 0.639 (small)
js algorithms sort CountingSort.js 0.01 0.562 (negligible) | 0.00 0.591 (small) 0.08 0.530 (negligible)
js algorithms tree RedBlackTree.js 0.00 0.908 (large) 0.00 0.944 (large) 0.00 0.656 (small)
lodash equalArrays.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.931 (large)
lodash hasPath.js 0.81 0.520 (negligible) | 0.00 0.584 (small) 0.00 0.575 (small)
lodash random.js 0.00 0.370 (small) 1.00 0.500 (negligible) | 0.00 0.630 (small)
lodash result.js 0.00 0.063 (large) 0.32 0.510 (negligible) | 0.00 0.938 (large)
lodash slice.js 0.01 0.570 (negligible) | 0.32 0.490 (negligible) | 0.00 0.420 (small)
lodash split.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
lodash toNumber.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.610 (small)
lodash transform.js 0.00 0.355 (small) 0.00 0.697 (medium) 0.00 0.778 (large)
lodash truncate.js 0.00 1.000 (large) 0.00 1.000 (large) 0.18 0.531 (negligible)
lodash unzip.js 0.32 0.510 (negligible) | 0.08 0.530 (negligible) | 0.16 0.520 (negligible)
moment add-subtract.js 0.00 1.000 (large) 0.00 1.000 (large) 0.08 0.530 (negligible)
moment calendar.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.414 (small)
moment check-overflow.js 0.00 1.000 (large) 0.00 1.000 (large) 0.01 0.624 (small)
moment compare.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment constructor.js 0.00 1.000 (large) 0.00 1.000 (large) 0.02 0.563 (negligible)
moment date-from-array.js 1.00 0.500 (negligible) | 0.32 0.510 (negligible) | 0.32 0.510 (negligible)
moment diff js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment format.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment from-anything.js 0.00 0.704 (medium) 0.00 0.848 (large) 0.00 0.715 (medium)
moment from-array.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
moment from-object.js 1.00 0.500 (negligible) | 0.05 0.540 (negligible) | 0.05 0.540 (negligible)
moment from-string-and-array.js 0.00 1.000 (large) 0.00 1.000 (large) 0.16 0.520 (negligible)
moment from-string-and-format.js 0.00 1.000 (large) 0.00 0.940 (large) 0.00 0.431 (negligible)
moment from-string.js 0.00 1.000 (large) 0.00 1.000 (large) 1.00 0.500 (negligible)
moment get-set.js 0.00 1.000 (large) 0.00 1.000 (large) 0.00 0.814 (large)
moment locale.js 0.00 0.350 (small) 0.00 0.340 (small) 0.32 0.490 (negligible)
moment min-max.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment start-end-of.js 1.00 0.500 (negligible) | 1.00 0.500 (negligible) | 1.00 0.500 (negligible)
moment valid.js 1.00 0.500 (negligible) | 0.32 0.510 (negligible) | 0.32 0.510 (negligible)

Table 7.3: Pairwise comparison of the baseline, A||Rank-Based Sampling| and

|Proportional Sampling|variant. The Wilcoxon signed-rank p-value and the Vargha-Delaney

A\, statistic are reported. Significant p-values are marked gray
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[2lonty vs5affoa]

Benchmark File
p-value Ap

commanderjs help.js 0.00 0.681 (medium)
commanderjs option.js 0.00 0.990 (large)

derj; i j 0.00 0.582 (small)
express application.js 0.03 0.527 (negligible)
express query js 100 0.500 (negligible)
express request.js 100 0500 (negligible)
express response.js 0.00 0.712 (medium)
express utils js 008 0470 (negligible)
express view.j: 1.00 0.500 (negligible)

js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms graph
js algorithms knapsack
js algorithms matrix
js algorithms sort
js algorithms tree
lodash

lodash

lodash

lodash

lodash

lodash

lodash

lodash

lodash

lodash

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

moment

articulationPoints.js
bellmanFord.js
bfTravellingSalesman.js
breadthFirstSearch.js
depthFirstSearch.js
detectDirectedCycle.js
detectUndirectedCycle js
dijkstra.js
eulerianPath.js
floydWarshall js
graphBridges.js
hamiltonianCycle.js
kruskal js

prim.js
stronglyConnectedComponents.js
Knapsackjs

Matrix.js
CountingSort.js
RedBlackTree.js
equalArrays.js
hasPath js

random.js

result.js

slice.js

split.js

toNumber.js
transform.js

truncate.js

unzip.js

add-subtract.js
calendar.js
check-overflow.js
compare.js
constructor.js
date-from-array.js
diff js

format.js
from-anything.js
from-array.js
from-object js
from-string-and-array.js
from-string-and-format.js
from-string.js

get-set.js

locale js

min-max_js
start-end-of js

valid,js

0.00 1.000 (large)
000  0.980 (large)
0.00 0.690 (medium)
100 0.500 (negligible)
0.05 0.540 (negligible)
0.00 0.990 (large)

100 0.500 (negligible)
000  0.990 (large)
0.00 0.905 (large)

100 0.500 (negligible)
0.16 0.520 (negligible)
0.00 0.720 (medium)
0.00 0.370 (small)
0.00 0.690 (medium)
0.00 1.000 (large)
0.00  0.546 (negligible)
0.00 0.637 (small)
0.16  0.520 (negligible)
006 0459 (negligible)
0.00 0.323 (medium)
0.16 0518 (negligible)
0.05 0.460 (negligible)
0.06 0.527 (negligible)
100 0.500 (negligible)
1.00 0.500 (negligible)
0.08 0.530 (negligible)
0.00 0.423 (small)
0.01 0.567 (negligible)
005 0460 (negligible)
0.08 0.470 (negligible)
0.01 0.567 (negligible)
0.03 0458 (negligible)
1.00 0.500 (negligible)
002 0459 (negligible)
032 0.490 (negligible)
1.00 0.500 (negligible)
100 0.500 (negligible)
010 0475 (negligible)
1.00 0.500 (negligible)
100 0.500 (negligible)
0.16 0.480 (negligible)
0.00 0.212 (large)

100 0.500 (negligible)
0.00 1.000 (large)
0.32 0.510 (negligible)
1.00 0.500 (negligible)
1.00 0.500 (negligible)
100 0.500 (negligible)

(a) |Rank-Based Sampling|

7.3 Time impact

Benchmark File L
p-value Ap

commanderjs help.js 0.00 0.431 (negligible)

commanderjs option.js 0.00 0.667 (medium)

i imilar.js 032 0476 (negligible)
express application.js 0.71 0.498 (negligible)
express queryjs 100 0.500 (negligible)
express request.js 100 0500 (negligible)
express response.js 0.00 0.590 (small)
express i 0.68 0481 (negligible)
express view,js 100 0500 (negligible)
js algorithms graph articulationPoints.js 0.16 0.520 (negligible)
js algorithms graph bellmanFord js 000  0.633 (small)
js algorithms graph bfTravellingSalesman.js 0.00 0.719 (medium)
js algorithms graph breadthFirstSearch.js 0.16 0.480 (negligible)
js algorithms graph depthFirstSearch.j 0.08 0470 (negligible)
js algorithms graph detectDirectedCycle.js 0.05 0.512 (negligible)
jis algorithms graph detectUndirectedCycle js 100 0.500 (negligible)
js algorithms graph dijkstra.js 000 0810 (large)
js algorithms graph eulerianPath.js 0.05 0.540 (negligible)
js algorithms graph floydWarshall js 100 0.500 (negligible)
js algorithms graph graphBridges.js 0.32 0.510 (negligible)
js algorithms graph hamiltonianCycle.js 0.00 0.750 (large)
js algorithms graph kruskal js 0.03 0550 (negligible)
js algorithms graph prim.js 0.00 0.590 (small)

Jjs algorithms graph stronglyConnectedComponents.js ~ 0.00 0.726 (medium)
js algorithms knapsack ~ Knapsack.js 0.04 0476 (negligible)
Jjs algorithms matrix Matrix.js 0.00 0.340 (small)

js algorithms sort CountingSort.js 0.16  0.520 (negligible)
js algorithms tree RedBlackTree.js 0.16 0.524 (negligible)
lodash equalArrays.js 0.00 0.643 (small)
lodash hasPath js 0.18  0.500 (negligible)
lodash random.js 1.00 0.500 (negligible)
lodash result.js 0.06 0.450 (negligible)
lodash slice.js 032 0.490 (negligible)
lodash split.js 1.00 0.500 (negligible)
lodash toNumber.js 100 0.500 (negligible)
lodash transform.js 032 0.510 (negligible)
lodash truncate.js 0.32 0.490 (negligible)
lodash unzip.js 008 0.530 (negligible)
moment add-subtract.js 0.16 0.520 (negligible)
moment calendar.js 0.58 0.485 (negligible)
moment check-overflowjs 100 0.500 (negligible)
moment compare.js 1.00 0.500 (negligible)
moment constructor.js 0.05 0.476 (negligible)
moment date-from-array.js 100 0.500 (negligible)
moment diff js 1.00 0.500 (negligible)
moment format.js 1.00 0.500 (negligible)
moment from-anything js 005 0.562 (negligible)
moment from-array.js 1.00 0.500 (negligible)
moment from-object.js 005 0460 (negligible)
moment from-string-and-array.js 1.00 0.500 (negligible)
moment from-string-and-format.js 0.00 0.451 (negligible)
moment from-string.js 100 0.500 (negligible)
moment 0.06 0.527 (negligible)
moment 016 0.480 (negligible)
moment 100 0.500 (negligible)
moment start-end-of js 1.00 0.500 (negligible)
moment valid js 0.6 0.480 (negligible)

(b) |Pr0p0rti0nal Sampling|

Table 7.4: Comparison of only and.+. variants

The third and final research question, as stated in Chapter [6]is:

3. How significant is the amount of time used for the type inference?

We will look at several statistics to answer the third and final research question. The first
is the mean time it takes per benchmark to perform the static analysis type inference. The
mean and standard deviation can be found in Table [Z.5al Table shows the number of
elements, relations, and types per benchmark file.

Next, we will look at the mean number of evaluations the variants can perform given
the time budget of 120 seconds. However, since the |Proportional Sampling| variant and

|[Rank-Based Sampling|variant do not differ in their type inference processes, except for how
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7.3. Time impact

the types are being used, the difference in evaluations between the two is irrelevant and not
interesting. Thus we will only be comparing the number of evaluations between the two
[Proportional Sampling| variants and the baseline. These statistics are shown in Table[7.6]

Benchmark Mean (seconds) Standard deviation Benchmark Elements Relations Types
g;lr)r;;:nden]s ggg 8?28? Commander.js 4623 3566 40
JavaScript Algorithms  4.66 0.1584 Express 7606 5640 139
Lodash 228 0.1335 JavaScript Algorithms 11377 9606 96
Moment 9.78 0.2701 Lodash 9094 6567 19
Moment 35727 19701 236
(a) Mean static analysis type inference
time and standard deviation per benchmark (b) Number of elements, relations, and types
project in seconds per benchmark project

Table 7.5: Type related statistics for all benchmarks

7.3.1 Results

To investigate the significance of the time used by the type inference, we will first look
at Table [7.5a This table shows that the mean number of seconds used to perform static
analysis for type inference differs per benchmark. The Moment benchmark requires the
most time with a mean of 9.78 seconds. The JavaScript Algorithms benchmark requires
only half that time with a mean of 4.66 seconds. For the Commander.js benchmark the
mean is 3.00 seconds. The Express and Lodash benchmark required a similar amount of
time with 2.26 and 2.28 seconds respectively. Since the type inference is performed for the
entire benchmark at once, this time is only required once per benchmark before the search
process starts.

Evaluating how much extra time the type inference requires during the test case gener-
ation process is harder to assess. By looking at the number of evaluations per variant, we
can try to assess the differences. However, there are several caveats to this. First, if for a
certain [UuT] 100% branch coverage is reached the evaluation stops, and we move on to the
next [UuT] This gives incorrect results, and we can not derive conclusions from such data.
There were three files in the Lodash benchmark where this problem was very clear since the
results in Table [7.T] indicate that 100% branch coverage is reached. These benchmark files
have been removed from Table However, the table gives a strong suspicion that there
are more such cases.

Table shows that the baseline can do more evaluations than the two variants for 51
of the benchmark files. For 3 files it did significantly less evaluations. The [SA}only variant
did significantly more evaluations than the [SAHDA] variant on 30 files and significantly less
on 17 files.

7.3.2 Discussion

The time impact of performing static analysis for type inference is benchmark specific.
This seems to be correlated to the values given in Table [7.5b] For example, out of all the
benchmarks, the Moment benchmark contains the most elements, relations, and types. It
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also has the highest mean static analysis type inference time. This correlation makes sense
as more elements, relations, and types would mean that more resolving is required. A
larger study is required with more benchmarks to determine if there is indeed a correlation
between one or more of these values. However, in general, the time required to perform the
static analysis for type inference is insignificant compared to the amount of time the search
process uses. To give an example, the smallest benchmark Commander.js consisted of 3
files with 4 in the current experimental setup that means that the search process took
120 x 4 = 480 seconds. The static analysis for type inference only added 3 seconds to that.
The added time becomes even less significant for larger benchmarks with more [Uu'Tk.

As mentioned in the results, several issues exist with using the number of evaluations
to assess the time impact of using type inference during test case generation. These issues
make it tough to draw a clear conclusion. However, the general result seems to be that
using either [SA}only or [SAHDA]| type inference uses slightly more time, allowing for fewer
evaluations compared to the baseline. Using [SAHDA] type inference does not clearly use
more time than [SA}only type inference, but it does lean that way as for 55% of the files, it
does use more time.
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Baseline |Prop0rtional Samplingl

Benchmark Unit Of Test ‘ on Iy I

Median  [IQR]| Median | Median  [IQR
commanderjs help.js 1782.0 4450 | 1488.5 59.50 | 12740 53.75
commanderjs option.js 2299.5 79.25 | 2216.0 103.00 | 2260.0 109.75
commanderjs suggestSimilar.js 2106.5 63.75 | 2079.5 56.00 | 2103.5 44.25
express application.js 1351.0 2675 | 1338.0 37.50 | 13445 31.75
express query.js 1959.0 4550 | 1913.5 3750 | 1915.0 41.75
express request.js 15345 19.75 | 1523.0 19.75 | 1527.0 27.00
express response.js 391.0 12.50 | 388.0 11.00 | 389.0 13.00
express utils.js 1858.0 60.00 | 1813.5 66.25 | 1819.5 69.75
express view.js 1655.5 50.75 | 1515.0 33.25 | 1506.0 48.00
js algorithms graph articulationPoints.js 23435 61.00 | 381.5 561.00 | 254.0 153.00
js algorithms graph bellmanFord.js 2330.0 61.50 | 21145 88.50 | 1934.5 56.00
js algorithms graph bfTravellingSalesman.js 2086.0 67.00 | 1927.0 54.25 1827.5 62.75
js algorithms graph breadthFirstSearch.js 2187.5 64.00 | 2058.5 93.50 | 1983.5 74.25
js algorithms graph depthFirstSearch.js 2153.0 66.75 | 2137.5 56.50 | 2139.5 62.75
js algorithms graph detectDirectedCycle.js 22435 64.75 | 407.0 459.00 | 152.0 102.00
js algorithms graph detectUndirectedCycle.js 50.0 0.00 50.0 0.00 50.0 0.00
js algorithms graph dijkstra.js 2177.0 57.75 | 2013.0 63.00 | 1823.0 70.00
js algorithms graph eulerianPath.js 21575 91.75 | 20385 64.50 | 1888.0 50.25
js algorithms graph floydWarshall.js 2152.0 72.00 | 2068.5 61.00 | 1943.0 78.75
js algorithms graph graphBridges.js 2269.0 88.00 | 305.0 573.75 | 203.0 204.00
js algorithms graph hamiltonianCycle.js 2172.5 7250 | 2041.0 66.25 | 18885 77.75
js algorithms graph kruskal.js 21350 7025 | 2023.5 5825 | 1923.0 55.25
js algorithms graph prim.js 21245 89.75 | 2025.0 55.75 | 1907.0 48.50
js algorithms graph stronglyConnectedComponents.js 2104.0  73.50 | 1943.0 46.50 | 1836.5 51.00
js algorithms knapsack  Knapsack.js 2137.0 47.25 | 2081.0 57.25 | 2075.0 73.50
js algorithms matrix Matrix.js 2204.0 6425 | 21785 5450 | 2175.0 46.50
js algorithms sort CountingSort.js 203.0 153.00 | 101.0 191.25 | 152.0 102.00
js algorithms tree RedBlackTree.js 2128.5 51.00 | 1932.0 71.50 | 1996.5 67.25
lodash equalArrays.js 2293.0 49.50 | 21245 77.50 | 2036.5 65.50
lodash hasPath.js 25135 7325 | 23385 6450 | 2331.5 81.00
lodash random.js - - - - -
lodash result.js 2501.0 88.75 | 2302.0 109.25 | 2320.0 81.50
lodash slice.js - - - - - -
lodash split.js 2487.0 6575 | 2370.0 60.50 | 2369.0 75.75
lodash toNumber.js 2538.0 48.00 | 2341.0 5525 | 23445 7775
lodash transform.js 2496.5 7275 | 50.0 51.00 | 75.5 51.00
lodash truncate.js 2489.5 68.00 | 2303.0 71.00 | 2287.0 49.00
lodash unzip.js - - - - - -
moment add-subtract.js 2268.5 54.00 | 2075.0 62.00 | 2050.0 49.00
moment calendar.js 22975 86.25 | 2263.0 66.50 | 2255.0 51.50
moment check-overflow.js 2275.0 50.00 | 2222.0 69.75 | 22060 58.50
moment compare.js 2210.0 51.75 | 2213.5 47.50 | 22175 65.50
moment constructor.js 2261.5 47.00 | 2233.0 67.75 | 22375 7425
moment date-from-array.js 2316.5 55.75 | 2289.0 77.25 | 22705 62.00
moment diff.js 2150.5 53.00 | 2150.0 50.50 | 2139.5 57.25
moment format.js 2155.0 50.75 | 21385 50.50 | 2140.0 54.75
moment from-anything.js 2022.0 4450 | 2046.0 43.75 | 2027.0 42.25
moment from-array.js 2088.0 62.50 | 2035.0 70.50 | 2010.0 41.50
moment from-object.js 2051.5 52.25 1986.5 66.00 1971.5 48.00
moment from-string-and-array.js 21440 66.75 | 2012.0 71.75 | 2011.5 50.00
moment from-string-and-format.js 1948.0 45.25 1884.0 43.25 1886.0  72.00
moment from-string.js 1819.5 44.50 | 1864.0 58.75 1844.0 48.25
moment get-set.js 2071.0 61.00 | 2065.0 50.50 | 2050.5 83.75
moment locale.js 2097.0 71.25 | 20635 50.75 | 2076.5 59.50
moment min-max.js 2061.0 5275 | 2027.0 4450 | 2026.5 71.00
moment start-end-of js 2040.5 37.50 | 20340 47.00 | 20155 57.75
moment valid.js 2081.0 47.25 | 2070.0 48.50 | 2083.5 48.75

Table 7.6: Median number of evaluations together with the Inter-Quartile-Range per bench-
mark file for the|Proportional Sampling|variant and the baseline. Superior values are marked

gray
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Chapter 8

Conclusions and Future Work

In this chapter, we will answer the research questions from Chapter [6|and draw conclusions
using the results from Chapter[7] Afterward, we discuss some ideas for future work.

8.1 Conclusions

Given the results described in Chapter[7] we gain insights concerning the research questions
posed in Chapter [6]

1. What is the performance impact of using inferred types versus random
types on the test coverage generated by automated test case generation
tools?

As described in Chapter ] we have implemented three variants of the approach to answer
the first research question. The first variant (baseline) does not use any inference and uses
randomly sampled types for the test case generation. The second variant is the Static Analy-
sis only (SAlonly)[Rank-Based Sampling|variant. The third is the[SA}only[Rank-Based Sam-|
variant. Both the second and third variant use static analysis to perform type infer-
ence. During the sampling of an argument for a test case, the |[Rank-Based Sampling| variant
always selects the argument’s type to be the type with the highest likelihood. The
variant selects a type proportional to the type’s likelihood.

The [SA}only [Rank-Based Sampling| variant outperformed the baseline on 42% of the 57
benchmarks. It was outperformed by the baseline on 11%. It performed equally well or
without a significant difference on 47% of the benchmarks. The [SA}only[Proportional Sam-|
variant outperformed the baseline on 54% of the benchmarks. It performed equally
well or without a significant difference on 46% of the benchmarks. The [SA}only
[rional Sampling| variant outperformed the [SA}only [Rank-Based Sampling] on 28% of the
benchmarks. It lost on 2%. It performed equally well or without a significant difference on
70% of the benchmarks.

On the benchmark, compared to the baseline, the |§_Z|—0nly variants are able to achieve
equal or higher test coverage during test case generation. This shows that using inferred
types over random types does provide an advantage during test case generation.
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From the results, we learn that for some benchmark files, the type inference is more
beneficial than for others. During the analysis of these results, we observed that using type
inference is most beneficial when the [UuT} in the benchmark make use of complex types,
i.e., the arguments for the should not only consist of primitive types. Additionally,
we found that some unsupported syntax prevents the variants from achieving higher cover-
age. This limitation has nothing to do with the type inference, meaning that resolving this
limitation could improve the success rates of the [SAlonly variants.

2. How does the incorporation of execution information impact the perfor-
mance of automated test generation tools when using inferred types?

We have implemented two additional approach variants to answer the second research ques-
tion. These new variants use the execution information from the search process to improve
the accuracy of the type inference. In other words, next to the [SA| they use [DA] to infer
types. The variants are the [SAHDA|[Rank-Based Sampling| and [SAHDA|[Proportional Sam-|
variant.

The [SAHDA|[Rank-Based Sampling| variant outperformed the baseline on 49% of the
benchmarks. It was outperformed by the baseline on 7%. It performed equally well or with-
out a significant difference on 44% of the benchmarks. The [SAMDA|[Proportional Sampling|
variant outperformed the baseline on 56% of the benchmarks. It lost on 0%. It performed
equally well or without a significant difference on 44% of the benchmarks. These results
show that both the |Rank-Based Sampling| and |Proportional Sampling| variant benefit from
the [Dynamic Type Inference|since the percentage of benchmarks where they outperformed
the baseline grew compared to the [SA}only variants.

To dive deeper in the effectiveness of [Dynamic Type Inference] the [SAlonly variants
are compared to their DA| counterparts. The [SAHDA|[Rank-Based Sampling] variant
outperformed its[SA}only counterpart on 21% of the benchmarks. It lost on 4%. It performed
equally well or without a significant difference on 75% of the benchmarks. The [SAHDA|
[Proportional Sampling] variant outperformed the [SA}only [Proportional Sampling|on 9% of
the benchmarks. It lost on 5%. It performed equally well or without a significant difference
on 86% of the benchmarks. From this, we can conclude that for the [Rank-Based Sampling|
variant the[Dynamic Type Inference|is more beneficial than for the [Proportional Sampling|

The [SAHDA|Proportional Sampling]variant still outperformed the [SAHDA|Rank-Based Sam-
[pling] variant on 23% of the benchmarks. It lost on 2%. It performed equally well or without
a significant difference on 75% of the benchmarks. So we can conclude that the [SAHDA|
[Proportional Samplingis superior to the[SAHDA|Rank-Based Sampling|variant for the given
set of benchmarks.

To conclude, the incorporation of execution information (i.e. is beneficial for the
|[Rank-Based Sampling| variant. For the |Proportional Sampling| variant, the execution infor-
mation is less helpful. The nature of these sampling methods can explain this difference.
The |[Rank-Based Sampling| variant always selects the type with the highest likelihood, if
this type is incorrect, i.e., the inferred likelihood is incorrect, then modifying the likelihood
through [DA] is beneficial. However, the [Proportional Sampling] variant can already select
one of the other types since it proportionally selects based on the likelihood of the types.
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The[DA]can still provide an advantage for[Proportional Sampling]by reducing the likelihood
of incorrect types, but the advantage is less prominent in the results.

3. How significant is the amount of time used for the type inference?

To answer the third and final research question, we have looked at the amount of time the
[SA] type inference takes and how the [SA] and [DA] type inference influence the number of
evaluations SYNTEST-JAVASCRIPT can make in the given time budget.

We learned that for the smallest benchmark, the [Static Type Inference| only took 0.6%
of the total time used. Since the [Static Type Inference| only takes place once per bench-
mark, this number decreases as the benchmark becomes larger or the time budget per [UuT]
increases.

By looking at the number of evaluations SYNTEST-JAVASCRIPT was able to make us-
ing the different approach variants, we concluded that the baseline can do more evaluations
within a given time budget than the variants. Additionally, we found that the [SAHDA] vari-
ants use slightly more time than the [SA}only variants resulting in fewer evaluations.

In conclusion, the amount of time required to perform the type inference is insignificant
compared to the total time. Additionally, given the added benefit of using the type inference,
the little extra time is worthwhile.

Generally, we conclude that the combination of unsupervised |Static Type Inference| and
[Dynamic Type Inference|has a positive performance impact on test case generation with re-
gard to achieved structural coverage. In addition, the unsupervised type inference is shown
to be a time inexpensive process.

8.2 Future work

Although the usage of type inference is shown to be beneficial to the test case generating
capabilities of SYNTEST-JAVASCRIPT, it is clear that there is still much work to be done.
For starters, as mentioned in Chapter [7] in its current state, the tool does not fully support
all JavaScript syntax (e.g., function definitions within functions). This creates the problem
that the is incorrect for some branch coverage objectives. This, in turn, disables the
guidance for the search algorithm, making it significantly harder for the tool to cover all
objectives. Since several of the benchmark files seem to have a common structural coverage
limit, solving this issue would allow the tool to achieve higher coverage. It could also mean
that, once this limitation is resolved, the type inference variants can actually outperform the
baseline on the benchmarks for which they now perform equally.

Another improvement for SYNTEST-JAVASCRIPT can be found in the[DA] In its current
state, the [SAHDA] variants outperform the baseline more than their [SA}only counterparts,
but only slightly. Especially for the |Proportional Sampling| variant, the advantage is small.
Currently, the [Dynamic Type Inference| only compares the variable names with the error
message of the thrown TypeErrors. This can be improved in future work by investigating
the stack trace of the TypeError and checking for which exact test case statement the type
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was wrongly inferred. This would ensure that the correct type map is modified and not
another similarly named variable.

All of the experiments have been performed on a benchmark consisting of 5 benchmark
projects with a total of 57 files. In the future, this benchmark can be extended with additional
projects of varying sizes and syntax’. This extended benchmark can be used to perform a
more extensive empirical study to confirm the findings of this study. In addition, the larger
benchmark can confirm the suspected correlation between the required static analysis type
inference time and the number of elements, relations, and types, as mentioned in Chapter[7]

Finally, it might be interesting to try to learn the type scores used for certain relations
by mining git repositories. In the current state of SYNTEST-JAVASCRIPT, the type scores
that are assigned to elements involved in certain relations have been hand-picked based on
the JavaScript experience of the authors of this study. Instead of hand-picking the scores
and types per relation, it could be interesting to use statistics from a large dataset of git
repositories.
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Appendix A

Glossary

Dynamically Typed Language A programming language where the types of the variables
are checked during run-time only. [I]

Dynamic Analysis The analysis of Computer programs performed by executing them.

7

Dynamic Type Inference Type inference using only [Dynamic Analysis|techniques. [8]

28,331 6l 55} 58 661 [67)

Execution Information Information gathered from executing a program. [2}

Proportional Sampling A sampling strategy in which one draws random samples based

on their likelihood. [xi} 23] 28] 39} 6} F9H33] 3oH611 [63] [65H67]

Rank-Based Sampling A sampling strategy in which one draws samples with the highest

likelihood. [xi} 25| 28 [391 A6l A9H53} 55H601 [651 (661

Statically Typed Language A programming language where the types of the variables are
checked during compile-time. []

Static Analysis The analysis of computer programs performed without executing them.

7

Static Type Inference Type inference using only techniques. [8] [T7] 28] [33]

TypeScript TypeScript is a strict syntactical superset of JavaScript which adds optional
static typing to the language. [T4] 29]
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