
Modelling Power Plant
Investment Behaviour

Three modular investment algorithms including hard and soft factors for investments in large
scale power generation in a liberalized North-West European electricity market simulation

model.

Master Thesis R. Verweij

Delft University of Technology

Technology, Policy and Management

Section Energy & Industry

August 18, 2013



• Modelling Power Plant Investment Behaviour •

i



• Modelling Power Plant Investment Behaviour •

Report

Type Master Thesis

Organization Delft University of Technology
Faculty Technology, Policy and Management
Section Energy and Industry

Graduation committee

Prof.dr.ir. M.P.C. Weijnen Professor
TU Delft, Faculty TPM, Section Energy and Industry

Dr.ir. E.J.L. Chappin First supervisor
TU Delft, Faculty TPM, Section Energy and Industry

Dr. S.T.H. Storm Second supervisor
TU Delft, Faculty TPM, Section Economics of Innovation

Author

Name R. (Ruben) Verweij
Student number 1511572
Contact E-mail: r.verweij-2@student.tudelft.nl

Phone: +316-24 36 00 83

ii



• Modelling Power Plant Investment Behaviour •

iii



Abstract

Simulation models become increasingly important in energy policy analysis. A lit-
erature review showed that there is demand for analysing the effect of multiple more
realistic investment algorithms on the outcomes of energy policy analysis. The reason is
that energy policy analysis could be incomplete without insight in the implications of the
assumed investment behaviour in simulation models. The research question is: How is the
effectiveness of the EU-ETS mechanism affected by diverse investment algorithms in an
electricity market simulation model?. In EMlab-generation, three modular empirical data
based algorithms are designed including behaviour with technology-preferences, credit-
risk considerations and risk-averse behaviour. The results showed that more realistic
investment behaviour culminates in all experiments in at least one or more technologies
with substantially different investment patterns. Different investment patterns caused a
lowered CO2 price volatility in most experiments in relation to homogeneous profit only
behaviour indicating that the CO2 price might be a more stable investment signal than
earlier assumed. The effectiveness of the EU-ETS mechanism remains for all experiments
however doubtful due to the substantial CO2 price volatility of more than 100%. The
necessity of stabilizing measures such as a price floor and/or ceiling proposed by previous
studies is reinforced by the results. This research shows the importance of being aware of
the implications of the assumed investment behaviour in simulation models used for en-
ergy policy analysis. Two recommendations to deal with the implications of the assumed
investment behaviour in models is to design more flexible and modular investment algo-
rithms. Flexibility and modularity in investment algorithms enable and support exploring
the effect of different behavioural configurations on outcomes of energy policy analysis.

Keywords: Modelling, Power plant investment, EU-ETS mechanism, CO2 emission
right price volatility.
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Chapter 1

Introduction

This introduction chapter reveals the general context of this research. The primary objective
is to present reasons for performing the research. The secondary objective is to provide a first
insight in the research content: the modelling of power plant investment in simulation models.
This will be done for the purpose of analysing the effect of different investment algorithms on
investments and the effectiveness of the EU-ETS mechanism in a existing simulation model of a
liberalized electricity market.

1.1 Research context

The reason wherefore this research was initiated can only be answered on a higher abstraction
level. This abstraction level requires to observe the European electricity system as a whole.
The important notion is that this European electricity system changed1 considerably in the last
decades [9, 10]. It is possible to observe these changes using different ”glasses” also named as
perspectives. Two ways to look at these system changes are the social-institutional and the
technical-physical perspective. The visible changes from a more social-institutional point of view
are related to the shifting role of the regulator and the increasing fraction of private companies.
Two changes from the technical-physical point of view are the increasing degree of network
integration and the diffusion of more renewable electricity generation capacity. An observation
is that changes are visible from both perspectives.

A significant role within the changing system was reserved by the introduction of competition
and new energy policies [11]. Due to the entrance of private investors, the introduction of new
energy policies and the increasing decentralization of power generation, the complexity in the
energy system increased [12]. The ongoing changes and increased complexity in the power sector
brings along the need for policy intervention and analysis since the present complex liberalized
energy markets are not considered to solve public issues like the increasing amount of CO2

emissions and security of supply alone [11, 13]. The generation adequacy and emission issues
explain the need for insight in the consequences of policy interventions and possibility to measure
their effect (e.g. feed in tariffs and implementing capacity mechanisms) on the development of
electricity markets [14]. The negative market externalities caused by liberalization also raise new
questions for the design and development of effective policies among researchers and authorities.

There are multiple paradigms to explore and analyse the long-term electricity system de-
velopment. One of these paradigms is simulation containing various applicable approaches like
agent-based modelling (ABM) and system dynamics (SD) [15]. From a literature review (see

1or evolved
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chapter A.1) is known that simulation is used extensively for analysing the long-term electricity
market dynamics.

The main reason for performing this research is to support the endeavour to understand the
complex electricity system dynamics. This research is positioned in the field of simulating and
analysing the long-term dynamics of the European restructured electricity market. The research
focus is on modelling large scale power plant investment behaviour based upon empirical data.
This research attempts to design more realistic investment algorithms and analyse their effects on
investment and the EU-ETS mechanism. This research intends to give insight in the implications
of the assumed investment behaviour. The literature analysis in chapter A.1 showed that there
is a need for this type of research. In the next chapter the delineation and further project details
will be discussed and explained.

1.2 Research definition

This chapter contains the research definition. This definition includes the problem formulation,
research questions and research methods. Also the structure of this research is discussed in this
chapter. The first paragraph starts with a problem formulation.

Problem formulation

The role of simulation models as tool for energy policy analysis becomes increasingly important
for researchers of the electricity sector. The speed and processing time of computers increased
excessively in the last decades resulting in new opportunities to explore more complex systems.
Various studies regarding electricity market dynamics are performed using simulation as support-
ing tool to analyse long-term dynamics2. One example is [16] where nuclear power investment is
modelled using a simulation based upon a real options approach. Another example is [12] where
simulation is used to analyse plausible development trajectories of the Dutch electricity system.
These examples are only a small selection of studies who are using simulation models. [17] did
research on the present trends of electricity market modelling and concluded that simulation3

has become more and more important.

These examples and further literature presented in Appendix A.1 showed an extensive use of
simulation models for energy policy analysis. The literature analysis in Appendix A.1 focussed on
how researchers present and discuss their model descriptions and outcomes related to investment
behaviour. In the reviewed publications was limited discussion on the shortcomings and limita-
tions of the investment models. Meanwhile some publications notice the importance of modelling
investment behaviour for the development path of the simulated electricity market [19,20].

Among the reviewed publications only some authors elaborated on the possible implications
of general modelling assumptions. In these discussions there was even less reflection on the
assumptions underlying investment behaviour in the model. For some approaches the absence of
this reflection could be explained by the uniformity or logicalness of the assumptions, but still
a discussion on modelling assumptions could strengthen the argumentation. One example is the
paper of [21] where investments are performed within a perfect competitive and uniform market
on the basis of profit maximization. In this article is mentioned that these assumptions are used
as foundation, but no further notion is made on the potential sensitivity of model outcomes. This
is considered a missed chance. An additional analysis in this article on investment behavioural
model sensitivity could have been an additional indicator for energy policy robustness. Models
that are able to simulate long-term electricity market dynamics are in some cases assuming that
market development is based on perfect competitive rules like complete information and perfect

2In the Appendix a literature review is presented including various reviewed articles (see chapter A.1)
3Simulation is defined here as the imitation of a real world process over time [18]

6



R. Verweij • Modelling Power Plant Investment Behaviour •

resource allocation [14, 20, 21, 24, 25]. An example is presented in the paper of [14] where firms
act like homogeneous inter-temporal optimizers with perfect predictions on fuel prices. Another
example is presented in the paper of [26] where investment is based upon equilibrium models.
In practice it will be very unlikely that a market is in equilibrium [27]. This is not problematic
since the model represents an abstraction of reality, but makes additional analysis of investment
behavioural model sensitivity more evident. Moreover, due to the commercialization of power
production conventional optimization techniques are no longer adequate to explore the dynamic
evolution of electricity markets because the behaviour of agents is unknown [20]. The assumption
of heterogeneity in project evaluation among investors is also not frequent taken into account.
For simulations of the Dutch electricity market this could be problematic since there are all kinds
of investors who evaluate investment opportunities in a very different way [8]. There are papers
which take heterogeneity into account. One example is the publication of [15] where investing
agents are modelled with a ”management style” determining for example the attitude towards
certain technologies.

Thereby must be said that it is not always possible to analyse the consequences of modelling
assumptions on results because the simulation paradigm is not appropriate to do this prop-
erly. An example is System Dynamics (SD) modelling where it could be problematic (or time
consuming) to include different heterogeneous modes of investment behaviour among various
investors. There are also studies where investment behaviour is of minor interest due to the
scope and purpose of the model. However, there are various papers where additional analysis
on the implications of the assumed investment behaviour would have been beneficial. These
benefits of analysing the model outcomes for different assumptions on investment behaviour is
also recognized by some authors of the selected papers [19,20,22,23].

The complication of the observations mentioned in the previous paragraphs is that energy
policy analysis on the basis of simulations without insight in investment behavioural model
sensitivity could be incomplete.

There are however reasons for using one single investment model for policy analysis. In the
first place is this easier since there is little information available on how investors make investment
decisions in reality. Besides the absence of good data, the complexity and enourmous collection of
factors which influence an investment decision makes designing more realistic investment models
often not feasible. It is not argued that single simplified investment models are inappropriate,
but investment behavioural model sensitivity is expected. Policies that have pretty satisfying
outcomes on their analysed criteria could have different outcomes when other assumptions on
investment behaviour would have been taken into account. An additional argument for this
complication is that empirical and theoretical descriptions of investment behaviour are not very
aligned [28]. Meanwhile investment behaviour models are often based upon theoretical assump-
tions. Since the complication is case-specific4 and not in all cases extremely problematic, the
problem statement could not be simply generalized.

Problem statement

The central problem statement within this research that follows from the problem formulation
above:

Energy related policy analysis is incomplete without insight in the implications of the as-
sumed investment behaviour

The problem statement is written in a generic way because it is applicable for energy policy
analysis in general, but does not imply that it is problematic for all previous research in the field.

4Models can be simplified, but fit for purpose etcetera
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In relation to the problem statement, this research studies the EU-ETS mechanism because it is
on of the most important subjects among the reviewed articles and considered as an important
recently introduced European policy measure.

Research questions

To get insight in the implications of the assumed investment behaviour in a electricity market
model diverse modular investment algorithms will be designed. These algorithms will include
more realistic behaviour5 and give the opportunity to analyse investments in the first place and
the effectiveness of the EU-ETS mechanism in the second place. It is the main purpose to use the
investment models to answer a policy oriented question focussing on the EU-ETS mechanism.
This demarcation choice is made because it is considered most relevant and also in line with
TPM education where this thesis is initiated from. The main research question is:

How is the effectiveness of the EU-ETS mechanism affected by diverse investment algorithms
in an electricity market simulation model?

The question suits the problem statement because answering this question supports knowl-
edge about ”how” incomplete energy policy analysis could be without analysing different invest-
ment algorithms. Answering this question also might provide and confirm improvement signals
or directions for the EU-ETS mechanism. The question here is not how the EU-ETS mechanism
affects investment behaviour, but how investment behaviour affects the effectiveness of a policy.
This is considered relevant because this research claims that it is able to model more realistic
investment algorithms to analyse the effectiveness of the EU-ETS mechanism. The main research
question is answered by the following sub-questions.

1. How are investors in North-West European power generation evaluating investment oppor-
tunities based upon empirical data, and how to operationalize these evaluations? (answered
in chapter 2.2).

2. How are the conceptual models of investment behaviour translated into a modular set of
investment algorithms within EMLab-generation? (answered in chapter 3.4).

3. What is the influence of different investment algorithms on investments in an EU-ETS
governed electricity market simulation? (answered in chapter 4).

4. How is the effectiveness of the EU-ETS mechanism affected by diverse investment algo-
rithms in an electricity market simulation model .

The data requirements are described in section 1.2. This research design includes scalability
which made it possible to extend it in the future. The scalability in the design is defined by the
choice for the number of investment algorithms that are analysed and the size of the experimental
space. The scalability enabled to increase and decrease the intended amount of work during the
research process.

Research objective

The objective of the research is to 1. explore the influence of different investment algorithms on
investments in an EU-ETS governed market simulation 2. Research the consequences of different
investment algorithms for the effectiveness of the EU-ETS mechanism in the electricity market
simulation. 3. Contribute to existing and further research. One investment algorithm on the

5More realistic for investors in the North-West European market whose empirical data on investment
processes is used
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basis of homogeneous assumptions could give other outcomes than investment algorithms on the
basis of heterogeneous assumptions. The deliverables are three modular universal investment
algorithms for the North-West European electricity market. Furthermore this research intends
to deliver a comprehensive overview on how different investment algorithms are influencing in-
vestments in an EU-ETS governed market simulation.

Social and scientific relevance

The social relevance is defined by the intended attempt to contribute to an enhanced quality of
energy policy analysis by modelling more realistic investment algorithms. A better understanding
of energy policy effects will support policy makers to design more efficient and suitable policies.
More insight in the effects of the chosen modelling assumptions could contribute to the quality
of the decisions that are taken after a policy evaluation. This could enhance the societal function
of the energy system. The scientific relevance is defined by the potential insights of analysing the
effects of divergent investment behavioural models on the development of the electricity sector.
Another scientific attempt is to open new research possibilities with this research for future
student projects.

Research methods

The research methods used in this project are a literature review, interviews and agent-based
modelling (ABM). For sub-question one is made use of a literature review combined with inter-
views with modelling specialists. According to [29] literature reviews are suitable for the these
kind of research questions. Drawbacks are that literature reviews will be time consuming and
that the answers on the questions are totally dependent on the availability of existing specialists
literature. Con-straining factors are the potential to contact the intended specialists, the amount
of time and available previous research within this domain.

For sub-question two, three and four agent-based modelling (ABM) is used as research
method. In the ABM paradigm agents with states interact with each other and the environ-
ment which results in a certain emergent behaviour. ABM is a bottom-up modelling approach
which is suitable for modelling different stakeholders, states and interactions [30]. In [15] is con-
cluded that ABM scores positive as paradigm on simulating transitions in energy systems. ABM
is able to reveal and model social components, physical components and their interactions. As
a modelling environment Springsource toolsuite is chosen which works with the Java language
together with AgentSpring as the ABM-framework [6]. The modelling will be performed by using
an existing model named EMLab-generation6. This model is explained later in chapter 3.1. This
model is based upon the Java language and developed by using the AgentSpring framework.
This object-oriented approach is very useful to model heterogeneous investment algorithms and
explore multiple experiments. A drawback is that the ABM paradigm is time consuming, data
intense and hard to validate.

Data gathering

This research uses empirical data to develop investment algorithms. Besides these empirical
inputs also theoretical assumptions in the model play a role. Two of the theories are neoclassical
economics and bounded rationality. The empirical data is obtained from previous research on
investment processes performed by [7, 8]. Historic data on investments in Europe and data on
CO2 prices are obtained and used. A short introduction on neoclassical theory and the empirical
data is presented below.

6emlab.tudelft.nl
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Neoclassical economics

The neoclassical theory describes in essence that firms intend to maximize their overall present
value. This approach is considered to be adequate in static cases, but could be problematic in
long-term simulation while it is used in various studies [31]. The neoclassical approach focusses
on the determination of prices, inputs and outputs. The theory rest on three main assumptions:
agents have rational preferences among outcomes, agents maximize utility or profit and agents
act independently and on the basis of complete information. Criticism on this theory is that
it has a normative bias and wrong assumptions taken rationality into account [32, 33]. Unless
the criticism the theory is widespread and used extensively in various studies. Assumptions
described by this theory are of importance in the model that will be used in this research. On
this model will be elaborated in section 1.2. Besides neoclassical economics, new institutional
economics (including bounded rationality) also play a role.

Empirical data

The empirical data needed in this research is mainly covered by previous research of [8]. This
study covered qualitative empirical research on power plant investment processes by interviewing
a representative number of investors in the North-West European electricity sector. Some of
the non-confidential aggregated empirical outcomes are used as the inputs for the investment
algorithms in this research. In general the results of this research provide insight in the way
different sorts of investors evaluate energy projects. The aggregated outcomes are translated into
design variables for investment processes in table 2.1. The conceptual models are constructed
on the basis of this information.

The results of this empirical study are closely related to the theory of bounded rationality.
The theory on decision making prescribes that the rationality of agents is limited by the informa-
tion, cognitive capacity and time there is available [34–38]. The theory was proposed by Herbert
Alexander Simon. Although the ideas of the two perspectives of theory and observed reality are
conflicting they will together form the theoretical and empirical input of the model.

Further data

The articles collected for the literature review are selected by using the following scientific search
engines: Science Direct and Scopus. The keywords used are: investment behaviour, power plant
investment, modelling, long term electricity market development, investment processes. The
selection of articles is present in the literature list and also in chapter A.1 of the Appendix where
the article analysis is presented. The articles and publications will be used for supporting the
problem exploration. Further the articles will also be utilized for answering sub-question one.

Another source were the annual reports of the investors describing the general strategy,
facts and figures. Also information platforms like ”Enipedia7” have been utilized to monitor
the Dutch electricity sector situation. Concluding dummy data (e.g. evolvement of generation
capacity generated by the model) will also play an important role within this research. For data
analysis R-studio together with Python will be used. This software is useful for data-analysis.
Also the limited time for the research constrained the possibility of collecting the data. For
the design of experiments is made use of DECC fuel-price forecast experiments [39]. For the
validation various papers of CE-Delft are used to validate observed patterns. Also historic data
is used to analyse CO2 prices. On the next page the research outline is presented. This outline
shows how the research was performed.

7enipedia.tudelft.nl/wiki/Main$_$Page
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Chapter 2

Conceptualisation

This chapter intends to provide a concise overview on the functioning of the Dutch electricity
system 1. The primary goal is to support the reader in understanding the electricity market
related concepts in this research. Without any domain related knowledge this chapter will be
mandatory reading material to understand the further research content. A second objective is
to provide an introduction on investments in the power generation sector. The primary focus of
the research is investment processes in the North-West European market, but to limit the scope
for the explanation of the market related concepts, the Dutch system is described. The Dutch
system is selected because it is part of the North-West European market. Further, data of the
Dutch electricity system is transparent and easily accessible. This electricity market overview is
related to chapter A.1 in the Appendix.

2.1 Introduction to an electricity market and large-
scale investments

Electricity market concepts: the Dutch case

It is possible to observe the electricity system as a social-technical system including technical and
social sub-systems. More specific: this system contains technical-physical and social-institutional
elements [40–43]. The technical-physical elements of the value chain comprise of generation,
transmission, distribution and load of electricity. The generation of electricity is performed by
large scale central installations (63 percent in 2010) or medium- small scale de-central installa-
tions (37 percent in 2010, see table 2.2). The central production of electricity is generated by
large scale power plants with capacities up to more than 1500 MWe. The de-central produced
electricity is performed by smaller energy companies, large industries or even households. Exam-
ples of de-central electricity production are the individual solar panel installations on houses or
other buildings. In the Netherlands around 11 percent of the production is generated by renew-
able energy sources (table 2.2). The transmission of electricity is performed by approximately
9.000 kilometres of 110-450 kV lines [44–46]. The 450 kV lines are the inter-connectors between
foreign countries like Norway the United Kingdom. An example is the NorNed connection which
connects Norway and the Netherlands by a 580 kilometres long HVDC cable with a capacity of
around 700 MW [44]. The more regional low and medium voltage cables are called distribution

1The Dutch electricity system is part of the primary focus of this research: the North-West European
Market
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lines which transport electricity to the final consumer. The distribution of electricity is trans-
ported trough low and medium voltage lines up to 50 kV [47]. The load of electricity is related
to the final user connections and the measurement of the electricity consumption. In figure 2.1
the electricity system is visualised including all physical and institutional elements.

Electricity 
producers

Generation of 
electricity

Power 
exchange

Bilateral 
market

Balancing 
mechanism

Im- export 
capacity

Retail 
companies

Large 
consumer

Small 
consumer

Transmission of 
electricity

Distribution of 
electricity

Load

HV Network manager

System Operator

L&MV  network 
manager

Wholesale market

Transmission system operator

Control relation

Trade relation and direction

Retail market

Part of technical-physical system

Part of social-institutional system

Figure 2.1: Visualization of the Dutch electricity system adapted from [1]

The social-institutional elements include for example the stakeholders of the system like
the markets and the regulator. The regulator is not specifically visible in figure 2.1 but has
an important role in terms of law and regulation which is interwoven in various parts of the
figure. The generation of electricity is performed by mainly private owned power producers.
The central production is generated by large power plants operated by electricity producers as
Electrabel, Essent or Nuon 2 (2.3). De-central produced electricity is generated by various large
and medium scale industrial companies and households mainly for own use. An example is the
large life sciences multinational DSM N.V. which generates a part of its own electricity demand
for multiple strategic reasons. The transmission of electricity is performed by the transmission
system operator. This TSO is Tennet in the Netherlands and also maintains the network [45].
Tennet is a 100 percent state owned company. Besides this network operator role, the TSO also
function as the system operator by ensuring the balance on the network. The distributed system
operator maintains and operates the low voltage networks. Large DSOs are Liander, Enexis
and Stedin [47–49]. The wholesale market is where the large amount of electricity are traded
on the spot or bilateral market. The sport market in the Netherlands is the APX-ENDEX [50].
Power producers are selling their electricity on these markets. Retail companies are also buying
electricity on the wholesale market and sell it on the retail market to the small consumers. A
more in detail description of the electricity system is presented in chapter A.1 of the Appendix.

The development of an electricity system is dependent on the investments done [51]. The

2All these companies are taken-over by larger companies as GDF Suez (Electrabel), Vattenfall (Nuon)
and RWE AG (Essent).
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dependency on investment decisions is declared by the capital intensiveness and long lead times
of power plants [27]. Taken into account that an average plant has a lifetime of 25-30 years
implies that an investment decision now will have path dependent consequences for the coming
decades. From figure 2.3 is known that around 75 percent of the Dutch total yearly electrical
output in 2010 was generated by only a small selection of different companies. The 75 percent
includes also the de-central generated electricity. This shows the limited number of investors that
determine a large share of the present technology mix (see 2.2). Although decentralization is one
of the trends observed at the moment, the percentage of centrally produced electricity in large
power plants is still dominant. This means that a limited number of power plants determine the
development of the present technology mix of the electricity system.
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Figure 2.2: Dutch electricity market data [2, 3]

The present situation of electricity generation capacity in the Netherlands is as follows: the
average lifetime of generation facilities is around 25-30 years which means that decisions now
about installing new capacity will influence the future market situation significantly [52]. This
could be explained by the present situation in the Netherlands where new coal fired power plants
are being constructed. These power plants could have implications for the position of the other
plants in the merit order. The average investment cost in a electricity generation facility include
around 500 to 1.000 per KW resulting in capital intensive transactions [10]. The present installed
capacity in the Netherlands in 2010 was around 23.650 MW resulting in an electrical output of
118.000 million kWh [45]. In 2010 the average age of the installed capacity in the Netherlands was
21 years. This age distribution reveals the need for new capacity investments taking an expected
increase of future demand into account. These observations clarify the impact of investment
decisions on the dynamics of electricity markets. When policy makers attempt to obtain insight
in the development of electricity systems, investment behaviour plays an important role.
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Figure 2.3: Largest electricity producers in the Netherlands [4]

Power plant investment: two perspectives

Modelling large scale power plant investment behaviour is the central subject within this thesis.
To introduce the subject this paragraph discusses the ”glasses” to look at power plant investment
behaviour. It is possible to look at electricity generation investment from various perspectives.
A first approach is the theoretical one. This approach includes social-economic, econometric and
other theoretical attempts to describe the decisions that investors make. Examples of theories
are neo-classical economics and bounded rationality. Another approach is the empirical approach
where ordered data is collected on how specific interviewed investors run through their investment
evaluations. The empirical data in this research is anonymous and used in an aggregated format.

Scope and assumptions

This section elaborates on the scope and assumptions underlying that scope. The research is
performed under the following general assumptions:

1. This research will focus on the investment behaviour of centrally produced electricity
which counts e.g. for 63 percent of the total electrical output in the Netherlands3. This
percentage is without taking imports into account. The de-central production is not taken
into account due to the divergent character of the investors and the small scale of the
investments.

2. The investment algorithms will be developed according to empirical data obtained from
earlier research to investment processes among large scale investors in the North-West
European market.

2.2 Empirical data and algorithm design framework

This chapter includes an explanation on the empirical data, the basic investment algorithm and
design framework for the development of the algorithms.

Empirical design variables

The additions to the current investment algorithm are retrieved from table 2.1. This table
contains the drivers of investment processes and are based upon empirical data [8]. This quali-

3This is just presented as an example to give a feeling of the impact of central generation
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tative research performed by [8] focussed on power plant investment processes and interviewed
a representative number of investors in the North-West European electricity sector. Some of the
non-confidential aggregated empirical outcomes are design variables of the investment algorithms
in this research. The results provide insight in the way different sorts of investors evaluate energy
projects. The results are made anonymous, which implies that no company names will be used
in the section where the investment algorithms are described. Table 2.1 shows the variety of
drivers that steer investment decisions in the North-West European market. These drivers are
the starting point for the additional investment behaviour included in this thesis. The categories
are used as design variables. The three categories of design variables are: financial performance,
securing continuity and technology preferences 4. The ideal investment behaviour does not exist,
but implementing all the drivers mentioned in table 2.1 for all investors specifically could rep-
resent an ideal case. This research intends to implement some of these drivers5. In the coming
subsections the driver categories are explained.

Categories Variables that drive investment processes

Financial performance

1. Business case attractiveness

2. Perceived level of attractiveness

3. Meeting the hurdle rate

4. Outcome of discounted cash flow model

5. Internal rate of return (IRR)

Securing continuity

1. Acceptance of risk assessment outcomes

2. Minimizing opportunity costs

3. Not to do worse than the competitor

4. Maintain a healthy cash position

Others and technology pref-
erences

1. Meeting strategic goals

2. Meeting sustainable criteria

3. Portfolio considerations

4. Local employment

5. Wish of outperforming

6. Goal reasoning and intra-organizational dy-
namics

7. Political influence

Table 2.1: Drivers of investment processes adapted from [7,8]

4Also including more, but technology preferences embody most of the drivers
5The drivers are sometimes overlapping, but are all specifically mentioned during interviews [8]. This

implies that the driver has an individual interpretation
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Financial performance

The financial performance is related to the profitability of the project or investment. According
to interviews with investors this financial performance is often analysed in terms of an business
case containing e.g. net present value (NPV) estimations, comparisons of internal rates of return
(IRR) and the estimation of the weighted average cost of capital (WACC) [53]. The internal rate
of return in the context of an power plant investment is explained by the discount rate where the
NPV equals zero. The internal rate of return could numerically be calculated by the following
sectant method [53]:

Rn+1 = Rn −NPVn
(

rn − rn−1

NPVn −NPVn−1

)
(2.1)

Here Rn is the nth estimation of the IRR. The WACC is often used to discount the NPV
calculations in the North-West European market [7]. Here the weighted average cost of capital
defined by the estimated cost of the financing structure of the company [54]. In mathematical
terms explained by:

WACCi =
Ei
Vi
· ke,i +

Di
Vi
· kd,i (2.2)

Here the WACCi is the weighted average cost of capital of investor i [55]. The Ei is the
market value of the equity share of investor i and Di the market value of the debt of investor i.
Vi represents the total of the equity and debt together. The ke,i represents the investor specific
return on equity and kd,i the debt interest rate. These financial measures are used to evaluate
the investment project in a business case. According to the interviews performed by the research
of [7] the specific WACC value is confidential information for every investor in the electricity
market. An investor would have an knowledge advantage in case they would know the specific
WACC value of another competitor. To avoid this investors keep their WACC values secret. In
the investment algorithms in this thesis the WACC values are calculated using parameters for
the rate on equity.

Securing continuity

A second category of drivers is related to the continuity of the investor. The most important
drivers in this category are; the outcomes of risk assessments, the liquidity of the company, to
do not worse than competitors and the minimizing of opportunity costs [8]. The outcomes of
risk assessments are clearly related to the risks associated with the particular investments. The
liquidity of the company is related to the cash position of the company and could be measured
by the quick liquidity ratio. This is mathematically described by:

Li =
Cai
Cli

(2.3)

Here the Li is the liquidity ratio and Cai the value of the current assets of investor i. Cli are
the current liabilities of investor i. The value should be normally around one. The last driver
of this category is related to the costs of projects that are not exploited or equal projects of
competitors that are exploited. In the context of this thesis this is explained by the following
situation: Company x decides not to invest in combined-cycle and gas turbine (CCGT) while
company y does invest in this technology. When company y is making profits, the sum of these
profits are defined as the cumulative opportunity costs.
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Others and technology preferences

The last selection of drivers has divergent underlying reasons and is therefore labelled with
”others and technology preferences”. Some drivers are: meeting strategic goals and meeting
sustainable criteria [8]. Both drivers include technology preferences. Strategic goals are invest-
ments in certain technologies to hedge risks in the portfolio ot to meet the green attitude of the
company. Meeting of sustainable criteria are for example related to the calculated CO2 emissions
emitted by the potential power plant.

Design framework

Section 2.2 presented the design variables for the investment decisions of electricity producers.
In this section the procedure for developing the additional algorithms is described. The steps
are as follows;

1. The first step is the selection of relevant design variables of investment decisions resulting
in additional investment decisions. The considerations for choosing driver(s) of investment
processes are:

• The driver is mentioned in the interviews performed by [8].

• The implementation of the driver(s) is considered computationally do-able.

• Additions are considered useful for future research and other projects.

• There is theory available to operationalize the behaviour

2. The second step is to develop universal investment behaviour for the selected driver(s)
regarding investor specific characteristics.

3. The last step is the operationalization of the behaviour which enables investor specific
investment behaviour. In the next chapter the operationalization will be described con-
ceptually. The investment algorithms are designed in such a way that they are modular
and flexible.

Figure 2.4 visualizes the design procedure.
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2.3 Description of conceptual algorithms

This chapter describes the conceptual investment algorithms that are modelled. All the in-
vestment algorithms build upon the current investment algorithm of an existing model named
EMLab-generation 6. This implies that the developed algorithms represent the current algo-
rithm including additional elements. The constructed algorithms include optional extensions to
the current algorithm in the EMLab-generation model. The current investment algorithm of
EMLab-generation is utilized as a basis because it includes considerations that are useful for all
investors in the market according to interviews performed by [8]. An example is the approx-
imation of a NPV calculation performed by the electricity producers in the model. Although
the approximation in EMLab-generation is simplified it is a useful and universally applied finan-
cial measure to support decision-making. Figure 2.5 visualizes the structure of the investment
algorithms that are modelled in this research.

EMLab-generation investment algorithm
fixed

[1] Addition: 1 optional
Investment algorithm 

consisting of current behavior including an 
optional set of;

{1,2,n} additions [2] Addition: 2 optional

[3] Addition: 3 optional

Figure 2.5: Conceptual structure of the investment algorithm

Figure 2.5 shows that new additional investment process elements are modelled. The addi-
tional investment behaviour will be modelled in such a way that for every simulation a set of
different options is available. From table 2.1 three investment behavioural elements are selected
as optional extensions7. These additions are chosen in conformity with the design framework in
figure 2.4. The three selected algorithm extensions are:

1. Technology preferences: the technology preferences are mainly retrieved from two de-
sign variables in table 2.1: meeting strategic goals and sustainable criteria. There are
however more design variables where technology preferences play a role, but strategic
goals and sustainable criteria embody them best.

2. Credit-risk considerations: Credit-risks are retrieved from the business case attractive-
ness and the outcome of discounted cash flow model. Also for the credit-risk counts that
more drivers include elements of this consideration.

3. Risk-averse behaviour: the last extension, risk-averse behaviour, is retrieved from the
portfolio considerations and acceptable risk assessment levels8.

6In chapter 3.1 this model will be explained in detail. EMLab-generation is the model used in this
research.

7The choice for three algorithms is based on the available time and confidence that it is a sufficient
number to answer the research question.

8The acceptable risk outcomes belong to the category of ”securing continuity”, but is overlapping with
drivers from the category of technology preferences
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All these additional extensions of investment processes have an impact on the investment
decisions of investors9. One example is the preference of an investor to invest in clean technologies
due to the idealogical company attitude. Another example is an investor with a very large debt-
value in relation to the present assets. For this investor it could be very expensive to accept the
loan offer from a creditor.

Basic algorithm

The current investment algorithm of the EMLab-generation model is explained generally to
support the understanding of the conceptual models in the coming section. The algorithm is
explained in more detail in section 3.1. The basic algorithm generally follows the following main
steps:

1. In every simulation round, an investor is randomly chosen which is able to invest first.
The question is whether the investor i is capable of paying the down-payment for a certain
investment Ii and for what reference year is the investment planned.

2. The investor makes forecasts of the demand levels for the reference year and the years of
operation (supply, demand model). This supply demand model incorporates the plants under
construction and planned to be decommissioned.

3. The investor predicts the fuel prices (coal, gas, uranium and CO2) for the reference year on
the basis of growth models. Also the electricity prices are calculated.

4. The investor determines the costs and revenues for all investment options. Calculate the
weighted average cost of capital for all investors and calculates the NPV outcomes of the
investment options.

5. When there are investment options that have a sufficient return on investment the investor
invests in the most profitable technology option.

This basic explanation should provide enough information to understand the conceptual
descriptions in the coming section. When this is not the case it could be helpful to read chapter
3.1 first.

9E.g. due to the subjective preference criteria or additional limitations except only profit.

20



R. Verweij • Modelling Power Plant Investment Behaviour •

Technology preferences

The investment decisions of power producers are influenced by the attitude or vision of the
company. This is coming forward in the interviews performed by [8], but is also recognized
in other reviewed publications. Examples of publications are [56] and [57] who elaborate on
the presence of subjective environmental criteria among investors. This subjective attitude is
influencing the investment decisions that investors make10. To elaborate on possible technology
preferences, two extreme stereotypes11 of investors are described. All the stereotypes in between
are also possible.

The environmentalist

This first universal stereotype is describing the investors which tend to invest earlier in green
sustainable technologies on behalf of the vision of the company. A public owned company with a
green vision on their operations is one example12. The public ownership could force the company
to include and serve the public interests like ensuring a limited CO2 footprint of production.
The environmentalist grants higher weighting values to sustainability criteria for an selection of
profitable investments. In contrary, when a project is able to return the investment, profit will
be less important.

The conservativist

The second universal stereotype is the conservative investor. These investors are like the envi-
ronmentalist considering cleaner technologies, but profit remains decisive. These investors could
have a reticent attitude towards large CO2 polluting technologies, but this attitude is more based
on the increasing support of society to limit coal capacity in the European technology mix. The
vision of the company is aimed at satisfying the shareholders which are mainly interested in their
dividend expectations.

These stereotypes are two examples of investors with technology preferences. These prefer-
ences can be based upon a rich variety of criteria. So is it also possible that investors prefer
plants which use low price volatile fuels or prefer plants which have more ramping flexibility.

Weighted multi-criteria decision analysis

The question is how to operationalize the technology preferences of a particular investor. In
this research a multi-criteria decision analysis (MCDA) method is utilized. In [59] is concluded
that the classification of investment opportunities is a typical MCDA issue. In literature, like
in [60], MCDA is used to describe multi-criteria investment problems. The main advantage of
MCDA is that it is possible to include subjective factors in the investment decision. Besides that,
the MCDA is able to deal with investment decisions based upon multiple criteria. The MCDA
method is designed by considering a selection of design steps. The steps to design the MCDA
are described in [59] and stated in subsection A.2 of the Appendix. In the following subsection
the MCDA method is described.

Multi-criteria decision method

The first step is the selection of the criteria. These criteria provide the opportunity to analyse
investors with divergent attitudes. The selection of criteria is a good way to distinguish more

10See also [58]. Here also more examples of subjective criteria are mentioned.
11or configuration
12There are also mainly private owned companies with a green vision, but public ownership could be

an additional incentive to invest in more sustainable technologies.
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environmental or conservative investors. The criteria imply that every investor i has a selection
of {cn, cn+1, cN} criteria. A optional selection is:

Criteria Include

c1 MIN The CO2 footprint in tCO2/MWh. This enables investors to assign
higher values to investments with a lower footprint. A smaller footprint
means less costs for CO2 emission and less pollution

c2 MAX The NPVp: a higher NPV > 0 This means that a investment is ex-
pected to be more profitable. This criterion enables that investors can
have a high or lower preference for profitability.

c3 MAX Efficiency of a plant %. This implies that it is possible that some
investors tend to value more efficient investments as more attractive.

c4 MAX Actual lifetime in years. This implies that an investor is able to assign
more value to investments with a longer average lifetime. It could also
be that an investor prefers investments with a shorter average lifetime
due to more flexibility. A nuclear plant should for example at least run
one and a half decade to return the investment cost which includes a
significant risk factor.

c5 MIN Price volatility fuels in σ. This enables that investors can show averse
behaviour towards investments which using very price volatile fuels.

c6 MAX Ramping up / down speed in hours. This enables investors to assign
higher values to investments with the ability to ramp-up quickly.

c7 MIN Investment cost in EUR. Investors which have liquidity problems are
now able to include a preference for power capacity with a lower invest-
ment cost.

Table 2.2: Optional MCDA criteria

The second step is the gathering of alternatives. The alternatives are the generation technolo-
gies in the EMLab-generation model listed in table 2.3. Examples are an Integrated Gasification
Combined Cycle (IGCC) and Combined Cycle Gas Turbine (CCGT). The alternatives are fixed,
but not all available at the same time. CCS technologies for example will be available after a pe-
riod because CCS sequestration is not viable at the start of the simulation time. The assumption
is made that no new technologies are entering the market.

The third step is the evaluation of criteria on the alternatives. Every particular investor will
have a weighting factor ψn to make a certain criterion more or less important. This implies
that every investor i has a set of weighting factors {ψn, ψn+1, ψN}13 belonging to the criteria
{cn, cn+1, cN}. In the case of a environmental oriented investor the CO2 footprint14 of an in-
vestment will play an important role15. At the other side, the other extreme stereotype, the
conservativist, will weight profit as a more important criteria in the decision-making process.
These weighting criteria are modelled as properties of the electricity producer. These weight
factors should be scalable and are therefore parametrized16. The assumption is made that the
attitude of an investor remains fixed during the simulation. The cumulative sum of the weighted
criteria form the utility or propensity of a technology. The higher the propensity of a certain
technology relatively to the other investment options, the higher the chance that the particular

13Here defined as: what the investor finds more important than another goal (e.g. profit vs CO2

emissions)
14One of the criteria
15The importance means a higher weighting factor than average
16Discuss the parameter space
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Technology Initial investment cost Capacity

Coal-PSC 1.365.530 758
Lignite 1.700.000 1000
IGCC 1.724.880 758
Coal-PSC-CCS 2.457.950 600
IGCC-CCS 2.501.080 600
CCGT 646.830 776
CCGT CCS 1.164.290 600
OCGT 359.350 150
Biomass 1.703.320 500
Wind 1.214.600 600
Wind-Offshore 2.450.770 600
PV 2.048.300 500
Nuclear 2.874.800 1000

Table 2.3: Available technologies in the model retrieved from [6]

investor will invest in that technology. The utility or propensity indicates the relative value of a
certain investment p for investor i. The propensity ωp is calculated by:

ωp =
cn,p·ψn∑
cn,p...P

+
cn+1,p·ψn+1∑

cn+1,p..P
+

cN,p·ψN∑
cN,p..P

(2.4)

Here ωp is the propensity of investing in power plant p. cn,p is the value of criterion n for
technology p and ψn the associated weight-factor. The fourth step in the multi-criteria decision
is calculating a probability of investing in a particular technology based upon the normalized
propensity value. The weighted propensity is normalised between an lower and upper border by:

nωp = ωp −min(ωp..P )/α· 1

α·max(ωp..P )−min(ωp..P )/α
(2.5)

α 17 is here a normalisation parameter to ensure that both values both represent a value
between zero and one. The probability of investing in technology p is than mathematically
defined by:

υp =
nωp∑
nωp

(2.6)

Here υp is the probability of investing in power plant p. This calculation is performed for all
power plants which have a NPV > 0. After all the probabilities {υp, υp+1, υP } are calculated a
discrete probability mass function is established. On the basis of this probability mass function
the final investment decision is made. In case of the environmentalist it is now more likely
that they invest in technologies which suit the overall company criteria the best. There is a
threshold included since the technology preferences are introduced in the model at the moment
the NPV < 0 investments are filtered. ∑

p∈P

f(p) = 1 (2.7)

From this discrete distribution randomly an investment is selected. The technology pref-
erences of an investor are characterized by the weighting factors for the selection of criteria.

17If min(ωp..P ) would be a negative value it should be multiplied instead of divided by α. Since this
outcome is not expected (negative utility outcomes) it is not incorporated in the equation above. In the
algorithm it will be included.
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The value of an investment is measured by multiplying the weight factor and the proportional18

criteria value relatively to the values of all investments. A investment opportunity will then em-
body a utility value which enables the calculation of a probability to invest in that technology.
This simply implies that an investment with the largest cumulative value will have the highest
probability of investment. This means that the chance that the particular investor will invest
in that technology is the largest. There are however also limitations of using MCDA (also see
section 3.2). These method limitations are:

1. It is difficult to operationalize and interpret a strong or weak preference. The discussion
here is whether it is possible to quantify preferences on a discrete scale. This remains
however a discussion in modelling subjective factors.

2. This method does not automatically include interdependency among criteria19. Some cri-
teria are however overlapping. One example is investment costs and profitability. Although
these criteria are different they both deal with the financial details of the investment op-
portunity.

3. This method is not able to overcome the problem of incomparability (see also argument
one).

4. This model is not able to deal with changing attitudes over time, but this could be added
in a later stage. This limitation is also discussed in section 3.2 and 5.3.

As reflection on these limitations some arguments can be argued. The first argument is that
this method is considered a sufficiently realistic way to include subjective factors and differentiate
the decisions of investors. A second argument is that the method is a good try to include the
behavioural effect which is used often by scientists which are modelling multi-criteria investment
decisions [59]. To finalize the conceptualization of this conceptual model two static examples
are presented one the next page. These examples give a understanding on how the investment
decision of an investor is biased by subjective criteria.

18The percentage of the value with respect the cumulative of all investments
19This is however partly done by using thresholds. The MCDA is performed after the NPV positive

projects are selected.

24



R. Verweij • Modelling Power Plant Investment Behaviour •

Summarizing the model description

For two extreme universal stereotypes an example is described in the examples below. Further
every possible attitude is possible along the N criteria dimensional space. This MCDA will be
performed after the selection of profitable investment opportunities. This implies that there is
a threshold included before technology preferences play a role. A project has to be estimated
profitable by the particular investor before the subjective criteria will play a role. The general
conceptual model of the technology preferences of investors is summarized in words. In section 3.3
this conceptual behaviour will be translated into a computer readable investment algorithm. The
current algorithm only took profitability into account with this multi-criteria decision method,
additional subjective considerations based upon the company attitude will be included in the
model.

Example one Investment decision example of a environmentalist

The investors with this stereotype have a strong preference for renewable investment,
especially with an NPV > 0. This preference means that the probability of investing
in renewable technologies is larger than in conventional energy source based technologies.
When renewable capacity is no economical option in the case ofNPV < 0, there is a stronger
intention to look for another most clean technology measured by e.g. CO2 footprint. The
implication is that these companies will more often prefer cleaner investments than higher
profits. When there is only a coal or nuclear based investment opportunity, there is a
chance that the investor will not invest because the technologies do not suit the sustainable
strategy of the company.

Imagine that there are two investment options wind and CCGT. The criteria values are
as following: c1,wind = 100 and c1,CCGT = 150 and c2,wind = 1.25 and c2,CCGT = 0.75
the investor has the specific weighting factors ψ1 = 2 and ψ2 = 1 than the propensity of
investing in the two technologies is:

ωwind = 100·2
250

+ 1.25·1
2

ωCCGT = 150·2
250

+ 0.75·1
2

After normalizing with α = 1.15 ωwind and ωCCGT the environmentalist has a proba-
bility of 36 % of investing in wind technology and 64 % investing in CCGT technology.

Example two Investment decision example of a conservativist

For the investors of this type profit is the most important criterion, but also sustain-
able criteria like the CO2 footprint plays a role in the decision-making. This implies that
these companies include a reticent attitude towards power plants with large emissions, but
economical advantages are more decisive. Imagine now that there are three investment
options wind and CCGT and Coal. The criteria values are as following: c1,wind = 100 and
c1,CCGT = 100 and c1,coal = 150 and c2,wind = 1.25 and c2,CCGT = 0.75 and c2,coal = 2.00
and c3,wind = 5 and c3,CCGT = 2 and c3,coal = 3 the investor has the specific weighting fac-
tors ψ1 = 2 and ψ2 = 1 and ψ3 = 3 than the propensity of investing in the two technologies
is:

ωwind = 100·2
350

+ 1.25·1
2
− 5·3

10
ωCCGT = 100·2

350
+ 0.75·1

2
− 2·3

10
ωcoal = 150·2

350
+ 2.00·1

2
− 3·3

10

After normalizing with α = 1.15 a the conservativist has a probability of 2 % of investing
in wind and 34 % investing in CCGT and 64 % in coal.

aadapted for the negative value, the min value should get more negative and a negative max
value should get less negative after using α
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Credit-risk considerations

The second conceptual algorithm includes the credit-risk considerations of the investor. The
credit-risk embodies the risk that the investor will fail to pay the debt back to the creditor [5,53].
Depending on the credit risk of the investor a loan for a particular investment is granted by the
bank. The credit-risk of the investor also influences the discount rate of the granted loan. From
the perspective of the investor the consideration is easy to understand: is this offered interest
rate competitive enough for my financial situation. This credit-risk determination is based upon
concepts from credit-risk theory of Black-Scholes and an earlier implementation described in [5].
Important concept here is the financial structure of the investor. Depending on this financial
structure the loan and the credit risk are determined20. Since there is only one type of bank
included in the model weight factors are not included21. The financial structure of the investor
is determined by the following criteria:

1. c1 The total value of assets of investor i at time t

2. c2 The total value of debt of investor i at time t

Black-Scholes debt pricing model

This research utilizes the debt-pricing model of Black-Scholes to determine the price of debt.
This model is proven suitable for modelling investment decisions in power generation [5]. This
model assumes that an investor defaults when during a certain time period t the total value
of the assets of the investor is lower or equal than the value of debt. The value of the debt is
calculated by:

di,t = exp−(rf+rp,i)·(T−t)·Di,t (2.8)

Here di,t is the total value of the debt of investor i discounted for the interest-rate consisting
of the risk-free rate rf and the investor specific dependent risk-premium rp,i. di,t and Di,t
are required for the calculation of the investor specific interest-rate. This risk premium is a
representation of the default probability of the investor. Equation 2.8 is than transformed in
such a way that the interest-rate can be calculated.

rf + rp,i =
−1

T − t · ln
(
di,t
Di,t

)
(2.9)

Before calculation of the interest-rate it is necessary to know the current nominal value of
debt and perceived value of debt including the credit-risk of the investor. This will be explained
later this chapter. The debt is priced in this thesis by:

di,t = Ai − Ei (2.10)

Here the Ai equals the asset value on the moment of investment decision t. Ei is the market-
value of the equity at moment t. This market value of equity will be determined by using the
Black-Scholes solution for the calculation of a call option. A call option could be seen as a
contract between two parties, the investor and the bank. Here the equity is seen as a call option
owned by the investor on the assets with the present value of the total debt as the strike price.
This equity valuation is a task performed by the bank. The information however is utilized by
the investor to accept the loan or not. In this model the assumption is made that the asset value
is evolving as a normal diffusion process22. In figure 2.6 the Black-Scholes model of default is

20There are various options to estimate the credit-risk. This is a structural approach where the ability
of the investor to pay back the debt is issued.

21This could be useful for further research: analysis for different types of banks
22Geometric Brownian motion
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visualized. When the value of debt of an investor is below the total value of assets during the
period T − t, the investor is considered default. This risk is quantified in the figure. The larger
the probability of default the lower the priced value of equity and the larger the interest-rate.

Assets 
value

Debt 
value

Equity
value

Investment 
decision

t T

Default 
probability

Time

Figure 2.6: The default model of Black-Scholes adapted from [5]

The calculation of the call option is than as follows:

Ei = Ai·N(d1)−Di,t· exp−r·T−t·N(d2) (2.11)

Here N(d1) and N(d2) are a N(0,1) distribution function. These functions are defined as:

d1 =
log( Ai

Di,t
) + rf + σ2

2
· (T − t)

σ·
√
T − t

(2.12)

d2 = d1− σ·
√
T − t (2.13)

With equation 2.11, 2.12 and 2.13 it is possible to calculate di,t. Than the interest-rate
rf + rp,i. Some assumptions needs further explanation:

1. The calculation of debt in the model is done by looking at the situation when the investment
decision is made, so the current status of debt and asset-value. This implies that the
decision does not take future investment expectation into account. This could be included
in future research.

2. Due to the modelling choice, the Black-Scholes implementation is only working for models
with relatively big investors. Since all the investors in the model include a significant
portfolio this is not considered problematic. For non oligopolistic markets this Black-
Scholes implementation would not be applicable.

3. For future research another model could be implemented to analyse credit-risk. One ex-
ample is including credit-ratings for companies which score less on a selection of criteria
like the cash position and the previous performances.
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Two simple static examples are presented below where the BS-debt pricing model is explained.

Example one Investment decision example of an investor in default

The investor is of this stereotype has a worse cash position and low value of assets.
The total debt-value of the investor is however high which implies that the investor has
a significant chance of failing to pay back debts. Now on time t this investor i has the
possibility to invest in a coal plant for 2.000 million euro how is the interest-rate determined
according to Black-Scholes credit theory?

The required data is as follows; the total value of assets Di,t = 4.800 million euro and
the total value of debt is 7.800 million euro besides that the volatility σi of the assets of
investor i is 20% and the risk-free rate rf is assumed 3%. The debt is considered to be paid
back in 10 years from now. The credit-risk is than determined in the following steps:

• d1,i =
log( 4.200

7.800
)

+0.03+ 0.22

2
·(10)

0.2·
√

10

• d2,i = d1,i − σ·
√
T − t

• Than d1,i = −0.19 and d2,i = −0.82

• The value of the equity is than defined: Ei = 4.200· 0.43− 7.800· exp−0.03·10· 0.21

• Ei = 596.62 and the price of debt is determined 4.200 - 596 = 3.603

• The interest-rate is than: rf + rp,i = −1
10
· ln
(
3.603
4.200

)
• Than rf + rp,i = 7, 72%

• Investor i decides to accept the loan offer based upon a parametrized property, it is
possible to add an investor which accepts higher interest-rates.

Example two Investment decision example of an investor with a prime performance

The investor is of this stereotype has a sufficient cash position and high value of assets
with respect to the total value of debt. The relative value of debt is low which implies that
the chance that the investor is not able to fulfil his obligations is considered small. Now on
time t this investor i has the possibility to invest in a IGCC plant for 1.500 million euro.
how is the interest-rate determined according to Black-Scholes credit theory?

The required data is as follows: the total value of assets Di,t = 7.800 million euro and
the total value of debt is 4.800 million euro besides that the volatility σi of the assets of
investor i is 20% and the risk-free rate rf is assumed 3%. The debt is considered to be paid
back in 10 years from now. The credit-risk is than determined in the following steps:

• d1,i =
log( 7.800

4.800
)

+0.03+ 0.22

2
·(10)

0.2·
√

10

• d2,i = d1,i − σ·
√
T − t

• than d1,i = 1, 55 and d2,i = 0, 93

• The value of the equity is than defined: Ei = 7.800· 1, 55− 4.800· exp−0.03·10· 0, 93

• Ei = 4.409 and the price of debt is determined 7.800 - 4.409 = 3.390

• the interest-rate is than: rf + rp,i = −1
10
· ln
(
3.390
7.800

)
• than rf + rp,i = 3, 48%

• Investor i decides to accept the loan offer based upon a parametrized property, it is
possible to add an investor which accepts higher interest-rates.
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Risk averse behaviour

The third conceptual algorithm includes risk-averse behaviour. According to interviews per-
formed by [8] there are investors who tend to show risk averse behaviour. Risk averse behaviour
is defined by the preference of investing in more certain lower profits than in investments with
higher riskier profits. This algorithm is linked with the driver: outcomes of risk assessments.
These assessments represent the amount of risk while investing in a certain technology. Risk
averse behaviour embodies different behavioural patterns. A first example is that investors show
risk averse behaviour for a specific technology due to experienced problems in the past. A sec-
ond example is that an investor aims to diversify the portfolio to overcome fuel price risks. This
could imply that a certain investor would prefer investing in a pulverised coal fired plant in-
stead of another more profitable technology because of hedging risks in the portfolio. For this
algorithm some concepts from the Modern Portfolio Theory of H. Markowitz are used23. Before
is elaborated on the conceptual model first a short explanation on Modern Portfolio Theory is
presented.

Modern Portfolio Theory

The Modern Portfolio Theory of H. Markowitz suggests one way to quantify risks. Here the all
the power plants owned by a certain investor i are seen as the portfolio of the investor. The
additional investment behavioural consideration here is that the investor aims at minimizing the
portfolio risks. The specific investment risks are measured by σp [54]. The minimization of the
portfolio risk implies that the electricity producer is risk-averse. The risk-averse behaviour is an
assumption of the model. In order to estimate the portfolio risks, first the expected investment
return is calculated as follows:

σt,p =
√
E(R2

p)− E(Rp)2 (2.14)

Here Rp means the return per annum and E(Rp) the expected return per annum for a certain
investment p. σt,i is the standard deviation for investment i in year t. The expected return for
a whole portfolio is than described by:

µi =
∑

wp ∗ µp (2.15)

Here the µi is the expected return of the portfolio of investor i including p investments where
wp is the proportion of the investment in the portfolio and mup is the expected return. The
standard deviation of the portfolio return for two investments is than described by:

σi =
√
w2
pσ2
p + w2

p+1σ
2
2 + 2cp,pxwpwp+1σpσp+1 (2.16)

Here the σi denotes the standard deviation of the portfolio of investor i. cp,p+1 is the corre-
lation coefficient between technologies p and another technology px. The correlation coefficient
is mathematically defined as follows:

cp,px =
σp,px
σpσpx

(2.17)

Coal and IGCC for example will be positively correlated because the technologies utilize
similar fuels and have similar generation characteristics24. The other elements of the formula are
explained by equation 2.14 and 2.15. The minimization of portfolio risk is one way to model risk
averse behaviour. A example where the portfolio model is implemented in a electricity market

23The model itself is not implemented completely due to the circumstances in the model which are not
ideal for the portfolio model. This will be explained later this chapter in more detail.

24Think of position in the merit-order etcetera
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simulation is [61]. The portfolio model described by the equations above will not be implemented
in its pure form due to some reasons. The first reason is that the determination of expected
returns is considered computational difficult. The second reason is that this portfolio model
makes the simulation slow. This is the case because every specific investor has an additional
endogenous predictive model. A third reason is that the portfolio model is less applicable for
smaller investors in the market which may prefer a very specific portfolio in stead of a very
diverse portfolio. The last reason is that this research is more focussed on the operationalization
of the risk-averse behavioural effect than on the implementation of a sophisticated portfolio
model. Therefore only some concepts of this portfolio model will be utilized. Besides that the
operationalization will be designed in such a way that diversification is not a fixed property for all
investors in the market, but that diversification is a flexible behavioural addition depending on
the market situation. The following expressions of risk-averse behaviour are taken into account.

1. Investors show technology specific risk-averse behaviour. One example is where investors
showing averse investment behaviour against nuclear technology due to the societal pres-
sure.

2. Investors tend to diversify the portfolio or stick to conventional proven technologies.

Technology specific risk-averse behaviour

The operationalization of the technology specific risk-averse behaviour addresses the discounting
mechanism of the net present value (NPV) calculation. An investor which has bad previous
experiences regarding a certain technology might be unwilling to invest in that technology in the
future. The proposed operationalization is therefore to include a technology specific risk-premium
when determining the weighted average cost of capital (WACC) which is used to discount the
NPV calculation. The new WACC is than mathematically determined as follows:

WACCi =
Ei
Vi
· ke,i +

Di
Vi
· kd,i + ri,p (2.18)

Then the ri,p is the technology specific risk-premium. This premium will be parametrized
which makes it possible to analyse different levels of specific risk-averse behaviour. Besides that
it is also possible to include risk-takers by making the premium negative25.

Portfolio diversification

The operationalization of the portfolio diversification is a first attempt in the direction of the
portfolio theory. A first important element is that only market players with a significant port-
folio tend to diversify the portfolio. In order to include this threshold the market-share of the
investor is determined during the simulation. The market-share Si,t of investor i on time t is
mathematically defined by:

Si,t =

∑
(Vp,i,t)∑
(Vp,c,t)

(2.19)

Here
∑

(Vp,i,t) is defined as the sum of generation capacity of investor i at time t and∑
(Vp,c,t) as the cumulative generation capacity in country c at time t. The market-share is

defined as the present available generation capacity excluding the power plants that are under
construction or planned for decommissioning. When an investor is considered significantly large
it will tend to diversification. What is defined significantly large depends on the investor specific
parameter κi. Another way to implement the definition of an significant large investor is compar-
ing the portfolio capacity with the largest investors in the North-West European market. Both

25For this effect is no empirical indication present.
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methods are considered applicable. The first option using the parameter κi includes flexibility
and a threshold in the model.

γSi,t =


TRUE if Si,t ≥

∑
Si..I,t/κi

]{Si,t,Si+1,t,SI,t}

FALSE if Si <

∑
Si..I/κi

]{Si,t,Si+1,t,SI,t}

When γSi equals TRUE the investor tends to invest in the technology which is not included in
the portfolio at time t. The progressive diversifying investor first gets the selection of profitable
projects {p1, p2, p3 and then checks what technologies are hold in the portfolio. The investor
then normalizes the NPV > 0 technologies among each-other depending on the market-share
between 0 and 1.

ni,p = Sp,i −min(Sp..P,i)/α·
1

α·max(Sp..P,i)−min(Sp..P,i)/α
(2.20)

Like in the MCDA is α a normalisation parameter to ensure that both values both repre-
sent a value between zero and one. The chance of investing in a certain technology is than
mathematically defined by:

pi,p =
1− ni,p∑
p∈P ni,p..P

(2.21)

Here pi,p is than the chance of investor i investing in technology p. When the portfolio of the
investor includes all available technologies there is a trend towards the technology which counts
for the smallest fraction in the portfolio. The portfolio diversification is assumed inferior when
there are also technology preferences included26.

26With the current formalization it is not possible to integrate these two behavioural considerations.
When both are present, technology preferences are assumed superior in the decision making.
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Example one Investment decision example of an investor with technology specific risk-
averse behaviour

Investor i has bad experience with coal technologies. The government has an in-stable
regulatory regime which forces this investor to be more risk-averse regarding technologies
using coal as an energy source. At time t there are three investment opportunities with
a comparable net present value. The NPV calculation however is determined on the basis
of a return on equity of 4,5% and a interest-rate of 4,8%. The debt value is 2.000 and
the equity value is 5.800. The investor has to decide between NPVwind = 5.850 and
NPVCCGT = 5.800 and NPVIGCC = 5.900. The investor has a specific risk-premium of
2.5 % on coal based technologies. How is the decision influenced considering a simple NPV
estimation over 1 year? The new weighted average cost of capital for the IGCC is:

WACCIGCC =
5.800

7.800
· 0, 045 +

2.000

7.800
· 0, 048 + 0, 025 (2.22)

The new WACCIGCC is than 7,08 % which adjusts the NPV calculation. This value
is now NPVIGCC = 5.762 This made the IGCC less attractive than the other options.

Example two Investment decision example of an progressive investor willing to diversify
the portfolio

This investor has a significant market-share in country A of 35 % which causes a trend
towards portfolio diversification. The investor now has four profitable investment options.
The available options are pWind, pCCGT , pCoal, pNuclear the investor owns currently the
following shares in the portfolio pWind = 35%, pCCGT = 10%, pCoal = 25%, pNuclear = 30%
Than chance of investing is than determined by normalizing the portfolio shares in the first
place, here an example for pWind:

ni,Coal = 0, 25− 0, 10· 1

0, 35− 0, 10
(2.23)

The normalized value of coal is than ni,Coal = 0, 4. The chance of investing in coal is
than mathematically defined by:

pi,Coal =
1− 0, 4

1, 6
(2.24)

The investor has than 62,5% chance of investing in a CCGT plant, 25 % chance of
investing in a coal plant and 12,5 % of investing in a nuclear plant.
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Conclusions conceptualization

The first research question was: How are investors in North-West European power generation
evaluating investment opportunities based upon empirical data, and how to operationalize these
evaluations?. The question is answered in the previous pages. In section 2.2 is described what
processes drive investment decisions. The design framework in figure 2.4 was used to develop
three conceptual models with universal investment behaviour. The conceptual models are sum-
marized in table 2.4.

Algorithm Behavioural expression and operationalization

Technology preferences

• Behavioural expression: investors include sub-
jective criteria in their decision-making process.
The weight factors of the investor describe the at-
titude of the investor. Two potential extremes are
the environmentalist and conservativist.

• Operationalization: The subjective factors of
investors are included by utilizing a multi-criteria
decision method. The method includes the calcula-
tion of a utility function based upon {cn, cn+1, cN}
criteria.

Credit-risk considerations

• Behavioural expression: Depending on the fi-
nancial structure of the investor the bank decides
upon a certain interest-rate for the external financ-
ing of the new power plant. The investor with fi-
nancial limitations could decide to refuse the loan.

• Operationalization: The debt-pricing model of
Black-Scholes is implemented. This implementa-
tion implies the pricing of the equity based upon a
probability of default.

Risk-averse behaviour

• Behavioural expression: Investors tend to di-
versify their portfolio or stick to conventional tech-
nologies. There are also investors which show risk-
averse behaviour towards certain technologies.

• Operationalization: Concepts are used from the
Modern Portfolio Theory of H. Markowitz. In-
vestors with a significant portfolio tend to diversify
the portfolio in an attempt to lower the portfolio
risks.

Table 2.4: Conclusions on the conceptual algorithms
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Chapter 3

Modelling Investment
Algorithms

3.1 EMLab-generation: the modelling laboratory

The modelling in this research is performed within an existing model named EMLab-generation.
The essential elements of this model are explained first in the coming sections.

Introduction

EMLab-generation is a model of the electricity market and based upon the ABM framework
AgentSpring [6]. AgentSpring is developed as a open source ABM framework tool. AgentSpring is
used to make the model more easy to operate and maintain. One example of the included features
is the predefined ”agent” which enables to quickly programme all the market parties involved in
the system like the consumer and regulator. Furthermore it is also possible to easily expand the
model due to the modular characteristics. In order to understand algorithms developed in this
stage of the research some previous knowledge of the current investment algorithm in EMLab-
generation is mandatory. The generic steps of the algorithm where already discussed in section
2.3, but this chapter will present a more in-detail explanation.

EMLab description

EMLab-generation is initiated by the TU Delft [6,62]. This research utilizes this model because
it is capable of exploring the long-term effects of interacting energy policies. Further, this model
is able to cope with heterogeneity, imperfect expectations and investment behaviour in non-
ideal situations. EMLab-Generation contains a base model which simulates two interconnected
European electricity markets. It is possible to analyse i.e. the amount of CO2 emissions, the
price of electricity and the effect upon investment in renewable generation.

Objective

According to the model documentation the objective of the model is to: ”analyse the aggregate
effects of investment decisions of generation companies under different policy experiments and
market designs in order to assess the possible effects of different policy instruments on the long-
term development of European electricity markets” [6]
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Model structure

The EMLab-Generation model structure consists a model engine and model behaviour see figure
3.1. The engine describes how the simulator works and the behaviour shows the included model
behaviour on a long, medium and short term basis. For this research the long-term behaviour is
of interest. This is because investment is a long-term activity.

Start End

Select 
scenarioInput

Time control

Initialize 
simulation

Dashboard and 
analysis

Graph database

Long-term
long-term contracts, investment, dismantling of 

power plants

Medium-term
CO2 auction, clear-fuel markets, commitment to 

long-term contracts

Short-term
Determine fuel mix, unit dispatch, market 

coupling

Engine

Behaviour

Figure 3.1: Structure of the EMLab-generation model [6]

Model elements

The main elements of the model are presented in. The most important so called ”agents” are the
power producers or generation companies which produce electricity and invest in new capacity
when needed. Other features are the CO2 en electricity wholesale market where the electricity
and emission rights are sold. The model also contains a policy measure which enables to analyse
the effects of an emission trading scheme on investment in power generation.

Relation to this research

The modelling work within this thesis focusses on the long-term behavioural aspects of the model.
The other behavioural elements are seen as fixed. An example is the dispatching and market
clearing mechanism. The investment related behaviour is located in a specific part of the model.
The engine and further structure of the model keeps equal as presented in 3.1. In the following
section the present investment algorithm is discussed and explained. This investment algorithm
will be adjusted in this thesis.

Investment algorithm

The current investment process starts with evaluating whether any of the producers in the
model is willing to invest. When this is not the case the process is ended. Every simulation
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Figure 3.2: General visualisation of the EMLab model elements [6]

tick, another investor will decide first upon investing or not1. This is done because investors
decisions to invest depend upon decisions of other investors. The decision process structure of
the investor is presented in figure 3.3. The producer first gathers the investment options which
are present. On the basis of physical and financial constraints is determined what the expected
revenues will be for the base year. Electricity producers pay for a certain percentage with own
capital and also borrow money from the agent ”bank”. All the electricity producers calculate
every time step the expected profitability of the available technologies. The profitability enable
the NPV calculations for each type of technology. So in step by step electricity producers:

1. Start algorithm

2. Select the first investor i to invest, this happens randomly every tick. The number of investors are
manually determined in the experiment file.

3. The investor makes an estimation of the demand by averaging the expected demand growth rate
over the last five years. For each segment of the load-duration function (divided in s segments)

the demand is estimated as follows: D̂s,c,t+n = Ds,c,t· (1 + h)t. Here D̂s,c,t+n is the estimated
demand in year t+n, segment s and country c.

4. The investor i makes market predictions for coal, gas, uranium and CO2 prices in the same way
as the demand function in the previous step.

5. Now the electricity price is calculated for each segment of the load duration function and a com-
parable price duration function is established.

6. Is the investor capable of paying a potential down-payment. This is around 30 percent of the
capital cost.

7. Calculation of the running hours of the potential investment on the basis of the future electricity
prices and variable costs and the sector availability rate. Check whether the number of potential
running hours are sufficient. (e.g. a nuclear plant has to run 5000 hours minimal)

8. Check, whether the power plant (investment) is in the merit order. In other words are the variable
costs smaller than the expected prices.

9. The investor estimates the plants cash flow by subtracting the plants variable costs from the
estimated market price for each segment of the load duration curve. For the final cash flow for the
fixed costs of the power plants are also subtracted.

1This is randomly determined to prevent bias
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10. calculation of the net present value of the investment discounted for the weighted average cost of
capital (see equation 2.2)

.

NPVp =

(∑
t=0...tb

−Ip/tb+1

(1+WACC)t
+
∑

t=tb+1..tb+tD

ĈFp,t+1

(1+WACC)t
/kp

)
11. Select the all the investment options which have an NPV > 0 and rank them according to their

value relatively to the invested money.

12. invest by paying the down-payment and starting up the construction of the power plant.
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and costs in base year
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paying annuities
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• Estimate future electricity prices
• Predict fuel and CO2 prices 
• Predict running hours plant
• Determine discount rate debt

Figure 3.3: Structure of current investment algorithm [6]

This summarizes the current investment algorithm at the moment. This algorithm is the
basis for the investment algorithms modelled in this research. Now there is a understanding of
the EMLab-generation model the formalization of the conceptual algorithms will be described
in the following paragraphs.

3.2 Modelling choices, limitations and assumptions

This section will elaborate on the limitations and assumptions in the investment algorithms.
The conceptualization already described some choices which are made for the scope of this
research. The first choice was that the algorithms describe the investment behaviour of large
scale North-West European investors. Furthermore are the algorithms based upon empirical
data of North-West European investors. Modelling choices are:

1. One of the choices is the 40 year simulation time which is an equal time frame to other
studies in the field. This time frame is sufficient to come up with a comprehensive answer
on the research question. It is also a common time frame in for fuel-price and demand
forecasts.

2. The algorithms are analysed for a North-West European electricity market context because
the empirical data which is used to design the algorithms is retrieved from North-West
European investors.
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3. Three deterministic fuel-price forecasts are used from the DECC [39] to explore the influ-
ence of exogenous factors.

4. The investment algorithms are implemented in a modular and flexible way.

5. Spring-source is chosen as editor. The algorithms are modelled in Java which is the lan-
guage of EMLab-generation.

6. The three flexible modular investment algorithms are modelled within an existing agent-
based model named EMlab-generation. This implies that EMLab-generation is seen as the
”modelling population”. This makes it essential that comparable research in the future
is performed on different simulation models. This research is considered as a first step in
studying the effects of different investment algorithms on the outcomes of energy policy
analysis.

Limitations of the investment algorithms are:

1. A first important limitation is that the algorithms are only a first step in analysing the
effect of different investment behavioural patterns on the outcomes of policy analysis.
The algorithms could be enriched with more variables and behavioural considerations that
investors make. Examples are locational factors which might be important for investors,
or relational factors between investors and other stakeholders. Due to limited time choices
had to be made, the research has to leave more factors out of the scope, this is however
not considered problematic.

2. The attitude configuration of the investor remains fixed during the simulation time while
it could be possible that in 40 years the attitude changes. This could be included in future
research by changing the weight-factors in time based upon indicators in the market. These
effects are however not considered problematic. This will be discussed in the discussion
section in 5.3.

3. The comparison of subjective factors in the multi-criteria analysis is not considered possible
in reality. How to compare two paradigms is still a philosophers problem. The MCDA is
however a proven technique to include more criteria and calculate a cumulative utility.

4. In the calculation of the asset-value, good-will of a investor is not incorporated which
embodies a significant value in reality. A more sophisticated estimation of the financial
situation of an investors is not part of the scope of this research, but is proposed for future
work.

5. A limitation of the models is that the running is time intensive (1.5h for one experiment
to run once). This implies that the simulation time is long, due to the large number of
experiments. A large number of experiments is required due to the exploratory character
of the research. This is a limitation since the research has to be performed intentionally
within 5 months.
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3.3 The model formalization and pseudo-code

This chapter contains the model formalization. The formalization includes the pseudo-code
of the investment algorithms. First is visually (in figure 3.4, 3.5 and 3.6) explained how the
new algorithm fits in the current algorithm of EMLab-generation. Secondly the pseudo-code is
presented. The research includes recapitulating three new algorithms: one algorithm including
technology preferences, an algorithm which includes credit-risk considerations and an algorithm
which contains risk-averse behaviour. All the algorithms include investor specific behaviour as
mentioned in the conceptualization chapter. The behaviour is partly dynamic and therefore
able to change over time2. It is also possible to combine a mixture of behaviours, therefore an
integrated figure is presented in figure 3.7 which includes all possible evaluation steps.

Technology preferences

In figure 3.4 the technology preferences of an investor is positioned in the current investment
decision process. The technology preferences will play a role after the selection of profitable
projects. This is done on purpose to include a decision threshold. The expected profitability of
a project is considered mandatory. The formalization of the technology preferences includes two
aspects in the EMLab-model: 1. new properties for every investor and 2. additional commands
in the algorithm.
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Figure 3.4: Technology preferences positioned in the current algorithm

The pseudo-code of the algorithm including the technology preferences is described on the
next page. The pseudo-code does not include the exact code, but shows the main steps to follow.

2Changing interest-rates etcetera.
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Algorithm 1 Technology preferences: multi-criteria decision analysis

Require: Run the current algorithm described in section 3.1 up to the estimation of the
NPVp..P

1: for all Investors do get {cn, cn+1, cN} and {ψn, ψn+1, ψN}
2: for all Technologies do calculate

∑
cn..N,p and save the technology specific multi-

criteria score cn,p.
3: if {ψn, ψn+1, ψN} = 0 then Select the investment according to

max(NPVp..P ).
4: end if
5: end for
6: if number of profitable technologies >= 2 then calculate

ωp =
cn,p·ψn∑
cn,p...P

+
cn+1,p·ψn+1∑

cn+1,p..P
+

cN,p·ψN∑
cN,p..P

(3.1)

7: if min & max (ωp) then Save variable
8: end if
9: for all Propensities do calculate

nωp
= ωp −min(ωp..P )/α· 1

α·max(ωp..P )−min(ωp..P )/α
(3.2)

10: end for
11: for all Probabilities do calculate

υp =
nωp∑
nωp

(3.3)

12: end for
13: Establish a discrete probability distribution.∑

p∈P
f(p) = 1 (3.4)

14: end if
15: Option 1: Select a random number and ”role a die” select the technology to invest

based upon the earlier established discrete probability distribution.
16: Option 2: Invest in the technology with the highest propensity
17: end for
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Credit-risk considerations

In figure 3.5 the credit-risk of the second algorithm is incorporated in the current algorithm.
The credit-risk consideration plays a role before the calculation of the weighted average cost of
capital (WACC). Before the investor is requesting a loan from a bank first the current financial
structure of the investor is analysed. This implies the valuation of debt and assets. The value of
debt at time t is determined by the sum of debt minus the already paid annuities. The value of
the assets is determined by the invested capital in the portfolio plus the cash position minus the
depreciation of the plants in the portfolio. The assumption here is that the financial structure is
analysed from a accounting perspective. In reality the goodwill of a certain investor could also
represent a certain value. This is not taken into account in the model.
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Figure 3.5: Credit-risk considerations positioned in the current algorithm
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Algorithm 2 Credit-risk consideration: Black-Scholes debt-pricing model

1: for all Investors do calculate
∑
p...P Dp and

∑
p...P Ap

2: for all Powerplants do calculate Dp and Ap
3: end for
4: Determine the probabilities of the standard normal variable

d1,i =
log( Ai

Di,t
) + rf + σ2

2 · (T − t)
σ·
√
T − t

(3.5)

d2,i = d1,i − σ·
√
T − t (3.6)

5: Calculate the market-value of equity

Ei = Ai·Nd1,i −Di,t· exp−r·T−t·Nd2,i (3.7)

6: Then price the debt

di,t = Ai − Ei (3.8)

7: Finally determine the interest-rate

rf + rp,i =
−1

T − t
· ln
(
di,t
Di,t

)
(3.9)

8: The investor decide whether to accept the debt offer yes or no
9: end for
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Risk-averse behaviour

These additions of the risk-averse behaviour are visualised in 3.6. The technology specific risk-
averse behaviour is coming forward before the calculation of the net present value. This is the
case because technology specific risk-premiums are included in the determination of the weighted
average costs of capital. The portfolio diversification decision plays a role after the selection of the
profitable projects. On the basis of the market-share the investor decides whether the portfolio
is large enough to diversify it.
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Figure 3.6: Risk-averse behaviour positioned in the current algorithm
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Algorithm 3 Risk-averse behaviour: concepts from portfolio theory

Require: Run the current algorithm until the gathering of the alternatives and get
{pn, pn + 1, pN}i.

1: for all Investors do calculate Sp,i technology p portfolio shares of the investor i
2:

Sp,i =

∑
Vp,i∑
Vp..P,i

(3.10)

3: Than check for ri and determine the WACCi

WACCi =
Ei
Vi
· ke,i +

Di

Vi
· kd,i + ri,p (3.11)

4: calculate Sp,i by:

ni,p = Sp,i −min(Sp..P,i)/α·
1

max(Sp..P,i)·α−min(Sp..P,i)/α
(3.12)

.
5: calculate pi,p by:

pi,p =
1− ni,p∑
p∈P ni,p..P

(3.13)

6: Establish a discrete probability distribution.∑
p∈P

f(p) = 1 (3.14)

7: Option 1: Select a random number and ”role a die” select the technology to invest
based upon the earlier established discrete probability distribution.

8: Option 2: Invest in the technology with the highest propensity
9: end for
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Integrated algorithm and assumptions

Since the algorithms are implemented in a modular way it is possible to combine the mod-
ules in one new integrated algorithm containing all decision-making processes described in the
algorithms. There are two overlapping elements. The portfolio diversification and technology
preferences. When an investor has both behavioural elements included the technology preferences
are considered superior.
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Figure 3.7: Visualization of the integrated investment algorithm
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3.4 Java software implementation structure

The algorithms described in the previous chapter are implemented in the EMLab-generation
model explained in chapter 3.1. The general code content and structure is visualized in a mind-
map in figure 3.8. The general structure of the model is:

An investor owns the generic investment role property. The four possibilities are:

1. InvestInPowerGenerationTechnologies.java

2. InvestInPowerGenerationTechnologiesWithRiskAversityRole.java: extends (1).

3. InvestInPowerGenerationTechnologiesWithPreferences.java: extends (1).

4. InvestInPowerGenerationTechnologiesWithCreditRiskRole.java: extends (1).

Every investor will have predefined investment behaviour. What the exact combinational
mix will be is explained in the experiments section. Within the algorithm the behaviour is
dynamic due to changing market shares or financial structures, but the algorithm contents remain
fixed. The role as defined above encapsulates investor’s behaviour. Roles, which are defined in
AgentSpring are modular pieces of behaviour that can be chained and combined to produce more
sophisticated behaviours. Here four roles represent behaviour including all algorithms. The mind
map in figure 3.8 shows the variables, commands and further constructs in the Java code. It
provides a comprehensive overview on the modelling content.
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Figure 3.8: Representation of the algorithm content and structure
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3.5 Verification of the algorithms

This chapter describes the verification of the model. The verification includes the activity of

checking whether the algorithms functions the way they intend to do. To distinguish the verifi-

cation and validation the following questions are taken into account in this research.

1. Verification is the model correctly developed?

2. Validation is the model fit for purpose? This will be performed after the experiments.

Verification

The verification of the model includes multiple steps or tests. In [30] four main elements for the

verification of an ABM model are suggested. The ABM modelling paradigm requires a specific

verification focus due to the modelling characteristics. The first is the recording and tracking

of investor behaviour. In this test specific parts of the algorithm are analysed and checked for

errors. The second test is the single investor testing where the behaviour of one single investor is

verified. A third step is the testing of interaction among investors in a limited model. Here the

interaction among different investors is analysed. The last step is the multi investor testing where

the model behaviour of multiple investors are examined. In the last step the three algorithms.

The steps all include checks for correct coding, dimension analysis and checks for numerical

errors.

Tracking and recording of behaviour

The tracking and recording of parts of the algorithms is performed using loggers and testing

parts of the code in an isolated environment if possible. The loggers give information on specific

parts of the code during the running of the simulation. The loggers are used in specific test

classes which makes is more convenient to iteratively ”build up” a working model. For the three

algorithms some examples of loggers are presented in table A.1. One example of a logger test is

the check whether the asset and debt value is correctly calculated by the specific investor. In this

code the debt for a single investor is calculated by making use of predefined input information.

Another test is the check for the calculation of the propensities of the different algorithms. Below

a code example is presented on the verification of the debt valuation. In this situation there is

only one market and one investor which owns one plant. The investor has a total debt of 1000

million on the asset which will be paid back by eight annuities of 125 million. In case there are

already two payments done the debt value is obviously 750 million. Since the outcome of the

logger was 750 million, the calculation is considered correct. This test performed for all kinds

of values and made robust for negative values which should not be possible.

Code 3.1: Logger example debt-value calculation

double debtTotal = 0 ;
double as s e tP lantTota l = 0 ;

f o r ( PowerPlant p lant : reps . powerPlantRepository . findPowerPlantsByOwner
( agent ) ) {
i f ( p lant . getLoan ( ) . getNumberOfPaymentsDone ( ) < plant . getLoan ( ) .

getTotalNumberOfPayments ( ) ) {
long paymentsLeft = plant . getLoan ( ) . getTotalNumberOfPayments ( )

− plant . getLoan ( ) . getNumberOfPaymentsDone ( ) ;
double amountPayment = plant . getLoan ( ) . getAmountPerPayment ( ) ;
debtTotal += ( paymentsLeft ∗ amountPayment ) ;

}
}
l o gg e r . warn ( agent + ” debt value i s ” + debtTotal ) ;
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Single investor test

The correct coding of the model is tested by using so called ”JUnit” tests. JUnit is a open-source

Java oriented testing framework. The framework provides the tool kit to test the developed

algorithms. It is for example possible to use assertions for testing expected values and annotations

to identify the tested methods. The functionality of the JUnit test is visualized in 3.9. For the

algorithms slightly adapted JUnit tests are developed due to the large number of required inputs.

This means that some already verified parts of the algorithm are simplified to reduce the amount

of work. This simplification does not affect the added value of the test. In table A.2 of the

Appendix examples are presented of the single investor tests. All the tests are performed multiple

times and under different parameter settings. Besides normal settings the model robustness is also

checked for very extreme settings like enormous debts and very extreme attitude configurations.

INVESTMENT 
ALGORITHM 

ROLE

All predefined 
input Output

Match with Pre-
defined output

Pass

Error

Figure 3.9: JUnit functionality

Interaction test

Interaction among investors is large and limited at the same time. The investment decision of

one investor influences the investment decision of the other investor because a new build plant

has impact on the market. The interaction could therefore be large via the market. How large

the impact is depends on the size of the market and the plant. It is likely that in a market where

some of the investors are only investing in base load plants other investors tend more to invest

in flexible peak load plants. The interaction is also limited because investors are not interacting

with each other directly.

Multi investor test

The last step of the verification is testing the algorithms together. This implies experiments

where multiple investors include very different investment behavioural configurations. Here the

model is verified for a large parameter sweep doing a significant number of runs. These tests did

not result in unexpected outcomes. A first example is the following experiment: in the market

there are investors which have a huge debt resulting in a situation where lending money is almost

impossible due to the weak financial situation. Taken into account that all investors start with a

certain initial capacity the expectation is that the investors with large debts will slowly loose their

market-share. The process is slow because the average lifetime of the (newer) power plants is

around 30 years. In figure 3.10 this experiment is visualized. In the figure, 2 patterns are visible.

The first pattern is the increasing amount of capacity of a selection of investors (D,F,G,H and I),

the second pattern is the decreasing amount of capacity by a selection of investors (A,B,C and

E). After twenty years the difference between the two groups of investors becomes significant.
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This result is considered desired behaviour because investor A,B,C and E have a fixed debt of

100 billion resulting in interest-rate offers above 45 percent. This percentage is to high to enable

profitable investments.

Figure 3.10: Verification: investors in default

Another extreme multi investor test is a market where all the investors are extreme risk-

averse for renewable electricity capacity. This non realistic experiment implies that it is likely that

investors are only investing in non renewable technologies. This experiment is visualized in figure

3.11. The presented experiment includes just a arbitrary, non realistic parameter configuration,

so the visualization is purely to show that there are no investments in renewable capacity.

Figure 3.11: Verification: extreme risk-averse towards renewables
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3.6 Modelling conclusions

The question was: how are different conceptual models of investment behaviour translated into a

set of investment algorithms within EMLab-generation?.

Algorithm Model formalization details

Technology preferences

• Model formalization: Investors include criteria and
weight-factors {cn, cn+1, cN} and {ψn, ψn+1, ψN} to calculate
the utility of an investment option.

• Software translation: New Java classes in EMLab-
generation are implemented. The first class includes the new
investor which also takes subjective factors into account and
the second class includes the new investment role where the
utility function is calculated. The MCDA is defined after the
selection of the list of profitable investments.

Credit-risk considera-
tions

• Model formalization: Investors price their equity and debt
to estimate their probability of default. This gives them a
certain risk-profile with a associated interest-rate offer. This
is included in the net present value calculation.

• Software translation: Like in the first algorithm this im-
plies two new classes where the properties and investment role
of the investor which incorporates credit-risk are defined. The
code which enable investors to reflect on their own financial
position is positioned before the calculation of the net present
value of the investments.

Risk-averse behaviour

• Model formalization: The risk-averse investors include ad-
ditional risk-premiums in their net present value calculation
and tend to diversify their portfolio when they reach a certain
size in the market.

• Software translation: Two classes again implement the de-
scribed formalization. This remains equal to the previous
algorithms. The first part of the code is positioned at the
determination of the weighted average cost of capital. The
second part of the code including the portfolio diversification
is placed after the selection of profitable projects.

Table 3.1: Conclusions on the formal algorithms
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Chapter 4

Simulation

This chapter includes the design of experiments, analysis and validation of results. The design

of experiments (DoE) includes what experiments are performed, why and how. The design of

experiments is related to chapter A.3 of the Appendix. The results section includes the data-

analysis and statistical tests. This part is related to A.4 of the Appendix. The chapter starts

with the design of experiments and ends with the validation of results. The outcomes which

support answering the research question are translated to conclusions in the synthesis chapter.

4.1 Design of experiments: what, why and how?

The design of experiments is performed by making use of the design steps described in [30]. This

book elaborates on the design of experiments for agent-based models which is suitable for this

research. According to [30] there are multiple considerations in the design of experiments. These

considerations will be followed schematically to structure the design. This research includes four

hypotheses. Hypothesis H1, H2 and H3 answer whether investment decisions are substantially

sensitive for the assumed investment algorithm in an EU-ETS governed energy market simulation.

This is an important first step in providing an answer on the research question.

If the experiments for H1, H2 and H3 prove that more realistic investment models have

substantial effect on the investments done in relation to the base-case, it could provide a signal

that the effectiveness of the EU-ETS is affected. When more realistic investment models do

not influence investment substantially, it is an indicator that the effectiveness of the EU-ETS

mechanism is unaffected. The first step is therefore to analyse the investments, the second step

is to look at the EU-ETS mechanism.

1. H1 The incorporation of credit-risk considerations, risk-averse behaviour and technology-

preferences in investment decisions result in substantial differences in investments1.

2. H2 There is a significant negative correlation between investments in the capital-intensive

technologies and the sensitivity for credit-risk.

3. H3 There is a significant positive correlation between investments in renewable technolo-

gies and the green tendency of investors in the market.

4. H4 The incorporation of credit-risk considerations, risk-averse behaviour and technology-

preferences in investment decisions result in substantial CO2 emission right price volatility.

1In relation to the base-case including homogeneous profit only behaviour.
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The chosen benchmark is a two country liberalized electricity market governed by the EU-

ETS mechanism. The effectiveness of the EU-ETS mechanism will be measured by the CO2 price

volatility of an emission right. This volatility is an indicator for the stability of the investment

signal and is used in previous studies addressing the effectiveness of the EU-ETS [63].

The design of experiments for hypothesis H1, H2 and H3 is different than for hypothesis

H4. This has to do with the character of the hypothesis. Hypothesis H1, H2 and H3 are more

exploratory oriented, hypothesis H4 is more confirmatory. The first experimental design for

hypothesis H1, H2 and H3 will support the falsification of exploratory hypotheses and therefore

includes a larger parameter space and more experiments2. This experiment space consists of the

multi-dimensional grid formed by the number of parameters in the algorithms. One point in the

experiment space represents an experiment. The results of hypothesis H1, H2 and H3 will also be

used as validation of the results. The 4th hypothesis includes a more specific policy hypothesis

regarding the effectiveness of the EU-ETS mechanism for different more realistic investment

algorithms. The DoE and sub-hypotheses are described in the following paragraph.

Design of experiments procedure

1. Determination of the main benchmark experiment.

2. Selection of the parameters that will be varied in the investment algorithms.

3. Determination of plausible ranges and intervals of parameter valuesa.

4. Selection of plausible collections of parameter values. This is done by making use of
a latin-hypercube where correlation among parameters is taken into account.

5. Writing a r-script to generate the experiment files b.

6. Determination of the key-performance indicators and save them as ”queries”

7. Running the experiment files c.

aIf possible, ranges are determined by data from theory. In case of doubts a larger parameter
sweep is selected. One example is the risk-free rate for power producers. This rate will not fall
below 1% or 2% and will not go above 10% looking at historic data.

bTo complete this step a script is written in R to generate quickly N experiments including the
intended parameter values generated by latin hypercube sampling.

cThis is done on a high performance cluster to lower the simulation time

The benchmark experiment

The experiments are schematically described in table 4.1. The selected benchmark experiment is

the connected Dutch and German electricity market governed by the EU-ETS mechanism. The

investors in this market include homogeneous profit only investment behaviour. This benchmark

is chosen because it reflects the North-West European market for a certain extent. The experi-

ment does not include renewable energy policies like the SDE+ or other feed-in tariff measures,

but does include the carbon EU-ETS mechanism. The initial portfolio situation reflects the

German and Dutch technology portfolio. The fuel-price time-series are based upon three DECC

forecast [39]. The DECC time-series include low, medium and an high fuel-price experiment.

A second reason for the selected benchmark experiment is that the investment algorithms are

based upon empirical data of North West European investors.

2Also called ”experiment or experiment space”
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The experiments

The experiments are divided in 5 groups. The first group includes experiments where investors

evaluate investments options only based upon profit. These experiments are the base-case ex-

periments. There are three groups of experiments where the three algorithms are analysed

individually, these experiments will be mainly used as validation. The last group of experiments

includes a combination of behaviour. The parameter configuration includes the more plausi-

ble experiments. The parameter sweep setup is described in detail for every particular group

of experiments in chapter A.3 of the Appendix. The groups with experiments are generally

described:

1. Base case including the basic algorithm: This experiment includes the base-case

where the regular investment algorithm is used to simulate the EU-ETS governed market

model. The EU-ETS benchmark model includes a limited number of stochastic elements

and parameters (like debt/equity ratio for new investment) are fixed. The base-case simu-

lation is replicated 75 times to ensure that stochastic effects are averaged out. The 75 runs

require 112.5 running hours including 3,000 observations. There are three main base-case

experiments. One including low fuel-price time series, one including central fuel-price time

series and one including high fuel-price time series. These fuel-price forecasts are retrieved

from [39].

2. Algorithm including technology preferences: This group consists multiple experi-

ments with different technology preference configurations among investors. The selection

of parameter value collections is performed by making use of an adapted latin-hypercube

sample. Practically this implies e.g. that there are experiments with a high, lower and a

lowest fraction of renewable oriented investors, a high, lower and lowest fraction of profit

only oriented investors etcetera. This is made visible in figure 4.1. The parameters are the

weight-factors for the different criteria. The weight-factors have a ordinal scale and are

selected via an uniform distribution. There are 20 different experiments including differ-

ent investor configurations. The choice for the number of experiments is based upon the

present computational power of the HPC. The experiments are like the base-case repli-

cated 75 times to ensure that stochastic effects are averaged out. The 1,500 runs require

2,250 running hours including 60,000 observations.
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Figure 4.1: Experiments including technology preferences
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3. Algorithm including credit risk considerations: These experiments include exper-

iments where investors have different sensitivity levels for credit risk. This means that

there are experiments where investors are very sensitive for credit-risks and experiments

where investors are less sensitive for credit risks. The parameters are the asset volatility,

time to maturity, risk free rate and initial debt status. The parameter intervals have a

ordinal scale. The number of experiments is 15 and are 75 times replicated. The 1,125

runs require 1.688 running hours for 45,000 observations.

4. Algorithm including risk averse behaviour: This group of experiments includes var-

ious configurations of risk averse behaviour (towards different technologies). The param-

eters are the technology specific risk premiums. There are also extreme configurations

included to validate the main behaviour of the model. This means that it is the expecta-

tion that investors with a nuclear risk premium of one will not invest in nuclear any more

due to the enormous risk perception. There are 21 experiments included in this test-group.

These experiments are all replicated 75 times. The 1,575 runs require 2,362 running hours

including 63,000 observations.

5. Algorithm including a combination of behaviour: this group consists of a mixture

of the investment algorithms. The parameters include the collection of parameters as

described above. A combination of behaviour is used in the experiments to verify the

policy-oriented hypothesis H4. The experiments include parameter configurations where

the extreme cases are filtered out. An example is that these experiments include one or two

investors which rank sustainable criteria in their investment process as very important. In

the real world this could be linked to investors like Eneco and Delta. This group includes

30 experiments which are all replicated 75 times. This resulted in 2,250 runs.
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Group of ex-
periments

Quantity Description

Base-case 3 Normal EU-ETS experiment including a low, central and high
DECC fuel-price forecast. Investors, which meet constraints,
homogeneously evaluate NPV > 0 investment opportunities
based on profitability only

Technology
preferences

20 Investors evaluate NPV > 0 investments based upon a selec-
tion of criteria. There are experiments with different heteroge-
neous investor attitude configurations. The investors within an
experiment judge subjective criteria in different ways. These
experiments are used for the validation of the model.

Credit-risk
consideration

15 Investors include credit-risks considerations in the investment
evaluation. There are experiments with different investor spe-
cific sensitivities for credit-risk. Investors here ask themselves
”Is this interest-rate competitive for me?”. These experiments
are used for the validation of the model.

Risk-averse
behaviour

21 Investors include technology specific and portfolio risks in the
investment evaluation. There are experiments with differ-
ent levels of risk-averse behaviour and different tendencies for
portfolio diversification. These experiments are used for the
validation of the model.

Combination
mix

27 Investors include subjective preferences, credit-risk consider-
ations and specific risk-averse behaviour towards technologies
in their investment decisions. The focus in these experiments
is on plausible parameter configurations. This includes mainly
experiments without extreme parameter values.

Table 4.1: Description of the groups of experiments

In total the 86 experiments embody 6,450 runs which all took about 1.5 hour per run. On

the HPC the simulation ran on 34 machines resulting in about 190 runs per machine. The

collection of experiments took about 12 days of simulation time (285 hours). This resulted in

about 450 mega bytes of data. The saved data was defined in specific query file containing the

code to save the data on a local machine. Some variables are selected as indicators to analyse

the hypotheses. The major key performance indicators to analyse the investments made are

the technology capacity which indicates in what technologies is invested over time. A second

indicator is the total operational capacity minus demand which indicates the capacity margin.

A third indicator are electricity shortages which indicate the security of supply. The average

electricity price show the responsiveness of investors. The average sensitivity for credit-risks is

used to research the relationship between the sensitivity for credit-risk and investments in capital

intensive technologies. The green market tendency profile is required to analyse the relationship

between the average green tendency of investors in the market and the investments in renewable

capacity. The main indicator for the effectiveness of the EU-ETS mechanism is the CO2 price

volatility. The key performance indicators are defined in table 4.2.
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Indicator Unit

Technology capacity mix GW/technology
Electricity shortages minutes/year
Average CO2 price EUR/TON
CO2 price volatility %

Table 4.2: Key performance indicators

The most important experiments will be selected for analysis in the main text. The selected

experiments include plausible parameter configurations and are described in table 4.3. The

experiments include a combination of behaviour. The experiments are performed for three DECC

fuel-price forecasts, so in total 3 times 10 experiments will be described in the main text.

Experiment
nr.

Experiment content

1 - base The investors show homogeneous profit only behaviour.
2 10 % of the investors include weighty sustainable criteria in their investment de-

cisions3. The investors are little sensitive for credit-risks and up to 40 % of the
investors is more risk averse for coal and nuclear technology which are most under
societal pressure.

3 20 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are little sensitive for credit-risks and up to 40 % of the investors is more
risk averse for coal and nuclear technology which are most under societal pressure.

4 10 % of the investors include weighty sustainable criteria in their investment deci-
sions. The investors are normally sensitive for credit-risks and large investors4 are
diversifying the portfolio.

5 20 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and large investors are diversifying
the portfolio.

6 15 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and investors are not specifically
risk-averse and do not diversify the portfolio.

7 15 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are not sensitive for credit-risks and investors are not specifically risk-
averse and do not diversify the portfolio.

8 15% of the investors include weighty sustainable criteria in their investment decisions.
The investors are little sensitive for credit-risks and large investors are diversifying
the portfolio.

9 None of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and investors are not specifically
risk-averse and the largest investors in the market are diversifying the portfolio.

10 15% of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and some investors are specifically
risk-averse for coal and nuclear technology. The largest investors in the market are
diversifying the portfolio.

Table 4.3: Selection of the most interesting experiments
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4.2 Data-analysis, simulation and results

This section includes a concise version of the data-analysis and presentation of the results. This

section also includes the description of the performed statistical tests to study the hypotheses.

A more in detail description of the results can be found in Appendix A.4. The hypotheses will

be answered sequentially. In order to understand the schematics of the analysis a procedure is

presented in subsection A.4 of the Appendix.

To study this first hypothesis the technology capacity mix development in GW/technology is

analysed. The development of the capacity mix indicates in what technologies is invested during

the 40 simulation years. In figure 4.2a, 4.2b and 4.2c the base-case experiments are presented

showing different capacity development patterns for a low, central and high fuel-price forecast.

The base-case in figure 4.2a including low fuel-prices show that gas technologies will increase

their capacity share position and that coal and renewable technologies will play a smaller role

in terms of capacity share. More investment can be expected in CCS technologies under the

assumptions in the base-case5. The main observations are:

1. Gas technologies such as OCGT, CCGT and CCGT-CCS get increasingly dominant due

to their competitive fuel-price ratio in relation to coal and relatively low carbon emission.

2. Renewable technologies such as biomass, photovoltaic, wind and wind offshore are not

competitive enough which results in a decreasing number of investments. The initial

renewable electricity capacity portfolio slowly decreases due to the absence of renewable

policies which could increase the attractiveness of these type of investments. This is a

comparable pattern with the present situation in North-West Europe looking at central6

electricity generation capacity [64].

3. Investment in nuclear technology remains stable. Nuclear technology is CO2 emission free

and does not have to compete with a large capacity of renewables in the merit order.

4. There is only investment in coal technologies with CCS sequestration. Coal technologies

without CCS sequestration like a conventional pulverized coal plant is no competitive

investment option under the assumptions in this base-case.

5. Low fuel-prices result in a market with a high generation flexibility due to the large diffusion

of gas technologies.

The base-case including central fuel-prices in figure 4.2b shows for some observations similar

results, but in here IGCC-CCS seems to be a larger competitor for gas technologies such as

CCGT-CCS and CCGT. The central fuel-price forecast gives coal a more competitive price

ratio towards gas which results in more coal investment. Like in the low fuel-price experiment,

investment in nuclear technology remains stable for equal reasons. Renewables get slightly more

attractive in this experiment since some investment in wind offshore is visible after 25 years. The

main observations are:

1. Gas technologies get increasingly dominant in the first 25 years, but IGCC-CCS becomes

more competitive after that. It is a confirmation that fuel-prices have substantial effects

on the investment pattern.

5In all experiments technological improvement factors are included and uniform. The observations
here only hold for these assumptions. Further political and institutional factors are not included in the
scope.

6There is an slowly increasing percentage of renewable electricity, but this is mainly caused by small
scale decentral investments
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2. Renewable technologies are not competitive enough which results in a decreasing number

of investments. For the assumptions in the model on technological development and cen-

tral fuel-prices are renewables no competitive investment in contrast to for example CCS

technology.

3. Investment in nuclear technology remains stable. The first reason is that there is no

competition with renewable generation capacity in the merit order and secondly that

nuclear technology is carbon neutral.

4. There is mainly investment in coal technologies with CCS sequestration. There is some

investment visible in lignite, but this is negligible.

5. Central fuel-prices result in a market with a decreasing flexibility due to the increasing

diffusion of IGCC-CCS.

The base-case including high fuel-prices in figure 4.2c shows an investment pattern which

could be a result of what is happening in reality at the moment in terms of fuel-prices. Gas

technologies are not able at the moment to compete with cheaper coal [65]. This results in

gas-based power plants which are not generating electricity at all and therefore cause losses

for electricity companies. Only the very flexible OCGT shows stable investment. Figure 4.2c

shows that in contrast with the previous base-cases that there is stable investment in lignite.

Notwithstanding the high carbon emission of lignite, the technology remains competitive enough

in relation to other technologies. The high fuel prices also result in more investment in nuclear

technology. Also more investment in renewable technology is visible.

1. Gas technologies cannot compete with IGCC-CCS. Only OCGT shows stable investment.

2. Renewable technologies get attractive after 25 years.

3. Investment in nuclear technology grows.

4. There is not only investment in coal technologies with CCS sequestration, but also in

lignite power plants.

5. High fuel-prices result in a market with a low flexibility due to the large diffusion of coal

and nuclear technologies.

Now the benchmark or base-cases are analysed it is time to compare the results of the

experiments including the more realistic investment models. As mentioned earlier are some

experiments selected for analysis which provide the more interesting results. These experiments

are presented in table 4.3. The experiments are selected because the include plausible parameter

configurations. The total list of experiments can be found in chapter A.4 of the Appendix.

Before the comparison with the experiments is presented is emphasized that the results
(investment patterns) are valid for the combination of assumptions on e.g. technological
improvements, fuel-prices and demand. The experiments include a wide scale of parameter
configurations to ensure that many extreme configurations are analysed and discussed. More
information is presented in the discussion chapter on modelling limitations 5.3.
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Figure 4.2: Base-case capacity mix comparison for three fuel-price forecasts
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Hypothesis H1

The results of the experiments will now be analysed and compared with the base-case experiments

in the previous section. The first hypothesis is:

H1 The incorporation of credit-risk considerations, risk-averse behaviour and technology-
preferences in investment decisions result in substantial differences in investments.

The experiments with more realistic investment behaviour and low fuel-prices in figure 4.3a

shows differences in investments in relation to the base-case. Experiment 2, 3, 4 and 5 show

substantial larger investments in renewable technologies like wind offshore, biomass and wind.

The fact that investors now also incorporate more criteria than only profit shows a changing

investment pattern. This might be logical, but indicates that incorporating sustainable criteria

visually seems to have a substantial impact on investments. The higher amount of investments

in renewables indicate that there are sufficient profitable investment options in renewable tech-

nology available, even in experiments with low coal and gas prices. This can be concluded since

the multi-criteria decision analysis becomes active after the selection of the profitable invest-

ments. The reason for the absence of renewable investment in the base-case was that renewables

are apparently less profitable than other technologies. This is for more realistic investment be-

haviour obviously no reason to avoid renewable investment opportunities since investors are not

only evaluating investment opportunities on their profitability. Experiment 6 and 7 shows less

investment in renewables and are more comparable with the base-case. This can be explained

by the absence of portfolio diversification in those experiments.There are more equivalences and

differences between the experiments with more realistic behaviour and the base-case.

1. The increasing dominance of gas technologies is muted except for experiment 6 and 7.

This has to do with the absence of portfolio diversification in those experiments wherefore

gas technologies remain more competitive7.

2. Renewable technologies might not always most profitable due to low prices, but since profit

is not the only criterion any more there is more investment in renewables. The percentage

of renewables varies between 5 % to 30 % after 40 years. looking at renewable capacity

development, wind technology becomes dominant and photovoltaic and biomass remain

unattractive.

3. Investment in nuclear technology remains stable similar to the base-case for known reasons.

In experiments where investors are more sensitive (experiment 6) for credit-risk there seems

substantially less investment in capital-intense technologies like nuclear and IGCC-CCS.

This will be studied in hypothesis H2.

4. There is not only investment in coal technologies with CCS sequestration, but now also

some investment in standalone IGCC.

5. On average the experiments with more realistic investment behaviour shows less market

flexibility because there is a larger diffusion of renewable capacity with a uncertain gener-

ation output.

The experiments with more realistic investment behaviour and central fuel-prices in figure

4.3b shows differences in investments in relation to the base-case. Like in the previous experi-

ments with low prices, investment is more distributed among the available technologies in stead of

7See table 4.3
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one or two very dominant technologies. Although IGCC-CCS gets dominant as in the base-case,

investment in this technology is slightly less. This can be explained by the fact that investors

in the new algorithms need to borrow money based upon their financial situation. Besides that

investors are now also more or less sensitive for this credit-risk. This sensitivity implies that

investors are more or less sensitive for potential credit-risks8. The credit-risk mechanism in the

base-case experiment is that investors need to own 30% of the capital cost as a cash balance in

order to invest. The credit-risk algorithm gives investors the possibility to borrow money based

on the financial structure of the investor. There seems to be a negative correlation between

the sensitivity for credit-risk and the investments in capital-intense technologies. This will be

analysed later in this analysis. The further equivalences and differences are:

1. Gas technologies are not getting increasingly dominant any more like in the base-case.

There is however as in the base-case increasing investments in IGCC-CCS technology.

2. There is substantial more investment in renewable technologies at the expense of IGCC-

CCS and gas technologies like CCGT-CCS. In comparison with the experiments with low

fuel prices the capacity percentage of renewables fluctuates between 5% to 30%. This is

substantially more than in experiments with profit onlt behaviour.

3. Investment in nuclear technology remains stable or grows little.

4. There is mainly investment in coal technologies with CCS sequestration.

5. The market flexibility is comparable with the base-case. There is less inflexible IGCC-CCS

capacity, but more renewable capacity with a uncertain generation output.

The experiments with more realistic investment behaviour and high fuel-prices in figure 4.3c

shows differences in investments in relation to the base-case such as in the previous cases. The

higher prices reduce the investments in gas technologies. Especially in CCGT are substantially

less investments. Furthermore show all experiments more investments in renewable capacity.

Also experiment 6 and 7 now show substantial investment in renewables for high fuel prices in

contrast to the low and central fuel price. Here the effect of the fuel as exogenous factor is clearly

visible.

1. Gas technologies cannot compete with IGCC-CCS which is comparable with the base-case.

The difference with the base-case is that the capacity share of IGCC-CCS is less dominant.

2. Renewable technologies get earlier attractive than in the base-case. Now investment al-

ready grows substantially after 10 years. There is substantial investment in biomass, wind

and most of all wind offshore. Some experiments show also investments in photovoltaic,

but those investments remain limited.

3. Investment in nuclear technology decreases in some experiments in contrast to the base-

case. This can be explained by the investors which are more sensitive for credit-risk.

The effect is visible, but less substantial than for example with investments in renewable

capacity. Further, there is not only investment in coal technologies with CCS sequestration,

but also in lignite power plants. This is similar to the base-case.

4. High fuel-prices result in a market with a low flexibility due to the large diffusion of coal

and nuclear technologies. This is also comparable with the base-case.

What these observations mean for the hypothesis will be presented later in this section since

this part provides only the descriptive analysis.

8For example: an investor in a weak financial position which is less sensitive for credit risk will still
accept loans while an investor which is more sensitive will not accept the offer.
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Figure 4.3: Technology mix comparison for several experiments
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The second step is to use statistical tests to get more insight whether the capacity mix av-

erages over time are indeed substantially different from the base-case. Although differences are

already noticed by looking at the graphs, a statistical test can provide an additional argument.

The test whether the average capacity between the base-case and the other algorithms is signif-

icant is analysed by using independent sample t-tests for every run (forty years simulation time

in total). There are some conditions for performing the t-test. These conditions are:

1. The samples are independent

2. The measure scale is ratio/interval

3. The samples are normal distributed

The conditions are met, but a time dependency has to be taken into account. The time de-

pendency is caused by the initial technology portfolio which is the same for all experiments. Due

to the building time of plants in the simulation it will take years before patterns are recognizably

different. This time dependency is not problematic and averaged out by using box-plots. For

every year t-test is used to compare technology capacity mix averages.

Explanation of the box-plot Every figure (4.4a, 4.4b and 4.4c) shows one graph per
experiment (experiment 2 to 7). One graph includes one box-plot per technology, so 13
in total per graph. One box-plot contains 40 t-tests indicating whether a technology has a
significant different average capacity in relation to the base-case during the whole simulation.
This box-plot makes it possible to measure the overall (over 40 years) differences more
accurate than just testing different points in time. When the box (IQR) is above a p-value
of 0.025 the technology can be considered not substantially different from the base-case. A
visible box therefore means, no substantial difference.

The box-plots of the most interesting experiments are presented in figure 4.4a, 4.4b and 4.4c.

In those figures is immediately visible that all experiments show non substantial and substantial

differences in investments. Investments in technologies like photovoltaic, coal , nuclear and

lignite remain in almost all experiments non substantially different from the base-case including

profit only behaviour. The experiments including more realistic behaviour however also shows

substantially different investment in wind offshore, Coal CCS and IGCC CCS.

Table 4.4 shows the cumulative number of substantial different investment patterns for all

thirteen technologies. The 6 in the ”wind offshore” row in column ”low” means for example that

the technology was substantially different in all six experiments shown in figure 4.3a. Table 4.4

indicates that wind offshore, OCGT, IGCC and Coal-CCS show the most substantial differences

in investments for all fuel price forecasts. The following observations are important for the

hypothesis:

1. All experiments show for 1 or more technologies substantial differences in the amount of

investments. A exogenous factor such as the fuel-price has also influence on how substantial

the difference is. This effect is more influential than the behavioural difference among the

algorithms. This is visible by comparing the base-case experiments.

2. The investment pattern changed in the experiments with more realistic investment be-

haviour, but is not considered very sensitive. There are however substantial differences

in investments when experiments include more realistic investment behaviour. This is a

signal that the CO2 price volatility also might be different in relation to homogeneous

profit only behaviour in the base-case.
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technology Low Central High
N: Nuclear 0 0 5
C: Coal 0 0 0
C+: Coal CCS 5 5 2
I: IGCC 5 5 4
I+: IGCC-CCS 0 2 4
O: OCGT 6 2 3
CT: CCGT 2 2 0
CT+: CCGT CCS 4 3 2
L: Lignite 0 0 0
W: Wind 3 4 0
P: Photovoltaic 0 0 0
WO: Wind offshore 6 6 6
B: Biomass. 5 1 1

Cumulative 36 30 27

Table 4.4: Number of boxplots (LQR) with p-value < 0.025

Conclusion on hypothesis H1

Interpretation From the experiments in figure 4.3a, 4.3b and 4.3c is visible that all ex-
periments show for 1 or more technologies substantial differences in investments. More
realistic investment behaviour mainly affects the number of investments in wind offshore,
Coal-CCS and IGCC-CCS. For other technologies such as photovoltaic, coal, nuclear and
lignite there are fewer experiments with substantial differences in relation to the base-case
investment pattern. The fuel-price as exogenous factor showed that it is more influential
than behavioural differences among algorithms.

The hypothesis: ”The incorporation of credit-risk considerations, risk-averse
behaviour and technology-preferences in investment decisions result in substan-
tial differences in investments” is considered not falsified.

This conclusion has implications for the research question. Since hypothesis H1 con-
firmed that all experiments including more realistic investment behaviour results in 1 or
more technologies with substantially different investment patterns, there is now a signal
that the CO2 price volatility also might be substantially different a. The experiments in-
cluding more realistic investment behaviour might provide an new view on the effectiveness
of the EU-ETS mechanism. The conclusion on this hypothesis shows the importance of
being critical on the implications of the assumed investment behaviour. It could raise the
question whether a policy which is evaluated by an simulation model containing one single
investment algorithm is robust enough in a electricity market where investors have very
diverse investment behaviour.

aThis benchmark experiment is an EU-ETS governed market without renewable energy policies
including DECC fuel price forecasts. For experiments which are assuming other values for exogenous
variables the outcomes of the hypothesis cannot be guaranteed. The results are however stable for
three extreme fuel price forecast scenarios.
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Figure 4.4: Box-plots with t-tests per technology

The y-axis represents the p-value.

x-axis technology x-axis technology x-axis technology
N Nuclear I+ IGCC CCS P Photovoltaic
C Coal O OCGT WO Wind offshore
C+ Coal CCS CT CCGT B Biomass.
I IGCC CT+ CCGT CCS
L Lignite W Wind

Table 4.5: legend for box-plot plots

66



R. Verweij • Modelling Power Plant Investment Behaviour •

Hypothesis H2

The previous analysis of hypothesis H1 revealed that there seems to exist a correlation between

the sensitivity for credit-risks and the investments in capital-intense technologies. In order to

study this observation more in detail, single regression analysis is used to research the correlation

between the sensitivity for credit-risk and the investments in capital-intensive technologies such as

nuclear power and IGCC-CCS. This regression analysis intends to study the following hypothesis.

H2: There is a significant negative correlation between investments in the capital-intensive
technologies and the sensitivity for credit-risk.

The designed regression model is a single regression model with one dependent and one inde-

pendent variable. The independent variable is the sensitivity for credit-risk (also called regressor),

the dependent variable is the operational capacity of the most capital-intensive technologies. The

sensitivity for credit-risk must be interpreted as follows; a sensitivity of zero indicates that in-

vestors borrow money based on their financial structure without asking the question ”Is this a

competitive interest-rate for me?”. On the other hand are investors with a credit-risk sensitiv-

ity factor of one answering the question almost always with no. There are four conditions for

performing a regression analysis. These conditions are all considered sufficiently met. The first

condition is that the variables have a interval/ratio scale. The second condition is that there is a

theoretical correlation. The third condition is that the relation is linear and the last condition is

that the sample is normal distributed and has an equal variance. The model summary in figure

4.5b also indicates that the conditions are sufficiently met. The linear regression model in figure

4.5a shows that more than 88% of the variation can be explained. Besides that are the constant

and the independent variable both significant for a 99% confidence interval.
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Figure 4.5: Correlation sensitivity credit-risk and capital-intense investments

The details of the model are described in table 4.6. The regression equation is as follows;

γ̂ = 9.07813 + −2.40·x. The F-test statistic has a value of 271.2 with a p-value of 2.2e-16

indicating that the regression-model is significant. Furthermore did a Shapiro-test indicate that

the residuals where sufficient normal distributed. The QQ-plot in figure 4.5b shows the normal
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distribution estimation. The linearity of the model is considered sufficient although there is

a minor non horizontal pattern in the standardized residual graph. The Cook-distance figure

(4.5b) did not show any outliers with a excessive value implying that no cases are left out of the

data set. The only value with a higher leverage than 0.5 is case 21, but since it is the only value

it is kept within the data-set.

Output Data

Model lm(formula = log(value) sensitivity)
Residuals Min 1Q Median 3Q Max
Values -0.45 -0.23 0.016 0.22 0.46
Coefficients Estimate Std. Error t value Pr(>—t—)
Intercept 9.07813 0.08422 107.78 <2e-16
Sensitivity -2.40 0.146 -16.47 <2e-16
RSE 0.2815
R-squared 0.8828
Adjusted R-squared 0.8796
F-statistic 271.2
P-value < 2.2e-16

Table 4.6: Statistics regression-model (H2)

The regression-model seems to confirm the observed pattern in figure 4.2a, 4.2b and 4.2c.

There is however one important comment. The correlation between the sensitivity for credit-risk

and investments in capital-intense technologies includes some experiments (both extreme tails

in figure 4.5) which are not likely to happen. An experiment where an investor is so sensitive

for credit-risk that he will never invest notwithstanding great expected profits is not considered

plausible.

H2: The hypothesis that there is a significant negative correlation between investments in
the capital-intensive technologies and the sensitivity for credit-risk is considered not falsified.

The regression model significance ( p-value < 0.01) indicates that for a 99% confidence
interval that there is a correlation between the investments in capital-intensive technologies
and the sensitivity for credit-risk. The model is able to explain more than 88% of the
variation. This conclusion holds for a EU-ETS governed market experiment with DECC
fuel-price forecasts. Extreme experiments on the regression line (little sensitive and extreme
sensitive) are however not considered plausible in reality. The conclusion on this hypothesis
reinforces the earlier observation that more realistic behaviour results in substantially lesser
investment in capital-intense technologies.
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Hypothesis H3

In section 4.2 was concluded that the ”green tendency” of the investors in the market has

substantial effect on the renewable capacity in the market. Furthermore a correlation is visible

between the fraction of renewable oriented investors and the average capacity of renewables.

Like in the previous section, single regression analysis is used to study the perceived correlation

between the green market tendency and the average capacity of renewables in the market. Before

this is done the definition of the green market tendency is explained. The green market tendency

is an indicator between 0 and one which indicates what percentage of investors would select

the most sustainable investment from a selection of profitable investment opportunities. The

fact that the selection are all profitable investments is an important fact9. Like in the previous

analysis are all four conditions for performing a regression analysis met. The regression model

intends to study the following hypothesis.

H3: There is a significant positive correlation between investments in renewable technolo-
gies and the green tendency of investors in the market.

In this single regression model the dependent variable is the capacity of renewables. The

independent variable is the green market tendency. The linear regression model in figure 4.6a

shows that more than 92% of the variation can be explained. Besides that are the constant and

the independent variable both significant for a 99% confidence interval.
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Figure 4.6: Correlation green market tendency and renewable investments

The details of the model are described in table 4.7. The regression equation is as follows;

γ̂ = 10.35025 + 1.26302·x. The F-test statistic has a value of 249.3 with a p-value of 2.2e-12

indicating that the regression-model is significant. Furthermore did a Shapiro-test indicate that

the residuals where sufficient normal distributed. The QQ-plot in figure 4.5b shows the normal

9Furthermore must be taken into account that when a less sustainable investment is significantly more
profitable this could result in the fact the ”renewable oriented” investor will invest in the most profitable
in stead of the more sustainable. Therefore the behaviour is considered as a tendency and not a excluding
focus on renewable capacity
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distribution estimation. The linearity of the model is considered sufficient although there is

a minor non horizontal pattern in the standardized residual graph. The Cook-distance figure

(4.5b) did not show any outliers with a excessive value implying that no cases are left out of the

data set. The only value with a higher leverage than 0.5 is case 21, but since it is the only value

it is kept within the data-set.

Output Data

Model lm(formula = log(value) Green tendency)
Residuals Min 1Q Median 3Q Max
Values -0.22373 -0.04995 -0.03007 0.08413 0.20603
Coefficients Estimate Std. Error t value Pr(>—t—)
Intercept 10.35025 0.04676 221.34 < 2e-16
Green tendency 1.26302 0.08000 15.79 2.23e-12
RSE 0.111
R-squared 0.9292
Adjusted R-squared 0.9254
F-statistic 249.3
P-value < 2.229e-12

Table 4.7: Statistics regression-model (H3)

The regression-model seems to confirm the observed pattern in earlier analyses on the cor-

relation between investments in renewable technologies and the green tendency of investors in

the market. However in line with the previous linear model a comment on the outcomes is nec-

essary. The correlation between the green market tendency and renewable investments include

some experiments which are not likely to happen. An experiment where all the investors in the

market have a green tendency or none of the investors have a green tendency is not considered

plausible. Besides that, there also seems to be a theoretical cap on the fraction of renewables a

market can handle. On this theoretical cap will be elaborated later.

H3: The hypothesis that there is a significant positive correlation between investments in
renewable technologies and the green tendency of investors in the market is considered not
falsified.

The regression model significance ( p-value < 0.01) indicates that for a 99% confidence
interval that there is a correlation between the investments in renewable technologies and
the green market tendency profile. The model is able to explain more than 92% of the
variation. The conclusion holds for a EU-ETS governed market experiment with DECC
fuel-price forecasts. Extreme experiments (little/no tendencya and extreme tendency) are
not considered plausible experiments in reality. Like the previous hypothesis does this
conclusion reinforce the earlier observations. The algorithms including more realistic in-
vestment behaviour, which means that investors include more criteria, will results in an
increasing number of renewable investments.

aThere is empirical prove that there are always parties with an sustainable tendency although
this fraction might be small
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Hypothesis H4

The previous conclusions on the first hypotheses H1, H2 and H3 showed that all experiments with

more realistic investment behaviour had effect on the investments done in an electricity market

simulation. Furthermore it was already noticed that this observation could provide a warning

signal for researchers who are using simulation models for energy policy analysis. It shows the

importance of being critical on the assumed investment models. To answer the research question

this section will analyse to what extent more realistic investment behaviour results in substantial

CO2 emission right price volatility. This price volatility is a measure for how robust and stable

the investment signal of the CO2 emission right is. The volatility is measured for all experiments

by the standard deviation of the average CO2 price time-series of 40 years. Previous research on

the effectiveness of the EU-ETS also used the price volatility as an indicator [63,66].

The analysis starts with three figures that show the average CO2 price development for all

experiments in case of three DECC fuel-price forecasts (low, central and high). These figures

(4.7a, 4.7b and 4.7c) give insight in the movement of the average emission right price (EUR/ton)

in case of the behaviours described in table 4.3.
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Figure 4.7: Average CO2 price development for three DECC fuel-price forecasts
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It becomes visible that the highest average CO2 prices are expected in case of low conven-

tional fuel prices (figure 4.7a). The low fuel prices cause that investors remain investing in the

conventional technologies such as CCGT and others resulting in an higher demand for CO2

emission rights. This higher demand automatically results in higher prices. The average CO2

price movement also shows substantial fluctuation in case of high and low fuel prices. It is re-

markable that in case of the high fuel price experiments the average CO2 price is higher than

in the central fuel price experiments. This can be explained by the more competitive position

of lignite technology in the high fuel-price experiments in figure 4.3c. It was already discussed

that in the DECC high price forecast lignite becomes more competitive. Lignite has however the

highest emission ratio of all technologies.

Figure 4.7a, 4.7b and 4.7c indicate that the CO2 prices show a different pattern than the

base-cases. This can be explained by the earlier presented figures 4.3a, 4.3b and 4.3c where

various substantial differences in investment patterns were recognized. The experiments are not

showing in all cases substantial CO2 price fluctuations in relation to the base-case. Figure 4.8

provides more insight in the average yearly volatility and average CO2 price. Experiment number

1 (square in figure) represents the base-case and the further numbers are the experiments (circles

in figure) including more realistic investment behaviour.

Figure 4.8: Averaged CO2 price volatility and mean for all experiments

The first observation is that the price volatility between fuel-price (low, central and high)

experiments show larger differences than between experiments with the same fuel-prices and

different investment behaviours. This is in line with the earlier observation in hypothesis H1

that exogenous factors are more influential than behavioural differences among algorithms. The

CO2 price seems to be very depending on the configuration of exogenous factors (in this case the

fuel-prices). Figure 4.8 shows that experiments with more realistic behaviour does not always

result in higher CO2 price volatility. The CO2 price volatility seems even on average to be lower

than in the base-case (4.8 and 4.9) when investors incorporate more considerations in investment

decisions. The question is now how it is possible that more realistic investment behaviour in the

simulation results in a lower CO2 price volatility.

In the first place this could be explained by the incorporation of more criteria by investors

in the investment decision than only profit. In the base-case investors are not looking at plant

efficiency, CO2 emission, portfolio diversification and technology specific risks. This means that
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investors with more realistic behaviour react on more indicators in an investment decision. A

second more simple reason is that a percentage of investors considers sustainable criteria as

important resulting in a lower demand for CO2 emission rights. This will likely result in smaller

emission right fluctuations which makes the prices more stable.

Experiment
nr.

σlow %
∆base

σcentral %
∆base

σhigh %
∆base

1 - base 168 66 108
2 181 8% 23 -66% 81 -25%
3 186 11% 59 -11% 109 1%
4 191 14% 59 -11% 111 3%
5 187 11% 63 -5% 110 2%
6 153 -9% 21 -69% 70 -35%
7 180 7% 36 -45% 67 -38%
8 154 -9% 20 -70% 55 -49%
9 188 12% 78 17% 111 3%
10 161 -4% 25 -62% 44 -59%

min 153 -9% 20 -70% 44 -59%
max 191 14% 78 17% 111 3%

Table 4.8: Descriptive statistics CO2 price volatility comparison

Experiment
nr.

σlow %
∆base

σcentral %
∆base

σhigh %
∆base

1 - base 120 64 110
2 125 4% 50 -22% 99 -10%
3 137 14% 61 -6% 113 2%
4 140 16% 61 -6% 114 4%
5 137 14% 63 -2% 115 4%
6 91 -24% 47 -26% 89 -20%
7 124 3% 54 -15% 88 -20%
8 94 -22% 49 -24% 84 -23%
9 133 10% 64 -1% 116 5%
10 103 -14% 51 -21% 80 -27%

min 91 -24% 47 -26% 80 -27%
max 140 16% 64 -1% 116 5%

Table 4.9: Descriptive statistics CO2 price mean comparison

The question is now what this means for the hypothesis H4 presented in subsection 4.1. The

analysed figures confirm that substantial CO2 price volatility can be expected for all experiments

including the base-case. This conclusion is in line with previous studies like [63] and [66]. [63]

already in 2009 discussed that CO2 price volatility above 50 % is plausible.

The development of exogenous factors will play an important role in the movement of the

CO2 prices. Low fuel prices will cause higher demand fluctuations for emission rights because

conventional fuels remain more attractive. These fluctuations will result in a higher CO2 price
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volatility. The most important observation is that more realistic behaviour in most cases resulted

in a lower CO2 price volatility. This reduction went up to 70 %.

H4: The hypothesis that the incorporation of credit-risk considerations, risk-averse be-
haviour and technology-preferences in investment decisions result in substantial CO2 emis-
sion right price volatility is considered not falsified.

More realistic investment behaviour in the simulation showed that substantial CO2 price
volatility can be expected up to more than 100 %. This confirms earlier results from [67], [63]
and [66]. The results therefore reinforce the necessity to introduce price stabilizing measures
to ensure that the CO2 price becomes a more stable signal. More realistic investment
behaviour in the simulation however also showed less volatility on average in relation to
the base-case where investment is based upon homogeneous profit-only behaviour. The
results are a confirmation of previous research that CO2 prices are highly volatile, but
more realistic investment behaviour seems to reduce the volatility. Latter indicates that
the CO2 emission right price might be more stable than is assumed at the moment.

The following chapter will include the validation of the model and results.
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4.3 Validation: is this a useful model?

In this section the validity of the model will be described. The validation10 of an agent-based

model is described in [30]. The validation of this agent-based model is hard due to the exploratory

character of the hypothesis for which not much real system data exists 11. Since the hypothesis of

this research is more ”what if” oriented the focus of the validation is whether the model outcomes

are useful and convincing [30]. This research includes structure behaviour tests, expert validation

and literature comparisons. The chapter also includes observations based upon individual runs

which make the results more convincing.

Structure behaviour tests

This section includes structural behaviour tests to analyse whether extreme experiments showed

convincing investment decisions. In figure 4.9 two extreme decisions are presented to analyse the

model outcomes. Figure 4.9a shows an experiment where investors are extremely sensitive for

credit-risks. This experiment is not possible in reality, but should result in expected behaviour.

This results in investors which answer the question ”Is this a competitive interest-rate for me”

always with no. This should result in a market where no investment are done. This becomes

clearly visible and the prices in the market are rising high due to the shortages. The behaviour

is therefore what we would expect. The second extreme experiment includes a market where 100

% of the investors has a extreme green tendency. This means that when an investor gets three

investment options, he will always select the most ”green” investment. This should result in very

high prices since operational capacity is expected to drop. In figure 4.9b and 4.9d is visible that

this is the case. More investment decision tests are presented in table 4.10.

10Validation is defined by asking the question ”Did we build the right thing?” or in [68], ”Is the model
fit for purpose?”. This section should also answer the question; ”is this a useful model to answer the
research question?”

11There is data available on historic investments done in a liberalized market and also data on CO2

price development since the introduction of the ETS.
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Figure 4.9: Comparison extreme experiments

Other performed structural behavioural tests are presented in the table below.

Behavioural
test

Outcome

100 % green
investment
tendency

Investors select always the most sustainable investment which results in an increasing
intermittent capacity. This causes a decreasing operational capacity resulting in larger
electricity shortages when the stochastic supply is limited and the demand is high.
Prices are rising high. This phenomenon is caused by a model artefact. Investors
(newcomers and foreign investors) would react in reality on indicators to prevent
such a situation. This falls outside of the scope.

Extremely
sensitive for
credit-risk

Investors are afraid of investing because there is a strong perception that they cannot
fulfil their obligation when they invest. This results in a market where capacity
remains decreasing and prices rising to the value of lost load.

Extremely
insensitive for
credit-risk

Investors keep investing notwithstanding a weak financial structure. Investors build
up great debts and extremely negative cash balances. Prices are very low.

Extreme risk-
averse for all
technologies

The responsiveness of investors on rising prices is low. Only when prices reach a
certain level, the investment signals are strong enough to overcome the risk-averse
attitude of investors.

Extreme ten-
dency portfo-
lio diversifica-
tion

Investors always select the profitable investment whose capacity counts for a low
fraction of the current investor’s portfolio. This results in a market where only the
most unattractive technologies (like coal, which is carbon intense) do not have a
fraction of the market share.

Table 4.10: Structure behaviour tests
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Since there is no real world data available on long term investment patterns which supports

the analysis of the first hypothesis, observations are compared with literature. The investment

models including more realistic investment behaviour resulted in various observations which can

be compared with earlier research. Besides observations of the batch-runs also interpretations of

individual runs are included. The following observations will be discussed;

1. More financial space: more capital-intense investments

2. Correlation between sensitivity for credit-risk and capital intense investments

3. Green tendency, green investments and theoretical green cap

4. Correlation between the green tendency of the market and investments in renewable gen-

eration capacity

5. Risk-averse behaviour towards nuclear technology: increasing IGCC-CCS and renewables

6. Risk-averse behaviour results in decreasing responsiveness

7. Portfolio diversification strong effect

8. CO2 price volatility of emission rights

More financial space: more capital-intense investments

From the batch-runs including experiments with credit-risks a significant different investment

pattern was recognized in capital-intense technologies. The credit-risk mechanism in the algo-

rithm enables investors to borrow money based on their financial structure instead of a hard

cash constraint in the base-case. This more flexible credit-risk mechanism gives the investor

an additional opportunity to invest in times when the financial position is weak, although the

interest-rate offer from the financier will be much higher than in a financial healthy situation.

One observation is that unless the larger financial space the total capacity in the market evolves

synchronous with the total capacity in the base-case (see A.8). The total invested capital seems

to remain equal in both groups of experiments and more financial space therefore seems not to

be a investment signal for more capacity. This could be different in a situation where more in-

terconnection capacity gives an opportunity to serve more foreign demand. Since this increasing

interconnection capacity and demand element is not included on the EU-ETS benchmark exper-

iment there is no option to do research to these effects. This also is considered to fall outside

the chosen scope of the research.

Another observation is that there are more investments in capital-intensive technologies like

nuclear technology and IGCC-CCS. In the base-case an investor would need 30 % of the capital

cost of a nuclear plant as his cash balance before he could invest in this technology. Now the

investor is able to make a investment decision based upon his financial structure there is more

financing flexibility to invest in more capital-intense technologies.

A third observation is that investors with a higher leverage (higher fraction of debt) will

invest less depending on the perceived credit-risk uncertainty. Investors in a fragile financial

position without a lenient uncertainty perception remain investing, investors with a conservative

uncertainty perception will invest less.

Relation to literature: The relation between the perceived financing-risk and the target
leverage is researched in the paper of [69]. In the paper is stated that the financial status of
the investor plays an important role in leverage / perceived financing uncertainty relations.
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According to [70] the effect of leverage on capital investments is negative when there is
significant perceived financing uncertainty. These earlier studies show a comparable pattern.

Relationship between sensitivity for credit-risk and capital intense invest-
ments

In the previous observation is described that investors which incorporate credit-risks have more

financial space and therefore invest in more capital-intense technologies. However, when investors

are more sensitive (are more uncertain) for credit-risks less investments in more capital-intense

technologies like nuclear technology and IGCC-CCS are expected. This relationship is visible in

figure A.8 of the Appendix and verified by the regression-model visualised in figure 4.5a of the

Appendix. This regression-model is significant for a confidence level of 99%. Thereby it should

be said that certain experiments along the regression line are considered not plausible in reality.

It will for example not be likely that investors get so sensitive for credit-risks that they never

will invest again.

Green tendency, green investments and theoretical green cap

From the batch-runs including the experiments with technology-preferences is observed that a

green tendency in a market has substantial influence on the diffusion or renewable capacity.

In the base-case investors make more or less a fully rational decision based on the estimation

of an NPV calculation. When investors incorporate more subjective factors (here defined as

technology-preferences) a substantial difference in renewable investments can be expected. This

outcome seems logical, but indicates that in the used EU-ETS benchmark experiment with

DECC fuel-price forecasts is enough profitable investment space for renewable capacity taking

market dynamics into account. These profitable investment options are however less attractive

than the CCS technologies which are introduced in the market when investors only evaluate

projects based on financial indicators. The presence of subjective factors is empirically proven

and will influence the development path of generation capacity. How strong this influence is

depends on the overall attitude configuration of the market. Private investors can have very

different strategies which makes it hard to mimic the configuration profiles of the investors in

the Dutch or German market.

A second observation besides the increasing renewable capacity is that there seems to ex-

ist a theoretical limit for the intermittent capacity that a market can handle (see figure A.9).

This theoretical limit depends on the initial portfolio situation, technological opportunities to

solve stochastic power output issues, network evolution (not included in the model) and other

extraneous influences.

From the batch-runs including technology-preferences becomes visible that there seems to

exits a theoretical cap on the fraction of renewables that a market can handle. This cap is

discussed in [71] and [72]. In [71] is argued that extensive investments in transmission networks

are required to cope with the stochastic power output of wind-energy when the nominal capacity

gets higher than 20 % in the US. In [72] a maximum wind portfolio in 2020 of 8.000 MWe is

mentioned for Ireland.

Relation to literature: From the batch-runs including technology-preferences becomes
visible that there seems to exits a theoretical cap on the fraction of renewables that a
market can handle. This cap is discussed in [71] and [72]. In [71] is argued that extensive
investments in transmission networks are required to cope with the stochastic power output
of wind-energy when the nominal capacity gets higher than 20 % in the US. In [72] a
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maximum wind portfolio in 2020 of 8.000 MWe is mentioned for Ireland.

Relationship between the green tendency of the market and investments in
renewable generation capacity

In addition to the previous observations is analysed whether there exists a correlation between the

investments in renewable capacity and the green market tendency profile. From figure A.9 and the

significant regression-model in figure 4.6a became visible that there seems to be a relation between

the investments in renewable capacity and the green market tendency profile. The regression-

model was able to explain more than 92% of the variation of the positive linear relationship. Equal

to the earlier described regression-model are there experiments included along the regression-line

which are considered not plausible in the current reality. It is empirically proven that there are

investors with a strong sustainable preference, but a very high green market tendency seems not

plausible.

The reason that there is so little sustainable investment in the Netherlands at the moment

can not only be accounted to the non-profitability of investments, but also to not having a real

tendency caused by technical, economical and institutional uncertainties.

Risk-averse behaviour towards nuclear technology: increasing IGCC-CCS and
renewables

Investors that are risk-averse towards nuclear technology will invest more in IGCC-CCS and even

renewables. In the Dutch market where only a small fraction of the total capacity is renewables

is enough growth potential for nuclear technology in contrast with the initial German portfolio

with a higher renewable capacity, but in case of risk-averse behaviour towards nuclear IGCC-

CCS becomes more dominant. The IGCC-CCS is a good option to fill the base-load gap where

large-scale plants need to run minimal 5000 hours a year. Due to the EU-ETS mechanism and

limited investments in nuclear technology even renewables get more attractive when the years

pass by. This shows the competitive relation between renewables and nuclear technology.

The competitive relation between renewables and nuclear technology was observed in the

section on data-analysis and interpretation of results. In [73] is described that nuclear technology

and intermittent capacity aren’t compatible in the current market. The best way to make both

technologies compatible is to invest in a transnational or transcontinental power grid. The lock-

in effect caused by large base-load plants is described in [74]. This lock-in effect works against a

further diffusion of renewables.

Relation to literature: The competitive relation between renewables and nuclear tech-
nology was observed in the section on data-analysis and interpretation of results. In [73]
is described that nuclear technology and intermittent capacity aren’t compatible in the
current market. The best way to make both technologies compatible is to invest in a
transnational or transcontinental power grid. The lock-in effect caused by large base-load
plants is described in [74]. This lock-in effect works against a further diffusion of renewables.

Risk-averse behaviour results in decreasing responsiveness

From the batch-runs including the risk-averse experiments becomes visible that risk-averse be-

haviour does not result in a very high fraction of substantial average technology capacity dif-

ferences in relation to the base-case. The argumentation is that risk-averse behaviour mainly

causes a decreased responsiveness for investment signals, but does not substantially influence the
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portfolio technology distribution. The responsiveness includes that investors wait longer with

investing until they are more secure about the expected profitability.

Portfolio diversification strong effect

Portfolio diversification seems to be significant in a market where multiple investors include

this tendency. In figure A.10 is visible that almost all technologies remain their position in

the capacity diagram. This indicates that in the EU-ETS benchmark experiment including

the DECC current policies fuel-price forecasts there are sufficient opportunities to diversify the

portfolio.

CO2 price volatility of emission rights

The analysis of the CO2 price volatility showed that the volatility can rise up to more than 100%.

In previous research was already concluded that it is plausible that the volatility can increase up

to more than 50%. Historic data shows that the CO2 price shows heavy fluctuation and dropped

80% from 2007 to 2013 [75]. These comparisons give confidence that the results are plausible.

Conclusion on validity

The model is considered valid for the purpose of exploring how more realistic investment be-

haviour affects investments in an EU-ETS governed market. The model is also considered valid

for the purpose of assessing the effectiveness (In this research defined by the CO2 price volatility)

of the EU-ETS for different investment algorithms. The structural behaviour tests and litera-

ture validation indicated that most of the outcomes are convincing to argue that the model and

results are valid. There are however also results and model elements for further discussion. This

will be done in section 5.3. Further, it is essential for the validity of the results that comparable

research is done for different simulation models like EMLab-generation. These results can be

seen as a first step in showing the effects of different investment algorithms on energy policy

analysis.
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Chapter 5

Synthesis

This final chapter includes the answer on the main research question. Furthermore does this

chapter include recommendations, a discussion on the model outcomes and a reflection on the

research project and process.

5.1 Conclusion on the research question

This research included three objectives. The first one was to explore the influence of more re-

alistic investment behaviour on investments in an EU-ETS governed market simulation. The

second was to research how more realistic investment behaviour affects the effectiveness of the

EU-ETS mechanism. The last objective was to contribute to current and future projects. During

the previous chapters answers where presented on the 4 research sub-questions. By making use

of empirical data from investment processes three modular algorithms where designed. These

investment algorithms included technology-preferences, credit-risk considerations and risk-averse

behaviour towards technologies. Exploratory oriented hypotheses in chapter 4 supported answer-

ing the sub-questions. In this section an answer will be presented on the main research question.

The main research question defined in chapter 1.2 is:

”How is the effectiveness of the EU-ETS mechanism affected by diverse investment algo-
rithms in an energy market simulation model?”

Answer: In the answers on the sub-questions was concluded that all experiments including

more realistic investment behaviour showed for 1 or more technologies substantial differences in

investments. More realistic investment behaviour mainly affected the number of investments in

wind offshore, Coal-CCS and IGCC-CCS in a low, central and high DECC price scenario. For

other technologies such as photovoltaic, coal, nuclear and lignite there where fewer experiments

with substantial differences in relation to the base-case investment pattern. The fuel-price as ex-

ogenous factor showed that it is more influential than behavioural differences among algorithms.

It is however important to notice that the plausible behavioural differences among experiments

resulted in substantial different investment patterns.

The analysis of hypothesis H1, H2 and H3 confirmed that all experiments including more

realistic investment behaviour results in 1 or more technologies with substantially different invest-

ment patterns. This provided a signal that the CO2 price volatility was substantially different
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1. The experiments including more realistic investment behaviour gave new insights on the

effectiveness of the EU-ETS mechanism.

This research measured the effectiveness of the EU-ETS mechanism by the average yearly

standard deviation of the CO2 emission right price, also called volatility2. The main observation

is that more realistic investment behaviour, modelled by the three algorithms, in most experi-

ments resulted in a lower CO2 price volatility in relation to homogeneous profit only investment

behaviour. The reduced volatility in comparison with the base-case went up to 70%. This is an

indicator that the CO2 price, although it shows a volatile price movement, might be less unstable

than earlier assumed. The CO2 price volatility however remains substantial in all experiments

and was in some experiments even higher than 100%. This outcome is a confirmation of previous

work [63] and [67] where was concluded that the CO2 price is not a robust and stable long term

investment signal for non-carbon investment. [63] showed that it plausible when the volatility

rises above 50%. The results reinforce the necessity to introduce price stabilizing measures such

as a price floor and/or ceiling3. Finally the results confirm the importance of being critical on

the implications of the assumed investment model used in a electricity market simulation.

To see the results in perspective it is important to notice that exogenous factors showed

to be more influential than behavioural differences among the algorithms. This means that the

investment pattern in an electricity market is more depending on fuel-prices, demand, technolog-

ical breakthroughs, institutional changes and for example an economic crisis. Exogenous factors

remain therefore more decisive in steering investment patterns. This is however no argument to

avoid a reflection on the assumed investment models in energy policy analysis. It is essential for

the reinforcement of the results that future research does comparable studies for different simu-

lation models. Two recommendations to deal with the implications of the assumed investment

behaviour in models is to design more flexible and modular investment algorithms. Flexibility

and modularity in investment algorithms enable and support exploring the effect of different

behavioural configurations on outcomes of energy policy analysis. On these recommendations

will be elaborated in the following section.

5.2 Recommendations

The problem formulation in this research claimed that energy related policy analysis is incomplete

without insight in the implications of the assumed investment behaviour. This statement does

not hold for all studies and situations, but intends to provide a warning signal for studies where

it could be problematic. The first recommendation is to support further research on analysing

the effect of different investment algorithms on the outcomes of energy policy analysis. In

North-West Europe and especially the Netherlands are current policies not effective enough to

support the transition towards more renewable generation capacity [63]. In order to reach the

sustainable energy goals of the authorities in Europe, robust and stable policies are required

to support investments in renewable electricity generation capacity. The first step is analyse

optional policies such as a price floor and or ceiling for the CO2 emission right price.

1This benchmark experiment is an EU-ETS governed market without renewable energy policies includ-
ing DECC fuel price forecasts. For experiments which are assuming other values for exogenous variables
the outcomes of the hypothesis cannot be guaranteed. The results are however stable (all experiments
showed substantial differences) for three extreme fuel price forecast scenarios.

2This choice is made because it is an indicator for the stability of the investment signal and used in
previous research [63]

3This will further be discussed in the recommendation chapter
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This type of research is also recommended to explore the effect of different investment al-

gorithms on the effectiveness of back-loading and setting aside emission rights for the period

2013-2020. The European Commission intends to withhold 900 million CO2 emission rights for

this period to increase the price [66]. It could give new insights when this policy is analysed for

markets where investors show very diverse investment behaviour.

This research shows the necessity of analysing energy policy options for different invest-

ment algorithms to ensure that behavioural differences among investors does not have negative

substantial influences on the effectiveness on new polices.

Since the investment algorithms modelled in this research resulted in substantial differences

in investments and the effectiveness of the EU-ETS mechanism, this research proposes some

handles to monitor the implications of an assumed investment model or algorithm.

1. Flexibility: The first recommendation is to include flexibility in investment modelling.

The more easy it is to vary parameters and exogenous factors, the easier it becomes

to analyse plausible, but very different configurations. More model flexibility helps to

reinforce the easiness to explore a large experiment space. The more inflexible a model is

the smaller the possibilities to explore different investment behaviours.

2. Modularity: The second recommendation is to build modular models. Investment be-

haviour is proven to be heterogeneous in liberalized electricity markets4 which calls for

coupling of various models. Including modularity in investment modelling will increase

the opportunity of analysing heterogeneous and even changing behaviour over time.

One possibility of increasing the flexibility and modularity of investment algorithms is to use

more formal languages to construct an investment model. One example is the DEVS formalism,

which provides constructs to design modular and hierarchical models in a more mathemati-

cal formalism [18]. Another possibility is to use more abstract simulation frameworks such as

AgentSpring which is used in this research5. Various studies to long term electricity market

dynamics and energy policy analysis are using theoretical frameworks in modelling investment

behaviour in stead of empirical data. Future research could be done on making theoretical

frameworks on investment behaviour more adaptive for flexible and modular modelling.

4 [7, 8]
5https://github.com/alfredas/AgentSpring/wiki
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5.3 Discussion and reflection: is this research rele-
vant?

This section provides a discussion on the research effort. In line with the model limitations

described in section 3.2 will this section discuss the limitations of the results.

The first discussion point is whether the exploratory outcomes of this research
are relevant for future research.

Contra: There are arguments to claim that this research is not relevant for future research.

The first argument is that exogenous factors proved to be more influential than investment

behavioural differences. This could imply that it is more useful to analyse a larger experiment

space with diverse exogenous factor configurations in stead of analysing different investment

algorithms.

Pro: it is true that exogenous factors are more influential, but the fact that both factors are

substantial make it in my opinion worthwhile to analyse.

Contra: A second argument to claim that the outcomes of this research are not relevant

for future is that more realistic investment behaviour is so specific that you need empirical data

before you even can say something about behavioural differences.

Pro: It is true that empirical data is very important in modelling more realistic behaviour.

In my opinion the difficulty of obtaining good data is not a reason to claim that more analysis to

the implications of the assumed investment model is not relevant.

This research claims that it is able to model more realistic investment be-
haviour, but is this really substantially more realistic taking into account the
complexity and uncertainty in modelling investment decisions?.

Contra: An investment decision process can take years before the final decision is made.

There are maybe hundreds of factors which are contributing to whether the investment decision

is made or not. It is therefore better to generalize investment behaviour to a more abstract level

which reduces uncertainty in stead of making algorithms more specific.

Pro: Although this research claims that it is able of modelling more realistic investment

behaviour, it is not the main aim to show that it is substantially more realistic. The purpose

of the research is to show what the implications are of more realistic investment behaviour on

investments and the effectiveness of the EU-ETS mechanism. The investment models in this

research contain considerations which are retrieved from interviews with investors. The validation

intended to show that this is the right model ro answer the research question..

The investment algorithms do not include changing behaviour over time such
as learning, but this is not problematic for the results..

Contra: The absence of changing behaviour over time such as learning is problematic be-

cause it could affect the results and makes the current behaviour less plausible.

84



R. Verweij • Modelling Power Plant Investment Behaviour •

Pro: It is true that the models at the moment do not include learning effects, but this

is considered not problematic for the purpose of the research. Changing behaviour as such is

however included in the model. The algorithm including credit-risk ensures for example that

investors obtaining interest-rate offers based on their financial position. When investors perform

worse, they have to pay more interest, this has a effect on their investment behaviour. The

algorithm including technology preferences include the criteria that investors handle during a

investment decision process. These preferences are linked to a vision or strategy of an investor

and will not change frequently. .

The unavailability of real data to validate the results is not a problem..

Contra: Without real data to validate results the conclusions are less convincing. This

research cannot claim that the investment algorithms show real system behaviour and is therefore

a waste of time.

Pro: It is true in the first place that real data comparisons are traditionally a very good

way of validating results and models. This is also partly done with analysing previous results on

the CO2 emission right price volatility. Those results where comparable with the results in this

study. It remains true that this research has not the possibility of using much real data to validate

the outcomes. The character of the first hypothesis (and also partly second) makes traditional

validating techniques not applicable due to the absence of real data. This is also the reason that

this research uses a different starting point in the validation. This research intended to show that

this model is the right model for answering the research question and that the model is therefore

fit for purpose. The used techniques in where the comparison of observations with literature,

expert consultation and structure behaviour tests. The investment algorithms showed convincing

investment patterns, but the fact remains that validation of agent-based models with the used type

of hypotheses makes validation though.

Investment behaviour is studied for ages, but this research includes a new view..

Contra: Investment behaviour is already studied by empirical and theoretical approaches

since the thirties. This research is unnecessary and old wine in new bags, to say it literally.

Pro: Investment behaviour is a sexy subject, no doubts about that. The approach, aim

and objective of the research is however different than previous studies in the field. The reason

for starting this research is a call from researchers in the field. one example which is also

mentioned in the literature review in the Appendix is [20] who argues: ”A valuable extension of

this work would include consideration of other decision-making behaviours such as naive, forward

expectations, forward adaptive expectations, and adaptive moving average”. In the field of energy

policy analysis where simulation models are used investment behaviour is almost always considered

fixed and homogeneous. Since empirical data showed that investors in the liberalized North-West

European electrciity market are evaluating investment in a very different way it became interesting

to see whether outcomes on energy policy analysis could be affected by different algorithms.

A citation from Dale W. Jorgenson is as follows ”The number of possible explanations
of investment behaviour, which is limited only by the imagination of the investigator, is so
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large that, in any empirical investigation, all but a very few must be ruled out in advance”
[28].

Pro: Taking the statement of Dale W. Jorgenson into account the algorithms could be

better designed based on a theoretical framework instead of being based on empirical data which

is incomplete.

Contra: That statement is under discussion various fields of research. This study uses

empirical data to feed the algorithms. The exact operationalization is done by using concepts

from theory.

5.4 Reflection on the research-process

After the discussion/reflection on the modelling and results, is this reflection more aimed at the

research process. When I started this research the main aim was to finish the work in July.

After a discussion with the committee I decided to delay the final presentation date to the 6th

of September after the summer holidays. This decision gave some extra time to lay down the

work and think well about the reflection en enjoy free time after months of work. I would like

to mention first that I am satisfied with the time schedule that I followed. I managed to do the

work in around five months which is satisfactory. Early in the research process I found out that

finishing the research within five months would be a big challenge especially with the ambition

level. The exact definition of a thesis is though. It takes time to convince others and yourself

about the way to go. I thought first of some ”success” factors that helped me with the research.

These success factors where;

1. Work together: During the project I worked together with Kaveri and Jeroen. Being

together created a stimulating working environment where it was possible to share prob-

lems, brainstorm, support each other and have nice discussions. If you work alone, you

need even more discipline and structure to keep up the pace. Anyway, working together

for me was very stimulating.

2. Committee: The supervisors fulfil an important role within the research process. Emile,

Servaas en Margot seemed to be a good combination to judge, support and steer my

research content. Emile and Servaas in particular helped me to reflect on my own work.

Thanks to them I could sometimes do a step away from my work to observe it in a more

objective way.

3. Support: In my EMLab-generation related research project was a lot of technical support

from Jrn and Praduymna. The simulation process (designing experiments, running the

model etcetera) of the research was now and then very complex and therefore it was

beneficial to have sparring partners for technical difficulties. On moments when you are

stuck, it is nice to share problems with people who are working with the same tools.

4. Tell your story to friends: You learn a lot about your line of argumentation by ex-

plaining it to others. Simple questions from people who do not know your work in detail

can help to reflect on your own line of argumentation.

5. Minimize delay time: During the process I managed to minimize time delays by making

a realistic time schedule. I realised that besides a realistic time schedule you also simply

need a bit of luck. It is also important to make appointments with people on time to

ensure that you can ask questions.
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6. Balance time/ambition: Another important factor was seeking the balance between

the ambition level and what is possible in five months. In first instance I thought of using

the algorithms for looking at substantially different investment patterns (hypothesis H1) in

stead of also incorporating a policy perspective. Because the modelling and further process

went well, I decided to add the policy dimension to the research. The option to include

more depth in the research seemed to be a good option. An important characteristic of

the research which made this possible is scalability. This gave me the possibility to add

additional content to the research.

7. Spread work: Work on different parts in your thesis during a working day. It worked

for me for example to work during the morning on more content-wise stuff, and use the

evening on more hands-on work like running experiments, designing figures etcetera.

Besides ”success” factors there are also elements during the process which could have been

done better. These points include also things which I would have done differently. These elements

are defined as ”improvement points”. Before I elaborate on these points I must say that the

”improvement” and ”would have done differently” list of points is very small. This is the case

because I am pretty satisfied with the preparation, support, execution and results of the research.

Before I started, I knew that within 5 months you will not win a Nobel price with a master thesis.

I really tried to make a realistic analysis of what was doable within this time frame. I learned

from earlier projects in the bachelor and master to protect myself for the over-ambition. There

are however always point for improvement. Some of these points are:

1. Ask help The first point is asking people earlier for help, I tended to be an individualist

and preferred to figure things out myself. This was however not problematic since I also

worked together with people.

2. Documentation Another improvement point is the documentation of work done. A lot of

work (analysis) was done in my head without document it carefully. This has implications

for how observations, results and modelling choices for example are understood by readers

of this report. This improvement point is also not considered to problematic, but it could

have been much better.

3. Finishing: After the green light on the 17th of June, I had to make the choice for

graduating before or after the summer holidays. On the one hand it would have been

better to finish it before the holiday because everything was fresh in my head. On the

other way I now had time to think about the reflection and enhance the quality of writing,

but it was not really necessary after all.

4. More effort and earlier on scope: The practical aim of this project in the first place

was easy. Try to make an enhanced, more realistic investment algorithm for EMLab-

generation by using the empirical data of [8]. The current algorithm contained some ele-

ments which where very primary such as the constraints on capital and the determination

of the weighted average cost of capital. Since I intended to add a policy dimension from

the beginning, I really needed to think about how to combine ”modelling more realistic

investment algorithms” and ”energy policy analysis”. in the end I think that I did well in

combining those elements resulting in a real TPM research effort. An improvement point

is that I could have done more in the beginning to define the project on beforehand. On

the other hand I cannot be very unsatisfied with how the project definition went in the

end.
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5. Work less during nights: Something which I might would have done differently is

working a lot at night. Due to my work and intention to finish the research within five

month resulted in ”long days” to compensate the missed hours during the day. I decided

to work (not research) less in the last 4 months of the research so that there was more

time to spend on the research work.
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Appendix A

Appendix

Welcome to the Appendix of this research. This part of the document contains all underlying

analyses for the main text. This analysis is fully readable and provides an extensive insight on

the work done. The reading guide below summarizes the content of the chapters within the

Appendix.

Chapter Content

1 This chapter contains an article analysis on modelling investment behaviour

2 The development of the algorithms is described here (conceptual + formal)

3 The design of experiments is described here

4 This chapter contains the extended data-analysis and additional figures

5 This chapter contains the algorithm java-code
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A.1 Article analysis

To give an overview on the modelling of power plant investment behaviour an significant number

of articles is reviewed. The largest part of the reviewed articles focus on the modelling of the

long-term electricity market. There are articles that use an empirical approach where some future

expectations are presented. The analysis is merged in Table 1. The selected articles are from

all kind of universities in the world and all written from different perspectives and with different

purposes. The goal is to get a feeling on how scientists are presenting their model shortcomings

related to investment behaviour. There is also one paper included which focusses on comparing

different theoretical models that described investment behaviour.

Reviewed articles

Below a list is presented with the reviewed articles.

1. In the paper of Gutirrez-Alcaraz (2009), discrete event simulation is used to model the

interaction between fuel markets, generation companies and consumers. In their model

agents behave like Cournot-Nash players which determine supply to meet the end use

consumption. In the model the agents intend to maximize their profits with adaptive ex-

pectations of the strategies of the other agents. The article described the model sensitivity

for certain parameters and the impacts of varying those. The article does not discuss

the impact of other investment behaviour on the model outcomes but suggest the follow-

ing for future research; ”A valuable extension of this work would include consideration of

other decision-making behaviours such as naive, forward expectations, forward adaptive

expectations, and adaptive moving average [20]”

2. In the paper of Clarke et al. (1993) the energy technology mix is predicted by geographi-

cally heterogeneous cost distributions. In this approach the market share and the average

cost of energy produced by these technologies is derived. The modelled investment be-

haviour is mainly based upon neo-classical assumptions. The relation between empirical

and neo-classical assumptions is discussed [24].

3. In the paper of Karlsson et al. (2008) uses the optimization model of Balmorel. This

model is possible to analyse the electricity and CHP markets in the Baltic Sea region with

a linear optimization technique considering perfect competition. The agents invest on the

basis of prices and demand in a certain year. No further discussion on the investment

behavioural sensitivity of the model is presented [76].

4. In the paper of Alishahi et al. (2012) investments are performed within a perfect com-

petitive and uniform market. In this article is mentioned that these assumptions are used

as foundation, but no further notion is made on the sensitivity of model outcomes for the

investing decisions of producers. There is a very specific description of the multi-staged

decision (investment) optimization problem, but without any comments on the sensitivity

for the assumptions modelled in this problem [21].

5. In the paper of Arango (2007) investment behaviour is modelled according to a real options

approach within a system dynamics model. The model intents to find the critical price

which justifies the investment. According to the author the model outcomes corresponds

satisfactory to historical data. The author describes the need for improving the model

with different modes of investment behaviour. The author states; ”Improvements could

be made by including the grid in more detail, by taking a different approach to the load
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curve for demand during the day, or by using a different investment behaviour model”

However, no further discussion is presented on the investment behavioural sensitivity in

the model [19,22].

6. In the paper of Assili (2008) a system dynamics model is developed to analyse an improved

mechanism for capacity payments. Investments are performed within a perfect competitive

and uniform market. The article describes various opportunities of modelling investment

behaviour, but no real discussion is presented on the influence on the model outcomes [77].

7. One example is Zhu (2012) where nuclear power investment is modelled using a simulation

based upon a real options approach [16].

8. Another example is Ycel et al. (2012) where simulation is used to analyse plausible devel-

opment trajectories of the Dutch electricity system [12].

9. The next paper is Pozo (2011) where an iterative market Nash equilibrium model is used

to analyse long term equilibriums in electricity markets [78].

10. In the paper of Chappin et al. (2009) an agent-based model is developed to elucidate the

effect of CO2 emission trading. In this model. The consequences of the main assump-

tions are discussed. An extensive sensitivity analysis is described. Although sensitivity in

relation to investment behaviour is not taken into account [15].

11. The next reviewed paper was Ghaderi (2012) where a fuzzy cognitive map was developed

to simulate the behaviour of electricity producers. In this paper sensitivity analysis was

performed on the factors that influence the decisions of the producers [79].

12. Bernal-Augustin (2007) constructed an model to simulate the day ahead electricity market

in Spain. Since the paper is only for short term use, there are no investments included.

This article is therefore not so useful for the article analysis [80].

13. Larsen et al. (2010) describes the existence of investment cycles in deregulated liberalized

markets. Their hypothesis is that the market has times where is under investment or

times with over investment. The model used is a system dynamics model and empirical

evidence to confirm that the hypothesis still stands. The authors describes the sensitivity

for modelling investment behaviour [22].

14. Johnson (1994) reviews different models who cope with investment behaviour and discusses

the insights of these models [23].

15. Hsin-Chin (2011) did empirical qualitative research on the effects of regulation on invest-

ment behaviour in the liberalized electricity market in Taiwan [81].

16. Sarica et al. (2012) modelled a decentralized electricity market. The intention was to

model the implications of an day ahead market. Since this study was related to a short-

term consequences this article was not useful for the analysis [82].
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Nr. Article Model Theoretical perspective Discusses model sensitivity & limitations?  
1 Gutiérrez-Alcaraz (2009) Cournot-Nash model Neo-classical assumptions 

including bounded rationality 
None, taking also other investment behaviour is suggested as future research. 

2 Clarke et al. (1993) Conditional distribution 
functions 

Neo-classical assumptions Limited. Link empirical and theoretical assumptions is needed. Nothing further about 
influencing the outcomes. 

3 Karlsson et al. (2008) optimization model of Balmorel Neo-classical assumptions Limited, model applicable to Baltic sea region. Limitations for assumptions is partly discussed. 
No real comments on modelling various modes of investment behaviour. 

4 Alishahi et al. (2012) Optimization model Neo-classical assumptions None 
5 Arango (2007) System dynamics model Neo-classical assumptions Limited. Only mention that the model needs potential improvements like using different 

investment behaviour modes. 
6 Assili et al. (2008) System dynamics model Neo-classical assumptions The author confirms that the neoclassical assumptions have an effect on the result 
7 Zhu (2012) Monte Carlo simulation using 

real options approach 
Not mentioned but bounded 
rationality is included 

Limited discussion, only reasons related to the future market and the sensitivity of the model 
results 

8 Yücel et al. (2012) System dynamics model 
Profit estimation (ROI)  

Neo-classical assumptions Limited. Description on how results were established, relation to assumptions. 

9 Pozo (2011) Iterative market Nash 
equilibrium model 

Neo-classical assumptions None 

10 Chappin et al. (2009) Agent-based model Neo-classical assumptions but 
also heterogeneity 
“management styles” 

The model outcomes were not sensitive to most parameters, including agents management 
style parameters. Further major assumptions and their consequences are presented, but not 
related to investment behaviour. 

11 Ghaderi (2012) Fuzzy Cognitive Map Empirical assumptions Limited 
12 Bernal-Augustin (2007) Simulation model in VBA Not mentioned There is limited notion of the assumptions made in the model. This is logically due to the short 

term scope of the model. 
13 Larsen et al. (2010) System Dynamics model Neo-classical assumptions 

including bounded rationality 
Provides discusses theoretical and empirical assumptions for testing the stated hypothesis.  
Citation : “The simulation models show the occurrence of cycles based on 
decision rules assumed by the modellers, where the behavior of the investors is still an empirical 
question” 41 

14 Johnson (1994) Qualitative comparison of 
models CAPM, APT etcetera 

Neo-classical assumptions 
including sunk costs, 
uncertainties and  

“This paper reviews the assumptions and important insights of the investment theories most 
commonly suggested as candidates for explaining the apparent 'energy technology investment 
paradox” 

15 Hsin-Chin (2011) Qualitative model Empirical assumptions The author suggests using a simulation model to test different investment motivations on the 
long term development of the market. 

16 Sarica et al. (2012) Multi-Agent simulation model Neo-classical assumptions None, the study was short term oriented and not very useful for the analysis. 

 

Figure A.1: Aggregated list of all the reviewed articles
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Conclusion from the article analysis

The conclusion from this article analysis is that in very few cases outcome sensitivity is dis-

cussed for the modelled investment behaviour. Often sensitivity analysis is performed on various

assumptions within the model like the technological breakthroughs, but not on investment be-

haviour. Models often assume neo-classical market assumptions and model producers on the

basis of bounded rationality. Some articles discuss the modelling sensitivity but are also arguing

that the model is fit for purpose. Sometimes reasons are mentioned why not different modes of

investment behaviour is required. These reasons are;

1. The assumption that the model is not constructed for a purpose where this sensitivity

analysis is needed for.

2. Testing various investment algorithms is time consuming and not always possible within

the simulation paradigm.

It is also likely that the following reasons will have an impact, but these reasons are based

upon a logical suspicion;

1. It is not likely that scientists will weaken their own findings.

2. Since there is in many studies no real validation possibility

3. It is hard to have a reticence attitude regarding certain outcomes.

The electricity system

This chapter contains a system analysis of the Dutch electricity market. The main elements

of this analysis will be presented in the main text. The analysis starts with a more general

description of the whole Dutch electricity system. Understanding this system (including the

elements) is mandatory for reading the further thesis.

From the philosophy of the faculty of Technology, Policy and Management at the Delft

University of Technology where this research project was carried out a systems approach is used

to analyse the Dutch power sector. Before is zoomed in on the investments in the power sector

first an overview on the whole Dutch electricity system is presented. The Dutch electricity

system could be seen as a complex social-technical system [40–43,83]. This system comprises of

technical elements like the physical infrastructure and production plants, but also includes various

stakeholders like consumers and producers. Within this system all the different interactions cause

a high degree of complexity. In the figure below the electricity system is explained. This is the

starting point for zooming in on investment. The green blocks represent the elements that are

belonging to the social-institutional part of the system. The black blocks represent the technical-

physical elements of the system.

The figure shows all the social-technical elements of the value chain. A description is pre-

sented in two parts. First all institutional elements are described and secondly all technical

physical element are explained. The regulator as a specific agent is not added but is in reality

concerned with law and regulation.

Institutional elements

Energy producers

The energy producers are the owners of the power plants. The main activity of the producer

is obvious; producing electricity. Since the increasing number of de-central produced electricity,
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the number of producers is increasing. There are approximate 800 producers in the Netherlands

who produce more than an electrical output of 200 MWh a year. The largest producers in the

Netherlands are Electrabel, Essent, Nuon and E.ON. There are all kinds of producers looking

at public, private ownership, size, attitude and so on. Because this is also part of sub-question

two of the research on this part will be elaborated later. The main source for the data on the

difference among producers this information is Enipedia. The 20 largest producers are visualized

in the graph below;

In addition on the figure above, here the de-central generated capacity is not included. The

division among the de-central and central generated capacity is presented in Figure 7 below. It

is visible that the production of electricity was increasing up to in the beginning of 2010 (118

billion kWh). During 2010 the production declined probably due to the economic crisis causing

a decrease in demand.

Small and large consumers

The small consumers of electricity are mainly households, small and medium enterprises and

other institutions with connections up to 3 x 80 Ampere with a tension level of maximal 1 kV.

Large consumers are industrial consumers, transport and horticulture using larger than 3 x 80

ampere connections with a 1 to 50 kV tension level. Above this tension level connections with

the HV network is required up to 380 kV. Also the energy industry itself is a large scale user of

electricity. A division of the electricity consumption up to 2011 is presented below.

Retail companies

The retail companies deliver electricity and heat to the small consumers. They are buying

their electricity on the wholesale market via bilateral contracts or on the Amsterdam Power

Exchange (APX). The suppliers or retail companies are not producing electricity themselves.

The largest retailers in the Netherlands are Eneco, Essent, Nuon and Oxxio. Some producers

are also competing on the retailer market.

Transmission network manager and system operator

The transmission network manager (TSO) operates and maintains the transmission network.

It keep the connections online and transports the electricity from the HV network to the LV

network. The TSO in the Netherlands is Tennet. The TSO maintains the 110, 150, 220, 380 and

450 kV lines. The 450 kV DC concerns the NorNed and BritNed cable [44–46].

Distribution network manager

The distribution network manager (DSO) maintains the distribution network. It keep the con-

nections online and transports the electricity from the HV network to the end-consumers up to

50 kV. The largest DSOs in the Netherlands are Liander, Enexis and Stedin which have together

around 6,5 million customers. In total there were 11 distributed operators in 2010 [47–49].

Power exchange and OTC

The Amsterdam Power Exchange (APX or APX-ENDEX due to merger with ENDEX) is the spot

market where demand and supply come together. In this market it is possible to anonymously

exchange power which is an advantage for power producers and suppliers. This is an advantage

99



R. Verweij • Modelling Power Plant Investment Behaviour •

because competitors can keep their trading strategy secret. In 2011 the traded power volume

was 108 TWh including all kind of derivatives [50]. APX-ENDEX Holding B.V. which is the 100

percent shareholder of the electricity trading entities like APX-ENDEX Power B.V. and APX-

ENDEX Clearing B.V. The shareholders of APX-ENDEX Holding B.V. are inter alia, 56,05

percent Tennet Holding B.V. and 20,88 percent Nederlandse Gasunie N.V. and others 23,07

percent.

Bilateral market

The bilateral market is where buyer and seller agree upon specific contracts. The contracts are

often term contracts according to insiders in the market. Data on the volumes is unknown,

but the largest volume of electricity is still traded via bilateral contracts with a year-period (or

shorter).

Import and export capacity

When there is a difference between supply and demand the TSO keeps the network in balance

by import or export (when there is no strategic national fast ramping up reserve). In cases

of a surplus it is possible to export electricity to Germany, Belgium, Scandinavia (NorNed) or

the UK (BritNed). In cases of a shortage it is possible to buy electricity from these countries.

In the Netherlands the in-balances are caused by program responsible parties who did wrong

estimations on the expected demand or production. The electricity on the in-balance market is

very expensive which intensifies to make good predictions. In 2011 the total import was 20,468

GWh and the total export was 11,834 GWh.

Balancing mechanism

Because it is impossible to predict the exact demands and productions capacities any moment in

time to balance the required voltage on the network a balancing mechanism is mandatory. This

balancing mechanism is the tool for Tennet, the TSO, the possibility to balance the network.

There are various sorts of balancing mechanisms. In the Netherlands the TSO has operating

reserves. These operating reserves are some generation facilities which can ramp up pretty

quickly and are contracted from the balancing market. This operating reserve is offered by the

producers.

Technical elements

Generation

The total production in the Netherlands in 2010 was 118.000 million kWh (37 percent decentral).

There are around 800 producers who produce more than 200 MWh a year. The highest produc-

tion peak according to Tennet in 2010 was 14.727 including import. The technology mix over

time is presented in On the next page. It is visible that the percentage of renewable electricity

is slowly increasing. Wind and biomass energy are the most important renewable energy sources

used generation of electricity.

The percentage of renewable electricity production increased up to 12 billion kWh in 2011

which is approximately 11 percent of the total generated amount of electricity [3].
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Transmission

As mentioned before is the electricity transported via the high voltage lines of the transmission

system operator(Tennet). In the Netherlands this infrastructure is about 9.700 kilometres long.

The following data about the transmission network was obtained from the annual report of

Tennet;

Distribution

The total network in the Netherlands in 2010 was 309.502 kilometres long 18. Subtracting the

9.700 of the HV network the L/MV network will be around 300.000 kilometres long. DSOs

maintain the LV lines of 0.23 kV, MV lines of 3, 10 and 20 kV, I (intermediate)V lines of 50

kV and sometimes also a small part of HV lines of 110 and 150 kV. In order to get insight in

the main aspects of the distribution networks the annual reports of the three main DSOs in the

Netherlands are analysed. These DSOs are (Al)Liander B.V., Enexis B.V. and Stedin B.V.

The table above presents the operators of 88 percent of the network. The remainder is

distributed by smaller DSOs. Some conclusions from this analysis are;

1. A first conclusion is that investment is of importance for the development path of the

electricity system due to the long lead times and capital intensity of investments. An

investment in a large coal fired power plant has for example an considerable effect on the

portfolio mix for the coming 25 years.

2. A second conclusion is that simulation is often used for the modelling of long-term elec-

tricity markets. More than 80 % of the reviewed articles used simulation as their research

method (see table A.1).

3. A conclusion from (1 and 2) is that the modelling of investment behaviour could be impor-

tant in computational modelling of long-term electricity markets to analyse policies [26].

Thereby said that this conclusion is also dependent on the purpose and use of the model.

The information in this chapter should give sufficient overview on the elements within the

electricity system. For this thesis at this stage this should enable you as reader to understand

the basic insights of the electricity system. The mentioned concepts are important to understand

the further thesis description.

Theoretical principles

This chapter provides insight in the theory and empirical data used in this thesis for the develop-

ment of the conceptual investment algorithms. The chosen theory is i.e. neo-classical economics

and modern portfolio theory. Besides the theory empirical data is used [7, 8]. The argument for

the neo-classical assumptions are related to the dominant position of neo-classical thinking in

the modelling of investment behaviour by other scientists in electricity market models (see figure

A.1). The second foundation for the investment algorithms is as mentioned the empirical data.

In the coming section the concepts of neo-classical assumptions are explained.

Neo-classical theory

Neo-classical economics was originally introduced around 1900 by Thorstein Veblen in reaction

on classical economics [28,31,33]. The neo-classical theory describes in essence that firms intend
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to maximize their overall present value. The main objective of this theory is describing the phe-

nomenon that capital accumulation is performed under the assumption of profit maximization.

Or in the case of an individual optimization of the so called utility. According to the neo-classical

theory an economic efficient market is established taking seven assumptions into account. These

seven assumptions will be discussed later. Neo-classical theory is aligned with rational choice

theory and dominates today’s micro-economics. There has been many newer versions of the

theory since there is no single consensus on what neo-classical economics exactly is. An example

is awareness of economic criteria changes which was suggested as a newer version of neo-classical

economics. One of the critiques is that the theory is considered to be adequate in static cases,

but could be problematic in long-term simulation meanwhile it is used in various studies. The

neo-classical approach focusses on the determination of prices, inputs and outputs. The theory

rest on three main assumptions; agents have rational preferences among outcomes, individuals

maximize utility and firms profit, agents act independently and on the basis of complete infor-

mation. Criticism on this theory is that it has a normative bias and wrong assumptions taken

rationality into account. Unless the criticism the theory is widespread and used extensively in

various studies (see article analysis). All the neo-classical assumptions together are discussed

now;

Rational decisions

This assumption says that agents think rational in the sense that they prefer more valuable goods,

or less costly depending on the objective function that is prevailing. Applying this idea to the

electricity market it would mean that producers intend to invest in more profitable power plants

than less profitable power plants. Or in the case of more criteria like environmental friendliness

and profitability, producers will prefer the most environmental, profitable power plant. Essential

here is that criteria like environmental friendliness have assigned a certain value in order to make

the rational decision possible. In the conceptual algorithms the rational choices are made based

upon NPV estimations including subjective factors like technology preferences.

Perfect knowledge

The assumption of perfect knowledge means that agents have perfect predictive power. This

implies in the case of the electricity sector that producers are able to predict fuel prices in deep

detail. This perfect predictive power means that there is no uncertainty on fuel prices, permit

procedure delays etcetera. This assumptions enables the power producers to make well founded

rational investment decisions which will lead to an equilibrium. In the EMLab generation model

agents do not have perfect knowledge.

People act independent and on the basis full and relevant infor-
mation

This assumption implies that producers are not affected by demand and consumers not by

producers of electricity. This could be applied on the electricity market by understanding that

the behaviour of consumers will have no influence on the investment decisions of power producers.

Or the other way around; the decision of power producers to invest in certain technologies will

have no influence on the behaviour of the consumers. This assumption does not hold in the

EMLab model. The planned investments of a certain investor i will influence the investments

performed by the other investors.
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Law of diminishing return

The law of diminishing return is a behavioural hypothesis which simply says that the more agents

buy the smaller the increment in satisfaction becomes. From the supplying side this is the same

In a neo-classical model this leads to an equilibrium model. This could be translated to the merit

order where the first MWe are very valuable and therefore are the demand prices very high. This

assumption holds for the current model. When investors invest in for example a coal fired power

plant the possibilities of investing in a new coal fired power plant will decrease because unless

demand is increasing tremendously.

Perfect competition or many participants

Perfect competition means the presence of many producers and consumers of electricity. This

assumption enables also the most efficient market equilibrium. In the case of the Dutch power

sector it is still possible to reach an equilibrium but not the most efficient one. This is the

case because there are a limited number of producers, but due to the decentralization and the

introduction of the smart meter (which enables everyone with de-central over production to sell

their electricity) the number of producers is increasing.

Unique equilibrium

This assumption is related to the fact the agents will converge to one strategy or one way of

buying. This will result in an equilibrium. This could be explained by the a certain production

function P(price) which is specific for a producer. The consumer has a certain demand function

named D(price). For a certain price an equilibrium is achieved where D(price) = P(price). This

equilibrium assumptions is not part of the current investment algorithm model.

Freedom to enter

This assumption implies that producers can enter the market without any burden. In the case of

the electricity sector this could be explained by the option of new producers to enter the market

without any restricting factors like producing minimal capacity. No restrictions in attracting

capital, personal etcetera. This new entrance of investors is not incorporated in the model.

These assumptions helping economists to understand the allocation of scare resources in

order to maximize profits. In this case how electricity producers are using their money, time,

labour to invest in power plants to maximize their profits. The neo-classical assumptions are

derived from many other theories like the theory of the firm in the case of profit maximization.

Neo-classical economics is all about equilibria because it is argued that these equilibria are the

solutions of the maximization problem of the producer. One of the arguments of generalizing

the behaviour of producers is methodological individualism. This methodological individualism

simply says that economic processes are explained by aggregating the behaviour of producers in

this thesis.
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A.2 Development of the algorithms

This section includes the design steps for the algorithms.

Conceptual algorithms

The design steps for the MCDA, which is used in the algorithm including technology preferences,

are listed below:

Multi-criteria decision analysis method design steps

1. Define the criteria

2. Specification of alternatives

3. Evaluation of criteria on alternatives

4. Choice for the MCDA method

5. Scoring the evaluations

6. Choice of normalization

7. Identification of relative importance

8. Calculation of the preferred choice and ranking

9. Exploration of results

10. Challenging the intuition of the decision-makers

11. Discussion of the results

Pseudo-code

The basic algorithm in EMLab-generation embodies the following steps:

1. Start algorithm

2. Select the first investor x to invest, this happens randomly every tick. The number of

investors are manually determined in the experiment file.

3. The investor makes an estimation of the demand by averaging the expected demand growth

rate over the last five years. For each segment of the load-duration function (divided in

segments) the demand is estimated as follows; D̂s,c,t+n = Ds,c,t· (1 + h)t. Here D̂s,c,t+n is

the estimated demand in year t+n, segment s and country c.

4. Investor i makes market predictions for coal, gas, uranium and CO2 prices in the same

way as the demand function in the previous step.

5. Now the electricity price is calculated for each segment of the load duration function and

an comparable price duration function is established.

6. Is the investor capable of paying a potential down-payment. This is around 30 percent of

the capital cost.

7. Calculation of the running hours of the potential investment on the basis of the future

electricity prices and variable costs and the sector availability rate. Check whether the

number of running hours are sufficient. (e.g. a nuclear plant has to run 5000 hours

minimal)
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8. Check, is the plant in the merit order. In other words are the variable costs smaller than

the expected prices.

9. The investor estimates the plants cash flow by subtracting the plants variable costs from

the estimated market price for each segment of the load duration curve. For the final cash

flow for the fixed costs of the power plants are also subtracted.

10. calculation of the net present value of the investment discounted for the weighted average

cost of capital (see equation 2.2)

.

NPVp =
(∑

t=0...tb

−Ip/tb+1

(1+WACC)t
+
∑

t=tb+1..tb+tD

ĈFp,t+1

(1+WACC)t
/kp

)
11. Select the all the investment options which have an NPV > 0 and rank them according

to their value relatively to the invested money.

12. invest by paying the down-payment and starting up the construction of the power plant.

The integrated algorithm includes:

105



R. Verweij • Modelling Power Plant Investment Behaviour •

Algorithm 4 Integrated algorithm: combination of behaviour

Require: Run the current algorithm described in section 3.1 up to the estimation of the
NPVp..P

1: for all Investors do calculate
∑
p...P Dp and

∑
p...P Ap

2: for all Powerplants do calculate Dp and Ap
3: end for
4: Determine the probabilities of the standard normal variable

d1,i =
log( Ai

Di,t
) + rf + σ2

2 · (T − t)
σ·
√
T − t

(A.1)

d2,i = d1,i − σ·
√
T − t (A.2)

5: Calculate the market-value of equity

Ei = Ai·Nd1,i −Di,t· exp−r·T−t·Nd2,i (A.3)

6: Then price the debt

di,t = Ai − Ei (A.4)

7: Finally determine the interest-rate

rf + rp,i =
−1

T − t
· ln
(
di,t
Di,t

)
(A.5)

8: The investor decide whether to accept the debt offer yes or no
9: end for

10:

Sp,i =

∑
Vp,i∑
Vp..P,i

(A.6)

11: Than check for ri and determine the WACCi

WACCi =
Ei
Vi
· ke,i +

Di

Vi
· kd,i + ri,p (A.7)

12: for all Investors do get {cn, cn+1, cN} and {ψn, ψn+1, ψN}
13: for all Technologies do calculate

∑
cn..N,p and save the technology specific multi-

criteria score cn,p.
14: if {ψn, ψn+1, ψN} = 0 then Select the investment according to

max(NPVp..P ).
15: end if
16: end for
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Algorithm 4 Integrated algorithm: combination of behaviour (continued)

17: if number of profitable technologies >= 2 then calculate

ωp =
cn,p·ψn∑
cn,p...P

+
cn+1,p·ψn+1∑

cn+1,p..P
+

cN,p·ψN∑
cN,p..P

(A.8)

18: if min & max (ωp) then Save variable
19: end if
20: for all Propensities do calculate

nωp = ωp −min(ωp..P )/α· 1

α·max(ωp..P )−min(ωp..P )/α
(A.9)

21: end for
22: for all Probabilities do calculate

υp =
nωp∑
nωp

(A.10)

23: end for
24: Establish a discrete probability distribution.∑

p∈P
f(p) = 1 (A.11)

25: end if
26: Option 1: Select a random number and ”role a die” select the technology to invest

based upon the earlier established discrete probability distribution.
27: Option 2: Invest in the technology with the highest propensity
28: end for
29: calculate Sp,i by;

ni,p = Sp,i −min(Sp..P,i)/α·
1

max(Sp..P,i)·α−min(Sp..P,i)/α
(A.12)

.
30: calculate pi,p by;

pi,p =
1− ni,p∑
p∈P ni,p..P

(A.13)

31: Establish a discrete probability distribution.∑
p∈P

f(p) = 1 (A.14)

32: Option 1: Select a random number and ”role a die” select the technology to invest
based upon the earlier established discrete probability distribution.

33: Option 2: Invest in the technology with the highest propensity
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Verification

In the table below the verification of the MCDA is presented. In this verification is analysed

how the MCDA method is functioning for different experiments. One example is negative and

positive weight-factors. In table A.3 the investment probabilities of three types of investors are

estimated with the MCDA method. The outcomes are considered expected.

Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6

NPV CO2  footprint Operating criterium Investment lifetime Investment cost Plant efficiency

IGCC 50                            47                            5,500                       40                            88                            42                            
Wind 37                            4                               5,500                       20                            52                            39                            
CCGT 45                            12                            -                           30                            33                            52                            
OCGT CCS 26                            25                            -                           30                            45                            52                            
Total 158                          88                            11,000                     120                          218                          185                          
Weightfactor 3                               1                               -                           3                               1                               1                               

Alternatives Criteria

Weighted propensity Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6
Max Min Min Max Min Max

IGCC 0.95 0.53 0.00 1.00 0.40 0.23
Wind 0.70 0.05 0.00 0.50 0.24 0.21
CCGT 0.85 0.14 0.00 0.75 0.15 0.28
OCGT CCS 0.49 0.28 0.00 0.75 0.21 0.28

Propensity weighted Utility total Normalised Probability
IGCC 1.239                       0.36                         24.19%
Wind 1.129                       0.25                         16.40%
CCGT 1.598                       0.74                         49.79%
OCGT CCS 1.034                       0.14                         9.62%
Upper border 1.837                       
Lower border 0.899                       
Total 1.50                         100.00%

Figure A.2: Verification of the multi-criteria decision method

Propensity weighted Scenario A Scenario B Scenario C
IGCC 24.19% 4.58% 3.26%
Wind 16.40% 31.53% 10.26%
CCGT 49.79% 37.10% 46.41%
OCGT CCS 9.62% 26.80% 40.07%

Scenario setting Scenario A Scenario B Scenario C
NPV 3 1 1
CO2  footprint 1 4 1
Operating criterium 0 1 3
Investment lifetime 3 0 1
Investment cost 1 1 1
Plant efficiency 1 2 3

Profit oriented 
investor

The environmental 
oriented investor

Flexible investorExplanation

Figure A.3: Three types of investors analysed with the MCDA

The second verification includes the Black-Scholes debt pricing model. This model is anal-

ysed for different extreme values. Also a sensitivity analysis is performed under ceteris-paribus

circumstances. The first verification step includes the calculation of the interest-rate of two

extreme stereotypes of investors. In figure A.4 the relation is presented between an increasing
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asset-value and the price of debt and equity (debt assumed constant 50 million euro). In these

figures σ% = 20 and r% = 3 and ∆t = 10.

debt

Figure A.4: Debt-pricing model: equity, debt and interest-rate for increasing value of
assets

The debt-pricing model of Black-Scholes is also analysed for three experiments in figure A.5.

The three types of investors are;

• Type 1 one investor which has problems to fulfil his obligations

• Type 2 one investor with a prime performance

• Type 2 one investor with a normal performance

In the figure is visible how the interest-rate evolves for three situations of investors where

the asset value is varied. For the investor with a lot of debt it will take much longer to obtain a

loan offer with a low interest-rate from the bank. The interest-rate for the investor with a prime

performance are much lower for a whole spectrum of asset values.

The algorithms in EMlab are also tested. Here de code is considered as a black box. Prede-

fined input is inserted in the code which should match expected outcomes.

The second test includes J-Unit tests where the behaviour of one single agent is verified. The

performed tests are the following;
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Algorithm Logger

Technology preferences

• Logger( Tell me the value of the propensities): this
is the calculated output of the propensity equation
to check whether the equation is modelled correct.

• Logger.warn( Tell me the outcome of the normal-
ization): this is to check whether the normalization
is functioning as expected

• Logger.warn( Tell me the probability of investing
in technology i)

Credit-risk consideration

• Logger.warn( Tell me the value of debt for all in-
vestors)

• Logger.warn( Tell me the value of priced equity for
all investors)

• Logger.warn( Tell me the interest-rate offer of the
bank)

Risk-averse behaviour

• Logger.warn( Tell me the calculated weighted av-
erage cost of capital per investor i)

• Logger.warn( Tell me the market-share per in-
vestor and technology)

• Logger.warn( Tell me the probability of investing
per investor)

Table A.1: Loggers used in the algorithms
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Scenario 1 Scenario 2 Scenario 3
Asset value [150-530] [150-530] [150-530]
Debt value 488 55 181
Risk free rate 3.25% 2.58% 2.95%
Asset volatility 27% 18% 23%
Delta t 10 15 7

Investor in default investor with prime 
performance

Investor with normal 
performance

Investor type

Figure A.5: The interest-rate for three types of investors
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Algorithm Test Input and output

Technology preferences Is the investor’s decision-making as ex-
pected. This implies: is the investor check-
ing correctly whether he is including sub-
jective factors and is he correctly calculat-
ing the criteria scores and propensities. Is
the normalizing correctly performed and
are the probabilities determined as ex-
pected. In total; is the investor incorporat-
ing the technology preferences by means of
the MCDA in the decision-making process
a correct way

The inputs were the number of plants, technologies, capacities and fur-
ther associated information. Also all information for the NPV calcula-
tion is included. For the MCDA the weight-factors and normalization
parameter was predefined. The output for the agent is;

WARN Energy Producer G in c l ude s s ub j e c t i v e f a c t o r s t rue and
has the f o l l ow ing p r o b a b i l i t i e s [ 0 . 1 0 3 , 0 .251 , 0 .279 ,

0 .346 , 0 . 0 1 9 ] f o r the f o l l ow ing t e chno l o g i e s [
CoalPulver ized , GasConventional , Biomass , Wind ,
CoalPulverizedCSS ] the best technology i s Wind

Credit-risk consideration Here is checked whether the agent is in-
cluding the right interest-rate in the calcu-
lation of the weighted average cost of cap-
ital. When the financial structure of the
investor is weak this should be reflected in
the interest-rate offer.

The inputs are the same as in the first algorithm, but here also some pa-
rameters for the Black-Scholes debt-pricing model are included. These
parameters are the asset volatility, the time to maturity and risk free
rate. The outputs are;

WARN Energy Producer B debt value i s 6 .86E9
WARN Energy Producer B the value o f the p lant s i s 7 .63E9
WARN Energy Producer B ge t s a i n t e r e s t−r a t e o f f e r o f 6.43%

at t imepoint 13

WARN Energy Producer I debt value i s 9 .07E8
WARN Energy Producer I the value o f the p lant s i s 1 .88E9
WARN Energy Producer I ge t s a i n t e r e s t−r a t e o f f e r o f 3.5%

at t imepoint 13

Risk-averse behaviour In this test is checked whether the in-
vestor with risk-averse behaviour indeed
includes the expected considerations in the
decision-making process.

The inputs are again partly equal to the first two algorithms. Other
inputs are risk-averse associated parameters like the border where a
investor is considered a giant. This status implies that the investor will
diversify the portfolio. One example of output is;

WARN Agent Energy Producer H has chosen the best
technology Biomass from the f o l l ow ing opt ions [
CoalPulver ized , GasConventional , Biomass ] he
d i v e r s i f i e s h i s p o r t f o l i o t rue and the market−share s o f
the po t en t i a l t e chno l o g i e s are [ 0 . 4 1 6 , 0 .426 , 0 . 0 0 0 ]

h i s t o t a l capac i ty i s [ 7 2 86 . 0 , 7286 .0 , 7 286 . 0 ]

Table A.2: J-Unit tests
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A.3 Design of experiments

In this section the design of experiments is discussed. The experiments, hypotheses and further

DoE details are discussed here. The hypotheses are:

1. H1 The incorporation of credit-risk considerations, risk-averse behaviour and technology-

preferences in investment decisions result in substantial differences in investments.

2. H2 There is a significant negative correlation between investments in the capital-intensive

technologies and the sensitivity for credit-risk.

3. H3 There is a significant positive correlation between investments in renewable technolo-

gies and the green tendency of investors in the market.

4. H4 The incorporation of credit-risk considerations, risk-averse behaviour and technology-

preferences in investment decisions result in substantial CO2 emission right price volatility.

The experiments to provide an answer on the hypotheses is divided in five groups. One

group of base-case experiments which includes homogeneous profit only behaviour for diverse

exogenous fuel price forecasts. The second, third and fourth group are mainly used as validation

experiments. These experiments are used to analyse whether the investment algorithms result

in convincing investment patterns. The aggregated table with experiments is:

Group of ex-
periments

Quantity Description

Base-case 3 Normal EU-ETS experiment including a low, central and high
DECC fuel-price forecast. Investors, which meet constraints,
homogeneously evaluate NPV > 0 investment opportunities
based on profitability only

Technology
preferences

20 Investors evaluate NPV > 0 investments based upon a selec-
tion of criteria. There are experiments with different heteroge-
neous investor attitude configurations. The investors within an
experiment judge subjective criteria in different ways. These
experiments are used for the validation of the model.

Credit-risk
consideration

15 Investors include credit-risks considerations in the investment
evaluation. There are experiments with different investor spe-
cific sensitivities for credit-risk. Investors here ask themselves
”Is this interest-rate competitive for me?”. These experiments
are used for the validation of the model.

Risk-averse
behaviour

21 Investors include technology specific and portfolio risks in the
investment evaluation. There are experiments with differ-
ent levels of risk-averse behaviour and different tendencies for
portfolio diversification. These experiments are used for the
validation of the model.

Combination
mix

27 Investors include subjective preferences, credit-risk consider-
ations and specific risk-averse behaviour towards technologies
in their investment decisions. The focus in these experiments
is on plausible parameter configurations. This includes mainly
experiments without extreme parameter values.

Table A.3: Description of the groups of experiments

The experiments are divided as follows:
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experiment space in al-
gorithm

Parameter sweep

Basic algorithm. No parameter sweep here a fixed experiment is chosen

Technology preferences:

• parameter weightfac-
torProfit

• parameter weightfac-
torEmission

• parameter weightfac-
torEfficiency

• parameter weigthfac-
torInvestmentCost

The parameters can have the value no role, a role and sig-
nificant role. No role implies the value of zero because the
criterion is than not incorporated in the decision-making.
When the criterion plays a role in the decision-making
process it gets the value of one attributed. When the cri-
terion plays an significant role it gets assigned the value
of two. This implies that there are 33 = 27 theoretical
technology preferences profiles. Also some experi-
ments can be left out of the simulation due to param-
eter correlations among each-other. Since the residual
amount of possible experiments is still large, latin hy-
percube sampling is used to select a feasible collections
of parameter values. The experiments vary between a
very profit only oriented market to a market with a high
fraction of renewable investors.

Table A.4: Parameter configuration group 2

experiment space in al-
gorithm

Parameter sweep

Basic algorithm. No parameter sweep here a fixed experiment is chosen

Credit-risk considera-
tions:

• parameter assetVal-
ueDeviation

• parameter debtBias

• parameter loanIntere-
stRiskFreeRate

• parameter timeToMa-
turity

The asset-value deviation differs between 10% and 30%.
The debt bias is estimated between 0 and 10 billion. The
risk-free rate is ranges between 1% to 5%, but remains
fixed in the first run. The time to maturity is estimated
to be between 5 and 15 years, but remain also fixed in
the first run. These values are chosen based on the ear-
lier implementation done by [5] This results in 42 = 16
potential configurations in case of 4 intervals. This
results in experiments where most investors have a very
healthy financial structure to a market where investors
have a very weak financial structure.

Table A.5: Parameter configuration group 3
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experiment space in al-
gorithm

Parameter sweep

Basic algorithm. No parameter sweep here a fixed experiment is chosen

Risk-averse behaviour:

• parameter riskPremi-
umNuclear

• parameter riskPremi-
umCoal

• parameter riskPremi-
umGas

• parameter riskPremi-
umRenewable

• parameter market-
GiantCapacity

The risk-premiums differs between 0 to 10%. The mar-
ket giant capacity decides whether an investor has a sig-
nificant portfolio and tends to diversify. The giant ca-
pacity is set such that the value mimics a large investor
within the European market. One example is Vatten-
fall or RWE. The experiments differ from a risk-taking
market to a very risk averse market. This results in
3· 3· 3· 2 = 54 potential configurations taken into ac-
count three or two intervals.

Table A.6: Parameter configuration group 4
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Experiment
nr.

Experiment content

1 - base The investors show homogeneous profit only behaviour.
2 10 % of the investors include weighty sustainable criteria in their investment de-

cisions1. The investors are little sensitive for credit-risks and up to 40 % of the
investors is more risk averse for coal and nuclear technology which are most under
societal pressure.

3 20 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are little sensitive for credit-risks and up to 40 % of the investors is more
risk averse for coal and nuclear technology which are most under societal pressure.

4 10 % of the investors include weighty sustainable criteria in their investment deci-
sions. The investors are normally sensitive for credit-risks and large investors2 are
diversifying the portfolio.

5 20 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and large investors are diversifying
the portfolio.

6 15 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and investors are not specifically
risk-averse and do not diversify the portfolio.

7 15 % of the investors include weighty sustainable criteria in their investment decisions.
The investors are not sensitive for credit-risks and investors are not specifically risk-
averse and do not diversify the portfolio.

8 15% of the investors include weighty sustainable criteria in their investment decisions.
The investors are little sensitive for credit-risks and large investors are diversifying
the portfolio.

9 None of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and investors are not specifically
risk-averse and the largest investors in the market are diversifying the portfolio.

10 15% of the investors include weighty sustainable criteria in their investment decisions.
The investors are normally sensitive for credit-risks and some investors are specifically
risk-averse for coal and nuclear technology. The largest investors in the market are
diversifying the portfolio.

Table A.7: Experiments including behavioural combination

The key-performance indicators to study the hypotheses are:

• Technology capacity mix in GW/technology

• Capacity margin in GW/year

• Electricity shortages in minutes/year

• Average electricity price in EUR/MWh

• Average CO2 price in EUR/MWh

• CO2 price volatility in %
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A.4 Analysis of results

This section of the Appendix includes the analysis of results. First the base-cases are analysed

to understand the basic model behaviour. Thereafter are the experiments analysed with extreme

parameter configurations as a validation step. Finally the plausible experiments are analysed.

The analysis procedure is described in the coming subsection.

The data analysis procedure

Data is analysed by making use of an R-script. This R-script contains the ability to read the

data files and provides functions to construct data visualizations. A data-analysis framework

is used to schematically analyse the results. This framework which is visualised in figure A.6

structures the analysis.

Input: .csv 
data files

Output: 
verification of 
hypotheses

3. visual analysis 
stacked, facetted and 
time-series plots

1. Writing scripts to 
structure, delete, extract 
and add data 

2. Writing scripts to 
analyse data monitor 
metrics, make plots and 
perform statistical tests 

4. Analyse and monitor 
metrics. Include 
statistics

5. Perform statistical 
tests to test relations, 
comparisons etcetera 

Figure A.6: Data-analysis framework

The analysis is presented in a sequential way following the number of the hypothesis. This

means that the analysis starts with the analysis of hypothesis H1 and ends with hypothesis H4.

The data-analysis ends with the interpretation and validation of results. The interpretation is

translated into conclusions in the synthesis chapter. Table A.8 shows the statistical tests which

are performed.

What to test Statistical test

H1 Whether there are substantial differences between the average ca-
pacities per technology of the base-case and the three designed algo-
rithms.

t-test

H2 Whether there is a significant correlation between the sensitivity
for credit-risks and investments in capital-intense technologies

regression-model

H3 Whether there is a significant correlation between the green market
tendency profile and investments in renewable capacity

regression-model

Table A.8: Statistical tests

The experiments are schematically described in the previous chapter of the Appendix. The

selected benchmark experiment is the connected Dutch and German electricity market governed

by the EU-ETS mechanism. The investors in this market include homogeneous profit only

investment behaviour. This benchmark is chosen because it reflects the North-West European
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market for a certain extent. The experiment does not include renewable energy policies like the

SDE+ or other feed-in tariff measures, but does include the carbon EU-ETS mechanism. The

initial portfolio situation reflects the German and Dutch technology portfolio. The fuel-price

time-series are based upon three DECC forecast [39]. The DECC time-series include low, medium

and an high fuel-price experiment. A second reason for the selected benchmark experiment is

that the investment algorithms are based upon empirical data of North West European investors.

The base-case or benchmark
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(b) Central fuel-prices
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(c) High fuel-prices

Figure A.7: Base-case capacity mix comparison for three fuel-price forecasts

The base-case in figure 4.2a including low fuel-prices show that gas technologies will increase

their capacity share position and that coal and renewable technologies will play a smaller role
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in terms of capacity share. More investment can be expected in CCS technologies under the

assumptions in the base-case3.

The base-case including central fuel-prices in figure 4.2b shows for some observations similar

results, but in here IGCC-CCS seems to be a larger competitor for gas technologies such as

CCGT-CCS and CCGT. The central fuel-price forecast gives coal a more competitive price

ratio towards gas which results in more coal investment. Like in the low fuel-price experiment,

investment in nuclear technology remains stable for equal reasons. Renewables get slightly more

attractive in this experiment since some investment in wind offshore is visible after 25 years.

The base-case including high fuel-prices in figure 4.2c shows an investment pattern which

could be a result of what is happening in reality at the moment in terms of fuel-prices. Gas

technologies are not able at the moment to compete with cheaper coal [65]. This results in

gas-based power plants which are not generating electricity at all and therefore cause losses

for electricity companies. Only the very flexible OCGT shows stable investment. Figure 4.2c

shows that in contrast with the previous base-cases that there is stable investment in lignite.

Notwithstanding the high carbon emission of lignite, the technology remains competitive enough

in relation to other technologies. The high fuel prices also result in more investment in nuclear

technology. Also more investment in renewable technology is visible.

Before the comparison with the experiments is presented is emphasized that the results (in-

vestment patterns) are valid for the combination of assumptions on e.g. technological improve-

ments, fuel-prices and demand. The experiments include a wide scale of parameter configurations

to ensure that many extreme configurations are analysed and discussed.

Extreme experiments

The analysis of extreme experiments includes the analysis of the experiments of group 2,3 and

4 presented in table 4.1. For all these experiments the investment patterns are presented in the

coming subsections. The investment patterns are analysed for the capacity in GW/year.

Experiments including credit-risks

This section elaborates on the results of the experiments including credit-risks. In total 14 exper-

iments are analysed on multiple investment related key-performance indicators. The experiments

include an increasing sensitivity for credit-risks. Scenario 1 includes the highest sensitivity for

credit-risks and experiment 14 the lowest. There are also experiments included where investors

have a fixed initial debt (representing less financial healthy investors). The experiments are

replicated more than 75 times to reduce stochastic model effects.

Figure A.8 shows the technology capacity diagram in case of the base-case and the case

where investors incorporate credit-risk. A first notice is that it seems when investors incorporate

credit-risk the portfolio development remains more diverse. There are multiple possible reasons:

1. Origin; The base-case investment algorithm includes a hard constraint. Here investors

can only invest when they are able of paying the down-payment which is around 30% of

the capital costs. The algorithm including credit-risk enables investors invest even when

the financial position of the investor is weak. This weak position will result in higher

interest-rates due to the lower credibility, but gives the investor more investment options

during the simulation.

3In all experiments technological improvement factors are included and uniform. The observations
here only hold for these assumptions. Further political and institutional factors are not included in the
scope.
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2. Origin; The second expected reason is that investors are more risk-averse for capital

intensive investments and therefore invest more in lower scale technologies. This state-

ments seems not to hold for nuclear technology because this capacity is increasing. This

is analysed in the second pattern.

The algorithm including credit-risk considerations include experiments where investors in-

clude an increasing sensitivity for credit-risk. This sensitivity implies that investors are more

or less sensitive for potential credit-risks4. The credit-risk mechanism in the base-case experi-

ment is that investors need to own 30% of the capital cost as a cash balance in order to invest.

The credit-risk algorithm gives investors the possibility to borrow money based on the financial

structure of the investor. In the table 4.3 are the interesting CR experiments listed. Experiment

CR-14 is the experiment where credit-risk mechanism is incorporated without any sensitivity,

the lower the experiment number the more sensitive investors are. This sensitivity indicates to

what extent investors make the trade-off between the obtained interest-rate offer from a financier

for a certain investment and the investment benefits. The first notable pattern from figure A.8

is that there is more investment in capital-intensive technologies. The two most capital intense

technologies are IGCC-CCS and Nuclear. In figure A.8 is visible that investors which are incor-

porating credit-risks without being sensitive for those risks start investing in more capital-intense

technologies like nuclear and IGCC-CCS. On the other hand is visible that nuclear and IGCC-

CCS investments become less popular when investors are more sensitive for credit-risks. There

seems to be a negative correlation between the sensitivity for credit-risk and the investments in

capital-intense technologies. This will be analysed later in this analysis.

The second analysed pattern are the investments in more capital-intensive technologies.

The two most capital intense technologies are IGCC-CCS and Nuclear. In figure A.8 the following

experiments are presented: experiment ”CR-S01” includes investors which are highly sensitive

for credit-risks, the higher the experiment ”S..” number, the less sensitive the investors are for

credit-risks. It is however notable that Coal-PSC-CCS becomes more present in the credit-

risk case although it is a capital-intense technology. It is visible that nuclear and IGCC-CCS

investments become less popular when investors are more sensitive for credit-risks. The expected

reasons is;

1. Origin; the expected reason for the lower dominant position of nuclear and IGCC-CCS

when credit-risks are taken into account are the evaluation of the credit-risks by the in-

vestors. The question ”Am I able to fulfil my obligations” will limit the number of invest-

ments in these two most capital-intense technologies when investors become more sensitive

for these risks.

2. Origin; the expected reasons that Coal-PSC-CCS becomes more dominant is followed

by the lowered investments in IGCC-CCS. As becomes visible is Coal-PSC-CCS slightly

cheaper and includes an higher expected cost improve (see table A.9).

The third analysed pattern includes the generation of electricity for the base- and credit-risk

case. This is visualized by using a facetted graph where al technologies are made visible. The

first notable pattern is the more dominant position of renewable electricity.

1. Origin; IGCC-CCS accounts in the base-case for a growth of around 125 GW in total,

since credit-risks lower that amount with around 100 GW other technologies will ”benefit”

from the situation. After twenty simulation years it is visible that renewable capacity

4For example: an investor in a weak financial position which is less sensitive for credit risk will still
accept loans while an investor which is more sensitive will not accept the offer.
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Figure A.8: Capacity mix extreme experiments including credit-risk

becomes more dominant, probably this is caused by a combination of reasons; 1. more

investment options due to flexible interest rates, 2. the lower number of investments in

IGCC-CCS and 3. the lowering number of available emission rights.

1. Origin; the credit-risk considerations of investors imply that investors will be less respon-

sive to electricity price signals.

2. Origin; the second expected reason is the more dominant renewable (intermittent) ca-

pacity which implies that more shortages are expected. The shortage is caused by the

stochastic generation potential of wind and photovoltaic technology. These shortages are

visible in figure.

The following behavioural patterns are observed by analysing the experiments and visual

plots;

1. More diversification incorporation of credit-risks by investors results in more technology
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Technology Initial investment
Cost

Cost improvement
factor

Capacity MW

CoalPSC 1.365.530 No 758

Lignite 1.700.000 No 1000

IGCC 1.724.880 -0.0036 758

CoalPSC CCS 2.457.950 -0.0098 600

IGCC CCS 2.501.080 -0.0075 600

CCGT 646.830 -0.0075 776

CCGT CCS 1.164.290 -0.0075 600

OCGT 359.350 No 150

Biomass 1.703.320 -0.0044 500

Wind 1.214.600 -0.0017 600

WindOffshore 2.450.770 -0.0205 600

PV 2.048.300 -0.0247 500

Nuclear 2.874.800 No 1000

Table A.9: Investment opportunities

capacity diversification.

2. Reticent with capital intense investments incorporation of credit-risks by investors

results in a more reticent attitude towards capital intense technologies like IGCC-CCS.

3. Larger diffusion of renewable capacity incorporation of credit-risks by investors re-

sults in a larger diffusion of renewable technologies.

4. E-price volatility investors which incorporate credit-risk seem to be less responsive and

prefer lower scale and less capital intense capacity.

The credit-risk consideration experiments show that prices will rise significantly when in-

vestors only incorporate credit-risk (in other words; borrow money based on their financial

structure) without being sensitive for those risks. In experiments where investors are more

credit-risk sensitive the prices converge more to the base-case experiment.

Experiments including technology preferences

Experiment TP-20 for the general content of the experiment includes no investors which have

a tendency5 towards renewable capacity, but only evaluate investments on profit and other fi-

nancial indicators. Experiment TP-18, TP-16, TP-14 and TP-12 include an increasing fraction

of investors which have a tendency to invest in sustainable technologies like wind and biomass6.

This means that experiment 12 has a higher fraction of renewable oriented investors than exper-

iment TP-14. It is visible that the increasing fraction of renewable oriented investors result in

an higher renewable generation capacity. This might be logical, but indicates that a tendency

towards renewables visually seems to have a substantial impact on the investments in the current

DECC fuel-price experiment. What this observation means for the hypothesis will be elaborated

on later in this section since this section provides only the descriptive analysis. CCGT also

becomes more attractive at the expense of IGCC-CCS due to the carbon footprint and limited

5A tendency means including e.g. the CO2 footprint and plant efficiency in the investment evaluation
6The number of renewable oriented investors in the market with divided by the total number of

investors in the market is called the fraction of renewable oriented investors. This fraction is defined as;
the green market tendency fraction
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Figure A.9: Capacity mix extreme experiments including technology-preferences

profitability caused by the increasing fraction of renewable generation capacity. In the TP ex-

periments, looking at renewable capacity development, wind technology becomes dominant and

photovoltaic and biomass remain unattractive.

In case of the experiments including technology-preferences is dependent on the investor’s

configuration how the price path evolves. It is visible that in the experiments above 40% green

market tendency the average prices are rising significantly. This is an indication that with this

market attitude a theoretical renewables cap is reached what we can handle in terms of security

of supply in the market. When there is to much investment in renewable generation capacity,

this will result in operational shortages.

Experiments including risk-averse behaviour

With the algorithm including risk-averse behaviour are 21 experiments performed with different

technology specific (or fuel) risk-averse profiles. In figure A.10 the capacity development of a
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Figure A.10: Capacity mix extreme experiments including risk-averse behaviour

selection of experiments including risk-averse behaviour are presented. The selected experiments

are considered interesting cases because they include extreme and plausible experiments. The

extreme experiments are visualized to support the validation of the model.

Figure A.10 shows that risk-averse behaviour towards nuclear technology results in almost no

new investments in this technology. Risk-averse behaviour towards coal seems to have less effect

due to the high fuel price, CO2 emission cap and low technological expected development which

made coal already a non-attractive technology without the CCS sequestration technology. In

experiment RA-21 where investors include a strong tendency towards portfolio diversification is

visible that the distribution among technologies is more equal. In the experiments including risk-

averse behaviour towards renewables the investments in nuclear technology increase intensively.

This has probably to do with the large interconnection capacity between the Netherlands and

Germany7. The high initial fraction of renewable capacity in Germany gives no place for nuclear

7This is done to create one market and incorporate dynamic effects between the portfolio’s
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investments which are therefore done in the Netherlands. The experiment including risk-averse

behaviour to all investment options results in an increasing capacity for renewables and gas-

based technologies. This development emerges at the expense of nuclear technology which gets

less dominant than in the base-case. This pattern can be explained by two reasons. The first

reason is that nuclear technology incorporates the highest risks and second that the technology

competes with the less riskier renewable capacity. Before the mentioned observations will be

interpreted, statistical t-tests will be presented to present whether differences in investments are

significant or not.

Plausible experiments

This section includes all the graphs which are used to support the conclusions. The first three

graphs include the technology mix comparison for all experiments listed in 4.3. These figures

include all experiments.
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(c) High fuel-prices

Figure A.11: Technology mix comparison for all plausible experiments
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For all these graphs are also t-tests performed which provide insight whether differences are

substantially different. A short explanation is presented on the box-plots.

Explanation of the box-plot shows one graph per experiment (experiment 2 to 7). One
graph includes one box-plot per technology, so 13 in total per graph. One box-plot contains
40 t-tests indicating whether a technology has a significant different average capacity in
relation to the base-case during the whole simulation. This box-plot makes it possible to
measure the overall (over 40 years) differences more accurate than just testing different
points in time. When the box (IQR) is above a p-value of 0.025 the technology can be
considered not substantially different from the base-case. A visible box therefore means, no
substantial difference.

technology Low Central High
N: Nuclear 0 0 5
C: Coal 0 0 0
C+: Coal CCS 5 5 2
I: IGCC 5 5 4
I+: IGCC-CCS 0 2 4
O: OCGT 6 2 3
CT: CCGT 2 2 0
CT+: CCGT CCS 4 3 2
L: Lignite 0 0 0
W: Wind 3 4 0
P: Photovoltaic 0 0 0
WO: Wind offshore 6 6 6
B: Biomass. 5 1 1

Cumulative 36 30 27

Number of boxplots (LQR) with p-value < 0.025
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Figure A.12: T-test comparison

The y-axis represents the p-value.

x-axis technology x-axis technology x-axis technology
N Nuclear I+ IGCC CCS P Photovoltaic
C Coal O OCGT WO Wind offshore
C+ Coal CCS CT CCGT B Biomass.
I IGCC CT+ CCGT CCS
L Lignite W Wind

legend for box-plot plots
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The following graphs show the average CO2 prices among all experiments. These figures give

insight in how the CO2 price development is for different experiments described in the previous

chapter.
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The following graphs show the average CO2 price and volatility for all experiments. These

figures give insight in how the CO2 price and volatility is for different experiments described in

the previous chapter.
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Figure A.13: Aggregated CO2 price volatility and mean for all experiments
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Experiment
nr.

σlow %
∆base

σcentral %
∆base

σhigh %
∆base

1 - base 168 66 108
2 181 8% 23 -66% 81 -25%
3 186 11% 59 -11% 109 1%
4 191 14% 59 -11% 111 3%
5 187 11% 63 -5% 110 2%
6 153 -9% 21 -69% 70 -35%
7 180 7% 36 -45% 67 -38%
8 154 -9% 20 -70% 55 -49%
9 188 12% 78 17% 111 3%
10 161 -4% 25 -62% 44 -59%

min 153 -9% 20 -70% 44 -59%
max 191 14% 78 17% 111 3%

Descriptive statistics CO2 price volatility comparison

Experiment
nr.

σlow %
∆base

σcentral %
∆base

σhigh %
∆base

1 - base 120 64 110
2 125 4% 50 -22% 99 -10%
3 137 14% 61 -6% 113 2%
4 140 16% 61 -6% 114 4%
5 137 14% 63 -2% 115 4%
6 91 -24% 47 -26% 89 -20%
7 124 3% 54 -15% 88 -20%
8 94 -22% 49 -24% 84 -23%
9 133 10% 64 -1% 116 5%
10 103 -14% 51 -21% 80 -27%

min 91 -24% 47 -26% 80 -27%
max 140 16% 64 -1% 116 5%

Descriptive statistics CO2 price mean comparison

131



R. Verweij • Modelling Power Plant Investment Behaviour •

Further details on the electricity prices are:

Experiment Mean Median Variance σ IQR MAD

D-Central-10 50.8431 50.83507 621.8471 24.93686 11.87207 8.774321
D-Central-2 50.18444 50.74611 511.8707 22.62456 12.80673 9.482867
D-Central-3 60.53711 51.10411 3464.8881 58.8633 17.87828 13.436991
D-Central-4 60.60996 52.60136 3502.0836 59.1784 17.50013 12.658254
D-Central-5 63.23025 52.83888 3961.3899 62.93957 14.76178 10.825923
D-Central-6 47.40576 50.26837 431.1388 20.76388 19.70461 11.57493
D-Central-7 54.34855 53.32452 1314.4966 36.25599 14.97342 10.016253
D-Central-8 48.68985 50.1846 404.2886 20.10693 13.20836 9.270111
D-Central-9 63.74529 53.85292 6063.5931 77.86908 19.11171 11.40894
D-Central-
Base

64.30284 55.48291 4411.5796 66.41972 14.53438 10.566771

D-High-10 80.33422 79.9189 1944.816 44.10007 31.99045 22.132558
D-High-2 99.33539 86.1567 6521.8924 80.75823 36.23848 26.796176
D-High-3 112.95896 85.19361 11851.768 108.86583 56.16065 42.476013
D-High-4 114.1741 84.40208 12358.342 111.16808 60.4946 46.197355
D-High-5 115.11172 85.36672 12031.812 109.68962 58.98939 43.934128
D-High-6 88.68907 81.50553 4900.0698 70.0005 48.00548 34.434998
D-High-7 87.74264 79.6093 4532.6692 67.3251 48.29971 34.879925
D-High-8 84.45784 81.26548 3038.3266 55.12102 31.55058 22.277877
D-High-9 115.88575 85.69923 12232.999 110.60289 68.71139 53.49523
D-High-Base 110.27802 81.68242 11630.284 107.84379 65.91465 50.417007
D-Low-10 103.02792 29.64797 26008.76 161.27232 37.83442 10.701051
D-Low-2 125.19849 29.38324 32870.604 181.30252 64.24314 12.20401
D-Low-3 136.67644 34.56831 34704.944 186.29263 99.90765 19.137378
D-Low-4 139.88223 31.51143 36669.987 191.49409 99.93905 15.045727
D-Low-5 137.38958 34.31221 34977.375 187.02239 98.36319 19.090251
D-Low-6 91.40184 27.55436 23548.65 153.45569 15.50534 6.03173
D-Low-7 124.24213 30.01392 32485.781 180.23812 63.92655 10.415083
D-Low-8 94.35491 28.79363 23666.743 153.83999 30.4672 8.19858
D-Low-9 132.91357 30.78338 35250.767 187.75187 80.81804 10.728544
D-Low-Base 120.34934 32.57982 28298.958 168.22294 76.67134 18.650834

Table A.10: Statistical indicators CO2 emission right price
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Individual observations

Below some observations are presented which fall outside of the scope of the research.

Subjective blindness

From batch-runs including experiments with technology-preferences is a pattern recognized which

is called subjective blindness”. When a large fraction of investors in the market include a strong

homogeneous tendency towards the sustainability of an investment, intermittent capacity gets

highly preferred. This results in a situation where a large number of investors remains investing

in the intermittent capacity which is considered profitable resulting in a decreasing operational

capacity. This ensures that there is enough theoretical nominal capacity to serve the market,

but high prices remain dominant due to the shortages caused by the high fraction of intermittent

capacity with a stochastic power output. In reality this investment behaviour would not be

preferable taking public interests into account. Besides that it is not a plausible experiment

that investors remain investing in sustainable capacity due to the economical unattractiveness

under the EU-ETS experiment with current policies IEA fuel-price forecasts. However in the

experiment where there exists a solution for electricity storage like electrical vehicles, electrolysis

and other power to gas solutions, this experiment could be preferable. In this situation the

government should intervene to ensure the security of supply.

Relation to observation in reality: In 2003 when the Dutch government introduced
the Ministeriële regeling Milieukwaliteit Elektriciteitsproductie, also known as MEP, there
was a run on sustainable capacity by investors because the policy gave a strong financial
incentive. In the end the government had to stop this policy measure because there was no
financial cap and costs grew sky-high, it was considered to successful.

Crucial decisions

From individual runs with experiments including credit-risk often ”crucial investment decisions”

where recognized. These crucial investment decisions are decisions made by investors in a weak

financial position. That means investors with a very negative cash-balance and high fraction

of debt in relation to the asset value position. There are two types of crucial decisions recog-

nized. The first is the crucially wrong decisions. This investment decision is recognized when

a financially weak investor invests in a technology with unexpected disappointing results. Due

to the weak financial position the interest-rate for the loan is high pushing the weak investor

further into a even worse financial position due to the high loan-costs. The consequence of this

decision is that the market-share of these investors shrink after the crucially wrong decision due

to the incompetence to invest in the following years. This incompetence is caused by the high

interest-rate wherefore the investor needs to borrow money due to the high probability of default.

One important notion is that when this investor has a significant portfolio this could result in

a market shock related to prices. In this situation it could take more than five years for the

investor to recover from the fragile position. This is because the other investors in the market

are (in the first period, where still lower prices are dominant) not able to provide the financial

power to invest enough in case of increasing demand. This results in increasing prices and a

investment cycle time to recover from shocks. In this situation the assumptions is made that

there are no new market entrances.

The second crucial decision is the financially weak investor which is due to the credit-risk

mechanism still able to invest in a very profitable technology notwithstanding his weak financial
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status. When the profits from this investment are even better than expected the investor can

draws himself out of the fragile financial position. When this investor owns a significant portfolio

in relation to the market a stabilizing market (in terms of electricity prices) is expected.

Relation to observations in reality: The company situation here is comparable with
a phoenix company (defined in [84]) that emerged through the ”almost” collapse of a for-
mer by insolvency. The investor in the simulation did not default, but remained existing.
Comparable cases in history in terms of ”market-value” are Nokia and DSM. DSM went
almost broke in 1970, but invested in chemical industry and became after that investment
decision successful again. Another example is Nokia which market value dropped from $40
in 2007 to $2 in 2012. After investing in the Nokia Lumia 920 the market-share is increasing
again. Whether such a situation could happen in the electricity sector is doubtful due to
the importance of security of supply and strict regulation

First ”good” mover advantage

From individual runs with experiments including credit-risk considerations ”first good mover

advantages” are recognized. There are investment windows for new technologies (e.g. CCS

technologies or even turning point between competitive technologies) which can provide large

advantages for the investor who invests on the right moment in time. This investment window

is the moment that a new innovation becomes economically viable like IGCC-CCS. When an

investor invests to early and obtains worse results due to these ”bad” timed investments, suffer

from that starting position for years. The other investors who invested at the right time seem

to have a stronger future financial position and tend to perform better in runs by means of a

growing market-share, lower (loan) costs and a more healthy cash position.

Highest significant differences in investments

Looking at the earlier presented t-tests (figure 4.4a, 4.4b and 4.4c) including the verification

whether the average capacity over time is considered significantly different from the base case

gave divergent outcomes. Scenarios including credit-risks showed that mainly the capital-intense

technologies showed significant differences in capacity averages. Interesting observation is that

the base-case is almost similar to experiment 8 which includes high sensitivity for credit-risk.

This seems understandable since the base-case required 30 % capital cost cash balance before

the investor is able to invest. In these experiments, the average capacity of Coal, Wind, IGCC

and Biomass are almost never significantly different from the base-case. Scenario’s including

technology-preferences showed that subjective factors have a very strong effect on changing

investments. Almost all technologies showed a significant difference with the base-case. Only

photovoltaic and lignite remain insignificant. Scenarios including risk-averse behaviour showed

a smaller effect on significant differences in capacities. A reason for the low faction of significant

differences is that risk-averse behaviour mainly causes a decreased responsiveness for investment

signals.
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A.5 EMlab-generation code

The EMLab-generation code can be found by the following url: https://github.com/RubenVerweij/

emlab-generation/tree/feature/investmentBehaviour. Information about installing and set-

ting up the model can be found to the wiki page (github). The modelling process can be tracked

by looking at the code commits https://github.com/RubenVerweij/emlab-generation/commits/

feature/investmentBehaviour?page=1. One code example which describes how an investor cal-

culates his debt and asset position is presented below:

i f ( agent . g e t Inve s to r Inc ludeCred i tR i sk ( ) . equa l s (” t rue ”) ) {
f o r ( PowerPlant p lant : reps . powerPlantRepository .

findPowerPlantsByOwner ( agent ) ) {
i f ( p lant . getLoan ( ) . getNumberOfPaymentsDone ( ) < plant . getLoan ( ) .

getTotalNumberOfPayments ( ) ) {
long paymentsLeft = plant . getLoan ( ) . getTotalNumberOfPayments

( )
− plant . getLoan ( ) . getNumberOfPaymentsDone ( ) ;

double amountPayment = plant . getLoan ( ) . getAmountPerPayment ( )
;

debtTotal += ( paymentsLeft ∗ amountPayment ) ;
} e l s e {
}
i f ( p lant . getLoan ( ) . getNumberOfPaymentsDone ( ) < plant .

getTechnology ( ) . getDeprec iat ionTime ( ) ) {
double p l an t Inve s t edCap i ta l = plant . ge tActua l Inves t edCap i ta l

( ) ;
double depreciationTermAmount = p lant Inve s t edCap i ta l / p lant

. getTechnology ( ) . getDeprec iat ionTime ( ) ;
a s s e tP lantTota l += plant Inve s t edCap i ta l −

depreciationTermAmount ;
} e l s e {
}
i f ( debtTotal == 0) {

debtTotal = 1 ;
} e l s e {
}
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