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Energy transfers within large-eddy simulation(LES) and direct numerical simulation(DNS) grids
are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational
multiscale LES methods are compared with DNS results. Both models underestimate the DNS
results for a very coarse LES, but the dynamic Smagorinsky model is significantly better. For
moderately to well-refined LES, the dynamic Smagorinsky model overestimates the spectral eddy
viscosity at low wave numbers. The multiscale model is in good agreement with DNS for these
cases. The convergence of the multiscale model to the DNS with grid refinement is more rapid than
for the dynamic Smagorinsky model. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1789157]

I. INTRODUCTION

The transfer of energy between different scales of mo-
tion in a turbulent flow has been studied widely for homoge-
neous isotropic turbulence. The flow of energy between dif-
ferent wave number modes is often expressed using the
concept of an eddy viscosity. Heisenberg1 examined the loss
of energy, in the Fourier domain, from modes within the
intervalk=f0,kcg to modes outside the interval. The transfer
of energy from a mode belowkc to modes beyondkc was
represented by an additional viscosity, acting on the modes
below kc.

Theoretical studies of Kraichnan2 involved choosing an
arbitrary wave number cutoff(analogous to a filter) and ex-
amining the form of the energy transfer to modes beyond the
cutoff. Assuming infinite Reynolds number, Kraichnan2 iden-
tified the existence of a strong cusp in the spectral eddy
viscosity near the cutoff wave number, and a plateau at low
wave numbers(low relative to the cutoff). It was predicted
that significant energy would be transferred from low wave
numbers to wave numbers beyond the cutoff, owing to the
presence of the plateau. However, the dominant mechanism
of energy transfer was the cusp, which represented local in-
teractions between modes below and near the cusp with
modes having wave numbers no larger than twice the cutoff.

Following the theoretical studies of Kraichnan,2 the
spectral eddy viscosity for homogeneous isotropic turbulence
has been studied by direct numerical simulations(DNS). The
spectral energy transfer can be calculated from a DNS data-

base by introducing an arbitrary cutoff below the DNS limit
of resolution.3,4 The eddy viscosity is calculated by examin-
ing the energy transfer from a mode below the cutoff to
resolved modes beyond the cutoff. These calculations give an
indication of the eddy viscosity that would be required for an
effective large eddy simulation(LES) in which the cutoff
corresponds to the LES limit of resolution. DNS results con-
firmed the presence of a cusp close to the cutoff wave num-
ber. However, no plateau at low wave numbers was found for
moderate to high cutoffs in the low Reynolds number studies
of Domaradzki, Liu, and Brachet,3 which indicate that no
eddy viscosity on low wave number components in a LES
would be required to replicate the DNS energy transfer.

McComb and Young4 studied energy transfers at some-
what higher Reynolds numbers. The spectral eddy viscosity
was calculated from the a DNS of homogeneous isotropic
turbulence with 2563 points, with a cutoff placed at a wave
number below the limit of DNS resolution. The cutoff acts as
an “explicit” filter, where all Fourier modes above a specified
wave number are eliminated. Negligible energy transfer was
observed from low wave number modes(relative to the ex-
plicit filter—the cutoff) to modes beyond the cutoff for
higher values of the cutoff. Decreasing the cutoff wave num-
ber, the strength of the cusp increased. Only for the lowest
cutoff was a plateau present.

Lesieur and colleagues have parametrized the plateau
and cusp assuming ak−5/3 range has developed at the cutoff
(see Lesieur and Rogallo,5 Metais and Lesieur6), and shown
a nonzero plateau which is close to that predicted by the
test-field model2 and the eddy damped quasinormal Markov-
ian (EDQNM) kinetic energy transfer model.7 We also wisha)Author to whom correspondence should be addressed.
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to draw the reader’s attention to the recent study of Cerutti,
Meneveau, and Knio8 who have considered spectral eddy
viscosities determined from experimental data.

Large-eddy simulations have been tested widely for ho-
mogeneous isotropic turbulence. The relative simplicity of
the problem and the availability of well-resolved DNS re-
sults make it an attractive test bed. The variational multiscale
method for the LES simulation of homogeneous isotropic
turbulence was presented in Hugheset al.9 The velocity field
was partitioned into coarse-scale(low wave number) and
fine-scale (high wave number) components. The subgrid
scale stress was then made a function of the fine-scale veloc-
ity field, and applied only to the fine-scale motions. Effec-
tively, the LES model extracted energy only from high wave
number modes. The method has a variational basis, as it
relies on “projecting” the subgrid model onto the fine-scale
motions,10 and it was shown to outperform conventional LES
models in Hugheset al.9 It appeared that extracting energy
only from high wave number modes led to better results than
formulations which extract energy from all modes. Subse-
quent studies have also confirmed the good behavior of the
variational multiscale method on a variety of problems: see
Hughes, Oberai, and Mazzei,11 Winckelmans and Jeanmart,12

Oberai and Hughes,13 Farhat and Koobus,14 Jeanmart and
Winckelmans,15 Holmen et al.,16 Koobus and Farhat,17 Ra-
makrishnan and Collis.18–21

In this work, the spectral eddy viscosities for the con-
ventional dynamic Smagorinsky model and the variational
multiscale model are calculated and examined for a range of
discretizations. The spectral eddy viscosity is decomposed
into terms associated with Reynolds-type interactions, cross-
stress interactions, and the model. The results from the LES
are compared with DNS data. Based on the results, conclu-
sions are drawn as to the merits and deficiencies of the two
LES models.

II. FORMULATION

The results presented in this work are simulations of
homogeneous isotropic turbulence in a periodic box com-
puted from DNS, the conventional dynamic Smagorinsky
model, and the variational multiscale method. In this section,
the formulation of the variational multiscale method for the
simulation of homogeneous isotropic turbulence is briefly
described.

In the multiscale formulation, the velocity field is parti-
tioned into coarse-scalesūd and fine-scalesu8d components.
In a spectral context, the coarse-scale component is given by

ū = o
uku,k̄

ûk expsik ·xd, s1d

wherek= uk u and k̄ defines the partition between coarse- and
fine-scale components. The fine-scale motions then involve

all resolved Fourier modes greater than and equal tok̄.

u8 = o
ukuùk̄

ûk expsik ·xd. s2d

The Navier–Stokes momentum equation in the Fourier
space with the multiscale subgrid model is given by9

S d

dt
+ nuk u2Dûk = − ik p̂k − fsu ^ ûdk − Hsk − k̄dt̂kg, s3d

whereH is the Heaviside function[Hsxd=1 if xù0, other-
wise Hsxd=0]. Equation(3) implies that the subgrid stress
term acts only on the fine-scale modes. ReplacingHsxd by 1,
a conventional LES model is recovered.

For conventional dynamic Smagorinsky and variational
multiscale simulations, the Smagorinsky parameterCsD is
calculated using the dynamic procedure.22,23 The eddy vis-
cosity at each point is then given by

nT = sCsDd2u¹suu, s4d

where u¹suu=s2¹su :¹sud1/2. For the conventional dynamic
Smagorinsky model, the subgrid stress is then calculated in
the usual fashion and applied to all scales. For the multiscale
model, the subgrid stress is calculated as

t = 2nT¹su8, s5d

which involves the gradient of the fine-scale velocity field.
Hugheset al.9 used the constant Smagorinsky model in com-
bination with the multiscale method. Note however that here,
the termCsD is calculated using the dynamic procedure.

III. NUMERICAL RESULTS

The numerical simulations are performed in a cube with
a side length of 2p and periodic boundary conditions. A
schematic illustration of the cube is presented in Fig. 1. The
cube denotes a lattice in wave-vector space and each point in
the lattice corresponds to a resolved Fourier mode. If the
edge of the cube has length 2k8, then the wave number of the
highest Fourier mode present isÎ3k8. The sphere depicts the

internal cutoff k̄ which is taken to beÎ3k8 /2. In the multi-
scale cases, the interior of the sphere corresponds to the
coarse-scale subspace, whereas the complement corresponds
to the fine-scale subspace. The coarse-scale subspace is thus
<34% of the total space.

FIG. 1. Schematic illustration of the Fourier modes present in the
simulations.
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The numerical results are calculated using a pseudospec-
tral method. Nonlinear terms are integrated using a four-step,
third-order Runge–Kutta scheme and terms due to molecular
viscosity are integrated using the integrating factor method.
Nonlinear convective terms are de-aliased using the 3/2 rule.
Terms relating to the LES model are not de-aliased. For all
calculations, the initial flow field is taken from a well-
developed DNS with 2563 Fourier modes. The initial energy
spectrum, together with relevant resolution limits for follow-
ing simulations, is shown in Fig. 2(a). Note that three re-
gimes of the spectrum are identified in Fig. 2(a), correspond-
ing to approximate slopes of −1, −5/3, and −6. The −5/3
regime extends from aboutk=10 tok=30. Beyondk=30, the
slope asymptotes smoothly to −6.

All plots of spectral eddy viscosity have been presented
on the same scale to allow quantitative comparisons.

A. DNS results

The flow is advanced for approximately one large-eddy
turnover time at a resolution of 1603 Fourier modes. The
energy spectrum is shown in Fig. 2(b). To place LES results
in context, the spectral energy transfer for direct numerical
simulations with various cutoffs is first examined.

The energy transfers, expressed as spectral eddy viscosi-
ties, due to Reynolds stress interactions, cross-stress interac-

tions, and the sum of the two are shown in Fig. 3. The spec-
tral eddy viscosities are shown in Fig. 3 with three different

spherical cutoffs:k̄=8Î3; 16Î3; and 24Î3. These values ofk̄

are identified in Fig. 2. The first cutoff,k̄=8Î3, is at the

beginning of thek−5/3 regime; the second,k̄=16Î3, is close

to the end of it; and the third,k̄=24Î3, is within the dissipa-
tion regime. The calculated eddy viscosity represents the

transfer of energy from modes belowk̄ to modes betweenk̄
and the DNS limit of resolution.

FIG. 2. DNS energy spectrum for(a) initial 2563 DNS; and(b) final 1603

DNS energy spectrum advanced from 2563 initial DNS for one large-eddy

turnover time. The various values ofk̄ are indicated by the dashed lines, and
the −5/3 region is bounded approximately by the dotted lines(k=10 and
k=30).

FIG. 3. Spectral energy transfer for a range of cutoffs for 1603 DNS.
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From Fig. 3, a significant plateau in the spectral eddy

viscosity clearly exists for thek̄=8Î3 case at low wave num-
bers, and the cusp is weak. This case is representative of the
energy extraction that would be required for a very coarse

LES. Increasingk̄ to 16Î3, the spectral eddy viscosity takes
on the classic plateau-cusp profile. There is a small plateau at
low wave numbers which is due to Reynolds stress interac-

tions. Cross-stress interactions lead to the typical cusp ask̄ is

approached. Examining the spectral eddy viscosity fork̄
=24Î3, Reynolds stress interactions are insignificant across
all wave numbers, and energy transfers are primarily due to
cross-stress interactions. In the absence of a plateau, the en-
ergy transfer from low wave number modes to modes be-

yond k̄ is negligible.

Remark. The case ofk̄=8Î3 is coarse enough to be rep-
resentative of the inviscid case. This is confirmed by com-
puting the value of the eddy viscosity plateau from the pa-
rametrization given by Lesieur and Rogallo5 and Metais and
Lesieur,6 which is predicated on the cutoff being within the

k−5/3 range. In this case,nT/n=0.267ÎEsk̄d / k̄/n<0.005/n
=5.3. This value is comparable to the computed plateau,
nT/n<0.006/n=6.3, but slightly less which is consistent

with the fact that the slope atk̄ is in the range ofk−m with m
slightly less than 5/3. Inviscid cases have been thoroughly
studied in Lesieur and Rogallo5 and Metais and Lesieur,6

confirming the test-field model of Kraichnan2 and the

EDQNM calculations of Lesieur.7 For the casesk̄=16Î3 and

k̄=24Î3, the Lesieur–Metais–Rogallo parametrization gives
values ofnT/n much higher than those computed, which is
consistent with the fact that for these cases the cutoff is in the
range ofk−m with m.5/3. In this situation, the “spectral
dynamic” model (see Lesieur24), which is applicable for
m.5/3, may be utilized to obtain more accurate estimates
of nT/n.

B. LES energy transfers: Addition of the model
component

The spectral eddy viscosity is now examined for the dy-
namic Smagorinsky and multiscale LES models. Simulations
are performed with 323, 643, and 963 Fourier modes. For

each LES,k̄ is placed at half the limit of resolution, namely,

k̄=8Î3, 16Î3, and 24Î3, respectively, which is the same
placement as for the DNS spectral eddy viscosity calcula-
tions. We consider these LES to be very coarse, moderately
refined, and well refined, respectively. These characteriza-
tions are supported by the energy spectra, shown in Fig. 2.
The spectral eddy viscosity is decomposed into components
corresponding to Reynolds stress interactions, cross-stress
interactions, and the LES model. The sum of these compo-
nents is compared to the DNS total spectral eddy viscosity

for the samek̄. Ideally, the addition of the model contribution
to the sum of the Reynolds and cross-stress spectral eddy
viscosities will bring the total spectral eddy viscosity to that
for the DNS. In the following figures, the relevant DNS

spectral eddy viscosity is shown in gray. For the LES results,
the model eddy viscosity is shown up to the limit of LES

resolutionsk/ k̄=2d.
The spectral eddy viscosity for a series of LES with the

conventional dynamic Smagorinsky model is shown in Fig.
4. For the least-well-resolved case[Fig. 4(a)], it is clear that

FIG. 4. Dynamic Smagorinsky model: spectral energy transfer for a range of
discretizations and cutoffs.
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LES energy transfers due to Reynolds and cross-stress inter-
actions are too small compared to the DNS result because

there are too few modes betweenk̄=8Î3 and the limit of
resolution. The model compensates somewhat for this defi-
ciency in the low wave number region, but the model supple-
ments the Reynolds and cross-stress interactions insuffi-
ciently to reach the DNS dissipation level. For the better
resolved LES[Figs. 4(b) and 4(c)], the spectral eddy viscos-
ity due to Reynolds-type interactions is small, as it was in the
DNS case. The cross-stress contribution to the energy trans-
fer is also small at low wave numbers, but exhibits the cusp

neark̄. Generally, the total spectral eddy viscosity for the two
better-resolved dynamic LES cases match the DNS spectral

eddy viscosity well close tok̄. However, the differences are
significant at lower wave numbers. The deviation in the spec-
tral eddy viscosity from the DNS result is attributable to the
contribution of the model at low wave numbers. While the
DNS eddy viscosity is small to negligible at low wave num-
bers, the model contribution is significant. Curiously, for all
cases, the model contribution is nearly constant across all
wave numbers. It can be summarized from Fig. 4 that the
dynamic Smagorinsky model introduces spurious dissipation
at low wave numbers for moderately to well-resolved LES.

The spectral eddy viscosity for a series of multiscale
LES is shown in Fig. 5. The discretizations and partitions are
the same as those for the dynamic Smagorinsky model. Con-
sistent with the multiscale concept, the model eddy viscosity

is zero belowk̄, and actsonly beyondk̄, as can be seen in
Fig. 5. For the coarsest discretization[Fig. 5(a)], the multi-
scale model is unable to represent the significant plateau at
low wave numbers. For the better resolved cases[Figs. 5(b)
and 5(c)], the multiscale results correspond very well with
the DNS results. The absence of a model acting at low wave
numbers avoids the spurious plateau, leading to results which
are in good agreement with the DNS results.

The spectra for the multiscale LES are compared to the
1603 DNS at the end of the simulation time in Fig. 6. As
expected, based on the previous results, the spectra for the
two better resolved multiscale LES match the DNS spectrum

up to the k̄ cutoff very well. In the coarse case, the LES
spectrum lies above the DNS, which is consistent with the
fact that the spectral eddy viscosity is significantly underes-
timated in this case. In all multiscale cases, the LES spectra

drops abruptly below that of the DNS fork. k̄. Note that the
LES spectra are shown up to the limit of resolution.

Remark. It is important to note that there are differences
in the multiscale method utilized in this paper and that em-

ployed in our initiatory study.9 In Hugheset al.,9 k̄=k8 /2 and
a static Smagorinsky-type model was used in the fine scales.

Here, k̄=Î3k8 /2 and a dynamic Smagorinsky-type model is

used. In the present casek̄ is quite close tok8. The abrupt

drop in the energy spectrum beyondk̄ noted here(see Fig. 6)

was not observed in our earlier study whenk̄ was smaller
compared withk8. No effort has been made yet to determine

optimal values ofk̄ for homogeneous isotropic flows. An

initiatory study of the sensitivity of results to the ratiok̄/k8,

with k8 fixed, for channel flows is presented in Holmenet

al.16 There it was observed that smaller ratios ofk̄/k8
s<0.5d better suited the dynamic multiscale model and

larger ratios ofk̄/k8 s<0.7d performed better for the static
multiscale model. It has not yet been determined whether
this trend is generally applicable.

FIG. 5. Multiscale model: spectral energy transfer for a range of discretiza-
tions and cutoffs.
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C. Comparison of the dynamic and multiscale models

From the preceding results, it is clear that, for the better
resolved calculations, the spectral eddy viscosity for the mul-
tiscale case is closer to the DNS results than the dynamic
Smagorinsky case. To examine the differences between the
dynamic Smagorinsky and multiscale models, the total spec-
tral eddy viscosity(Reynolds stress plus cross-stress plus
model contribution) for the two LES models is compared in
Fig. 7. As a reference, the DNS total is included. Figure 7
shows the total eddy viscosity for the two LES models and

the DNS for k̄=8Î3, 16Î3, and 24Î3. For the coarsest dis-
cretization, both LES models underestimate the spectral eddy
viscosity across all wave numbers, although the contribution
of the dynamic model to the low-mode dissipation leads to a

better result than with the multiscale model. For the better
resolved cases, the multiscale model is in better agreement
with the DNS, across all wave numbers.

For each LES case and the DNS, the spectral eddy vis-
cosity is now decomposed into its Reynolds-type and cross-
stress components. Figure 8 shows the Reynolds stress con-
tribution to the spectral eddy viscosity. Clearly, for the coarse
discretization the Reynolds stress contribution for the LES is
very small compared to the DNS. However, upon refining the

FIG. 6. Multiscale energy spectra(solid line) after one eddy turnover for(a)

k̄=8Î3, k8=15; (b) k̄=16Î3, k8=31; and(c) k̄=24Î3, k8=47. The 1603 DNS
spectrum, given by the dashed line, is provided for comparison. The −5/3
region is bounded approximately by the dotted lines(k=10 andk=30).

FIG. 7. Comparison of the total spectral eddy viscosity for the LES models.
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discretization, the Reynolds-stress component becomes ex-
tremely small for all cases and even slightly negative for the
finest DNS. Figure 8 shows how rapidly the low wave num-
ber plateau(which is due to Reynolds stresses) vanishes with
improved resolution.

Figure 9 shows the spectral energy transfer attributable
to cross-stress interactions. For all cases, both LES formula-
tions are in reasonable agreement with the DNS result. For
the coarsest resolution, the low wave number spectral eddy

viscosity due to cross-stress interactions is low relative to the
eddy viscosity due to Reynolds stress interactions[Fig. 8(a)].
For the better resolved cases, the low-wave number eddy
viscosity due to cross-stress interactions is effectively zero
for all cases.

The spectral eddy viscosity due to Reynolds-type and
cross-stress interactions for the conventional dynamic Sma-
gorinsky model is reasonably close to the corresponding
quantities from the DNS. However, the total spectral eddy

FIG. 8. Reynolds stress contribution to the spectral eddy viscosity for LES. FIG. 9. Cross-stress contribution to the spectral eddy viscosity for LES.

4050 Phys. Fluids, Vol. 16, No. 11, November 2004 Hughes, Wells, and Wray

Downloaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



viscosity deviates from the DNS results. For moderately to
well-resolved cases, the error is introduced by the model,
which is ironically introduced to improve the representation.
The model introduces a low wave number plateau to the
spectral eddy viscosity which is not present in the DNS re-
sults.

D. Convergence

A global measure of the error in the eddy viscosity, cor-
responding to Fig. 7, is given by

e=E
0

1

unT
LESsk̃d − nT

DNSsk̃dudk̃/n, s6d

where

k̃ =
k

k̄
. s7d

This quantity is presented in Fig. 10 for all the cases studied.
For the coarsest discretization, the error is smaller for the
conventional dynamic Smagorinsky model, whereas the mul-
tiscale model is more accurate for the better resolved simu-
lations.

IV. CONCLUSIONS

The spectral eddy viscosities for a conventional dynamic
Smagorinsky LES model and the multiscale LES model have
been examined and compared to DNS results.

For the coarsest discretization, the dynamic Smagorin-
sky model spectral eddy viscosity is closer to that for the
DNS than the multiscale model, owing to the introduction of
eddy viscosity to the low modes. For moderately to well-
refined simulations, the conventional dynamic Smagorinsky
model overestimates the eddy viscosity in low wave number
modes. The eddy viscosity introduced by the dynamic Sma-
gorinsky model is nearly constant across all wave numbers.
While the model has the ability to adapt itself to a flow, its

distribution is nearly uniform across the Fourier modes and it
appears unable to partition itself appropriately to the differ-
ent scales of motion in the flow.

For the moderately- to well-refined cases, the multiscale
spectral eddy viscosity more accurately approximates that for
the DNS than the conventional dynamic Smagorinsky model.
In particular, as the discretization is refined, convergence to
the DNS is more rapid than for the conventional dynamic
Smagorinsky model. However, the multiscale model signifi-
cantly underestimates energy transfers from the low-wave
number part of the spectrum to unresolved modes in the
coarsest case. This is important because practical calcula-
tions with LES may behave in a similar fashion to this case.

These results provide additional understanding of the be-
havior of the multiscale model and the conventional dynamic
Smagorinsky model for homogeneous isotropic flows and
suggest research directions that may lead to further improve-
ments. In the case of the multiscale method, the representa-
tion of the short-range action of the cusp near the cutoff by a
fine-scale eddy viscosity model seems to be a simple and
adequately accurate procedure. The issue of how to model
the plateau, that is, the long-range transfers from the low
wave number part of the spectrum to the unresolved modes,
appears to be a more delicate matter. An eddy viscosity
mechanism in the low wave number regime is unlikely to be
the answer because it is well-known from standard numerical
analysis theory that artificial viscosities acting on low wave
number components preclude higher-order, and, in particular,
spectral accuracy. Furthermore, one needs to realize that the
physical mechanism of long-range transfers is not a viscous
phenomenon. How to go about this appears to be an open
question at this juncture.
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