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Analysis of SESANS data
by numerical Hankel transform
implementation in SasView
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Abstract. SESANS data analysis has been implemented in the SasView software package, allowing SESANS experiments to be analyzed
using a numerical Hankel transformation of isotropic small-angle scattering (SAS) models. The error of the numerical approximation is three
orders of magnitude below typical experimental errors. All advanced data fitting features of SasView (multi-model fitting, batch fitting, and
simultaneous/constrained fitting) are now also available for SESANS and this is demonstrated by examples of fitting SAS models to SESANS
measurements.

Keywords: Small-angle scattering, neutrons, SANS, SESANS, Hankel transform, SasView

1. Introduction

Spin-Echo Small-Angle Neutron Scattering (SESANS) is a small-angle scattering technique for analyzing prop-
erties of condensed matter. It was first experimentally demonstrated by Keller et al. [13] and subsequently devel-
oped and made useful for analysis of real samples at the Delft University of Technology [6], where it has since been
used to characterize many microscopic soft matter structures, such as colloidal suspensions [29], granular materi-
als [1], food structures [31,33], and kinetics of structural changes [34]. The pioneering Delft SESANS instrument
extends SANS to length scales reaching 20 μm and has inspired several other instrument development projects,
such as a set-up using magnetic Wollaston prisms [19] and two time-of-flight instruments: Offspec [7,20,26] and
Larmor [27], collaboratively developed by the Rutherford Appleton Laboratory and Delft University of Technol-
ogy. Despite the successful design and implementation of these SESANS instruments, user-friendly data analysis
tools have remained unavailable to a large extent. Here, we introduce the underlying theory of the numerical Han-
kel transform, and explain how it has been implemented into the SasView software package. We finally present
several examples of successful data analysis, which highlight the capabilities of SESANS and the efficacy of the
developed data analysis routines.

SESANS is a variant of the well-established Small-angle neutron scattering technique (SANS), which is itself
a form of Small-angle scattering (SAS). The latter has been used over many decades to investigate properties of
solids and liquids [10,11] and is a popular technique for material characterization. In a SANS experiment, a sample
is placed in a beam of well-collimated neutrons and the small-angle scattering is detected by a position-sensitive
detector. SESANS, on the other hand, uses the Larmor precession of polarized neutrons in carefully designed
magnetic fields to label the scattering angle. The spin-echo principle can then be used to quantify this labelling
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to far smaller angles than a SANS instrument of comparable footprint and divergence could detect. Consequently,
SESANS uses the available neutron flux far more efficiently than SANS at longer length scales. SESANS how-
ever, does not discriminate the scattered neutrons from the direct beam and thus works better in the presence
of strong scattering, where multiple scattering corrections become important. Nonetheless, in contrast to SANS,
these multiple scattering corrections can be easily accounted for in the SESANS data analysis [24]. Furthermore,
the data interpretation is more accessible to non-experts in scattering techniques [4,5,12,22,24] for SESANS than
it is for SANS. For the construction of an instrument with the combination of SANS and SEMSANS (Spin-Echo
Modulated SANS) the reader is referred to the paper by Kusmin et al. [18].

SasView is an open-source software package for analyzing SAS experimental data written largely in the high-
level programming language Python. It has a large, active community of developers from neutron and X-ray fa-
cilities and contains an extensive library of SAS model functions and fitting algorithms. As we will explain in
the theory section below, for the analysis of the SESANS data the capabilities of SasView have been expanded to
include the numerical Hankel transform, which is treated as a SAS resolution function.

2. Theory

In the following, we consider only small-angle scattering. In this case, the wave vector momentum transfer’s
modulus Q is fully determined by the neutron wavelength λ and the scattering angle θ :

Q = 4π sin(θ)

λ
. (1)

Furthermore, we will only consider radially homogeneous scattering, i.e. scattering with negligible azimuthal vari-
ation, such that the measured quantity of a SA(N)S experiment is the macroscopic differential scattering cross-
section d�/d�. Without going into further detail, this function will be referred to as I (Q).

The measured quantity of a SESANS experiment is the polarization of the neutron beam P as a function of
spin-echo length δ [1,13,17,22]. Spin-echo length is an experimental parameter that is determined by the neutron
wavelength and the total magnetic field integral experienced by the neutrons. I (Q) and P(δ) are connected by the
following equations:

P(δ) = eλ2t (G(δ)−G(0)), (2)

where t is the sample thickness and G(δ) is the “projected correlation function”, i.e. the 2D projection of the
3D auto-correlation function γ (r) [17], meaning that δ is the 2D projection of a radial distance r in 3D space.
Alternatively, this can be re-written as the absolute scattering correlation function [16,24,35]:

ln(P (δ))

λ2t
= G(δ) − G(0). (3)

Assuming that all neutrons are detected [2],

G(δ) = 1

2π

∫ ∞

0
I (Q)J0(Qδ)QdQ, (4)

where J0 is the 0th order Bessel function of the 1st kind. In our SasView approach I (Q) is now a single-scatter SAS
model function from the SasView library and G(δ) the SESANS fitting model. An example of I (Q) and J0(Qδ)Q

on the same scale is given in Fig. 1. This means the left-hand side of Eq. (3) is entirely experimental and the right-
hand side of Eq. (4) is entirely numerical. This separation is exploited to create the numerical Hankel transform
(Eqs (6)–(22)). I (Q) can be defined by a single phenomenological function (SasView refers to such a function as a
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Fig. 1. Plot of a scattering function I (Q), along with the zeroth order Bessel function of the first kind (J0) for δmax multiplied by Q. I (0) is
assumed to be 1.

“shape-independent” function), or it can be defined as a combination of a form factor F(Q, x)2, a structure factor
S(Q) and a parameter distribution PDF(x) (see Eq. (5)), which describes intra-scatterer interactions, inter-scatterer
interactions and a distribution of SAS model parameters, respectively:

I (Q) = S(Q)

∫ ∞

0
F(Q, x)2 · PDF(x) dx (5)

where x can be one or several SAS model object parameters (e.g., the radius of a spherical colloid).
For our numerical approach, integrating Eq. (4) from zero to infinity is not possible. Therefore we must re-write

this equation with lower and upper finite integration boundaries Qmin and Qmax. These are chosen such that the
numerical errors of integration are negligible with respect to common SESANS experimental errors, which will be
justified below:

Gnum(δ) = 1

2π

∫ Qmax

Qmin

I (Q)J0(Qδ)QdQ, (6)

Gnum(δ) − Gnum(0) must approximate G(δ) − G(0) to minimize numerical errors. Furthermore, Qmax must be
large enough to perform a full integration of (I (Q) × Q) for δ = 0 and the step-size 	Q must be small enough to
sample J0(Qδ) for δ = δmax. This gives the following criteria:

Qmax � 2π

d
, 	Q � 2π

δmax
, (7)

where d is the minimum characteristic length scale of the SAS model. Since every SAS model has a different d ,
this criterion is not practical. However, in practice, δmin � d for all models and this can be used to create a robust
criterion for Qmax. As the Q-space for the numerical integration is always linear in SasView, Qmin ≡ 	Q. After
testing, Qmax was judged to provide sufficient sampling without the need for scaling, while Qmin required scaling
by a factor of 0.1. Taking these considerations into account, we arrive at the following criteria for the integration
boundaries.

Qmax � 2π

δmin
, Qmin ≡ 	Q � 0.1

2π

δmax
. (8)
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At present, there is no option for the user to manually set the integration limits. The implementation of these
mathematical formulations and conditions into SasView is as follows: firstly, δ, the spin-echo length, is a 1D array
of size Z (taken directly from the experimental data) and Q is a 1D array of size N ,

δ = [
δ1 δ2 . . . δZ

]
, (9)

Q = [
Q1 Q2 . . . QN

]
, (10)

where the values of Q are determined by

Qn =
(

0.1 · 2π

Z · (δZ − δ1)
)

· n; n ∈ {1, 2, . . . , N} (11)

and N is determined from the cut-off value Qmax: QN � Qmax.

Qmax = 2π

δ1
, (12)

J0(Qδ) is the outer product of Q and δ with the 0th order Bessel function of the 1st kind J0 applied to all elements
and is a 2D array of size [N,Z]. Since N scales with Z2, this array, and all subsequent arrays based on it, scale as
Z3.

J0(Qδ) = J0(Q × δ) = J0

⎛
⎜⎜⎝

⎡
⎢⎢⎣

Q1δ1 Q1δ2 . . . Q1δZ
Q2δ1 Q2δ2 . . . Q2δZ
. . . . . . . . . . . .

QNδ1 QNδ2 . . . QNδZ

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (13)

The Hankel kernelHHH isQQQ◦J0(Qδ)	Q, where ◦ denotes a Hadamard product,QQQ is a 2D array made by tiling QT

(transposed Q) Z times to match the dimensions of J0(Qδ). The Hankel kernel at δ = 0 is given by HHH0 = Q	Q.
For a pair of 2D arrays of equal size, the Hadamard product (or entry-wise product) is defined for each element as:

(A ◦ B)ij = Aij · Bij , (14)

QQQ is:

QQQ =

⎡
⎢⎢⎣

Q1 Q1 . . . Q1
Q2 Q2 . . . Q2
. . . . . . . . . . . .

QN QN . . . QN

⎤
⎥⎥⎦ , (15)

where QQQ has Z columns.

HHH = QQQ ◦ J0(Q δ)	Q =

⎡
⎢⎢⎣

Q1J0(Q1δ1) Q1J0(Q1δ2) . . . Q1J0(Q1δZ)

Q2J0(Q2δ1) Q2J0(Q2δ2) . . . Q2J0(Q2δZ)

. . . . . . . . . . . .

QNJ0(QNδ1) QNJ0(QNδ2) . . . QNJ0(QNδZ)

⎤
⎥⎥⎦ 	Q, (16)

HHH0 = Q	Q = [
Q1 Q2 . . . QN

]
	Q. (17)

Once the Hankel kernel has been calculated, it can be applied to the SAS model I (Q) to perform the numerical
Hankel transform and start the fitting to the data. I (Q) is a vector of size N , because it is derived from Q, with
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each element I (Qn) calculated by passing Qn to the user-selected SAS model:

I (Q) = [
I (Q1) I (Q2) . . . I (QN)

]
(18)

HHH then acts upon I (QQQ) (I (Q)T tiled Z times, as with QQQ) and is summed over the Q dimension to produce GGG, the
numerical projected correlation function.

GGGz =
N∑

n=1

(
I (QQQ)

)
nz

◦HHHnz (19)

or as a vector:

GGG =
[

N∑
n=1

(
I (Qn)QnJ0(Qnδ1)

)
. . .

N∑
n=1

(
I (Qn)QnJ0(Qn δZ)

)]
(20)

and the initial value:

GGG0 =
N∑

n=1

(
I (Qn) ◦ (HHH0)n

)
. (21)

The final step in calculating the numerical Hankel transform is to subtractGGG0 from all elements of GGG and deducePPP .

PPP = GGG −GGG0. (22)

This is the numerical equivalent of the left-hand side of Eq. (3). PPP is then tested against the SESANS data and
the SAS model parameters in Eq. (18) are modified by the fitting algorithm (default: Levenberg–Marquardt). This
process is repeated until the fitting algorithm’s criterion is satisfied. Equations (15)–(22) can be replaced by the
single expression:

PPP = [
J0(Q × δ)(I (Q) ◦ Q

)T ]T − [
I (Q) · QT

]
, (23)

where J0(Q×δ) and Q must be pre-calculated for efficiency. However, this single expression was not implemented
because it would have been difficult to debug for future developers of the SESANS package within SasView.

3. Validation and examples

3.1. Validating the numerical approach with an analytical sphere model

The accuracy of the numerically Hankel transformed SAS models was tested on several cases. Here we present a
calculation of the point-wise difference between the numerically Hankel transformed SAS model and the analytical
(exact) SESANS model of a uniform sphere. The numerical Hankel transform is applied to the following SAS
model:

F(Q,R)2 = 12πR3ϕ(	ρ)2
(

j1(QR)

QR

)2

, (24)
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Fig. 2. Plot of the numerically Hankel transformed SAS model of a sphere in SasView and the analytical projected correlation function of a

sphere. Identical parameters were used for both functions (R = 10,000 Å, ϕ = 0.01, 	ρ = 5 × 10−6 Å
−2

). The top figure shows the 2 curves
superimposing almost exactly; the difference is invisible at this scale, and therefore not significant when comparing to experiments. The bottom
figure shows the difference between the 2 curves with a 104 magnification of the “absolute SESANS correlation function” axis scale.

where ϕ is the volume fraction, 	ρ is the scattering length density (SLD) difference between the spheres and
the surrounding medium and R is the radius of the solid sphere. The analytical solution of the Hankel transform
(Eq. (2)) of a solid sphere (Eq. (24)), is [17]:

G(δR) =
√

1 −
(

δR

2

)2(
1 + 1

8
δR

2
)

+ 1

2
δR

2
(

1 − δR

4

)2

ln

(
δR

2 +
√

4 − δR
2

)
(25)

with δR = δ/R, the spin-echo length normalized by the radius. The two resulting functions, as well as the difference
between them, are plotted in Fig. 2.

The difference between the analytical equation and SasView’s numerical Hankel transform in Fig. 2 is a factor
1000 smaller than the magnitude of the absolute correlation values of the models themselves and a factor 100
smaller than typical experimental errors (see Figs 3 and 5 for examples). The oscillations in Fig. 2 at small δ are
caused by too small Qmax and the deviation at large δ are caused by too high Qmin. This was tested only for
the sphere model by varying the values for Qmin and Qmax. It is worth noting that Eq. (6) is more realistic than
Eq. (25), since SESANS detectors have a finite size and thus detect a finite Q-range. Although the Qmax parameter
in this paper does not currently represent this finite size, it could be made to do so in future versions of SasView,
making data analysis using the numerical method presented here more realistic than data analysis using analytical
functions.

3.2. Examples of fitting a numerical model to a data-set

In the following we validate our approach on experimental data, which have been acquired at the SESANS
instrument in Delft [23]. These measurements used neutrons of λ = 2.11 Å with a measurable δ-range of 10 nm to
20 μm. Fits were performed on several sets of experimental data. The solid sphere model (Eq. (24)) was applied
to SESANS data of R = 1 μm polystyrene spheres (NIST traceable standard) dissolved in 59% H2O and 41%
D2O (sample provided by M. Strobl [29]) (Fig. 3). The fit correctly assigns a value of approximately R = 1 μm
(= 10,000 Å) to the spheres. The sphere model, in combination with a log-normal distribution (Eq. (26)) for R,
was applied to SESANS data of a dispersion of NILAC fat-free milk powder in D2O (powder sample provided by
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Fig. 3. SESANS data of R=1 μm spherical poly-styrene colloids in D2O. The SAS model used is the solid sphere (Eq. (24)). Fitted values are:

R = (1040 ± 10) Å and ϕ = (3.30 ± 0.03) × 10−2. 	ρ was fixed at 2 × 10−6 Å
−2

. Data from M. Strobl et al. [29].

Fig. 4. SESANS data of Nilac fat-free milk powder in D2O. The SAS model used is the solid sphere (Eq. (24)) with lognormal polydispersity

(Eq. (26)) of the radius. Fitted values are: R = (470 ± 30) Å, 	ρ = (0.76 ± 0.02) × 10−6 Å
−2

. PDI was fixed at 0.50 (σ/μ) (estimate by
NIZO) and ϕ was fixed at 0.1 (estimate from Nilac bulk density and mass percentage in sample). Data from J.H. Bakker.

NIZO Research, Netherlands) (Fig. 4). The powder consists of highly polydisperse casein micelles [31,33].

PDF(x) = 1√
2πx	x

e
(− ln(x/x0))2

2(	x)2 (26)

with x the polydisperse quantity, 	x its standard deviation and x0 its mean value. Since log-normal distributions
have long tails, the fitted value for R (431 Å) is much lower than the one obtained when fitting without any size
distribution (1200 Å, not shown).

The polymeric gel model (Eq. (27), from [28]) was applied to SESANS data of a gel (yogurt) of NILAC fat-
free milk powder in D2O (powder sample provided by NIZO Research, Netherlands) (Fig. 5). This sample is a
dispersion of casein micelles in D2O treated with glucono δ-lactone (GDL) to create a yogurt-like substance. The
resulting structure has been previously described as a self-affine random medium [2,14,15]. Here we selected a
SAS model which approximates the expected structure of the sample (casein micelles connected by a network of
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Fig. 5. SESANS data of Nilac fat-free milk powder in D2O, treated to become yogurt. The SAS model used is the polymeric gel model

(Eq. (27)). Fitted values are: IL = (4.3 ± 2.0) × 105 Å
−1

, IG = 85 ± 22 Å
−1

, D = 2.38 ± 0.06, RG = (2.0 ± 0.2) × 103 Å,
ξ = (7.8 ± 1.9) × 104 Å. Data from J.H. Bakker.

gel fibres).

I (Q) = IL(0)

(1 + D+1
3 ξ2Q2)

D/2
+ IG(0)e−(

RG
2Q2

3 ) (27)

where IL(0) and IG(0) are the absolute scattered intensities at Q = 0 for the Lorentzian (gel) and Gaussian
(polymer) contributions, respectively. D is the mass fractal dimension of the gel, ξ is its persistence length, and
RG is the average radius of gyration of polymer clusters. The fit shows that most of the scattering is accounted for
by the Lorentzian term (IL, the gel structure). This, in conjunction with the comparatively small contribution of the
Gaussian term (IG, the casein micelles), indicates a high degree of gelation on the microscopic scale. The RG of
the yogurt (≈ 2000 Å) is greater than the monodisperse R of the milk (≈ 1200 Å), most likely due to aggregation
of the casein micelles before becoming “frozen in” in the gel structure [3,8,9].

3.3. Example of fitting multiple models to a data-set

Two models were fitted to SESANS data of 70 nm radius spherical core-shell colloids with poly-styrene (PS)
core and poly-ethylene oxide (PEO) corona in D2O (data from K. v. Gruijthuijsen et al. [32]).The form factors
used were those of solid spheres (Eq. (24)) and core-shell spheres (Eq. (28)),

F(Q,Rs, Rc)
2 = 3ϕ

4πRs
3

(
4πRc

3(	ρ)sc
j1(QRc)

QRc

+ 4πRs
3(	ρ)sm

j1(QRs)

QRs

)2

, (28)

where 	ρsc = ρs − ρc and 	ρsm = ρs − ρm. ρc, ρs and ρm are the scattering length densities of the core, shell
and medium (solvent), respectively. Rc and Rs are the radii of the core and shell, respectively. In order to take the
inter-particle correlations due to the high volume fraction into account, both form factors were multiplied by the
hard-sphere structure factor (Eq. (29))

S(Q) = 1

1 + 24ϕ
X(Q)
Rs

(29)

with Rs the “hard sphere radius”, and

X(Q) = αK0(A) + βK1(A) + ϕα

2
· K3(A), (30)
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Fig. 6. SESANS data of core-shell colloids with a poly-styrene (PS) core and poly-ethylene oxide (PEO) shell in D2O. The data is fitted with
the solid sphere (Eq. (24), red) and the core-shell sphere (Eq. (28), green) form factor. Both SAS models were multiplied by the hard sphere
structure factor (Eq. (29)). Model fit parameter values are given in Table 1. Data from K. v. Gruijthuijsen et al. [32].

Table 1

Fit parameter values for the multi-model fit (Fig. 6). ρsolvent was kept fixed

Fit model Sphere Core-shell

Rcore (Å) 703 ± 6 508 ± 24

Rshell (Å) 748 ± 35

ρcore (10−6 Å
−2

) 2.46 ± 0.01 0.28 ± 0.38

ρshell (10−6 Å
−2

) 5.61 ± 0.22

ρsolvent (10−6 Å
−2

) 6.4

φ 0.377 ± 0.008 0.338 ± 0.007

K0(A) = j1(A), K1(A) = 2A sin(A) + (2 − A2) cos(A) − 2

A3
, (31)

K3(A) = −A4 cos(A) + 4 · [(3A2 − 6) cos(A) + (A3 − 6A) sin(A) + 6]
A5

, (32)

A = 2QRHS, α = (1 + 2ϕ)2

(1 − ϕ)4
, β = −6ϕ

(1 + ϕ/2)2

(1 − ϕ)4
. (33)

The fit to the data is shown in Fig. 6 and the resulting model parameters are given in Table 1. The colloids were
designed to become positively charged on their exterior surface when dispersed in water. In the sample used for
this example, the colloids’ charges were assumed to be fully screened, resulting in hard-sphere interactions only.
The fits clearly show that simplifying the form factor for the colloids to solid spheres does not give a good fit; when
using a core-shell form factor instead, the fit to the model describes the data well.

3.4. Examples of simultaneous constrained fitting of SANS and SESANS data

A simultaneous constrained fit was performed on SANS and SESANS data of spray-dried calcium caseinate
micelles in D2O (data from B. Tian, [30]). The data-sets were fitted with a double power law scattering function
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Fig. 7. SANS (top) and SESANS (bottom) data of casein micelles in D2O using the double power law scattering function (Eq. (34)). For this fit,
all parameter values of the model, except for the SANS background, were linked between data-sets. The model fit parameter values are given
in Table 2. Data from B. Tian [30].

(Fig. 7).

I (Q) =
{

AQ−m1 if Q � Qc,

CQ−m2 if Q > Qc,
(34)

where C = AQ
m2−m1
c . A and C are the scale factors for the power laws, m1 and m2 the two exponents at different

length scales, and Qc the critical Q value separating the two power laws. The fit parameters are listed in Table 2.

The fit indicates a cross-over between characteristic length scales at Q = 9 × 10−4 Å
−1

. The value of m1 (1.37)
indicates that the larger structures in the sample are either cylinders or strands, or very open networks. The value of
m2 (2.95) suggests that the structures at shorter length scales are extremely rough or consist of collapsed polymer
globules. The difference between the SANS and SESANS fit is only in the value of A, which corresponds to the I0
value for the low-Q power law. These samples are known to aggregate over time, and since SANS was performed
after SESANS (on the same sample) the higher value of A could be due to aggregation of small particles into larger
clusters.

USANS and SESANS data of poly-styrene spheres in D2O (data from C. Rehm et al. [21]) were also analyzed
using simultaneous/constrained fitting. The data-sets were fitted with a solid sphere form factor (Fig. 8) and the fit
parameters are listed in Table 3. It should be noted that the USANS and SESANS measurements were not done
on the same sample: 2 samples (1 for USANS, 1 for SESANS) were prepared using the same recipe, but were not
taken from the same batch. Also, the SESANS sample was synthesized much longer in advance of the experiment
than the USANS one. Due to the size of the particles, this led to significant sedimentation of the SESANS sample.
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Table 2

Fit parameter values for the simultaneous fit of SANS and SESANS of casein mi-
celles in D2O (Fig. 7), using the double power law scattering function (Eq. (34)).
Among the parameters, only Qc , m1 and m2 were constrained to be the same for
both, SANS and SESANS, data sets. A and C were fitted without linking. Back-
ground (bkg) is a fit parameter only for SANS and was set to 0 for SESANS.
SasView was unable to generate error estimates for this fit

Fit model SANS SESANS

A 23.0 18.6

C 0.0009 0.0007

Qc (Å
−1

) 9 × 10 -4

m1 1.19

m2 2.95

bkg (Å
−1

) 0.05 0

Table 3

Fit parameter values for the simultaneous fit of USANS and SESANS of poly-
styrene spheres in D2O using the solid sphere form factor (Eq. (24)) (Fig. 8).
R is linked. 	ρ is fixed. ϕ is fitted without linking. Background (bkg) is only a
fit parameter for SANS and was set to 0 for SESANS

Fit parameter USANS SESANS

R (Å) 21295 ± 22

	ρ (10−6 Å
−2

) 1.3

ϕ 0.293a (6.30 ± 0.03) × 10−2

bkg 500a 0
aSasView was unable to determine errors for these fit parameter values.

For SESANS, multiple scattering correction is included in the data analysis [2,24]. This is not the case for USANS
[25] and SasView does not take multiple scattering into account for SANS. These three factors (different samples,
sedimentation, and multiple scattering correction) may explain the factor of 5 difference in ϕ. The fitted value for
R (≈ 21300 Å) agrees well with the published data.

4. Conclusion

The validation of the numerical Hankel transform of a solid sphere against its projected correlation function
showed excellent agreement and demonstrates that the numerical Hankel transform is, by extension, reliable for
other SAS models. Fitting using single and multiple data-sets, in batch mode or with constrained fitting parameters
has been proven to work without errors and examples of data analyses have been provided. SasView can now be
used to analyze SESANS experimental data.
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