
SLIP-based Iterative Learning for
Efficient and Compliant
Locomotion of Articulated Soft
Quadrupeds

M.A. van Löben Sels

M
as

te
ro

fS
cie

nc
e

Th
es

is

SLIP-based Iterative Learning for
Efficient and Compliant Locomotion of

Articulated Soft Quadrupeds

Master of Science Thesis

For the degree of Master of Science in Robotics at Delft University of
Technology

M.A. van Löben Sels

Student number: 4438132
Daily supervisors: dr. C. Della Santina, TU Delft

dr. J. Ding, TU Delft
Thesis committee: dr. C. Della Santina, TU Delft, supervisor

dr. J. Ding, TU Delft, supervisor
dr. J. Kober, TU Delft
dr. L. Laurenti, TU Delft

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Cognitive Robotics
Faculty of 3mE
TU Delft
The Netherlands

Cover image by ETH Zurich.
© 2023 M.A van Löben Sels. All rights reserved.

Preface

This thesis marks the conclusion of my 7.5 years as a student in Delft and is the culmination of my
research over the past year. It was a long but enjoyable ride, and I can only say that I am proud of
the things I have learned and what I have accomplished, during my thesis and my student time as a whole.

Of course, this would not have been possible without the help of all those involved in this thesis. First
and foremost, I would like to thank my supervisors, dr. Cosimo Della Santina and dr. Jiatao Ding for
their great supervision and guidance throughout this project. I am very thankful for all the frequent and
insightful meetings that we had. Thank you Jiatao for your help with the experiments. I initially did not
believe it would be possible to do the experiments in only two weeks. But with your assistance, we made
it work. I would also like to thank Vassil Atanassov for his understanding of the robot’s monumental
pile of (commented) code and quick tips on PyBullet.

There have also been many non-scientific contributions that helped me through the year. Thank you, mom
and dad, for all your support over the past years, both emotionally and financially. Thank you Jans for
always being there for me and for your endless support. Not only during my thesis but during my whole
student time. Thanks to all my friends whom I have spent lunch with the past year, the members of the
TUkan gang, my study buddies, and all others. Being in the same boat made the year much more enjoyable.

Mees Alexander van Löben Sels
Delft, 12 February 2023

SLIP-based Iterative Learning for Efficient and Compliant
Locomotion of Articulated Soft Quadrupeds

M.A. van Löben Sels

Abstract—Effectively controlling and exploiting the natural
dynamics of Articulated Soft Robots for energy-efficient motions
remains challenging. In literature, the problem is often split in
two; in energy-efficient motion planning and structure-preserving
control, where the focus is on one, and the other is largely
disregarded. This work aims to unify these two using a motion
planning and control strategy based on trajectory optimization
and functional Iterative Learning Control. Using a reduced-
order model, the planner generates an energy-efficient reference
trajectory by minimizing the Cost of Transport. The controller
then iteratively learns the feedforward control signal such that
the full-order system tracks the reference, without altering its
stiffness characteristics. We show that our strategy results in
energy-efficient tracking of the reference. We also show how
functional Iterative Learning Control can be used in a continuous
approach to learn a stable forward pronking gait. We give
experimental validation of this approach through experiments
on the compliant quadruped E-Go. We show that the pronking
gait can be learned on hardware in minutes and that it is robust
to various types of terrain.

I. INTRODUCTION

In recent years, legged robots have made significant tech-
nological advancements. After decades of research, they are
now leaving the confinements of research labs and have found
varying applications in industries such as industrial inspection
and surveillance [1]. However, today’s legged robots still lack
the efficiency of their biological counterparts, resulting in a
continuous operational time of only a few hours [2], [3]. The
periodic motion of legged locomotion causes large fluctuations
in kinetic and potential energy. High energetic efficiency in
humans and animals can largely be accredited to the recuper-
ation of these energy fluctuations through soft muscles and
tendons [4]. Instead of creating the entire motion actively,
the inherent elasticity of the musculoskeletal system allows
humans and animals to temporarily store and release energy
such that a part of the walking motion emerges passively [5].
Inspired by the musculoskeletal system of vertebrate animals,
soft elastic elements can be introduced to legged robots to
exploit the so-called natural dynamics of their mechanical
system, requiring less energy to be injected actively and in-
creasing the energetic efficiency. Robots with elastic elements
concentrated in the joints are called articulated soft robots
(ASRs) [6].

However, effectively exploiting and controlling the natural
dynamics of ASRs remains a complex problem, particularly
for legged locomotion. The locomotion task can generally
be split into two problems, motion planning and control.
The generation of energy-efficient gaits that exploit elasticity
has been studied extensively for both reduced-order [8]–
[12] and full-order systems [13], [14], but these works only
approach the problem from the motion planning perspective

Reduced-order

trajectory optimization

fILC

Motor torque

commands

Center of mass

trajectory

State

output

Memory

+
-

+
+

Full-order system

Virtual leg

touchdown angle

Fig. 1: Overview of the planning and control framework. The
trajectory planner generates a center of mass trajectory based on
a reduced-order model. The controller learns the required control
input to map the reference to the full-order system. The full-order
system is modeled after the compliant quadruped E-Go [7].

and do not consider how to execute these gaits. Typically,
feedback control methods are used to control elastic systems,
but feedback control alters the stiffness of the system with
a factor proportional to the feedback gain [15], defeating
the purpose of introducing physical compliance in the first
place. In this regard, feedforward control actions and methods
with minimal reliance on feedback are preferable, so called
structure-preserving controllers [6]. Examples of these type
of controllers are [16], [17]. Although these methods are
effective in preserving the elasticity while achieving accurate
tracking, they do not specifically exploit the natural dynamics
for more efficient motions, and have found limited application
to legged locomotion. Similarly, control methods that claim
to exploit the natural dynamics of elastic legged systems still
rely on feedback [18]–[21]. As such, works on this subject
typically consider only a part of the problem and do not

1

solve the full problem of exploiting natural dynamics for
efficient locomotion, namely motion planning and control. To
the best of the author’s knowledge, the only exception to
this is the recent work using normal mode theory to exploit
and stabilize modal oscillations for efficient locomotion [22].
Despite yielding promising results, the work lacks an analysis
of energy efficiency. Hence, no conclusions can be made
regarding the efficiency of the method and if the natural
dynamics are indeed exploited.

This work presents a step towards a unifying motion plan-
ning and control framework for efficient and compliant loco-
motion of ASRs, based on offline trajectory optimization and
iterative learning control (ILC). The trajectory planner uses a
single rigid-body dynamics (SRBD) model, which considers
the effect of the external forces and joint torques on the
base motion. This reduced-order model increases the problem
tractability while still capturing the governing dynamics of the
full-order system, allowing the planner to generate energy-
efficient gaits. The benefit of using ILC as the controller is
twofold. First, the feedforward nature of ILC in the time-
domain preserves the physical compliance of the system, while
yielding accurate tracking performance through feedback in
the iteration-domain. Second, we omit the need of deriving an
accurate model to map the reduced-order model behavior to
the full-order system. Typically, this mapping is achieved using
methods such as operational space control [20], [23], relying
on inverse dynamics to calculate the required ground reaction
forces and joint torques to track the given reference, and as a
consequence, requiring an accurate model. ILC overcomes the
model mismatch by learning the required control input directly
from repetition, despite having only rough knowledge of the
actual system. Specifically, we propose the use of functional
iterative learning control (fILC) [24], an ILC variant that is
applicable to non-square systems, as opposed to standard ILC.
The planning and control strategy is tested in simulation and
validated on hardware using the parallel elastic quadruped
Delft E-Go [7]. We show that our approach results in energy-
efficient tracking of successive strides and stable forward
locomotion. To constrain the complexity of the problem,
this work is limited to the sagittal plane and only considers
pronking gaits.

II. LIST OF ACRONYMS

ASR articulated soft robot
CoM center of mass
CoT cost of transport
DoF degree of freedom
EoM equations of motion
fILC functional iterative learning control
ILC iterative learning control
MAE mean absolute error
NLP nonlinear program
PEA parallel elastic actuator
SRBD single rigid-body dynamics
SLIP spring-loaded inverted pendulum
TD touchdown
TO take-off
TSLIP trunk spring-loaded inverted pendulum

III. CONTROLLER OVERVIEW

An overview of the proposed planning and control frame-
work is presented in Figure 1. The framework consists of two
main components; an offline trajectory planner and a learning
controller. The trajectory planner generates an energy-efficient
reference motion based on a 2D sagittal SRBD model. The
learning controller learns the required control input to control
a 3D full-order dynamics model, and overcomes the model
discrepancy to track the reference produced by the planner.

IV. MODEL

A. Full-order model

The full-order dynamics of the E-go quadruped including
spring forces can be described using a floating-base descrip-
tion [7],

M(q)q̈+C(q, q̇)+G(q)+STK(qj−qj0
) = STτ+JT

c Fc (1)

where M is the mass matrix, C includes the Coriolis and
centrifugal terms, G includes the gravitational terms, S is the
selection matrix of actuated joints, K is the spring stiffness
matrix, qj0

is the vector of spring rest positions, τ is the
generalized torques vector, Jc is the contact Jacobian and
Fc are the contact forces. The generalized coordinates q of
the E-Go quadruped consist of the actuated joint coordinates
qj ∈ R12 and unactuated base coordinates qb ∈ R6, where
the latter can only be controlled through the contact forces
Fc, such that q =

[
qb qj

]T ∈ R18. Although the full-order
floating-base model gives a very accurate description of the
real system, planning trajectories can be very complex and
computationally intensive due to the combination of a high
number of degrees of freedom (DoFs) and nonlinear hybrid
dynamics.

B. Reduced-order model

The number of DoFs can be reduced to make the prob-
lem of generating energy-efficient gaits more tractable, while
still capturing the governing dynamics using the theory of
templates and anchors [25]. A widely used template model
for legged locomotion is the spring-loaded inverted pendulum
(SLIP) model, which is known to very accurately describe
the center of mass (CoM) motion of humans and animals
[25]. Specifically, we select a variant of the standard SLIP
model, the trunk spring-loaded inverted pendulum (TSLIP)
model, resulting in additional pitch dynamics and an extra
rotational DoF around the trunk CoM. The governing forces of
the TSLIP model are the ground reaction force and the torque
at the trunk. The TSLIP template behavior is then embedded
into a more realistic anchor model whose morphology is closer
to that of the actual system, with the addition of legs, actuators,
and elastic joints, as depicted in Figure 2. The governing forces
of the anchor model are still that of the template, except the
forces are now generated in joint space. Hence, the governing
behavior of the template and the anchor is equal.

The resulting model used in the trajectory optimization
problem is a hybrid reduced-order SRBD model, considering
only the 2D dynamics in the sagittal plane. The mass is

2

Fig. 2: Visual representation of the TSLIP template and SRBD
anchor models. At touchdown, the hind and front feet positions
of the anchor model are parameterized through the virtual TSLIP
model. The virtual foot position is found using trigonometry and
displaced in positive and negative x-direction with a distance
equal to ltrunk, resulting in the hind and front feet positions.

concentrated in the trunk, while the legs are considered to be
massless with parallel elastic actuators (PEAs) in the thigh and
calf joints. The configuration of the robot can be represented
by the Special Euclidean Group SE(2), parameterized by
the generalized coordinates q =

[
x z α

]T ∈ R3, where[
x z

]T ∈ R2 is the position of the CoM of the trunk and
α is its pitch angle. The system inputs are the motor torques
τ ∈ R4 at the thigh and calf joints in joint coordinate space.
A visual representation of this model is given in Figure 3.

1) Flight dynamics: In flight, the system follows a ballistic
trajectory which can be modeled as

M(q)q̈ +G(q) = 0, (2)

where M is the mass matrix, and G includes the gravitational
terms. Due to lack of contact between the feet and the ground,
the system cannot be controlled while in this phase.

2) Stance dynamics: In stance, the generalized coordinates
q are mapped to the joint coordinates θ ∈ R6 through the
mapping h : q 7→ θ, where h is obtained using inverse
kinematics. In joint space, the contribution of the spring forces
is computed. The equations of motion (EoM) are obtained
using Lagrangian mechanics, resulting in the stance dynamics

M(q)q̈ +G(q) + Jh
T(q)K (θ − θ0) = F , (3)

where K is the spring stiffness matrix, θ0 is the spring rest
positions, Jh = dθ

dq is the Jacobian that maps from joint space
to generalized coordinates, and F is the spatial wrench as
a function of the motor torques τ . During the stance phase,
the ground friction is assumed to be infinite, such that no
slip occurs. The derivations of the mapping h and EoM are
explained in Appendix A. Solving Equation 2 and Equation 3
for the accelerations q̈ leads to

q̈ = −M−1G (flight)

q̈ = M−1
(
F −G− Jh

TK (θ − θ0)
)

(stance). (4)

The EoMs can then be rewritten to first-order ordinary
differential equations, resulting in the general form

ẋ = f(x,u) =

[
q̇
q̈

]
∈ R6 (5)

Fig. 3: Visual representation of the sagittal SRBD quadruped
model used in the trajectory optimization, with massless legs and
PEAs at the thigh and calf joints. As visualized here, the springs
are currently in their rest positions.

with the system state x =
[
q q̇

]T ∈ R6 and control input
u =

[
τ2 τ3 τ4 τ5

]T ∈ R4.

C. Phase switching

In flight, the legs of the SRBD model do not follow a tra-
jectory and are assumed to be able to move to any feasible po-
sition instantly, since the legs are massless. Consequently, this
requires the determination of the feet positions at touchdown
(TD). As both feet have to touch and leave the ground
simultaneously, both feet positions can be parameterized at TD
through the virtual TSLIP model, with the virtual touchdown
leg angle θvirt and leg length lvirt as its model parameters,
as visualized in Figure 2. The virtual foot position pvirt in
Cartesian coordinates is then a function of lvirt and θvirt, given
by pvirt =

[
x+ lvirt sin(θvirt) 0

]T
. The hind and front foot

positions are then found by displacing pvirt in positive and
negative x-direction with a distance equal to half the trunk
length ltrunk. This gives two extra parameters to be selected,
lvirt and θvirt. The virtual leg length can be determined using the
heuristic rule lvirt =

√
l2calf + l2thigh, such that the calf springs

are in their rest position at TD. The virtual leg angle is used
as an input parameter to the optimization, and is proportional
to the resulting forward velocity, as more forward velocity
is required with increasing touchdown leg angle for dynamic
stability.

V. TRAJECTORY OPTIMIZATION

The optimization problem is formulated to find an energy-
efficient periodic gait cycle, also known as a stride, by mini-
mizing the cost of transport (CoT). A stride consists of three
dynamic phases; an initial flight phase, a stance phase, and
a final flight phase. The phases are separated by two events;
a TD event, and a take-off (TO) event. We use a predefined
contact sequence, where the two legs of the SRBD model are
in flight simultaneously and in stance simultaneously, resulting
in a pronking gait from the perspective of the sagittal plane.
This reduces the complexity of the optimization problem,
while maintaining the possibility to mirror the gait in the
sagittal plane to produce trot or pace gaits for four legs.

3

The optimization problem is transcribed using multiple
shooting, which divides the interval over which a solution
is sought in N − 1 intervals and N grid points. An initial
value problem is solved on each of the N − 1 intervals, and
additional constraints are imposed such that the solution of
adjacent intervals match at the grid points, forming a solution
for the whole interval. The TD and TO events are handled
by predefining the grid points nTD and nTO on which the
respective events take place, where 0 < nTD < nTO < N .
The time step h is an optimization variable, such that the TD,
TO, and final apex timings are optimization results and do not
have to be specified a priori.

A. Objective function

The objective of the optimization problem is to find an
energy-efficient periodic gait, by minimizing the CoT. The
CoT is a commonly used metric to quantify the energy
efficiency of different gaits. As it is a dimensionless quantity, it
can be used to compare any form of locomotion of land, water,
and airborne animals and vehicles. The CoT is defined as the
energy input required to move a system of weight mg over
a distance d. Both terms are expressed in mechanical work,
where the energy input to the system is defined as the absolute
mechanical work delivered by the actuators, to account for
both positive and negative mechanical work [26]. It can be
formulated as

CoT =
E

mgd
=

∑N−1
n=0

∑5
i=2

∣∣∣τiθ̇i∣∣∣
mgxN

, (6)

where xN is the longitudinal position on the final node N .

B. Constraints

1) Initial condition and periodicity constraints: The stride
starts at an apex, i.e. at zero vertical velocity, and at zero initial
horizontal position [

x0

ż0

]
= 0. (7)

The remaining states of x0 are optimization variables and
are found by the optimization program. The periodicity of the
stride is enforced by constraining the final state xN to be
equal to the initial state x0 for all states in x, except for the
longitudinal position x, formulated as

x0\{x0} = xN\{xN}. (8)

2) Dynamic constraints: The system dynamics of the
SRBD model is integrated at each grid point using fourth-order
Runge-Kutta with the dynamics formulation from Equation 4
and Equation 5. A constraint is set at each grid point, to

impose the continuity between the adjacent N − 1 intervals.
It is formulated as

xn+1 = F (xn,un,f(xn,un))

= xn +
h

6
(k1 + 2k2 + 2k3 + k4)

with k1 = f(xn,un)

k2 = f(xn +
h

2
k1,un)

k3 = f(xn +
h

2
k2,un)

k4 = f(xn + hk3,un).

(9)

The transitions between the dynamic phases occur on the
prespecified nodes nTD and nTO, such that the system is in
flight before nTD and after nTO, and in stance between nTD
and nTO, according to

f(xn,un) =

{
fflight(xn,un) ∀n ∈ [0, nTD) ∪ [nTO, N]

f stance(xn,un) ∀n ∈ [nTD, nTO)
.

(10)

3) Switch conditions: Switching between the dynamic
phases requires extra constraints at the switching nodes to
guarantee dynamic feasibility. As the front and hind feet are
parameterized through the virtual TSLIP model, the system
is said to touch or leave the ground whenever the virtual
foot enters or leaves ground contact. A TD event can then
be formulated as the moment when the system state is in the
touchdown manifold, given by

XTD = {x | z − lvirt cos(θvirt) = 0, ż < 0}. (11)

Similarly, a TO event occurs when the system state is in the
take-off manifold, given by

XTO = {x |
√
x2 + z2 − lvirt = 0, ż > 0}. (12)

The system is then constrained to be in the TD and TO
manifold at nTD and nTO respectively, such that xnTD ∈ XTD
and xnTO ∈ XTO.

C. Problem formulation

The trajectory optimization problem is formulated as a
nonlinear program (NLP). Using the aforementioned objective
function and constraints, the full optimization problem is

4

formulated as

min
x0,...,xN

u0,...,uN−1
h

∑N−1
n=0

∑5
i=2

∣∣∣τiθ̇i∣∣∣
mgxN

s.t.
[
x0 ż0

]T
= 0

x0\{x0} = xN\{xN}
xn+1 = F (xn,un,f(xn,un)) ∀n ∈ [0, N−1]

f(xn,un) =

{
fflight(xn,un), ∀n ∈ [0, nTD) ∪ [nTO, N]

f stance(xn,un), ∀n ∈ [nTD, nTO)

xnTD ∈ XTD

xnTO ∈ XTO

xmin ≤ xn ≤ xmax

umin ≤ un ≤ umax

hmin ≤ h ≤ hmax
(13)

VI. TRAJECTORY TRACKING

To track the reference produced by the planner, the reduced-
order model behavior has to be mapped to the full-order
system. To achieve this, we propose the use of fILC to over-
come the model mismatch and iteratively learn the feedforward
control signal required to track the reference.

A. Functional Iterative Learning Control

1) Background: Originally, fILC was developed for linear
systems [24]. Hence, first consider the linear continuous
system

ẋj(t) = Axj(t) +Buj(t)

yj(t) = Cxj(t),
(14)

with iteration index j, A ∈ Rn×n,B ∈ Rn×l,C ∈ Rm×n,
xj ∈ Rn, uj ∈ Rl, yj ∈ Rm, and l < m, meaning that the
system is underactuated. There are two main differences that
differentiate fILC from standard ILC:

1. fILC does not track the reference ȳ completely, but
rather tracks it at certain time instances of interest, given by
{T 1, . . . , T o}, where o is the number of time instances and
the superscript denotes the index. The desired output of the
system at the time instances is denoted as {ȳ1 . . . ȳo}, given
by the planner. The goal of the controller then is to iteratively
learn a control input uj(t), such that

lim
j→∞

yj(T
k) = ȳk, ∀k ∈ 1, . . . , o. (15)

2. The control input uj(t) is not learned directly,
but it is learned in a functional subspace of continuous
basis functions π. Sampling the control input from a large
enough subspace makes fILC applicable to highly non-square
systems. The continuous basis functions provide an infinite
amount of degrees of freedom, making the problem square
[24]. The control input is therefore parameterized as a linear
combination of functions, given by

uj(t) = π(t)αj ,

π =
[
π1 . . .πo

]
∈ Rl×mo,

(16)

where π is a matrix of basis functions, with πi(t) ∈ Rl×m

and weight vector αj ∈ Rmo. The closed form solution of
Equation 14 is

yj(t) = CeAtx(0) +C

∫ t

0

eA(t−τ)Buj(τ)dτ. (17)

Substituting Equation 16 and sampled at the i-th time
instance, results in

yj

(
T i
)
= CeAT i

x(0) +

(∫ T i

0

CeA(T
i−τ)Bπ(τ)dτ

)
αj .

(18)
Subsequently, this can be written in super-vector notation

for all o time instances, according to

Yj = dj +Hαj , (19)

where dj ∈ Rmo is the free response and H ∈ Rmo×mo is the
forced response to the basis functions π. fILC now has a form
equivalent to that of standard discrete ILC [27]. Therefore, by
learning the control input in functional space, the learning task
is reduced to learning a discrete set of weights αj , while the
input uj remains continuous. This also eliminates the need
to discretize the system and control input, as is typically a
requirement for standard ILC due to its discrete nature. The
weights αj are learned iteratively through proportional error
feedback, given a typical ILC learning rule

αj+1 = αj + LEj

= αj + L
(
Ȳ −Yj

)
= αj + L

 ȳ1 − yj

(
T 1
)

...
ȳo − yj (T

o)

 ,

(20)

where L ∈ Rmo×mo is the learning gain, Ej is the iteration
error, Ȳ is the reference, and Yj is the iteration output, with
the latter three in super-vector notation. The fILC system is
asymptotically stable, with xj(0) = x0 ∀ j, if and only if

ρ(I− LH) < 1, (21)

where ρ is the spectral radius.
2) Nonlinear systems: Now consider the full-order con-

tinuous nonlinear quadruped system, with unknown exact
dynamics of the form

ẋj(t) = f(t,xj(t),uj(t))

yj(t) = g(t,xj(t),uj(t)),
(22)

with iteration index j, xj ∈ Rn, uj ∈ Rl, yj ∈ Rm, and
l < m. The main difference between linear and nonlinear
fILC is that in the nonlinear case, H cannot be obtained as
in Equation 18. As H is the input-output map of the system
as a response to the basis functions π, sampled at the time
instances {T 1, . . . , T o}, it can be formulated for nonlinear
systems as

5

H =


g(T 1,x,π1) g(T 1,x,π2) · · · g(T 1,x,πmo)
g(T 2,x,π1) g(T 2,x,π2) · · · g(T 2,x,πmo)

...
...

. . .
...

g(T o,x,π1) g(T o,x,π2) · · · g(T o,x,πmo)


∈ Rmo×mo.

(23)
The matrix H can be obtained from experiments, by exciting

the system from an equilibrium and recording the responses,
omitting the need to derive an explicit model. A block diagram
of the controller is depicted in Figure 1.

B. Controller design

The learning gain L and basis functions π provide two
design choices for the controller.

1) Learning rule: We use a linear quadratic learning rule
to compute the optimal learning gain L, that minimizes the
following cost function

J(αj) = ∥Ej∥2QLQ
+ ∥αj −αj−1∥2SLQ

, (24)

such that

L =
(
HTQLQH+ SLQ

)−1
HTQLQ, (25)

where QLQ and SLQ are diagonal gain matrices [27]. QLQ and
SLQ can then be tuned to penalize the error and the change in
control input respectively.

2) Basis functions: As the control input is parameterized
by a linear combination of functions, the selection of an
appropriate family of basis functions provides an important
design parameter to design the behavior of the controller.
Although any choice of π suffices such that H is full rank [24],
the properties of the functions should be taken into account,
as they will be propagated into the control input. For example,
sinusoidal basis functions will result in an oscillatory control
input.

We select a set of mo Gaussians as our basis functions,
with the mean µ and variance σ2 per Gaussian to select. As
the robot can only be controlled during the stance phase, the
means are distributed evenly between the TD and TO timings,
tTD and tTO respectively, and given equal variance. Outside
this interval they are set to zero, formulated as

πi(t) =

 1
σ
√
2π

e
− 1

2

(
t−µi

σ

)2

if tTD ≤ t ≤ tTO

0 otherwise
. (26)

The configuration of the basis functions πi in the basis func-
tion matrix π should also be considered to prevent coupling
of the control inputs, as each column of π is multiplied with
a single scalar weight αi. To prevent this, each column of π
should only contain one basis function. Furthermore, each row
of π should preferably have an approximate equal amount of
basis functions, such that the control authority is distributed
equally over the number of available control inputs. We use
the following configuration for π,

π(t) =
[
π1 . . . πo

]
=


π1(t) 0 0 0 π5(t) 0 · · · 0
0 π2(t) 0 0 0 π6(t) · · · 0
0 0 π3(t) 0 0 0 · · · 0
0 0 0 π4(t) 0 0 · · · πmo(t)

 .

(27)

C. Continuous learning

In addition to the discontinuous learning process inherent to
ILC, where the system is reset at the end of each iteration, we
have investigated using fILC in a continuous approach without
resetting the system after each iteration. In fact, this approach
is more akin to repetitive control [28], where the final state
of the current iteration is used as the initial state for the next
iteration. We modify the learning rule from Equation 20 and
add a diagonal scaling matrix W to increase the learning rate
in some states, and to switch it off in others. Most importantly,
learning is switched off in forward x-direction, to allow the
robot to move forward, as the reference itself does not change
per iteration. The new learning rule becomes

αj+1 = αj + L(WEj), (28)

where W ∈ Rmo×mo. We then omit the system reset at the
end of each iteration. Aside from the aforementioned changes,
the controller design is left unchanged. It should be noted that
we only provide experimental validation of this method, while
this work lacks theoretical guarantees due to lack of time.

VII. SIMULATIONS AND EXPERIMENTS

A. Software setup

The proposed planning and control framework is tested and
validated in simulation. The trajectory planner and controller
are both implemented in Python. The open-source nonlinear
optimization framework CasADi [29] is used to formulate
the trajectory optimization problem, which uses algorithmic
differentiation to obtain the derivatives for gradient-based
optimization and interfaces with IPOPT [30] to solve it. We
use the rigid-body simulator PyBullet [31] to simulate the full-
order system.

B. Implementation

The parameters of the reduced-order model used in the
trajectory optimization are based on the E-Go quadruped [7].
The mass m and inertia J represent the total mass and total
inertia of the real robot. The rest spring angles are set as
visualized in Figure 3. The spring stiffnesses are selected such
that the simulated robot in PyBullet is able to sustain its own
weight without the use of its actuators while in standstill,
which was found to be 50Nm/rad for all calf and thigh joints.
To correctly represent the real system, which has twice the
amount of legs, the 2D model should produce twice the amount
of torque per leg. Therefore, the spring stiffnesses of the 2D
model are set at 100Nm/rad. The virtual leg length is set at
lvirt =

√
l2calf + l2thigh = 0.301m. The virtual leg touchdown

6

TABLE I: Optimization model parameters

Parameter Symbol Value
mass m (kg) 12.013
inertia J (kgm2) 0.103
calf length lcalf (m) 0.213
thigh length lthigh (m) 0.213
half trunk length ltrunk (m) 0.188
virtual leg length lvirt (m) 0.301
virtual leg angle θvirt (π

180
rad) 13

hind calf spring rest angle θ02 (π/180◦rad) 45
hind thigh spring rest angle θ03 (π/180◦rad) -135
front calf spring rest angle θ04 (π/180◦rad) -135
front thigh spring rest angle θ05 (π/180◦rad) 45
hind calf spring stiffness k2 (Nm/rad) 100
hind thigh spring stiffness k3 (Nm/rad) 100
front calf spring stiffness k4 (Nm/rad) 100
front thigh spring stiffness k5 (Nm/rad) 100

angle θvirt is set at 13 ◦. All used model parameters and their
values are presented in Table I.

The number of grid points of the optimization problem is
set at N = 150, yielding a good balance between solving time
and solution accuracy. The three dynamic phases are spaced
evenly over the grid and have an equal number of nodes, i.e. 50
nodes per phase, such that touchdown occurs at node nTD = 50
and take-off at node nTD = 100. The flight apexes occur at
the initial node n0 and final node N . Analogous to the spring
stiffnesses, the torque limits of the actuators are twice that of
the real system. The optimization parameters are summerized
in Table II.

TABLE II: Optimization parameters

Parameter Symbol Value
number of grid points N (-) 150
touchdown node nTD (-) 50
take-off node nTO (-) 100
time step limits hmin, hmin (s) 0.001, 0.01
forward position limits xmin, xmax (m) 0, 2
vertical position limits zmin, zmax (m) 0, 2
angular position limits αmin, αmax (m) 0, 5
forward velocity limits ẋmin, ẋmax (m/s) 0, 5
vertical velocity limits żmin, żmax (m/s) -2, 2
angular velocity limits α̇min, α̇max (m) 0, 2
hind calf actuator limits τ2min , τ2max (Nm) -71.1, 71.1
hind thigh actuator limits τ3min , τ3max (Nm) -47.4, 47.4
front thigh actuator limits τ4min , τ4max (Nm) -47.4, 47.4
front thigh actuator limits τ5min , τ5max (Nm) -71.1, 71.1

For the functional iterative learning controller, the selected
time instances of interest are the lowest point of the trajectory,
the take-off event and the final apex. As the time step h and,
as a consequence, the total stride time are optimization results,
the selected time instances are described as the node indices
{75, 100, 150}. At the start of the learning process, the system
is set to the initial state determined by the planner and the
weights of the first iterations are set to zero, such that α0 =
0. After an iteration has finished, the system is reset to the
initial state and the next control signal is executed. The mean
absolute error (MAE) is used to compare the tracking error
of fILC, as it measures performance irrespective of the used
number of time instances. It is defined as

MAE =

∑mo
i=1

∣∣Ȳi −Yji

∣∣
mo

. (29)

C. Analysis

To analyze the performance of the proposed planning and
control approach, the results of the planner and controller will
be compared under two scenarios, with and without springs.
For the controller, the feedforward control signal produced by
fILC will be compared directly with the control input signal
found by the trajectory optimization. These experiments will
show the benefit of elastic joints in terms of energy efficiency,
and that the controller is required to overcome the model
mismatch and to track the given reference.

For the continuous learning approach, the method is tested
under two conditions. The controller will first learn the weights
to successfully traverse flat terrain. Subsequently, the learned
controller is transferred to an environment with randomly gen-
erated uneven terrain, to test the robustness of the controller.

D. Hardware setup

We validate the method of continuous fILC on hardware
using the E-Go quadruped. This requires the input-output map
from Equation 23 to be determined, for which the system
response to mo = 6 · 3 = 18 Gaussians has to be recorded.
Obtaining the mapping on hardware is a tedious process, which
has to be redone every time the parameters of the Gaussians
are changed. Therefore, we omit this by recording the mapping
in simulation and transferring the resulting H matrix to the
hardware directly.

The springs of the E-Go quadruped are much softer than the
ones used in the PyBullet simulation, namely 6Nm for the
calf joints and 16Nm for the thigh joints, compared to 50Nm
used for all joints in simulation. As a result, the physical
springs are not stiff enough to sustain the weight of the E-Go
quadruped without additional motor input. We compensate for
the softer springs using a PD-impedance controller, acting as
a virtual spring in parallel to the physical spring, according to

τ PD = KP
(
qref − qj

)
−KD (q̇j) , (30)

where qj are the joint positions, qref the joint reference posi-
tions, q̇j the joint velocities, KP is the proportional gain and
KD is the derivative gain. The joint reference positions qref are
equal to the spring rest positions qj0

, such that the combined
torque of the springs and the PD-impedance controller is
roughly similar to the spring torque from simulation. Given
the full-order EoM from Equation 1, the total input torque τ
sent to the motors is equal to the sum of the fILC input uj and
the impedance controller compensation τ PD. The used gains
are KP = 60 and KD = 1 for all joints.

It should be noted that the state estimator of the robot is
not reliable in our case, as only the actuator positions are
used to determine the robot state. This might be sufficient
for gaits when at least one leg is in contact with the ground,
but this is not the case for our pronking gait where all four
feet are off the ground simultaneously during the flight phase,
resulting in inaccurate state estimates. Despite this, the largest
inaccuracies are observed in x-direction, which is not used in
the continuous learning approach.

7

VIII. RESULTS

A. Trajectory optimization

Besides the model and optimization parameters from Table I
and Table II, the trajectory optimization has the touchdown
leg angle θvirt as the only input parameter to shape the output
of the optimization, which is expected to be proportional to
the forward velocity. We can validate this by varying the
virtual leg angle from 5 ◦ to 30 ◦, with increments of 1 ◦, and
plotting it against the average forward velocity ẋavg, as shown
in Figure 4. A linear relationship between the virtual leg angle
and the average forward velocity is observed.

5 10 15 20 25 30
θvirt (π

180 rad)

0.5

1.0

1.5

ẋ a
vg

(m
/s

)

Fig. 4: Average forward velocity ẋavg as a function of the virtual
touchdown leg angle θvirt.

For the stiff case, the optimization finds the optimal solution
in approximately 9 s, resulting in a CoT of 0.596. With elastic
joints, the optimization program solves in approximately 7 s,
with a CoT of 0.563. The results of both optimizations are
shown in Figure 5 and Figure 6 respectively. We observe
very similar trajectories between the states of both cases,
in terms of shape and magnitude. Only a larger decrease
in forward velocity is observed during the stance phase for
the stiff case. The most noticeable difference is the resulting
control input. Without springs, the control inputs are strictly
negative, whereas with springs, both thigh joints produce
positive torque. Overall, the torque magnitudes are lower for
the elastic case than for the stiff case.

B. Trajectory tracking

The optimal control inputs found for both the stiff and
elastic case are fed into the full-order system directly without
learning. For both cases, large errors are reported in all states,
with an MAE of 0.456 for the stiff case and 0.350 for the
elastic case. The resulting CoTs are 2.83 and 3.83 respectively.
The full state evolutions for both cases are presented in
Appendix B.

Now we let the controller find the control inputs to track
the given reference. Figure 7 shows how the controller it-
eratively learns to track the reference points, and that the
MAE decreases rapidly and converges after 150 iterations. The
final MAE is 9.83 × 10−3, with a measured CoT of 0.765.
The whole learning process takes approximately 4 s. The used
controller parameters are QLQ = SLQ = I18 and Gaussian
variance σ2 = 0.0004. The tracking result in all system states,
as well as the learned weights and resulting control input are
presented in Figure 8. It shows that the controller is able to

TABLE III: Comparison of planned CoT and resulting CoT
and MAE, for both the stiff and elastic case. Bold indicates
lowest per category.

Planner Controller

stiff elastic stiff
without learning

elastic
without learning

elastic
with fILC

CoT 0.596 0.563 2.83 3.83 0.765
MAE - - 0.456 0.350 0.00983

track most desired outputs with high precision, with small
discrepancies observed in the angular position and forward
velocity, and with motor torques that are within actuator limits.
The CoT and MAE for all cases are summarized in Table III.

In a similar fashion, it is also possible to track multiple
successive strides. The results of tracking a double stride are
reported in Appendix B for the sake of space.

C. Continuous learning

We apply our continuous learning approach with the scal-
ing factors s = (0, 10, 1, 2, 2, 1), W = diag(s, s, s), gains
QLQ = 0.05I18 and SLQ = I18, and Gaussian variance
σ2 = 0.001. The time indices are left unchanged. A more
”jumpy” reference is used to make the effect of the controller
clearer. The results after 110 iterations are presented in Fig-
ure 9 and Figure 10. Figure 10 shows the evolution of the
position over time. Starting from an equilibrium, we observe
that the controller learns to track the reference trajectory
resulting in a stable forward pronking gait. Figure 9 shows
that the MAE decreases gradually as the number of iterations
increases, resulting in a final CoM trajectory that looks very
similar to the reference. It took the robot approximately 25 s
to cover the distance in Figure 10.

The robustness of the learned controller is tested on ran-
domly generated uneven terrain, by initializing the weights
of a new learning cycle with the previously learned weights
on flat terrain. The remaining controller parameters are left
unchanged. The result is presented in Figure 10. We observe
that the controller is able to traverse the uneven terrain despite
the disturbance, with a CoM trajectory that still looks relatively
similar to the reference. Initialized with the weights from the
previous cycle, it took the robot approximately 5 s to cover
the same distance.

D. Hardware experiments

1) Flat terrain: The continuous learning approach is val-
idated on hardware. Initially, the controller is tuned without
connecting the springs, as the springs have to be detached
and reconnected every time the robot restarts, such as when
it falls over. Connecting the springs can be a time-consuming
and tedious process. Therefore, the controller parameters are
first tuned without springs, resulting in the scaling factors
s = (0, 10, 1, 2, 2, 1), W = diag(s, s, s), gains QLQ = 0.1I18
and SLQ = I18, and Gaussian variance σ2 = 0.1. These
controller parameters are used to learn the weights on flat
terrain without the springs connected.

Thereafter, these learned weights are transferred and used to
initialize the weights for a new learning cycle with the springs

8

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.0

0.2

Po
si

tio
ns

x (m) y (m) α (rad)

0.000 0.025 0.050 0.075 0.100 0.125 0.150

−0.5

0.0

0.5

V
el

oc
iti

es

ẋ (m/s) ẏ (m/s) α̇ (rad/s)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
t (s)

−40

−20

0

20

C
on

tro
li

np
ut

τ2 (N m) τ3 (N m) τ4 (N m) τ5 (N m)

Fig. 5: Trajectory optimization result without springs.

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.0

0.2

Po
si

tio
ns

x (m) y (m) α (rad)

0.000 0.025 0.050 0.075 0.100 0.125 0.150

−0.5

0.0

0.5

V
el

oc
iti

es

ẋ (m/s) ẏ (m/s) α̇ (rad/s)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
t (s)

−40

−20

0

20

C
on

tro
li

np
ut

τ2 (N m) τ3 (N m) τ4 (N m) τ5 (N m)

Fig. 6: Trajectory optimization result with springs.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x (m)

0.28

0.30

z
(m

)

0
5
10

20
50
150

0 50 100
Iteration

10−2

10−1

M
ea

n
A

bs
ol

ut
e

E
rr

or

Fig. 7: Visualization of the fILC learning process. The top panel
shows the CoM trajectory tracking result in x and z-coordinates
at specific iteration numbers, indicated by the legend. The black
crosses indicate the desired state output at a time instance. The
bottom panel shows the evolution of the tracking performance as
a function of the number of iterations. The final MAE after 150
iterations is 9.83× 10−3.

connected. The learning gain QLQ is decreased to 0.01I18. We
start from standstill and let the robot learn until it runs out of
the 3m of physical space to move, which occurs after 52 s. At
the end of this learning cycle, we again transfer the learned
weights to a new learning cycle using the same controller
parameters. This time, it takes the robot 20 s to reach the
end of the testing space. Figure 11 shows the result of both
subsequent learning cycles and the learned control input of
the final iteration. Figure 12 presents several snapshots of the
learning process.

2) Uneven terrain: We use the same methodology of trans-
ferring weights, and validate the robustness of the learned con-
troller on uneven terrain outdoors, using the learned weights
from the previous indoor learning cycle and the same con-
troller parameters. The robot is placed on concrete bricks while
facing grassy ground. We then start the new learning cycle. We
observe that the controller is able to successfully transition
between different types of terrain, transitioning from rigid
concrete to uneven grassy ground. Figure 12 shows several
snapshots of the transitions between terrain.

3) Incline: Finally, the controller is tested on an incline
of 5◦. Again, the cycle is initialized with the weights learned
indoors, using the same controller parameters. We let the robot
face the incline, starting from level ground. The controller
successfully transitions from the level ground to the incline.
Several snapshots of the transition are presented in Figure 12.

9

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.0

0.2

Po
si

tio
ns

x (m) z (m) α (rad)

0.000 0.025 0.050 0.075 0.100 0.125 0.150

−0.5

0.0

0.5

V
el

oc
iti

es

ẋ (m/s) ż (m/s) α̇ (rad/s)

0.000 0.025 0.050 0.075 0.100 0.125 0.150

−40

−20

0

20

C
on

tro
li

np
ut

τ2 (N m) τ3 (N m) τ4 (N m) τ5 (N m)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
t (s)

0

10

20

B
as

is
fu

nc
tio

ns
π

0 5 10 15
Index

−1

0

L
ea

rn
ed

w
ei

gh
ts

α

Fig. 8: Evolution of the system state, control input and basis
functions after 150 iterations, CoT=0.765. The bottom panel
shows the values of the learned weights. The black crosses
indicate the desired state output at a time instance.

IX. DISCUSSION

A. Trajectory optimization

Figure 4 shows the positive linear relationship between the
touchdown leg angle θvirt and the average forward velocity
ẋavg, confirming that the virtual touchdown angle is propor-
tional to the forward velocity. Hence, it can be concluded
that the touchdown leg angle is an appropriate input param-
eter to the trajectory optimization. The optimization results,

7.90 7.95 8.00 8.05 8.10
x (m)

0.250

0.275

0.300

0.325

z
(m

)

Reference
Measured

0 50 100
Iteration

10−1

6×10−2

2×10−1

3×10−1

M
ea

n
A

bs
ol

ut
e

E
rr

or

0.0 0.1 0.2 0.3
t (s)

−40

−20

0

20

C
on

tro
li

np
ut

(N
m

) τ2

τ3

τ4

τ5

Fig. 9: Continuous learning with fILC. The top panel shows the
resulting CoM trajectory after 110 iterations and 8m traveled in
forward direction. The center panel shows the evolution of the
MAE as a function of the number of iterations. The bottom panel
shows the learned control input at the final iteration.

as summarized in Table III, confirm that compared to stiff
locomotion, elastic elements improve the walking efficiency,
as suggested by [32].

B. Trajectory tracking

From the results presented in Table III, it is evident that the
optimal control signals do not result in the desired reference
output when fed forward into the full-order system without
learning. Therefore, it can be concluded that the model dis-
crepancy between the used reduced-order and the full-order
model is too large to use the optimization output directly,
and that a controller is required to overcome the model
mismatch. From Figure 8, we find that fILC is very effective at
accomplishing this task, resulting in seemingly perfect tracking
in most states. The large change in angular velocity observed
during the stance phase is the result of only tracking certain
time instances instead of the whole reference. Whereas the
time instances are successfully tracked, the controller has
no knowledge of what happens at other moments in time.
This, in combination with the forward momentum, results
in the observed change in pitch angle. Regardless, the high
tracking accuracy shows that the controller is able to overcome

10

Fig. 10: Continuous learning with fILC in PyBullet simulation.
The top figure shows the controller is able to learn to track the
reference from standstill, without resetting the system at the end of
each iteration. The bottom figure shows the result of transferring
the weights learned on flat terrain to rough terrain. The red
trajectory indicates the evolution of the CoM over time.

and learn the unmodeled dynamics, including the effect of
ground contact collision, ground friction, joint friction, spring
damping, and leg mass and inertia.

In terms of energy efficiency, Table III shows that the
resulting CoT is an order of magnitude higher without the
use of fILC, whereas the magnitudes of the control inputs are
of the same order. A possible explanation could be that the
observed vertical and angular velocities of the CoM during the
stance phase without fILC are much higher, leading to higher
joint velocities and as a result, a higher CoT. Compared to
the planned CoT, the resulting CoT is in the same order of
magnitude, albeit slightly higher. This is to be expected, as the
planned CoT does not account for leg mass and inertia, ground
contact collision and friction forces. Similarly, the higher
angular velocity also contributes to a higher CoT, compared
to the absence of rotational velocity observed in the planned
trajectory.

C. Continuous learning

Despite yielding accurate tracking of single strides, re-
peating the learned control input in a feedforward manner
does not result in stable locomotion, diverging after several
successive strides. Therefore, feedforward control by itself is
not sufficient for stable locomotion and additional feedback
is required to stabilize the gait. It should be noted that this
divergence is a property of feedforward control in general, not
of the proposed method. The continuous learning approach
provides a method of achieving stable locomotion, without
altering the stiffness behavior through feedback, resulting in a
forward pronking motion that is very similar to the reference.
Furthermore, when transferring over the learned weights from
flat terrain, the controller is able to confidently traverse the
rough ground. Despite violating the identical initialization
condition of ILC, which states that each iteration should start

0.00 0.05 0.10 0.15 0.20
x (-)

0.25

0.30

0.35

z
(m

)

0.00 0.05 0.10 0.15 0.20
x (-)

0.25

0.30

0.35

z
(m

)

22.0 22.1 22.2 22.3
t (s)

−40

−20

0

20
C

on
tro

li
np

ut
(N

m
)

τ2 τ3 τ4 τ5

0

20

40

t
(s

)

0

10

20

t
(s

)

Fig. 11: Two subsequent learning cycles on hardware with springs
connected, where the second cycle is initialized with the weights
learned in the first cycle. The top panel shows the evolution in
position, initialized with the weights learned on hardware without
springs. The center panel shows the evolution of the subsequent
learning cycle, initialized with the weights of the previous cycle.
The color gradient indicates the evolution of time. Note that the
x-axis has no unit due to the state estimation inaccuracy. The
bottom panel shows the control input learned in the final iteration
of the last cycle.

at the same state, the controller seems robust to the large
initialization errors. A thorough explanation of this cannot
be given and would require more analysis, although it has
been shown before that ILC can be robust to initialization
errors [33].

D. Hardware experiments

The validation of the continuous learning approach on hard-
ware proves that this method is not only limited to simulation.
Using the input-output map from simulation, the proposed
method is able to learn a forward pronking gait directly on
hardware in only several minutes. Furthermore, the resulting
controller is robust to different types of terrain and inclines,
and transitions between them effortlessly. Again, it should be
noted that the state estimates of the robot are inaccurate, most
noticeably in x-position and x-velocity, reporting a distance
traveled of 0.2m, whereas the robot covered approximately
3m in reality during the indoor experiments. As a result, the
controller perceives an error that is higher than the true error,
which could lead to instability as the number of iterations
increases. As demonstrated, this can be prevented by initially

11

Fig. 12: Hardware experiments of continuous fILC on, from top to bottom, flat terrain, rough grassy terrain, and on an incline. The robot is
able to successfully transition between different types of terrain.

learning a set of weights with a higher gain until the motion is
acceptable, decreasing the gain, and transferring the weights
to a new learning cycle.

E. Future work

Several recommendations can be made to improve the
performance of the proposed methods. Regarding fILC, dif-
ferent learning rules could be investigated that, for example,
incorporate more model knowledge or put more emphasis
on minimization of control input, potentially increasing the
convergence rate, tracking accuracy, or energy efficiency. An
example of this could be gradient-based learning rules [34].
Different gaits such as the pace and the trot gait could be
incorporated for a wider variety of motions, although this will
be significantly more difficult due to the inherent instability
of these dynamic gaits. It is likely that lateral control would
be necessary to successfully execute these gaits, which as
a result would extend the work beyond the sagittal plane.
Currently, the controller has no knowledge of the legs of the

quadruped. Therefore, learning to track joint states in addition
to the base state could improve the tracking performance for
successive strides. In turn, this would require the generation
of joint trajectories, for example using full-body optimization,
which could be an improvement of the trajectory planner.
Another approach for improved execution of successive strides
could be the use of feedback control in parallel with fILC,
called current-iteration ILC [35]. Using small feedback gains,
the system could apply small corrections to stabilize the
motion during the stride and limit the initialization error, while
changing the stiffness behavior only marginally.

Regarding the continuous learning approach, more research
is required to analyze the mechanisms behind this method
and to formulate theoretical guarantees. For the performed
experiments, an obvious point of improvement is the use of
more accurate state estimates, either through the incorporation
of additional sensor data from an inertial measurement unit or
vision sensors, or via an external positioning systems.

12

X. CONCLUSION

This work proposes a motion planning and control strategy
for efficient and compliant single stride locomotion using
trajectory optimization and fILC. We have demonstrated that
our approach is able to learn the feedforward control signal re-
quired to make an articulated soft quadruped track a reference
with high accuracy and efficiency, in only a matter of seconds.
It achieves this while preserving the physical compliance of
the system and without reliance on an accurate mathematical
description of the full-order system. As a consequence, this
work validates that fILC is applicable to hybrid nonlinear
underactuated systems. The proposed strategy is not neces-
sarily restricted to locomotion, but is applicable to ASRs in
general. This work also demonstrates that fILC can be used
in a continuous approach, resulting in a pronking gait that is
learned on hardware in minutes. To the best of the author’s
knowledge, this work is the first to use ILC to control a
quadruped without the use of additional feedback controllers,
and the first to apply ILC to compliant legged systems in
general. As only experimental validation of the continuous
approach is given, future work will include the formulation of
theoretical guarantees.

REFERENCES

[1] C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther,
M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world
applications for legged robots,” Journal of Field Robotics, vol. 35, no. 8,
pp. 1311–1326, 12 2018.

[2] Boston Dynamics, “Spot Specifications,” 2022. [Online]. Available:
https://support.bostondynamics.com/s/article/Robot-specifications

[3] ANYbotics, “ANYmal - Autonomous Legged Robot,”
2022. [Online]. Available: https://www.anybotics.com/
anymal-autonomous-legged-robot/

[4] T. J. Roberts and E. Azizi, “Flexible mechanisms: the diverse
roles of biological springs in vertebrate movement,” Journal of
Experimental Biology, vol. 214, no. 3, pp. 353–361, 2 2011.
[Online]. Available: https://journals.biologists.com/jeb/article/214/3/353/
33503/Flexible-mechanisms-the-diverse-roles-of

[5] G. A. Cavagna, “Force platforms as ergometers,”
https://doi.org/10.1152/jappl.1975.39.1.174, vol. 39, no. 1, pp. 174–
179, 1975. [Online]. Available: https://journals.physiology.org/doi/abs/
10.1152/jappl.1975.39.1.174

[6] C. Della Santina, M. G. Catalano, and A. Bicchi, “Soft Robots,”
Encyclopedia of Robotics, pp. 1–15, 2021.

[7] J. Ding, P. Posthoorn, V. Atanassov, J. Kober, and C. D. Santina, “Delft
E-Go Compliant Quadrupedal Robot: Parallel Compliance Design, Lo-
comotion Control, and Hardware Experiments,” 2023.

[8] C. David, C. David Remy, K. Buffinton, and R. Siegwart, “Energetics
of passivity based running with high-compliance series elastic
actuation ETH Library Energetics of passivity based running with
high-compliance series elastic actuation,” 2010. [Online]. Available:
https://doi.org/10.3929/ethz-a-010027887

[9] C. D. Remy, “Optimal exploitation of natural dynamics in
legged locomotion,” 2011. [Online]. Available: https://doi.org/10.
3929/ethz-a-6665065

[10] Z. Gan and C. D. Remy, “A passive dynamic quadruped that moves in a
large variety of gaits,” in IEEE International Conference on Intelligent
Robots and Systems. Institute of Electrical and Electronics Engineers
Inc., 10 2014, pp. 4876–4881.

[11] W. Xi and C. D. Remy, “Optimal gaits and motions for legged robots,”
IEEE International Conference on Intelligent Robots and Systems, pp.
3259–3265, 10 2014.

[12] W. Xi, Y. Yesilevskiy, and C. David Remy, “Selecting gaits for econom-
ical locomotion of legged robots,” The International Journal of Robotics
Research, vol. 35, no. 9, pp. 1140–1154, 2016.

[13] G. Schultz and K. Mombaur, “Modeling and optimal control of human-
like running,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 5,
pp. 783–792, 10 2010.

[14] A. Werner, R. Lampariello, and C. Ott, “Trajectory optimization for
walking robots with series elastic actuators,” Proceedings of the IEEE
Conference on Decision and Control, vol. 2015-February, no. February,
pp. 2964–2970, 2014.

[15] C. Della Santina, M. Bianchi, G. Grioli, F. Angelini, M. Catalano,
M. Garabini, and A. Bicchi, “Controlling Soft Robots: Balancing
Feedback and Feedforward Elements,” IEEE Robotics and Automation
Magazine, vol. 24, no. 3, pp. 75–83, 9 2017.

[16] M. Keppler, D. Lakatos, C. Ott, and A. Albu-Schaffer, “Elastic Structure
Preserving (ESP) Control for Compliantly Actuated Robots,” IEEE
Transactions on Robotics, vol. 34, no. 2, pp. 317–335, 4 2018.

[17] A. De Luca and F. Flacco, “Dynamic gravity cancellation in robots with
flexible transmissions,” Proceedings of the IEEE Conference on Decision
and Control, pp. 288–295, 2010.

[18] D. Lakatos, C. Rode, A. Seyfarth, and A. Albu-Schäffer, “Design and
control of compliantly actuated bipedal running robots: Concepts to
exploit natural system dynamics,” IEEE-RAS International Conference
on Humanoid Robots, vol. 2015-February, pp. 930–937, 2 2015.

[19] M. Hutter, C. D. Remy, M. A. Hoepflinger, and R. Siegwart, “Efficient
and versatile locomotion with highly compliant legs,” IEEE/ASME
Transactions on Mechatronics, vol. 18, no. 2, pp. 449–458, 2013.

[20] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, P. Fankhauser,
and R. Siegwart, “Excitation and stabilization of passive dynamics in
locomotion using hierarchical operational space control,” in Proceedings
- IEEE International Conference on Robotics and Automation. Institute
of Electrical and Electronics Engineers Inc., 9 2014, pp. 2977–2982.

[21] G. M. Gasparri, S. Manara, D. Caporale, G. Averta, M. Bonilla,
H. Marino, M. Catalano, G. Grioli, M. Bianchi, A. Bicchi, and M. Gara-
bini, “Efficient Walking Gait Generation via Principal Component Rep-
resentation of Optimal Trajectories: Application to a Planar Biped Robot
with Elastic Joints,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 2299–2306, 7 2018.

[22] M. J. Pollayil, C. D. Santina, G. Mesesan, J. Englsberger, D. Seidel,
M. Garabini, C. Ott, A. Bicchi, and A. Albu-Schaffer, “Planning Natural
Locomotion for Articulated Soft Quadrupeds,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 6593–6599,
2022.

[23] T. Apgar, P. Clary, K. Green, A. Fern, and J. Hurst, “Fast Online Tra-
jectory Optimization for the Bipedal Robot Cassie,” Robotics: Science
and Systems, 2018.

[24] C. Della Santina and F. Angelini, “Iterative Learning in Functional Space
for Non-Square Linear Systems,” Proceedings of the IEEE Conference
on Decision and Control, vol. 2021-December, pp. 5858–5863, 2021.

[25] R. J. Full and D. E. Koditschek, “Templates and anchors:
neuromechanical hypotheses of legged locomotion on land,” Journal
of Experimental Biology, vol. 202, no. 23, pp. 3325–3332, 12 1999.
[Online]. Available: https://journals.biologists.com/jeb/article/202/23/
3325/8334/Templates-and-anchors-neuromechanical-hypotheses

[26] H. C. Doets, D. Vergouw, H. E. Veeger, and H. Houdijk, “Metabolic
cost and mechanical work for the step-to-step transition in walking after
successful total ankle arthroplasty,” Human Movement Science, vol. 28,
no. 6, pp. 786–797, 12 2009.

[27] R. J. Li and Z. Z. Han, “Survey of iterative learning control,” Kongzhi
yu Juece/Control and Decision, vol. 20, no. 9, pp. 961–966, 9 2005.

[28] G. Hillerström and K. Walgama, “Repetitive Control Theory and Ap-
plications - A Survey,” IFAC Proceedings Volumes, vol. 29, no. 1, pp.
1446–1451, 6 1996.

[29] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 3 2019. [Online]. Available: https://link.springer.com/article/10.
1007/s12532-018-0139-4

[30] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 5 2006.

[31] E. Coumans and Y. Bai, “PyBullet, a Python module for physics
simulation for games, robotics and machine learning,” 2021. [Online].
Available: https://pybullet.org/

[32] S. Manara, G. M. Gasparri, M. Garabini, D. Caporale, M. Gabiccini,
and A. Bicchi, “Analysis of series elasticity in locomotion of a planar
bipedal robot,” International Journal of Mechanics and Control, vol. 20,
no. 01, 2019.

[33] K. Hu, C. Ott, and D. Lee, “Online iterative learning control of zero-
moment point for biped walking stabilization,” in Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2015-June,
no. June. Institute of Electrical and Electronics Engineers Inc., 6 2015,
pp. 5127–5133.

13

https://support.bostondynamics.com/s/article/Robot-specifications
https://www.anybotics.com/anymal-autonomous-legged-robot/
https://www.anybotics.com/anymal-autonomous-legged-robot/
https://journals.biologists.com/jeb/article/214/3/353/33503/Flexible-mechanisms-the-diverse-roles-of
https://journals.biologists.com/jeb/article/214/3/353/33503/Flexible-mechanisms-the-diverse-roles-of
https://journals.physiology.org/doi/abs/10.1152/jappl.1975.39.1.174
https://journals.physiology.org/doi/abs/10.1152/jappl.1975.39.1.174
https://doi.org/10.3929/ethz-a-010027887
https://doi.org/10.3929/ethz-a-6665065
https://doi.org/10.3929/ethz-a-6665065
https://journals.biologists.com/jeb/article/202/23/3325/8334/Templates-and-anchors-neuromechanical-hypotheses
https://journals.biologists.com/jeb/article/202/23/3325/8334/Templates-and-anchors-neuromechanical-hypotheses
https://link.springer.com/article/10.1007/s12532-018-0139-4
https://link.springer.com/article/10.1007/s12532-018-0139-4
https://pybullet.org/

[34] T. Sogo and N. Adachi, “Iterative learning control based on the gradient
method for linear discrete-time systems,” IFAC Proceedings Volumes,
vol. 32, no. 2, pp. 4729–4734, 7 1999.

[35] T. Y. Doh, J. H. Moon, K. B. Jin, and M. J. Chung, “Robust
iterative learning control with current feedback for uncertain linear sys-
tems,” http://dx.doi.org.tudelft.idm.oclc.org/10.1080/002077299292650,
vol. 30, no. 1, pp. 39–47, 2010. [Online].
Available: https://www-tandfonline-com.tudelft.idm.oclc.org/doi/abs/10.
1080/002077299292650

[36] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. T. Kumar, S. Ivanov, J. K. Moore, S. Singh,
T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi,
H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R.
Terrel, Å. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and
A. Scopatz, “SymPy: Symbolic computing in python,” PeerJ Computer
Science, vol. 2017, no. 1, p. e103, 1 2017. [Online]. Available:
https://peerj.com/articles/cs-103

14

https://www-tandfonline-com.tudelft.idm.oclc.org/doi/abs/10.1080/002077299292650
https://www-tandfonline-com.tudelft.idm.oclc.org/doi/abs/10.1080/002077299292650
https://peerj.com/articles/cs-103

APPENDIX A
EQUATIONS OF MOTION

A. Inverse kinematics

At touchdown, the position of the TSLIP virtual foot pvirt
is given by

pvirt =

[
xvirt
zvirt

]
=

[
x+ lvirt sin(θvirt)

0

]
(31)

The virtual foot position pvirt is then displaced in positive
and negative x direction by a distance equal to the half trunk
length ltrunk, resulting in the hind and front foot positions, as
visualized in Figure 2

pfootH = pvirt −
[
ltrunk
0

]
, pfootF = pvirt +

[
ltrunk
0

]
. (32)

The positions of the hind and front hip are described as

phipH
=

[
x
z

]
−
[
ltrunk cos(α)
ltrunk sin(α)

]
, phipF

=

[
x
z

]
+

[
ltrunk cos(α)
ltrunk sin(α)

]
.

(33)
Finally, the hip positions are translated to the origin, treating

phip as the base and pfoot as the end effector, according to

pe = pfoot − phip =

[
xe

ze

]
. (34)

Geometric inverse kinematics is then used to calculate the
joint positions, resulting in the mapping h : q 7→ θ that maps
the generalized coordinates to joint coordinates. The definition
of the joint angles is visualized in Figure 3 and given by

θ2 = cos−1

(
x2
eH + z2eH − l2calf − l2thigh

2lcalflthigh

)

θ3 = tan−1

(
zeH
xeH

)
− tan−1

(
lthigh sin(θ2)

lcalf + lthigh cos(θ2)

)
θ1 = −θ2 − θ3

θ5 = cos−1

(
x2
eF + z2eF − l2calf − l2thigh

2lcalflthigh

)

θ4 = tan−1

(
zeF
xeF

)
− tan−1

(
lthigh sin(θ5)

lcalf + lthigh cos(θ5)

)
θ6 = −θ5 − θ4

(35)

B. Stance dynamics

Given the mapping h, the EoM of the quadruped in stance
can be computed using Lagrangian mechanics:

T =
1

2
m
(
ẋ2 + ż2

)
+

1

2
Jα̇2

V = mgz +
1

2
k2 (θ02 − θ2)

2
+

1

2
k3 (θ03 − θ3)

2
+

1

2
k4 (θ04 − θ4)

2

+
1

2
k5 (θ05 − θ5)

2

L = T − V

=
1

2
m
(
ẋ2 + ż2

)
+

1

2
Jα̇2 − 1

2
k2 (θ02 − θ2)

2 − 1

2
k3 (θ03 − θ3)

2

− 1

2
k4 (θ04 − θ4)

2 − 1

2
k5 (θ05 − θ5)

2

(36)
Solving the Euler-Lagrange equation d

dt (
δL
δq̇)− δL

δq with q =[
x z α

]T
yields

d
dt

(
δL
δq̇

)
=

mẍ
mz̈
Jα̈

 ,
δL
δq

=

 ∑5
i=2 ki(θ0i − θi)

d
dxθi∑5

i=2 ki(θ0i − θi)
d

dz θi −mg∑5
i=2 ki(θ0i − θi)

d
dαθi

 ,

(37)
resulting in the EoM

m 0 0
0 m 0
0 0 J

ẍz̈
α̈

+

∑5
i=2 ki(θi − θ0i)

d
dxθi∑5

i=2 ki(θi − θ0i)
d

dz θi∑5
i=2 ki(θi − θ0i)

d
dαθi

+

 0
mg
0

 =

Fx

Fz

τα


M(q)q̈ +

(
dθ
dq

)T

K (θ − θ0) +G(q) = F

M(q)q̈ + Jh
T(q)K (θ − θ0) +G(q) = F ,

(38)
where K = diag(0, k1, k2, k3, k4, k5, 0) and F is the spatial
wrench. The partial derivatives of the joint angles with respect
to q are obtained symbolically using SymPy [36]. The spatial
wrench is given by

F =

Fx

Fz

τα

 =

 FHx
+ FFx

FHz + FFz

F H × rH + F F × rF,

 (39)

where F H and F F are the ground reaction forces of each leg
as a result of the motor torque τ , and rH and rF are the vectors
from the CoM to the foot contact points. The motor torques τ
are converted from joint coordinate space to generalized forces
using the contact Jacobians of the hind and front leg, JH and
JF respectively. As the legs exert a force on the ground, the
ground reaction force that is exerted on the robot is equal and
opposite, given by

F = −
(
J−Tτ

)[
F H
F F

]
= −

[
J−T

H 0

0 J−T
F

] [
τH
τ F

]

FHx

FHz

FHα

FFx

FFz

FFα

 = −



0 0 0

J−T
H 0 0 0

0 0 0
0 0 0

0 0 0 J−T
F

0 0 0




0
τ2
τ3
τ4
τ5
0

 ,

(40)

15

where the subscript denotes the ground reaction force com-
ponent in the direction of one of the generalized coordinates
of q. As the joint torques are converted to equivalent forces
at the feet, FHα and FFα are both equal to zero.

C. Contact Jacobians

The contact Jacobians of the front and hind leg are the
following. The Jacobian of the front leg is different to the
hind leg to accommodate for the specific order of torques in
the torque vector τ =

[
0 τ2 τ3 τ4 τ5 0

]T
.

1) Hind leg:

JH =

0 −lcalf sin(θ3 + θ2) −lthigh sin(θ3)− lcalf sin(θ3 + θ2)
0 lcalf cos(θ3 + θ2) lthigh cos(θ3) + lcalf cos(θ3 + θ2)
1 1 1


(41)

2) Front leg:

JF =

−lthigh sin(θ4)− lcalf sin(θ4 + θ5) −lcalf sin(θ4 + θ5) 0
lthigh cos(θ4) + lcalf cos(θ4 + θ5) lcalf cos(θ4 + θ5) 0

1 1 1


(42)

16

APPENDIX B
TRAJECTORY TRACKING

A. Without learning

Figure 13 and Figure 14 depict the full state evolutions, as
a response to the optimal controls inputs from optimization
without learning, as mentioned in subsection VIII-B and
subsection IX-B. Large errors are observed in all states without
learning.

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.0

0.2

0.4

Po
si

tio
ns

x (m) z (m) α (rad)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
−2

0

2

V
el

oc
iti

es

ẋ (m/s) ż (m/s) α̇ (rad/s)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
t (s)

−40

−20

0

20

C
on

tro
li

np
ut

τ2 (N m) τ3 (N m) τ4 (N m) τ5 (N m)

Fig. 13: Result of feedforward control signal from optimization
without springs. The black crosses indicate the desired state
output at a time instance.

0.000 0.025 0.050 0.075 0.100 0.125 0.150

0.0

0.2

0.4

Po
si

tio
ns

x (m) z (m) α (rad)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
−2

0

2
V

el
oc

iti
es

ẋ (m/s) ż (m/s) α̇ (rad/s)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
t (s)

−40

−20

0

20

C
on

tro
li

np
ut

τ2 (N m) τ3 (N m) τ4 (N m) τ5 (N m)

Fig. 14: Result of feedforward control signal from optimization
with springs. The black crosses indicate the desired state
output at a time instance.

17

B. Double stride

The following figures present the result of tracking a
double stride. The single stride reference, including the time
instances, is repeated in x-direction once, resulting in the time
instances {50, 100, 150, 225, 250, 300}. Figure 15 shows the
learning curve for tracking a double stride, reaching a MAE
of 1.7×10−2 after 300 iterations. Figure 16 shows the resulting
CoM trajectory. Again, we observe a deviation in tracking the
lowest points of the trajectory at T 1 and T 4, while the apexes
at T 3 and T 6 are tracked with high accuracy. Figure 17 shows
the full state evolution. Similarly, the controller is able to track
the desired state outputs with high precision, with the pitch
angle α being the only exception, with an error of ±0.1 rad.

0 50 100 150 200 250 300
Iteration

10−1

M
ea

n
A

bs
ol

ut
e

E
rr

or

Fig. 15: Evolution of the MAE as a function of the number of
iterations for tracking a double stride. The final MAE = 1.7 ×
10−2.

0.000 0.025 0.050 0.075 0.100 0.125 0.150
x (m)

0.24

0.26

0.28

0.30

0.32

0.34

0.36

z
(m

)

Reference
Measured

Fig. 16: Double stride CoM trajectory tracking result after 300
iterations. The black crosses indicate the desired state output at a
time instance.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

Po
si

tio
ns

x (m) z (m) α (rad)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−2

0

V
el

oc
iti

es

ẋ (m/s) ż (m/s) α̇ (rad/s)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−50

0

C
on

tro
li

np
ut

τ2 (N m) τ3 (N m) τ4 (N m) τ5 (N m)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t (s)

0

20

40

B
as

is
fu

nc
tio

ns
π

0 10 20 30
Index

−1

0

L
ea

rn
ed

w
ei

gh
ts

α

Fig. 17: Evolution of the system state, control input and basis
functions after 300 iterations. The bottom panel shows the values
of the learned weights. The black crosses indicate the desired state
output at a time instance.

18

	Introduction
	List of acronyms
	Controller overview
	Model
	Full-order model
	Reduced-order model
	Flight dynamics
	Stance dynamics

	Phase switching

	Trajectory optimization
	Objective function
	Constraints
	Initial condition and periodicity constraints
	Dynamic constraints
	Switch conditions

	Problem formulation

	Trajectory tracking
	Functional Iterative Learning Control
	Background
	Nonlinear systems

	Controller design
	Learning rule
	Basis functions

	Continuous learning

	Simulations and experiments
	Software setup
	Implementation
	Analysis
	Hardware setup

	Results
	Trajectory optimization
	Trajectory tracking
	Continuous learning
	Hardware experiments
	Flat terrain
	Uneven terrain
	Incline

	Discussion
	Trajectory optimization
	Trajectory tracking
	Continuous learning
	Hardware experiments
	Future work

	Conclusion
	References
	Appendix A: Equations of motion
	Inverse kinematics
	Stance dynamics
	Contact Jacobians
	Hind leg
	Front leg

	Appendix B: Trajectory tracking
	Without learning
	Double stride

