TUDelft

Data augmentation for graph based data
Improving representation of cycling trips with varying speed conditions

using data augmentation

Lucas Petre
Supervisor(s): Dr. E. Isufi, MSc. T Gao
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 21, 2025

Name of the student: Lucas Petre
Final project course: CSE3000 Research Project
Thesis committee: Dr. E. Isufi, MSc. T. Gao, Dr. J. Sun

Abstract

Accurate estimation of bicycle trip travel times remains a challenge due to the limited availability
of structured cycling data. This paper investigates how graph-based data augmentation can be used
to address this limitation, specifically within the context of the DG4B model, a Graph Convolutional
Neural Network for travel time estimation. We explore and evaluate three augmentation techniques:
Random Walk (with and without node revisiting), Dijkstra Walk and Subgraph Stitching. These
methods generate new trips by traversing or recombining paths within an existing road network graph,
aiming to expand the training dataset while preserving realistic routing behavior. The augmented
data is evaluated both statistically, using metrics like mean, variance and Frobenius norm, and
in terms of model performance using RMSE, MAE and MAPE. Experimental results show that
Subgraph Stitching and Dijkstra Walk yield the most effective improvements in model accuracy, with
each method exhibiting strengths across different trip duration ranges. This work demonstrates that
carefully designed graph-based data augmentation can improve GCNN-based travel time predictions
in settings with limited cycling trip data.

1 Introduction

Contrary to most other popular travel options,
there are not many accurate ways of estimating
travel time for bicycle trips. In one of the few pa-
pers on this topic, there has been attempted to for-
mulate a model for performing such estimations [2].
The model mentioned in this paper makes use of
graph-based deep learning in the form of a Graph
Convolutional Neural Network (GCNN), in order to
estimate travel time given a certain route across a
graph network of roads and intersections. A graph
convolutional neural network is a type of artificial
intelligence that can operate and learn from graph
based data. One of the major problems faced when
attempting to use aforementioned model for esti-
mating the travel time, is the limited availability of
structural cycling trip data. In order to tackle this
problem, this paper will describe, propose and anal-
yse multiple possible ways of extending the data by
means of data augmentation. As such, the main fo-
cus of this paper will not be the bicycle trip time
estimation itself, but rather the augmentation of
graph-based data, which in our case is focused on
generating new trip data based on the previously
existing and classified map data (i.e. roads and in-
tersections) from [2].

Whilst data augmentation is most often used for
image based applications [4], it can also be used for
graph-based data [1]. It is important to note that
data augmentation is not to be confused with data
synthetisation. While, by definition, data syntheti-
sation focuses on generating new data, data aug-
mentation applies transformations to existing data
in order to generate new data.

To tackle the challenge of data augmentation
mentioned above, we have formulated two subques-
tions:

1. What data augmentation techniques can be used
to augment the available data, such that it can be
used in a GCNN?

2. How do we measure the generated data and
compare it to the previously existing data and how
do we measure its performance when used for the
model?

In order to answer these questions in a clear
manner, the paper is organised as follows: We will
start off by covering the related work, here we

will introduce previous research to describe what
methods already exist for graph data augmentation.
Next the methodology will describe what augmen-
tation methods we will be using and how they work.
It will also describe the metrics we will use for mea-
suring each augmentation method’s performance on
the DG4B model. After that, we will present the
results, first by analysing and comparing the gener-
ated trip data through the different augmentation
methods and afterwards by comparing the model
performance of the augmented dataset. Finally, we
will draw conclusion from these results and provide
possible future work for this field of research.

2 Related work

As mentioned in the introduction, data augmenta-
tion is most often used for image based applications.
Hence we will not be able to use and apply all data
augmentation previously research [4].

Before getting started, we must also examine
what type of graph data we are working with. The
DG4B model makes use of 2 graphs, a road network
graph, in which the infrastructure, that is roads, in-
tersections, traffic lights, etc. is stored, and a trip
graph, which stores data for individual cycling trips.
In our research, we will augment trips by use of the
road network graph. We will consider roads as edges
and intersections as nodes, where we will traverse
roads in order to simulate a traversal from a cer-
tain location A to a another location B in the road
network graph. This location can either be a node
(intersection) or a location along a road, meaning
we can also start or finish on an edge. This traversal
is referred to as a trip.

Existing studies in graph data augmentation fo-
cus on tasks such as node classification and graph
classification [5] [1] [3], using techniques like:

e Edge Perturbation: We drop or add a ran-
dom percentage of traversed road edges to or
from a trip. This method is not fit for our
the data we are trying to augment since for a
trip to be valid, there needs to be a connected
path in the road network graph from starting
starting point A to finishing point B. If we
drop a random edge (road), we will almost
certainly lose this direct path and as such we

would no longer have a connected trip from A
to B. [1].

e Attributes masking: We hide certain fea-
tures or attributes in the graph, in order to
help the model understand not only the con-
text in the graph, but also it’s content [1].
This method is however beyond the scope of
this research, as hiding attributes would more
resemble feature engineering.

e Subgraph extraction: We generate a sub-
graph, in our case a trip. Generating such
subgraphs can be done by for example: Ran-
dom Walk, a method in which we start at a
random node, then traverse random edges un-
til we decide through some metric that the
trip should end. The node in which we end
is the final node. We now have a generated
subgraph. We can also crop the graph. Crop-
ping a graph for a trip would mean traversing
along the trips edges from the starting node
and then according to some metrics stopping
before the final node. We consider the node
where we stopped the finishing node. Now we
have a new subgraph. Finally, we could mix
up two subgraphs. This would mean swap-
ping certain attributes from one edge or node
to another edge or node, for example distance
or average speed. This however would mean
modifying the road network graph. As such
it’s beyond the scope of this research. Having
both local and global information, shorter and
longer trips in our case, which can be achieved
through subgraph extraction, is advantageous
for representation learning [1].

Although these methods can work on graph
based data, most of them are not particularly suited
for trip augmentation. In our scenario, the preser-
vation of path continuity (that is, a trip needs to
go from a starting point A to a finishing point B
without interruption) and realistic travel behaviour
are critical. Therefore, while we can draw inspira-
tion from the aforementioned techniques, this re-
search will modify them where possible to the con-
text of trip augmentation by introducing custom
approaches that retain meaningful data.

This work distinguishes itself by not only ap-
plying some of the graph augmentation techniques

mentioned above, but also proposes some new ap-
proaches of augmentation, in order to enhance the
model and reduce the overall error for trip time
estimation. By using existing classified map data
used in the DG4B model [2], we develop augmen-
tations that simulate variations in travel behavior
and routing, ultimately aiming to improve model
performance through better training data.

3 Methodology

3.1 Choosing Augmentation Meth-

ods

As seen in the previous chapter, some data augmen-
tation techniques would not work for our goal of
graph based data augmentation. Thus, we propose
the following methods, some of which are slightly
modified versions of methods from the previous
chapter, to augment the trip data:

e Random Walk: We traverse the road network
graph from a random starting node A by ar-
bitrarily choosing a new edge to follow until
we decide, through some metric, that we must
stop. The node where we stop is the end node
of the trip. We have now performed a random
walk. We will do random walks both with and
without allowing revisiting of previous nodes.
Random walks where we allow previous nodes
to be revisited will from now be referred to as
RWT, random walks in which we don’t al-
low revisiting of previous nodes will be called
RWEF. The revisiting configuration allows us
to explore cyclic or looping paths, which may
reflect realistic human behavior in urban en-
vironments (e.g., missed turns or searching
behavior), while the non-revisiting mode en-
sures more direct, more efficient traversals of
the graph. The pseudocode for this method
is described in A.1.

e Dijkstra Walk: Similarly to the random walk,
we pick a random starting node in the road
network graph. We also pick a random end
node for our new trip. Instead of randomly
traversing edges from the starting node, we
now use Dijkstra’s algorithm, a pathfinding
algorithm that finds the shortest possible path

between 2 nodes, to find a path along edges
from the starting node to the finishing node
that has the smallest possible travel time.
We have now generated a new trip. For this
method, the pseudocode can be found in A.2.

e Subgraph Stitching: We take 2 arbitrary
trips, called T1 and T2, that overlap in at
least one node in our road network graph. If
these trips intersect in more than one node,
we will pick a random node M from this set
of intersecting nodes. We now take the edges
from the starting node of T1 up to M and
the edges from M to the end node of T2. We
have now generated a new trip by levering 2
previously existing trips. A.3 describes the
pseudocode for this method.

The reason for choosing these methods is that
they allow us to use the road network graph from
the DG4B model [2] to augment new trips. It is
important to note that the methods may then feel
like data synthetisation. We can argue however
that since we are using the existing road data to
generate new trips, we are still constrained by the
road graph, thus our generated trips still fall under
the category of augmented data and not synthesised
data. We have now answered our first subquestion
from the introduction, and can move onto answer-
ing the second one.

3.2 Experiment Setup

In order to test the previously techniques, we will
implement them in the code and run the augmen-
tations. We will then compare the augmented trips
to the original trip data. Finally, we will compare
the DG4B model performance on the un-augmented
trip dataset vs the augmented trip dataset (by aug-
mented dataset, we refer to the original trips plus
the augmented trips)

To ensure reproducability, we apply random
seed = 42 to all experiments. Similarly, for all ex-
periments, we will use a learning rate of 0.01.

3.3 Data & Model Metrics

For us to be able to compare the augmented trips
with the original trips, we can use multiple met-
rics in order to get a better understanding of what
trips have exactly been generated. One example
of these metrics is the Frobenius norm. This met-
ric can be used to measure the change or spread
of two separate datasets. The lower the returned
value (||Al|r), the closer the metric values of the
two datasets are. It is important to note that the
Frobenius norm indicates how close the metric val-
ues are, not necessarily how good they are. We
can calculate the norm using the following formula:
IlAllF = \/2111 > i1 laij|?. The full formula with
the variables explained can be found in the ap-
pendix: B.1. We can also look at the mean of
trips length/size or analyse the variance for these
features. Furthermore, we can plot a graph of the
distribution of trips with regards to their trip time
by using a histogram as was done in [2].

The model also provides multiple performance
metrics, RMSE (Root Mean Square Error), MAE
(Mean Absolute Error) and MAPE (Mean Abso-
lute Percentage Error), which are given based on
the performance of the test/validation set of the
DG4B model when trained. The test and valida-
tion set are taken from the original trip data, in or-
der to avoid inconsistent test results due to possible
badly augmented trip data. Section B.2 (RMSE),
B.3 (MAE) and B.4 (MAPE) describe the way each
error metric is calculation in more detail.

To compare the model performance for differ-
ent augmentation methods, we can use the metrics
mentioned above and use a table to compare and
establish how each method performs.

Metric Original RWF RWT Dijkstra Walk Subgraph Stitching

Travel Time Mean (s) 787.35 50.72 1121.90 386.43 672.49
Travel Time Variance (s) 452,222.43 3294.39 31276.38 36802.74 175214.47
Speed Mean (m/s) 5.54 7.50 7.45 8.29 5.52
Speed Variance (m/s) 0.84 18.81 4.68 13.19 0.09
Frobenius Norm (|| A||) N/a 1128.57 1873.04 1543.21 1043.76
Short Trips 7641 4997 74 3442 2146
Medium Trips 7051 3 524 1554 1410
Long Trips 7628 0 4402 4 1444

Table 1: Mean and variance for travel time and speed under different augmentation methods. Frobenius
norm is computed over the standardized metrics of each method. Values in bold indicate best performance
out of all 4 augmentation methods.

Metric Original RWF RWT Dijkstra Walk Subgraph Stitching

Overall

RMSE 314.04 314.62 317.96 298.98 364.97
MAE 126.80 127.09 126.47 122.83 125.05
MAPE 18.09 17.28 16.64 16.72 16.24
<8 min

RMSE 82.60 80.04 76.64 77.59 73.35
MAE 57.39 54.85 51.40 52.33 52.99

MAPE 26.08 23.11 21.30 22.53 21.85

8-16 min

RMSE 145.37 152.72 149.52 144.30 136.80
MAE 105.85 111.18 109.24 104.76 96.78
MAPE 14.93 15.63 15.39 14.91 13.83
>16 min

RMSE 510.96 510.43 517.79 485.04 604.63
MAE 214.84 213.27 216.69 209.29 221.82
MAPE 13.11 13.05 13.19 12.66 13.05

Table 2: Model performance metrics (RMSE, MAE, MAPE) for different augmentation methods for
varying trip travel times. Values in bold indicate best performance out of all 4 augmention methods.

4 Results 4.1 Original Dataset vs Augmented
Dataset

In order to be able to compare the model, we first

have to establish what the data looks like.
Using every augmentation method, we aug-
This section will present the results of our data mented 5000 new trips. Since the original dataset
augmentation, including any conclusion that can be contained roughly 23000 trips, this increase of ap-
drawn from these results. proximately 22% in trips avoids overwhelming or

thinning of the original data whilst still being a
significant enough change such that the effect can
be seen in model performance. For easier analysis,
we will divide the dataset into 3 categories: trips
shorter or equal to eight minutes will be called short
trips, trips between 8 and 16 minutes will be re-
ferred to as medium trips, and trips equal to or
longer than 16 minutes will be known as long trips.

Table 1 shows the mean and variance of both the
speed and travel time of the data generated by each
augmentation method for 5000 augmented trips. It
also includes how the trips are distributed between
the 3 trip categories. These categories, in combi-
nation with Figures 1-4, can be used to get a more
complete overview of the travel time of the trips
generated by each augmentation method. Addition-
ally, Table 1 also gives these metrics for the origi-
nal data. Here we can see that subgraph stitching
produces trips most similar to the original dataset.
The variance however is way lower. Figure 4 pro-
vides a better insight into why this happens: the
data generated contains few to none outlier trips ,
resulting in an overall lower variance for the trip
travel time. Still, the variance is way higher than
for the RWF nodes. Figure 2 shows that the RWF
generates a very skewed trip dataset with lots of
very short trips. This correlates with the low vari-
ance and low mean. The cumulative distribution
function (CDF) also reflects this, as for very short
trip time its already higher than in the rest of the
augmented datasets.

The mean travel time of Dijkstra walk is also
lower than that of the original dataset. This can
be explained due to the fact that Dijkstra walk as-
sumes perfect trips, meaning no road is traversed
more than once. This causes the mean travel time
of the trips to be shorter, as there can be no repe-
tition of road, thus limiting the maximum distance
and in turn also the maximum travel time a trip
can have within the road network graph.

RWT also shows an interesting distribution of
trip travel time. In the algorithm, the trips were
capped at a maximum travel time of 2500 seconds,
in order to keep trips within realistic bounds as the
trips in the original data very rarely exceed 2000
seconds. The limiting factor thus must be the max
amount of roads traversed, which we set to 1000,
which also explain why the data generated so little

short trips.

Its also very noticeable that for all augmenta-
tion methods except subgraph stitching, the speed,
mean and variance are significantly higher than for
the original dataset. This can be caused by the fact
that we don’t take into account road types. Cyclist
may for example be more wary of cycling on car
roads, whilst our augmentation does not take such
exemptions into account.

As can be expected looking at Figures 1 through
4, the trips generated through subgraph stitching
also have the lowest Frobenius norm, indicating the
most similarity in travel time and speed to the origi-
nal dataset. It it however important to keep in mind
that the Frobenius norm merely indicates how close
the metric values are, not how good they are. It is
hence only good use in combination with the figures
and rest of the data we have shown.

B Original Trips - 1.0
1750 1 3 Augmented Trips (Subgraph Stitching)
—— CDF (Original Trips)
~—— CDF (Augmented Trips)

,

1500
0.8

1250

0.6
1000

CDF

Number of Trips
<
&
3

0.4

w
S
s

0.2

~N
G
S

)

0.0
0 1000 2000 3000 4000 5000

Travel Time (s)

Figure 1: Data distribution of dataset with 5000
augmented trips via subgraph stitching

3500 B Original Trips | 1o
3 Augmented Trips (Random Walk, Revisiting False)
== CDF (Original Trips)

3000 {| —— CDF (Augmented Trips)

! 0.8

2500 !

0.6
2000 /7

Number of Trips
.
&
S
3
~
CDF

0.4

1000

0.2

500

0

0.0
0 1000 2000 3000 4000 5000

Travel Time (s)

Figure 2: Data distribution of dataset with 5000
augmented trips via RWF

1600 1 EE Original Trips 1.0
=3 Augmented Trips (Random Walk, Revisiting True)

== CDF (Original Trips)

1400 1 —— CDF (Augmented Trips)

0.8
1200

1000 0.6

@

3

3
CDF

Number of Trips

0.4

@
3
S

0.2

0.0
0 1000 2000 3000 4000 5000

Travel Time (s)

Figure 3: Data distribution of dataset with 5000
augmented trips via RWT

@ Original Trips
1600 { E= Augmented Trips (Dijkstra)
— =~ CDF (Original Trips)
—— CDF (Augmented Trips)
’

1400 0.8

0.6

Number of Trips
CDF

0.4

0.2

0.0
0 1000 2000 3000 4000 5000

Travel Time (s)

Figure 4: Data distribution of dataset with 5000
augmented trips via Dijkstra walk

4.2 Model performance

For evaluating the model performance, we ran the
model on the augmented dataset (that is, the orig-
inal trips + the augmented trips) for each augmen-
tation method. The results can be seen in Table
2.

For overall performance, all augmented datasets
(so original + augmented trips) perform better than
the original dataset. Subgraph stitching obtains
the lowest MAPE (mean average percentage error)
score. This indicates that the average error regard-
ing actual trip time is percentually the lowest with
this method. Dijkstra Walk however has a lower
MAE and MAPE. The reason for this can be found
in the fact that since subgraph stitching uses previ-
ously existing data, it may generate new trips using
outlier trips, which then bumps up the RMSE and
MAE drastically. This can also be seen in figure 1,

where we see that there are augmented trips with
high travel times as well. The reason for the Dijk-
stra walk’s MAPE being higher than for subgraph
stitching is the fact that Dijkstra walk generates
trips on the smaller end. Due the the inherent na-
ture of MAPE calculation (we are dividing by the
true value), smaller values will result in a higher
MAPE.

Another interesting thing to note is the per-
formance for short trips. Again, all augmented
datasets perform better in the model, however the
RWT performs best, although only marginally. As
mentioned before, since we are working with smaller
values here (shorter trip time), the MAPE will in
general be more affected by smaller error margins.

Moreover, for the medium trips, subgraph
stitching outperforms both the original data and
the other augmentation methods by a lot. This can
be attributed to the fact that subgraph stitching
mostly retains the original travel time distribution,
unlike the other methods. As such it augments the
most trips in the medium trips range. This can be
seen when comparing Figures 1-3 with Figure 4.

Finally, for long trips, Dijkstra walk performs
best. This is counterintuitive however, as Dijk-
stra walk doesn’t augment many trips in this travel
time range. A possible explanation is that although
the augmented trips are mostly short, they are
structurally consistent and follow realistic shortest
paths. This likely improves the model’s understand-
ing of local routing behavior and network struc-
ture, enabling it to generalize better to longer, un-
augmented trips. Furthermore, by avoiding the ad-
dition of unrealistic long trips, Dijkstra walk helps
the model maintain and even improve performance
on long trip estimation.

Overall, the best performing methods from our
experiments are Dijkstra walk and Subgraph stitch-
ing, both for short, medium and long trips. Al-
though RWT performed best for short trips, it per-
forms only marginally better than subgraph stitch-
ing, whilst losing out in all the other trip time cat-
egories.

5 Conclusion

This research addresses the insufficient data that
can hold back accurate travel time estimation for

cycling trips by proposing and evaluating graph-
based data augmentation strategies focused on
travel time estimation. In this study we investi-
gated what data augmentation techniques can be
used to augment data, such that it can be used in
a GCNN.

All data augmentation techniques explored in
this research, Dijkstra walk, RWF, RWT and Sub-
graph Stitching, are suitable for augmenting avail-
able cycling trip data for use in a GCNN model.
However, their performance varies and their at-
tributes may better suit some use cases than other.
Using a combination of these methods is recom-
mended, as this helps alleviate any biases in the
generated data that may be caused the individual
augmentation methods.

In conclusion, data augmentation can indeed
be used to help solve data limitation problems in
real-world, graph-based problems, thereby improv-

References

ing model performance for cycling trip travel time
estimation. The choice of augmentation technique
significantly impacts the quality of the augmented
data and, in consequence, the model’s performance.

5.1 Limitations and Future Work

Research limitations include the inherent complex-
ity of GCNNs and the DG4B model’s data, which
constrained full exploration of all variable impacts.
Future work should focus on optimizing the bal-
ance between original and augmented datasets to
prevent overfitting, exploring hybrid augmentation
techniques for greater data diversity and applying
these strategies to other graph-based travel time
estimation problems (e.g., pedestrian, public trans-
port). Furthermore, future work could consider how
to better improve on the methods proposed and how
to better reflect the original data distribution.

[1] Michael Adjeisah, Xinzhong Zhu, Huiying Xu, and Tewodros Alemu Ayall. Towards data augmen-
tation in graph neural network: An overview and evaluation. Computer Science Review, 47:100527,

2023.

[2] Ting Gao, Winnie Daamen, Elvin Isufi, and Serge Hoogendoorn. Bicycle Travel Time Estimation via
Dual Graph-Based Neural Networks. JOURNAL OF ISTEX CLASS FILES., 14(8), August 2021.

[3] Xin Juan, Xiao Liang, Haotian Xue, and Xin Wang. Multi-strategy adaptive data augmentation for
Graph Neural Networks. Ezpert Systems With Applications, 258:125076, 2024.

[4] Alhassan Mumuni and Fuseini Mumuni. Data augmentation: A comprehensive survey of modern

approaches. Array, 16:100258, 2022.

[5] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data Augmen-
tation for Graph Neural Networks. In The Thirty-Fifth AAAI Conference on Artificial Intelligence

(AAAI-21). AAAT Press, 2021.

A Synthetic Trip Generation Methods
A.1 Random Walk Algorithm

Algorithm 1 Pseudocode of Random Walk algorithm

1: for each trip ¢ from 1 to N do

2: Randomly select a start node vg from graph G
3: Initialize path P <+ [vg], edge list E « [], total distance d « 0
4: while step limit and distance limit not exceeded do
5: Get neighbors N (v) of current node
6: if N(v) is empty then
7 Break
8: end if
9: Randomly select next node vpeqrt € N(v)
10: Append edge (v, Vpert) to E, update d
11: Append vy, to P
12: V < Unext
13: end while
14: Compute speed, duration, and metadata for trip
15: Append trip data to dataset
16: end for=0
With:

G: The input graph representing a road network or transit network.

N: The total number of synthetic trips to generate.

vo: The randomly selected starting node for the trip.

v: The current node being visited in the walk.

Unext: 1he next node chosen from the neighbors of v.

N (v): The set of neighboring nodes adjacent to node v in graph G.

P: The ordered list of nodes (path) visited in a trip.

E: The list of edges traversed in the trip, where each edge is a pair (v, Vpext)-
d: The total cumulative distance of the trip.

dist(v, Upext): The distance between nodes v and vpext.

metadata: Additional trip-related information, such as average speed, total duration, or time of
day.

A.2 Dijkstra Walk Algorithm

Algorithm 2 Pseudocode of Dijkstra walk algorithm

1: for each trip ¢ from 1 to N do

2: Randomly select source node s and destination node t (s # t)
3: Run Dijkstra’s algorithm from s to ¢t to get node path P
4: if no path exists then
5: Continue
6: end if
7. Convert P to ordered edge list E
8: Retrieve edge attributes (length, speed, etc.)
9: Compute cumulative distance, travel time, metadata
10: Append trip data to dataset
11: end for=0
With

G: The input graph representing the network (e.g., road or transit system).

N: The total number of synthetic trips to generate.

s: The randomly selected source node for a trip.

t: The randomly selected destination node for a trip (s # t).

P: The ordered list of nodes forming the shortest path from s to ¢ obtained via Dijkstra’s algorithm.

E: The ordered list of edges derived from node path P, where each edge connects two consecutive
nodes in P.

length: The physical distance associated with each edge in the path.

speed: The speed attribute (e.g., speed limit or average speed) associated with each edge.
distance: The cumulative total distance of the trip, computed from the edge lengths.

travel time: The total estimated time for the trip, computed using edge lengths and speeds.

metadata: Additional information about the trip, such as travel time, route complexity, time of
day, or mode of transport.

10

A.3 Subgraph Stitching Algorithm

Algorithm 3 Pseudocode of Subgraph stitching algorithm

1: Extract edge-to-routelD mappings from existing trips
2: Identify all trip pairs (73, T%) that share at least one edge
3: for each overlapping pair (77,7%) do

Choose a common overlapping edge e
Find index of e in T} and T3
Take prefix of T7 up to e, and suffix of T3 after e
Concatenate both parts to form stitched trip
Compute speed, total distance, duration, metadata
Append stitched trip to dataset
if number of generated trips reached then

Break
end if

13: end for=0

With:

Ty, Ty: Two existing trips (paths) that share at least one common edge.

e: A shared edge between trips 77 and T5 used as the stitching point.

prefix(7T1,e): The segment of trip 7} from its start node up to and including edge e.
suffix(Ts, e): The segment of trip T5 starting just after edge e to the end of the trip.

stitched trip: A new trip formed by concatenating the prefix of 77 and the suffix of T3, producing
a synthetic but plausible path.

edge-to-routeID mapping: A mapping that records which original trips each edge belongs to; used
to find overlapping trips.

speed: Average or segment-specific speeds computed over the new stitched trip.
distance: The total length of the stitched trip, typically the sum of edge distances.
duration: The estimated time taken for the stitched trip based on distance and speed.

metadata: Additional attributes related to the stitched trip, such as trip type, mode, or time of
day.

dataset: The collection into which the newly generated (stitched) synthetic trips are stored.

11

B Formulas and Definitions

B.1 Frobenius Norm

[AllF =

e A: An m X n matrix.
® a;;: The element in the i-th row and j-th column of A.
e m: The number of rows in the matrix.

e n: The number of columns in the matrix.

la;;|*: The squared magnitude of the element a;;; equal to a?j if the matrix has real entries.

> Z?:I: A double summation that adds up |a;;|* for all elements in the matrix.

e /-: The square root of the total sum, yielding the Frobenius norm.

B.2 Root Mean Squared Error (RMSE)

e n: The number of data points.

e y;: The actual (true) value for observation i.

9;: The predicted value for observation 4.

(yi — 9:)%: The squared error for observation i.

Z?zl: Summation over all observations.

%: The mean of the squared errors.

o /-: The square root of the mean squared error.

B.3 Mean Absolute Error (MAE)

1O R
MAE:EZ\%‘—?M

=1

e n: The number of data points.

y;: The actual value for observation 1.

7;: The predicted value for observation 1.

|y; — 9;|: The absolute error for observation .

> i ;: Summation over all observations.

%: The average of the absolute errors.

12

B.4 Mean Absolute Percentage Error (M APE)

Yi — Ui
Yi

100% —
MAPE =
—>

i=1

e n: The number of data points.

y;: The actual value for observation 1.

9;: The predicted value for observation 3.

Yi—Yi

: The relative error for observation 3.

7

>+ Summation over all observations.

%0%: Computes the mean and expresses the result as a percentage.

13

