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ABSTRACT

The mascon approach is a well-known technique to estimate mass anomalies in Greenland
using Gravity Recovery and Climate Experiment (GRACE) satellite gravity data. It partitions
the area of interest into laterally homogeneous patches (mascons). An important aspect of the
mascon approach is the chosen geometry of mascons. So far, its impact has not been fully
understood. In this study, we use a full-scale numerical study and real data analysis to identify
the optimal strategy (primarily, the size of the mascons) for the extraction of mass anomalies
over the Greenland drainage systems from GRACE monthly solutions. We use ordinary and
weighted least-squares techniques to estimate the mascon parameters. The weighted least-
squares estimator uses the full noise covariance matrices of monthly GRACE models, that
is, designed to suppress random noise in the estimates. In addition, the zero-order Tikhonov
regularization is applied. Four types of quantities of interest, which are associated with different
temporal scales, are investigated in this study: monthly mass anomalies, mean mass anomalies
per calendar month, interannual mass variations and long-term linear trends. We show that
the dominant error sources are random errors and parametrization (model) errors (PEs), as
well as the bias introduced by the regularization. Errors in long-term linear trend estimates are
dominated by PEs, whereas the role of random errors increases with the decreasing temporal
scale. The best solutions are obtained when the territory of Greenland is split into at least
23 mascons (the area of each one being ~90 000 km?). The usage of smaller mascons does not
worsen the solutions in most cases, which is explained by the application of the regularization.
Usage of larger mascons leads in most cases to inferior results due to the impact of PEs.
The application of the weighted least-squares estimator noticeably improves the quality of
the solutions, with the exception of long-term linear trends estimated at the drainage system
scale. In addition, we considered the long-term linear trend estimates integrated over entire
Greenland. It is shown that the best results are obtained in that case when no regularization is
applied. The results of real GRACE data processing are consistent with those obtained in the
numerical study.

Key words: Gravity anomalies and Earth structure; Global change from geodesy; Satellite
gravity.

1 INTRODUCTION

Mass variations in Greenland attract the attention of the scientific
community because of the large potential to exacerbate future sea
level rise. The Gravity Recovery and Climate Experiment (GRACE)
satellite mission is one of the most valuable sources of information
about those mass variations (Chen et al. 2006; Velicogna & Wahr
2006; Velicogna 2009; Jacob et al. 2012; Shepherd et al. 2012;
Stocker et al. 2013; Schrama et al. 2014; Velicogna et al. 2014;
Khan et al. 2015).

© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.

In this study, we analyse the estimation of mass variations in
Greenland from GRACE data using the mascon (mass concentra-
tion) approach. Nowadays, this is a commonly used way to trans-
form GRACE data into mass anomalies (Forsberg & Reeh 2007;
Baur & Sneeuw 2011; Schrama & Wouters 2011; Schrama et al.
2014). In this approach, the target area is split into laterally ho-
mogeneous patches, which are called ‘mascons’. The accuracy of
the estimates obtained in this way is sensitive to the parameteri-
zation of the target area, that is, to the choice of the number and
the geometry of the mascons (Bonin & Chambers 2013). Different
parameterizations of the territory of Greenland have been used so
far in literature. For instance, Luthcke et al. (2006) identified six
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drainage systems and split each of them into two mascons, one for
the area below the 2000 m elevation line and the other one for the
area above the 2000 m elevation line. This rather coarse parameter-
ization is not able to fully exploit the spatial resolution of GRACE.
Therefore, finer parameterizations using mascons of a regular shape
(e.g. equiangular mascons, equal-area mascons or spherical caps)
have been proposed (Rowlands ef al. 2005; Baur & Sneeuw 2011;
Luthcke ef al. 2013; Schrama et al. 2014; Watkins et al. 2015).

Up to now, it is common to choose the size of the mascons
independently of the temporal scale under consideration. However,
such an approach may be suboptimal. The primary goal of this study
is to investigate the optimal choice of the mascon size depending
on the type of the estimates. We consider four types associated with
different temporal scales:

(1) Long-term linear trends (long-term temporal scale).

(2) Interannual mass anomalies (intermediate scale).

(3) Mean mass anomalies per calendar month (can also be con-
sidered as an intermediate scale, but based on an alternative way of
averaging original information).

(4) Monthly mass anomalies (short-term scale).

The variant of the mascon approach presented in Ran et al.
(2018a) is used in this study to compute the statistically optimal
estimates of mass anomalies. Furthermore, we exploit the proce-
dure proposed by Ran et al. (2018a) to subdivide Greenland into
nearly equal-area mascons of a desired size, taking the coast geom-
etry into account. In order to better understand the link between the
accuracy of the obtained estimates and the selected parameteriza-
tion, we start from a numerical study, where individual error sources
are quantified. This allows us to make a proper interpretation of the
results obtained from real GRACE data at the second stage and
supports our recommendations regarding the optimal choice of pa-
rameterization.

It is important to note that only ~81 per cent of the territory of
Greenland is occupied by the Greenland Ice Sheet (GrIS). The rest
is covered by tundra and isolated glaciers. In view of the limited
spatial resolution of GRACE, the latter also contribute to GRACE-
based estimates (unless the mass variations outside the GrIS are
corrected for using hydrological models). Therefore, we refer to
mass anomalies in Greenland rather than to GrIS mass anomalies
throughout this study.

The rest of the paper is organized as follows. In Section 2, we
briefly introduce the different parameterizations used in this study.
In Section 3, we present a numerical study based on simulated
signal and data. In Section 4, we analyse real GRACE data. Finally,
in Section 5, we provide a summary and the conclusions.

2 METHODOLOGY AND
PARAMETERIZATION

2.1 Adopted mascon approach

The adopted variant of the mascon approach (Ran et al. 2018a)
stems from the methodology proposed by Forsberg & Reeh (2007)
and Baur & Sneeuw (2011). First, we use the differences between
monthly spherical harmonic coefficients (SHCs) and their long-term
mean values to synthesize gravity disturbances at satellite altitude.
The data area comprises the entire Greenland extended with a buffer
zone of 800 km width. Numerical studies in Ran et al. (2018a)
demonstrated that such a buffer zone is the best choice. Second, we
compute a design matrix (A) that links the gravity disturbances (d)

at satellite altitude to the mass anomalies of the mascons (mascon
parameters, x). Importantly, each column of the design matrix is
computed by taking into account that data and mascon model must
be spectrally consistent (Ran et al. 2018a). More specifically, each
column of the design matrix could be treated as a set of gravity
disturbances caused by the corresponding mascon of unit surface
density. The computation is performed in three steps. First, the
gravity disturbances are computed on an equiangular global grid.
Second, a set of SHCs is computed by means of the spherical har-
monic analysis. Third, the produced SHCs are used to compute
spectrally limited gravity disturbances at the predefined data points.

Finally, we estimate the mascon parameters using the weighted
least-squares technique (Eq. 1). The weight matrices (Cq™') are
taken as a pseudo-inverse of the noise covariance matrices of gravity
disturbances. The latter are computed from the full noise covariance
matrices of SHCs using the law of covariance propagation. The data
weighting using these matrices may significantly reduce random
noise (Ran ef al. 2018a). In addition, similar to Schrama & Wouters
(2011) and Bonin & Chambers (2013), we apply the zero-order
Tikhonov regularization to stabilize the normal matrix and reduce
noise in the estimates:

x=(ATCq A+ aR)TATCyd, )

where the regularization matrix R is the unit one and « is the
regularization factor, which is determined by the L-curve method
(Hansen 1992).

However, random noise may not be the dominant error source
(at least, at some of the temporal scales considered in this study).
Therefore, we also use the ordinary least-squares techniques to
estimate the mascon parameters.

2.2 Parameterization of Greenland

The parameterizations considered in this study are designed us-
ing the procedure of Ran er al. (2018a) and comprise almost
equal-area mascons of a prescribed size. In this way, the whole
Greenland is partitioned into 23 mascons (the area of each one
being ~90 000 km?), 36 mascons (~62 500 km?) or 54 mascons
(~40000 km?) (cf. Figs 1d—f). In addition, we consider three other
parameterizations, which are frequently used in the literature: with
6 mascons (Luthcke et al. 2006), 8 mascons (Zwally ef al. 2012)
and 12 mascons (Luthcke e al. 2006) (Figs 1a—c). Note that the
divisions into six and eight mascons follow the geometry of ma-
jor drainage systems. The Greenland mascons are complemented
by nine mascons outside Greenland to reduce the inward signal
leakage from regions around Greenland (Y1i et al. 2016; Ran et al.
2018a).

3 NUMERICAL STUDY

To understand the impact of the parameterization on the accuracy
of estimated mass variations at different temporal scales, and to
understand how errors from different sources compare with each
other, a series of numerical experiments are conducted with syn-
thetic data. The experimental set-up and the results are presented in
Sections 3.1 and 3.2, respectively.
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Figure 1. The parameterizations of Greenland considered in this study. Greenland is divided into five regions, which are aggregated from mascons. The regions
approximately follows the geometry of five drainage systems, which are outlined with different colours, that is, north (N) in light blue, northeast (NE) in red,
southeast (SE) in grey, southwest (SW) in green, and northwest (NW) in blue.

3.1 Experimental set-up 3.1.1 ‘True’ signal

The basic set-up includes the definition of the true signal and the The ‘true’ signal is composed of a long-term linear trend and other
definition of the individual error sources considered in the simula- temporal variations. The long-term trend is based on ICESat laser
tions. altimetry estimates over the period 2003-2009. Their spatial reso-

lution is 20 x 20 km (Felikson e al. 2017). By assuming the density
of the material responsible for elevation changes to be 917 kgm™3
(Wabhr et al. 2000), the elevation change rates are converted into
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mass change rates in terms of equivalent water heights (EWH)
(Fig. 2). The linear trend over the tundra area is set equal to zero.
The integration of the obtained trends over entire Greenland results
in the value of —110 Gt yr~—!, which is much lower than that based on
GRACE data over the period 2003-2013, about —286 Gtyr~! (Ran
et al. 2018a). To make the ICESat-based estimates more realistic,
we upscale all of them with a single scale factor of 2.6. A simi-
lar upscaling procedure was applied earlier by Bonin & Chambers
(2013).

The other simulated mass variations are based on surface mass
balance (SMB) time-series from the RACMO 2.3 model (Noél ez al.
2015). The spatial resolution is about 11 x 11 km, whereas the
temporal sampling is 1 d. The output from RACMO 2.3 during the
time interval 20032013 was integrated over time to produce daily
mass anomalies. After this, we computed monthly mass anomalies,
re-sampled them to the 20 x 20 km patches in order to make them
consistent with the ICESat data, and de-trended. The resulting time-
series describe predominantly seasonal mass variations (their annual
amplitudes are shown in Fig. 2). Then, we combined the de-trended
signal with the trend from ICESat to form the ‘true’ signal. Note
that the ‘true’ signal over the tundra area lacks long-term trends
and, therefore, is dominated by seasonal variations.

The ‘true’ mass anomalies defined at the 20 x 20 km blocks
were used to compute gravity disturbances on an equiangular global
grid at satellite altitude. The gravity disturbances were expanded in
spherical harmonics complete to some maximum degree (namely,
degree 96) using spherical harmonic analysis. Finally, the truncated
spherical harmonic model was used to generate spectrally limited
gravity disturbances, which represent the error-free data. The spec-
tral content of the simulated data is similar to that of real GRACE
data. Furthermore, the procedure applied to compute the simulated
data is basically the same as the one to compute the design ma-
trix (Section 2.1). This assures the spectral consistency between the
data and the mascon model. In the absence of the spectral consis-
tency, the estimated mass anomalies may suffer from large errors,
particularly when the optimal data weighting is applied Ran et al.
(2018a).

3.1.2 Simulated noise

Different types of errors are added to the ‘true’ signal: signal leak-
age, AOD noise and random noise. In addition, PEs, sometimes
referred to as ‘model errors’ (Stedinger & Tasker 1986; Xu 2010),
are automatically included due to the much higher spatial resolution
of the ‘true’ signal compared to the size of the mascons.

Signal leakage. Signal leakage refers in this study to the signal
from mass anomalies outside Greenland (e.g. the Canada’s Arc-
tic Archipelago glaciers, the North Canada, Iceland, Svalbard, etc.
see Fig. 3), which may disturb the estimates of mass anomalies in
Greenland (i.e. inward signal leakage is meant). To include leak-
age errors, we generated mass variations in surrounding land areas
using GRACE monthly land water mass grids from GRACE Tellus
(Swenson 2012). In line with the time interval of the ‘true’ signal,
we considered 123 monthly solutions over the period 2003-2013
(9 months were excluded from the data processing due to lack of
data). The simulated trends and annual amplitudes extracted from
monthly GRACE Tellus solutions over the mascons located outside
Greenland are shown in Fig. 3.

AOD noise. Uncertainties in the background models that are used
to produce monthly GRACE solutions may cause inaccuracies in
the mass variation estimates. One of such background models is
the Atmosphere and Ocean De-aliasing model release 05 (AOD)
(Dobslaw et al. 2013). Here, we defined AOD errors as 10 per cent
of the mean monthly signal (Thompson et al. 2004; Ditmar et al.
2012).

Random noise. Random noise in monthly GRACE solutions was
generated from the noise covariance matrices of monthly GRACE
solutions provided by CSR. It contains north—south stripes, which
vary by latitude and from month to month as noise stripes in real
GRACE data do. We produced multiple different realizations of
random noise, one realization per month. Ideally, this needs to be
done per month using the corresponding noise covariance matrix.
However, such an approach is very time consuming, especially when
using a weighted least-squares estimator. Therefore, we chose the
noise covariance matrix of June 2008 as a representative, and gener-
ated for each month noise realizations based on this noise covariance
matrix.

Parameterization error. The actual mass anomaly distribution is a
continuous function, whereas the mascon approach assumes a uni-
form mass distribution within each mascon. This inconsistency may
introduce parameterization errors (also called ‘model errors’). In
other words, the parameterization error represents the disturbances
caused by replacing the actual mass anomaly distribution with a
single mean value per mascon. The parameterization error (PE) of a
mascon in terms of surface density could be mathematically defined
as:

PE(¢. ) = p(¢. 1) — b, 2

where p(¢, 1) is the density of mass anomaly at gridpoint (¢, A)
inside the mascon, while p is the mean density. Eq. (2) provides
the input to compute the parameterization error in terms of gravity
disturbances, consistently with other errors. In our study, incorpo-
ration of parameterization errors takes place in a natural way, since
the ‘true’ signal is defined over 20 x 20 km patches, which are
much smaller than the size of the mascons. In the simulations with-
out parameterization errors, we define the ‘true’ signal per mascon
as the sum of mass anomalies at all 20 x 20 km patches within the
given mascon, which is homogeneously distributed over the mas-
con. Note that the parameterization errors in different months are
different, since the simulated signal varies from month to month.

3.2 Results

In our study, we address (i) long-term linear mass variation rates, (ii)
interannual mass anomalies, (iii) mean mass anomalies per calendar
month and (iv) monthly mass anomalies. We investigate the impact
of the parameterization on these estimates and select the best pa-
rameterization in each case. We conduct the analysis at the level of
drainage systems. To that end, we divide Greenland into five regions,
which approximately follow the geometry of the drainage systems
defined in van den Broeke et al. (2009). The geometries of the re-
gions that are aggregated from mascons are shown in Fig. 1. Note
that it is not possible to make the geometries of the five drainage
systems (as shown in Fig. 1 with different colours) to be exactly the
same for different parameterizations. The impact of the differences
between the resulting geometries is, however, minor, since we com-
pare estimates over each drainage system with the ‘true” value based
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Figure 2. (a) GrIS mass change rate per 20 x 20 km patch from ICESat data over the period 2003-2009 (EWH: myr~!). The thick red curve is the ice mask,
which indicates the boundary of the ice sheet. (b) Amplitude of annual mass variations over the entire Greenland for the period 2003-2013 extracted from
RACMO2.3 (EWH: m).

on the same geometry. The estimates and rms errors in this study height in units of metres has no impact on the main conclusions of
are provided in units of gigatransfers. Switching to equivalent water this study.
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(b)

Figure 3. (a) Rate of linear mass changes for mascons outside Greenland (EWH: cm yr~!). (b) The annual amplitude of mass change for those mascons outside
(EWH: cm). The mascons outside Greenland are introduced to simulate the inward signal leakage.
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As it is explained in Section 2.1, all the computations are per-
formed using two estimators: (i) a weighted least-squares estimator
and (ii) the ordinary least-squares estimator. The corresponding so-
lutions are referred to as solutions with and without data weighting,
respectively. When applying the weighted least-squares estimator,
we compute the weight matrix based on the data noise covariance
matrix of June 2008.

In our analysis, we address not only propagated noise, but also
the bias introduced by the zero-order Tikhonov regularization. To
quantify this bias, we invert error-free data and take the difference
between the obtained estimates and the true signal. When analysing
the contribution of an individual error source to the total error bud-
get, one should subtract the bias to avoid its ‘double-booking’. The
bias in the estimates usually increases rapidly with the regularization
factor. Please see Section 3.2.1 for further discussion.

The optimal regularization parameter is defined separately
for each parameterization and each type of estimates (i.e. each
timescale). To that end, we invert the simulated data with all the
error sources switched on, trying different regularization parame-
ters. The parameter that results in the smallest difference between
the recovered estimates and the true signal is defined as the optimal
one. Then, it is applied also in the scenarios when individual error
sources are considered. This ensures a consistency of the obtained
results and allows for their usage in the analysis of the total error
budget.

3.2.1 Recovery of long-term linear trends

After summing up the recovered mass anomalies over all mascons
within each drainage system, we extracted the linear trend (#°vee¢)
of mass change in Gt yr~!, co-estimated with bias, annual and semi-
annual terms. The true linear trend (#7*°) at the drainage system scale
was estimated from the true mass anomaly time-series. As quality
measure, we use the rms difference between the estimated and true
linear trends. This rms difference is referred to as the ‘total rms
error’ if all error sources are included, and computed as:

5
B frecovered __ ytrue)2
rms; = \/Z"'( " s i) , (3)

where n represents the nth drainage system. If only a single noise
source is considered, the corresponding rms difference is referred
to as rms AOD error, rms leakage error, rms parameterization error
and rms random error, respectively.

The total rms error as a function of total number of mascons is
shown in Fig. 4. The smallest total rms error (~6 Gt yr~!) is obtained
when the number of mascons ranges from 23 to 54, showing little
difference within this range, no matter whether data weighting is
switched on or not. As far as individual error sources are concerned,
Fig. 4 reveals that the rms parameterization error is dominant when
data weighting is used. If the data weighting is absent and number
of mascons >23, the bias is comparable to or even exceeds the
parameterization error. This is caused by the fact that the normal
matrix for a large number of mascons is ill-posed (particularly, in
the absence of data weighting, which reduces the condition number
of normal matrix; see Fig. 5). Thereby, a strong regularization is
needed to suppress propagated noise.

The rms random error in the estimated trends is rather small:
~0.5 Gtyr~! and ~1 Gtyr~! with and without data weighting,
respectively. This is about an order of magnitude smaller than the
rms parameterization error. The rms leakage error and the rms AOD
error are either comparable to the rms random error or even smaller.
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Figure 4. Total rms error and rms error of individual error sources of linear
trends at drainage system scale in units of Gtyr—!. Weighted least-squares
estimator (a) versus ordinary least-squares estimator (b), as a function of the
number of mascons.
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Figure 5. Condition numbers of the normal matrices when using the ordi-
nary least-squares estimator (green) and weighted least-squares estimator
(red), as functions of the number of mascons. Note that no regularization is
used when computing the condition numbers.
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Based on the results shown in Fig. 4, we conclude that if one is
interested in the long-term linear trend at drainage system scale,
data weighting is not necessary. The ordinary least-squares estima-
tor provides comparable results. This is not surprising, since the
data weighting is designed to suppress random noise, whereas the
dominant contributor to the error budget is parameterization errors.
The optimal number of mascon for trend estimates is in the range
of 23-54.

In Fig. 6, we partitioned the error budget of trend estimates per
mascon into individual error sources, when parameterizing Green-
land with 23 mascons and switching on data weighting. In addition,
the recovered and true trends per mascon are shown. The figure
shows that in general the mascon approach is capable to recover the
spatial pattern of mass anomalies in Greenland.

Next, we analyse the linear trend estimates integrated over entire
Greenland. As an example, we take the parameterization with 23
mascons, which is one of the best parameterizations to estimate the
trends at the drainage system scale, as discussed earlier. The impact
of the regularization parameter on the trend estimates obtained both
with and without data weighting is presented in Fig. 7. We note
that, in the case of data weighting, the regularization biases the
trend estimates by around 1 Gtyr~! if the regularization parameters
are small and by ~6 Gtyr~!, if the regularization parameters are
chosen to yield the best trend estimates at the drainage system
scale. In addition, it is found that the bias rapidly increases with
the regularization parameter, no matter whether data weighting is
applied or not. Therefore, considering the larger total error of the
regularized case (~6 Gtyr~!') compared to the unregularized case
(~1 Gtyr™1), we suggest that a regularization is not applied when
the trend for entire Greenland is estimated.

The results obtained with different parameterizations without a
regularization are shown in Fig. 8. To begin with, we notice that
the total rms error decreases with increasing number of mascons.
The minimum is attained for a large number of mascons (i.e. larger
than 23) no matter whether data weighting is used (—0.8 Gtyr™")
or not (2.0 Gtyr~!). If a small number of mascons is used, the total
rms error may be very large, in particular when no data weighting is
applied. For instance, when using just 6 mascons, the total rms error
is ~6 Gtyr~! with data weighting and ~40 Gtyr~' without data
weighting, respectively. The parameterization error is the dominant
contributor to these large errors, whereas all the other errors are
negligible.

We conclude that when estimating a linear trend for entire Green-
land, one needs to take care that enough mascons (e.g. not less than
23) are used to reduce the parameterization error. The choice of a
sufficiently large number of mascons is particularly important when
the ordinary least-squares estimator is used. The highest quality is
obtained when the weighted least-squares estimator is used in com-
bination with a sufficiently large number of mascons.

3.2.2 Recovery of inter-annual mass anomalies

The inter-annual mass variations are another quantity of interest in
the studies of the Greenland mass balance. In this section, we inves-
tigate the sensitivity of the estimated inter-annual mass variations
to the chosen parameterization at the drainage system scale.

We start by removing the long-term trend from the time-series
obtained for each mascon. After that, we compute the inter-annual
mass variations, together with the mean mass anomalies per calendar
month, which will be investigated in Section 3.2.3. To that end, we

use the functional model
m =7 + b, ()

where {m"/:i=1...12,j = 1...J} is the mass anomaly of month i
and year j, with J being the number of years. b7 is the mean anomaly
of year j, which accounts for the inter-annual variability. And 7
is the mean mass anomalies of calendar month i. We added the
constraint:

Zﬁ" =0, ®)

to guarantee the uniqueness of the solution. The 12 + J param-
eters per mascon are estimated using ordinary least-squares. The
corresponding interannual variations for each drainage system are
computed by a summation over all the mascons inside the drainage
system.

The rms error of inter-annual mass variations per drainage sys-
tem, IA, was computed as the rms difference between the estimated
and the ‘true’ interannual mass variations of all years, that is,

A \/ijl(b;ecovered _ b};ue)z

(6)

Then, the rms error of inter-annual mass variations was computed
as:

5 2
[y IA
rms = 1‘%" 7

This rms error was used to quantify the total rms error and rms er-
ror per error source for the estimates obtained both with and without
data weighting. The results obtained for different parameterizations
are shown in Fig. 9. The smallest total rms error (~4 Gt) is ob-
tained for 23 mascons with data weighting, which is slightly less
than the smallest error (~5 Gt) in the absence of data weighting.
Note that a comparable quality is also found for a larger number of
mascons (36-54 mascons). Regarding the individual error sources,
the parameterization error is dominant only when the number of
mascons is small (6-12 in the case with data weighting and 6 in
the absence of data weigthing). In contrast, the random error, in
general, increases with the number of mascons, and becomes the
dominant error sources when the number of mascons is >36 (when
the data weighting is applied) or >12 (without the data weighting).
Note that the random error does not increase significantly with the
number of mascons, which is caused by the spatial regularization.
When the spatial regularization is switched off, the random error
in the estimates increases significantly (not shown here). The bias
stays at the levels comparable either with the random error or the
parameterization error (depending on which one is larger). The leak-
age and AOD error are negligible: at the level of 0.4 Gt and 1 Gt,
respectively.

Fig. 10 presents the ‘true’ and estimated interannual mass vari-
ations for each drainage system and for whole Greenland in the
23 mascon case, when data weighting is applied. The plot suggests
that the recovered interannual mass variations are in a good agree-
ment with the true ones. For completeness, the rms errors of the
estimates obtained with and without data weighting, the rms of true
inter-annual mass anomalies, and signal-to-noise ratios (SNRs) are
shown in Table 1. The largest SNR (6.0) is obtained in the case
of 23 mascons in combination with data weighting. Note that a
comparable SNR is also observed for 36—54 mascons.
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Figure 6. Contributors to the error in linear trend estimates: AOD error (a), signal leakage (b), parameterization error (c), random error (d), bias (e) and total
error (). For completeness, we also show the recovered trend (g) and true signal (h). The units are Gtyr~!. Please note that, corresponding to the amplitude of
the noise or signal levels, two different colour bars are used.
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Figure 7. The impact of the regularization parameter on trend estimates
integrated over entire Greenland, with and without data weighting. The true
trend is shown in black, whereas the estimates obtained with the ‘optimal’
regularization parameters are highlighted as black squares. The ‘optimal’
regularization parameters are defined from the analysis of trend estimates at
the drainage system scale.

From the analysis earlier, we conclude that parameterizing Green-
land with 23—-54 mascons in combination with data weighting pro-
vides the best inter-annual mass variation estimates.

3.2.3 Recovery of mass anomalies per calendar month

Mean mass anomalies per calendar month are useful to study the
seasonal cycle of mass variations and the processes associated with
it (Ran 2017). Here, we examine the impact of the parameterization
on the accuracy of estimated mean mass anomalies per calendar
month at the drainage system scale. Note that in line with Ran
(2017), we do not remove the long-term variabilities from the esti-
mated and the true time-series.

Asitis already mentioned in Section 3.2.2, the mean mass anoma-
lies per calendar month are extracted from the mass anomaly time-
series as the least-squares solution of the system of linear equations
given by Eqs (4) and (5). Note that the least-squares analysis is su-
perior to the plain averaging of mass anomalies per calendar month
over many years. This is because of the long-term variability, which
has to be properly accounted for, in particular in the presence of
data gaps. For instance, the absence of January data in a few years
in succession may create a significant offset in the mean January
value with respect to other months. The usage of a least-squares
scheme solves this problem.

The rms error per drainage system, t;, was computed as the
rms difference between the estimated and the ‘true’ mean mass
anomalies for all 12 months, that is,

12 —recovered __ —trueyn
_ Zn:l(mk.n B mky'l
T = 12 )

®
where m;; and 71} are the estimated and true mean mass
anomalies of the kth drainage system at month n, respectively. As
an example, Fig. 11 shows the mean true mass anomalies per cal-
endar month of the Northern (N) drainage system when using a
parametrization comprising eight mascons.
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Figure 8. Errors in the linear trend (in Gtyr~!) over entire Greenland ob-
tained with the weighted least-squares estimator (a) and the ordinary least-
squares estimator (b), respectively, as functions of the number of mascons.

Then, the rms error of mean mass anomalies per calendar month
was computed as:

msz;; =

©

The rms error of mean mass anomalies per calendar month com-
puted as total rms error and as rms error per error source is shown
for different parameterizations in Fig. 12. Obviously, using the data
weighting provides a smaller total rms error, as compared to the
ordinary least-squares adjustment (i.e., ~6 Gt versus ~8 Gt for
23 mascons). In addition, statistical information (the rms errors and
signal, as well as SNRs) is shown in Table 2. The largest SNRs (~6)
is observed in the presence of data weighting, when the number of
mascons is in the range from 23 to 54.

As far as the rms error per error source is concerned, we notice
that no matter whether data weighting is used or not, the parameteri-
zation error decreases with increasing number of mascons, whereas
the other errors show a minor sensitivity to the number of mascons.
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Figure 9. Total rms error and rms error of individual error sources of inter-
annual mass variations at drainage system scale as functions of the number
of mascons, in units of gigatransfers. Weighted least-squares estimator (a)
versus ordinary least-squares estimator (b).

For a low number of mascons, the parameterization error is the dom-
inant error source, whereas for finer parameterizations, the random
error becomes dominant. The crossing points of the two error types
are between 23 and 36 mascons and between 8 and 12 mascons for
the weighted and ordinary least-squares estimators, respectively.
From the discussion earlier, we conclude that the best mean mass
anomalies per calendar month are obtained when parameterizing
Greenland with 23—54 mascon and switching data weighting on.

3.2.4 Recovery of monthly mass anomalies

In this section, we analyse the impact of the parameterization on
the accuracy of monthly mass anomaly estimates at the drainage
system scale. We define the monthly mass anomalies as ‘the residual
signal left after removing the trend and interannual variability’.
We de-trend and remove the inter-annual variability from both the
estimated and the true time-series of monthly mass anomalies. The
total rms error and the rms errors per error source are computed as
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the rms difference between the two residual time-series, that is,

N recovered true))2
_ Zn:l (mn — mn )
ms = .
N

(10)

where m,, is the mass anomaly of month » and N is the number of
months.

Fig. 13 shows the results. In the presence of data weighting, the
total rms error attains a minimum of ~9 Gt when 23-54 mascons
are used. Increasing the number of mascons does not increase the
total rms error, which is explained by the usage of the spatial reg-
ularization. Without data weighting, the total rms error stays at a
stable level of ~17 Gt and is not sensitive to the number of mascons
at all. In general, the total rms error is smaller by ~50 per cent when
data weighting is applied.

Table 3 shows that the SNR varies in a small range for the es-
timates obtained both with and without data weighting, reaching
the maximum of 2.8 for the 23—54 mascons in the presence of
data weighting. Fig. 14 shows the time-series estimated with data
weighting in the 23 mascon case. Note that the 1 — o error bar is
also shown. The results indicate that the monthly mass anomalies
agree well with the true signal at the drainage system scale and even
better when entire Greenland is considered.

When looking at the individual error sources, we see that the ran-
dom error dominates the error budget in most cases. An exception
is the estimates obtained in the 6-mascon case with data weighting,
when the parameterization error plays the largest role. However,
that error rapidly decreases as the number of mascons increases.
The AOD error and leakage error are negligible.

4 ANALYSIS BASED ON REAL GRACE
DATA

In this section, we investigate the impact of the parameterization
on Greenland mass anomaly estimates based on real GRACE data.
We use the RLO5 GRACE monthly gravity field solutions from
the Center for Space Research (CSR) at the University of Texas
as input. Each solution is provided as a set of SHCs complete to
degree 96, and supplied with a full noise covariance matrix. The
considered time interval is January 2003—December 2013. Since
data for 9 months were missing, the set comprises 123 months. Due
to strong noise in the C, coefficients, we replace them with available
estimates based on satellite laser ranging (Cheng et al. 2013). The
degree-one coefficients, which are missing in the GRACE products,
are taken from Swenson et al. (2008). In addition, the GRACE
solutions are corrected for glacial isostatic adjustment (GIA) using
the model from A et al. (2013). For each parameterization, a time-
series of mass anomalies per mascon is obtained with the optimal
regularization factor, which is determined using the L-curve method
(Hansen 1992). These time-series are used as input for the further
analysis.

4.1 Analysis of long-term linear trends

First, we investigate the impact of the parameterization on the long-
term linear trend estimates at the drainage system scale. From the
numerical study, we know that the trend estimates obtained using
23 mascons reach the highest level of quality. Therefore, this pa-
rameterization is used in our further analysis. To begin with, we
sum up the mass anomalies per mascon over each drainage system,
and extract the linear trend, co-estimated with a bias, annual and
semi-annual terms. The obtained trend estimates are presented in

810 JoqWiaAON 0 UO Jasn Yjad AlsIaAun [eoluyoa L Aq 29/0%0G/EE LZ/E/ L ZorIsqe-ajoie/B/woo dno-owepede/:sdny wolj pepeojumoq



2144

J. Ran, P. Ditmar and R. Klees

60
40 -
G 20}
(2]
Q2 /
=
£
2
S-20f
9]
% 40 L
Z-
-60
.80 | | | | |
2004 2006 2008 2010 2012 2014
Time (Yr)
(a) N
100 ! ! ! ! )
50
)
1]
Q2 oOr
©
£
(o]
C
T 50
1]
1%
©
=
-100
150 | | | | |
2004 2006 2008 2010 2012 2014
Time (Yr)
(c) NW
S
1]
Q
©
£
o
f
©
1]
1%]
©
=
100 | | | | |
2004 2006 2008 2010 2012 2014
Time (Yr)
(e) SW

Mass anomalies (Gt)

-80 : : : : :
2004 2006 2008 2010 2012 2014
Time (Yr)
(b) NE
80 T T T T T

Mass anomalies (Gt)

-60 —— : : : :
2004 2006 2008 2010 2012 2014
Time (Yr)
(d) SE
300

200

100

-100

-200

Mass anomalies (Gt)

-300

-400

2004 2006 2008 2010 2012 2014
Time (Yr)

(f) Greenland

Figure 10. The regularized estimates of inter-annual mass variations and the ‘true’ ones obtained in the numerical study for each drainage system and for
whole Greenland in the 23 mascon case. Data weighting is applied. The estimated and ‘true’ de-trended time-series are shown as a reference as dash lines. The

rms difference between the ‘true’ and estimated values is shown as the error bar.

Table 1. The statistics of inter-annual mass variations estimated from syn-
thetic data. The units are gigatransfers.

Data Number of mascons

weighting 6 8 12 23 36 54

rms errors
rms errors

rms of the true
mass anomalies
SNR

SNR

Yes 69 43 57 36 39 45
No 71 60 63 47 52 52
- 257 215 231 214 215 223

Yes 37 50 40 60 56 50
No 36 36 37 46 41 43

Table 4. The uncertainties are taken over from the numerical study.
Next, we compare our trend estimates with similar estimates from
the CSR mascon product (Save et al. 2016), which used the same
geometry of drainage systems. Note that the CSR mascon product is
produced with incorporating spatial constraints in the form of a first-
order Tikhonov regularization, whereas we apply a much simpler
zero-order Tikhonov regularization. From Table 4, it can be found
that our trend estimates for all drainage systems agree reasonably
well with the estimates from CSR. The largest discrepancies (up to
15 Gtyr~!) are observed for the N drainage system. We explain this
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Figure 11. Mean true mass anomalies per calendar month in the numerical
study, for the Northern (N) drainage system, m (thick black curve). The thin
curves represent monthly mass anomalies of individual years. The territory
of Greenland was partitioned into 8 mascons.
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drainage system scale, as functions of the number of mascons.
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Table 2. The statistics of mean mass anomalies per calendar month esti-
mated from synthetic data. The units are gigatransfer.

Data Number of mascons
weighting 6 8 12 23 36 54

rms errors Yes 17.1 13.6 114 5.8 56 6.0
rms errors No 13.8 12.8 10.7 8.1 7.8 8.0
rms of the true - 31.0 319 31.0 33.1 33.1 346
mass anomalies

SNR Yes 1.8 23 27 57 59 58
SNR No 22 25 29 41 42 43
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Figure 13. Total rms error and rms error per error source of monthly mass
anomalies at drainage system scale in units of gigatransfers. Weighted least-
squares estimator (a) versus ordinary least-squares estimator (b) as functions
of the number of mascons.

Table 3. The statistics of monthly mass anomalies estimated from synthetic
data. The units are gigatransfers.

Data Number of mascons
weighting 6 8 12 23 36 54

rms errors Yes 11.6 10.3 9.7 9.0 89 9.2
rms errors No 174 17.1 172 16.1 16.1 164
rms of the true - 23.1 240 257 246 251 258
mass anomalies

SNR Yes 20 23 26 28 28 28

SNR No 13 14 15 15 16 16
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Figure 14. The regularized monthly mass anomaly time-series shown with 1 — o error bar and the ‘true’ ones in the numerical study for each drainage system
and for whole Greenland in the 23 mascon case. Data weighting is applied. Note that the trend and inter-annual variabilities are removed.

Table 4. The trend estimates based on real GRACE data in the case of 23
mascons at the drainage system scale. The uncertainties of estimates with and
without data weighting are based on the numerical study. For comparison,
the trends from CSR mascon product are also shown. The units are Gt yr—!.

Method N NwW NE SW SE

With data —-9+11 —-94+1 —-18+3 —-32+£5 —-83+6
weighting

Without data —10+11 —-99+4 —-24+£6 —-35+3 -95+%1
weighting

CSR —24 —92 —24 —-32 —90

by the usage of 120 km wide buffer zone in the preparation of the
CSR mascon product (Save et al. 2016). This likely causes a signal
leakage from nearby glaciers in Canada.

Then, we analyse the long-term trend estimates integrated over
entire Greenland. We do not apply regularization in this case to min-
imize the biases in the obtained estimates. The results are shown in
Fig. 15. The estimates obtained both with and without data weight-
ing converge to a value of about —281 Gtyr~! when the number
of mascons increases. Interestingly, the sensitivity of the estimated
trend to the chosen parameterization is much stronger when no data
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Figure 15. Mass anomaly trends over the period 2003-2013 in units of
Gtyr~! estimated with and without data weighting from real GRACE data
and integrated over entire Greenland, as functions of the number of mascons.

weighting is used; the estimate changes from —243 Gtyr~! for 6
mascons to —281 Gtyr~! for 54 mascons (15 per cent difference).
When data weighting is applied, the difference between the 6- and
54-mascon solutions is only 12 Gtyr~! or 4 percent. This finding
is consistent with the numerical study in Section 3.2 (cf. Fig. 8),
demonstrating that data weighting indeed makes the trend estimates
less sensitive to the dominant parameterization errors when entire
Greenland is considered.

In line with the synthetic study, we consider the trend estimate
obtained with the largest number of mascons in the presence of data
weighting as the most realistic and accurate one. This estimate, that
is, —281 4 2 Gtyr~!, is close to the estimates over the same period
(i.e., 2003-2013) published in literature: —280 £ 58 Gtyr~! in
Velicogna et al. (2014) and —278 & 19 Gtyr~! in Schrama et al.
(2014). In addition, it is likely that the trend estimated by CSR
mascon contains a bias (see Fig. 15). Note that the uncertainty of
our trend estimate for the whole ice sheet is obtained as the root-
sum-square of the individual error sources in the numerical study.
However, there are also other errors that were not considered in
the numerical study but may play a role in the context of real data
processing (Ran et al. 2018b). This includes uncertainties related
to the parameterization of the ocean areas around Greenland (i.e.,
the leakage of minor ocean signals around Greenland) and GIA.
By taking all those uncertainties into account, we estimate the total
error of the trend estimate as 11 Gtyr™'.

4.2 Analysis of the estimates at the intermediate and short
timescales

In addition, we investigate the impact of the parameterization on
the other quantities of interests, that is, inter-annual mass varia-
tions, mean mass anomalies per calendar month and monthly mass
anomalies. For this purpose, we compare the estimates from real
GRACE data with the output of RACMO2.3 model (Noél et al.
2015). In doing so, we assume that ice discharge manifests itself
in GRACE data as only a long-term trend, so that the remaining
mass anomalies observed by GRACE are dominated by SMB (van
den Broeke et al. 2009). Therefore, we de-trend the mass anomaly
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Figure 16. RMS differences (in units of Gt) between inter-annual mass
variations from real GRACE data and from the RACMO2.3 output, as
functions of the number of mascons. The rms inter-annual mass variations
themselves are also shown as a reference.
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Figure 17. The rms difference (in units of gigatransfer) between mean mass
anomaly estimates per calendar month from real GRACE data and from the
RACMO2.3 output, as functions of the number of mascons. The rms mass
anomalies themselves are also presented as a reference.

time-series from both GRACE and RACMO2.3 to make them com-
parable.

First, we examine the inter-annual mass variations. The corre-
sponding RMS differences between GRACE and RACMO-based
estimates are shown in Fig. 16 as functions of the number of mas-
cons. In order to understand the noise level better, the rms of es-
timates are also shown for a comparison. The rms differences de-
creases from 6 to 23 mascons, followed by a slightly increase over
23-54 mascons. The best agreement with RACMO is obtained in
the 23 mascon case when the data weighting is applied. All these
findings are consistent with those based on the numerical study,
indicating a realistic setup of the latter.

Next, the mean mass anomalies per calendar month are inves-
tigated. The rms differences between the GRACE- and RACMO-
based estimates are shown in Fig. 17. The rms differences for 23—
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Figure 18. The rms difference (in units of Gt) between monthly mass
anomalies from real GRACE data and from the RACMO2.3 output, as
functions of the number of mascons. The rms monthly mass anomalies
themselves are also shown as a reference.

54 mascons are comparable, while they slightly increase when the
number of mascon decreases from 23 to 6, no matter whether data
weighting is applied or not. The data weighting scheme notably
reduces the rms differences (by ~18 percent). All this is also in
agreement with the numerical study.

Furthermore, the monthly mass anomaly estimates are anal-
ysed. Fig. 18 shows the rms differences between the GRACE- and
RACMO-based time-series at the drainage system scale. In abso-
lute terms, the rms differences in the absence of data weighting are
about 15 per cent larger than those obtained after data weighting was
applied. When using data weighting, the smallest rms difference is
observed with 36 mascons, whereas the smallest one is found with
the 23 mascons without data weighting. However, the discrepan-
cies of rms differences over various parameterizations are minor,
no matter whether data weighting is applied or not.

Finally, after removing the trends and accelerations, we perform
a comparison of our estimated time-series with the CSR mascon
product (Save et al. 2016), and validate with independent data: SMB
output from RACMO2.3. As discussed earlier, in general, the mass
anomalies estimated with 23 mascons and data weighting are of the
highest quality. Therefore, just those mass anomalies are compared
considered (see Fig. 19). The error bars in Fig. 19 are computed
as root-sum-squared errors of two types: mean mass per calendar
month and monthly mass anomalies, based on the numerical study.
Note that errors in the trend estimates is not included, because the
time-series are de-trended. Next we perform the statistical analy-
sis of the differences between the CSR mascon product and the
RACMO-base estimates. The rms differences of inter-annual mass
variations, mean mass anomalies per calendar month, and monthly
mass anomalies are at a level comparable to that of our estimates,
provided that the data weighting is applied (see Table 5).

S CONCLUSIONS

In this study, we analysed the impact of the chosen parameteriza-
tion on the mass anomaly estimates from GRACE data when the
mascon approach with or without data weighting is applied. The

zero-order Tikhonov regularization was applied in the data inver-
sion. We analysed the impact at different temporal scales by con-
sidering long-term linear trends, interannual mass variations, mean
mass anomalies per calendar month and time-series of monthly mass
anomalies. Both synthetic and real GRACE data were considered.

In the simulation study, errors of four types (i.e., parameterization
error, random error, leakage and AOD error) were simulated. In
this way, we found that the parameterization error and the random
error, as well as the bias introduced by regularization, are the major
contributors to the overall error budget of the estimates produced
both with and without data weighting. For long-term linear trend
estimates, the parameterization error is the dominant error type. This
is due to a significant reduction of the random noise when estimating
a linear trend by using a large number of monthly solutions as input.
For inter-annual mass variations and mean mass per calendar month,
the parameterization error is dominant when the number of mascons
is small; when increasing the number of mascons, the random error
takes over. For monthly mass anomalies, the random error is the
most critical error type for almost all parameterizations. This is
consistent with the fact that the usage of data weighting (which is
designed to suppress random noise) is effective in all the scenarios,
except for the estimation of long-trend at the drainage system scale.
The AOD error and the leakage error are minor contributors to the
overall error budget no matter what temporal scales are considered.

Remarkably, we found that the best estimates of the long-term
linear trends integrated over entire Greenland are obtained when
the number of mascons is large, whereas the regularization is not
applied. This can be explained by the fact that random noise is
subject to strong spatial correlations and is efficiently averaged out
when the estimates are integrated over entire Greenland. On the
other hand, the usage of a large number of mascons suppresses the
other important contributor to the error budget, that is, parameteri-
zation error. In that situation, the regularization is not advised, since
the bias introduced by the regularization is not compensated by a
reduction of errors.

We applied our findings to process real GRACE data. First,
the long-term linear trend over the period 2003-2013 for entire
Greenland was estimated to be around —281 Gtyr~!. This value
agrees well with earlier trend estimates in Schrama et al. (2014)
and Velicogna et al. (2014). In the numerical study, we found that
the estimates for entire Greenland suffer from only minor errors
(i.e., 0.8 Gtyr~! with data weighting and 2 Gtyr~' without data
weighting). Note that the uncertainty of the trend estimates might
be larger in reality, since there are other error sources, for example,
GIA, sea level rise, etc.

We also considered the mass anomaly estimates at intermedi-
ate and short timescales using rms differences between de-trended
timeseries from GRACE and from the RACMO2.3 model. These
differences, as well as the results based on synthetic data, drew us
to the conclusions that (i) the optimal data weighting based on full
error covariance matrices of GRACE solutions is advised and (ii)
the optimal way to parameterize the territory of Greenland is to
split it into 23 mascons (the area of each one being ~90 000 km?).
Smaller mascons may slightly worsen the estimated of inter-annual
variations, whereas larger mascons yield inferior results in most of
the cases considered (the latter can be explained by the impact of
the parameterization errors). Similar recommendations apply also to
the trends estimates at the drainage system scale, with an exception
that the aforementioned optimal data weighting is not needed.
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Figure 19. Mass anomaly time-series for each drainage system and for whole Greenland estimated with data weighting, in the case of 23 mascons. Note that
the long-term linear trends are removed. The uncertainties (1 — o) are computed based on the numerical study.

Table 5. The rms differences between a GRACE solution and the
RACMO2.3 output in terms of inter-annual mass variations mean mass
anomalies per calendar month and monthly mass anomalies. The units are
gigatransfers.

rms difference  rms differences  rms differences

of inter-annual of mean mass of monthly
mass per calendar mass

GRACE solution anomalies month anomalies
This study (with 9 10 16
data weighting)
This study 11 13 22
(without data
weighting)
CSR 9 11 15

ACKNOWLEDGEMENTS

We thank the editor and two reviewers: Dr. Jennifer Bonin and Dr.
Shuang Yi for their constructive comments, which dramatically im-
prove the quality of this manuscript. We would like to thank the
CSRat University of Texas, Austin for providing GRACE Level-2
data and the corresponding error variance—covariance matrices. We
also thank Dr. B. Gunter, who provided us with the GrIS elevation
change rates over 2003-2009 estimated from ICESat data. Noél B.
and van den Broeke M.R. are acknowledged for providing SMB esti-
mates produced with RACMO 2.3. We would also acknowledge the
usage of available C20 and degree-1 coefficients that were produced
by Swenson et al. (2008) and Cheng et al. (2013), respectively. JR
thanks his sponsor, the Chinese Scholarship Council. JR has also
been partly supported by the National Natural Science Foundation

810 JoqWiaAON 0 UO Jasn Yjad AlsIaAun [eoluyoa L Aq 29/0%0G/EE LZ/E/ L ZorIsqe-ajoie/B/woo dno-owepede/:sdny wolj pepeojumoq



2150  J Ran, P Ditmar and R. Klees

of China (41774094, 41431070 and 41674084) and the Strategic
Priority Research Program of the Chinese Academy of Sciences
(XDB23030100).

REFERENCES

A, G., Wahr, J. & Zhong, S., 2013. Computations of the viscoelastic response
of a 3-D compressible Earth to surface loading: an application to glacial
isostatic adjustment in Antarctica and Canada, Geophys. J. Int., 192(2),
557-572.

Baur, O. & Sneeuw, N., 2011. Assessing Greenland ice mass loss by means
of point-mass modeling: a viable methodology, /. Geod., 85(9), 607-615.

Bonin, J. & Chambers, D., 2013. Uncertainty estimates of a GRACE inver-
sion modelling technique over Greenland using a simulation, Geop/ys. J.
Int., 194(1), 212-229.

Chen, J.L., Wilson, C.R. & Tapley, B.D., 2006. Satellite gravity mea-
surements confirm accelerated melting of Greenland ice sheet, Science,
313(5795), 1958-1960.

Cheng, M., Tapley, B.D. & Ries, J.C., 2013. Deceleration in the Earth’s
oblateness, J. geophys. Res., 118(2), 740-747.

Ditmar, P, Teixeira da Encarnagéo, J.H. & Farahani, H., 2012. Understanding
data noise in gravity field recovery on the basis of inter-satellite ranging
measurements acquired by the satellite gravimetry mission GRACE, J.
Geod., 86(6), 441-465.

Dobslaw, H., Flechtner, F., Bergmann-Wolf, 1., Dahle, C., Dill, R., Essel-
born, S., Sasgen, I. & Thomas, M., 2013. Simulating high-frequency
atmosphere-ocean mass variability for dealiasing of satellite gravity ob-
servations: AOD1B RLOS, J. geophys. Res., 118(7), 3704-3711.

Felikson, D., Urban, T.J., Gunter, B.C., Pie, N., Pritchard, H.D., Harpold, R.
& Schutz, B.E., 2017. Comparison of elevation change detection methods
from icesat altimetry over the greenland ice sheet, I[EEE Trans. Geosci.
Remote Sens., 55(10), 1-12.

eds Forsberg, R. & Reeh, N., 2007, Mass change of the Greenland Ice
Sheet from GRACE, Harita Dergisi, Ankara, gravity field of the Earth, in:
Proceedings of the 1st Meeting of the Int. Gravity Field Service, 73 pp.,

Hansen, P.C., 1992. Analysis of discrete ill-posed problems by means of the
I-curve, SIAM Rev., 34(4), 561-580.

Jacob, T., Wahr, J., Pfeffer, W. & Swenson, S., 2012. Recent contributions
of glaciers and ice caps to sea level rise, Nature, 482(7386), 514-518.
Khan, S.A., Aschwanden, A., Bjork, A.A., Wahr, J., Kjeldsen, K.K. & Kjaer,
K.H., 2015. Greenland ice sheet mass balance: a review, Rep. Prog. Phys.,

046801, 1-26.

Luthcke, S.B. et al., 2006. Recent Greenland ice mass loss by drainage
system from satellite gravity observations, Science, 314, 1286—1289.

Luthcke, S.B., Sabaka, T.J., Loomis, B.D., Arendt, A.A., McCarthy, J.J.
& Camp, J., 2013. Antarctica, Greenland and Gulf of Alaska land-ice
evolution from an iterated GRACE global mascon solution, J. Glaciol.,
59(216), 613-631.

Noél, B., van de Berg, W.J., van Meijgaard, E., Kuipers Munneke, P., van de
Wal, R.S.W. & van den Broeke, M.R., 2015. Evaluation of the updated
regional climate model RACMO2.3: summer snowfall impact on the
Greenland Ice Sheet, Cryosphere, 9(5), 1831-1844.

Ran, J., 2017. Analysis of mass variations in Greenland by a novel variant
of the mascon approach, PhD thesis, Delft University of Technology.
Ran, J., Ditmar, P, Klees, R. & Farahani, H.H., 2018a. Statistically optimal
estimation of Greenland Ice Sheet mass variations from GRACE monthly
solutions using an improved mascon approach, J. Geod., 92(3), 299-319.

Ran, J. et al., 2018b. Seasonal mass variations show timing and magnitude of
meltwater storage in the greenland ice sheet, Cryosphere Discuss., 2018,
1-30.

Rowlands, D.D., Luthcke, S.B., Klosko, S.M., Lemoine, FG.R., Chinn, D.S.,
McCarthy, J.J., Cox, C.M. & Anderson, O.B., 2005. Resolving mass flux
at high spatial and temporal resolution using GRACE intersatellite mea-
surements, Geophys. Res. Lett., 32(4), 1-4.

Save, H., Bettadpur, S. & Tapley, B.D., 2016. High-resolution CSR GRACE
RLOS mascons, J. geophys. Res., 121(10), 7547-7569.

Schrama, E.J.O. & Wouters, B., 2011. Revisiting Greenland Ice Sheet
mass loss observed by GRACE, J. geophys. Res., 116(2), B02407,
doi:10.1029/2009JB006847.

Schrama, E.J.O., Wouters, B. & Rietbroek, R., 2014. A mascon approach to
assess ice sheet and glacier mass balances and their uncertainties from
GRACE data, J. geophys. Res., 119(7), 6048-6066.

Shepherd, A. et al., 2012. A reconciled estimate of ice-sheet mass balance,
Science, 338(6111), 1183-1189.

Stedinger, J.R. & Tasker, G.D., 1986. Regional hydrologic analysis, 2, model-
error estimators, estimation of sigma and log-pearson type 3 distributions,
Water Resour. Res., 22(10), 1487—-1499.

Stocker, T.F. et al., 2013, Climate change 2013: the physical science basis,
Tech. rep., 1535 pp.

Swenson, S., 2012, Grace monthly land water mass grids netcdf release
5.0. ver. 5.0., PO. DAAC, CA, USA Dataset accessed [2016-12-01] at
http://dx.doi.org/10.5067/TELND-NCO005, 10.

Swenson, S., Chambers, D. & Wahr, J., 2008. Estimating geocenter variations
from a combination of GRACE and ocean model output, J. geophys. Res.,
113(B8), B08410, doi:10.1029/2007JB005338.

Thompson, PFE, Bettadpur, S. & Tapley, B.D., 2004. Impact of short pe-
riod, non-tidal, temporal mass variability on GRACE gravity estimates,
Geophys. Res. Lett., 31(6), L06619, doi:10.1029/2003GL019285.

van den Broeke, M. ef al., 2009. Partitioning recent Greenland mass loss,
Science, 326(5955), 984-986.

Velicogna, 1., 2009. Increasing rates of ice mass loss from the Greenland
and Antarctic ice sheets revealed by GRACE, Geophys. Res. Lett., 36(19),
L19503.

Velicogna, 1. & Wabhr, J., 2006. Acceleration of Greenland ice mass loss in
spring 2004, Nature, 443(7109), 329-331.

Velicogna, 1., Sutterley, T.C. & vanden Broeke, M.R., 2014. Regional ac-
celeration in ice mass loss from greenland and antarctica using grace
time-variable gravity data, Geophys. Res. Lett., 41(22), 8130-8137.

Wahr, J., Wingham, D. & Bentley, C., 2000. A method of combining ICESat
and GRACE satellite data to constrain Antarctic mass balance, J. geophys.
Res., 105(B7), 16 279-16 294.

Watkins, M.M., Wiese, D.N., Yuan, D.-N., Boening, C. & Landerer, EW.,
2015. Improved methods for observing Earth’s time variable mass dis-
tribution with GRACE using spherical cap mascons, J. geophys. Res.,
120(4), 2648-2671.

Xu, G., 2010. Sciences of Geodesy-1: Advances and Future Directions,
Springer Science & Business Media.

Yi, S., Wang, Q. & Sun, W,, 2016. Basin mass dynamic changes in China
from GRACE based on a multibasin inversion method, J. geophys. Res.,
121(5), 3782-3803.

Zwally, H.J., Giovinetto, M.B., Beckley, M.A. & Saba, J.L., 2012. ’Antarctic
and Greenland drainage systems’. GSFC Cryospheric Sciences Labora-
tory. Available at: icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_syste
ms.php, Last accessed: Dec 2015.

810 JoqWiaAON 0 UO Jasn Yjad AlsIaAun [eoluyoa L Aq 29/0%0G/EE LZ/E/ L ZorIsqe-ajoie/B/woo dno-owepede/:sdny wolj pepeojumoq


http://dx.doi.org/10.1093/gji/ggs030
http://dx.doi.org/10.1007/s00190-011-0463-1
http://dx.doi.org/10.1093/gji/ggt091
http://dx.doi.org/10.1126/science.1129007
http://dx.doi.org/10.1002/jgrb.50058
http://dx.doi.org/10.1007/s00190-011-0531-6
http://dx.doi.org/10.1002/jgrc.20271
http://dx.doi.org/10.1137/1034115
http://dx.doi.org/10.1038/nature10847
http://dx.doi.org/10.1126/science.1130776
http://dx.doi.org/10.3189/2013JoG12J147
http://dx.doi.org/10.5194/tc-9-1831-2015
http://dx.doi.org/10.1007/s00190-017-1063-5
http://dx.doi.org/10.1029/2004GL021908
http://dx.doi.org/10.1002/2016JB013007
http://dx.doi.org/10.1002/2013JB010923
http://dx.doi.org/10.1126/science.1228102
http://dx.doi.org/10.1029/WR022i010p01487
http://dx.doi.org/10.5067/TELND-NC005
http://dx.doi.org/10.1029/2004GL021239
http://dx.doi.org/10.1126/science.1178176
http://dx.doi.org/10.1029/2009GL040222
http://dx.doi.org/10.1038/nature05168
http://dx.doi.org/10.1002/2014GL061052
http://dx.doi.org/10.1029/2000JB900113
http://dx.doi.org/10.1002/2014JB011547
file:icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php

