
HIFI
A Design Method for Implementing Signal

Processing Algorithms on VLSI Processor Arrays.

TR dis;
1599

Jurgen Annevelink

HIFI
A Design Method for Implementing Signal

Processing Algorithms on VLSI Processor Arrays.

HIFI
A Design Method for Implementing Signal

Processing Algorithms on VLSI Processor Arrays.

Proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van

de Rector Magnificus prof.dr. J.M. Dirken, in het openbaar te verdedigen ten overstaan van een

commissie aangewezen door het College van Dekanen, op dinsdag 5 januari 1988, te 14.00 uur

door

Jurgen Annevelink

elektrotechnisch ingenieur

geboren te Laren (Gld) thans I.ochcm

TR diss
1599

Dil proefschrift is goedgekeurd door de promotor.

Prof.dr. ir. P. Dcwildc

CONTENTS

1. Introduction 5
1.1 Management of Design Complexity 9
1.2 Design Verification 10
1.3 Overview 11

2. VLSI Array Processors 13
2.1 Design/Implementation of VLSI Array Processors 13
2.2 Other Aspects of VLSI Array Processor Design 18

3. Models and Languages for Concurrent Systems 21
3.1 The Design Process 21
3.2 Models and Languages 27
3.3 Discussion 44

4. HIFI: Design Method and Computational Model 49
4.1 A quick, overview 50
4.2 Computational Model 55

5. HIFI: Function Decomposition and Implementation 73
5.1 Refinement: Function Decomposition 73
5.2 Partitioning: Function Implementation 79

6. HIFI: Prototype System 89
6.1 Prototype Classes 91
6.2 HIFI Database 99

7. Examples 105
7.1 Example 1: Transitive Closure 105
7.2 Example 2: Linear Equations Solver 116

8. Discussion 129
8.1 Computational Model 130
8.2 Design Tools 133
8.3 Design System Integration 134

References 136

Appendix A: VLSI Design for Massively Parallel Signal
Processors 141

Appendix B: Localization and Systolization of SFG's 149
B.l Introduction 149
B.2 Temporal Localization of an SFG 150
B.3 Hierarchical SFG's and HIFI Design Methodology 157
B.4 Conclusions 161

Appendix C: Object Oriented Data Management 169
C.l Introduction 170
C.2 Basic Philosophy 173
C.3 Object Definition and Manipulation - An Example 183
C.4 Implementation of Tuple, Set, Sequence and Reference

Types 189
C.5 Building a Database based on the DMP Data

Abstractions 198
C.6 Discussion 204

References 206

7. Voor het integreren van ontwerphulpmiddelen (tools) in een
ontwerpomgeving zijn relationele database systemen niet toereikend
wegens de beperkte abstractiemechanismen en het ontbreken van een
versiemechanisme.

8. Het formuleren van een formeel model van het ontwerpproces is een
belangrijke stap, welke kan dienen als basis voor het ontwikkelen van
een ontwerpsysteem, wanneer het model de ontwerp-objecten en hun
onderlinge relaties identificeert en klassiftceert.

9. Een object-georiënteerde taal heeft de volgende eigenschappen:

— datatype abstractie

— communicatie d.m.v. message passing

— type inheritance

10. Hybride object-georiënteerde talen, zoals Objective C, combineren een
hoog abstractieniveau en grote modulariteit met een efficiënte
implementatie en vormen een uitstekende basis voor het ontwikkelen van
een geintegreerd ontwerpsysteem.

11. Het leren programmeren behoort gericht te zijn op het leren toepassen
van abstractie en (de-)compositie mechanismen met behulp van een hoog
niveau programmeertaal, zoals LISP.
Abelson, Sussman and Sussman: 'Structure and Interpretation of Computer Programs',

MIT press 1985

12. Het euvel van 'herenaccoorden' zal verdwijnen als er meer vrouwen op
hogere managementposities worden benoemd.

Stellingen behorende bij het proefschrift:

HIFI
A Design Method for Implementing Signal

Processing Algorithms on VLSI Processor Arrays.

door
J. Annevelink.

1. De vraag: "Wat moeten wij doen ?', als grondslag van het ethisch
handelen van een ingenieur kan niet worden losgemaakt van de vraag:
'Wat geloven wij ?'.
Greteke de Vries. 'Het ethisch denken, van enkele Delftse technici', doctoraalscriptie,

Faculteit der Godgeleerdheid, Rijks Universiteit Leiden, april 1987.

2. Verdergaande internationalisering en concentratie van het bedrijfsleven
vereist verdere ontwikkeling van internationale wetgeving gericht op het
voorkomen van misbruik van monopolie- of oligopolieposities.

3. Het verdient aanbeveling met name de reisbudgetten van de
onderzoeksgroepen aan de Technische Universiteiten te vergroten zodat
men door het ontwikkelen van internationale contacten ook
daadwerkelijk mee kan doen aan onderzoek van internationaal niveau.

4. Hoewel het jammer genoemd kan worden dat hoog opgeleide technici
Nederland verlaten, zijn er ook vele positieve aspecten te onderscheiden,
zoals het vergemakkelijken van de toegang tot het onderzoek in
buitenlandse (industriële) onderzoekslaboratoria en het bevorderen van
de internationale uitwisseling.

5. Het vakgebied der experimentele psychologie en de relaties tussen dit
vakgebied en vele voor computer-aided design belangrijke aspecten,
zoals cognitieve modellen en mens-computer interactie, worden
onvoldoende onderkend.

6. Formaliseren van het ontwerpproces en de ontwikkeling van
geïntegreerde ontwerp-omgevingen leiden tot nog meer toepassingen van
geïntegreerde schakelingen dan thans al het geval is.

1

Samenvatting

In dit proefschrift wordt een ontwerp-methode gedefinieerd, HIFI genaamd,
welke het mogelijk maakt om op systematische wijze een grote klasse van
signaal bewerkings algorithmen te implementeren op systolische en
wavefront arrays.

Systolische en wavefront arrays zijn voorbeelden van array processor
architecturen, welke bij uitstek kunnen worden geïmplementeerd met
behulp van VLSI technologie. Dit omdat beide soorten arrays zijn
opgebouwd met behulp van een groot aantal gelijke processor elementen
(PE's), die in een regelmatige structuur zijn gerangschikt. Tevens zijn de
verbindingen tussen de PE's regelmatig en lokaal. Het belangrijkste verschil
tussen beide soorten array processors is dat in een systolische array de PE's
worden gesynchroniseerd met een globale klok, terwijl in een wavefront
array de data-communïcatie zorgt voor de synchronisatie van de
verschillende PE's.

Het model dat ten grondslag ligt aan de definitie van de ontwerp-methode is
een combinatie van een process georiënteerd model en een applicatief,
functie georiënteerd model. Het resultaat is een model dat een hoge mate
van abstractie combineert met krachtige decompositie mechanismen en dat
zeer geschikt is voor het definiëren van een hiërarchische ontwerp-methode.
Het model laat zowel een top-down als bottom-up ontwerp-stijl toe.

De HIFI ontwerp-methode zelf bestaat uit een opeenvolging van twee
verschillende soorten ontwerp-stappen:

• refinement of verfijning, welke het mogelijk maakt om de decompositie
van een functie te definiëren door middel van een Dependence Graph.

• partüionering, waarmee de Dependence Graph wordt afgebeeld op een
zogenaamde Signal Flow Graph, welke een efficiëntere implementatie is
van de functie beschreven door de Dependence Graph.

De ontwerp-methode wordt geïllustreerd door een aantal voorbeelden,
respectievelijk een algorithme voor het oplossen van een stelsel lineaire
vergelijkingen en het transitive closure algorithm. Ook wordt aandacht

2

geschonken aan de architectuur van een prototype ontwerp-systeem,
geschikt voor implementatie van de HIFI methode. De design database
vormt een belangrijke component van zo'n geintegreerd systeem, omdat
hierin het ontwerp en alle verdere daarop betrekking hebbende informatie
zijn opgeborgen.

In het laatste hoofdstuk wordt de HIFI methode nader bekeken en
formuleren we een aantal eisen welke gesteld moeten worden aan de
software omgeving waarin een systeem als het hier voorgestelde kan worden
ontwikkeld en gebruikt.

Het proefschrift bevat verder een drietal appendices in de vorm van
(gepubliceerde) artikelen. Appendix A bevat een artikel, waarin een
overzicht wordt gegeven van systolische en wavefront array processors en
algorithmes. Het artikel in Appendix B beschrijft een procedure waarmee
een algorithme, beschreven door middel van een Signal Flow Graph,
getransformeerd kan worden naar een vorm welke direct afbeeldbaar is op
een systolische array. Het artikel in Appendix C definieert een methode om
op een systematische manier de ontwerp-data af te beelden en op te bergen
in een ontwerp-database.

3

Summary

In this dissertation we define a design method, called HIFI, that makes it
possible to systematically implement a large class of signal processing
algorithms on systolic and wavefront arrays.

Systolic and wavefront arrays are examples of processor architectures, that
are very much suited to VLSI implementation, because both systolic and
wavefront arrays are build using a large number of similar processor-
elements (PE's). The PE's are arranged in the form of a regular grid, while
the interconnections between the PE's are regular and local. The most
important difference between the two architectures concerns the
synchronization of the PE's. In a systolic array the PE's are synchronized by
a global clock; in a wavefront array the synchronization is achieved by
adopting an asynchronous hand-shaking protocol for the communication
between the processor elements.

The model underlying the definition of the design method is a combination
of a process oriented model and an applicative, function oriented model.
The result is a model that combines a high level of abstraction with
powerful decomposition mechanisms. The model is used to define the HIFI
design method, which allows both top-down and bottom-up design styles.

The HIFI design-method is based on two different design steps:

• refinement, which makes it possible to define the decomposition of a
function with a Dependence Graph

• partitioning, used to project a Dependence Graph on a so-called Signal
Flow Graph, which allows a more efficient implementation, of the
function defined by the Dependence Graph.

The design method is illustrated by a number of examples, respectively an
algorithm for the solution of a system of linear equations, and the transitive
closure algorithm. In addition, we discuss the implementation of a
prototype of the HIFI design system. An important component of an
integrated design system will be the design database, which contains all the
information relevant to a particular design.

4

In the last chapter we review the HIFI method with respect to the its
computational model. We also discuss some requirements for the software
environment in which a design system such as the one proposed here, can be
implemented.

This dissertation has three appendices, containing previously published
papers. Appendix A is a reprint of a paper, reviewing the influence of the
basic VLSI device technology on VLSI processor architectures. The paper
reprinted in Appendix B defines a procedure to transform a Signal Flow
Graph (SFG) description of an algorithm in a similar SFG, that can be
directly mapped onto a systolic array architecture. The paper in Appendix
C defines a systematic method for interfacing design tools with a design
database.

5

1. Introduction

The development of the Integrated Circuit (IC) technology, reflected in the
increase in integration density and size of an integrated circuit, makes it
possible to design and implement more and more complex systems.
Whereas about 25 years ago the number of components on an integrated
circuit or chip ranged from 10 to 100, state of the art, so-called VLSI chips
may presently contain upwards of one million components, mostly
transistors. This trend drives current design methods to their edge. The
problems that become visible are especially related with:

• management of design complexity

• verification of the design

In this thesis we will describe a design methodology that should tackle the
above problems for an important class of algorithms, namely those that
have a regular and local data-flow. These types of algorithms are especially
suited to VLSI implementation for a number of reasons. First, because of
the regularity, the design complexity is reduced. By designing a suitable
processing element and then duplicating it, one can form an array (ID or
2D) of processing elements. Second, the local data-flow is favorable,
because in a VLSI chip the cost of communication, reflected by the length of
the connections between different processor elements, quickly becomes the
main bottleneck.

Array structured processor systems have long been the subject of active
research as illustrated by the work of Von Neumann and others on cellular
automata [Beck80]. The development of VLSI technology led to the
definition and design of systolic architectures [Kung79]. A systolic array
can be informally described as an array of pipelined processor elements
operating in unison on a set of data. Systolic arrays may be designed to
match the I/O and throughput requirements of many applications, both
numeric and non-numeric [Kung87]. Numeric applications are found in the
area of signal processing, e.g. filtering and radar signal processing and
matrix arithmetic. Non-numeric applications include graph algorithms, e.g.

6 Introduction

transitive closure and dynamic programming.

In order to be implemented on systolic arrays an algorithm must be
specifiable in the form of a set of recurrences. Rao [Rao85] showed that a
systolic array defines a set of recurrences and correspondingly that certain
sets of recurrences, the so-called Regular Iterative Algorithms, are
implementable on systolic arrays. The definition of these recurrences is
only one part of a design however. The other aspect is the scheduling of the
operations and the assignment of operations to processors, given the
constraints imposed by a particular hardware implementation technology,
or an existing multiprocessor architecture with its fixed pattern of
interconnections. A mathematical framework for deriving a schedule and
assigning operations to processors, for a restricted class of algorithms, the
so-called RIA or regular iterative algorithms, was given by Rao [Rao85].
This work (re)established the prominence of the so-called dependence graph,
as a basis for mapping a particular algorithm onto a regular multi-processor
network, such as the systolic and wavefront type arrays described in
[Kung84]. Complementing the work of Rao, Moldovan [Mold86] and
Deprettere and Nelis [Neli86] showed how to compute a schedule and
assign operations to processors given a limited number of processors.

In this thesis we will concentrate on the description of a design method that
supports the design and implementation of algorithms with regular and
local data-flow. The design method will be embedded in a prototype CAD
system that provides a framework for incorporating a large variety of tools
that can assist a designer in the task of defining a processor architecture as
well as deriving the schedules, control flow and/or hardware structure of
the processor elements.

The architecture of the design system is schematically shown in Figure 1.1.
It reveals that the design system consists of three important parts,
respectively (l) the database and associated Database Management System
(DBMS), (2) the design tools and (3) the user interface and input/output
devices.

7

Figure 1.1. Architecture of the Design System

The database is intended to provide persistent storage for the design objects,
that can be manipulated via the DBMS. The functionality of the DBMS is in
large part determined by the data model on which it is based. The data-
model defines the methods needed to define a data-schema, i.e. a precise
definition of the types of the objects stored in the database, their
relationships and the operations allowed on them. The best known data-
model is the relational model [Date8l]. The relational model allows data-
schemas to be denned in terms of relations. A relation defines types
comparable to the tuple or record types found in programming languages.
The relational model is attractive because of its simplicity and its simple
implementation; a relation can be stored as a table, which can be efficiently
searched. A disadvantage is the low level of expressivity. Because the
design tools have to construct their internal data-structures from many
pieces of low-level information, that are to be retrieved separately from the
database, the interfacing of the design tools with the database is
complicated. This is not only inefficient, it also impairs the data-
independence, since the design tools need to incorporate detailed knowledge
regarding the mapping of their internal data-structures onto the relational
types provided by the database.

8 Introduction

The above considerations (amongst others) stimulated the development of
richer, so-called semantic data-models that provide a richer set of data
types, to facilitate a more direct mapping from the data-structures used
internally by the design tools to database types. The further development
of these data-models is an active area of research, which is vital also for the
development of design systems. The demands posed on a DBMS by a design
system differ also from more conventional transaction oriented systems, in
that the database is required to keep track of the progress of a design,
reflected in the successive versions and alternative solutions produced by
the designer during the evolution of a design.

The design tools are intended to provide the complex and highly specialized
operations that can not be captured by the data-model of the DBMS. They
operate on the data stored in the database, modify it and then store the
resulting data back in the database. The input from the designer, commands
etc., is obtained from the user interface, which interfaces the design tools to
the input/output devices. Input/output devices usually consist of a high-
resolution graphics display, a keyboard and a mouse.

A critical aspect is the mechanism provided to control the design tools and
to represent various aspects of the design data to the designer. The
flexibility of the design system is increased greatly, if it is possible to
control various design tools, operating concurrently and accessing the same
database. This possibility is offered by various technologies for
implementing user-interfaces, e.g. the X-window management system and
specialized class libraries offered by various object oriented programming
environments, such as SMALLTALK [Gold84]. An important difference
between these technologies is whether design tools are assumed to be
independent processes, managed by the operating system of the host
computer, under the control of a window manager process, such as in X, or
that the design tools are merely procedures run under control of a
controller, such as is the case in the SMALLTALK environment. In the
latter case, the granularity of the design operations can be much made much
smaller.

9

There are also many trade-offs to be made regarding the implementation of
the DBMS. On the one hand the design tools may include all data access
methods themselves and thus be completely responsible for maintaining the
consistency of the database. Such a solution however requires the database
to be very simple, otherwise the overhead of including the DBMS
functionality in all design tools becomes prohibitive. On the other hand, it
is possible to encapsulate the functionality of the DBMS in a separate
process, controlled by the operating system. Given current networking
facilities this also facilitates a distributed environment in which the
database is (physically) located at a specialized database server, that may
include special hardware facilities to increase the efficiency of the DBMS.

1.1 Management of Design Complexity

There are a large number of aspects involved in managing the complexity of
a design. First and forall there is the need for a proper decomposition of the
design. Typical for the design of VLSI chips is the use of an hierarchical
and multi-level design method. The ICD system [Dewi86] for example
distinguishes between a number of levels or views of a design. Each of
these views will contain a specification of the design as an hierarchical
composition of modules or cells and submodules or subcells. There are no a
priori relations between the cells in one view hierarchy with those in
another, although such relations may exist. In fact, they will exist and are
created and/or used by synthesis and verification tools. For example, a
circuit extractor will generate a network, description that can be mapped one
to one onto the layout description of the cell to which it is applied. The
extracted network description can then be compared to another network, so
as to verify whether the two network descriptions are equivalent.

Hierarchical and multilevel design is one way of reducing the design
complexity. Another, equally important method is that of stepwise
refinement. Stepwise refinement is a basic technique used e.g. in software
design. It is used to separate the design of the interface or abstraction of a
module (e.g. a procedure or function), from its implementation. By first
designing the interface it becomes possible to test/verify in an early stage of
development the interaction of a module with its environment. Once the

10 Introduction

interface is tested/verified, one has to verify the implementation only with
respect to the specification of the interface. Stepwise refinement works only
when it is considerably easier to specify the interface of a software or
hardware module, than it is to verify its implementation.

A fair amount of complexity is added to a design system, when it is
required to keep track of the evolution of a design. Slightly different
requirements, e.g. with respect to speed, will usually require only a few
modifications to a few modules. In such a case it is appropriate to view the
two designs as versions or alternatives of a single design.

Another factor that influences the complexity of a design is the
implementation technology. It makes a big difference whether a chip must
be designed using some gate array technology, standard cells, or whether a
full custom implementation is required. Similarly, for software, the
language and other design tools, e.g. compilers and debuggers, used to
implement modules may significantly effect the difficulty of doing so. In the
case of algorithmic design, which we consider in this thesis, it is likewise
the combination of the design methodology and the design tools that support
it, that determine the ultimate complexity of a design.

1.2 Design Verification

The importance of design verification goes without question. The costs
involved in fabricating a prototype of a VLSI chip and the time needed to do
so, are high. It is therefore important to verify the correctness of a chip
before actually fabricating the prototype, to maximize the chance that the
prototype functions correctly and to reduce design costs. Current
verification methods are mostly based on simulation techniques. To an
executable specification of the chip, or a part thereof, a series of inputs is
fed. The values on the appropriate outputs have to be compared with the
expected results, e.g. by comparing the results with the results of
simulations in a different view of the design. The input sequences are
chosen to maximize the chance of detecting design errors at the outputs.

There are many problems associated with this type of verification. First of
all, the design of a set of simulation inputs is very difficult. The fault-

1.2 Design Verification 11

coverage, a measure for the quality of the simulation inputs, is difficult to
determine in general. An alternative approach is to prove the correctness of
the design. This requires the semantics of the specification/design language
to be precisely specified. Currently there is a lot of research being done on
the semantics of programming languages. This research has applicability to
hardware design as well.

For the design methodology described in this thesis the correctness will be
guaranteed mostly by construction. Given a correct transformation and the
system will allow only correct transformations, the result will be correct
also. In cases where that is difficult to achieve, descriptions will be
executable, so that a design can be simulated.

1.3 Overview

In chapter two of this thesis we will review the area of array processors and
systolic arrays in particular. Two papers added as appendices A and B
provide respectively a more detailed review of array processors and array
processing, including VLSI implementation and technology trade-offs
[Kung83] and an algorithm for systolizing systems described by a Signal
Row Graph [Kung84a].

Chapter three continues with a review of a number of models and languages
used for describing concurrent systems. The models are compared on a
number of criteria that are on the one hand derived from an analysis of the
design process and on the other hand related with the special requirements
posed by VLSI implementation, e.g. locality of interconnections and
regularity.

Chapter four gives a definition of the design method which we propose and
have called HIFI. The computational model underlying the design method
forms the main part of chapter 4.

Chapter five discusses the two main design steps, respectively function
refinement and function implementation, in more detail.

A prototype system is discussed in chapter six. There we also discuss the
database requirements of the HIFI system. A systematic data-management

12 Introduction

strategy, based on the definition of the data-structures used by the design
tools, is described in a paper [Anne88], added as appendix C.

Chapter seven discusses two examples. The first is a system for
implementing the transitive closure algorithm. The second is the design of a
system implementing an algorithm for the least-square solution of a system
of linear equations.

Finally the results of the research described in this thesis are discussed in
chapter eight.

13

2. VLSI Array Processors

Influenced by the rapid progress in VLSI device technology many algorithms
have been developed that can be implemented on so-called Systolic Arrays
[Kung79]. A Systolic Array is a regularly interconnected set of identical
processing elements arranged in the form of a grid. The qualification
'systolic' derives from the fact that in a systolic array all processor
elements perform their operations rhytmically on the beat of a global clock..
A systolic array is thus per definition a synchronous system.

An important generalization of systolic arrays are the so-called Wavefront
Arrays [Kung82,Gal-82]. The name'wavefront 'array is derived from the
fact that the propagation of the computational activity on such an array
resembles the propagation of a wave. The difference between systolic and
wavefront arrays is the synchronization of the processor elements. In a
wavefront array, all processor elements have their own local clock, and the
communication between processor elements is by means of a handshaking
protocol, i.e. processors can wait for one another if data is not available.
The asynchronous communication allows processor elements to be locally
synchronized, removing the problems associated with synchronizing a large
number of processor elements. The disadvantages of wavefront arrays are
mostly the increased complexity of the processor elements and the
possibility of deadlock, i.e. the situation in which two or more processors
are waiting for each other to produce or consume data. A more extensive
discussion of wavefront arrays, including a prototype design for a processor
element, can be found in Appendix A.

2.1 Design/Implementation of VLSI Array Processors

Probably the best known example of a systolic array is the systolic array
for (banded) matrix-matrix multiplication of Kung and Leiserson [Mead80].
The array consists of a set of hexagonally connected processor elements, so-
called Inner Product Step processors, that consist of a multiplier, an adder
and a number of registers to buffer the input data, while a computation
takes place. It is easy to see that the matrix product C = (Cj.) of A = (a„)

14 VLSI Array Processors

and B = (t O can be computed by the following recursion:

for i, j , k from 1 to n do

c . r ^ + ^ i 0.0
„ (n+l)

■J 'J

If A and B are (nxn) band matrices of band-width w t and w2 respectively,
then the above recursion can be evaluated by pipelining the ay, b.. and c-
through the array of hex-connected Inner Product Step processors shown in
Figure 2.1, for the case w t = w 2 = 4 .
In order to verify that the array in Figure 2.1 indeed implements the
recursion (2.1), the data-flow in the array has to be studied in detail. One
approach is to make a series of successive snapshots to follow the flow of
data in the array and to verify that the successive c- indeed accumulate
the partial sums aikbk.. Chen [Chen83] formalizes this approach and shows
that the computation implemented by the array can be found by solving a
set of space-time recursion equations for the least fixed point.

Experience shows that it is usually possible to design several different
systolic arrays in order to implement a particular set of recursions. It is
therefore natural to ask whether we can systematically generate all systolic
arrays that correctly implement a particular recursion. The problem is
reversed in the sense that we are looking now for a methodology to
synthesize a systolic array starting from the recursion equation that defines
its behavior.

The definition and implementation of systolic arrays can be simplified if we
use a model for their definition that abstracts from the actual timing and
synchronization of the processor elements. S.Y. Kung [Kung84] uses Signal
Flow Graphs for this purpose. The SFG's used by Kung represent
computations by nodes that are connected by directed edges that have a
weight representing the number of data values (initially) present on the
edge. The nodes operate by taking the first data-value from their input
edges to compute values that are appended to the output edges, one value to

2.1 Design/Implementation of VLSI Array Processors 15

Figure 2.1. Systolic Array for (banded) matrix-matrix multiplication

each edge. In fact, the SFG's used by Kung in [Kung84], are very similar to
the Data Flow Graphs (DFG) used by other researchers. This is also
recognized by Kung, who shows that a SFG can be easily transformed into a
DFG.

The recursion (2.1) is implemented by the SFG shown in Figure 2.2. The
SFG is much easier to interpret and verify then the corresponding systolic

16 VLSI Array Processors

array in Figure 2.1, due to the fact that the k-indices of the computations in
a shapshot are all equal. All that is required by the SFG representation is
that nodes are not dependent on one another for their input data. This
condition is easily met if we require that the SFG doesn't contain zero
weight loops. Note also that the data entered in the SFG is not interleaved
with zero's as is the case for the systolic array.

Figure 2.2. SFG for (banded) matrix-matrix multiplication

2.1 Design/'Implementation of VLSI Array Processors 17

A SFG as shown in Figure 2.2 can be 'automatically' transformed to a
systolic array using the procedure defined in Appendix B. It is only
required that the SFG is computable. The procedure described in Appendix
B starts by temporally localizing the SFG, i.e. the SFG is transformed into a
computationally equivalent one such that the weight of every edge is ^ 1.
The procedure is based on two simple rules; (1) time-rescaling, which is
used to rescale the time delays by a positive factor a, in order to localize
loops and (2) delay-transfer, which is used to distribute the delays evenly
over the edges of the SFG. A temporally localized SFG can be transformed
into a systolic array by combining a delay from all inputs of a node with
the node itself, in order to form a basic systolic processor. The result of
temporally localizing and systolizing the SFG of Figure 2.2 is the array of
Figure 2.1. The delay rescaling that was necessary equaled a = 3; this is the
minimum rescaling, since the SFG contains a loop with three edges.

In order to improve the efficiency of systolic array with a > 1, a group of a
consecutive processor elements may share a single arithmetic unit, without
compromising the throughput rate as shown by Rung [Kung84].

Although the SFG representation offers many advantages over the
representation shown in Figure 2.1, there is still a choice regarding the SFG
used for implementing a set of recursions. A SFG forces a certain order of
evaluation, i.e a schedule, on the computations specified by the recursion.
This can be modeled by representing the recursion as a Dependence Graph
(DG). Different SFG's can be found by projecting the DG in different
directions on a lower dimensional SFG. In order to conform to the local
interconnection constraint posed by a VLSI implementation, the recursion
has to be rewritten in a so-called single assignment, localized form, meaning
that variables may occur only once on the left hand side of an equation and
that dependencies between the variables on the left and right hand-size of
the recursion equations have to be constant and independent of the value of
the indices. The DG representing the recursion is found by mapping the
variables occurring on the left hand side of an equation on the grid points of
an index space; the dependencies between these variables are represented by
directed arcs between the corresponding grid points. The extent of the index

18 VLSI Array Processors

space can be defined by a set of constraints that define the points contained
in it. The definition of these index spaces and their mapping on systolic
arrays are discussed in [Rao85].

The design method discussed in this thesis (cf. chapter four) also uses
Dependence Graphs to specify the recursions. Contrary however with the
approach taken by Rao, we will assume that the DG is defined by a sequence
of successive decomposition or refinement steps. The partitioning step can
similarly be decomposed. It is also possible to consider a sequence of
refinements and construct a DG by substituting the DG's in one another. As
a result, in order to find a suitable model for our DG's and SFG's, a major
point of attention in our research have been languages for describing and
defining concurrent systems. This will be described in more detail in
chapter three.

2.2 Other Aspects of VLSI Array Processor Design

In general there are a large number of aspects that influence the design and
implementation of systolic and wavefront arrays. In addition to the
considerations mentioned above, regarding the definition of the recursions
and the associated DG's, there are also considerations regarding:

General purpose vs. special purpose processing elements

The development costs associated with a systolic/wavefront array are such
that it is mandatory to have as large an application area as possible. It may
be worthwhile to have programmable processor elements and/or flexible
interconnections so as to increase the number of algorithms that can be
implemented on a particular array.

Granularity of operations

The basic operation performed by each processor element may range from a
simple bit-wise operation through word-level multiplication and addition to
execution of complete programs. The level of granularity is determined by
the choice of processing elements which will depend mostly on technological
and implementation constraints, e.g. I/O limitations and throughput

2.2 Other Aspects of VLSI Array Processor Design 19

requirements.

Partitioning

In general, when problems of arbitrary size have to be processed on an array
of a fixed size the problem must be partitioned so that the large problem
may be efficiently solved on the fixed size array. Several approaches are
possible. One approach operates by partitioning the DG of the algorithm
such that the individual partitions can be mapped onto the processor array.
The global control necessary to ensure correct sequencing of the algorithm
partitions as well as storage of intermediate data has to be added to the
description of the array. This so-called Local Sequential Global Parallel
approach [Jain86], increases the amount of memory required externally.
Another approach, called Local Sequential Global Parallel [Jain86], operates
by clustering neighbouring nodes in the DG and mapping them on a single
processor. This requires additional control regarding the sequencing of the
operations as well as local storage of values to be added to the description of
the processor elements. Yet another approach is to restate the algorithm,
such that it becomes a collection of smaller problems that are similar to the
original problem, but can be solved by the given systolic array.

Fault Tolerance

For large arrays the inclusion of a certain degree of fault tolerance has to be
considered, since the reliability of the processor array degrades rapidly
when the number of processors increases.

Synchronization

An important issue for systolic arrays is the synchronization of the
processor elements. Depending on the size of the processor array and the
layout of the clock-distribution network, the skew introduced by the fact
that clock-lines differ in length, will degrade the performance, since it
lowers the maximum allowable clock-frequency. An alternative to the
design of a globally synchronous array is to replace the global
synchronization by self-timed data-driven synchronization by means of an

20 VLSI Array Processors

asynchronous hand-shaking mechanism, as in a wavefront array. The
disadvantage of this is that the handshaking mechanism adds overhead to
the communication between processor elements. This overhead can only be
justified if the operations implemented by a processor element are of a
sufficiently high degree of granularity.

Integration in existing systems

The problems associated with integrating array processor systems such as
systolic arrays into existing computing networks may be non-trivial because
of the high I/O bandwidth required by the array processor. If a host-
processor can't keep up with the processing rate of a systolic array this may
require insertion of special memory buffers, or even a hierarchy of
successively faster memories. For some applications however, the array
processing system actually reduces the I/O requirements that would
otherwise be put on the host processor, e.g. in radar signal processing
(adaptive beamforming), or image processing (feature extraction, image
enhancement). Naturally these are ideal applications for systolic processors.

In this thesis, we will be concerned mostly with the definition of the
computations performed by a systolic/wavefront array, as discussed in
section 2.1. In the next chapter we will therefore study a number of models
and languages for specifying concurrent systems.

21

3. Models and Languages for Concurrent Systems

In this chapter we will give an overview of a number of languages/models
for specification and design of software and hardware systems. We will
first discuss a generic model of the design process that is applicable to both
software and hardware design. The differences between software and
hardware design become visible only at more detailed levels, where
technological constraints have to be taken into account. Next we will give
an overview of a number of languages and models that have been developed
for the description and design of concurrent systems. This overview will
outline two trends, process oriented modeling and applicative languages.
Both have been developed in efforts to reduce the complexity associated
with modeling and verifying the correctness of large (software) systems. In
addition we will describe a number of languages that combine ideas from
these areas. The last section of this chapter contains a discussion and
comparative evaluation of these languages and models and identifies
desirable properties for a design model/language.

3.1 The Design Process

A popular view of the design process is to partition it in two phases.
Specification is separated from implementation and verification. In this
view one first specifies a system completely in a formal language at a high
level of abstraction. Then the implementation issues are considered and a
program or system design are developed and verified with respect to the
specification. The above simple view of the design process can not be
maintained in light of design methodologies such as stepwise refinement and
object oriented programming [Gold83], that have been developed over the
past 20 years. It became obvious that the partitioning between specification
and implementation is entirely arbitrary. Every specification is an
implementation of some other higher level specification (cf. figure 3.1).

The standard software development model holds that each step of the
development process should be a "valid" realization of the specification. By
"valid" we mean that the behavior specified by the implementation is equal

22 Models and Languages for Concurrent Systems

impi

"spec"

synthesis

impi

"spec

veri ication]

Figure 3.1. View of the Design Process: Successive Specification and
Implementation Steps

to that defined by the specification. This equality has to be verified. In
practice one finds that many design steps violate this validity relationship
between a specification and its implementation. Rather than providing an
implementation of the specification, they knowingly redefine the
specification itself. Implementation is a multiple-step process and many of
these steps are not mathematically valid, i.e. they don't implement the
specification, they alter it.

There are two important reasons for specification modifications: physical
limitation and imperfect foresight. The systems we design are build from
components that have limitations, such as speed, size and reliability. Often
it will be possible to find a cost-effective partial solution, rather than a total
solution. This introduces either a restriction that limits the domain of input
or introduces the possibility of error. In the latter case it is necessary to
define what to do when an error occurs. In either case the semantics of the
specification has been changed due to an implementation decision. The
second source of specification modification is our lack of foresight. The
systems we specify and build are complex. It is virtually impossible to

3.1 The Design Process 23

foresee all the interactions in such systems. During implementation these
implications and interactions are examined in more detail. Often we find
undesirable effects or incomplete descriptions. This insight provides the
basis for refining the specification appropriately. The place where the design
modification is inserted depends upon the implementation decisions that are
affected.

It follows that the design process is not a simple two step process,
specification and implementation, but that the design process consists of a
sequence of specification and implementation steps, where the
implementation at one level serves as the specification at the level below.
Interleaving of specification and implementation steps is further
complicated by the fact that certain implementation choices may actually
change the (semantics of the) specification above (cf. Figure 3.1).

The interleaving of specification and implementation is due to the fact that
at any one level of design one wants to limit the amount of complexity or
detail that must be considered. Two common and effective approaches to
accomplish this are decomposition and abstraction. By decomposing a design
task into subtasks, the complexity of the design is effectively reduced to
that of designing and combining the individual subtasks, because the
subtasks can be treated independently. For many problems however, the
smallest separable subtasks are still to complex to be designed in a single
step. The complexity of such tasks must be reduced via abstraction.
Abstraction provides a mechanism for separating those attributes that are
relevant in a given context from those that are not, thus reducing the
amount of detail that one needs to come to grip with at any one time.

Decomposition and abstraction techniques can be identified in conventional
approaches to IC design. The so-called multi-level hierarchical design
method employs abstraction by the introduction of multiple levels, such as
algorithmic, register-transfer, logic gate, switch-level etc. A design will
usually be described at a number of these levels. At each level the designer
can then decompose the design to reduce the remaining complexity.
Usually, a cell or module will be composed of a number of subcells or
submodules, which in turn are composed of subcells etc. The cells are

24 Models and Languages for Concurrent Systems

related hierarchically.

Such an approach may be effectively captured by a so-called Y-chart
[Gajs83]. The Y-chart shown in Figure 3.2 is a convenient and succint
description of the different phases of designing VLSI systems. The axes
correspond to the orthogonal forms of system representation. The arrows
represent design procedures that translate one representation into another.
While many different design approaches and their corresponding Y-charts
are possible, design is typically carried out through a process of successive
refinements. In this process a components functional specification is
translated first into a structural description and then into a geometrical
description in terms of smaller subcomponents; the functional descriptions
of each of these subcomponents must be translated into structural and
geometrical descriptions of even smaller parts and so on.

The principal weakness of this approach lies in the diversity of models and
associated notations used to describe a design at the various levels.
Attempts to "unify" the different levels are mostly based on imposing the
same decomposition at all levels of description. By thus fixing the
"structure", one can view the levels as different aspects of a cell or module,
e.g. its behavior or its topology.

Besides the difficulties associated with imposing a uniform decomposition at
all abstraction levels, this approach does, in my view, not solve the
principal difficulty, which is the wide range of underlying models. This
makes it very difficult to devise a formal method for verifying that a
description of a cell at one level of abstraction indeed represents the cell as
described at another level.

The best known aid to abstraction used in programming is the self-
contained, arbitrarily abstract, function, by means of an unprescribed
algorithm. A function, at the level where it is invoked, separates the
relevant details of "what" from the irrelevant details of "how". In addition,
by nesting functions, one can easily develop a hierarchy of abstractions.
The nature of abstractions that can be achieved through functions is limited
however. Functions allow us to abstract single events, the application of

3.1 The Design Process 25

functiona

a lgor i thms

instructions

statements

operations

structural

computing - system
processing- element

'register-transfer

\

geometrical

Figure 3.2. Y-chart

the function to its arguments. In order to verify the implementation of a
function, we need a method for defining its abstract meaning.

A different type of abstraction is type- or data abstraction. The term
"abstract data-type" is used to refer to a class of objects defined by a
representation independent specification. The large number of interrelated
attributes associated with a data-object may be separated according to the
nature of the information that the attributes convey about the data objects
that they qualify. Two kinds of attributes are:

1. those that define the representation of objects and the implementation
of the operations associated with them, in terms of other objects and
operations.

26 Models and Languages for Concurrent Systems

2. those that specify the names and define the abstract meaning of the
operations associated with an object.

In the course of a design one is concerned mostly with the attributes of
point 2. The user of a data object should not be interested in its
representation, nor should he need to know details of the implementation of
the operations in order to invoke these. The class constructs appearing in
many so-called object-oriented languages [Gold83,Cox86], offer a
mechanism for binding together the operations and storage structure
representing a type. The class construct used in these languages does not
however offer a representation independent means for specifying the effect
of the operations.

In order to compare different models and languages, the following criteria
are introduced:

Simplicity

The model and/or language should be easy to learn and use. It should be
conceptually close to the intuitive model used by "expert" designers. In
addition, a simple language increases the possibility of defining a formal
semantics.

Expressive power

The expressive power of a language is dependent on its abstraction
mechanisms and the build-in constructs. Build-in constructs add to the
complexity of the model/language; there will usually be a trade-off between
expressive power and simplicity.

Mathematical tractability

In practice this implies that the formal semantics must be sufficiently
simple to allow effective algebraic manipulations. The question of
mathematical tractability is also of utmost importance for verification.
Only when different specifications and/or implementations can be mapped to
one underlying language, e.g. the language of first order logic, or when we
can reason about programs using the laws of an algebra of programs as
shown by Backus [Back78], is it possible to verify the equivalence of the

3.1 The Design Process 27

behaviors of the different specifications / implementations.

Regularity

The language or model must have adequate facilities for describing regular
structures, since the algorithms discussed in chapter two require a regular
architecture.

Locality of interconnections

In order to be able to design an optimal architecture, or to define an optimal
mapping of the algorithm on a VLSI chip, the number of non-local
interconnections must be minimal. Therefore, the model or language must
be detailed enough to be able to determine whether an interconnection is
local.

3.2 Models and Languages

In this section we introduce a number of models and languages that were
developed in order to simplify the design, implementation and analysis of
software and hardware systems. Due to the nature of hardware systems
and the increased complexity of software systems, we can model both as a
collection of interacting modules or subsystems. We will therefore not
distinguish between hardware and software systems, since it is only at the
implementation level, respectively the mapping to hardware modules and
the translation to instruction sequences interpretable by a particular
processor, that the differences become relevant. This does not affect the fact
that the limitations of a particular technology will influence design trade
offs at higher levels of design, as discussed in section 3.1. In our view such
influences will always remain and are in fact essential in order to be able to
design efficient systems.

The model underlying conventional programming languages, such as C,
Pascal and Fortran, is based on the so-called Von Neumann model, i.e. a
single CPU reads instructions and data from a memory over a one word
wide bus. This inherently sequential model is not very suited for the
design and specification of concurrent systems, as mentioned above. In

28 Models and Languages for Concurrent Systems

addition, conventional languages usually have a complicated semantics,
because one can modify the state of a computation one word at a time, e.g.
by assigning a new value to a memory word. The semantics are
complicated, because in general it is very difficult to track, all places where a
variable, the abstraction of a memory word, may change value, due to the
presence of so-called side-effects. Side-effects can occur when two or more
variables refer to the same memory area. A typical example is when a
procedure changes the value of a variable that was not declared within its
body, e.g. when one or more of its arguments are passed by their addresses
(call-by-name). For this and other reasons, conventional languages have
complicated semantics and are difficult to prove correct [Back.78].

I/O

JUL
CPU memory

memory
bus

Figure 3.3. The Von-Ncuman model of computing

The above two problems have lead to two different, but interrelated
developments:

• Development of process oriented models for modeling parallelism.

• Development of applicative languages with a simple semantics that can
be manipulated algebraically.

3.2.1 Process Oriented Models
The development of process oriented models finds its root in the
development of complex operating systems for time shared computer
systems in the 1960's. The specification and design of an operating system
consisting of many interacting activities naturally leads to the adoption of a
process oriented model of computation. The process oriented approach
makes it possible to decompose a task into a number of subtasks each of
which can be independently specified. The processes communicate via
channels and are synchronized using special synchronization mechanisms,
e.g. semaphores. The UNIX operating system for example is composed of a

3.2 Models and Languages 29

large number of processes for controlling different resources, e.g. printers
and terminals.

A formalization and extension of this work, can be found in the model of
Communicating Sequential Processes (CSP) [Hoar85].

Another tool for modeling systems with interacting concurrent components
are Petri nets. Petri nets are an important tool for the study of various
properties of a system. There are several ways in which Petri nets can be
used in the design and analysis of a system. First it is possible to model one
or more aspects of a system, that has been designed in another methodology,
with a Petri net, which can then be analyzed. Any problems encountered in
the analysis can then be traced back to the design, remedied and the
modified design again be modeled and so on. Another approach is that the
entire design and specification/implementation process is carried out in
terms of Petri nets. Petri nets are discussed further in section 3.2.1.2.

3.2.1.1 CSP
The computational model proposed by Hoare [Hoar85], develops the view
of a computational system as a network of Communicating Sequential
Processes (CSP), each of which is characterized by its externally observable
behavior, i.e. by the actions or events in which it is prepared to engage.
Since there is no fundamental distinction between a process and its
environment, the boundary between the two can be drawn arbitrarily; the
model provides a unified method for modeling computational systems,
including interaction with their environment.

A process is defined by its behavior. The behavior of a process is defined by
the set of events in which it is prepared to engage at any point in its
evolution t. In Hoare's terminology a particular evolution is described by a
trace. The set of all possible traces of a process defines the behavior of the

t We will refer to the succession of events in which the process engages as the evolution
of the process.

30 Models and Languages for Concurrent Systems

process t.

Processes are defined using some simple notation:
A process that first engages in the event x and then behaves exactly as
another process P is described with the prefix notation as follows:

(x-»P) (3.1)

Repetitive behavior patters are described with the use of recursion. For
example, a simple clock, that does nothing but tick, is described by the
equation:

CLOCK=tick-»CLOCK (3.2)

or

CLOCK=/iX.(tick-»X) (3.3)

which says that CLOCK is the solution of the recursion (3.2) or (3.3). Since
(3.2) and also (3.3), have the property of being guarded, the solution is
guaranteed to be unique, due to the fixed-point theorem [Hoar85, p. 96].

By means of prefixing and recursion, we can describe processes that exhibit
a single possible stream of behavior. In order to describe processes that will
allow their behavior to be influenced by their environment, Hoare
introduces the choice operator. If x and y are distinct events then:

(x - P l y - Q) (3.4)

describes a process that initially engages in either of the events x and y and
subsequently behaves as either P or Q, depending on which choice occurred.

Based on the notation introduced until now, it is already possible to
introduce a number of laws that allow us to reason about the behavioral

* Actually Hoare shows that there is a one-one correspondence between each process P
and the pairs of sets (aP.traces(P)) where c<P is the set of events in which the process is
actually capable of engaging, the so-called alphabet of the process.

3.2 Models and Languages 31

equivalence of processes. For example, two processes defined by choice are
different if they offer different choices on the first event, or if after the first
event they behave differently.

A very interesting possibility is also that we can, in general, verify whether
a process P "satisfies" a specification S. In CSP specifications take the form of
predicates that state properties that all traces of a process P have to adhere
to. Hoare derives a collection of laws that permit the use of mathematical
reasoning to verify that a process P meets a specification S.

When a process offers a choice of events, the choice which event will
actually occur is controlled by the environment within which the process
evolves. Since the environment can be defined as a process itself, this leads
us to consider the behavior of a system composed of, potentially many,
processes evolving concurrently. The interactions between these processes
may be regarded as events that require simultaneous participation of all
processes involved. The notation (P II Q) denotes the process which behaves
like the system composed of P and Q.

The next step is the introduction of non-deterministic processes. A non-
deterministic process, as defined by Hoare, is a process in which the
environment can't observe or control the choice between events, although
the particular choice may be inferred from the subsequent behavior of the
process. Non-determinism is useful in maintaining a high level of
abstraction in the description of physical systems. The main advantage is
that a process description may be deliberately vague. The process specified
by (P D Q), where D is the non-deterministic choice operator can be
implemented either as P or as Q. The final choice may depend on criteria
that are irrelevant for the specification.

Input and output are defined by extending the notation to make it possible
to associate variables and expressions with events. Variables are associated
with input events; expressions are associated with output events. A simple
incrementer, i.e. a process that inputs a value and then outputs the same
value incremented by one, is defined in CSP as follows:

32 Models and Languages for Concurrent Systems

INCR=/xX.(in?var-»out!(var + l)-»X) (3.5)

The last major step is the introduction of sequential composition of
processes, which allows the definition of control structures similar to those
in conventional languages, e.g. if-then-else, while-do etc.

3.2.7.2 Petri Nets:
Petri nets and Petri net theory [Pete8l], form a valuable tool for modeling
and analyzing systems composed of potentially many interacting and
simultaneously active components. In this section we will give an overview
of Petri nets.

Structure

The structure of a Petri net is defined by its places, its transitions, input
function and output function. The input and output functions relate
transitions and places.

Definition [Pete8l]
A Petri net structure C is a four tuple C = (P,T,I,0). P = {pj,p2>...,pn(is a
finite set of places. T = {tvt2

 l
m) IS a finite set of transitions. The set of

places and the set of transitions are disjoint. I : T -* P°° is the input
function, a mapping from transitions to bags of places. O : T —► P00 is the
output function, a mapping from transitions to bags of places.

A Petri net structure can be represented by a bipartite, directed multigraph
having two types of nodes corresponding to the places and transitions of the
Petri net structure. Directed arcs connect the places and transitions. A
marking //. is an assignment of tokens to the places of a Petri net. A token is
a primitive concept of Petri nets. Tokens reside in places and control the
execution of the transitions of the net. A Petri net executes by firing
transitions. A transition fires by removing tokens from its input places and
creating new tokens which are distributed to its output places. As a result
the number and position of tokens in a Petri net may change during the
execution of the net. The state of a Petri net is defined by its marking. The
firing of a transition represents a change of state of the Petri net by a change
of its marking.

3.2 Models and Languages 33

Given a Petri net C = (P,T,I,0) and an initial marking p. , we can execute the
Petri net by successive transition firings. Two sequences result from the
firing of the Petri net: the 'sequence of markings' (p ,p ,...) and the
'sequence of transitions' that were fired (t. ,t. , . . .). Based on this the
reachability set R(C,/x) of a Petri net C with marking p can be defined as the
set of markings reachable from p. A marking p is reachable if there exists a
set of transition firings which will change p into p.

Modeling

The usefulness of Petri nets for modeling systems derives from the fact that
many systems can be modeled as performing a sequence of actions whose
occurrence is controlled by a set of conditions. The set of all conditions can
be viewed as defining the state of the system. This view of a system
directly corresponds to a Petri net. Conditions are places; a condition is true
if the place contains one or more tokens. Transitions are events; the inputs
are the preconditions, the outputs are the postconditions of the event. The
usefulness of Petri nets is proven by the large number of applications that
can be modeled by them, including computer hardware and software. Petri
nets can be used to precisely model e.g. parallelism and the synchronization
problems it poses, e.g. in the case of shared resources.

Analysis

In order to gain insight in the behavior of a Petri net, it is necessary to
analyze it. Important properties that can be determined are: safeness,
boundedness and liveness.

Safeness is a special case of boundedness. A place in a Petri net is k-safe or
k-bounded if the number of tokens in that place can not exceed an integer k.
A Petri net is said to be k-safe if every place is k-safe. A place that is 1-
safe is simply called safe.

Conservation is a property that is used to prove that tokens that represent
e.g. resources are neither created nor destroyed.

Liveness is an important property that can be determined to make sure that
the Petri does not contain deadlocks. A transition in a Petri net is live if it

34 Models and Languages for Concurrent Systems

is possible to find a sequence of transition firings that take the Petri net
from its current marking to one in which the transition is enabled. A
transition is deadlocked if it is not life.

Most of the analysis problems are concerned with reachable markings.
Consequently the major analysis techniques for Petri nets are based on
construction and analysis of the so-called reachability tree, which is a finite
representation of the set of reachable markings of a Petri net.

3.2.2 Applicative Languages
The development of applicative languages was motivated in large part by
the desire to provide a more rigorous mathematical basis for programming.
The lambda-calculus provides such a basis and lies at the root of the
development of LISP. Although many LISP dialects offer a variety of non-
applicative constructs, such as assignment, the power of the language is
derived in large part from its applicative kernel.

3.2.2.7 FP and AST systems
In his often referenced paper 'Can Programming be Liberated from the Von
Neumann Style ? A Functional Style and its Algebra of Programs" Backus
[Back78] reviews the deficiencies of existing programming languages,
motivated by the Von Neumann model of computing and proposes a
functional style of programming that allows mathematical reasoning
methods to be applied to programs. In his FP language, Backus reduces
'programming' to algebraic manipulations of programs that represent
functions. A program is an expression that consists of functional
operators, the so-called combining forms and (names of) functions. The
combining forms create new functions using other, previously defined and
named, functions. The algebra of programs allows the formulation of laws
that are useful in reasoning about and/or proving properties of programs.

In an FP system one can apply any function to a sequence of input values!.

3.2 Models and Languages 35

If the structure of the input sequence matches with one that can be handled
by the function, the function will compute the desired result; otherwise it
will return a special error value to indicate failure.

FP systems have a set of predefined functions, that can be classified as
follows:

• sequence manipulation, e.g. head and tail

• arithmetic, e.g. +, —, x etc.

• predicates, e.g. the relational operators, ^ , ^ , = etc.

Each of these functions expects its arguments to be mapped on the elements
of an input sequence in a particular fashion.

Examples of functional forms are:

• O, composition. The composition of two functions f j and f2, denoted by
(f2Ofj) is a function that applies f2 to the result of applying ft to the
input sequence

• [,], construction. The construction of two functions fj and f2, denoted
by [fj,f2] is a function that returns a sequence that consists of two
subsequences; the first being the result of applying fj to the input
sequence, the second the result of applying f2 to the input sequence

• a, apply. The application of a function f, denoted by af, is a function
that applies the function f to each element of the input sequence it is
applied to.

Using the functions and functional forms as introduced above, a FP
programmer can define new functions. For example, a function that does
multiplication by adding the logarithms of the elements of its input

t Note that an input sequence may contain subsequences.

36 Models and Languages for Concurrent Systems

sequence, is defined as follows:

def MULT = exp o / L + o log (3.6)

The definition can be read as follows: Apply 'log' to every element of the
input sequence, sum the resulting values, i.e. distribute plus, using the
functional form / L and take the exponent of the result.

A disadvantage of applicative languages is that they can't be used for the
description of history-sensitive systems. Since practical systems are almost
always history sensitive, this restricts the usefulness of purely applicative
languages. In order to describe history sensitive systems Backus introduces
so-called Applicative State Transition (AST) systems. An AST system
combines an applicative style of programming with a state-transition
semantics. The problems associated with defining a clear and simple
mathematical semantics for conventional, imperative programming
languages show however that it is necessary to restrict the number of state
transitions. Programs written in conventional languages are not suitable to
mathematical analysis because of the large number of assignment
statements. An assignment statement changes the state of a computation by
changing the value associated with a variable in a particular environment.
In a conventional programming language the state can change while
evaluating a function, or block of statements. Backus, in defining AST
systems, didn't allow this. The state of an AST system is changed only
once per major computation cycle, in the sense that for every input, the
AST system computes an output and a new state (cf. Figure 3.4). The new
state replaces the old state on the subsequent input. New states and outputs
are computed by a functional program.

According to Backus, a reasonable AST system should have the following
properties:

• State transitions occur only once per major computation cycle.

• Programs are written in a functional language.

• There are no side-effects, i.e. during the evaluation of a function the state
may not change.

3.2 Models and Languages 37

input output

state

Figure 3.4. AST system

• The framework consists only of: (a) the syntax and semantics of the
applicative subsystem and (b) the semantics of the state-transition
mechanism.

Backus distinguishes two types of applicative systems. FP systems are
characterized by a fixed set of functional forms. The language does not
allow the definition of new functional forms. FFP systems on the other
hand, do allow this. This is accomplished by denoting functions by objects,
using the representation function p and by introducing expressions that are
to be evaluated using the meaning function /x. FFP systems are more
powerful than FP systems.

3.2.2.2 (iFP
The language /xFP, developed by Sheeran at Oxford University [Shee83], is
an extension of Backus FP language. In /xFP, a function f takes a sequence
of inputs and produces a sequence of outputs. The semantics of /xFP is
defined in terms of FP with the help of a meaning function M. For example,
the meaning of a function 'f', which contains no internal statet, is just af
(in FP), where a is the FP functional form introduced above.

M[[f]] = af

As a result, in /JFP every function f works in a repetitive manner on a
sequence of inputs, giving a sequence of outputs.

38 Models and Languages for Concurrent Systems

One of the major extensions of fiFP over FP is the definition of functions
with an internal state. By applying the functional form fi to a function f
mapping pairs of inputs to pairs of outputs, one of the inputs is connected to
one of the outputs, creating an internal state.

Consider for example the (^uFP) function '[2, l] ' , i.e. the construction of the
selectors ' 1 ' and '2' . This function exchanges the first and second element of
each pair of inputs, as shown in Figure 3.5.

Figure 3.5. '[2,1]': a /tFP function exchanging the elements of its input

The function '[2, 1]' can be transformed into a simple shift register cell by
applying p. to it. The second element of the output is fed back, to the second
input through a memory element that provides a delay (see figure 3.6). The
sequence on the second input/output is transformed into the state.

Figure 3.6. '/J[2,\]': a simple shift register cell

t The internal stale of a function is introduced by the functional form /i.

3.2 Models and Languages 39

The initial value of this state sequence is assumed to be '?', the don't care
value.

One of the assumptions underlying the /JFP language is that for most
systems a high level specification of the form '/x[f, g]' can be found. Such a
description need not be suitable for a direct implementation however,
because of the complexity of the f and g functions and/or the complexity of
the state. In order to find a suitable implementation the system 'fj[f, g]' has
to be decomposed into small easily implementable functions, e.g. of the type
shown in Figure 3.6. The process of transforming from specification to
implementation can be viewed as one of "pushing" /x's further and further
down into the /AFP expression, which becomes more and more complicated
[Shee83, p. 20]. Part of this complexity can be removed by defining suitable
abbreviations for parts of the expression, e.g. by giving meaningful names to
complicated compositions of selector functions.

fiFP allows a large number of algebraic laws to be formulated that are
useful in proving properties of (/zFP) programs. The correctness of these
laws themselves is mostly proved in the underlying FP system, using the
meaning function M.

3.2.2.3 SILAGE
SILAGE [Hilf 85], is a simple applicative language for high level description
of signal processing algorithms. It attempts to capture the flavor of
graphical signal-flow representations often used to represent these
algorithms, with an applicative notation.

A design description consists of a set of equations, relating the values of the
inputs, outputs and intermediate values of functions as if they were static,
timeless quantities. In fact however, all quantities in SILAGE are infinite
arrays indexed by an integer quantity that one can think of as "time" or
"sample number". Previous values are accessible via the operator @. The
notation 'x @ n' denotes the value of x n samples ago. An equation or
definition of the form: 'name = expression', defines a symbol or array
element name to have the value indicated by the expression. The syntax for
expressions is much the same as for a conventional language. The primary

40 Models and Languages for Concurrent Systems

abstraction mechanism, as could be expected from a functional language, is
functional abstraction. A function itself is defined by a set of equations.
Functions may return multiple results and can't be recursive.

SILAGE is intended as the input language for a high-level silicon compiler,
which explains its simple control structure and the lack of assignment
statements. The CATHEDRAL-1I system, under development at Leuven
University [Raba85] also makes use of SILAGE. SILAGE allows hints for
silicon compilers and other synthesis tools, to be included in the system
description in the form of so-called "pragma" statements. These pragma
statements may for example assign an expression to a particular hardware
unit (processor), thereby simplifying the task of mapping the algorithm on
a hardware architecture.

3.2.2.4 System Semantics
Boute [Bout86], describes an approach to system design that is based on an
extension of the denotational theory of programming languages to the
description of arbitrary systems. The denotational semantics of a
programming language associates a meaning, in general in the form of a
mathematical object, with every construct in the language. The meaning of
a sentence is derived from the meaning of the constructs forming the
sentence and the method by which they are combined. The mathematical
object denoting the meaning of a sentence or construct can be manipulated
according to the laws of the domain in which it is defined, in order to prove
various properties about a program.

System semantics defines meaning functions for the various properties of
interest in a physical system. Every meaning function relates the
description of the system to the value of a property. Boute describes a
generic function language (SFGL) that can be filled in to suit various
purposes. The language SBFL for example is used for describing
combinatorial digital circuits. The approach described by Boute is to define
the syntax such that the cornpositionality of the semantic definition, i.e. the
ease by which the meaning of a composite construct is expressible in the
meanings of its constituents is optimized.

3.2 Models and Languages 41

The interesting concept of system semantics is that a single description is
sufficient to derive all properties of interest. Different properties can be
found by evaluating their corresponding meaning functions in the domain of
interest.

3.2.3 Design Languages
In this section we will discuss a number of languages that combine elements
of applicative and process oriented modeling.

3.2.3.2 DSM
Cremers and Hibbard [Crem85], present a programming notation for
locally synchronized algorithms to be implemented on a locally
interconnected static structure of asynchronous processing elements. This
particular architecture was chosen so as to match the technological
constraints imposed by VLSI technology on interconnections and system-
wide clocking. The notation is based on the principles of AST systems
[Back.78] and data-flow computation. The formal notion underlying the
definition of the AST system is that of a data-space [Crem76]. A data-
space consists of two parts: a transition system and an information
structure. The transition system defines the processor p, as a relation on a
set of states X. An information structure for X is a set of functions {F},
such that each member f 6 F is totally defined on X. A triple D = (X.F.p) is
termed a data-space if it satisfies a number of axioms that ensure the
consistency of the data-space.

Cremers and Hibbard describe the application of data-spaces to the
executable specification of algorithms. This requires syntax for specifying
both structured state spaces (X,F) and a transition system (X,p). The state
space can be defined as a collection of cell declarations. A cell is a pair of
the form (nameType, contentsType) and represents a data defined function
on X. To evaluate it, one simply looks up the value associated with the
name of the function in that state.

The processor is defined by a functional program consisting of a single
expression whose only argument is the state. The result of evaluating the
expression against the state is a set of name-contents pairs. During the

42 Models and Languages for Concurrent Systems

computation of that set there can be no side-effects, as required by the
Applicative State Transition principle. The set of pairs computed is applied
at once to the state, thus giving a new state. Subsequently, the processor
function can be evaluated again. The expression defining the processor
function can invoke auxiliary functions. These auxiliary functions are
otherwise similar to the processor function and make it possible to specify
the processor function in an hierarchical fashion.

To construct a network of data-spaces Cremers and Hibbard introduce a
simple syntactic construct to encapsulate a data-space definition and give it
a name. Any cells defined within the data-space, with the exception of so-
called synchronized cells, are strictly local to the subspace. Synchronized
cells allow information exchange between otherwise independent subspaces.
To implement this, a synchronized cell holds, in addition to the data it is
declared to hold, a status which is either "ready to read", or "ready to write".
Equivalency of synchronized cells explicitly establishes the interconnection
structure between the subspaces of a data-space. The interconnection
structure is static; it can't change during the execution of a data-space.

3.2.3.2 SIGNAL
SIGNAL [Guer85] is a data-flow oriented language for signal and image
processing developed at IRISA/INRIA. The language aims at the description
of real-time synchronous systems. Real-time refers to the capability of the
system to respond to externally generated input stimuli with a finite and
specifiable delay. Synchronous refers to the fact that all activities occurring
in a system defined by a SIGNAL description can be totally ordered.

SIGNAL describes a system as a static network of hierarchically specified
processes. The processes are ultimately composed of primitive processes,
so-called generators. The network is constructed using a set of structural
operators, that allow processes to be constructed from subprocesses in an
hierarchical manner. The structural operators connect, rename and/or hide
inputs and outputs of processes. Interconnections between processes are
made based on the equality of names of inputs and outputs. SIGNAL
provides a complete set of structural operators so that any static network of
processes can be constructed.

3.2 Models and Languages 43

Generator processes are distinguished in functional and temporal generators.
Functional generators are defined by expressions. Temporal generators are a
unique feature of SIGNAL and describe the timing relationships between
the different signals in a process. The temporal generators form the basis of
a clock calculus that is used to verify the correctness of the timing
relationships between all signals in a process.

3.2.3.3 CRYSTAL
The language CRYSTAL defined by Chen [Chen83] uses a different
approach to define the semantics of an algorithm. An algorithm describing a
system is defined as a set of recursion equations in the space-time domain.
The least-fixed point of these equations is then taken as the "meaning" of the
algorithm.

The model underlying this language is that of a collection of processes,
where each process consists of:

• control state register

• data store

• machinery for computing a state-transition function

• input/output ports.

Each process is located in a space coordinate system. The ordering of
operations in a processor introduces a (local or global) time coordinate.
Relationships between processes are established by identifying input and
output ports of processes in the space time coordinate system.

State-transition functions are the basic units for constructing systems.
Chen shows that by choosing the primitive state-transition functions
appropriately, it is possible to cover a wide range of system description
levels, extending from switch-level models to systolic and wavefront array
type models.

44 Models and Languages for Concurrent Systems

3.3 Discussion

The decomposition and abstraction mechanism available in a model or a
language, determine to a large extent its usefulness as a design language; the
composition mechanisms determine the kind of 'structures' that can be
formed, the abstraction mechanisms determine the complexity of the
behavioral descriptions associated with the modules.

The composition mechanisms in the language CSP are used to define the
behavior of a process in terms of the behavior of the subprocesses. The
behavior of a subprocess is simpler because it hides the communication
between the subprocesses. The behavior of a process is explicitly described
by its traces. Properties of a process can be established by analyzing its
traces. The trace set of a process does not specify how the process is
implemented in terms of subprocesses. In this sense, the trace can be
viewed as an abstract specification of the process. The abstraction of a
process as an independent computational activity makes CSP very suited for
description of complex software systems, e.g. communication protocols and
operating systems. CSP allows manipulation of both traces and programs.

Decomposition and abstraction mechanisms are much harder to recognize in
Petri net models. Except from the fact that a Petri net model offers a high
degree of formalization in the modeling of a system, Petri nets do not
include concepts for defining Petri nets in terms of themselves, e.g. as a
composition of Petri nets. Petri nets, without further restrictions, can also
not be viewed as e.g. transitions and included as such in another Petri net.
It is however possible to restrict Petri nets in such a way that they can be
composed. Typically this is done by defining a language whose semantics is
defined in terms of Petri nets [Ramm87]. The primitive constructs in such
a language have equivalent Petri net models. By properly restricting the
primitives and the way in which they can be composed, it is moreover
possible to guarantee certain properties of the Petri nets thus created, e.g.
liveness and boundedness. An interesting aspect is that because of the broad
application domain of Petri nets, one can define a design language that
covers a wide spectrum of abstraction levels (cf. section 3.1).

3.3 Discussion 45

Applicative languages are defined in large part by the so-called combining
forms, i.e. the composition constructs. The abstraction mechanism
underlying applicative languages is that of a function, mapping an input
value or a tuple of input values to an output value or tuple of such values.
The usefulness of applicative languages for design derives from two
properties:

1. it is possible to associate a 'structure' with a composition of functions

2. functional programs can be transformed according to a set of laws of
an underlying algebra of programs.

The interesting aspect is that the 'structure' or another property of a
functional program can thus be optimized without changing the function
[Bout86].

The design languages discussed in section 3.2.3 combine aspects of the two
main approaches, i.e. process oriented modeling and function composition as
used in applicative languages.

The DSM model and language of Cremers and Hibbard combines an
applicative framework with a state transition semantics. A system is
modeled by a data-space and a processor function. The processor function is
applied to the state defined by the data-space and consists of a set of
statements that define its behavior. Statements may call other functions,
that are defined in a similar fashion. A distributed implementation may be
defined by identifying 'local' states, i.e. collections of statements acting on a
subset of the state. The local states may be encapsulated in local data-space,
with their own processor function. The communication between data-spaces
is by means of 'synchronized' cells, that implement a form of asynchronous
single token pass mechanism. The extended model, i.e. the one including the
concept of local data-spaces, can be used to define regular processor
architectures, if these spaces can be parameterized and instantiated with
some kind of iterative construct, as for example suggested in Cremers and
Hibbard [Crem85].

The language SIGNAL takes a different approach, in that a system is defined
by a sequence of successive decompositions of modules. Modules are

46 Models and Languages for Concurrent Systems

specified by defining their structure. The abstract behavior of a module can
not be defined in SIGNAL. In order to verify the consistency of a module it
is therefore necessary to know its final decomposition in terms of so-called
primitive generators.

Verification

The kind of verification that can be done on a design depends very much on
the model underlying the language in which the design is expressed. In
general we may distinguish between different types of verification:

1. verifying whether an implementation description correctly implements
a specification

2. verifying whether two implementation descriptions implement the
same specification, i.e. whether they are equal

3. verifying whether different properties of the system defined by an
implementation fall withing a certain range.

In order for a model to allow verification ad. 1, it is necessary that it allows
the definition of the abstract behavior of a module, e.g. in the form of a
'specification'. From the models discussed in section 3.2, only the CSP
language allows this, in the sense that we can reason over the traces of a
process and that we can verify that a particular process does generate a
particular trace-set. A unique feature of SIGNAL is the fact that it allows
complete verification of the timing relationships between the '-arious signals
occurring in a system. This is achieved by defining a clock-calculus, based
on the timing relationships that exist between the signals entering and
leaving the primitive generators.

Both CSP and applicative languages allow verification ad. 2. To make this
verification possible, it is necessary that the model allows the definition of a
body of laws to transform design descriptions, while leaving the behavior or
some other property invariant. The verification of the equality of two
design descriptions then amounts to finding a sequence of transformations
that transform one description into the other.

3.3 Discussion 47

Verification ad. 3 requires the existence of a well defined relationship
between the design description and the property of interest. All languages
and models allow this type of verification; they differ only in the properties
that can be determined. In fact, the approach taken by Boute [Bout86], can
be seen as a formalization of this type of verification, in the sense that the
semantic domain of the design description is chosen as the domain in which
the property of interest is defined. Other models allow only certain types of
properties to be determined. For example, Petri nets allow properties like
liveness and boundedness to be determined, while CSP programs allow
specification of properties of traces, e.g. the number of occurrences of a
particular event. A special kind of verification is allowed by the language
CRYSTAL [Chen83], which allows the least-fixed point of the system,
defined by a CRYSTAL program, to be computed.

48 Models and Languages for Concurrent Systems

49

4 . HIFI: D e s i g n M e t h o d a n d C o m p u t a t i o n a l M o d e l

In this chapter we will give an overview of the HIFI design method
proposed by us. HIFI is an acronym for Hierarchical Interactive Flowgraph
Integration, and is tailored towards the design of VLSI array processors,
specifically the systolic and wavefront arrays discussed in chapter 2. The
name HIFI was chosen to emphasize the hierarchical and interactive nature
of the design process and to stress the importance of a graphical user
interface based on signal/data flowgraphs.

The HIFI system aims at the initial phases of a design, mainly the
translation from a numerical problem to a concurrent algorithm, and the
subsequent mapping of this algorithm on either dedicated VLSI hardware or
a programmable multiprocessor system, such as the Intel iPSC hypercube
[Inte86], or a network of transputers [Inmo86]. The HIFI system does not
provide support for the actual design, e.g. routing and placement, detailed
simulation and so on, of the VLSI processor elements required to build such
a multiprocessor system, although it can be integrated into a more general
VLSI design system [Dewi86].

The main emphasis in the HIFI system is on the systematic derivation of
regular multiprocessor systems for implementing certain classes of signal
and image processing problems (see chapter 2), where the constraints
imposed by a VLSI implementation, i.e. regularity and locality of
interconnections, are observed. Furthermore, HIFI is intended as a design
system, not just a tool for describing a design at various levels of detail, but
a tool that : (l) assists the designer in the transformations required to
convert an initial given description into a series of more detailed
descriptions, (2) allows mapping of these successively more detailed, i.e.
less abstract, descriptions onto dedicated or programmable multiprocessor
systems, (3) provides persistent storage, i.e. a database and (4) provides a
user interface to retrieve, create and modify the objects that are in the
database.

50 HIFI: Design Method and Computational Model

In this chapter we will give an overview and discuss the computational
model underlying the HIFI design methodology.

4.1 A quick, overview

The principal abstraction upon which the HIFI method is build, is that of a
function; a mapping from inputs to outputs. When considered at a
sufficiently high level of abstraction, any signal processing system can be
described by its input-output map, i.e. as a function F from inputs, viewed
over all space and time, to outputs, similarly viewed over all space and
time. Except for the simplest systems however, it is not feasible to
implement the input-output or I/O function of a system directly.

In the sequel we will give a systematic discussion of methods to decompose
F, in order to obtain a system that can be implemented. Broadly speaking
these (decomposition) methods can be brought into four categories based on
(l) the domain in which the decomposition takes place, i.e. either space or
time and (2) regularity, i.e. a decomposition can be either regular or
irregular. Decompositions are specified by means of Signal Flow Graphs
(SFG). A SFG is a directed graph that consist of nodes and edges. Each node
has a set of inputs and outputs. The edges are used to specify the
interconnections between these inputs and outputs. Edges do not have a
functionality of their own. A decomposition in the space domain is
represented by the interconnection structure of a SFG. Decomposition in the
time domain is represented by the state-transition mechanism associated
with the nodes of a SFG. A regular decomposition in space is specified by a
regular SFG, i.e. a SFG whose nodes can be mapped on the grid-points of an
n-dimensional space. In fact the nodes in a SFG may perform any one from
a collection of functions, each function determining its successor function,
i.e. the function to be performed next by the node, according to a
mechanism similar to that of the AST systems discussed in section 3.3.1.

Consider for example the SFG shown in Figure 4.1(a). It represents a Finite
State Machine (FSM) that is implemented by two functions, f and g. The
SFG contains two nodes; the first one implements the functions f and g, the
second one is a so-called delay node, which is used to represent the state.

4.1 A quick overview 51

delay

[f,g]

S S
D

O.

(a) (b)

Figure 4.1. Finite State Machine represented by a SFG

The function g maps input and current state to the next state, i.e.
g:(S X Is) -» S. The function f maps either the current state to the current
output, i.e. f :S -» Os, in which case the FSM is a so-called Moore machine, or
it maps the current state and the current input to the output, i.e.
f:(SxIs) -» Os, in which case the FSM is a so-called Mealy machine. The
first node simultaneously applies the functions f and g to the input data.
The delay node is more complicated. It represents a collection of data-
defined functions {fa} that correspond to the collection of possible states of
the FSM. Initially the delay node performs a function f0, corresponding to
the initial state, say state0, of the FSM. This function outputs the value
'state0 ' on the output edge of the delay. Next it performs a function that
reads the value of the state, as computed by the function g, from the input
edge of the delay. Subsequently the delay node performs a function fa that
outputs the value of the state read from the input edge of the delay. The
next function performed by the delay is again a read function etc. A
detailed definition of the operation of nodes and SFG's will be given in the
next section (section 4.2). To reduce the work, involved in specifying a SFG,
we will introduce special icons for representing certain often occurring
nodes, such as delays. In the case of a delay, we will simply put a letter 'D'
along the edge, as shown in Figure 4.1(b). A complete specification of the

52 HIFI: Design Method and Computational Model

FSM requires the functions f and g to be defined. The HIFI system will
allow definition of f and g either by decomposition or by an executable
specification, e.g. in the form of a procedure that can be evaluated to
compute the output value of the function, given the input values of the
function,.

In order to simplify the definition and interpretation of SFG's specified
graphically, we will define a restricted type of SFG, i.e. a Dependence Graph
(DG). The restrictions will concern both the computational model
underlying the nodes and the structure of the SFG (cf. section 4.2.). In
essence, the nodes in a DG represent stateless functions. As a result, the
operation of a DG can be understood more directly from its representation
as a SFG, where the function performed by a node may depend on its
history.

An overview of the main concepts in the HIFI system is shown in Figure
4.2. The basic sequence of steps is:

• define a function, i.e. a relation between inputs and outputs (cf. Figure
4.2(a))

• refine the function, i.e. define a Dependence Graph (cf. Figure 4.2(b))

• par t i t ion the DG, i.e. map it on a processor architecture (cf. Figure
4.2(c)).

The definition of SFG's will be simplified if we have a computational model
that can be applied uniformly. Such a model will be discussed in section
4.2. Characteristic for the model discussed there is the adoption of a
uniform communication mechanism. The modeling power of a SFG then
becomes dependent on the model associated with a node. To increase the
flexibility of the design system, we will define not a single model for a node,
but a hierarchy of successively more specialized models, such that the more
general models include the more specialized ones. The models that we will
define range in complexity from CSP processes [Hoar85], the most general,
via AST mechanisms, to a purely functional model.

4.1 A quick overview 53

Figure 4.2. HIFI: design steps

An important aspect of the HIFI methodology are its recursive
decomposition methods. These allow a function to be implemented by a
composition of (sub) functions, each of which can be implemented by a
composition of (sub-sub) functions etc. This property allows an easy
combination of top-down and bottom-up design hierarchical design styles.
Function decomposition will be discussed in more detail in chapter five.

The second major part of the HIFI system provides the tools for defining an
implementation of a function, based on its decompositions. The designer
can define "nodes" that can perform any one from a number of functions,
according to the values on their control inputs. The mapping from a
decomposition to an implementation is considered independent of the
decomposition, to allow a designer to define different implementations
taking into account criteria such as the available hardware, throughput
demands, timing discipline etc. The mapping process above is referred to as
the "partitioning phase" (cf. Figure 4.2(c)). The result of the mapping is
represented by a Signal Flow Graph. The SFG in Figure 4.2(c) is also
referred to as an "implementation" of the function F. Partitioning is
discussed in more detail in chapter five.

54 HIFI: Design Method and Computational Model

Another aspect is the definition of the data-types associated with the edges
connecting the nodes. Not only will we have to define the types themselves,
it will also be necessary to introduce some kind of algebra of types, in order
to relate and/or verify the types associated with the input and output edges
at various levels of refinement of a function. Types will in fact provide an
important mechanism for parameterizing refinements, as suggested by
Figure 4.2 (a) and (b). The single input of the function F gets decomposed
into an array of inputs. It is assumed that the type of the input of F is such
that it can be decomposed in a similar fashion. For example, if the type
were say 'vector of integer' the inputs in Figure 4.2(b) would all be of type
integer. The number of inputs would be determined by the number of
elements of the vector. Subsequent refinements could carry this further.
For example, if the function f adds two integers, then it could be
decomposed in an array of full adders. The number of full adders and the
number of inputs of the refinement would be determined by the number of
bits used for representing the integers. The type of these inputs would be
simply 'bit'.

The HIFI design methodology, as can be seen from Figure 4.2, thus allows
the designer to explicitly specify the decomposition of a function by means
of a (regular) DG. Through the process of partitioning such a space
decomposition can be mapped onto a SFG, thus implicitly creating a (more
complex) decomposition of the function in the time domain. This way time
and space decompositions can be seen as equivalent. They lead to different
implementations with regard to hardware requirements, throughput,
latency and other factors that affect the cost and performance tradeoff that a
designer has to make. One of the goals of HIFI was to bring the designer
into a situation where these types of tradeoffs could be easily made and
compared. This is achieved by letting the designer specify the
implementation of a function in the space domain, i.e. as a DG. The
decomposition thus specified will lead to a system that has an optimal
performance, when mapped directly to hardware, in the sense that the
throughput is maximal and the latency minimal. The cost associated with
such a system will be high however. In order to reduce the cost, we allow
the designer to project the DG on a SFG, that defines a sequential

4.1 A quick overview 55

implementation of the function(s) computable by the DG. The projection is
considerably simpler in case of a regular DG. Moreover, regular DG's are
projected on regular SFG's, that can be implemented directly on systolic or
wavefront arrays.

A dependence graph provides a good basis for subsequent (automatic)
implementation steps, because it gives a precise, complete and easily
interpretable definition of a function, without restricting its
implementation. In case the DG is a so-called shift-invariant DG [Kung86],
we can use projection techniques similar to those discussed in [Rao85], that
will map the DG on a SFG that can be efficiently implemented on either
wavefront or systolic arrays. Another advantage is that DG's can be
specified rather easily using a graphics editor. However, expressing a
function, down to the lowest level of detail by means of a DG may lead to
extremely detailed DG's. Our methodology should provide an answer by
allowing decompositions to be specified hierarchically. The decomposition
of a function can be made arbitrarily detailed by allowing the definition of
intermediate functions, which can in turn be decomposed. The design
system has to keep track, of all dependence graphs generated which poses
additional demands on the database system used for storing the design data.

4.2 Computational Model

The CSP model of Hoare [Hoar85] will be the basis from which we derive
our HIFI model. The CSP model, already introduced in section 3.2.2.1,
defines a process by its externally observable behavior, i.e. by the
sequence(s) of events (traces) in which it is prepared to engage.
Communication between otherwise independent processes is accomplished
by concurrent composition of the sub-processes. Conceptually processes can
exchange values via so-called channels. Theoretically however, a channel
and the values it can transport, define a class of events. When that is
appropriate we will use the notations introduced in section 3.2.1.1 in order
to elucidate our definitions.

The HIFI model, as developed in this section, is a specialization of the CSP
model. It distinguishes between input and output events, similar to CSP,

56 HIFI: Design Method and Computational Model

but in addition assumes that the relationship between the values on the
inputs and outputs is given by a function. The function can be evaluated
once the values of all its input events are known. Similarly, once the values
of the input events are known, it may participate in some set of output
events. The values of the output events are computed by the function. By
placing the HIFI model in the framework of CSP, we can apply the same
type of reasoning to HIFI processes as to CSP processes, i.e. we may reason
about their properties in terms of their trace-sets. The HIFI model will be
more restricted however, e.g. in the sense that it will not allow non-
deterministic and sequential composition of processes. The HIFI model is
thus clearly less powerful then the more general CSP model. The advantage
that we get in return is a simpler model and one that is better tailored
towards the types of applications discussed in chapter 2. In addition, it
should be possible to compose HIFI processes with the more general CSP
processes, opening the power of a CSP process, although at the expense of
increased complexity.

4.2.1 Signal Flow Graphs
In this section we will give a formal definition of Signal Flow Graphs (SFG).
To do so, we will have to define a model for the nodes and define the
communication mechanism between nodes. We will also discuss general
criteria for the correctness of a SFG and proof that SFG's as defined here
form a suitable basis for the hierarchical design methodology briefly
outlined in the previous section.

HIFI Nodes

The computational activities in a SFG are captured by means of so-called
nodes. A node is the abstraction of a computational device, a processor, that
can perform any one from a set of functions. Nodes have so-called input
and output ports, that carry values. The functions that a node is capable of
performing compute the values at (a, possibly empty, subset of) the output
ports, the so-called active outputs, given values at (a, possibly empty,
subset of) the input ports, the so-called active inputs. In addition, these
functions will also compute the next state of the node. The state of a node
determines the actual function that it performs, from the collection of

4.2 Computational Model 57

possible functions. The input and output ports of a node, combined with
information regarding the types of the values that these ports can handle,
define the set of events in which the node is in principle capable of engaging,
i.e. its alphabet.

Definition: 4.1
An AST-node is the abstraction of a processor and is defined by:

• a set of inputs, I

• a set of outputs, O

• a set of function-bindings, F

• a state S.

The function-bindings F = {fblffb2,...,fbn}, relate the inputs and outputs of
the node with the inputs and outputs of a function, as will be explained in
more detail in section 7.1. The function-bindings F implicitly determine the
set of functions that the node is capable of performing. The state S is used
to select one of the function-bindings fb..

An operational definition of a node can now be given in the form of a CSP
process that defines the behavior of the node from the point of view of its
environment. Let activeln(S) and activeOut(S) be processes that consist of
input, respectively output events, one event corresponding to each active
input respectively output of the node. The events may occur in any order
and consist of pairs of port names and values, similar to the input/output

PCS)
events defined by Hoare [Hoar85]. Also, let the notation >, denote a

S+

transition during which the function, say f, associated with the function-
binding F(S), selected by S is evaluated. The next state, which is computed
by f as well, is assigned to the variable S+ . Now consider the definition
given below, where the state of the node is represented by the variable S:

F(S)
AST = (S «- state,,) - /tX.(activeIn(S) — > activeOut(S) - (S «- S+) - X)

S+

The CSP process defined above is given in a recursive form in order to

58 HIFI: Design Method and Computational Model

express the fact that the behavior exhibited by a so-called AST node is
cyclic. The behavior of an AST node, according to the equation given above,
can be informally stated as follows:

1. Select the active inputs, according to the current state and wait for an
event to occur on each one of them.

2. Extract the values from the input events and compute the values of
the output events using the function selected by the state. In addition
to computing the values of the output events, the function selected by
the state is used to compute S , the next state.

3. Wait for the output events, selected according to the current state, to
occur.

4. Replace the state of the node by the newly computed one.

5. Repeat steps 1-4 indefinitely.
The initial state of the AST node has to be defined; above it is assumed to be
state0.

HIFI communication

Given a set of HIFI nodes we wish to combine them so as to create a more
complex process t .

In the HIFI system composition is specified by means of SFG's.

Definition: 4.2
A SFG is a directed graph consisting of AST nodes and (directed) edges.
The inputs of the SFG are the node inputs that are not connected by edges
to other nodes. Similarly, the outputs of the SFG are the node outputs that
are not connected by edges to other nodes.

t Note that in the HIFI system, we actually assume a top-down strategy, i.e. starting
from a high-level definition, we decompose it until we arrive at definitions that are
sufficiently simple to be implemented by available hardware modules.

4.2 Computational Model 59

Communication between nodes takes place when two nodes that are
connected by an edge, representing a channel, are prepared to engage in an
input and an output event on that channel.

Usage:

In order to simplify the following discussion, we will in the sequel use the
following terminology. We will say that an edge contains a token, if the
node that has one of its output ports connected to the edge is prepared to
engage in an output event. Also, an edge connected to either an active
input port, an active output port, or both, is called an active edge.

4.2.2 Correctness of HIFI SFC's
The SFG model discussed above requires verification of the data-flow,
because nodes are in no way synchronous and mismatches between the
supply and demand of tokens at input and output ports are possible. We
consider this a desired property, because it catches the relevant design
problem at the present level of abstraction.

There are two ways in which the communication between the nodes in a
SFG can be obviously incorrect:

1. all nodes have selected at least one input that is connected to an edge
that does not contain a token.

2. there exists a cycle of edges connecting active inputs and outputs such
that all edges carry a token.

ad. 1 : In this situation none of the nodes will be able to continue its
operation; therefore the SFG is clearly incorrect. Note that the initial
supply of tokens comes from either the outside world, or from the nodes
that are able to operate autonomously due to the fact that they don't have
active inputs.

ad. 2 : In order for communication to take place between two nodes, one of
the nodes must be prepared to engage in an input event. In case there is a
cycle of edges, all carrying tokens, the nodes connected to the edges are all
prepared for an output event. The AST model of the nodes does not allow
interleaving of input and output events. Therefore, none of the nodes in the

60 HIFI: Design Method and Computational Model

cycle can perform an input event. As a result the nodes can not continue
their operation; they are waiting for each other and again the SFG will be
incorrect.

Definition: 4.3
A SFG has a misfit if there occurs a situation in which all nodes have
selected at least one input connected to an edge that is devoid of a token.

Definition: 4.4
A SFG has a deadlock if it has a loop of edges connecting active inputs and
outputs, such that all edges carry tokens.

A further danger that threatens the correct operation of a SFG is the
possibility of livelock.

Definition: 4.5
A SFG has a livelock if its nodes can engage in an infinite sequence of
internal communications, without requiring external communication.

Livelock may easily occur whenever the SFG contains a directed cycle, such
as the one shown in Figure 4.3. The nodes A and B in Figure 4.3 can spend
all their time just exchanging data values between themselves along the
edges e, and e2, without ever needing input or creating output.

e i

in / V. o u t

e 2

Figure 4.3. Livelock in a SFG

Clearly the system defined by such a SFG is not very useful as a building-
block, since it does not communicate with its environment.

We now reach our main theorem, upon which we base our hierarchical
design method, i.e. the theorem stating that a SFG consisting of AST nodes
can itself be considered an AST node, in the sense that they arc I/O

4.2 Computational Model 61

equivalent. In order to state the theorem, we will first define what we will
call a 'correct' SFG.

Definition: 4.6
A SFG is correct if under no circumstances misfits, deadlocks and/or
livelocks are possible.

Theorem: 4.1

For every correct SFG there exists an AST node, such that they compute
the same relationship between values on active input and output ports.

Proof:

In order to proof the theorem, we show that the SFG operates according to
the AST model defined in section 4.2.1, i.e. a SFG must have a state that
determines the function it is to perform in order to compute a pair
consisting of the next state and output. The state of a SFG is finite and can
be taken as the product of the states of the nodes in the SFG, due to the fact
that only nodes have a state. The proof proceeds by showing that there
exists an infinite sequence of node operations, due to the fact that there can
be no misfits or deadlocks and that, due to the absence of livelock, some of
these node operations require interaction with the environment of the SFG,
i.e. either the SFG needs input tokens, or it creates output tokens.
Consider first initial functions in all the nodes and consider the graph
formed by the edges connecting active inputs and outputs. This graph will
be acyclic due to the absence of deadlock. Also, due to the absence of
misfits, there will be at least one node that will have tokens on all its active
input ports. This node can operate, i.e. it can input the values from its
active input ports and output the values it computes on its active output
ports. As a result, the state of the node will change and a new graph of
active edges will exist. Another node will be able to operate and so on.
Therefore, if a SFG does not contains misfits or deadlocks, we will be able to
construct an infinite sequence of these node operations, provided of course
that if the SFG wants to input a token from the environment, the token will
be supplied. Similarly, tokens created on output ports of the SFG have to be
taken away.

62 HIFI: Design Method and Computational Model

Depending on the connections of the active inputs and outputs of the nodes
with the external environment, the node operations can be classified as
follows:

— input-operations, if one or more of the active inputs of the node are not
connected to other nodes,

— output-operations, if one or more of the active outputs of the node are not
connected to other nodes,

— input/output-operations, if one or more of the active inputs and one or
more of the active outputs of the node are not connected to other nodes,

— cyclic-operations, otherwise, i.e. if all active inputs and outputs of a node
are connected to inputs/outputs of other nodes in the SFG.

We can now identify a global state and global state-transitions and the
corresponding global functions of the SFG. First consider all possible
sequences of node operations as defined above. These sequences can always
be split in subsequences that consist of a (finite, possibly empty) sequence
of cyclic operations, followed by an input, an output or an input-output
operation. Note that since the SFG does not have a livelock, there can be no
infinite sequence of cyclic operations. The global state-transitions of the
SFG can now be taken as the combined effect of the node state-transitions
corresponding to the subsequences. Similarly, the (global) functions
corresponding with the global state-transitions can be constructed by
considering the composition of the functions corresponding to the state-
transitions of the nodes. Therefore, since the global state-transitions of the
SFG are similar to the state-transitions of an AST node and each such
state-transition corresponds to a function that involves at least one input,
output, or input-output operation, we have proved that a SFG can be
represented by an AST node.

□
It follows from the proof above, that the AST node corresponding to a SFG
is not unique, unless we also specify how to combine the node operations
into global state-transitions. Above we have used the rule that every input,

4.2 Computational Model 63

output, or input-output operation corresponds to such a global state-
transition. This was done so as to reduce the number of cases to be
considered. For example, an equally valid choice would have been to
combine a, possibly empty, sequence of input transitions with a, possibly
empty, sequence of cyclic transitions followed by a, possibly empty,
sequence of output transitions. However, in order to be complete, we would
also have to consider all possible interleavings of the cyclic transitions, with
a single input-output transition. For the purpose of the proof above, this
construction is clearly not needed.

In order to determine the correctness of a SFG, it will be necessary to know
the traces of the AST nodes that it contains. The trace-set of an AST node
can be computed if we can determine its state transitions. In general, this
will be very difficult, if not impossible, due to the fact that the next state of
a node may depend on the values of all input events. These values are
determined by the environment of the node. Therefore, unless the state-
transitions are fixed and thus become independent of the values of the input
events, we can not determine the trace-set of an AST node a priori. This of
course is very undesirable, since many important properties of a system, e.g.
the absence of deadlock, can only be determined if we know the traces of
the processes used in constructing the system.

An alternative way of establishing the correctness of a SFG is by simulating
it. Although simulation can not be used to determine correctness with
absolute certainty, it can be used to verify the correctness for certain sets of
inputs. Using a simulator one can also determine the functioned, correctness
of a SFG, i.e. whether the relationship between input and output values is
what the designer intended it to be.

A simulator that is particularly suited to the simulation of SFG's was
developed by Held [Held87]. This simulator allows the definition of nodes
by means of ordinary subroutines, written in C or a similar programming
language. The simulator is able to invoke a large number of such
subroutines in parallel, using a co-routine like mechanism. The
communication between nodes is done by means of special functions that
can be called from within the subroutines defining the nodes, as any

64 HIFI: Design Method and Computational Model

ordinary function can be called. These I/O functions implement a single
token pass protocol that emulates the communication along an edge in a
SFG. In order for communication to take place, two nodes must
simultaneously call input and output functions, called get and put
respectively. If the calls do not take place simultaneously, then one of the
functions, the one that was called first, will enter a wait state. This wait
state allows the function to wait for a matching input or output action.

The scheduler that implements the co-routine mechanism, can detect both
deadlock's and misfit's. The scheduler can then give control to the user, who
can inspect the SFG, in order to determine what caused the deadlock or
misfit. Detection of livelock is based on interaction between the simulator
and the user, e.g. by displaying a view of the activity taking place in the
SFG. The user is able to interrupt the simulator whenever he suspects
livelock, for example in case a token starts circulating in the SFG. Upon
interruption, the states of the nodes can be inspected.

4.2.3 DCM and functional SFG's
In this section we will discuss two specializations of the more general AST
nodes defined in section 4.2.1, respectively FNC nodes and DCM nodes.
These nodes are introduced here so as to allow the correctness of SFG's to be
more easily determined (a priori). DCM and FNC nodes do not have a
state-transition mechanism; therefore, they do not have a state of their own.
As a result, in order to be able to specify systems that do have a state, it
will be necessary to introduce two special nodes, respectively delay and
buffer nodes, that have a known, and in fact very simple trace.

If we let c?x denote an input event, that assigns the value read from
channel c to the variable x and likewise let c!x denote an output event that
writes the value of the variable x to the channel c, than we can define a
delay node as follows:

DELAY = state «- d0 -»/xX.(out!state -» in?state -» X)

Similarly, a buffer node is defined as:

4.2 Computational Model 65

BUFFER = ,uX.(in?state -* outlstate -» X)

Since delay and buffer processes have a single input and output, we can
easily denote them by adding a weight to a SFG edge. This weight is
specified in the form of D's or B's, as was already shown in Figure 4.1(b).
The delay node shown there has the same trace as those defined above,
which serves to show that a delay can be defined as an AST node. The
initial value of the state of a delay is a parameter of the delay process,
which has to be specified. In case it is left unspecified, we assume that it has
a suitable 'null ' value.

4.2.3.1 Functional SFG's
A FNC or function node does not have a state-transition mechanism, due to
the fact that it can perform only one function. The definition of a CSP
process implementing the mechanism associated with a FNC node is
therefore considerably simpler then that of an AST node.

FNC = /iX.(inputEvents —» outputEvents —♦ X)

In this case, 'inputEvents' is a process used to input the values on the input
ports in an arbitrary order. Similarly, 'outputEvents' is a process used to
output the values computed by the function f on the output ports in an
arbitrary order. There is no selection of active ports in this case; all ports
are active all of the time.

4.2.3.2 DCM SFG's
The second specialization of an AST node is a so-called DCM or Distributed
Control Model node. A DCM node has a function fc that is used to compute
the next state. As was the case for AST nodes, the state is used to select a
function that maps the (values of) events on a subset of the input ports, the
so-called active inputs, to the values of the events on a subset of the output
ports, the so-called active outputs. The control function fc uses the values
from a distinguished set of input ports, the so-called control inputs. In
addition to computing the state of the node, the control function may
compute output values. The values computed by f are outputted via the
so-called control outputs.

66 HIFI: Design Method and Computational Model

A CSP process implementing the state-transition mechanism of a DCM node
can be defined as follows, where controlln and controlOut represent
processes that can input, respectively output the control tokens in any
order:

DCM = /iX.(controlIn -> controlOut U activeIn(S)^*S) activeOut(S) -* X)
S

The advantage of the DCM model over the more general AST model, is that
we need to know only the values at a subset of the input ports, the control
inputs, in order to determine the state-transitions and thus the trace-set, of
the DCM node. The separation of control and data inputs (and outputs)
appears to be very useful. In fact it resembles the way conventional digital
systems, e.g. microprocessors, are structured. Such systems can be
decomposed in a controller and a data-path. The controller consists of a
control memory and, typically, a simple FSM to cycle through a sequence of
control states. The controller may be represented by a control function
that, based on the values stored in the control memory, computes the setting
of the data-path, i.e. it computes the function to be performed by the data
path. The values stored in the control memory have been specified
somewhere in the design of the system.

The HIFI system will formalize this in the sense that different functions
may be decomposed using the same Dependence Graph. If the nodes in this
graph are of the DCM variant defined above, then the designer can, by
specifying values for the control events, select the function that will be
computed by the DG.

4.2.3.3 Correctness
Based on our definitions of FNC and DCM nodes, as well as delay and buffer
nodes, we can now investigate the conditions under which SFG's build using
these nodes are correct. We will first consider SFG's that are build entirely
from FNC and delay nodes. Such SFG's are actually identical with the
SFG's used by Kung [Kung86], and many other researchers; we will call
them functional SFG's.

4.2 Computational Model 67

Property 4.1

A functional SFG is correct if:

• every connected component has at least one input or output and

• every cycle contains at least one delay node.

Proof: This property can be easily verified by checking the conditions that
guarantee that a SFG is correct, i.e. absence of deadlock, misfit's and
livelock's. First misfits. Since a FNC node does not select active inputs
and/or outputs, a functional SFG can not contain misfits. Absence of
deadlock is equally easy. The first observation is that, if the SFG is acyclic,
then it can not contain a cycle of active edges. The second is that if the SFG
would contain cycles, then every cycle contains a delay node. Since the
delay allows its output to be active before its input, there is no deadlock.
Finally, the absence of livelock is guaranteed by the fact that the nodes in a
connected component must operate equally often.

D

The next step is to consider SFG's that contain DCM nodes. In order to
compute the traces of a DCM node, we require that the values on its control
inputs are known, or can be computed a priori. We will further assume
that every control input repeatedly inputs the same sequence of control
tokens. These control sequences can be different for different control inputs.
The length of all control sequences will be the same however, say n, due to
the fact that the control graph is a functional SFG and the behavior of the
SFG must be cyclic.

The computability of a SFG with DCM nodes can be determined in two
steps. In the first step, we determine the computability of the so-called
control-graph, i.e. the graph that remains if all edges not connecting control
inputs and outputs are left out. The control graph is a functional SFG,
therefore it is computable if every directed cycle contains at least one delay
node. The control functions of the DCM nodes compute the states of these
nodes. The state of a DCM node determines its active inputs and outputs.
The active inputs and outputs of all DCM nodes with the edges that connect

68 HIFI: Design Method and Computational Model

them form together a so-called data-graph (see Figure 4.4).

control.

Figure 4.4. DCM SFG: Control (upper part) and data-graph (lower part)

For every possible combination of control tokens on the control inputs, we
can thus find a data-graph. Since we assume that every control input
repeatedly inputs a value from a sequence of n control tokens, we thus find
a sequence of n such data-graphs. A data-graph is again a functional SFG;
for it to be correct we require that every directed cycle contains at least one
delay node. The determination of the correctness of the SFG as such is
complicated by the fact that some edges in the data-flow graph are
connected only to an active input or output and not to both. If an edge is
connected to an active input, we require that the edge contains a delay node;
if the edge is connected to an active output, we require that it contains a
buffer node. These buffer and delay nodes can supply or absorb one token.
However, by doing so they are effectively changed, i.e. a buffer becomes a
delay and a delay becomes a buffer. This will change the weight of the edge
which may effect the correctness of the subsequent data-graphs.

4.2 Computational Model 69

Property 4.2

A DCM SFG is correct when its control-graph is correct and for every
possible combination of sequences of control tokens on its control inputs,
the corresponding data-graphs are correct!". In addition, the weights of the
edges and the states of the delays must be the same before and after all
operations corresponding to a sequence of control tokens on each of the
control inputs of the SFG.

Proof: A DCM SFG under the conditions stated above will not contain
deadlocks since the control and data-graphs are required to be correct.
Misfits could occur due to the fact that a node may output a token, which is
not immediately removed by another node, or if a node needs a token while
another node is not yet prepared to send it. These misfits can be removed
however with the help of buffer and delay nodes. By verifying the
correctness of a sequence of data-flow graphs, considering the (temporary)
transition of buffer into delay nodes and vice-versa, it can be checked that
there are no such misfits. Other misfits can not occur, again due to the fact
that the control and data-flow graphs are required to be correct. Finally,
the absence of livelocks is obvious from the fact that the the control graph
is a functional SFG.

D

A procedure to verify the correctness of a SFG with DCM nodes, as
discussed above, can be easily defined. It suffices to check that the active
inputs and outputs of each node in each data-graph are correctly connected,
i.e. either to active inputs or outputs of other nodes, to external inputs or
outputs, or to delayed, in the case of an active input, or buffered edges, in
the case of an active output.

t In fact the requirement of correctness can be relaxed, since it is not necessary that both
the control graph and the data-graphs contain external inputs or outputs.

70 HIFI: Design Method and Computational Model

4.2.3.4 Dependence Graphs
Definition: 4.7

A Dependence Graph is an acyclic SFG that contains only DCM and/or
FNC nodes.

A DG that consists of only FNC nodes, will be called a functional DG. The
correctness of a DG can be easily verified, due to the fact that it does not
contain cycles and that there are no delay and/or buffer nodes. In fact the
correctness of a DG is directly related with the values of the control tokens
on its control inputs. If the data-graph corresponding to the control tokens
does not contain misfits, then the DG is computable. In the sequel we will
use these DG's to define decompositions of functions. A functional DG
defines the decomposition of a particular function; otherwise, a DG can be
viewed as defining the decomposition of a collection of functions, one
corresponding to each combination of control tokens on the control inputs.

4.2.4 Examples
In order to show the expressiveness of the model we consider L1FO and
FIFO buffers. A LIFO buffer of depth 4 is shown in Figure 4.5.

m PI
push/pop r r V~r

Figure 4.5. LIFO buffer of depth 4

Each node can perform one of two functions, called 'push' and 'pop'. The
push function reads a new value in the LIFO. The values in the LIFO are
stored in the delay edges. When pushing a new value in the LIFO, all nodes
eventually perform a push function. This propagates the values in the delay
edges to the right (cf. Figure 4.5). The rightmost node serves as a source or
sink of tokens (data-values), depending on whether it is requested to pop or
push a token. The control functions of the node simply propagate the
control tokens. The correctness of the SFG shown in Figure 4.5 can be
verified by considering the data-graphs associated with the 'pop' and 'push'

4.2 Computational Model 71

control tokens, shown in Figure 4.6.

Figure 4.6. data-graphs of the LIFO

Both data-graphs are correct, i.e. they contain no misfits or deadlocks. In
addition, the weight of the edges is not changed. As a result we can
conclude that we can combine the two data-graphs in an arbitrary order.
The correctness of the SFG is guaranteed no matter what sequence of control
tokens is put on the control input. The problem with the LIFO buffer as
defined by Figure 4.5 is that, in order to pop a value, it is necessary to
propagate all values from right to left. The control token has to travel
through the nodes from left to right and only after it has arrived at the
rightmost node, can the data value start propagating. Such a system can't
be implemented on a systolic array, although the SFG itself is correct and
can be implemented on a wavefront array.

The second example is the FIFO buffer shown in Figure 4.7.

(^ ^ ^ ^

Figure 4.7. FIFO buffer of depth 4

TO^

72 HIFI: Design Method and Computational Model

Each node has a control and data input and output. The edges connecting
the control inputs and outputs are delayed. The operation of the FIFO
buffer depends on the availability of tokens on its inputs. For each token on
the control input, it will deliver a token on the data output, subject to the
availability of tokens on the data input. The control tokens coming from
the leftmost node have to be removed, e.g. by adding a node that simply
accepts tokens on its input. Due to the delays on the control edges, the
nodes can initially shift in a number of values equal to the depth of the
buffer.

73

5. HIFI: Function Decomposition and Implementation

5.1 Refinement: Function Decomposition

As explained in section 4.1, the principal means of abstraction in the HIFI
system is a function, viewed as a mapping from inputs to outputs. In this
section we will discuss the methods provided in the HIFI system to
decompose functions. A function has to be decomposed, in order to arrive
at an implementation. Associated with the decomposition of the functions
we will find that we have to decompose the values at their inputs and
outputs.

Usage:
A decomposition of a function in the space domain (cf. section 4.1) will be
called a refinement.

The HIFI system distinguishes two methods of refinement:

• structural

• regular

5.1.1 Structural Refinement
Structural refinement can be thought of as the replacement of a function by
a functional Dependence Graph. The nodes in such a DG perform a single
function. A structural refinement, i.e. a DG, is most easily specified by
means of a graphical editor. It can however also be specified as a set of
equations relating the inputs and outputs of the nodes (functions) in the
DG, or as a functional program (cf. section 5.1.3). In addition to the
structure of the DG a designer will also have to specify the binding of the
inputs and outputs of the DG to the inputs and outputs of the function
being refined, say F. The binding may involve a decomposition of the data
types associated with the inputs or outputs of F. In general a composite
type, i.e. a type representing a tuple of values, may be decomposed in its
value types. Data-type decomposition is specified as part of the binding of a
DG input or output to a function input or output.

74 HIFI: Function Decomposition and Implementation

An example of a structural decomposition is given in Figure 5.1. The
function floating multiply is decomposed using three functions, that
respectively add the exponents, multiply the mantissa's and perform a
normalization of the resulting floating point number.

structural refinement

Figure 5.1. Decomposition of a floating point multiply function

The example also shows the decomposition of data-types as it is necessary
to decompose the type of the inputs of the function fpm in an exponent and
mantissa type.

5.7.2 Regular Refinement
A regular refinement of a function is used when a function can be
implemented by repeated application of another function, the so-called
iteration function. Functions that can be decomposed in a regular fashion
can be efficiently implemented on systolic arrays and are thus of
considerable interest in the context of the HIFI system.

A regular refinement of a function is specified by defining an index space
and a set of directed edges connecting the grid points belonging to the index
space.

Definition:
An index space is a lattice enclosed in a region of the n-dimensional
Euclidean space, defined by a set of constraints such that a point I belongs
to the index space only if it is a feasible solution to the set of constraints.

5.1 Refinement: Function Decomposition 75

The edges connecting the grid points of an index space are regular, i.e. if one
grid point I is connected to a grid-point J = I + D, then all grid-points I are
connected to grid-points I + D, provided both I and I + D belong to the index
space. If the point I + D does not belong to the index space, then I is an
output point of the index space. Similarly, if I - D does not belong to the
index space, then I is an input point of the index space. The iteration
function defines a node. Similar nodes are positioned at all point belonging
to the index space. The dependencies specify the connections between the
inputs and outputs of these nodes. The inputs of the nodes that are
associated with the input points of the index space are bound to the inputs
of the function being refined. Depending on the dimension of the index
space and the position and number of inputs, this requires an appropriate
decomposition of the data-types associated with the function inputs.

An example of a regular decomposition is given in Figure 5.2. There we
show a regular decomposition of the function integer multiply.

Figure 5.2. Regular decomposition of integer multiply

The integers a and b at the inputs of the function are decomposed into their
bit representation. The number of points in the index space depends on the
precision, i.e. the number of bits, used for representing the input values a
and b.

76 HIFI: Function Decomposition and Implementation

The constraints used for defining the index space can be defined in a number
of ways. A straightforward method is to associate an interval and stepsize
with each dimension of the index space. In most cases, the number of points
in such an interval will correspond to the number of data elements into
which a value on a function input or output gets decomposed. As a result,
the size (i.e. the number of points in the index space) will usually depend
on an attribute of a type associated with an input or output of a function
that is decomposed.

In order to define a regular decomposition of a function we need to define:

• the dimension of the index space.

• constraints to identify the points belonging to the index space.

• an iteration function, or DCM node (see below).

• a set of dependencies.

• input and output bindings, i.e. type refinements.

5.1.2.1 DCM Nodes
The domain of application of regular refinements is greatly increased if,
instead of using FNC nodes in the Dependence Graph, we use DCM nodes.
First of all, by defining an appropriate control function fc, it is not longer
necessary that all nodes perform the same function. For example, nodes at
the boundary of the index space may perform a slightly different function
in order to ensure a proper initialization. The function performed by the
nodes, is selected depending on the value of the control tokens on the
control inputs of the DG. In order to allow regular refinements to use DCM
nodes, the designer will have to define a DCM node and in addition specify
an appropriate set of (external) control tokens, such that the refinement
indeed computes the same I/O relationship as the function being refined.

5.7.3 Functional DG specified by a functional program
As was already briefly mentioned, a functional DG can be associated with a
functional program and vice-versa, provided that we can define appropriate
denotations for the combining forms, i.e. the higher level functions, used in

5.7 Refinement: Function Decomposition 11

such programs. Two simple examples will clarify this. The first one regards
composition. Composition is a combining form that is used to specify
pipelining. The composition of two functions, fj and f2, denoted by ^ o ^)
can be represented by a DG that has two nodes, where the outputs of the
first one, that performs the function f,, are connected to the inputs of the
second one, as shown in Figure 5.3(a). The second example regards
construction. Construction is a combining form that is used to specify
parallel composition. The construction of two functions, [f1,f2]. can be
represented by a DG as well. The definition of the DG is however somewhat
more complicated, due to the fact that we have to duplicate the inputs. This
is a consequence of the way in which we have defined the communication
mechanism. The resulting DG is shown in Figure 5.3(b).

I O—*
—©—.©— —-(V1*

(a) (b) w

Figure 5.3. Construction represented by a DG

More complicated combining forms can be defined in order to define e.g.
regular DG's. Sheeran [Shee83] defines several such forms, e.g. to define
regular ID and 2D arrays. The combining forms that are used to define
these regular structures, are usually defined recursively, based on the form
of the input sequence, i.e. the number of elements in an input tuple.

The definition of combining forms and the derivation of a body of laws
regarding their application, can be the basis of a more formal definition of
function decomposition. It appears possible to do so [Jone86], although a
lot of work, will be needed before these concepts can form a formal basis for
a design system.

78 HIFI: Function Decomposition and Implementation

5.1.4 Hierarchical Refinement
In order to simplify the definition of a complicated decomposition, we will
require that the design system allows the designer to specify a particular
decomposition as a sequence of regular decompositions and/or structural
decompositions. For example, to define a regular decomposition of a
matrix-matrix multiplication, we may first define a 2-D regular
decomposition in which the iteration function computes the inner product of
two vectors (cf. Figure 5.4(a)). The inner product function may next be
decomposed, using a 1-D regular decomposition, into a linear array of
inner-product step processors (cf. Figure 5.4(b)). The inner-step function
can then be decomposed in a multiplier and an adder (cf. Figure 5.4(c)).

B, B„ B
A>~Q—6—6

■̂-0—Ö -CK

Figure 5.4. Hierarchy of refinements

In order to define an implementation the designer should have the
possibility to expand any of these decompositions, by instantiating lower
level decompositions.

5.1 Refinement: Function Decomposition 79

5.2 Part i t ioning: Function Implementat ion

An implementation of a function is created by mapping a Dependence
Graph, that specifies a refinement of the function, onto a SFG. The SFG
realizes the function by a sequence of state transitions and uses less nodes
(processors) at the expense of the memory (delays and buffers) needed to
store the state. The function computed by the SFG, when assuming that the
SFG maps sequences of inputs to sequences of outputs, is determined by the
sequences of control tokens on the control inputs. The procedure used for
mapping the DG onto a SFG depends on the properties of the DG, more
specifically whether it is regular. A regular DG can be mapped on a SFG by
choosing a projection vector U. The nodes in the DG that are on lines
parallel with U are mapped on the same SFG node. A DG resulting from a
structural decomposition can't be so easily mapped. It will be necessary to
partition the DG into classes that can then be implemented by a single SFG
node. In the case of regular DG these classes where implicitly determined
by the projection vector U. In the case of structural refinement we need a
different mechanism. The best method appears to be one that takes into
consideration the final (hardware) implementation, optimizing e.g. the
trade-off between processor complexity, I/O bandwidth and throughput
rate. Such a method may however need detailed information on the
available hardware. An alternative is to rely on the designer for specifying
the classes. Using a graphical representation, the designer may for example
specify the classes, by drawing boundaries along specific sets of nodes.

5.2.7 Regular Partitioning
In case of a regular DG the partitioning procedure is very simple. If we
represent the dependencies by the columns of a matrix D, then the
procedure consists of the following steps:

• Choose a projection vector U, such that U lD ^ [0 0 . . . 0].

• Construct a (n — l) x n projection matrix P, such that P U = 0, i.e. the
basis of the index space of the SFG has to be orthogonal to the projection
vector U.

80 HIFI: Function Decomposition and Implementation

• Determine the extent of the index space of the SFG, e.g. by projecting all
index points of the DG on the corresponding index points of the SFG.

• Compute the dependencies Dsf of the SFG: Dsf = PDd .

• Compute the weights of the dependency vectors Dsf : Wsf =U D. .

• Project the inputs and outputs of the DG on the input and output
sequences of the SFG. This is done in two steps: (1) determine the
input/output on which the value associated with a DG input/output will
appear and (2) compute the order in which the values will appear on the
SFG inputs/outputs. If we let I and J denote the positions of the
input/output in the index space of the DG, then the ordering relation
required in step two is: U'l ^ U J.

The above procedure has to be extended in case the DG contains edges
parallel with the projection vector U. Such edges are projected on (SFG)
edges whose weight is greater then 0, i.e. edges that have buffers. The first
value from such an edge has to come from the environment however.
Similarly, the final value has to go to the environment. Two solutions are
possible:

1. to provide switches that allow the first, respectively last, value to be
read from, respectively written to, the environment.

2. to modify the control of the SFG.

The first solution is shown in Figure 5.5. The 2-D DG is projected on a SFG
that has three columns of nodes, respectively a column of input switches, a
column of 'f' nodes and a column of output switches. One of the outputs of
the output switches is connected to one of the inputs of the input switches,
such that the edge forms a feedback, edge.

The switches keep track of the number of times the data is circulated
through the 'f' nodes. The input switch (IS) initially reads data, i.e. a
token, from the left and then circulates it (N- l) times, where N is the
number of nodes that are projected on the SFG node. Similarly, the output
switch (OS) node circulates the data (N- l) times and then outputs it to the

5.2 Partitioning: Function Implementation 81

"—@- J ©—

Figure 5.5. Switches used to initialize the feedback, edges

right. The input and output switches are DCM nodes, whose control
function increments a control index, stored in the delay associated with a
(feedback.) edge, that connects the control input and output of the switch, as
shown in Figure 5.6.

input switch output switch

Figure 5.6. Input and output switch

The function performed by a switch depends on the value of the control
index. Note that the input and output switch also provide the buffering
that is necessary to make the SFG correct.

82 HIFI: Function Decomposition and Implementation

If we replace each dependency parallel to U, with a feedback, loop as shown
in Figure 5.5, then the partitioning procedure described above, will generate
a correct SFG.

The second solution is shown in Figure 5.7. This solution is however only
possible when the DG contains control dependencies that are not parallel
with the projection vector U. If that is not the case, then we can modify the
control function, such that during the first, respectively final iteration of
each cycle, the node reads, respectively writes a token from the (external)
input, respectively output. The first and final iteration are distinguished by
modifying the associated control tokens, respectively c0 and c .

C 0 , C l ' " - , C n

-Ó—Ó-
partitioning

(a) (b.)

Figure 5.7. Control function used to initialize the feedback edges

The values that come from the left in Figure 5.7(a) are the initial values for
the buffers shown in Figure 5.7(b). They are read from the environment by
modifying the first control token c0, such that the corresponding function
will take its input from the left, instead of from the buffer. Similarly, the
final control token, cn has to correspond to a function that writes its output

5.2 Partitioning: Function Implementation 83

to the right, instead of putting it in the buffer. The functions corresponding
to the intermediate tokens cl take their input from the buffer, as well as put
their output there. Therefore, in order to properly initialize the buffer, it is
necessary to distinguish the first and final control token from the
intermediate tokens and from each other. Only then can the SFG node select
the appropriate function.

5.2.2 Structural Partitioning (Clustering)
In case of a structural refinement, the mapping of the nodes of the DG on
the nodes of the SFG can be achieved by having the designer specify the
nodes that are to be implemented by a SFG node. For each cluster of DG
nodes, the system will have to generate a sequence of control tokens, such
that the SFG node computes the same values computed by the nodes of the
DG. Values that are intermediate, i.e. values that are used only inside the
cluster, contribute to the state, in the form of (buffered) feedback edges, of
the SFG. The edges connecting nodes in the cluster with nodes outside,
become the inputs and outputs of the SFG node. One method to add the
control is to let every SFG node have a control input and control output,
connected by a feedback edge. The number of delays on this edge
corresponds to the number of nodes in the cluster. With the initial values of
the delays in fact a simple control program is implicitly specified, that lets
the SFG node execute a sequence of functions. The data-flow
communication between the nodes ensures a correct synchronization of these
local programs.

A simple example is shown in Figure 5.8. There we map a cluster of three
(DG) nodes, on a SFG node that can implement all three functions. The SFG
nodes are controlled by means of the values stored in the delays. In the
example shown, the SFG nodes will repeatedly perform the functions tv f2

and f3 in sequence. Each cluster contains three internal edges, that are
projected on edges that contain a buffer to store the intermediate value until
it is needed.

5.2.3 Partitioning of SFG's
The partitioning procedures described above apply only to the partitioning
of DG's. In this section we will discuss a more general procedure that also

84 HIFI: Function Decomposition and Implementation

Figure 5.8. Structural Partitioning

allows us to partition regular SFG's, i.e. SFG's generated by applying the
partitioning procedure to a regular DG.

The simplicity of the partitioning procedure in section 5.2.1. derives largely
from the fact that neither of the nodes, nor any of the edges in a DG has a
state. This is because the nodes are FNC or DCM nodes and the edges have
no buffers and/or delays associated with them. A (regular) partitioning of
such a DG will in general result in a SFG that has buffers associated with its
edges. However, if the SFG is the result of a partitioning procedure as
described above, then after every sequence of control tokens, i.e. after every
what we will call cycle of the SFG, the buffers will be empty, i.e. stateless.
It follows that if we want to partition a SFG, we should not separate the
tokens belonging to an input sequence.

To implement this we need to have slightly more complex input and output
switches. To define the new input and output switches, we need to
introduce a second parameter, which we will call the sequence index, in
order to distinguish it from the other parameter, which we will call the
node index from now ont. The sequence index is used to keep track of the

5.2 Partitioning: Function Implementation 85

position of a (data or control) value in a sequence. The control function of
an input or output switch will now decrement the node index only once
after every sequence index iterations. In addition, due to the fact that every
node now has to process a sequence of values, before starting a new (node)
iteration, the feedback edge connecting the input and output switches, has to
have sequence index - 1 buffers associated with it.

The SFG resulting from a further partitioning of the SFG shown in Figure
5.5(b), is shown in Figure 5.9.

\,...,hvh0

Figure 5.9. Partitioning of a SFG

t The input and output switches defined in section 5.2.1. are special cases of the new
switches, for which the value of the sequence index is simply 1.

86 HIFI: Function Decomposition and Implementation

The partitioning procedure can be further modified so as to allow the
number of nodes between the switches to be varied, in order to control the
amount of pipelining that takes place. The number of nodes in the
projection direction in the partitioned SFG, say p, can be any integer divisor
of the number of nodes N in the projection direction in the (unpartitioned)
DG or SFG, i.e. N mod p=0. In order to account for this change, we can
simply modify the node index of the switches to N/p instead of N, as
shown in Figure 5.10 for the case that in the vertical projection p = 2.

5.2 Partitioning: Function Implementation 87

hn-i ' ->h2 ,h0

hn....,h3,h1

Figure 5.10. Varying the amount of pipelining in a SFG

88 HIFI: Function Decomposition and Implementation

89

6. H I F I : P r o t o t y p e S y s t e m

The prototype system described in this thesis is of limited scope; its
primary purposes are to (1) show, by means of example, the style of
interaction between designer and design system and (2) to provide a vehicle
for stating and formulating requirements regarding the design system, the
way it is setup and the (hardware and software) requirements on the
environment in which it is to function.

One of the main complications to be dealt with when setting up a design
system, is that a design language like the ones discussed in chapter 3, is not
a suitable tool for design; it can only serve to document a design once it
reaches a certain state. Furthermore, designing is not a linear activity.
Designers frequently backtrack and there are many things that can be left
unspecified initially, but need to be filled in later on. This requires the
design system to be very flexible regarding the consistency of the design.
The designer must be able to control the application of consistency checks.
On the other hand the design system has to enforce consistency checks when
that is needed to ensure overall consistency. This will allow the definition
of a system that allows a truly hierarchical style of design combined with
stepwise refinement of specifications. Such a system however poses
stringent demands on the environment (hardware and software) in which it
is to operate.

Following the object oriented approach pioneered by the developers of
SMALLTALK [Gold83], a design, like almost anything else can be defined
as a collection of objects which model design entities and relationships
between these entities. In order to define a design system, what we have to
do is to define object types to model the design entities and their
relationships. Examples of design entities in the HIFI system are easily
found: functions, refinements, data types etc. The definition of the object
types requires definition of their functionality, i.e. one has to define the
operations that can be performed by the objects. A particular design
activity can then be decomposed in a sequence of object operations. A
designer can specify a design by invoking operations on existing or newly

90 HIFI: Prototype System

created objects.

The flexibility of the design system is largely determined by the mechanism
available to identify design objects and to apply operations to them. In the
SMALLTALK environment, this is provided for by the elements of the
Model View Controller (MVC) model.

Model View Controller model

A design entity is modeled by an object, referred to as the model. Models
are accessible to a designer via views. A view is a 2D representation of the
object on the display screen. A model can have any number of views
associated with it. Each view has its own controller. The controller makes
it possible to invoke operations on the design object shown in the view.

The flexibility of this model is derived in large part from the fact that the
designer can choose the currently active controller by moving the mouse
over the display screen. The view that contains the mouse is the currently
active view; its controller the active controller. This behavior may be
modified, but the principle of selecting an active view/controller pair by
moving the mouse over the display screen remains.

The SMALLTALK programming environment supports the definition of
design entities via classes. A class defines a set of objects that respond to
the same set of messages in the same way. To define a class one needs to
define a representation, i.e. a set of instance variables and a set of messages
to which instances of the class should respond. In addition, for each
message, one has to define a method that is to be invoked when an instance
of the class receives that message. The method may change the value of
instance variables and/or compute a value based on the values of the
instance variables. Since SMALLTALK knows only about objects, the value
of an instance variable is a pointer to an object. This is true even for objects
like integers and character strings. Consequently, all computing is done by
sending messages to objects.

SMALLTALK allows the definition of classes using specialization. A class
may be a subclass of another class, in which case it inherits the behavior of

91

that class, i.e. its message set and representation. In addition, one can define
additional instance variables, thus extending its representation and define
new messages and associated methods. One can also redefine existing
methods. Specialization is a major tool in setting up SMALLTALK
applications. The SMALLTALK system provides almost all of the
functionality for setting up a user interface based on the MVC model
discussed above. Creating a SMALLTALK application consists of defining a
model object and constructing views and associated controllers for
manipulating and inspecting it. This removes much of the complexity
usually involved with developing an application and allows one to
concentrate on the essential concepts, i.e. the definition of (one or more)
models to represent the design entities.

Although SMALLTALK probably still is the best developed object-oriented
programming environment, it is not the only one. Advanced object-oriented
programming systems have also been developed to run on LISP machines.
Another interesting development are so-called hybrid languages. For
example, Objective C [Cox86] allows the development of powerful program
development environments that in some way combine the best of two
worlds, i.e. the efficiency of a procedural language and the flexibility of an
object oriented language offering run-time binding, dynamic memory
management, type inheritance etc. An example of such an environment is
the RMG system developed at Hewlett Packard Laboratories [Youn87].

6.1 Prototype Classes

The HIFI prototype system is developed in the SMALLTALK-80
programming environment [Gold84]. The basic idea, in line with Figure 4.2,
is (1) to create a FunctionDescription, (2) to create one or more refinements
of the FunctionDescription and (3) to define one or more implementations of
the FunctionDescription. The refinement step (2) expresses the original
function F, as a composition of functions f €f1,f2,...,fn. The functions f; may
in turn be specified using refinements. Due to this nesting of refinements we
can separate the process of implementing a function in two steps: first the
generation of a DG, by selecting appropriate refinements for the function F,
the functions fj used in refining it, the functions fü used in refining the

92 HIFI: Prototype System

functions fj etc. Next the actual partitioning of this DG. The nodes in this
SFG may be more or less complex, depending on the depth of the
refinements included for generating the DG in the first step. This provides a
handle for controlling the granularity of the operations of a node in the
implementation.

The major classes to implement a system to design systolic/wavefront
architectures in the manner described above will be discussed next.

6.1.1 FunctionDescription:
One of the most important classes of design entities are functions.
Functions will be represented by instances of class FunctionDescription. A
FunctionDescription bundles together all information about a function.
This includes information about the inputs and outputs of the function, the
behavior of the function, as well as its refinements. The most important
aspect of a FunctionDescription is its capability to create instances.
Instances of a FunctionDescription, i.e functions, are used to compute output
values given a set of input values. Each output value can be computed
independently. To do so the function maintains a memory of the least
recently assigned input values. In short, functions are objects that can
compute output values and that can set and answer the values of their
inputs. In addition functions share a FunctionDescription, that allows
access to additional information regarding the instances, e.g. the names and
types of the inputs and outputs, the methods used to compute the output
values and, from the point of design the most important, a set of
refinements and implementations.

To define FunctionDescription's, we use instances of class
FunctionOrganizer. A FunctionOrganizer provides access to a set of so-
called 'function libraries'. A function library holds a set of function
descriptions. Function libraries and FunctionDescription's are assigned
names. A particular function can be retrieved by specifying its name and
the name of the library it is in. An instance of a FunctionOrganizer can be
manipulated by creating a view on it. The functionality for doing this is
contained in the class FunctionOrganizerView. A FunctionOrganizerView is
shown schematically in Figure 6.1.

6.7 Prototype Classes 93

FunctionOrganizer

libraryPane

inputs

functionName

outputs

aspectPane

refinements implementations

textPane

Figure 6.1. Function Organizer View

It consists of a number of subviews or panes, that show various aspects of
the FunctionOrganizer. The panes labeled libraryPane and functionName
are used to select a FunctionDescription in a particular library. These panes
are so-called SelectionlnListView's. A name in the list of names displayed
in a SelectionlnListView is selected by moving the cursor over it and
clicking the left mouse button. They communicate with the
FunctionOrganizer via a predefined set of messages. The controllers
associated with these panes allow the designer to add, remove and rename
libraries and FunctionDescriptions respectively. The aspectPane is used to
show different aspects of the selected FunctionDescription. The aspect
shown can be selected by clicking the left mouse button in one of the panes
labeled 'inputs', 'outputs', 'refinements' or 'implementations'. Depending on
the selection the aspectPane will show inputs, outputs, implementations, or

94 HIFI: Prototype System

refinements. The popup menu associated with the aspectPane also depends
on the selection. The designer can always add, remove and rename inputs,
outputs, implementations and refinements. In addition, the type of an input
or output can be inspected and/or set. When selecting 'show type' a so-
called FilllnTheBlankView pops up, displaying the type of the selected
input or output. The type can be changed by editing the string representing
the type. The change is effectuated by 'accepting' it from the popup menu
associated with the FilllnTheBlankView. A refinement can be entered by
selecting 'view' from the popup menu associated with the aspectPane. In
order to view a refinement the designer is asked to designate a rectangular
area in which a view of the refinement will be displayed. The layout of the
view depends on the type of the refinement. In any case it allows the
designer to edit all aspects of the refinement. A similar situation exists for
the implementations of a function.

For the moment we return to the FunctionOrganizerView shown in Figure
6.1. there is one more pane, i.e. the textPane. The textPane is used for two
purposes: (l) in case of inputs, implementations and refinements it is used
to display a comment describing the input, implementation, respectively
refinement and (2), in case of an output, it displays the text of a method
that is used to compute the value of the output. In this method, the names
of the inputs can be used as variables. In all cases, a change in the displayed
text must be accepted by selecting the item 'accept' from the popup menu
associated with the textPane.

6.7.2 Function Refinement
Refinements can be added to a FunctionDescription in the aspectPane of a
FunctionOrganizerView. When adding a refinement, the designer is asked to
specify whether it is a regular refinement. If not, it becomes a structural
refinement. Subsequently, the refinement can be inspected by opening a
view on it. This is done by selection the command 'view' from the popup
menu associated with the aspectPane. The views associated with structural
and regular refinements are very different.

6.1 Prototype Classes 95

6.1.2.1 StructuralRefinement
The StructuralRefinementView allows the DG associated with the
FunctionRefinement to be specified directly, i.e. as a composition of
functions. The relationship between inputs/outputs of the DG and
inputs/outputs of the FunctionDescription being refined are specified as type
refinements. The nodes don't need control inputs since they have to
perform only one function. This simplifies the definition of the DG
considerably. In fact, the view allows the designer to enter a functional
expression [Back.78] in a graphical way. This is a big advantage, since most
of the (apparent) complexity of a functional expression, is due to the fact
that a large number of selector functions must be used in order to select the
operands for a function from among all other operands. The graphical
interface represents the selector functions by the edges connecting inputs
and outputs of functions. If necessary, we can generate a functional
expression from the graphical representation of the DG.

6.1.2.2 Regular Refinement
The RegularRefinementView allows the DG of the FunctionRefinement to be
specified by specifying (l) its index space and (2) a set of dependencies.
The index space can be defined in a variety of ways. However, in order to
construct the DG, it will be necessary to determine the points belonging to
the indexspace, as well as their types, i.e. whether it is an input, output or
internal point. In order to specify the dependencies, we have to know the
dimension of the index space. A dependency can then be represented as a
vector that specifies the difference between the coordinates of the points
connected by the dependency. If the dimension of the indexspace is less
then or equal to three, the DG can be displayed on a graphics display. This
may be helpful when the designer has to select a projection vector later on.
In addition to the index space and the dependencies, definition of the
refinement requires the definition of an iteration node, a set of input/output
(type) refinements and the definition of control values for the control inputs
of the DG. The iteration node is specified by defining a set of function
bindings. This is most easily done when the designer can open a separate
view on the iteration node. This view will allow definition of nodes as
defined in section 4.2. The same view can be used when the designer wants

96 HIFI: Prototype System

to inspect the a node in a SFG, created from a partitioning of a refinement.
The input and output refinements are specified by specifying the
relationship between inputs and outputs of the iteration node and inputs
and outputs of the FunctionDescription that the refinement describes.

The power and flexibility of regular refinements derives in part from the
fact that the index space can be easily parameterized. The implementation
of a parameter mechanism is however rather complicated. We will
therefore discuss it separately in section 6.1.5. For now we will assume
that the points in the index space can be enumerated if necessary.

6.7.3 FunctionlmplementcUlon
Implementations can be added to a FunctionDescription in the aspectPane of
a FunctionOrganizerView. Subsequently, the implementation can be
inspected by opening a view on it. This is done by selection the command
'view' from the popup menu associated with the aspectPane.

The definition of a refinement consists of two steps: (1) construction of a
DG by expanding a tree of refinements and (2) partitioning the resulting
DG. In order to partition the refinement, the prototype system requires that
the DG is regular. In that case, partitioning can be done by choosing a
projection vector. Subsequently, the designer may systolize the resulting
SFG, in order to create a systolic array that will implement the function
described by the FunctionDescription.

6.1.4 Type Definition
In order to define the type of the values carried by the control and data
edges, we have to implement a type definition mechanism. This mechanism
has to support type refinements as well as the definition of the index spaces
of regular refinements, parameterized by various properties of a type, e.g.
the number of rows of a matrix, or the length of a vector. The types that
are important in the context of the prototype system can be classified as
either: scalar, tuple, vector, matrix or sequence. The scalar types are the root
of the type hierarchy; they are used to construct tuple, vector, matrix and
sequence types. A tuple type is formed by an aggregation of two or more
other types, that are the components of the tuple. In order to access the

6.1 Prototype Classes 97

components, they are named. Vector, matrices and sequence types are
formed by a regular arrangement of values of a single other type, the so-
called basetype. Vectors and sequences are 1-D collections of data, that
have a length. Matrices are 2-D collections of data, organized either in
rows, in columns or in diagonals. Several specializations exist, e.g lower
triangular, diagonal and upper triangular matrices are distinguished.
Matrix, vector and sequence types can be created by specifying their
basetype, plus values for the other properties, e.g. the number of rows and
columns, the number of diagonals or the length. Tuple types are specified
by defining their components, i.e. their name and type. Types can be given a
name and added to a dictionary, the so-called TypeCatalog.

Type refinements are viewed as operators that map types in one another.
The operators applicable to a type, depend on whether the type is a scalar, a
tuple, a vector, a sequence or a matrix. Matrices and vectors can be refined,
resulting in sequences of an appropriate type. Sequences can be collapsed,
creating vector and matrix types. Matrix, vector and sequence type
refinements are mostly used in combination with regular refinements.
Tuple types can be decomposed in their components; conversely a collection
of types can be aggregated in a tuple.

In order to support the definition of index spaces, whose extent is
determined by e.g. the length of a vector, the designer may use the values of
the properties of a type. Matrix, vector and sequence types have a standard
set of such properties, that can be given values by inheritance, or using the
parameter mechanism associated with function descriptions.

6.7.5 Parameter Mechanism
The flexibility and expressiveness of the design system requires the
definition of a parameter mechanism. The basic idea is to define a set of
parameters for each FunctionDescription. An implementation of a function
will ultimately have to assign values to these parameters. An important
application of parameters will be in the definition of the index space of a
regular refinement.

98 HIFI: Prototype System

The functions performed by the nodes in a Dependence Graph can thus have
a set of parameters associated with them. The designer will have to specify
values for each of them. There are a number of possibilities to do so. First,
a parameter may be assigned a numeric value. Second, a parameter may be
assigned the value of a parameter of the function being refined, even if that
value is not yet known. Third, the parameter may have the value of a
property of a type, as discussed in the previous section. The values of these
properties can in turn be determined by parameter values, e.g. in previous
refinements. The advantage of this mechanism is the high level of
expressivity. It is much clearer if a designer can set the value of a
parameter to the number of rows in a matrix, then it is to set the value of
that parameter to some other parameter, whose meaning may not be clear
from the context of the refinement. In addition, the relationship between a
parameter value and a type property may be indirect, since the type may
have been defined via type refinement.

6.7.6 Verification:
The prototype system allows a design to be verified in a number of ways.

• Type checking: The consistency of a refinement requires that inputs and
outputs of nodes connected by edges are of the 'same' type. Similarly,
inputs and outputs of functions bound to the same node input or output
must be of the 'same' type.

• Correctness: The system will have to be able to evaluate the control
functions of the nodes in order to determine the active inputs and
outputs of a node. Based on that it is possible to determine the
correctness of DG's and SFG's.

• Simulation: Simulation will be an important tool in the verification of
the 'functional' correctness of a system, i.e. it is used to determine
whether the system indeed computes the desired function. It may also
provide insight in various things, such as the required precision, stability
etc.

Simulation of data-driven systems is rather easy due to the absence of a
global controller. Nodes can be evaluated as long as input data is available

6.1 Prototype Classes 99

and the output data can be stored. In addition, a global controller may
allow the designer to influence the order in which nodes are evaluated
[Held87]. The user interface may allow a high degree of interaction
between the designer and the simulator, in casu the scheduler.

6.2 HIFI Database

An important aspect that is missing from the prototype implementation
discussed in section 6.1 is the database system. A database system will be
needed to provide persistent object storage. The objects created and
manipulated by the design tools will have to be stored on secondary storage
for a number of reasons. Some of these are:

• sharing of data

• backup and recovery

• size

Design systems in general pose a unique set of demands on a database
management system, which are not easily obtainable by using existing,
commercial database management systems. State of the art commercial
DBMS are mostly based on the relational data-model [Date81]. The
relational model and the associated relational algebra, provide a firm basis
for the design of these systems, but applications of relational DBMS remain
limited mostly to those where the data of interest can be easily represented
as a collection of tables. One major reason for this is that the abstraction
techniques supported by a relational DBMS only resemble the 'aggregation'
techniques used by so-called semantic or object-oriented data-models.
Aggregation, i.e. the combination of a number of properties or attributes to a
new entity, requires a facility for identifying the new entity, so that we no
longer have to refer to it in terms of the values of its attributes, but can
instead use its id. The DBMS will have to assign a unique id to any entity
in the database.

Aggregation is however only one technique used in the semantic and object-
oriented data-models that are now being developed. The other important
technique is called generalization, or its inverse specialization. Similar to

100 HIFI: Prototype System

the class construct in an object-oriented programming language, the
definition of types, as made possible by aggregation, allows us to define a
type hierarchy as well. A type can be a subtype or specialization of another
type, meaning that it inherits all attributes and other properties defined for
the type.

The fact that programming languages developed for undertaking large
programming projects include the two types of abstraction discussed above,
requires the database system to support them as well. The secondary
storage provided by an operating system however typically takes the form
of an hierarchical (distributed) file system consisting of files and directories.
A file can be viewed as an array of bytes that can be extended as necessary.
A directory is a special type of file that contains the names of its
subordinate files. Directories are used for structuring the file system. This
means that in general, there has to be a complicated mapping from
secondary storage structure to working memory storage structure.

An object-oriented programming language can provide part of the solution,
in that it is possible to equip every class with methods for storing its
instances and possibly itself, in a file. Combined with a simple key
allocator/deallocator, to make the objects written to the file system unique
and retrievable, such a system can be setup without major difficulties.
Appendix C describes an object-oriented data-management method setup
along these lines. The method described there also takes care of inter-object
references. The database is kept consistent in the sense that an object is
deleted only, after the last reference to the object is deleted. Reference
counting and all other data-management is done transparently to the
programmer.

There are two major problems associated with such a simple minded
approach. The first is related with efficiency. The method described in
Appendix C requires the data-management system to be involved at the
same level of detail as the application program. The data-structure present
in the database mirrors the working memory data-structure in detail. This
implies that if a design tool changes even the smallest part of this data-
structure, the database has to be updated. The net result is that the number

6.2 HIFI Database 101

of transactions of a design tool with the database, required to keep the
database consistent, is enormous. The problem can be alleviated somewhat
by allowing extended transactions. Transactions however can't be extended
too long because that would reduce multi-user access to the database.
Extended transactions also don't increase the granularity of the database
objects. In order to really increase the efficiency, it is necessary to wrap a
boundary around a collection of volatile objects so that the DBMS can
handle these objects as a unit.

The second major problem is associated with the retrieval of objects from
the database. The simple system described in Appendix C allows retrieval
on the value of the key only. In order to retrieve the data of interest, it is
necessary to follow a chain of object references until we reach the desired
object. Then, in order to determine whether an object is the desired object,
the object has to be fetched, converted to its volatile form and its attributes
compared with the attributes of the desired object. A relational database
system on the other hand allows the user to send a query, in a high-level
query language, to the DBMS. The query is decomposed into simple queries,
which are then resolved against the database. The results of the simple
queries are combined and send back to the user. The decomposition of a
query into a set of simple queries is done so as to reduce the amount of data
to be accessed and takes into consideration existing (secondary) indices etc.
A relational system can do this and thus take advantage of optimizations,
because it has to deal with only one complex type of data, a row of
attribute values, specified by a descriptor that provides the types of the
attribute values. The types of the attribute values are usually restricted to
integer, real, boolean and string.

In the remainder of this section, we will describe an approach that provides
a solution for the first problem mentioned above, i.e. that of controlling the
granularity of the objects.

6.2.1 Persistent Object Storage and Retrieval
A partial solution providing persistent object storage is provided by the
Objective C programming language [Cox86] in the form of a filer
mechanism. Any object can be written to and retrieved from a (named) file.

102 HIFI: Prototype System

An object is written to a file, by sending its id and the path name of the file
to a so-called filer object. The filer object implements the protocol required
to convert the object from its volatile form to its persistent form, e.g. the
formats used for representing the instance variables. A filer object can
restore an object from the file it was written to, if it receives a 'readFrom'
message, where the filename serves as the argument. Objects are stored in
files, with object id's replaced by record offsets. For example, an ascii
representation of a rectangle object represented by two points, respectively
its lower left and upper right corners, is given below:

0 Rectangle @2@3
0 Points 10 s 20
0 Point s 30 s 40

Figure 6.2. Symbolic representation of a rectangle

The format used for storing an object is straightforward. Every simple
type, e.g. integer, short or double, has its own type identifier character.
Pointer to objects (type id) are denoted by the '@' character. If an object
contains an instance variable of type id, the object pointed to is recursively
included in the file. In this file, every object occupies a record. As a result
object pointers can be replaced by record numbers. Given this information,
we can easily decode any object. For example, the object represented in
Figure 6.2 is a rectangle; the first instance variable is of type id and points
to the object stored in record number 2; its second instance variable is also
of type id and points to the object stored in the record at position number 3.
The point objects each have two instance variables of type short.

In order to generate and interpret these symbolic representations, the filer
object needs some information regarding the type of the instance variables
of an object. This knowledge is provided by the class descriptions of the
objects. Each object contains a pointer to its class object, which contains a
so-called classDescriptor string. This string codes the types of the instance
variable of the object. Its length corresponds to the number of instance
variables.

6.2 HIFI Database 103

A filer mechanism as described above is quite powerful, although it has
some obvious shortcomings. The most visible is that the file representing an
object has to contain all objects that can be reached by following chains of
pointers, starting from the object to be stored. This complicates sharing of
data between two related though different objects, i.e. objects that one
would store in different files. One has to store an entire collection of
objects, while it is not possible to preserve relationships between these
objects and objects not belonging to the collection. Which objects belong to
the collection is determined implicitly by following a chain of pointers.
Another disadvantage is that if the objects are small, the overhead of
storing them in a file may become substantial.

An easy way out, or so it seems, is to assign every object its own database
id and to use this id when filing out the object. When retrieving an object
one has to apply the reverse process, i.e. one has to locate the object
represented by the id and convert it to volatile form. Such a scheme can
be fairly easily combined with a storage manager module similar to the one
described in Appendix C. It may also be implemented as an interface to an
object oriented database [Anne87].

The problem with this approach is the efficiency. Since all objects get an id,
the DBMS has to be involved in retrieving even the simplest objects. A
more efficient solution is to assign id's only to those objects that are
referenced externally, i.e. that are shared between objects. All other objects
can be stored together with the object that references them in a manner
similar to what is done when using the filer mechanism. There can be
several choices regarding the 'external' objects. The simplest solution is to
look at the class of the object. For certain classes we could make all
instances accessible via external references. In a large number of
applications, such a scheme would suffice. A different scheme would track
all references made to an object. If an object would be referenced from
within several collections or packages, it would be assigned an external id.
For a more detailed discussion, the reader is referred to [Sim87].

104 HIFI: Prototype System

105

7. Examples

In this chapter we will give two more detailed examples of the HIFI design
methodology. The first example is the transitive closure algorithm as
described by Kung in [Kung86]. The second example defines a system for
solving a system of linear equations, using an orthogonal variant of the
Faddeev algorithm, developed by [Jain86a].

7.1 Example 1: Transi t ive Closure

The transitive closure problem can be stated as follows:
Given a directed graph defined by its adjacency matrix &., determine
whether there exists a path from a node, say node i, to another node, say
node j . If so, the output &.. = 1, otherwise a*. = 0.

The most effective sequential algorithm for the transitive closure problem is
the so-called Warshall's algorithm, which can be expressed in single
assignment form as follows [Kung86]:

for i,j,k from 1 to N

x(i,j,k) «- x(i,j,k—l) + x (i , k , k - l) o x (k , j , k - l)

The input is x(i,j,0) «- a1J, the output is a* «- x(i,j,N), + is the logical 'or'
operator and o is the logical 'and' operator.

Warshalls algorithm may be rewritten in localized form by adding
propagating variables for the row and column variables at each level k as
follows:

for i,j,k from 1 to N

c(i,j,k) — x(i , j ,k- l) if j = k
c(i,j+l,k) if j < k
c(i , j - l ,k) if j > k

106 Examples

r(i,j,k) «- x(i , j ,k- l) if j = k
r(i+l,j ,k) if i < k
r(i+l,j ,k) if i > k

x(i,j,k) *- x(i , j ,k- l) + r(i,j,k)oc(i,j,k)

All dependencies are now constant vectors.

7.1.1 Dependence Graph Design
The above single assignment form naturally leads to a cubic dependence
graph. The nodes in this graph compute the connections based on the values
of the row and column variables which are propagated depending on the
relative magnitudes of the index variables i, j and k, i.e. on the position of
the node in the Dependence Graph. Figure 7.1 shows the DG for the case
N = 4. The edges in the ± i direction carry the values of the r(i,j,k).
Similarly, the edges in the ± j direction carry the values of the c(i,j,k). The
edges in the +k direction carry the values of the x(i,j,k).

Figure 7.1. Dependency Graph for Transitive Closure

7.7 Example 1: Transitive Closure 107

The control required to let the nodes propagate the row and column
variables as indicated, can be added by letting control tokens propagate in
the k-direction.

7.1.2 Node definition
In this section we will discuss the definition of the nodes used in the DG of
Figure 7.1. The basic node is shown in Figure 7.2. All inputs and outputs
have been drawn, including the control input and output.

u u

Figure 7.2. Transitive Closure Node

The computation performed by a Transitive Closure (TC) node, is easily
defined, by creating a FunctionDescription, say Transitive Closure, as
discussed in section 6.1.1. Instances of Transitive Closure are functions that
map a triple of values <x i n ,c i n , r i n> to another triple, <x o u t ,c o u t , r o u t>. A
FunctionOrganizerView showing the definition of the function Transitive
Closure is given in Figure 7.3.

The FunctionOrganizerView shown in Figure 7.3, also allows us to define a
control function, say TC control. In order to define a (DCM) node, we first
define a control function for the node. The node can then be created by
selecting the command node from the menu associated with the function
aspect pane (cf. section 6.1.1). When the designer selects this command, a
NodeBrowser view pops up, similar to the one shown in Figure 7.4. The
NodeBrowser view can be arbitrarily framed and positioned on the display

108 Examples

HIFI Function Organizer

Arithmetic
f xamples

TC control
Transitive Closure-

O.utoub I refinement I implementation I inputs

"compute transitive closure step -

t x and: (r or: c)

Figure 7.3. FunctionOrganizerView showing the function Transitive
Closure. The designer has selected the x output; a method for
computing the value on the x output is shown in the text-pane
in the bottom of the view.

screen, using the window commands that are in a menu that pops-up when
clicking the right mouse button.

The designer can select one of four aspects of a node for modification and/or
inspection. The selected aspect, e.g. the inputs or outputs, are displayed in
the SelectionlnList view that occupies the bottum pane of the NodeBrowser
view.

An important part of the definition of a node is the definition of a set of so-
called FunctionBindings. A FunctionBinding is a mapping from the inputs
and outputs of a function to the corresponding inputs and outputs of a node.
Every (DCM) node will define a set of such FunctionBindings. The
FunctionBindings can be modified and/or inspected by selecting the binding
aspect in the NodeBrowser. The names associated with the bindings are
then displayed in the bottum pane and can be selected. A selected
FunctionBinding can be edited, using a so-called FunctionBinding view, as

7.1 Example 1: Transitive Closure 109

HIFI Node Browser
control I outputs

TC1
TC2
TC3
TC4
TC5
TC6
TC7
TC8
TC9

Figure 7 A. NodeBrowser view showing the bindings of the Transitive
Closure Node

shown in Figure 7.5.

HIFI FunctionBinding Browserl

library: Examples function: Transitive Closure

. outputs inputs

c right
I
I
k
r down
r up
x

Figure 7.5. FunctionBinding view showing the binding TCI of the
Transitive Closure Node

The control function TC control will select one of the FunctionBindings,
thus implicitly selecting a function and a set of active (data) inputs and
outputs. A function that is to be used as a control function will have to

110 Examples

have an output called state. For example, the state output of the function
TC control can be defined by editing the text-pane of the FunctionOrganizer
view shown in Figure 7.6.

HIFI Function Organizer!

Arithmetic
Examples

TC control
Transitive Closure

outputs ref inement

k
«ate

implementation inputs

state
"answer the selected funct ion binding"

= k & (j = k) ifTrue:
- k & (j
< k & (j
< k & (j
< k & (j
- k & (j
> k & (j

> k) ifTrue:
> k) ifTrue:
- k) ifTrue:
< k) ifTrue:
< k) ifTrue:
< k) ifTrue:

k & (j - k) ifTrue:
k & (j > k) ifTrue:

[f#TC1].
[tt»TC2].
[f#TC3].
[t#TC4l .
[f#TC5].
[tttTCC].
[t#TC7] .
[t#TC8] .
[T#TC9].

Figure 7.6. FunctionOrganizer view showing the state output of a control
function

7.1 Example 1: Transitive Closure 111

For the nodes in Figure 7.1 we have to create a FunctionBinding
corresponding to every configuration, i.e. selection of active inputs and
outputs. In order to limit the number of FunctionBindings we may
simplify the DG by assuming that the inputs and outputs of the boundary
nodes are connected to source and sink nodes respectively. In that case, nine
different FunctionBindings are necessary. Also, the control function can
select the appropriate FunctionBinding, by comparing only the values of the
i, j and k control indices. Otherwise, the number of FunctionBindings
would increase to about 30, while the control function would have to know
whether a particular node was on a particular boundary.

In order to see how a FunctionBinding is defined in the prototype, we have
to consider the FunctionBinding view already shown in Figure 7.5. The two
panes at the top allow the designer to select a function from a library. By
clicking the middle mouse button, a menu pops up that allows the designer
to select either a library or a function. The functions and libraries that can
be selected are those defined by the FunctionOrganizer. Below the two
topmost panes there are two panes that allow the designer to select between
inputs and outputs. Underneath these aspect selectors, there are three
panes, that allow the designer to select inputs and outputs and to bind or
unbind them. The leftmost one contains the names of the inputs,
respectively outputs of the function selected in the topmost panes. The
middle pane contains the names of the input, respectively outputs of the
node containing the FunctionBinding. The designer can bind a function
input or output to a node input or output by selecting them in the
appropriate panes and then selecting the command bind from the popup
menu associated with these panes. Node inputs and outputs that are bound,
are displayed in the rightmost pane, from where they can be unbound.

A schematic description of the FunctionBindings of a Transitive Closure
node is given below. The names of the node inputs and outputs are shown
at the position occupied by the function inputs and outputs in the triples
above. Note that more then one node output may be connected to a single
function output. The operation evaluating the node can do this; for every
evaluation of the function, the eval-operation simply sends the function

112 Examples

output values to the appropriate active outputs. Similarly, it also reads the
active inputs only once for every function evaluation.

TC2:<xto,<4,r»>

TC4:<x l t fxwri>

TC6:<x in,Ci
r
n,x in>

T C 7 : < x i n , c > » >
TC8:<x in,x in>r i

u
n>

TC9:<xin,(4^;>

< r,l u.dv Y r r ^ Aout 'S>ut ' 'ouf^
<~Xoui 'Cout ' rout '>

out'Cout' rout
< - X out ' C out ' r out ' >

out , Cout' roul
< - X ou i ' C ou t , r ou l ' >

< ^ X out ' C out , r out ' >

<Tx 1 , r d ~>
<^Xout 'Cout ' rout-^
< - X ou t ' C ouf r ou t^ '

HIH Function Oigani^ei I

Arithmetic TC control
Transitive Closure

k
state

■increment and answer k input value'

t k ♦ 1

outnids I refinement I implementation I inmits_

Figure 7.7. FunctionOrganizer view showing the k output of the control
function

The control function is defined in the FunctionOrganizer view as shown by
Figures 7.6 and 7.7. Figure 7.6 shows the definition of the state output.
Similarly, Figure 7.7, shows the definition of the k output, i.e. the output

7.1 Example 1: Transitive Closure 113

that increments the control index. Notice that we assume that there are
actually three control inputs and outputs, to propagate respectively the i, j
and k control values. Alternatively, we could have one control input and
output where all three indices would be propagated in a single token.

The DG shown in Figure 7.1 does not offer much choice regarding the
projection vector. The only possibility appears to be a projection in the k-
direction. The performance of the SFG resulting from such a projection will
not be optimal however, due to the fact that the data-dependencies depend
on the k index. Other possible projection directions have similar problems.
In order to design a more optimal implementation of the transitive closure
algorithm we will have to modify the dependence graph itself. Such a
modification has been described by Kung [Kung86]. His solution is to
reindex the nodes in the DG, so that the dependencies between the nodes in
the i-direction become unidirectional. This can be accomplished by moving
the first row of each of the DG's shown in Figure 7.1 to the bottom. As a
result the dependencies in the i-direction now all point downwards.
Moreover, due to the fact that the variables propagated vertically, i.e. the
r(i,j,k) are constant, it is not necessary to add global interconnections to the
DG. The steps involved in the reindexing are explained in more detail
below.

7.1.3 Reindexing the DG {Kung86j
If we examine the dependencies in the k = 2 plane in Figure 7.1, we find
that the variables r(2,j,2) are propagated in both directions in order to
update the variables x(i,j,2). If we globally move the first row x(l,j,2) to
the (N+l)—st row and relabel it as x(N+l,j,2), then the updating of these
variables can be achieved by a uni-directional propagation of the r(2,j,2).
However, the variables x(N+l,j ,2) also depend on x(l , j , l) . In order to
localize these dependencies, a new row x(N+l , j , l) should be generated as
equal to x(l , j , l) in the previous (k = l) recursion. This can be done if we
realize that for given k, the r(i,j,k) variables propagate the value of
x(k,j,k—1) in the ± i direction. Since x(i,j,k)=x(i,j,k— l)+r(i,j,k)Oc(i,j,k),
we may conclude that for i = k, x(k,j,k)=r(i,j,k). Since we are always
shuffling the row for which i = k, we may define x(N+k,j,k)=r(N+k,j,k).

114 Examples

Now the x(N+k,j,k) have only local dependencies. The DG after reindexing
is shown (schematically) in figure 7.8.

Figure 7.8. DG after reindexing

The number of points in the index space has increased due to the fact that
the values of x(N+k,j,k) have to be computed as well. However, since the
computation is only a propagation of data values, it can be overlapped (or
combined) with the computation of x(k,j,k). This way the throughput rate
can be optimal. The control tokens may propagate along the diagonals as
well and contain i,j and k indices as before. The number of different states,
i.e. function-bindings, of a node is reduced, because the r-values are now
propagated in the +i direction only.

7.1.4 Partitioning
By projecting the DG in the +i direction, we obtain a SFG that contains no
active cycles. The control sequences are derived automatically. The
resulting SFG is shown in figure 7.9. The r(i,j,k) are stored in the buffers
associated with the nodes; the i, j and k control values are stored in the
buffers between the nodes.

7. ƒ Example 1: Transitive Closure 115

B

B

ZCECêZTê
Figure 7.9. Space-Time Partitioning of DG in +i direction

The SFG shown in Figure 7.9 differs from the one given by Kung [Kung86,
p. 16], in that the nodes on the diagonal going from lower-left to upper-
right are not replaced by pure interconnections. Such a replacement is
clearly incorrect, since these nodes have to buffer the value of r(i,j,k) in the
corresponding feedback, edge, as an inspection of the DG (cf. Figure 7.8)
learns.

Further partitioning of the SFG in Figure 7.9 can be achieved by projecting
the SFG in the horizontal direction, i.e. with U equal to k. The result is
shown in Figure 7.10. In this case no further partitioning is possible, due to
the fact that the SFG in Figure 7.10, contains edges in both the + and - j

116 Examples

direction.

Figure 7.10. STP of SFG in +k direction

7.2 Example 2: Linear Equations Solver

Classical algorithms for solving systems of linear equations of the type
A x = b compute the factorization of the matrix A to produce an upper
triangular system which is then solved by a procedure called
"backsubstitution". The resulting data-flow is very unfavourable for
parallel processing because the backsubstitution step needs the data
outputted by the factorization step in reverse order. To overcome this
problem an algorithm which solves the system in one pass, thereby avoiding
the backsubstitution step, was first proposed in [Jain86a] and will be
presented here. The algorithm does not require any intermediate

7.2 Example 2: Linear Equations Solver 117

accumulation of data, and is ideally suited for implementation on a
dedicated array of processors. We also show how the algorithm is mapped
to a VLSI array, after further partitioning.

Thus, given is a system of linear equations A x = b where the matrix A is
nxn and b a vector of dimension n. The traditional method of solving the
system is by factoring A as A = QR where Q is a transformation matrix
which we choose to be orthogonal for numerical accuracy and R is
uppertriangular. If b is likewise transformed to 0 = Q lb, then the system of
equations is transformed to Rx = /3 and x is found by backsubstitution on
0. The latter operation starts with the last row in R, while the factorization
produces the first row first. A conceptual architecture representing these
operations is shown in Figure 7.11. Note however that it does not include
the control necessary for the LIFO nodes.

Figure 7.11. Architecture of the Classical Matrix Solver

By a clever arrangement of the data it is, however, possible to restrict the
operations to factorization only. Inspired by the work of Faddeev
[Fadd59], who presented a Gaussian algorithm which incorporated the
backsubstitution, and following [Jain86a], we factorize the matrix:

I

118 Examples

• A' I
A = - b < o

With appropriate partitioning of the matrices we obtain:

A' I 0

-b ' 0 1
=

R U n u]2

0 x'u22 u22

is an orthogonal matrix and R is an upper triangular

matrix.

The operations performed during the factorization follow the classical
Householder algorithm for which we refer to [Wilk7l].

7.2.1 The orthogonal Faddeev Algorithm
The more interesting part, from the design point of view, is clearly the
factorization procedure, which is easily specified in the form of a LISP
procedure QRFact (cf. Figure 7.12), which computes and applies a sequence
of orthogonal transformations such that the matrix A is transformed into
the upper-triangular form defined above. The procedure returns the last
row of the transformed matrix, i.e. the row that contains the solution vector
x . Each transformation brings one more column of the matrix into the
required form. The procedure is defined recursively and is applied to a
sequence of successively smaller matrices. The recursion stops if the
number of rows of the matrix has become one, in which case the procedure
returns the (transformed) elements of the last row. During each recursion,
the procedure QRfact computes a reflection vector q, that will reflect the
elements of the first column of the matrix A, such that all, except the first,
become zero. Next it transforms all columns, using the reflection vector q.
QRfact then strips the transformed matrix of its first row and column, and
calls itself recursively on the reduced matrix.

where
U l l U12

U 2 1 U22

7.2 Example 2: Linear Equations Solver 119

Usage:
In the following procedures we assume that a matrix is represented as a
list of (column) vectors, each of which is a list of elements. As a result
we can easily manipulate vectors and matrices, using the standard LISP
list manipulation procedures head and tail, where head returns the first
element of a list and tail a list containing all elements, except the first.
Another basic LISP procedure is apply, which applies a procedure, its first
argument, repeatedly to the elements of a set of lists, the remaining
arguments, collecting the results in a new list, which is returned as the
result of the procedure.

(de f ine (QRfact a)
(l e t ((q (vector (head a))))

(l e t ((a+ (apply (lambda (co l) (r e f l e c t co l q) I
(t a i l a))))

(i f (s ing le - row? a) ; l a s t i t e r a t i o n
(apply head a+)
(QRfact (apply t a i I a +))))))

Figure 7.12. Orthogonal Faddeev: The factorization procedure

Looking at its definition we notice that, although the procedure is specified
recursively, it can be executed iteratively. This is because it is a so-called
tail-recursive procedure [Abel85].

The factorization procedure uses the procedures vector and reflect. The
procedure vector computes Given the vector v, a vector q which represents
the elementary reflection matrix.

The matrix Q is an operator that transforms v into a vector in the direction
of the first unit vector. The procedure reflect, when applied to an arbitrary
vector x, performs the actual reflection. By representing Q as a vector, the
multiplication can be done efficiently. The LISP code for these procedures is
given in Figures 7.13 and 7.14.

120 Examples

(define (reflect x q)
; compute the Householder reflection of x uith respect to q.
; input: x - input vector
; q - head: norm-square of the reflection vector
; - tail: reflection vector
; output: - the reflected vector
(define normq (head q))
(set q (tai I q))
(de f ine x .q (* 2 (/ (innerproduct x q) normq)))
(apply (lambda (xi q j) (- x i (* x . q q i))) x q))

Figure 7.13. LISP code for reflect

(def ine (vector a)
; compute the Householder r e f l e c t i o n parameters
: i npu t :

a - input vec to r
; ou tpu t :
; - l i s t head : norm-square of r e f l e c t i o n vector
; t a i l : r e f l e c t i o n vector
(l e t ((qnorm2 (innerp roduc t (t a i l a) (t a i l a)))

(a l (head a)))
(l e t ((q (cons (+ a l (* (i f (< 9 a l) 1 -1)

(sqr t (+ qnorm2 (* a l a l)))))
(tai I a))))

(cons (+ qnorm2 (* (head q) (head q)))
q))))

Figure 7.14. LISP code for vector

7.2.2 Design of a system
The first step in the design of a system, which implements the orthogonal
Faddeev algorithm, is to define a FunctionDescription (cf. section 6.1.1)
representing the algorithm. Starting from this we may define refinements
and ultimately one or more implementations.

The algorithm can be represented by a function that maps a matrix A and a
vector b, to a vector x, the solution of the equation A x = b (cf. Figure
7.15(a)).
In that case the first refinement (cf. Figure 7.15(b)) will be a structural
refinement; it decomposes the function in a part (i.e. a function) for
generating the matrix A and a part representing the factorization of A. The

7.2 Example 2: Linear Equations Solver 121

Faddeeva

Figure 7.15. Initial design steps

latter function produces a vector representing x. The first refinement may
be regarded as an initial step; the function of interest, i.e. the factorization
of the matrix, is introduced at this level. The (pre)processing of the input
data, represented by the first part of the refinement, as well as subsequent
processing of the output data, may be located in a host processor, i.e. it may
be thought of as being part of the environment of the system being
designed. We will therefore feel free to concentrate exclusively on the
factorization.

The next step is to define a regular decomposition of this function. This is
suggested by the recursive nature of the function, as shown by the LISP
code in Figure 7.12. In this case we define a 2-D regular refinement
schematically shown in Figure 7.16.

The nodes used in the refinement are DCM nodes, that can perform both the
rotate and the vector function. In addition, they have an inactive state, i.e. a
state that selects a function that has no inputs and no outputs and does
nothing. The nodes marked T in Figure 7.16 are inactive, i.e. they only
propagate the control token; the nodes marked V and R perform a vector,
respectively rotate function. The vector function computes the reflection
vector q, as discussed above. The rotate function applies the reflection

122 Examples

L2n+1

a 2n+l

Figure 7.16. 2-D regular refinement of factorize

specified by a reflection vector to an input vector. The number of points in
the index space associated with the regular refinement, is determined by the
dimension n of the A matrix. The index space is defined by 2n + 1 rows and
n columns. Note also that the DCM nodes need four states, one more then
would be expected, due to the fact that the last row of nodes should not
output the reflection vector q.

7.2 Example 2: Linear Equations Solver 123

The control tokens, C;, are propagated horizontally through the DG. In order
to define the control function, we assume that the control tokens are tuples,
consisting of a flag and an integer. The flag will be true, if the control token
propagates along the bottom row. The integer will initially be the number
of the row along which the control token is propagating. In order to let each
node perform the appropriate function, the control function will decrement
the integer. The four states of the nodes then correspond to the following
values of the control token:

flag = false, index < 0 : inactive
flag = false, index = 0 : vector
flag = false, index > 0 : rotate_and_propagate q
flag = true, index > 0 : rotate

7.2.2.1 Householder System
In case that a processor capable of implementing both the vector and rotate
functions is available, e.g. a so-called Householder processor, the function
defined by the DG could be implemented by projecting it on a 1-dimensional
SFG. In this case, the projection vector U would be such that it projects the
rows of the DG on the (single) row defining the SFG. The resulting SFG is
shown in Figure 7.17. The SFG nodes will be similar to the DG nodes in
Figure 7.16. Note also that, due to the fact that the control already takes
care of the initialization of the buffer, we need not add input and output
switches.

control

Figure 7.17. Partitioning of factorize

The SFG shown in Figure 7.17 can be further partitioned using the method
described in section 5.2.3. The resulting SFG, including input and output

124 Examples

switches, is shown in Figure 7.18.

-f®
Figure 7.18. Further partitioning of factorize

7.2.2.2 CORDIC system
Depending on the level of granularity that the designer wants to capture
using a SFG node, it may be necessary to further decompose the vector and
rotate functions. Since we want to implement the functions using the same
SFG node, it is preferable to use a single DG to specify their decomposition.
The differences can then be achieved by changing the control tokens on the
control inputs of the DG.

The rotate and vector functions can both be implemented using an array of
so-called CORDIC nodes [Vold59]. In a bottom-up fashion, we can define a
1-D array of (n - 1) CORDIC nodes, which can vector or rotate a vector of n
data values, as shown in Figure 7.19.

control

Figure 7.19. Array of CORDIC nodes

The CORDIC nodes are controlled by a single token, that is propagated from
left to right (cf. Figure 7.19). The CORDIC nodes themselves perform
either a CORDIC-vector or a CORDIC-rotate function on a pair of (scalar)

7.2 Example 2: Linear Equations Solver 125

data values, a; and a ;+1. The at inputs and outputs are used to input/output
the rotation parameters. The vector function will compute the a(, rotate
will input these values use them to rotate the a; and propagate them
unchanged. The function to be performed is determined by the token on the
control input. It is possible to specify the implementation of these
functions in a regular fashion [Depr84] but that will not be discussed
further here.

Substituting an array of CORDIC nodes as shown in Figure 7.19 in the DG
shown in Figure 7.16, can be done, if we define the CORDIC array to be a
(regular) refinement of both the vector and rotate functions of the
Householder nodes. In this case, that is not an attractive solution, due to the
fact that we can simplify the control if we use the CORDIC nodes directly.
Therefore, we will define a 3-D regular refinement of the factorize function,
as shown in Figure 7.20. The arrays of CORDIC-nodes extend in the
positive k-direction. The number of nodes in an array depends on the size
of the data-vector at its inputs. Because its size is decreasing from left to
right, the DG has a relatively complicated shape.
In order to get a regular data-flow, it is necessary to let the CORDIC nodes
have an extra input, which is used to enter the first a value (a0 in Figure
7.19). In order to activate the extra input, instead of the normal input, we
have to modify the control, such that the first node selects the extra input.
This can be easily achieved by defining an additional control signal, or by
extending the number of different control tokens, recognized by the CORDIC
nodes. The extra input is used to connect the diagonal dependencies in
Figure 7.20.

The shape of the DG and the position of the inputs and outputs complicate
the partitioning of the DG, because we are restricted by the fact that the
inputs/outputs of the DG have to be projected on inputs/outputs of the SFG.
One possible projection vector is however to take U such that the SFG is
projected vertically downwards. The resulting SFG is shown in Figure 7.21.
Notice that we do not need switches, again due to the fact that the control
takes care of a proper initialization of the buffers created by the projection.
The nodes shown in Figure 7.21 are similar to those in Figure 7.19, except

126 Examples

c -control

a 2 n . i

' 2 n . l , n

| OUt

Figure 7.20. 3-D regular refinement of factorize

for the fact that they have an extra input and output, as discussed above

7.2 Example 2: Linear Equations Solver 127

and a slightly more complicated control function.

data in

out

Figure 7.21. Partitioning of 3-D regular refinement of factorize

Further partitioning of the SFG shown in Figure 7.21 is possible, but
complicated, due to its triangular form and the fact that control and data
inputs and outputs are located at all boundaries of the SFG.

128 Examples

129

8. Discussion

In this thesis we have outlined a new method for designing implementations
for a wide class of signal processing algorithms on VLSI processor arrays,
such as the wavefront array. The goal of the underlying research was:

• to define a framework for systematically transforming and detailing
algorithms, until a form is reached that can be implemented on a VLSI
processor array without further transformation.

• to develop a set of tools that assist in these transformations, that can
verify the correctness of the various steps and that provide a 'measure'
regarding various design criteria such as efficiency, latency, throughput,
hardware requirements etc.

• to integrate the tools into a design system.

Due to the large scope of the underlying problems, ranging from algorithmic
analysis to issues of software design methodology, database models etc., it
will be clear that this thesis is only a first step. From the point of view of
satisfying all the above requirements, we are aware that we are still a long
way from fulfilling the goals as stated above. We believe however that the
design method outlined in this thesis, which is discussed in chapters four
and five, is adequate, in the sense that it on the one hand provides a
framework for deriving properties of interest of the algorithms being
implemented and on the other hand is a suitable basis for the development
of design tools. The usefulness of the model is also reflected by the
examples discussed in chapter seven. We have shown that, although many
details need to be specified, it is possible to specify the implementation of
non-trivial algorithms in a systematic fashion. The HIFI design method is
however not limited to one particular design style. The generality of the
underlying model ensures that different design styles can be accommodated.

The foremost problem that we have encountered is that, in order for the
design system to be useful, it must be sufficiently general and flexible to
allow definition of all properties that effect the implementation of an

130 Discussion

algorithm. The prototype system that we discussed in chapter six allows
this, mainly because of the flexibility and the powerful user interface
features of the underlying SMALLTALK environment. A strongly related
problem is that of design-data management. This was discussed in chapter
six as well.

In this chapter we will discuss the HIFI method with respect to the goals as
stated above. By identifying the problem areas and by formulating
requirements, we will provide some guidelines for the direction of future
research.

8.1 Computational Model

The model discussed in chapter four supports the HIFI design method, in
that it provides the expressive power and constructs needed in order to
define the two HIFI design steps: refinement and partitioning. The main
feature of the model is that it combines process-oriented modeling, with an
applicative framework for defining the abstraction and decomposition of a
process.

The design process is viewed as consisting of a sequence of refinement and
partitioning steps. The refinement of a function specifies a decomposition
of the function in terms of subfunctions. These subfunctions can
themselves be refined using a top-down design strategy. The decomposition
of a function implies that the data at the function inputs and outputs has to
be decomposed as well. This is specified by means of type-refinements. A
type refinement is a decomposition of a data-type into appropriate subtypes
(cf. section 6.1.4). The decomposition of a function is specified in the form
of a Dependence Graph (DG), that can be partitioned. Whereas a DG can be
viewed as an implementation of a function completely in the 'space' domain,
a partitioning of a DG specifies an implementation of a function both in the
space and time domain (cf. section 4.1). By the process of partitioning a DG
is mapped on a Signal Flow Graph (SFG). Using the HIFI design method, a
refinement will be specified by a DG that contains FNC and DCM nodes.
These node types were defined in section 4.2.3, as specializations of the more
general AST nodes. Since neither FNC nor DCM nodes have an internal

8.1 Computational Model 131

state, we can define a simple procedure for partitioning DG's. To do so, we
first partition the nodes of the DG into disjoint classes {clusters). Each class
can then be mapped on a single SFG node. In case the DG is regular, i.e. if
the nodes of the DG correspond to the grid points of an n-dimensional
Euclidean subspace, the DG classes are implicitly specified by chosing a
projection vector U. All nodes on lines parallel to U belong to the same
class and are projected on a single SFG node. However, due to the fact that
the functions performed by the DG nodes in a single class may be different,
it is necessary that the SFG nodes are able to perform several different
functions. There are several different ways to introduce the control
required to let the nodes select the appropriate function:

• local control: the nodes have the correct schedule "a priori". This was
shown in section 5.2.2, were we partitioned an arbitrary DG. Advantage:

— no control communication required.

— simple.
Disadvantage:

— control is problem size dependent.

— further partitioning is not possible.

• distributed control: control is done by having control tokens traveling
through the SFG. The most common, used in the examples in chapter 7.

There are many more methods for controlling the functions performed by
the nodes in a SFG. One interesting possibility is for example to interleave
the control tokens with the normal data-tokens. This requires that the
nodes are able to distinguish control and data tokens. The advantage is that
a node needs less inputs and outputs. In addition, it may be possible to
reduce the number of control tokens, e.g. by assuming that a node performs
a particular function on all elements of a sequence of input tokens, until it
encounters the next control token. The power of the HIFI model derives in
fact from its ability to express a variety of control mechanisms.

132 Discussion

If the nodes belonging to the same cluster of DG nodes are interconnected,
the partitioning procedure will generate so-called buffers, in order to store
the intermediate values. The collection of buffers and the values they
contain, form the s ta te of the SFG. In order to optimize the SFG, i.e. to
reduce the memory requirements of the algorithm, it may be possible to
reduce the number of buffers. For example, the SFG shown in Figure 5.8
can do with one buffer less the the three indicated, due to the fact that one
of the buffers used to store the output of f j can be reused in order to store
the output of fr

8.1.1 Usefulness of the model for designing Systolic/Wavefront Arrays
The assumption underlying the design method presented here is that any
algorithm that can be implemented on a systolic or wavefront array, can be
designed using the HIFI system. It can be easily seen that the HIFI method
as presented here is indeed capable of designing systolic algorithms. As
shown by Rao [Rao85], there corresponds a set of recurrences, to every
systolic array. The recurrences can be represented by means of a DG. Since
the HIFI method is capable of defining DG's, be it in a slightly different
form as that used by Rao, it will be clear that we can indeed design any
systolic algorithm. The HIFI system can then be seen as an approach
towards embedding the design of systolic algorithms in a framework that
allows specification of DG's using the approach of stepwise refinement of
functional descriptions.

In the case of a wavefront array, we notice that, by a proper choice of
control tokens, the nodes in a SFG can perform any desired function. We
can therefore define a SFG, such that the sequence of control tokens on its
control inputs, will lead to a sequence of data-graphs, that perform the
same computations (function evaluations), as the processors in a wavefront
array, during a single recursion. Moreover, such a SFG can be derived by
defining a DG, consisting of the data-flow graphs stacked on one another.
The dependencies between the different levels of data-flow graphs
correspond to the buffers present in the SFG.

We would like to point out here that in our methodology it is not possible
for a wavefront array to contain delay's. We assume that, prior to the start

8.1 Computational Model 133

of a computation, the array is initialized from the environment. Similarly,
at the end of a computation, all data values in the array are send to the
environment.

&2 Design Tools

The prototype system discussed in chapter six outlines the major tools
required in a HIFI system. Tools are needed to define:

• function descriptions

• refinements

• partitionings

• types

• type refinements

The approach taken there was inspired by the object-oriented way of
developing an application. In order to define objects, we need first model it
by an object type, i.e. a class. The class definition includes methods for
defining and/or modifying all of the objects attributes, and allows creation
of instances;, that can be initialized and modified using the methods defined
in the class. For example, in order to define a FunctionDescription, we need
to define a class FunctionDescription, that allows the attributes of a
function , e.g. its inputs, outputs, refinements etc., to be represented and
defined. It follows that the tools that are needed to define and/or modify
the design objects can be simple. We need a layer that allows the designer
to identify objects and send messages to them. The construction of such
tools is further simplified if a programming environment such as
SMALLTALK is available.

In addition to the tools needed to define design objects, we also need tools to
determine properties of design objects or collections of design objects, or to
verify their consistency. If the designer has freedom in defining the objects
and their attributes, the importance of such tools increases. We can
distinguish three important tools here:

134 Discussion

• to verify the correctness of DG's.

• to verify the correctness of a partitioning.

• to simulate DG's and SFG's.

We have implemented a simulator that can simulate HIFI SFG's [Held87].
This simulator however, has not yet been integrated into the design
environment (cf. section 8.3).

8.3 Design System Integrat ion

A design system becomes much more useful if the tools become part of an
integrated design environment. As discussed in chapter one, a design
environment consists of three parts, respectively (l) the database and
associated database management system, (2) the design tools and (3) the
user interface.

In order to achieve a high level of data-independence of the design tools, the
data model of the DBMS should match with the object-oriented model used
by the design tools. New developments in database models are going in this
direction [Fish87]. In section 6.2 we have identified several problems
related to the implementation of such database systems.

In order for a design environment to be flexible, it is necessary that it can be
extended to provide for the needs of a particular design style. One way of
providing this extension capability is by chosing an object-oriented
programming language as the implementation language of the design system.
Object-oriented languages can be extended easily; one can simply define new
methods and/or classes. The prototype system discussed in chapter 6 is
based on the SMALLTALK language. In order to customize it for the HIFI
system we defined several classes to represent the HIFI design entities.

The biggest advantage of an object-oriented system is that it is possible to
build upon a base of existing functionality and applications. When
implementing complex software systems this capability can be used to let
the capabilities of the design system increase in an evolutionary fashion.
Moreover, the tools necessary to extend the system are provided within the

8.3 Design System Integration 135

design environment.

136 References

References

Abel85. Abelson, H. and Sussman, G., Structure and Interpretation of
Computer Programs, MIT Press (1985).

Anne87. Annevelink, J., "Objective-C IRIS interface," STL-TM-87-15
Hewlett Packard Laboratories (1987).

Anne88. Annevelink, J. and Dewilde, P., "Object Oriented Data
Management based on Abstract Data-types," Software Practice and
Experience (to appear), (1988).

Back78. Backus, J., "Can Programming be Liberated from the Von
Neumann Style? A Functional Style and its Algebra of Programs,"
Comm. ACM 21 pp. 613-641 (August 1978).

Beck80. Beekman, F., Mathematical Foundations of Programming, Addison
Wesley Systems Programming Series (1980).

Bout86. Boute, R., "System Semantics and Formal Circuit Description,"
IEEE Trans, on Circuits and Systems 33(12) pp. 1219-1231 (December
1986).

Chen83. Chen, M.C., "Space-Time Algorithms: Semantics and
Methodology," Ph.D. Thesis, Cal. Inst. of Technology (1983).

Cox86. Cox, Brad J., Object Oriented Programming: An Evolutionary
Approach, Addison Wesley (1986).

Crem76. Cremers, A. and Hibbard, T., "Formal Modeling of Virtual
Machines," IEEE Trans, on Software Engineering, (1976).

Crem85. Cremers, A. and Hibbard, T., "Executable Specification of
Concurrent Algorithms in terms of Applicative Dataspace Notation,"
in VLSI and Modern Signal Processing, ed. S.Y. Kung, H.J.
Whitehouse, T. Kailath, Prentice Hall (1985).

References 137

Date81. Date, C.J., An Introduction to Database Systems, Addison-Wesley
Systems Programming Series (1981).

Depr84. Deprettere, E.F., Dewilde, P., and Udo, R., "Pipelined cordic
architectures for fast VLSI filtering and array processing," Proc. IEEE
Int. Conf. Acoust., Speech. Signal Processing, pp. 41A6.1-41A6.4
(March 1984).

Dewi86. Dewilde, P. ed., The Integrated Circuit Design Book, Delft
University Press, Delft, The Netherlands (1986).

Fadd59. Faddeeva, V.N., Computational Methods in Linear Algebra, Dover
publ. , New York (1959).

Fish87. D. Fishman, "IRIS: An Object-Oriented DBMS," ACM Trans, on
Office Information Systems, (April 1987).

Gajs83. Gajski, D.D. and Kuhn, R.H., "Guest Editor's Introduction: New
VLSI Design Tools," IEEE Computer 16(12)(1983).

Gal-82. Gal-Ezer, R., "The Wavefront Array Processor and its
Applications," PhD Thesis, University of Southern California (Dec.
1982).

Gold83. Goldberg, A., Robson, D., and Ingalls, D.H., Smalltalk-80: The
Language and Its Implementation, Addison Wesley, Massachusetts
01867(1983).

Gold84. Goldberg, A., Smalltalk-80: The Interactive Programming
Environment, Addison Wesley, Massachusetts 01867 (1984).

Guer85. Guernic, P. Le, Benveniste, A., Bournai, P., and Gautier, T.,
"SIGNAL: A Data-Flow Oriented Language for Signal Processing,"
Publication # 246, IRISA , Rennes, France (January 1985).

Held87. Held, P., "SYSSIM: A Functional Simulator for SFG's," MSc
Thesis, Delft University of Technology (1987).

Hilf85. Hilfinger, P.N., "A High-level Language and Silicon Compiler for
Digital Signal Processing," IEEE Custom Integrated Circuit Conference,

138 References

pp. 213-216(1985).

Hoar85. Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall
(1985).

Inte86. , "iPSC: Intel Personal Supercomputer," Intel product information
(1986).

Inmo86. , "Inmos IMS T424 Transputer," Inmos product information
(1986).

Jain86. Jainandunsing, K., "Optimal Partitioning Schemes for
Wavefront/Systolic Array Processors," Proc. IEEE Intl. Con/, on
Circuits and Systems, pp. 940-943 (May 1986).

Jain86a. Jainandunsing, K. and Deprettere, Ed. F., "A novel VLSI System
of Linear Equations Solver for real-time Signal Processing," SPIE
Symp. on Optical and Optoelectronic Applied Science and Engineering,
(Aug. 1986).

Jone86. Jones, G. and Luk, W., "Exploring Design by Circuit
Transformation ," pp. 91-98 in Systolic Arrays, ed. W. Moore et.al.,
Adam Hilger, Oxford (U.K.) (July 1986).

Kung79. Kung, H.T. and Leiserson, C , "Systolic Array (for VLSI)," Sparse
Matrix Proc. , pp. 256-282 (1979).

Kung82. Kung, S.Y., Arun, K.S., and Gal-Ezer, R., "Wavefront Array
Processor: Language, Architecture and Applications," IEEE Trans, on
Computers 3 l (l l) (l 9 8 2) .

Kung83. Kung, S.Y. and Annevelink, J., "VLSI Design for Massively
Parallel Array Processors," Microsystems and Microcomputers 7 pp.
461-468 (December 1983).

Kung84a. Kung, S.Y., Lo, S.C., and Annevelink, J., "Temporal Localization
and Systolization of SFG Computing Networks," Proc. SPIE, (August
1984).

References 139

Kung84. Kung, S.Y., "On Supercomputing with Systolic/Wavefront Array
Processors," Proceedings IEEE 72(July 1984).

Kung86. Kung, S.Y., "VLSI Array Processors," in Systolic Arrays, ed. W.
Moore et.al., Adam Hilger, Oxford (U.K.) (July 1986).

Kung87. Kung, S.Y., VLSI Array Processors, Prentice Hall (1987).

Me?.d80. Mead, C. and Con way, L., Introduction to VLSI Systems , Addison
Wesley, Reading MA (1980).

Mold86. Moldovan, D. and Fortes, J.A.B., "Partitioning and Mapping
Algorithms into Fixed Size Systolic Arrays," IEEE Trans, on
Computers C-35(l) pp. 1-12 (Jan. 1986).

Neli86. Nelis, H., Jainandunsing, K., and Deprettere, Ed. F., "Automatic
Design and Partitioning of Systolic Arrays," Tech. Report, Dept. of EE,
Delft Univ. of Technology, (August 1986).

Pete81. Peterson, J.L., Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs (1981).

Raba85. Rabaey, J.M., Pope, S.P., and Broderson, R.W., "An Integrated
Automated Layout Generation System for Digital Signal Processing,"
IEEE Custom Integrated Circuit Conference, (1985).

Ramm87. Rammig, F.J., Design Languages: Concepts and Examples,
University of Paderborn (1987).

Rao85. Rao, Sailesh K., "Regular Iterative Algorithms and their
Implementations on Processor Arrays," PhD Thesis, Information
Systems Lab, Stanford, California (Oct. 1985).

Shee83. Sheeran, Mary, "/xFP - An Algebraic VLSI Design Language,"
Technical Monograph PRG-39, Oxford University (1983).

Sim87. Sim, M., "Object Oriented Data Management," MSc Thesis, Delft
University of Technology (1987).

140 References

Vold59. Volder, J.E., "The CORDIC trigonometric computing technique,"
I RE Trans. Electronic Computers EC-8 pp. 330-334 (Sep. 1959).

Wilk.71. Wilkinson, J.H. and Reinsch, C , Linear Algebra, Springer Verlag,
New York. (1971).

Youn87. Young, C , "Realtime Measurements Graphics (RMG)," Private
Communication (1987).

- 1 4 1 - Appendix A

VLSI design for massively
parallel signal processors
Recursiveness and locality in signal processing algorithms can be handled
wi th VLSI. S Y Kung and Jurgen Annevelink* review the effects of VLSI
technology and layout design on processor architectures

In modern signal processing, there are increasing demands
for large-volume and high-speed compulations. At the same
time, VLSI has had a noticeable effect on srgnal processing
by offering almost unlimited computing hardware at low
cost. These factors combined have affected markedly the
rapid upgrading of cufrent signal processors. We review the
influence of the basic VLSI device technology and layout
design on VLSI processor architectures. The array processors
in which we take special interest are those for the common
primitives needed m signal processing algorithms suchos
convolution, tast Fourier transforms and matrix operations.
Regarding VLSI devices, special emphasis is placed on
alleviating the burden of global interconnection and global
synchronization. For cost-etlective design, programmable
processor modules aft adopted. On the basis of these guide
lines, we establish the algorithmic and architectural fooling
for the evolution of the design of VLSI array processors.
We note that the systolic and wavefront arrays elegantly
avoid global interconnection by effectively managing local
data movements. Moreover, the asynchronous data-driven
nature of the wavetront array offers a natural solution to
get around the global synchronization problem. The wave-
Iront notion lends itself to a wavefront language (matrix
dataflow language (MDFL)) which simplifies the description
of parallel algorithms.

micropfocctson «rn* l proeeulng p i r i i ' r l «l|onfhm*

The ever-increasing demands for high-performance and real
t ime signal processing necessitate large compu la t ion
capabil i t ies, in terms of both volume and speed Therefore
the realisation of many modern signal processing methods
depends cr i t ical ly on high-speed comput ing hardware. The
availabil i ty of low-cost high-density fast V L S I devices
makes highspeed parallel processing of large volumes of
data practical and cost-ef fect ive ' . This presages major
technological oreakihroughs in realt ime signal processing
applications. However, the fu l l potent ia l o f VLSI can be
realized only when its appl icat ion domains .are discrimina
t ingly ident i f ied. Tradit ional computer architecture design
considerations are no longer adequate for the design of
highly concurrent VLSI comput ing processors.

For an example of new VLSI design principles, high
layout and design costs suggest the use of a repetit ive
modular structure. Fur thermore, the communicat ion has to

DcpJMmcnt ui ElCCfflC*! Engineering. Univeisilv u ' Southern
Cj l i fo im*, l o t Angelei, C A 90089, USA
•Depmment ol Electrical Engineering, Dcil i Univcrtiiy of
Technology. OelM, Netheilano»

be restricted to localised interconnect ions, as communica
tion in VLSI systems is veiy expensive in lerms o l area,
power and t ime c o n s u m p t i o n ' . A broad and fundamental
understanding of Ihe elfects of VLSI technology hinges on
crossdisciplinary research encompassing the areas of algo
r i thm analysis, parallel computer design, system applica
t ions, VLSI layout methodology and device technology.

Our objective is to introduce an integrated research
approach to incorporate Ihe vast V L S I computat ional
capabil i ty in to modern signal processing applications. This
should help to shorten the design gap between signal
processing theory/a lgor i thm and V L S I processor architec
ture/ implementat ion. We star t , in Ihe next two sections,
w i th a discussion of MOS device technology and VLSI
hierarchical design methodology. We then summarize ihcir
ni-iiuf influences on processor architecture design. In the
same section we discuss the decomposit ion of (signal
processing) algorithms via the concept o f a compuia l ional
wjvt- t f i .n l This lejds to Ihe systolic- and wavetront- type
array architectures. A wavefronl programming language
(matrix dataflow language (M D F L)) is introduced and the
applications of ihe systolic and wavetront arrays (o signal
processing are discussed. Finally we propose future
advances in array processor designs.

V L S I D E V I C E T E C H N O L O G Y

Computer technology has been strongly inf luenced by ihe
technology of device implementat ion. Un i i l the mid-1960s
most signal processing was performed w i th specialized
analogue processors because o l the complex hardware, the
power consumption and the lower speed of conventional
digital systems. Today's V L S I o t f e ' samuCh greater density
of components, higher speed and lower power use lhan
those o f most leading analogue devices. In order i o under
siand ful ly ihe el feci of V L S I on computer technology, it is
necessary to examine the characteristics o f the device
technology.

M O S b u i l d i n g b l o c k s

MOS circuits are typical ly made of n-channcl enhancement
and deplet ion transistors (NMOS(or n<hannel and
p-channef enhancement transistors (CMOSI. The basic MOS
bui ld ing b lock is the inverter c i rcu i t . Figure 1 shows Ihe
basic NMOS and CMOS su i te inverter structure. Usually
the transistor connected to ground is referred io as the pul l
down transistor, whi le the transistor connected to V^a is
referred i o as the pul lup transistor. The pul lup transistor in
Ihe NMOS inverter is a deplet ion mode transistor, ie i t wi l l
always be on. The pul lup transistor o f ihe CMOS inverter

vol 7no Wdecember 1983 0 1 4 1 - 9 3 3 1 / 8 3 / 1 0 0 4 6 1 - 0 8 J 0 3 . 0 0 © 1983 But ie rwor th & Co (Publishers) L i d 461

http://wjvt-tfi.nl

Appendix A - 142 -

W«S-J«p*>w «xM '3*05 «»i« « w i »
votK mertu

F"/j/We 7 tfuwt VOS inverter uructu/e

' i / Figure 11 isa p- t funncl enhancement typ*;; <I # j
on ly when the voltage at the gate is luw wfl f l (expect :■> Ihe
•ullages J I tbc dram and |ourc«

dcdes ignot a i ta l i c NMOS Inverter the ispec*. ratio,
defined as the uuut ien i of J E J n i J ^ U . I S J n l f " P o f U n t
parameter. {Since d ■ | W / t) | f „ true aspect ratio i t »implv
the quotient o l the lV ; t ratios 0 ' the enhancement anJ
dep lc twr transistor , To ensure lhat the 'ow output VOÏUge
o l 'he inverter is Selow the threshold voltage o* Hie
enhancement transistor. Ihe aspect ratio m u i be around 1
In (hit caie Ihe output o l the inverter can be used to u "vc
the m p u l o f the ne«t inverter

The ou tpu t vo l ta ic o l the CMOS inverter c m be '.hanged
Iron I .; to / . . i independently o l the n /e of the p ' t h j n n e l
j n d n-channcl i f ansistor. However, t t ic area necessary to lay
o u t .1 CMOS circuit is Ur^cr than that for j corresponding
NMl s n-crtcr . Occauve ot the space needed for the we' l l
to make bo th n-^hannel and p t h a n n e l transistors tn the
same substrate. I A well is an n-tvpe or p t y p e d i l lus ion
region, u>ed to make p-channel or n-channcl iransislurs m a
p-type or n-iype substrate respeclively. I

Krom the basic inverter Circuit we can derive the moTC
complex logic funct ions. Fo r example , b v replacing the pu l l
down t r ans i t o * o l the NMOS inverter by a serial and
parallel combinat ion o l enhancement transistors we can
form i n y desired logic lunc t ion .

Power d i f i i pa i ion
A major Jt l lerencc between NMOS and CMOS is the power
dissipation. A CMOS inverter draws power only in a
:r jnsient cond i t ion , because ihe gales tor the p* and n-
channel ifJnsislo<s i f Figure I) are directly connected.
This implies that normally only one o l the transistors wi l l
he Oft. fhus the major power Lonsumpl iun is pFOpori
lo the switching frequency. A n NMOS inverter, m contrast*
draws power whenever the pu l ldown transistor is conduct ing
Since j typical NMOS circuit wil l on ati-rage have '
us gates on, it wil l draw orders of "magnitude more power
man an otherwise comparable CMOS c r t u i l

Scaling
Scaling o l 'he technology, ic 'educing the m in imum feature
sue, is the dr iv ing lorce behind the increase tn the device
(entity o ' integrated circuits in the past HJ years. Hem

with increasing device densities the Side effects u l «.alms;
n "Cfc jungly muie cr i t ica l . One sucn elfect is the

increased impoi lance o l the interconnect ion de!av <n (he
lUbflllCrort technology. the interconnect ion d i | .
Income comparaole wi th or even greater thai ' the switching
delay o l the logic gates. This is because the line respond
t ime RC i> unchanged by scaling wf l i le the switching speed
0) the logic gates s scaled down by* J factor * when the

power suppW is also decease I ng speed is
decreased py * 'actor * J while !hc Dowe' supply voltage
remains constant.J Moreover, if the average interconnect ion
length is no l scaled d o w n b v ' h e sa " ' ' 'actor A Ihe

on delay ma . even Increase, further J ïguva tmg the
s i tuat ion. \\\ should be noted here thai)ur typical VLSI
Circuit* the average interconnect ion length does not scale
down by a 'ac to r ^ hecausc a large r . "
l ions st i l l haws to a is the el I n

VLSI LAYOUT DESIGN METHODOLOGY
AND CAD TOOLS
V L S I design differs f rom exf t t in f hardware -r. | tof iwarc
design m that lavout Considerations J'C more Important
uncc the layout altecis the interconnection lengths and
hence both :"e Coil Jnd pe ' tormante [O the last ttt I
o l the result ing circuit Hence Hoorbtanmng is an important
aspect u i VLSI design Another maiur concern ' i ' .
design i» she c o m p l e x l y associated w i th designing j

ÏOOOO devii.es 'as in tuduy s lecttl i rfy
even up to ' M Jevn.es m the fu ture l o Cope w i th ihis
complexi ty J hierarchical design methudulogs s ai rttal
importance We first review ihe concepts ■•(' l i ^ r p u n n m i f
and di f ferent descript ion levels, which constitute the main
body o l the hier jrchiLal design met ' io. :
.: si-.iss :hc CALï!ooi>, espec:j l> sn ' i . and . " ' i t a t i üh
programs, developed lo assist designers.

H i e r a r c h i c a l des ign m e t h o d o l o g y

Descript ion leveli
l o keep the design descript ion comprehensible i t is neces
sary to introduce different levels o f system description
Usually we consider lour description

• architectural level
• register/logic level
• electr ical/circuit level
• ge'imetriC.' i jyouf level

The mainr compl icat ion wi i f i
is tha i all the levels wi l l he i n t o - ■ E . J ' .
clear HI teal t e l l design, which combines electric transistor
circuit design and layout design rtVtC *w-. cse's are

i u i separate because the pWiMt i c i i ha [a l fec t the
electrical behaviour depend strongly on ihe layout dcMgn

Floorplanninq
1 he i tnp. i r ta ' i i -cül (loorplannmg»tems Irom if'e impu ' t ^ i Le

i! turlologY opt imizat ion, lather than local up im iua -
!n.i,s. t.ir teaching a high device deus '
interconnections. In general ' t is nc^ I W U p a
K(H«pIan at the ear tcs: sUge. ie ha>cd ur. ■[■
speci f icat ion ' This Moorpl jn snoaid be 'used on ihe best

: on u> ihe si/cs and shapes o ' ' l i e main 'uncbunal
blocks and, j t the same t ime, take in to accuufll theu " ier
Connections J ° d CunSldei Ihe d is ln t iu t ion .jt the power j n j
clock Imes. This is o l ten a ve'> demanding las»., regmnng i
broad knowledge u l VLSI design

In general " ' e Iluuf planning is j l»o done hieraichu
For instance '-he init ial ' footplan coriiains " ioc»s repr<
nig lunc i ionv such as datapath, control and mcrnui v
^ulneuucni ly Ihe Huurplan» .. l :hrs.' . • > j r c

drawn I h c y '" tun .«.ks. eg the datapath
con i isn o l a 'egister MoCfc, dn arithmetic <ygic unit block
etc. Tlie important thmg here is tha i the '»uie detailed

■ ' . mn'opructivn jna miCTOtysfemS

http://devii.es
http://Jevn.es

-143-

f loorplans must adhere to the iopotogic.i l constraints
i inpo«-i i (iv the higher-level Huurplan*.

The complex i ty " I the V L S I design depends vcrv much
un " o w i design can he decomposed in io lower-level blocks
and on ine numoer oJ different blocks. A good design relies
Oil J clear jnct icgul j f f loorplan and welt def ined interlaces
between the funct ional nlocks lo achieve b o i h a sho ' i
design l ime and a high device density. In a pure lop -down
design strategy, we use successively lower-level descript ion
languages l o describe funct ional blocks in a successively
more refined f loorplan. In praence this may not be
effect ive. lor instance. in an early phase o l the design we
may need to know wncther a certain topo logy is in laci
realizable. In that case we may need to have the more
detailed tjower-level) knowledge lor that par : o l the design.
hi other WOrdS, tn - i f f . e at j n opt imal design it r i inevitable
that we use an ttcfattunal t o p - d o w n / h u l t o m u p design
sltatcgv

CAD tools
Relative to today's C A D needs, C A D tools (or V L S I design
arc very much in a rudimentary stage o t development. M in t
Ol these tools still require extensive interact ion between the
C A D sofware developer* and the VLSI hardware designers.
However, ihe actual process of designing the layout o l a
VLSI chip is lair ly well supported at the moment . Inter
active layout editors and design rule checker* relieve the
designer Mom most ut the tedious work o f speci fy ing and
checking ihe layout

Another area in which C A D programs are relatively
frequently used is tha i of simulat ion and ver i f icat ion.
Below we briefly describe some of these programs.

Architectural s imulat ion
One o l the ma|or tools m use for archi tectural s imulat ion is
the instruction set processor specif icat ion (ISPS) simulator
This tool is based on the ISPS descr ipt ion language. ISPS
describes the external structure and the behaviour of hard
ware uni ts . The behavioural aspects are described by proce
dures, so lhat many o ' the structured programming tech
niques developed tor high-level programming languages can
be put t o use in digital hardware design. An overview of the
ISPS notat ion and its applications rias oeen given by
Barbacci*

Regular tr a n i t e»/logic s imulat ion
A registef transfer language is used to describe the actual
hardware in terms of registers, as well as dataf lows and
operations on data neiween registers. A very useful type o f
simulator results when the register transfer s imulat ion is
combined w i th more detailed gate-level s imu la t ion . A n
example of such a 'mixed-mode' simulator is RTs im* . This
simulator combines register transfer s imulat ion w i th switch-
level simulation by al lowing the replacement o l a func
t ional uni t by a transistor network . The switch level concept,
developed by Bryant * , allows the model l ing of the bidirec
t ional pass transistor. Switch-level simulators are of ten used
in MOS circuit design since they combine ef f ic iency w i th
detailed gate-level s imulat ion.

Circui t s imulat ion
The circuit s imulat ion program Spice is w ide ly used, in
both industries and universities, lor the s imula t ion o l
electrical circuits. Spice computes the voltages and currents
m an electrical circuit wi th a precision belter lhan 0 . 1 % .

vol 7 no 10 december 1983

Appendix A

However, this high precision (due to Ihe precise model l ing
o l the Circuit elements) means (Hat we cannot simulate
mu 'c than between _'0U and 50U transistors at once.

DESIGN OF VLSI ARRAY PROCESSORS:
ALGORITHM. ARCHITECTURE AND
LANGUAGE
Although there iMvc been major advances in VLSI device
technology, the mam thrust o l VLSI depends cr i t ical ly CM
novel architectural designs. V L S I technology makes
possible the realization of supercomputer systems as well as
special purpose array processors, capable of processing
thousands of operations or Moating point operations per
second. In order lo achieve such increases in throughput
rate, the only effective so lu i ion appears to be massively
parallel array processors.

I n f l u e n c e o f d e v i c e t e c h n o l o g y a n d l a y o u t d e s i g n

o n V L S I a r c h i t e c t u r e

A n array processor is composed of an array of processor
elements which are interconnected direct ly or indirect ly
The design of special-purpose array processors should be
based un the potent ia l u l the VLSI device technology and
design methodology and the constraints imposed by them.
Ihe key aspects to consider J I C

• interconnect ion
• system clocking
• modularity
• programmabi l l tv

Interconnect ion)
Opt imiza t ion o l the interconnect ion patterns (between the
processor elements) is a key to the lul l realization of VLSI
comput ing power. There are several important aspects o l
VLSI interconnect ions.

LocJf communications. Interconnections in VLSI systems
are implemented in a two-dimensional circuit layout w i th
lew crossover layers. Tl icrelore communicat ion has to be
(estricted to localized interconnections ' .

Scaling effect. When the technology is scaled down we must
'•e able to scale down the interconnections by the same
facto ' . Otherwise the RC line delay wi l l l imi t the perfor
mance o l the system U'. the section on VLSI device tech
nology).

Static versus reconfigurable interconnections. For signal
processing array processors, a static m j p p i n g o l activities
o n t o processors may piove more eff icient and COft-effectivti
w i thout creating an undue loss o f l lex ib i l i l y . However,
reconfigurable interconnections can be used to improve the
fault tolerance o l the system.

Systam clocking
1 he t iming framework is a very crit ical issue in designing
the system, especially lor large-scale computat ional tasks
T w o opposite l im ing schemes come to m i n d , namely the
synchronous and the asynchronous t iming approaches. In
the synchronous scheme, there is a global clock network
which distributes the c lock ing signals over the entire ch ip .
Ihe asynchronous scheme can he implemented by means -.'
a umple Handshaking p l o l o c o l . For large-scale systems the
•Synchronous scheme is clearly desirable ' .

463

http://iopotogic.il

Appendix A - 144-

Modular i ty
Large Jesign and layOul coi l» suggest the use of a 'CDetilive
moJu l j r vtructure. f o implement (he module* we want to
nuke 'icst u « o l the device technology Thus we have 10
ident i ty the pr imi t ive* that can he implemented ef f ic ient ly
I he complexi ty o l the primit ives depends on 4 number ut
lactors. eg pr ior design experience (the basic t e l l l ibrary)
and available C A D tools leg 2 programmable logic array
generator}. In designing the primit ives we i r v to f ind simple
and regular structures wi th a f lexible topology that are easy
to f i t in the design. I i is of ten less expensive m terms ol
area, delay and power dissipation to implement * general
' unc i ' on than to implement a specific func t ion , while i t a
general ' unc t ion can he implemented the details o t its
operat ion can be lelt unbound t i l l la ter , providing j much
-leaner design interface.

P r o g n m m i b i l i t y
In add i t ion , i t i l very important to make a processor
programmable so that the high design cost may be amort i /ed
over a broader market basis. However, there is a tradeoff
between the f lex ib i l i ty ot a processor and its hardware
. omp l cx i t y . From a lop-down point of view, we should
exploi t the facl tha i a great maior i ty of signal processing
algor i thms possess a recursiveness and locali ty propelt>
Uf. ihe next subsectionl Indeed, a rnaior part of ihe
computat ional needs for signal processing and applied
mathematical problems can be reduced to a basic set of
matr ix operations and other related algori thms* This
commonal i ty can be ident i f ied and then explo i ted to
>impli ly the hardware and vet retain most o l the desired
f lex ib i l i ty

Pa ra l l e l a l g o r i t h m ana lys is

To explo i t effectively the potential concurrency present in
many modern signal processing algori thms, a new a lgunr :
mic design methodology is needed. Concurrency is ^ t t cn
achieved by decomposing a problem in to independent sub-
problems or in to pipelined subtasKs m d vanes signif icantly
among di f ferent techniques. A n effective algori thm design
thou ld start wi th a fu l l understanding of the problem speci
fication, signal mathematical analysis, (parallel and opt imal)
algorithmic analysis, and then mapping of algori thms in to
suitaole architectures. The effectiveness of (static) mapping
of activities on to a piocessor array is directly related to the
dccurnposabil i ly ot an a lgor i thm. Moreover, the preference
for regularity and locali ty wi l l have a major influence n
deriving parallel and pipelined a lgor i thm* In our wo rk , the
two most Critical issues - parallel comput ing algorithms
and VLSI architectural constraints - are considered

• to structure the algori thm to achieve the m a x i m a
Current) i n d therefore ihe max imum throughput rate

• to cope wi th the communicat ion constraint so as l o have
the best range ul processing th roughput rales

To conform with the constraints imposed by V L S I , we now
took in to a special class o l a lgor i thms, ic recursive and

1 l ' iJaul dependent algorithms. ' I n a recursive algo
r i t h m , all processors do near'y identical task* and each
processor repeats a f ixed set o f tasks on sequentially
available data I A recursive algori thm is said to be la
the space index separations incurred in two successive
recursions are wi th in a given l imi t Otherwise, it the
recursion involves globally separated mdices, the algori thm
'S >jn: 10 be global and it w i l l always call for globally inter
connected comput ing structures.

However, the assumption of recursive and locally data-
dependent a lgu 'M' im* incurs IjtfJc loss o l ^ d e r a t i l y . as a
great maior i ty o l signal proccv US possess these
properties. One typical example 1 4 das* o l matr ix .
n thms . which are most useful lor signal processing and
applied mathematical p rob l v " ' J< wavcirunt
comput ing originates f r o m algori thmic an j i vus . it wi l l lead
to a coordinated language and architecture design '
the algori thmic analysis u f . >Jv. the matr ix mul t ip l icat ion
operations wi l l lead first to a not ion of two dimensional
Lomputanonal wavefronts.

We shall i l lustrate Ihe algori thmic analysis
wavefront concept and a coordinated architecture and
language design ay means o l ■ matr ix mul t ip l ica t ion
example. Let

A = ! * / , |

e = iM
and

C ; A « B
all be N * ,V matuces. The matr ix A can be Jecomposcd

limns A, and the matr ix 8 in to i uw \ B. Increh j fc

C * | A | B i • A Ï 8 Ï * * A v B . v |

The matr ix mul t ip l icat ion can then be carried 0U1

recursions

J , 1 " ■ » »

for A* : 1,2. , rV, j n d V vets •>' wavefronts are involved.

Pipelining of computat ional wavefronts
The computat ional wavefront for ;hc ' irst 'ecursion n
matr ix mul t ip l ica t ion is now examined

A g e n c i l conf igurat ion uf computat ional wavefronts
travelling down a processor array i \ shown in F gore J. The
waveffonts are similar t o electromagnetic wavefronts '"ach
processor acts as a secondary source and is 'opunstb le for
the propagation of the wa»el 'un i pipelining ul 'he wave

y « » . " i o * i M

Fiqttre2 Two-dimensional wayelfOtH array \ ••-,;
".w < ■■• \tcorni « (/ i r . &, unit t:mt or data transfer; T
umt time of iirithmtlit operation}

mteroproctstortena • 1 'Oiyittmi

file:///tcorni

-145- Appendix A

fronts is (easiblc because the wavet ron i t of two successive
recursion* wi l l nevi-r intersect iHuygcns' wavel ront pr inc ip le] ,
J> the processors execut ing Ihc recursions a t any given
instanl wi l l be d i l l e ren t , thus avoiding any content ion
problems. Wc note thai the correctness u l the sequencing of
the tasks in the indiv idual processor elements is essential lor
Ihc wavelront pr inc ip le.

Suppose that the registers of all the processing elements
are in i t ia l ly set lo zero, ie

- U f o r a l U ,

The entries ot A are stored in the memory modules to the
left (in co lumns) , and those o l 13 in the memory modules on
the top (in rows). The process starts w i th processor element
11.11

is computed. The computat ional activity then propagates I O
the neighbouring processor elements (1 . 2) and (2 . I) , wh ich
execute in pa'allel

and

«$?««»♦«»*..
The next front ot act iv i ty wi l l be at processor elements
(3 . I) . (2 , 2) and (l , 3) , thus creating a computat ional wave-
front travell ing d o w n the processor array I t should be noted
thai wave propagation implies localized dataf low Once the
wavelront sweeps through all the cells, the first recursion is
over [tf Figure 2) .

As the ' irst wave propagates, we can execute in identical
second recursion in parallel by pipel in ing a second wavefront
immediately after the lirst one For example, the [ij)
processor wi l l execute

and so o n . It is possible to have several d i f ferent kinds o l
wavelront propagation. The on ly cr i t ical (actor is that the
order of task sequencing must be correct ly fo l lowed.

S y s t o l i c a r r a y

Systolic processors9,10 are a new class of d ig i ta l architectures
that offers a new dimension o f paral lel ism. The pr incip le o f
systolic structure is an extension of p ipel in ing i n to more
than one dimension. Accord ing to K u n g a n d Leiserson9 . 'a
systolic system is a network o f processors wh ich rhy thmi
cally compute and pass data through the system. ' For
example, they showed that some basic ' inner p roduct '
processor elements I Y - Y • A ■ B) can be local ly connected
to per fo rm finite impulse response fi l tering, similarly to the
transversal f i l ter . Furthermore, two-dimensional systolic
arrays (o f ihe inner product processor elements) can be
constructed to execute ef f ic ient ly matr ix mu l t i p l i ca t ion ,
logical unit decomposit ion and other matr ix operations.

The basic principle of systolic design is that all the data,
while being 'pumped ' regularly and rhythmica l ly across the
array, can be effectively used in all the processor elements.
The systolic array features the important propert ies of
modular i ty) regular i ty, local in terconnect ion, and highly
pipelined highly synchronized mult iprocessing.

A detailed descript ion of data movements and computa
tions in a systolic array is of ten furnished in terms of
'snapshots' o l the activities. For the matr ix mu l t ip l i ca t ion
example, the input data (I rom matrices A and B) is pre
arranged in an order ly sequence. The ou tpu t data (ot the
matr ix C) is pumped I rom the other side of the array, meet-

vol 7 no W december 1983

mg the right data and col lect ing all the desired 'products ' .
For more details, the reader >s referred to the articles by
Kungand Leiserson* ' '0 .

However, there arc several unresolved controversial i»sues
regarding systolic arrays. First , (pure) systolic array* tend
to equalize the t ime uni ts for different operations. As an
example, fo* 'he convo lu t ion systolic arrays in Kung and
LeisL'son's w o r k * a local daia transfer causes Ihe same t ime
delay as a mu l t i p l y and add, ic one lu l l l ime u n i t . This
of ten 'esults m unnecessary waste of processing l ime , since
the data transfer t ime needed is almost negligible. This
motivates what we have called mul t i ra te systolic a r rays "
More cr i t ica l ly , ihe systolic array requires global synchroni
zat ion , ic global clock d is t r ibu t ion. This may cause clock-
skew problems m implementat ions of high-order VLSI
systems Another issue <if concern iscase of programmabi lny
for complex dataf lows in >ystolic-type arrays. These prob
lems gave rise to the not ion o l a wavefront a r ray 1 3 , based
o n asynchronous data-driven schemes in dataf low machines.

W a v e f r o n t a r r a y

A wavelront array is a programmable array processor11 . I t
differs I rom a systolic array :n that the data communicat ion
between adjacent processors is asynchronous. Thus i t c o m
bines Ihe asynchronous data-driven properties o f dataf low
machines w i th the regulari ty, modular i ty and local com
municat ion properties o l sysiolic arrays. There are at least
Iwod is t inc t advantages associated w i th ihe wavelront array

• The wavefront architecture circumvents the need for
global synchronizat ion.

• The wavelront language MDF L otters an effective space-
t ime programming language.

Array s u e : A f x rV
Computa t ion : C - A x B

A , h wavefront : if) = c[*~X) * alk b„,
M l . /V

Init ial Matr ix A is stored (row by row) in the memory
module on ihe lef t

Matr ix B is stored (column b y co lumn) in the
memory module on the top

Final : The result is in the C registers

begin
set.count N ;
repeal

while wavefront i n array do
begin

(etch B. UP;
fetch A . L E F T ;
C = O A ' B ;
f l ow A , R I G H T ;
f low B, DOWN;
move R, D;

end

decrement, coun t ;
unt i l terminated;

end

Figure 3. Example ot MDFL program lot matrix
multiplication

465

Appendix A - 146-

Wivtfronl language
The wavelront notion helot greatly to reduce ihe complexity
in the description ol parjilel jiitori'.hrm. The mecluntsm
provided ''ir Ü1H Jeiuionon <s the specul-purpo^e
wjvc'ront-orienicd Ijngujge termed MOFL ' 'ic «J .C
'I.H'1 Ijnguige i) Uilgted towards Itic description ol
compuuiion.il wavelronts and the corresponding dju l luw
in J Urge CIJSS of jtttori trims lwhu.fi exhibit Iht recui • ■
jnd locality mentioned earlier:. Rj l f t t l thin 'MJUB

pfocnm for cacti processot ■■■ *s tne
piogrjmmer la idd'ev» iq «II re ffOfll ■•' processor* In
contrut with the heavy burden ui kCheuuiing, resource
thai nj i'ui conirol ol processor nieraci ons Itui s uiten
encountered in programming j ijer-erji purpose multi
processor mc wavelronl notion cm ' j . iutc the iM
lion ol pjfjl lcl .ind pipe'med i 'noftnn» jr : j .
'educe tnc-^nipicMtvoi par; ig l"o translate
the giohj. MDf L into instructions l«i the process d<

f

5

3

£

T"
i
1
3

E
3

n

^

H 0
• f
P ° o g
r r
1]

p ™
o r
g 0
f U
0 0

i f
n

• Q

0

1

: a
■

i
i

1 H A M bon»

i 0
i

:, d
1
r

I/O p a d » u p

1
R A M bank

1

R A M bank

2
R A M b o n .

J

R O M
p r o g r a m
•nemory

R O M

p r o g r a m
com" rol

t i • * i
M e m o r y s u t l e r * a n d ■ • n i l a m p l i f i e r

M u l t i p l i e r a n d T « ~ ..- , D m

'
o c m n 9

"

I / O
p a d s

M l

I / O c o n t r o l
Up. M l)

t
M e m o r y data reg is ter

■

—•>

J
i n * U u c f i o n r e g u l a r

t

O e c o d e r

101B. .*
I 11
1 1 1

I / O

buffet
l

(o p . « I D

I I I 1

liilJ
8 u i

4

I I 1 !
Counror

I
. 1

R * g i « l * r
M e

* I

1 l i

' i ' h m i ' i c 'ogre unit fofeft Cdu nter

X i,U,WM

B a r r e l
■hif far

In
A

- •■

A n t h .
m e t i c

' s j o g i e
> u n i l

_y i
Hi
8

/

T

J
u 1

■ -

r
r t l
•
a
J
1

V —* H
r / r \

j

■ .

1 1 1
I / O

fcjler ^

fóo»n,
n g w j

' 1 i
1 I l

If

I / O
o a d i

r igh t

I / O contro l
! f l o * i \ r»gnt»

, 1

Fiaure 4. Functional O/otfr diagram

-M ;r'K3'ï jntf rnt, I

http://compuuiion.il
http://lwhu.fi

- 147 - Appendix A

I preprocessor is needed. For J wavefront a r r j y ihe design
o l such J preprocessor is relatively easy since wc do n o l
have lo consider the t iming problems associated w i th the
synchronous systolic array.

A n example o f an M D F L program lor mat r i x mult ip l ica
t ion on a wavefronl array is given in Figure 3. This example
clearly illustrates the simpl ic i ty uf the resul t ing descript ion.
A complete list of the MDF L instruct ion reperto i re as well
as some more compl icated example* and t h : detai led
syntax have been given by Kunge / alu

Wivaf ron t architecture
The data-driven feature of the wavefront array 'S the key t o
get around the need for global synchronizat ion i potent ia l
barrier i n the design o f ultralarge-scalc systems, tn the wave-
Iront architecture, the in format ion transfer is by mutual
agreement between a processor element and t is immediate
neighbours. Whenever the data is available, t h * t ransmut ing
processor element informs the receiver of the fact, and the
ic ieivcr accepts the data when it needs i t . I i then conveys
to the sender the in format ion that the data has been used.
This scheme can be implemented by means o f a simple
handshaking p r o t o c o l 7 ' 1 . The wavefront archi tecture can
provide asynchronous wait ing and consequently an cope
w i th t iming uncertainties, such as local c lock ing , random
delay in communicat ions and f luctuat ions in comput ing
times ' .

The hardware o f the processor element is designed to
support M D F L 1 1 Given the current stale o f the art in
device technology, i t is feasible to produce a single-chip
wavefront processor. The main funct ional uni ts to be
considered are
• datapath, consisting o f an ar i thmetic logic un i t , a register

f i le , a barrel shifter and some addit ional c i rcu i t ry to
facil itate CORDIC type opei alions

• program memory , between 8 kbits and 32 kbits of
dynamic R A M memory and a 1-2 kb i t ROM memory

• simple cont ro l un i t , consisting of a decoder, a program
counter and some addit ional logic l o a l low program
loading, condi i ional msiruci ions etc.

• four asynchronous I /O interfaces, each w i t h i i t own
control uni t

The funct ional block diagram of the result ing processor
element is shown in Figure 4 . On the basis of data available
f r o m recent V L S I chip designs1*'1* we made some estimates
of the approximate sue of the funct ional blocks. With
reference to Figure 4 , i t should be possible to accommodate
all o f them on a chip o f approximately 10 m m x 8 m m . The
Moorplan is very regular, because of the use of a large
program memory, a bi t sliced structure for the datapath
and a simpli f ied control part .

Based on the numerical requirements o f , fo r example, a
matr ix inversion a datapath w id th of 32 bits was selected as
it seems to offer most in terms of appl icabi l i ty . The data
path itself is rather convent ional , fo l low ing the lines indi
cated by Mead and Conway' but w i th some addit ions to
speed up mul t ip l icat ion and COROIC typc operations.
Floating point operations are possible by using two registers
for each operand, one to represent the exponent and ihe
other to represent the mantissa.

App l ica i ion i of wavafroni processing
Via the not ion of wavefront processing, the data-driven
comput ing scheme can be shown to be natural ly suitable
for all signal processing algorithms that possess r e c u r s i v e
and local i ty. The power and f lex ib i l i ty of the wavefront

arr jy and M D F L programming arc best demonstraled by
Ihe broad range o l appl icat ion algori thms. Such algorithms
can be roughly classified in to three groups

• basic matr ix operations such as
' matr ix mul t ip l ica t ion
- logical uni t decomposi t ion

■ logical uni t decomposi t ion w i th localized p ivot ing
O Givcns algori thm
<; back subst i tut ion
o null-space solut ion
O matr ix inversion
O eigenvalue decomposit ion

singular value decomposit ion
• special signal processing algori thms

ü T o c p l n / system solver
> linear convolut ion

o recursive t i l ler ing
o circular convolut ion f i l ter ing
o digital Fourier transform

• other algori thms, eg
o solut ion o f partial di f ference eauations
> sort ing

CONCLUSIONS
The rapid advances in VLSI device technology and design
techniques have encouraged Ihe realization of massively
parallel array processors. We have stressed the importance
of modular i ty , communicat ion and system clocking in the
design of VLSI arrays. For signal processing applications, ai
shown in the previous sect ion, a large number of algorithm-
possess the properties of recursiveness and local i ty, ÏUtSt
properties natural ly led lo Ihe wavefront concept and l o
the use of an array o l modular and locally interconnected
processors as Ihe comput ing med ium. The wavefront irnv,
as opposed to the systulic array, further stresses the feature!
of asynchronous communicat ions between processor
elements and simple programmabi l i ty by tracing the propa
gation o l (computat ional) wavefronts. (Internal ly each
processor element wi l l be (local ly) synchronized.) Both of
these features are crit ical for a feasible and cost-effective
design of future VLSI systems.

About Ihe design of processor elements we remark thai
the reduct ion of the cont ro l p a n , based on the use of a
microprogrammable processor clement and a careful
selection o l the required instruction set, leads to a simple
architecture and a regular f loorp lan. Moreover, by simplify
ing the instruct ions l ie decomposing complex instructions
i n to sequences of simpler instruct ions), we arc able 10
reduce the basic c lock cycle and to gam a speed advantage.

Another feature of the wavefront array is that i t can
cope w i th variations in the interprocessor communicat ion
path delays. Hence it is more suitable lor use in conjunct ior
w i th flexible interconnect ion schemes. For example, Ihe
wavefronl array seems a good candidate lor waterscale
integrat ion, where the communicat ion paths are not
predictable because of rerout ing o f interconnections in
order to get around faul ty processor elements.

A C K N O W L E D G E M E N T S

The authors wish to thank David Chang, W C Fang, David
L i n . W K L u and Govind Sharma of the University o l
Southern Cali fornia lor their cont r ibut ion to the design o l
the wavelront processor element.

This research was supported in part by the US Off ice of
Naval Research and the US National Science Foundat ion.

vo/7no 10 december 1983 467

Appendix A - 148 -

REFERENCES

1 Mead. C and Conway, L Introduction to VLSI lysumi
Addison-Wesley. Reading, M A , USA (1980)

2 K i n n i m t n t , O J ' V L S I and machine architecture' in
Randel l , i i and T r a t e M M , f C led») VLSI trchiltclure
Prcnticc-Hal l , Englcwood C l i l f s . N | , USA 11983]
PP 2 4 - 3 3

3 Anceau, F and Rei», R "Design strategy for VLS I ' in
Randel l , H and Treleaven, P C (eds) VLSI architecture
Prentice-Hall. Englewood Cl i f f» . N | , USA 11983)
pp 128-1J7

-1 Barbacci. M R ' Inst ruct ion set processor specifications
(ISPS), ihc nutat ion and its appl icat ions' IELE Trant.
Comput Vo l JU Nu I 11982) pp 24 4 0

5 Lam, J 'RTs im a register transfer simulator'.Vfdsrers
Itiein Computer Science Depar tment , Cal i fornia
Inst i tute of Technology 11983)

6 Bryan t . R E 'An algori thm for MOS logic simu MlcM
Lampan \ a 4 119801 pp 4 6 - S 3

7 Kong, S Y and Gal-Erer. R J Synchronous vs asyn
chronous computat ion in V L S I array processors' in
Society or' Photo-Optical Instrumentation Engineers
Com H9S2)

8 Kung, S V 'VLSI array processor for signal processing'

i n Com. on Aaiunced Research in Integrated Ci'cuili
Massachusetts Inst i tute J ' ' ecnnu lo i ! . . O m c n u g e
MA, USA 1198oi

9 Kung, H T and Leiscrson, C E Sv>'
V L S I) ' in Sparse Matrix Symp S U M I -
pp 2 S 6 - 2 8 2

10 Kung, H T 'Why systolic architectures IEEE Computer
Vol 15 N o 1 11982]

I Kung, S Y 'F rom transversal t i l te* •-, VLSI - a v e f r o n l
j r t j y ' in Proc. Int. Con: on VLSI 'S3 I August 1983

12 Kung, S Y, Arian. K S, Ga lE re r . R | and Bhaskar Rao.
D V 'Wavcfruni array (HoccYHM vtpiètjB, architecture
and applications IEEI !rum. Comput Vo l 31 No U
'November 1982)

13 W a n n . D F and Frank l in . M A Asynchronous and
clocked cont ro l structures lor VLSI based inter.
t ion networks ' IEEE Irani Lomput Vo i 32 No 3
(March 1983)

M Fisher, A T et al . 'Design of the PSC: a programmable
systolic ch ip ' i n Bryant , R led] Sra CaileihCont. on
VLSI Curnpuler Science Press 11983'

I 5 Sequin, C H and Patterson, 0 A 'Design and implemen
tat ion of RISC I' in Kandell, B and Ireleaven, P C e j v
VLSI architecture Prentice-Hall. Englcwood Cl i f ls . M j ,
USA H983)

. , - > ' microproccliori ana mlcroiyitemi

- 149 - Appendix B

Appendix B: Localization and Systolization of SFG's

Temporal Localization and Systolization
of Signal Flow Graph (SFG) Computing Networks.?

S.Y.Kung, S.C.Lo
University of Southern California

J. Annevelink
Delft University of Technology

ABSTRACT

This paper addresses the theoretical and algorithmic issues related to
optimal temporal localization(and systolization) of Signal Flow
Graph(SFG) computing networks. Based on a cut-set localization
procedure we propose an algorithm that computes the optimal
localization of an SFG. The basic algorithm is then extended so that
it can be used with hierarchically specified SFG's, thus significantly
improving the computational efficiency. The algorithms can be
easily coded and incorporated into a computer-aided-design (CAD)
system.

t This research was supported in part by ZWO. the Dutch Foundation for pure scientific
research, by the Office of Naval Research under contracts N0O014-81-K0191 and
N00014-83-C-0377 and by the National Science Foundation under Grant ECS-82-
12479.

Appendix B - 1 5 0 -

B.1 Introduction

In a recent paper we proposed to base the design and specification of Signal
Processing Systems on the mathematical abstraction of the Signal Flow
Graph [l] . The Signal Flow Graph (SFG) representation derives its power
from the fact that the computations are assumed to be delay free, i.e. they
take no time at all. Consequently, the need of tracing detailed time-space
activities, as is usually done when specifying or verifying (systolic) array
processors is avoided. Moreover, any delay present in the system has to be
explicitly introduced in the form of so-called Delay branches. These Delay
branches allow history sensitive systems to be described in a clear and
unambigious way. Such a model with explicit delay (state) modeling, is
consistent with the concern Backus expressed over an "extended" functional
programming, e.g. the AST systems introduced in [2]. Although the
abstraction provided by the SFG is very powerful, transformation of an
SFG description to a wavefront or systolic array description, including the
pipelining, can be made rather straightforwardly. Some existing theorems
which may facilitate these transformations can be found in a recent paper
by Kung [3]. The readers are referred to [4], [5], [6] and [7] for a review of
several existing approaches.

In this paper we will introduce a set of algorithms that can be used to
temporally localize an hierarchically specified SFG. Based on the algorithms
discussed in the paper, our approach offers an effective starting point for the
design automation and software/hardware techniques. This is because (1)
SFG provides a powerful (although mathematical) abstraction to express
parallelism, and yet (2) transforming from SFG to (the more realistic)
systolic/wavefront arrays is straightforward.

B.2 Temporal Localization of an SFG

B.2.1 Signal Flow Graph
Signal Flow Graph's are probably the most popular graphical represent,-:
for scientific computation and signal processing algorithms. In this set
we will assume that an SFG is given by a finite directed graph,
G=<V,E,d>. The vertices V of the graph G, model the nodes. The directed

- 151 - Appendix B

edges E of the graph model the interconnections between the nodes. Each
edge e of E, connects an output-port of some node to an input port of some
node, and is weighted with a delay count die). The delay count is the
number of delays along the connection. The vertices with either in-degrec
zero or out-degree zero are special ; they represent the input and output
ports of the graph. Input and output ports are also referred to as sources
and sinks, respectively.

To illustrate the power of the SFG notations let us now look, at a parallel
QR algorithm and its SFG representation. The QR algorithm transforms the
initial matrix A in an upper triangular matrix R by means of an orthogonal
transformation Q, Q A = R. The transformation is implemented by first
applying the following decomposition,

x x x . . . x

Q1 A = 0
0 A*

0

and, then repeatedly applying similar decompositions, namely Q', i = 2, 3,
.... N - 1 .(Here N denotes the number of columns of A.) The above
recursive algorithm can be mapped onto a parallel processing SFG network
as shown in Figure B.l. It shows that after one recursion the submatrix A
will be moved to the left and upwards. The delays "D" represent the state of
the SFG, and contain the submatrix A* that will be processed in the next
recursion.

5.2.2 Cut-Set Temporal Localization
In this section we will present the outline of an algorithm to temporally
localize an SFG.

Definition Temporal Localization :
An SFG is temporal ly localized if there is at least one unit-time delay
allotted to a data-processing node (and the corresponding data-transferring

Appendix B - 152-

Figure B.1. An SFG example for the QR algorithm

edge), so that the signal transaction can be completed in the given time.

To temporally localize an SFG we have to transform the SFG into an
equivalent SFG, in which there is at least one delay along every
interconnection between two nodes. According to the definition given in [3],
temporal locality is one of the characteristic properties of systolic arrays. In
fact, converting a regular and locally interconnected SFG into a systolic
array hinges upon the process of temporal localization.

The temporal localization algorithms proposed here are derived from the
cut-set localization procedure introduced in [3].

Definition Cut-Set:
A cut-set in an SFG is a minimal set of edges which partitions the SFG
into two disconnected components.

The localization procedure is based on two simple rules :

- 1 5 3 - Appendix B

1. Time-scaling : All delays D may be scaled, i.e., D —> a* D , by a
single positive integer a. Correspondingly.the input and output rates
also have to be scaled by a factor a (with respect to the new time unit
D.

2. Delay-Transfer : Given any cut-set of the SFG, we can group the edges
of the cut-set into in-bound edges and out-bound edges depending
upon the directions assigned to the edges. Rule 2 allows advancing k D
time-units on all the out-bound edges and delaying k time-units on the
in-bound edges, and vice versa. It is clear that, for a (time-invariant)
SFG, the general system behavior is not affected because the effects of
lags and advances cancel each other in the overall timing. Note that
the input-input and input-output timing relationships will also
remain exactly the same only if they are located on the same side.
Otherwise, they should be adjusted! by a lag of +k time-units or an
advance of -k time-units.

We shall refer to these two basic rules as the (cut-set) localization rules.
Based on these rules, we assert the following :

Theorem :
All computable* SFG's are temporally localizable.

Proof : We claim that the localization rules (1) and (2) can be used to
"localize" any (targeted) zero-delay edge, i.e. convert it into a nonzero-delay
edge. This is done by choosing a "good" cut-set and apply the rules upon it.
A good cut-set including the target edge should not include any "bad edges",
i.e. zero-delay edges in the opposite direction of the target edge. This means
that the cut-set will include only (a) the target edge, (b) nonzero delay
edges going in either direction, and (c) zero-delay edges going in the same

t If there is more than one cut-set involved, and if the input and output are separated by
more than one cut-set. then such adjustment factors should be accumulated.

* An SFG is meaningful only when it is computable, i.e.. there exists no zero-delay loop
in the SFG.

Appendix B - In

direction. Then, according to Rule (2), the nonzero delays of the opposite-
direction edges, the "source" edges, can "give" one or more spare delays to
the target edge (in order to localize it). If there are no spare delays to give
away, simply scale all delays in the SFG according to Rule (1) to create
enough delays for the transfer needed.

Therefore, the only thing left to prove is that such a "good" cut-set always
exists. For this, we refer to Figure B.2, in which we have kept only all of
the zero-delay successor edges and the zero-delay predecessor edges
connected to the target edge, and removed all the other edges from the
graph. In other words, Figure B.2 depicts the bad edges which should not be
included in the cut-set. As shown by the dashed lines in Figure B.2, there
must be "openings" between these two sets of bad edges — otherwise, some
set of zero-delay edges would form a zero-delay loop, and the SFG would
not be computable. Obviously, any cut-set "cutting" through the openings is
a "good" cut-set, thus the existence proof is completed. In graph theory this
result is known as the colored arc lemma. It is clear that repeatedly
applying the localization rule (2) (and (1), if necessary) on the cut-sets will
eventually lead to a temporally localized SFG.

CUT

Successor
Edges"

pening

Figure B.2. Openings between bad edges ensure the existence of a good cut
set

-155- Appendix B

As an example, Figure B.3 shows a localized(and systolized) version of the
QR SFG given in Figure B.l. According to the definition in [3], Figure B.3 in
effect represents a systolic array configuration for the QR algorithm.

Figure B.3. Systolized SFG for the QR algorithm

5.2.3 Optimal Time Scaling and Temporal Localization
We have so far discussed the basic theorem asserting the temporal
localizability of SFG's. Now let us address the important question of
optimal time-scaling. Since the throughput rate of the computing network, is
inversely proportional to the scaling factor a, it is obvious that the optimal
a will be the minimum integer needed to complete the localization
procedure.

To ensure optimality of the cut-set procedure, the only modification we
need is to confine the application of the delay-transfer operation to a
restr ict ive class of good cut-sets, namely, Non-Rescaling (NR) cut-sets.
Here, a Non-Rescaling(NR) cut-set is a good cut-set in which all the edges
(excluding input edgest) in the opposite direction to the target edge have at

Appendix B - 156 -

least two (instead of one) delays. Therefore, the (optimal) cut-set
procedure is just a simple modification of the cut-set localization rules in
section B.2. Again, it has two simple guidelines:

1. Delay-transfer - Once an NR cut is determined, we can simply apply
the delay-transfer operation along the cut and localized the target
edge(s). It is optimal in the sense that no additional time-scaling will
be needed.

2. time-scaling - If there exist no NR cut-set, it implies that the current
rate is too fast and extra slow down will be needed. (A formal proof
will be given in a moment.) Therefore, we increment a (each time by
one) until a NR cut-set can be identified.

Theorem :
The above procedure suffices to convert an SFG network, into a localized
network, with optimal throughput rate,(i.e. minimum a).

Proof : To prove the theorem, we need only to show that if an NR cut does
not exist then an increment of the scaling factor will be necessary. For a
given target edge if there exists no NR cuts, then according to the Colored
Arc Lemma, there exists a loop containing the target edge and yet containing
no edges with more than one delay. Completing the computation around the
loop (so that the resultant be available for the next operation at the
beginning node), it will take as many time-units as the number of edges in
the loop. It means that the time-delay assigned will be short by at least one
time-interval due to the zero- delay in the target edge. Consequently, a
rescaling of a is apparently needed.

By the computability of the SFG, the loop should also contain at least one
delay. Therefore, a proper time rescaling will suffice to settle the timing
problem of the loop. Consequently an NR cut should now be available (Note

t An input edge is an edge directly connected to an input node.

- 157 - Appendix B

that, according to the Colored Arc Lemma, if there are no more "bad" loops
containing the target edge, then an NR cut should now exist.).

B.2.4 Optimal Cut-set Localization Algorithm
The theorem suggests that the algorithm should search an NR cut. When
such cut does not exist, then a loop containing the target edge will be
formed. We can take a proper action depending whichever comes first. To
accomplish this, we introduce a notion of supernode - a clustering of nodes
according to the following search procedure :

Start with a target edge and expand the supernode by tracing all the "bad"
predecessor edges (similar to what is shown in Figure B.2) until

1. either the supernode is surrounded by the eligible edges only. Then
these edges form an NR cut-set. (Action: Apply the proper delay
transfer.)

2. or the supernode cluster ends up to the terminating vertex of the
target edge. (Action: apply a proper time rescaling, and restart the NR
cut-set search procedure for the same target edge.) Note that after
time-rescaling the source delay edges will become eligible for the next
cut-set selection.

For a pictorial example, corresponding to Case (2), it is possible that the
search procedure ends up with a loop just like what is shown in the upper
loop in Figure B.2. On the other hand, corresponding to Case (l) , a possible
supernode (and NR cut set) will be the one corresponding to the graph
encircled by the cut (solid line) as shown in Figure B.2.

The above rules are the basis of the optimal cut-set procedure given in
Appendix B.l. Due to its simplicity, the algorithm may become preferable
when the network, or all the loops in the network, are of small scale. The
algorithm given in Appendix B. 1 will localize the target edge as well as the
potential target edges in the cut set surrounding the supernode.

For an efficient algorithm the a will be computed according to the delay
distribution along the loop, (instead of being incremented only by one each
time.) Another potential improvement is to localize the potential target

Appendix B - 158-

edges inside the supernode in addition to those surrounding it. Both of these
improvements are incorporated in the algorithm listed in Appendix B.2.

B.3 Hierarchical SFG's and HIFI Design Methodology

In the HIFI design environment [l] a system is (graphically) represented
with a Signal Flow Graph (SFG), thereby simplifying the space time
description. The HIFI design method is based on the concept of node
rennement . Starting from a single node specification the system is specified
in more and more detail by applying decomposition functions to the nodes.
By naming nodes or functions performed by the nodes, the design is
(hierarchically) decomposed, allowing the designer to focus his attention on
the specific node or function selected. A node refinement is used to specify
both s t ructural and behavioral refinement. Based on algorithm analysis,
e.g. the recursive decomposition scheme, we will be able to identify certain
useful and often occurring structures, e.g. arrays, trees etc.

In the previous section we have discussed an algorithm to localize a SFG
specified as a directed graph G = <V, E, d>, where die) represents the
number of delays on an edge e of E. This algorithm, although it computes a
localization of G with an optimal throughput rate, becomes inefficient when
we have to localize SFG's consisting of hundreds or thousands of nodes.
Although the actual complexity of the algorithms is difficult to determine
precisely, it seems clear that there is no obvious way to reduce the
complexity. Therefore, in this section we will derive an alternative
algorithm. This algorithm will be much more efficient, because it takes
advantage of the regularity of an SFG. For a regular SFG, and an SFG needs
to be regular in order to be implementable as a systolic array, the
complexity is no longer determined by the number of nodes in the SFG as a
whole, but instead by the number of nodes in the largest "node refinement".
The actual number of nodes in a "node refinement" is small, usually not
more then 10 - 15. The term "node refinement" was introduced in [l] . For
now it suffices to say that a "node refinement" specifies the replacement of a
node by a graph (cf. sect. A3.3). Node refinements can be used to specify an
SFG, starting from a single node and ending up with the complete graph, by
successively applying node refinements to the graph defined sofar. The

- 1 5 9 - Appendix B

specification of an SFG by node refinements is pictorially represented in
Figure B.4.

D

(a)
Host Interface

D

12

(b)
Refinement of v

•fg

(c)
Refinement of R,

Figure B.4. Hierarchical Specification of an SFG

B.3.1 SFG Model
We assume that an SFG is given by a tuple <Gt, R>, where Gt is a graph
denoting the SFG and its interface to the host processor, and where R is a set
of node refinements.
The graph Gt is very simple. It consists of two vertices. One, Vhost
represents the host processor, the other, Vsfg represents the abstraction of
the first (top) refinement of the SFG. The connections between these two
vertices represent the I/O connections between the SFG and the host
processor (cf. Figure B.4(a)). A node refinement is modeled by a tuple
<Vh, Gr> where Vh represents the (hierarchical) abstraction of the
refinement. Gr represents the implementation of the node refinement. Gr is
modeled by a finite directed graph, Gr = <V, E, d>, like any of the SFG's
discussed in the previous section. The vertices V of the graph Gr, model the
nodes introduced by the refinement. Note that the nodes can be further
refined, and that, implicit in the specification of the refinements, there is a
partial ordering '<' relating the node refinements to each other. Vh, the
abstraction of a node refinement, is a vertex with input and output ports.
The input and output ports of Vh correspond to the input and output nodes

Appendix B - 160-

of Gr. For an hierarchical specification of SFG's this model would be
sufficient. It allows us to specify the replacement of a graph by its
abstraction and vice versa.

In order to define an hierarchical localization algorithm, we have to extend
the model given above in two ways. First we define a lag number for every
input and output port of the vertex Vh. The lag numbers are introduced,
because if we localize the refinement graph Gr of a node and then replace
this graph by its abstraction Vh, the resulting (partly localized) graph will
no longer be a graph with zero-delay nodes, that is localized when all edges
carry at least one delay. Instead, the delay required on an edge from an
input to an output port will be given by the difference of the lag numbers of
these ports.

In order to determine the optimal throughput rate of a graph Gr, we need to
know the optimal throughput rates of the nodes that are further refined.
Therefore, the second extension is the introduction of the minimal slow
down factor a of Vh.

To simplify the specification of the localization algorithms we model all
vertices occurring in a Gr graph as described above. A node that has no
further refinements, will be denoted by a vertex v, that has a lag of 1 for all
of its input ports, and zero for its output ports. The slow down factor of the
vertex will be 1. We also introduce a function lag(edge), that returns the
lag number associated with the edge. The lag number of an edge is the
difference of the lag numbers of the ports that the edge connects to in the
terminating and initial vertex of the edge, respectively. The lag number
denotes the number of delays required to localize the edge.

B.3.2 Algorithm
To localize a graph given by a set of node refinements we have to localize
the node refinements. For this we can use the localization algorithms given
in the previous section. However, we need to extend these algorithms such
that they can handle the more general model of a vertex given above. This
extension is fairly simple, the complete algorithm is given in Appendix B.2.
Note that in order to localize an edge in a graph containing vertices of the
type discussed above, the number of (local) delays must be greater or equal

- 1 6 1 - Appendix B

then the lag number of the edge, i.e. d'(edge) > = lag(edge).
A graph Gr, denoting a node refinement, can be localized only when we
know the abstractions Vh of all the nodes in Gr. For nodes that are not
further refined this abstraction is known. However, to determine the
abstraction of a node that is further refined, we will have to localize that
refinement first. It follows that we have to localize the graphs Gr starting
with those refinements that contain only nodes whose abstraction is already
known. After localizing all node refinements, we refine the graph Gr,
denoting the interface with the host processor. Once this graph is also
localized we essentially know the localization of the entire SFG. The only
thing left to do is to update the local delay counts of the node refinements in
order to take care of differences between the slow down factor of the graph
Gt and the slow down factors of the node refinements. The procedure
HLoc_graphO, given below, computes the localization of all the node
refinements and the graph Gt. To derive a localized version of the entire
SFG, we simply replace the nodes by their (localized) refinements.

B^i Conclusions

This paper addressed the theoretical and algorithmic issues related to
optimal temporal localization(and systolization) of Signal Flow Graph(SFG)
computing networks. Based on a cut-set localization procedure we proposed
an algorithm that computes the optimal localization of an SFG. The basic
algorithm is then extended so that it can be used with hierarchically
specified SFG's, thus significantly improving the computational efficiency.
The algorithms can be easily coded and incorporated into a computer-
aided-design (CAD) system, however, we still need to do more work on the
hierarchical part, especially related with the regular structures such as
arrays.

Thinking in retrospective, we note that the major effort on the optimal time
rescheduling is on the rescaling and the redistribution of Source Delay, D.
In any dynamic circuit, initial-condition-data are always assigned for all
the delay elements. Thus, the actual data at the output of D has a net time
allowance of a time-units, i.e. the time needed for the consumption of the
initial state. On the other hand, the time saved by the consumption of initial

Appendix B - 162-

Procedure HLoc_Graph()
begin

N_Loc_R := R, the set of all refinements ;
while (N_Loc_R is not empty) do
begin

Nr := "smallest" node refinement in N_Loc_R ;
Loc_graph(Nr.Gr);
determine abstraction Vh of Gr ;
delete Nr from N_Loc_R ;

end
Loc_graph(Gt) ;
a := slow_down factor of Ct ;
f orall (refinements Nr in R) do

if (Nr.a < a) then
update local delay count of Nr.Gr ;

end
Note : The "smallest" node refinement is selected using

the partial ordering relating the refinements.

data tokens may be most easily computed by self-timed handshak.ing[3]. By
the same account, the "pure delay" addition will become unnecessary,
because the operation firing will be self-timed. Therefore, it is probably fair
to say that there will be an optimal compromise between the synchronous
processing (i.e. systolic array) and the asynchronous processing (i.e.
wavefront array). For example, it should be possible to recognize a
locally-clustered sub-network, while the entire network is (globally)
asynchronous. The identification of the locally clustered parts should be
easy given an hierarchically designed SFG. When the compromise is
reached, then, our proposed procedures can be used for the local sub
network systolization, while the burden of global synchronization should be
replaced by self-timed handshaking.

- 163 - Appendix B

References

[1] S.Y. Kung, J. Annevelink and P. Dewilde, "Hierarchical Iterative
Flowgraph Integration for VLSI Array Processors" In : Proc. USC
Workshop on VLSI and Modern Signal Processing, Los Angeles, Ca.
Nov. 1984

[2] Backus, J., "Can Programming Be Liberated from the Von Neumann
Style ? A Function Style and Its Algebra of Programs" Comm. ACM
21, 6 1 3 - 6 4 1 , Aug. 1978

[3] S.Y. Kung.'On Supercomputing with Systolic/Wavefront Array
Processors", Proc. IEEE, Vol. 72, No. 7, July 1984, pp. 867 - 884.

[4] C.E. Leiserson, F.M. Rose and J.B. Saxe, "Optimizing Synchronous
Circuitry by Retiming" in Proc. Caltech VLSI Conf. (Pasadena, CA),
1983

[5] A. Fettweis, "Realizabüity of Digital Filter Networks" AEU, Band 30
1976, Heft 2, pp. 9 0 - 9 6 .

[6] C. Caraiscos and B. Liu "From Digital Filter Flow Graphs to Systolic
Arrays" To appear, IEEE Trans. Acoust. Speech, Signal Processing,
1985

[7] J.V. Jagadish et al., "On Hardware Description from Block Diagrams"
in Proc. IEEE ICASSP (San Diego, CA) 1984

Appendix - B.1

Note : d(e) : delay count in original SFG
d'(e) : delay count in localized SFG

Procedure CutLod)
begin

a .•= 1 ;

Appendix B - 164-

T := se t_of target_edges ;
[* Input edges are excluded from target-edges *]

while (T isnot empty,) do
loop

Target _edge := e, where e belongs to T ;
cut_found := true ;
good_edges := < > ;
CoodCutf <>, Target _edge) ;
if (cut_found is true.) then
begin [* a good-cut is found, do delay transfer *]

d'(Target_edge) := 1 ;
delete Target_edge from T ;

f orall (edges e of good_edges) do

if (e is in direction of Target _edge) then
if (e is in T) then delete e from T ;
d'(e) := d'(e) + 1 ;

else d'(e) := d'(e) - 1 ;
end

end_loop
end

Procedure GoodCuti'SuperNode, T_edge)
begin

T_yertex := 7'_edge.initial_yertex ;
if (T_yertex is in Supernode) then
begin

if (Target _edge is T_edge) then
begin [* if target edge is in loop *]

cut_found := false ;
a := oc+ 1 ;
foral l (e in E) do

d'(e) := d'(e) + d(e) ;
end
else

- 1 6 5 - Appendix B

good_edges := good_edges - T_edge ;
end
else if (T_yertex is an input node) then

[* Include T_edge into good_edges. Edges connected to input nodes
can have negative delays indicating the number of delays needed. *]

good_edges := good_edges + T_edge ;
else
begin

[* Find a good cut by looking at the edges incident on T_vertex.
Include all eligible edges into good_edges. If there are bad edges
(edges incident into T_vertex with 1 or 0 delays), expand the supernode
to include all initial vertices of bad edges and try to find a good
cut recursively. *]

Super Node := Super Node + T_vertex ;
good_edges := good_edges + all good edges of T_yertex ;
fora 11 ("bad'' edges incident into T_vertex) do

GoodCutiSuperNode, bad_edge) ;
end

end

Appendix - B.2

Note : md_cnt : missing delay count
td_cnt: transfer delay count
sd_cnt: source delay count
lag() : lag number of an edge
The "target-edges" are those edges for which lag(edge) > d'(edge)

Procedure LocGraphiNodeRef)
begin

a .•= maximum of slow-down factors of vertices in
the graph Gr of the NodeRef;

Initialize localized delay count ;

Appendix B - 166 -

T := se t_of target _edges ;
while (T isnot empty) do
loop [* Localize edge *]

Target_Edge := e, such that e in T ;
LocPath(<>, Target_Edge, lag(e) - d'(e), die), loop_fnd) ;
delete Target_Edge from T ;

end_loop
end

Procedure LocPathiSuperNode, Target_Edge, md_cnt, sd_cnt, loop_fnd)
begin [* Transfer at least md_cnt delays to the Target_Edge. *]

T_yertex := Target_Edge.initial_yertex ;
if (T_yertex is in Super Node) then
begin [* Found a loop, compute a and set loop flag *]

a_loop := [(md_cnt + a * sd_cnt) / sd_cnt] ;
if (a < OL_loop) then
begin [* Update a and increment local delay counts d'(.) *]

foral l (e in E) do
begin

d'(e) := d'(e) + <x_loop - a * d(e) ;
if (lag(e) <= d'(e)) then

delete e from T ;
end

a := a_loop ;
end
T_yertex.loop_begin := loop_fnd := t rue ;

end
else if (T_vertex is an input node) then
begin

d'(Target_Edge) := d'(Target_Edge) + md_cnt ;
add md_cnt to lag number of input portof hTarget_Edge ;

end

- 167 - Appendix B

else
begin

[* Find a good cut by looking at the edges incident
into T_vertex. If these edges do not make a good cut,
then transfer the appropriate number of delays to these
edges by a recursive call to LocPath, with md_cnt set to
the required number of delays. If LocPath finds a loop, it
will set the loop_fnd flag. In that case we may have to
transfer more then md_cnt delays. The number of delays
that must be transferred is denoted by td_cnt. This variable
is initially set to md_cnt, and updated for every loop found
by LocPath. In case LocPath finds a loop we want to transfer
the maximum possible number of delays. *]

td_cnt ;= md_cnt ;
T_vertex.md_cnt := md_cnt ;
T_yertex.sd_cnt .-= sd_cnt;
T_yertex.loop_begin := false ;
Super Node := Super Node + T_vertex ;
forall (edges el incident into T_vertex) do

if (td_cnt + lag(el) > d'(el)) then
begin [* It's a "bad" edge*]

loop := false ;
LocPathi'SuperNode, el, td_cnt + lag(el) - d'(el),

sd_cnt + d(el), loop) ;
if (loop is true.) then

if (td_cnt + lag(el) < d'(el)) then
begin [* Update td_cnt *]

td_cnt .•= d'(el) - 1 ;
loop_fnd := t rue ;

end
end

if (td_cnt > md_cnt) then
[* LocPath found a loop, and wants to transfer more then the requested

Appendix B - 1 6 8 -

md_cnt delays. Make sure that every edge can provide the td_cnt delays.
If not, then call LocPath again, to provide the additional delays on
the edge *]

forall (edges el incident into T_vertex) do
if (td_cnt + 1 > d'(el)) then
LocPatHSuperNode, el, td_cnt + lag(el) - d'(el),

sd_cnt + d(bad_edge), loop_fnd) ;
end
if (loop_fnd is true) then

if(T_vertex.loop_begin is true) then
loop_fnd := false ;

[* Now for every edge e emergent out of T_yertex, we have
d'(e) > td_cnt + 1, so that we can transfer td_cnt delays
from the edges incident into T_yertex to the edges incident
out T_vertex. *]

forall (edges el incident out T_yertex) do
begin [* Update delay count *]

d'(el):=d'(,el)\td_cnt ;
if (el is in T) then delete el from T ;

end
forall (edges el incident into T_vertex) do
begin [* Update delay count *]

d'(el) := d'(el) - td_cnt ;
if (el is in T) then delete el from T ;

end
end

end

- 1 6 9 - Appendix C

Appendix G Object Or ien ted Data Management

Object Or ien ted D a t a Management Based
on A b s t r a c t Data - types t

J. Annevelink. and P. Dewilde

ABSTRACT

The computer-aided design of dedicated pipelined processors for
numerical applications and signal processing requires design tools
that support system refinement, partitioning strategies and the
transformation of behavioral descriptions into structure. This in
turn poses problems of design data management which are
considered here. We show that an object oriented data management
system is a step towards solving the problems. The method
proposed here is based on a systematic specification of data
structures and data access methods, using abstract data-type
specifications. As a result, the data management is completely
transparent to the application programs. The data-management
system is written in Enhanced C (EC), a set-oriented extension of
the language C.

Keywords: object oriented, data-management, abstract data types,
sets

t This research was supported in part by the commission of the EC under ESPRIT
contract 991

Appendix C - 170-

C l Introduction

An important problem that arises in the development of (VLSI) design tools
is that of the management of the design data. One of the problems is that
what is easily referred to as "design data", usually consists of many
different types of information, and that there exist complex relationships
between different types of information. Moreover, depending on the type of
information, efficient methods to access, modify or update the information
differ considerably. This motivates an object-oriented approach, which in
turn calls for a data-management system that is able to represent and
manipulate objects as single entities, taking care of and maintaining the
relations that may exist between the components of an object.

In this paper we present a simple object oriented data-management system
that can be efficiently integrated into a variety of (VLSI) design tools, and
that allows the construction of an efficient and powerful user interface layer
for controlling the design tools, and for interrogating the status of the
design system. The system as presented here is oriented towards the
application programmer, in the sense that we have only a programming
language interface to the database. Forthcoming work will describe an
object-oriented user interface on top of the existing system.

C.l.1 Related work
Much of the work reported in the literature about data management for
VLSI design, or for CAD in general, describes management of design
information as collections of raw data in files. The management of the data
in the design files is left to one or more design tools. The data management
system must manipulate the design files on the basis of whatever additional
information is available regarding the contents of the files. Often this
information is encoded by choosing meaningful names for design files and
grouping related design files together e.g. in a directory. It is then possible
to make an interface that, based on a more or less complex model of the
design process, relieves the designer from remembering all conventions,
concerning where the design files must be stored. For example, the data
management system described in [McLe85] provides the user with an
interface layer, the chip manager, that handles the mapping between (cell)

-171 - Appendix C

names (provided by the designer), and actual file names. In this system, all
design data is stored in the form of cells, which have a cellname given by
the designer. Cells also have a celltype, which indicates the kind of data they
contain. Cells with the same name, but that differ in type, are regarded as
different aspects of the same part of the design. A cellname and a celltype
are the only attributes that a cell itself has, as far as the chip manager is
concerned. The contents of a cell are known only to the application
programs, which can get access to the contents of a cell via the chip
manager.

Other approaches use the relational database model [Date8l]. The advantage
of the relational model is that it can model all data in a simple and uniform
way, i.e. as relations. A relation is usually represented in storage as a table,
where the rows represent tuples and the columns represent attributes. The
primary disadvantage of the relational model is its limited abstraction
capability. Relations that can not be modeled directly must be normalized
to relations that can, whereby a potentially meaningful relationship must
sometimes be broken down into two or more relations whose meaning can
not be directly understood. It is also difficult for a designer to manipulate
the data in the database, since the conceptual model of the designer does not
match with the way the data is represented. Moreover, in order to retrieve
or update a single piece of information it is often necessary to access several
relations. As a result of the size of a VLSI design the efficiency is usually
low, and the resulting system too slow for practical use. A further problem
associated with the relational data model is the fact that it is actually
necessary to express all relationships between design objects, down to the
lowest levels of detail. The introduction of design abstractions, e.g. the cell
in the system mentioned above, is complicated by the fact that most
relational database systems allow only a very limited set of data-types for
specifying the attributes of a relation. New, so-called semantic database
models try to remedy the disadvantages of the relational database model
(cf. e.g [Bekk83,Afsa84])..

Other approaches look more specifically at the (VLSI) design environment.
For example, the data model developed in [Bato85] incorporates a number

Appendix C - 172 -

of concepts specific to a design system, e.g. objects have an interface
description and an implementation description. Also, versions of objects
and instantiation, i.e. the replication of a generic object, are captured by the
model. An overview of the characteristics of the VLSI design environment
and the information management requirements it poses is given in
[McLe83].

File oriented data management systems do not provide the methods needed
to access the information contained in the design files. However, since the
application programs will have to access this information, the application
programmer is left with the following two problems :

1. How is the structure of the design files specified 7

2. How are the methods to access the design files specified 1

Because these problems have not been solved systematically, file oriented
database systems are potentially costly to maintain and evolve. Adding or
modifying design tools requires the data-formats of the files to be known as
well. This problem is complicated by the fact that the actual specification
of the file data-formats is usually buried deep inside the design tools. Also,
the design of a uniform and easy to use user interface is hampered by the
fact that each file usually has its own data-format. At the positive side this
very property can make a file oriented database system very efficient to use
for the design tools, since data-formats can be optimized to the application
at hand.

In this paper we will concentrate on two aspects of the problem sketched
above.

1. A general and systematic method to specify and implement the data
structures and access methods required to represent and manipulate
(VLSI) design data.

2. The definition of a simple, low-level interface library containing a set
of routines by which data can be efficiently transferred to and from
secondary storage.

- 1 7 3 - Appendix C

In our view, the key to a general and systematic method lies in the
separation of the data structure specification from the design and
implementation of the application programs. In particular, the HIFI
[Anne86] design tools are being implemented this way. By separating the
data structure specification from the design of the application programs,
different tools can use the same data structure by simply including the files
containing the data structure specifications. Moreover, the data-structures
need to be specified only once, ensuring the consistency of different
application programs.

The structure of this report is as follows. In section two we describe the
ideas behind the new method. In section three we give an example of an
object definition, and show how it is used in an actual application program.
In particular, we will show the way the actual data management is made
transparent to the applications programmer, as well as how to use and
construct sets and sequences of objects. In section four, we will discuss the
specification of objects in more detail. In section five, we will briefly
describe the data-types required to implement the data-management
method. There we will also discuss the low-level interface library that is
used to efficiently access objects in secondary storage. Finally, in section six,
we will draw a number of conclusions, based on the results derived so far.

C2 Basic Philosophy

In this section we describe the main ideas behind the design and
implementation of an object oriented data management package (DMP). The
DMP is implemented in the form of a set of parameterized data-type
definitions, and was initially developed for the HIFI design system
[Anne86].

It is written in Enhanced C (EC) [Katz83], a high-level set-oriented
extension of the C-language [Kern78]. EC allows a programmer to specify
new data-types, using the concept of a cluster. A cluster can be viewed as a
parameterized data-type specification. It can be mapped to a specific data
type by specifying values for the cluster parameters. The power of EC
derives in part from the fact that it is possible to give types (i.e. type

Appendix C - 174 -

names) as parameters. In mapping a cluster to a data-type, the programmer
specifies an implementation of the type. The operations that can be applied
to the objects (or values) of the new type are specified as part of the cluster
definition. For more information on EC the reader is referred to
[Katz83a, Katz85].

The data management package is essentially a set of cluster definitions.
These cluster definitions are available to the applications programmer to
create new data-types. The point here is that the actual data management,
i.e. when and how to read, respectively write an object from and to
secondary storage, is transparent to the applications programmer. This is
dealt with via the operations defined by the clusters provided to the
applications programmer. In effect, the EC compiler is used to generate the
procedures necessary to access the information stored in the database. In
order to do so, the compiler uses the type information supplied by the
application programmer.

C.2.1 High Level Specification of Design Data
A DMP database has several conceptual layers. The first layer is the "design
tool layer". The application programmer, when writing a design tool, will
have to define the data-structures used to store the input and output data
needed by the tool on secondary storage. We will require the application
programmer to do so by defining data-types. Instances of these data-types
can then be manipulated using a set of standard operations. The
implementation of these operations depends on the type. However, they can
be generated automatically from the definition of the data-type itself. The
code written by a programmer can thus be separated into:

1. Data-type definitions

2. Application code

In general, a data-type is used to define a class of objects sharing a set of
attributes. The attributes may denote either properties of the object being
modeled by the data-type, e.g. its position, its name etc., or relations of the
object with other objects, e.g. the relation between a transistor and the cell

- 175 - Appendix C

it is part of, or the relation between a cell and the set of its input or output
terminals.

The implementation of the data-types defined by the application
programmer is handled by the second layer. Here we translate each data
type definition to an EC cluster definition.

The third layer defines the routines that actually access the database.

An overview of the steps required to construct a design tool is given in
Figure C.l.
As can be seen in Figure C.1 the application programmer has to define a
Data-type Definition and Application Code. The Data-type Definition is first
mapped to an EC cluster using a procedure labeled Data-type Map, then
(separately) compiled and added to a library of access functions. The
Application Code is also compiled. Here we include the cluster definitions in
the code, so as to enable the EC compiler to generate appropriate code,
depending on the type of the variables and the operations performed on
them. The access functions are added to an Access Function Library, and
use elementary fetch and store functions from a Database Library (cf.
section C.5). The last step then links the object code with the functions in
the libraries to produce an executable program (Design Tool). From Figure
C.1 we can see that we need to define the data-types only once.
Subsequently all Application Functions simply include the corresponding
cluster definition.

The advantages of having the data-type specified explicitly are:

1. The application programmer does not have to define routines for
accessing and modifying the data on secondary storage.

2. Communication between design tools is easily accomplished, since they
can use each others input and output data structures.

3. The consistency of the design data is maintained by the access routines.

4. Documentation and maintenance of design tools is simplified.

Appendix C - 1 7 6 -

Database
Functions

Datatype
Definition

Database
Library

Access
Function
Library

\mapj~1 Cluster
Definition

Figure C.1. Overview of the programming environment

The price we have to pay for these advantages is a slight reduction of
efficiency. However, since the application programmer can define his own
datatypes, the amount of overhead is controllable. It is possible for example
to use the datamanagement system to get access to files, whose contents are
then considered a black-box for the data management system.

file:///mapj~1

-177 - Appendix C

C.2.1.1 The design-tool layer
A DMP database consists of a large collection of objects, each of which is an
instance of a particular type. Each object has a unique key that is used both
as a symbolic identifier for inter object references, and to retrieve the object
from the database. The objects are stored in one or more disk, filest.

The datamanagement method is based on a systematic definition of the
object types. Given these systematic definitions, which amount to the
definition of a dataschema, it is possible to define access procedures, that
enforce certain consistency constraints. The metaschema of a database built
using the DMP package is shown in Figure C.2.

— > function relationship
- ^ ^ set relationship

Figure C 2 . Metaschema of a DMP Database

The metaschema shows that a DMP database is a collection of types. Every
type has a name, a set of components, and a baseset. The baseset of a type
contains references to objects that are instances of the type, and that are
visible in the database. All objects in the database are stored in the so-called

t The detailed implementation depends on the structure of the DMP database library, (cf.
section C.5.1)

Appendix C - 178 -

object pool. This object pool can contain instances of a type that are not in
the baseset associated with the type. These objects are invisible, and can be
accessed only via objects that are visible in the database.

The principal abstraction implemented by a type is aggregation. An object
of a particular type is an aggregation of component objects of (simpler)
types. This is depicted by the (double headed) arrow pointing from dbtype
to comp in Figure C.2. The arrow from comp back to dbtype denotes the
type of the component. Depending on the properties of objects modeled by a
type, the application programmer can choose the most appropriate
abstraction for the components. A type that defines an object as an
aggregation of simpler objects is called a tuple type. In addition to tuple
types we can have set, sequence and reference types. For example, the
baseset of a type is a set of references to objects of the type. Set, sequence
and reference types are derived from the definitions of the tuple types, i.e.
the application programmer is required to give only the definitions of the
tuple types. The syntaxt for the definition of a tuple object type is as
follows:

t To describe the syntax of our specifications, we will use the meta language proposed by
Wirth [Wirt77].
This language has two types of symbols:

— terminal symbols : These symbols must be present literally. They are denoted by
words between double quote marks, or words printed in italic font.

— non-terminal symbols : These are denoted by words typed in lowercase.
Each production rule begins with a non-terminal followed by an equal-sign and a
sequence of meta characters, terminal, and non-terminal symbols, terminated by a
period.
The meta characters imply:
Alternatives I A vertical bar between symbols denotes the choice of either one symbol

or another symbol, (i.e. a I b means either a or b)
Repetition (I Curly brackets denote that the symbols in between may be present zero

or more times, (i.e. (a 1 stands for: empty I a I aa I aaa I...)
Optionality [] Square brackets denote that the symbols between them may present.

(i.e. [a] stands for: a I empty)
Note also that all symbols can be tagged with an optional superscript. This superscript
has no function, other then to distinguish otherwise identical symbols.

- 179 - Appendix C

object-def = define tuple "(" { comp } "}" identifier.
comp = type-specifier identifier.
type-specifier = type identifier I set_of type-specifier

I ref_to type-specifier I seq_pf type-specifier.

From this syntax specification, we see that a component of a tuple object can
actually be (l) a primitive object, (2) a reference to a tuple object, (3) a set
or sequence of tuple objects, or (4) any combination of the previous three
possibilities. We will define a number of primitive (or build-in) types, e.g.
strings, integers, floats, points, rectangles etc.

As an example of an object definition we will define a node as an
aggregation of a name, a position and a set of references to ports. The name
of the object is represented by a string. The position is represented by a
point, i.e. an x and an y coordinate.

def ine tup le I
type s t r i n g n_name;
type po in t n_pos;
set_of r e f _ t o type p o r t n_por ts ;

I node;

Similarly, a port could be defined as an aggregation of a name, a port-type,
and a reference to a node. The port_type of a port contains e.g. information
about the position of the port (for graphical representation) as well as about
the type of the data value carried by the port.

define tuple (
type string p_name;
type port_type p_type;
ref_to type node p_node;

I port;

The metaschema in Figure C.2 can be extended to include the operations
applicable to instances of a particular type. At this moment we assume that
each type has a fixed set of operations, depending on whether it is a tuple,
set, sequence or reference type (cf. section C.4). Note, however, that the
implementation of these operations depends on the type.

Appendix C - 1 8 0 -

Which primitive operations are available for a given type, depends on
whether it is a tuple, a set, a sequence or a reference type. Objects that are
tuples support the following operations t: get, put, allocate, release, and
delete. The "get" and "put" operations hide the low level store and fetch
functions (cf. section C.5.1). The operation "get" reads in an object from
secondary storage, "put" puts it back, i.e. it updates the contents of the
secondary memory to reflect the actual status of the object. "Allocate" and
"delete" take care of the in-core storage management. Finally, "release"
releases any objects referred to by the object, i.e. it puts them back in the
database as soon as all references have ceased to exist. The semantics of
these operations are explained in more detail in section C.4.1.

Set objects support the above operation as well. In addition a set object has
operations to scan the elements of a set, to add and remove elements of a
set, and to test for the presence of a particular element in the set. The
syntax of the set operations is similar to the corresponding EC syntax.

Sequence objects are mostly similar to sets. The differences lie in the
implementation. The elements of a sequence are stored in a separate file,
and can't be referenced, i.e. they don't have a database key. Instead, they
can be distinguished by their position in the sequence. Furthermore, we do
not allow sequences of objects that contain references to other objects.

The primitive operations associated with a reference type are the same as
those of a tuple, i.e. we can get, put, allocate, release, and delete an object via
a reference. In addition however, a reference can also be dereferenced. The
implementation of the dereferencing operator will take care of an important
part of the data-management. When a reference gets dereferenced, the
object pointed to by the reference is automatically fetched from the
database, if not already available. The applications programmer will

t Note that this is only a minimal set of operations. The minimal set of operations is the
set required to implement the data-management correctly.

- 1 8 1 - Appendix C

generally be unaware of this.

The information in the metaschema is available to application programs.
For example, an interactive user-interface could use the information to
browse through the objects in the object pool.

C.2.1.2 The EC layer
The EC layer implements the translation from the data-type definitions at
the user layer to compiled code. The reason we choose EC as a language to
implement our data-type definitions is primarily the fact that EC allows the
definition of parameterized data-types. This ability considerably simplifies
the definition of types representing references to objects. The type
inheritance mechanism incorporated in other languages, e.g. C++ [Stro85] or
Objective C [Cox86], would require an additional preprocessor for
generating these reference types.

Given a tuple definitions as shown above, we can easily define a cluster that
implements the object type. In addition we can generate all necessary derived
types, i.e. references, sets and sequences by simply instantiating the generic
reference, set and sequence types with the appropriate parameters.
In order to show how this is accomplished we have to explain briefly the
mechanism by which the EC programmer can define new types.

C.2.1.2.1 EC, sets and clusters
The features that make EC the desired choice for implementing the DMP
package are chiefly:

1. EC supports sets and other high-level data structures.

2. EC is an extensible language. It is possible to define new data-types and
to overload existing operators, as well as to redefine the set-oriented
operators (exists .. in .., forall . . in .. suchthat.., etc)

3. EC operations can be specified either as macros or as procedure calls.

4. EC data-types can be conveniently parameterized. For example, it
allows types as parameters.

Appendix C - 182 -

By introducing sets and sequences it is possible to model the data handled
by a design tool in a very universal way. By postponing the binding of
data-types, including sets, to a representation, or by modifying it later, it is
possible to make an optimal trade-off between flexibility and generality
[Katz83a], without requiring more than a simple recompilation.

A new type is defined with a map statement which binds a cluster and a set
of actual values for the cluster parameters, to the new type. An example of
a map statement is:

map c lus te r_name (c lus t e r_a rg_ l i s t) type n e w _ t y p e s _ n a m e ;

A cluster definition itself consists of four parts:

1. representation : definition of the data structure used to represent
instances of the types defined by the cluster.

2. operations : operations that can be applied to instances of the types
defined by the cluster. Operations can be implemented either as
procedures, or as macros. In the first case, the definition of the
operation is preceded by the keyword proc, in the latter it is preceded
by the keyword oper. Clusters can also redefine build-in operators,
e.g. "+", "/", etc. To redefine a build-in operator, the name of the
operator has to be preceded by the keyword oper as well.

3. components : A cluster can have one or more components. The
components of an object that is an instance of a type defined by such a
cluster, can be accessed similarly to the members of a C structure.

4. constants : definition of constants, e.g. null and ni l . The constant null
usually denotes the null instance of a type, whereas nil denotes an
undefined pointer to an instance of the type.

The key to the simplicity of the DMP lies in the implementation of the
sequence, set and reference types. Using the facilities provided by EC, it
will turn out that three, appropriately parameterized, cluster definitions are
sufficient to implement them. A new set, sequence or reference type is
created by simply mapping the generic cluster to the new type, using the

- 183 - Appendix C

type of the object as a parameter. As a result, all an application
programmer has to do, is to specify the object types needed by a particular
application program. For an example, the reader is referred to section C.3.

C.2.1.3 The database layer
The database layer takes care of the actual transfer of objects between
secondary storage and the address space of a particular design tool. As said
before, each object is characterized by a unique key, by which it can be
fetched from the database. In addition, the database procedures allow
objects to be clustered. This can be used to advantage when it is known
beforehand that a particular collection of objects is related, so that when we
want to fetch one of them, there is a high probability that we want to fetch
the others as well. In particular, we use this feature to store objects that
are in the same set of objects. The database procedures also maintain the
consistency of the database in the sense that there can be no lost objects.
All objects must be reachable starting from a baseset.

The procedures that implement the low-level database library, as well as
the structure of a database are described in detail in section C.5.

C 3 Object Definition and Manipulat ion - An Example

In this section we will see how objects and object operations, including the
data-management operations, are used in an application program. The
example that we will discuss is taken from the design of a flowgraph editor.
Based on this example we will see how the actual data-management
operations are hidden from the application programmer, and how in fact the
data-management has become transparent.

The procedure hf_delnode() deletes a node from a flowgraph. A flowgraph
is an instance of a tuple type, that is defined as follows:

def i ns tup Ie (
type string g_name;
set_of ref_to type node g_nades;
set_of ref_to type port g_ports;
set_of ref_to type edge g_edges;

I graph;

Appendix C - 184 -

The node and port types are as defined in Section 2.1.1. The definition of the
edge is:

define tuple I
int de I ay_count;
ref_to type port i_port;
ref_to type port o_port:

) edge;

The data-schema depicting the relations between the design objects is
shown in Figure C.3.

/ — " N > function relation
-.—5^{node) s> 5 ^ set relation

(graph) 5^/ port i

edge

Figure C 3 . Data-schema corresponding to the example

The procedure hf_delnode() (cf. Figure C.4) is rather simple. First it
determines which node must be deleted. The operation "nearestnode"
determines the node that is nearest to the given position. Next, i.e. if there is
a node within a certain distance of the given position, the procedure
determines for all ports of the node, whether there is an edge incident to it.
If so, the edge is deleted. In addition, the other port connected to the edge is
added to the set of ports of the graph referenced by G. If not, we can
simply remove the port from the ports of the flowgraph. Here we see the
power of EC's set operations. Finally the node itself is deleted.

We have given this code here to show that the the data-management is
transparent to the application program, and the application programmer.

- 185 - Appendix C

The application programmer doesn't have to know about the data-
management procedures at all. The only thing he has to do, is to take care
to release or delete the object references used in the procedures in
accordance with his intentions.
tf include <graph.h>

/ * This r o u t i n e de le tes a node from a graph
*/
operd void nearestnode(type graph, type nodep, type point);

void hf_delnode(G, screenpos)
type graphp G;
type point screenpos;

(
type nodep N;
type edgep E;
type portp P;

nearestnode! G,N.screenpos);
if(N I- (type nodep)nul I) I

fora I I P in (N).n_ports do (
if(exists E in (G).g_edges suchthat (E).i_port == P) (

remove E from (G).g_edges;
add (E).o_port to (G).g_ports;
delete(E);

»
else iflexists E in I G).g_edges suchthat (E).o_port == P) (

remove E from (G).g_edges;
add (E).i_port to (G).g_ports;
delete(E);

)
else (

remove P from (G).g_ports;
I

I
remove N from (G).g_nodes;
delete(N);

)
I Figure CA. Procedure hf _delnode()

In order to see how the data management is done, we have to look at the
implementation of the reference types. Specifically we have to look at the
operations that dereference, release and delete a reference. The procedure

Appendix C - 186-

hf_delnode(), uses four reference variables, resp. G, N, E and P. The
trailing p's in the declarations of these variables, hint at the fact that an
object of type ...p is a reference to a ... t . The procedure hf_delnode() uses
these variables to access the components of the objects they point to. The
component objects are found by dereferencing the references. Dereferencing
is done using the (cluster defined) operator ", which is (syntactically)
similar to the unary * operator in C. The operation that implements the
dereferencing is shown in Figure C.5. It is defined as part of the cluster
used to define reference types. Except for the keywords, it resembles an
ordinary C procedure definition. The type returned by the oper is specified;
in this case the type is Tt, i.e. the dereferencing operator returns the object
its first argument refers to. "_ref" denotes the name of the cluster
containing the specification. Inside the cluster definition this name is used as
the name of a type. A variable of type _ref is represented by a structure
that has three members, resp. a pointer, p, of type T *, an object key,
dbkey, and a pointer, dbacces.

oper type T oper ~ (r)
type _refs r;

I
i f(r.p == (type T) nil)

if(r.dbkey == (type key) null)
fatal error: dereferencing a null reference:

el se
r.p = get (r.dbacces. type T, r.dbkey);

result *r.p;
)

Figure C 5 . Dereferencing an object reference.

t In a similar way. a trailing s in a type name indicates a set of objects. This is an
arbitrary convention. The only thing we need is some systematic way of deriving type
names for sets, sequences and references of specified types.

* We will use the letter T as a type name. Note that in an EC cluster definition we can
have type names as parameters. In fact, the code shown in Figure C.5 is taken directly
from the corresponding cluster definition.

- 187 - Appendix C

By looking at Figure C.5, we see that when we dereference an object
reference, we first check whether the reference pointer is already defined,
i.e. whether the pointer already points to the object. If not, we need to
know the key of the object so that we can get it from the database as yet.
The get operation checks to see if the object is already read in; if not it
actually reads the object from the database and returns a pointer to it. If
the object was already read in, get() just returns a pointer to the object.
The implementation of get() depends on the type of the object to be read in.
The type name T is given as the second parameter of the get operation.
The operation " returns the object pointed to by the reference. When an
application programmer attempts to dereference an undefined pointer, i.e. a
reference to an object whose key is not defined, an appropriate error-
message will be generated.

The consistency of the data-management procedures is based on the fact
that all objects keep track of the number of references pointing to them.
Hence we require that the application programmer accesses an object only
via a corresponding object reference. Then, by a proper definition of the
assignment operation of the reference type, it is easy to keep track of the
total number of references to an object. The reference count is kept as the
sum of the active, passive and database reference count of the object. A
passive reference is a reference by key only, i.e. a reference to an object that
has not yet been fetched from secondary storage. An active reference is a
reference whose pointer has been set to point to the object. The database
reference count keeps track of the number of references to the object in the
database.

The procedures release and delete, hide the other part of the data
management, i.e. they decide if and when an object must be written back to
the database. This decision is based on the values of the reference counts of
an object. For example, when an object is no longer referenced, i.e. the sum
of all reference counts is zero, it can be deleted. An outline of the procedure
release is shown in Figure C.6. Since the procedures release and delete are
almost similar we show only the procedure release.

Appendix C - 188 -

oper vo id re lease (r)
type _re f r;

I
i f (r . p != (type T) ni I) (

f lARKlr) ;
i f ((r . p - > a _ r c o u n t == r .p->mark_count)) I

/ * t h i s is the las t a c t i v e re ference * /
UNrlARK(r);
r .p->a_rcount—?
r .p ->db_rcount++;
i f (OBJISTOUCHED(r.p)) I

i f U r . d b k e y = r.p->dbkey) == dbNlLKEY) i
r .p->dbkey = dbNeuKey(r.dbacces.USEROBJ);
r .dbkey = r .p->dbkey;

)
pu t (r . dbacces , r . p) ;
r e l ease t r . p) ;

I
I
e lse I

UNMARK(r);
RESETSTATUSlr.p.HARK.CHECKED):
r . p ->a_ rcoun t—;
r .p ->db_rcount++;

I
)
r .dbkey = dbNILKEY:
r . p = (type T) n i l ;

I

Figure C 6 . Release of an object reference.

The procedure "release" decrements the active reference count of an object,
and increments its database reference count. By checking the number of
active references to the object (a_rcount) the release operation determines
whether the object must be put back in the database. From Figure C.6 it
follows that an object is put back in the database when the active reference
count is equal to the so-called mark count, which is set by the procedure
MARK(). The mark_count has to be introduced to determine how many
active references remain after the object is put back in the database. This is
done by tracing all objects that can be reached from the object, and
incrementing their mark_count. If the mark_count of an object is equal to

- 189 - Appendix C

its active reference count, this means that we have the last active reference
to the object. The actual determination can be complicated, because the
object, or any of the objects referenced by it may refer back to the object to
be put in the database.

The procedure "release" is used to let the data management routines know
that the reference is not needed anymore. The object it refers to can be put
back in the database whenever that is convenient. The procedure "delete" is
almost similar to "release", except that the db_rcount of the object is not
incremented. If it becomes zero, the object is deleted, i.e. the storage
allocated for the object is freed, and the object is removed from the
database.

C 4 Implementation of Tuple, Set, Sequence and Reference Types

In the previous section we saw how the data-management is handled
automatically via the operations that dereference, respectively release or
delete a reference to an object. In this section we will discuss the internal
representation, i.e. the actual implementation, of objects, sets of references
to objects, sequences of objects, and references to objects.

Refering to Figure C.l we are now looking at the ellipse named Data-type
map. Starting point for this are the tuple definitions given in the previous
section, from which we have to derive all type declarations needed to
implement the tuple objects'!". This includes the type definitions for the
tuples, and all types needed to implement sets, sequences and references of
all tuples, the so-called derived types.

For every type, we will generate a header file that specifies the
implementation of the type, as well as its so-called external representation.
The external representation specifies the properties of the variables in an

t Note that all code shown in this section is also actual EC [Katz85] code, that is compiled
by the EC compiler.

Appendix C - 190-

application program. For example, to specify the external representation of
a (node) reference we can use a C typedef statement as shown below:

typedsf type node * nodep;

The statement above gives a name to the reference type. This is done
systematically, we add a 'p' to the original typename to represent a
reference, a 's', to represent a set, and a 'S', to represent a sequence. The
external representation of a tuple is almost similar to that of its original
definition. The only change is a change of name for derived types, as
explained above.

typedef tup le I
type s t r i n g n_n3me:
type po in t n_pos;
type po r t s n_por ts :

) node:

The type of the component n_ports has become 'ports', to represent the fact
that it is a set of references to ports. The type ports is declared in a
separate map statement, as explained next.

In order to define a new type in EC, the programmer has to specify :

1. the external representation, e.g. in the form of a tuple, oneof, set or
sequence definition, and

2. the implementation.
The implementation of a type is specified by a map statement, which is an
EC statement that is used to bind a type to an instance of a specific cluster.
The power of the map mechanism lies in the fact that cluster parameters
can be type names. For example, to specify the implementation of a (node)
reference we use an EC map statement as shown below:

map _ r e f (type node) type nodep;

This expresses the fact that nodep is an instance of _ref with parameter
"node". It is important to note that all other references can be implemented
the same way. Similarly, to implement a reference to a port we will have:

map _ref I type port) type portp:

- 191 - Appendix C

Therefore, a single cluster '_ref' is sufficient to implement all possible
reference types. The same is true for all other derived types as well: It will
be clear that the possibility of defining clusters simplifies the
implementation of the DMP.

The implementation of a tuple is slightly more complicated. Here we have
to define the cluster as well. However, all clusters implementing tuples
have the same structure. The only differences between tuples are in the
number, type and names of the components. As a result, it is not difficult to
write a program that does this automatically. The program will consult a
database, containing all relevant data about previously defined types. In
addition we may want to define specialized operations for the types
implemented by these clusters. This can be implemented as part of the
program generating the cluster definition required to implement the tuple
type. This program can simply prompt the application programmer to
specify additional operations. The program can also take care to include
special preprocessor directives, that allow separate compilation of the
cluster.

As said before, the implementation of a type is specified by binding it to a
cluster definition. In what follows, we will show the structure of a header
file, that contains a complete specification of a node tuple. All code shown
in the remainder of this section is part of a header file called 'node.h', which
is located in a special include directory, so that all application programs can
include it.

/* ... start of file defining node tuple */
/* header files to define types of components */
If include <string.h> /* define type: string (strings of characters) */
ft include <point.h> /* define type: point (x,y point) */
include <ports.h> /* define type: set of references to port */

/* header files to include the definitions of the generic clusters */
U include <set.h>
U include <ref.h>

/* header file to include OMP interface library definitions */
include <dmp.h>

ft de f ine NodeRadius 28 / * a d d t l . d e f i n i t i o n * /

The external type definition of the node is given next. A node is a tuple

Appendix C - 192-

with three components, resp. a name, a position, and a set of ports. The
difference between a tuple and an ordinary C struct declaration is that a
tuple does not imply a particular storage structure. In fact the external
representation can have components that are not part of the internal
representation associated with the object. In such a case the value of the
component has to be computed anew every time it is accessed.

typedef tup le I
type s t r i n g n_name; / * the name of the node * /
type po in t n_pos; / * the (x, y) p o s i t i o n of the node * /
type po r t s n_por ts ; / * the po r t s of the node * /

I node;

Next we get the declaration of the cluster. Clusters implementing tuple
objects do not have parameters.

cluster _node ()
f

rep type _rnode n;

The representation of a node, i.e. the data-structure used to implement node
objects is defined above. The definition above specifies that a node is
represented by an object of type _rnode. This type is defined below, using
an ordinary C typedef statement. Note that this type is defined in the
cluster body. It is local to the cluster, and will not be visible outside it.

/* ... local type d e f i n i t i o n s . . . * /
typedef s t r u c t (/ * i n -co re rep resen ta t i on of a node * /

type s t r i n g n_name; / * rep of name of node * /
type po in t n_pos; / * rep of (x, y) p o s i t i o n of node * /
type p o r t s n_por ts : / * rep of p o r t s of node * /
shor t a_rcount; / * tt of a c t i v e p o i n t e r s to ob jec t * /
shor t p_rcount ; / * tt of passive p o i n t e r s to ob jec t * /
shor t db_rcount; / * tt o f p o i n t e r s to ob jec t i n db * /
shor t mark_count; / * mark count of ob jec t * /
shor t s t a t u s : / * s ta tus of ob jec t * /
type key dbkey; / * database key of ob jec t * /

I _rnode;

The type definition above, has more members than the node tuple that is
mapped to it. These extra members hold the information needed by the
data-management procedures. In fact, there is no predefined relation

- 1 9 3 - Appendix C

between the members of the internal and external representations. The only
constraint is that the internal representation has the additional members
named a_rcount, p_rcount, db_rcount mark_count, status, dbkey and
dbacces. They are used to keep track of the number of references to the
object, as well as the database in which the object is stored. What is
important is that the cluster provides the operations to compute each of the
components of the external representation, i.e. a cluster used to implement a
node must have components named n_name, n_pos and n_ports.

Next we can have a number of additional data structure definitions, which
are used by the cluster operations. In this case we only need a structure to
define the database representation of a node.

typedef struct I /* database object associated with a node */
type key n_name; /* db rep of name of node #/
type point n_pos; /* db rep of (x, y) position of node */
type key n_ports; /* db rep of ports of node */

) _dbnode;

The database representation is used by the get and put operations to store
and fetch the object in resp. from a database. It differs from the external
representation, in the sense that all object references, as well as strings are
replaced by database keys (dbkeys).

The definition of the object operations, shown below, is fairly
straightforward. They are defined as part of the cluster body, following the
keywords oper or proc. A "proc" operation will be implemented as a
function call, whereas an "oper" operation will be implemented as a macro.
The body of an oper definition actually replaces its call in an application
program. Instead of a return statement, it has a result statement with the
same function. Except for the change in name, the function is the same
however. Build-in operators can be redefined. The difference with an
ordinary definition is that the name of the operation, the operator to be
redefined, is preceded by the keyword oper.

The operations "allocate" and "delete" handle the in-core storage management
of an object. They take care of proper initialization, resp. cleaning up when
an object is allocated, resp. deleted. Cmode is an EC keyword, whose type

Appendix C - 194-

is that of the cluster. It is used to distinguish between operations, in
different clusters, that otherwise could not be distinguished from one
another, i.e., they have the same name and the same arguments.
SETSTATUS is a special macro that sets the status of an object, according to
its second argument. In the case shown below, the status of the object is
made DELETED. This is done to prevent an object from being deleted
twice, e.g. if the object contains a reference to an object that in turn
contains a reference to the first object.

/* ... Operations . . . */
oper type _node * oper allocate (cluster_name)

cmode cluster_name;
I

type _node * res;
res = (type _node *)mal loc(sizeaf(type _node)):
res->n_name &= ""; res->n_ports = (type ports) null;
result res;

I

oper void oper delete (p)
type _node * p;

I
SETSTATUS(p.OBJDELETED);
de le te (p->n_name) ; de le te (p->n_ports) ;

I

The delete operation does not actually free the storage allocated to the
object. This is left to the operation that deletes the last reference to the
object. The reason for this is that we don't want the cluster defining the
implementation of the tuple to contain details of the storage management.
The delete operation defined in the _ref cluster (cf. section C.4.2) will also
check, the active and passive reference count of the object, and free the
storage only if these are both zero. If not, an error message will be
generated.

-195- Appendix C

proc type _node * get (dbacces, cluster_name, dbkey)
type DbAcces * dbacces; cmode cluster_name; type key dbkey;

(
type _node * r e s ; / * r e s u l t ob jec t (node) po in te r * /
type _dbnode * dbo; / * database ob jec t po in te r * /

res = (type _node *) m a l l o c (s i z e o f (t y p e _node)) ;
/ * f e t c h database ob jec t of node * /
res->db_rcount = dbFetchCdbacces,dbkey,Sdbo);
res->n_name &= get (dbacces, type s t r i n g , dbo->n_name);
res->n_por ts = get (dbacces, type p o r t s . dbo->n_por ts) ;
res->n_pos = dbo->n_pos;
res->dbkey = dbkey;
res->mark_count = 8;
INITSTATUS(res.0BJ_L0CKED); c f r ee (dbo) ;
r e t u r n r e s ;

)

The operation "get" handles the fetching of an object from the database. The
object is identified by its dbkey. "get" keeps track of the objects fetched
from the database via the functions dbKeyltsPtrO and dbAddKeyC). These
routines, together with the function dbRemKeyO, maintain a hash table
that, for every database used by the applications program, relates the
database keys of the objects to their in-core pointers. If an object is not yet
fetched from the database, its pointer will have the value nil. In that case,
the routine dbAddKey and dbRemKey will keep track of the number of nil
pointers to the object. This is necessary in order to make the reference
count of the object consistent once it is read in from the database. The
number of nil pointers is returned by the function dbAddKeyC). The
functions dbFetchO, dbFetchDC), dbCreateD() and dbStoreC) are defined in
section C.5.1. They are part of the DMP interface library. In this case,
dbFetch will access the database, and read in the object denoted by the
object key. It will allocate storage for the object, and return a pointer to this
address as the value of 'dbo'.

Note that for different object types, the implementation of the get operation
will differ only in the type and number of components that need to be
fetched.

Appendix C - 196-

proc type key put (dbacces, p)
type DbAcces * dbacces; type _node * p;

(
type _dbnode dbrep;

RESETSTATUS(p.OBJ .TOUCHED);
dbrep.n_ports = put(dbacces, p->n_ports);
dbrep.n_narae ■ put(dbacces, p->n_name);
dbrep.n_pos = p->n_pos;
dbStore(dbacces,p->dbkey.&dbrep.p->a_rcount + p->p_rcount +

p->db_rcount,s i zeof(type _dbnode));
RESETSTATUS(p.OBJ„LOCKED|0BJ_NEU);
return p->dbkey;

)

The operation "put" recursively puts all components of the object back, in
the database, and then stores an object relating the components of the object
to the object itself, via their respective database keys. The data-structure
stored in the database is the database representation of the object (see local
type declarations above).

The programmer who defines the cluster is free to add additional primitive
operations. An example is given below. The operation nearestport,
computes the port in the set of node ports that is nearest to a given point.

- 197 - Appendix C

proc type portp nearestport (n, pnt)
type _node n;
type point pnt;

I
type portp pi, p2;
int dmin, tdmin;

dm in = 4 * NodeRadius:
p2 = (type portp)nul I;
fora I I pi in n.n_ports suchthat

(ltdmin = distll~pl) .p_pos,pnt)) < dmin) do I
dmin = tdmin;
if(p2 != (type portp) null)

delete(p2);
p2 = pi;

I
return p2;

I

The following part of the cluster body consists of the definitions of the
components of the tuple type. For every component in the tuple definition
we have to specify a 'comp', denoted by preceding it with the keyword
comp.. Syntactically, components are distinguished from oper and proc
definitions only by the initial keyword. Here we show only the comp
definition of the first node component.

comp type string n_name (p)
type _node p;

<
(p.n_name)

I

The last part of the definition of a tuple type is the definition of constants.
For tuple types we will define the constant nil.

Appendix C - 198 -

constant type _node * oper nil (cIuster_name)
cmode cluster_name;

(
((type _node *)8)

I
1

This finishes the definition of the cluster. There is only one thing left to do
and that is to map the cluster to the node type. This is done using a map
statement as shown below.

map _node () type node;
/* ... end of file defining node tuple #/

C ^ Building a Database based on the DMP Data Abstractions

In this section we will discuss the interface functions needed to build a
database using the methodology to define and implement types defined in
the previous sections. The high-level interface will implement the
metaschema shown in Figure C.2. To do so, we will have to define a
number of clusters. These will be shown, in outline, in section C.5.2. We
start with a discussion of the DMP interface library. This library contains
the low-level access functions needed to implement the "get" and "put"
operations of the tuple types.

C.5.1 The DMP Interface Library
The DMP package contains a low-level library, with routines that can
create, delete and modify objects. Depending on the efficiency desired,
objects can further be subdivided into e.g. descriptor, set, sequence and
tuple objects. At this moment we distinguish only descriptor objects. All
other objects are called user-defined objects. User-defined objects are arrays
of bytes with no predefined interpretation. Descriptor objects are used to
store strings.

The file structure of a DMP database is shown in Figure C.7.

- 199 - Appendix C

admin files object file design files

Figure C.7. File Structure of a DMP Database.

All objects are identified by a unique object key. The usage of object keys is
administrated in a bitmap that is stored in the "key" administrative file . A
new object key is allocated by calling the routine dbNewKeyO. The DMP
interface routines use two additional files, the "dir" and "pag" files, to store a
hash table that contains basic information about the object, e.g. its key, the
address on which the object can be found, etc. Finally there is a fourth file
that contains the objects. All transaction with these files are atomic. This is
done by using semaphore operations. The design files are intended for
storing sequence elements. With every sequence object there is a
corresponding design file, the records in these files correspond to the
elements of the sequence.

The operations implemented sofar, with a specification of their function, are
discussed below. The types of the values returned by the functions, and the
types of the arguments are indicated. The return type is the type preceding
the *- arrow. All routines take as their first argument a value of type
DbAcces, which is a pointer to a structure containing all information

Appendix C - 2 0 0 -

necessary to access a particular database; it also contains the buffers
required to make the manipulation of the database files efficient. For
clarity, these details are left out of the argument lists. The type DbKey
stands for a database key, type DbKeySet stands for a set of database keys.
Type DbMode is an enumerated type. It has values PERMANENT_LOCK
and ATOMIC_LOCK, so as to allow a database to be locked either for a
single transaction, or for a sequence of transactions.

The functions in the DMP interface library are:

1. To allocate a new key for an object:
type DbKey *- dbNewKeyO

The function dbNewKeyO allocates a unique key for an object.

2. To create objects:
type DbKey «— dbStore(type DbKey objkey; char * object; int rcount,

Imode, size)
The function dbStoreO is used to create and replace user-defined
objects. If the object denoted by argument objkey exists it is replaced
by the new object, pointed to by object. If the object denoted by
objkey does not exist, it is created. The rcount argument is used to
pass the number of references to the object to the data-management
routines. Next the Imode is used to specify the whether the object
should remain locked. If so, the function of the store operation is just
to update the contents of the database files. The final argument is the
size, i.e. the number of bytes, of the object.

type DbKey *- dbStoreD(type string descriptor)
The function dbStoreD() is used to store and/or create descriptor
objects. It creates a descriptor object for the symbolic identifier
denoted by the string descriptor. The function returns the key of the
newly created object.

3. To fetch objects:
(int)«— dbFetchftype Dbkey objkey, char ** object; int Imode)

The function dbFetchO is used to fetch the object denoted by the
objkey from the database. If the object is not to be locked, the access is

- 201 - Appendix C

read-only. The database reference count of the object is returned. A
pointer to a pointer to the object is implicitly returned in the object
argument.
(char *) «- dbFetchlXtype Dbkey objkey)

The function dbFetchDO returns the descriptor associated with objkey
as a character string.

4. To unlock, objects:
(void) «— dbUnLockitype DbKey objkey)

The function dbUnLock.0 is used to unlock an object that was locked
in the database during a dbFetch(). The object is identified by its
objkey.

5. To delete objects:
(void) *— dbDelete(type DbKey objkey)

The function dbDeleteO is used to delete the object denoted by the
objkey. Depending on the class the object belongs to, dbDeleteO
performs all actions necessary to delete the object.

6. To access a database:

— To open it:
type DbAcces *— dbOpenftype string dbname; type DbMode

amode)
The function dbOpenO is called to create a new database descriptor.
It allocates and returns a DbAcces structure to be used by
subsequent operations that access the contents of the database. The
amode argument selects between permanent and atomic locking.
Atomic locking implies that every operation needs to lock the
database. On the other hand, if the database is permanently locked,
it is locked once when the database is opened. This lock is then
removed when the database is closed. The locking mechanism
guarantees that at any one time only a single process can have
access to the database. Note that the function dbOpen does not need
the DbAcces argument required by all other ODM functions.

Appendix C - 2 0 2 -

— To close it:
(void) *— dbClose(type DbAcces dbacces)

The function dbClose closes the database, i.e. it removes any
permanent lock, flushes the buffers, and closes the files containing
the database objects.

A major extension of the DMP library will be the addition of functions to
store and fetch sets and elements of sets. The main purpose of this is to
increase the efficiency by taking advantage of the fact that once we access a
set, we will certainly want to access the elements of the set as well. The
efficiency of accessing the set-elements can be increased if, together with set,
we store information about where the set-elements are located. In fact we
have to duplicate the information normally contained in the hash-tables
stored in the pag and dir files. In addition we can take care to store the set-
elements together, so that the number of page accesses becomes minimal.

C.5.2 Implementing the DMP Metaschema
Looking at Figure C.2 we see that a DMP database consists of a collection of
type definitions. The type definitions are instances of a tuple, dbtype. In
addition to defining a cluster to implement this tuple, we define a cluster
that implements operations to open, resp. close a database. This cluster will
have the set of type definitions as one of its components. That way, it
becomes possible to apply the usual set operations, e.g. exists, to select a
particular type, thereby gaining access to the baseset of the type.

A typical piece of code to open a database, access the baseset (see Figure
C.2) of one of the dbtypes, and close it again is shown in Figure C.8.
Except for the already mentioned open and close operations, we see that we
have used an operation that returns the baseset of a type. This operation is
added to the set cluster. In addition to returning the baseset this operation
will add some extra information to the tuple describing the type. The extra
information, the addresses of some access functions, is used to write the
baseset back to the database, once it is closed. To that end we also have to
modify the put and release operations of the dbtype tuple.

Finally, the definition of the dbtype tuple:

-203- Appendix C

i
type dbtypedb dmp_db;
type graphs graph_baseset;

dmp_db = openttype dbtypedb, "pathname", lock_mode);
graph_baseset = baseset(dmp_db.types, type graph);

I
I

/* Additional code */
I

close(dmp_db);
I

Figure C 8 . Accessing a DMP database

de f i ne tup le (
type s t r i n g t_name;
type key t_baseset;
set_of ref_to type comp t_comps;

) dbtype;

define tuple I
type string c_name;
ref_to type dbtype c_type;

) comp;

Given these definitions, and looking at the code of Figure C.8, we see that it
is quite easy to access and manipulate a database. The application
programmer simply opens it, selects the basesets to be used, and does
whatever is required with the objects referenced by the basesets. Finally,
the programmer closes the database, which causes all basesets to be written
back, and the contents of the files to be updated. In between the
programmer can control the amount of information that is kept in-core by
carefully applying put and/or release operations. At no time however, the
programmer is required to take care of the details of the data management.
These details are hidden in the operations that allocate, release, put and/or
delete objects, object references etc.

Appendix C - 2 0 4 -

C.6 Discussion

The data-management approach shown in this paper is based on the
application of modern software engineering techniques for structuring large
programs. By modeling (VLSI) design data as a collection of typed objects,
and by structuring this collection using sets and interobject references it is
possible to create a database and to access this database via access functions
derived from the definition of the object types. The implementation
discussed here was done with Enhanced C, a high-level set-oriented
extension of the C programming language. The data structuring methods
offered by EC are well matched to the requirements posed by the data
management method. In particular, the possibility of defining
parameterized data-types and the overloading of operators are drawn upon.
EC makes it possible to define new data-types by defining clusters. Clusters
are mapped to a particular data-type, by providing a set of actual values for
the cluster parameters. The flexibility of EC derives in part from the fact
that these values can be almost anything, from simple integers and reals to
type names and even entire statements.

New object types are easily defined. In addition, types implementing
references to objects and sets of references to objects are derived
automatically from the initial object type definition. As a result, the
amount of programming to be done to define a new object type and to
integrate it with the rest of the system is minimal.

The implementation of any particular set of objects can be matched to the
application at hand by defining alternative clusters for implementing sets.
As long as the external specification of the object types are not changed, no
reprogramming is necessary. Simply recompiling the affected software is
sufficient.

The work, described in this paper is now being extended in several
directions. First of all we are working on an advanced set of routines for
doing the low-level storage, as described in section C.5. The new routines
incorporate sophisticated buffering schemes, and will be able to take
advantage of the clustering of objects in sets. The second direction is to

-203- Appendix C

i
type dbtypedb dmp_db;
type graphs graph_baseset:

dmp_db = open(type dbtypedb, "pathname", lock_mode);
graph_baseset = baseset(dmp_db.types,type graph);

I
I

/* Additional code */
I

close(dmp_db);
I

Figure C 8 . Accessing a DMP database

define tuple I
type string t_name;
type key t_baseset;
set_of ref_to type comp t_comps;

I dbtype;

define tuple (
type string c_name;
ref_to type dbtype c_type;

I comp;

Given these definitions, and looking at the code of Figure C.8, we see that it
is quite easy to access and manipulate a database. The application
programmer simply opens it, selects the basesets to be used, and does
whatever is required with the objects referenced by the basesets. Finally,
the programmer closes the database, which causes all basesets to be written
back, and the contents of the files to be updated. In between the
programmer can control the amount of information that is kept in-core by
carefully applying put and/or release operations. At no time however, the
programmer is required to take care of the details of the data management.
These details are hidden in the operations that allocate, release, put and/or
delete objects, object references etc.

Appendix C - 2 0 4 -

G6 Discussion

The data-management approach shown in this paper is based on the
application of modern software engineering techniques for structuring large
programs. By modeling (VLSI) design data as a collection of typed objects,
and by structuring this collection using sets and interobject references it is
possible to create a database and to access this database via access functions
derived from the definition of the object types. The implementation
discussed here was done with Enhanced C, a high-level set-oriented
extension of the C programming language. The data structuring methods
offered by EC are well matched to the requirements posed by the data
management method. In particular, the possibility of defining
parameterized data-types and the overloading of operators are drawn upon.
EC makes it possible to define new data-types by defining clusters. Clusters
are mapped to a particular data-type, by providing a set of actual values for
the cluster parameters. The flexibility of EC derives in part from the fact
that these values can be almost anything, from simple integers and reals to
type names and even entire statements.

New object types are easily defined. In addition, types implementing
references to objects and sets of references to objects are derived
automatically from the initial object type definition. As a result, the
amount of programming to be done to define a new object type and to
integrate it with the rest of the system is minimal.

The implementation of any particular set of objects can be matched to the
application at hand by defining alternative clusters for implementing sets.
As long as the external specification of the object types are not changed, no
reprogramming is necessary. Simply recompiling the affected software is
sufficient.

The work described in this paper is now being extended in several
directions. First of all we are working on an advanced set of routines for
doing the low-level storage, as described in section C.5. The new routines
incorporate sophisticated buffering schemes, and will be able to take
advantage of the clustering of objects in sets. The second direction is to

- 205 - Appendix C

build an interactive user interface written in LISP. This interface will be
able to give the same functionality to the designer browsing through the
database as the application programmer has available via the EC interface.
In addition, parts of this interface will be used to automate the definition of
clusters from the tuple definitions shown in sections C.2 and C.3. Finally
we are looking into the possibility of interfacing to other language
environments, e.g [Cox86]..

Finally, we believe that the work described in this paper shows that it is
possible to make the data-management involved in the design and
implementation of VLSI design tools transparent to the tool programmer.

Acknowledgement:
The authors would like to thank, prof. dr. J. Katzenelson, Technion - Israel
Institute of Technology, for making the EC compiler available to them, and
for carefully reading an earlier draft of this paper.

Appendix C - 2 0 6 -

References

Afsa84. Afsarmanesh, H. and McLeod, D., "A Framework, for Semantic
Database Models," Proc. NTU Symposium on New Directions for
Database Systems, (May 1984).

Anne86. Annevelink., J., "A Hierarchical Design System for VLSI
Implementation of Signal Processing Algorithms," pp. 371- 382 in
Computational and Combinatorial Methods in Systems Theory, ed. C.I.
Byrnes, A. Lindquist, North-Holland (1986).

Bato85. Batory, D.S. and Kim, Won, "Modeling Concepts for VLSI CAD
Objects," ACM Trans, on Database Systems 10(3) pp. 322-346
(September 1985).

Bek.k.83. Bekke, J.H. ter, Database Ontwerp, Stenfert Kroese b.v. (in Dutch)
(1983).

Cox86. Cox, Brad J., Object Oriented Programming: An Evolutionary
Approach, Addison Wesley (1986).

Date81. Date, C.J., An Introduction to Database Systems, Addison-Wesley
Systems Programming Series (1981).

Katz83a. Katzenelson, J., "Higher Level Programming and Data
Abstractions - A Case Study Using Enhanced C," Software Practice
and Experience 13 pp. 577 - 595 (1983).

Katz83. Katzenelson, J., "Introduction to Enhanced C," Software Practice
and Experience 13 pp. 551 - 576 (1983).

Katz85. Katzenelson, J., The Enhanced C Programming Language Reference
Manual, Technion - Israel Institute of Technology, Haifa 32000, Israel
(March 21, 1985).

Kern78. Kernighan, B. and Ritchie, D., The C Programming Language,
Prentice Hall (1978).

- 207 - Appendix C

McLe85. McLellan, P., "Effective Data Management for VLSI Design,"
Proc. 22nd IEEE/ACM Design Automation Conference, pp. 652-657
(July 1985).

McLe83. McLeod, D., Narayanaswamy, K., and Rao, K.V. Bapa, "An
Approach to Information Management for CAD/VLSI Applications,"
Proc. Databases for Engir'^ering Applications - ACM Database Week,
(1983).

Stro85. Stroustrup, B., "The C++ Programming Language - Reference
Manual," AT&T Bell Laboratories, (1985).

Wirt77. Wirth, N., "What can we do about the unnecessary diversity of
notation for syntactic definitions ?," Comm. ACM 20(11) pp. 821 - 823
(Nov. 1977).

-209-

Curriculum Vitae

Jurgen Annevelink werd geboren op 2 november 1959 te Laren (Gld) thans
Lochem. Na het behalen van het VWO diploma in 1977 aan de
scholengemeenschap Prins Alexanderpolder te Rotterdam, studeerde hij
elektrotechniek aan de Technische Universiteit Delft. In augustus 1983
behaalde hij met lof het diploma van elektrotechnisch ingenieur. Het
afstudeerwerk was getiteld: "A Hierarchical Layout to Circuit Extractor
using a Finite State Approach". Van 1 september 1983 tot 1 januari 1988
was hij werkzaam bij de vakgroep Netwerktheorie, Faculteit der
Elektrotechniek van de Technische Universiteit Delft. Vanaf 11 januari
1988 is hij werkzaam bij Hewlett-Packard Laboratories, Palo Alto,
Californie, in een groep welke bezig is met het ontwikkelen van een
prototype object-oriented database systeem.

