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Abstract
Newordinary differential equations (ODEs) for the evolution of spectral components are derived
from the complexGinzburg–Landau equation (CGLe) for one-dimensional spatial domains without
boundaries (free evolution) andwith one fixed boundary (semi-free evolution). For such evolution, a
complex or imaginary diffusion term creates a tendency forwaves to lengthen. This requires a novel
ansatz and auxiliary condition that treat wavenumbers as time-varying. The ansatz consists of a
discrete spatial Fourier transformmodifiedwith a time-dependent wavenumber for the peak spectral
component. Thewavenumbers of the other components arefixed relative to this wavenumber. The
new auxiliary condition is the terminal condition for complex diffusion (after wavenumbers evolve to
zero, they remain at zero). The derived free and semi-freeODEs are solved along characteristic lines
located symmetrically about a fixed spatial point.Waves lengthenwith time away from this point in
both directions. Laboratory experiments on the formation of channel sandbars, theoretically
described by theCGLe, show two regions whose evolutionary behaviour is qualitatively predicted by
the free and semi-free evolution equations. This analysis applies to other time-dependent partial
differential equationswith complex or imaginary diffusion terms.New freely evolving solutions are
derived for the complex heat equation and Schrödinger equation (linear and nonlinear).

1. Introduction

Several partial differential equations (PDEs)with physical applications contain a complex diffusion termof the
form ( )i X ,r i

2 2a a+ ¶ Y ¶ where ra and ia are real constants, i 1 ,= - ( )X T,Y is the complex amplitude of
a system variable, X is distance andT is time. These PDEs can be derived for a particular time and space scale
from amultiple-scale analysis of the (real) physical system equations. The imaginary part of the complex
diffusion term implies that solutions of these PDEs havewavelike aswell as diffusive properties. Two examples
withmany applications in physics are the complexGinzburg–Landau equation (CGLe) and nonlinear
Schrödinger equation (NLSe) [1–17].

An aimof this study is to derive particular solutions of these complex diffusion equations for free evolution
(i.e. without spatial boundaries or other external constraints) in one-dimensional spatial domains. Formany
applications, the auxiliary conditions for particular solutions are provided by initial and boundary conditions. In
experiments with bounded spatial domains, the boundaries often have an important role in pattern creation and
stability, which theories attempt to predict using boundary conditions appropriate to the experiments [9, 10].
Manymathematical and numerical studies use periodic boundary conditions [1, 10–12], whichmaintain
Galilean invariance and thereby reduce the number of equation constants. However, periodic boundary
conditions cannot represent free evolution. For afinite spatial domain, they restrict or select wavenumbers in
space-periodic solutions. In the limit as the domain length tends to infinity, they constrain thewavenumbers in
these solutions to be time-constant. The application to free evolution requires auxiliary conditions that are
different from any spatial boundary condition.
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An innovation in this study is to obtain the auxiliary conditions for free evolution from the terminal (i.e.final
or end-time) condition for a complex diffusive process, as well as from the initial condition. Complex diffusion
describes a physical process inwhichwaves can lengthenwith time. The terminal condition states that after a
wavenumber, ( )k T , has evolved to zero, no further evolution of k takes place, i.e. dk dT 0= when k 0.= One
implication of the terminal condition is that it disallows antidiffusive solutions inwhichwaves shortenwith
time. This satisfies thewell-posedness requirement for continuous dependence on initial data. The full role of
the terminal condition in deriving the particular solution for free evolution is described in section 3.2.1.

Another novelty is the ansatz fromwhich the particular solution for free evolution is derived. This ansatz
consists of a discrete spatial Fourier transformmodified to havewavenumbers as continuous functions of time.
The particular solution for free evolution is derived in the formof characteristic lines alongwhich the
amplitudes, wavenumbers and phases of spectral components evolve as functions of time only. Coupled,first-
order, ordinary differential equations (ODEs) are derived for the evolution of these parameters. The particular
solution has afixed spatial point with reflection symmetry.Waves lengthenwith time away from this point in
both directions. The location of the fixed pointmay be determined by perturbations in the initial condition.

In physical applications, the spatial domain is necessarily finite, but free evolution can occur if the domain is
sufficiently long that the boundaries only influence shorter regions adjacent to them. The particular solution for
free evolution applies in the interior of the domain away from these boundary regions. Free evolution is
contrastedwith ‘bounded’ evolution, which occurs in spatial domains that are sufficiently short that the
influence of the boundaries extends throughout the domain [1, 6–8]. For bounded evolution, thewavenumbers
in space-periodic solutions are constrained by the boundary conditions to be time-constant. The type of
evolution (free or bounded) in a given domain length can depend on thematerialmediumproperties (section 6).
A video comparing free and bounded spectral evolution is shown in appendix C.

This work also considers ‘semi-free’ evolution inwhich the spatial domain has a singlefixed boundary but is
otherwise unrestricted. The derivation of the particular solution for semi-free evolution is similar to that for free
evolution, but the auxiliary conditions are obtained from the condition at the single boundary aswell as from the
terminal and initial conditions. Semi-free evolution can occur in a boundary region of a long domain, with a
short transition to the region of free evolution in the interior of the domain. Experimental examples of free and
semi-free evolution for space-periodic channel sandbars, theoretically described by theCGLe [17], are shown in
section 4. Several such experiments show that these bars lengthen as they grow in amplitude [18–22].

This study concerns space-periodic solutionswithout local defects, butmodifiedwith time-dependent
wavenumbers. The focus is on nonlinear PDEswhose solutions evolve to sideband-stable SFP (stationary, finite-
amplitude, plane-wave) states, as well as on linear PDEs. Some implications for nonlinear PDEswith sideband-
unstable SFP states are briefly discussed in section 6. The particular solution for free evolution is derived initially
for theCGLe (section 3). The equivalent solutions for other PDEswith complex or imaginary diffusion terms are
then obtained as special cases by setting some of the constants in theCGLe to zero (section 5). For these cases,
some straightforwardmodifications to the ansatz are required to treat nonlinear terms and the differences in
scaling and initial conditions.

The remainder of the paper is structured as follows. Section 2 describes some of themain properties of the
CGLe required for the newwork. Section 3.1 derives the general evolution equations from theCGLe for the new
ansatz. Section 3.2 derives the particular equations for free evolution, using the terminal condition for complex
diffusion. Section 3.3 adapts these equations for semi-free evolution. Section 4 presents qualitative evidence for
the free and semi-free evolution equations from laboratory experiments on channel sandbars. Section 5 derives
free evolution equations for other time-dependent PDEs containing a complex or imaginary diffusion term, as
special cases of the CGLe. Section 6 discusses some ideas for future studies. Section 7 summarises themain
conclusions. Appendix A considers the normalisation of the evolution equations and derives a simplification by
including only coherent nonlinear terms. Appendix B demonstrates theGalilean invariance of free solutions of
theCGLe. Appendix C shows a video of the evolution of wave spectra for free and bounded solutions.

2. Background to theCGLe

2.1. TheCGLe and scaling
In partially scaled time (T ) and space (X ) coordinates the CGLe is

( ) ( ) ( )∣ ∣ ( )
T

i i
X

i 2.1r i r i r i

2

2
2g g a a m m

¶Y
¶

= + Y + +
¶ Y
¶

- - Y Y

where Y is the partially scaled complex amplitude and ,rg ,ig ,ra ,ia rm and im are real constants (referred to as
the ‘CGLe constants’)derived fromnormalised variables in the underlying physical equations, with 0rg  and

0.ra  Y describes themodulation of a plane basewave. The partially scaled variables ,Y X andT are related to
the unscaled variables with subscript u by

2
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( )X X T T 2.2u u u
2e e eY = Y = =

The scaling factor, e (0 1e< < ), is defined by ( )R R Rc c
2e = - where R is a system constant whose value

moderately exceeds a critical value, R ,c at which a spatially uniform state ismarginally unstable. A fully scaled
formof theCGLe is

( ) ( )∣ ∣

( )
T

ic
X

ic

c c

1 1

2.3

f

f
f

f

f
f f

i r i r

1

2

2 2
2

1 2a a m m

¶Y

¶
= Y + +

¶ Y

¶
- - Y Y

= =

The scaling relations for ,fY Xf andTf are functions of theCGLe constants [1, 4]. The fully scaledCGLe (2.3) is
used in section 2.4 for comparisonwith previous studies, but the rest of the paper uses the partially scaledCGLe
(2.1) in order that variables are closer to quantitiesmeasured in experiments and to consider cases where some of
theCGLe constants are zero.

General values of wavenumber and frequency are denoted by k,ω, the base wave values by k ,r rw and their
differences by K , W

( )K k k 2.4r rw w= - W = -

Thewavenumbers are scaled by 1e- and frequencies by ,2e- giving kX k X ,u u= T T ,u uw w= KX K Xu u= and
T T .u uW = W TheCGLe can express information on K and W but not kr or .rw Accordingly, K and W are called

the ‘wavenumber’ and ‘frequency’ in analyses of the CGLe andNLSe (sections 2.2–2.4, 3, 5.3 and the
appendices). The parameters k andω are termed the ‘total’wavenumber and frequency; ‘total’ refers to the
modulation combinedwith the basewave. The auxiliary conditionsmay incorporate kr or .rw

2.2. Initial and terminal conditions
Solving theCGLe is treated as an initial value problem inwhich Y is set at an initial time,T 0,= and remains
bounded in amplitude at all future times. The initial condition is usually a spatially uniform state, 0.Y = This
state is unstable to perturbations in a limitedwavenumber range of width ( )O e in unscaled units, centred on
K 0.= This central wavenumber component has the fastest growing amplitude initially.

The complex diffusion term tends to homogenise spatial gradients in Y by reducing both the amplitudes and
wavenumbers of the spectral components. For bounded evolution, the boundary conditions constrain
wavenumbers to be time-constant, but for free and semi-free evolution, wavenumbers can evolve to smaller
values. In the latter cases, the terminal condition for complex diffusion (postulated in this study as an auxiliary
condition) yields anODE forwavenumber evolution (section 3.2). This terminal statemight not be reached
because of other non-diffusive processes but there is a diffusive tendency towards this state.

2.3. Plane-wave solutions
SFP solutions of theCGLe are derived from the ansatz

[ ( ( ) )] ( )A i K X X Texp 2.50Y = - - W

where A is the absolute amplitude, K and W are given by (2.4), and X0 is a reference location. Substituting (2.5)
in (2.1) yields

( )K A 2.6r r r
2 2a g m= -

( ) ( )A 2.7r i r r i i r r i
2a a g a g a m a mW = - - +

Equations (2.6) and (2.7) represent a family of SFP solutions of theCGLe inwhich K and W are functions of the
amplitude, A.These solutions are unstable to sideband perturbations for certain ranges of values of the CGLe
constants [5].

A non-stationary, plane-wave solution of theCGLe is derived if A and W are time-dependent in (2.5) and the
wavenumber is constrained as a constant, K .a This ansatz yields decoupled equations for dA dT and d dT ,W
with analytical solutions for ( )A T and ( )T .W These solutions in the limit,T , ¥ are known as the ‘Stokes
wave’ and are equivalent to setting K Ka= in (2.6) and (2.7).

2.4. Bounded evolution equations for theCGLe
Space-periodic evolution equations for a finite spatial domain can be derived from theCGLe using a discrete
spatial Fourier transform [6–8]

( ) ( ) [ ( )] ( )X T Z T inq X X, exp 2.8f f f
n N

N

n f f f 0åY = -
=-

In (2.8), q is thewidth of the spectral components (i.e. their wavenumbers are K nqn = ), Xf 0 is a reference
location, Zn are complex variables, and N is a truncation limit for numerical computations. Following [6],
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substitution of (2.8) in the fully scaledCGLe (2.3) yields a set of N 1+ complex equations

( ( )) ( ) ( )

∣ ∣ ∣ ∣ ∣ ∣

⁎dZ dT n q ic Z ic Z Z Z1 1 1 2.9n f n
j l m n

j l m N

j l m
2 2

1 2

, ,

å= - + - -
+ + =



where * denotes the complex conjugate, n N0, 1, ,= ¼ and Z Z .n n=- Neumann conditions are applied at the
boundaries. Numerical simulations of (2.9) for c c1 01 2- > have shown that solutions evolve towards a
sideband-stable SFP statewith n 0= (the Stokeswave). This was demonstrated both for large values of N [7]
and for strong truncation (N 1, 2, 3= ) [6]. These studies also investigated cases for c c1 0,1 2- < for which
SFP states are sideband-unstable and complex dynamics can occur.

The present study considers cases with c c1 01 2- > which should, according to (2.9), evolve towards the
Stokeswave. However, such evolution contradicts several laboratory experiments that showwavelengths
increasingwith time (section 4). The boundary conditions for (2.9) are assumed to have an influence that
extends throughout the spatial domain, resulting in bounded evolution. The observed evolution in the
experiments is believed to be free and semi-free evolution, for which novel solutions are derived in section 3.
Figure 1 and the video compare free and bounded spectral evolution using the sameCGLe constants and initial
condition.

3. Free and semi-free evolution equations for theCGLe

Novel particular solutions of theCGLe for free and semi-free evolution are derived in this section. In section 3.1,
general evolutionaryODEs are derived from an ansatz consisting of a discrete spatial Fourier transform
modifiedwith time-dependent wavenumbers. In section 3.2, particularODEs for free evolution are derived
using the terminal condition for complex diffusion. In section 3.3, the adaptation for semi-free evolution is
described.

3.1.Derivation of the general evolution equations
3.1.1. The ansatz
The proposed ansatz to transform the partially scaledCGLe (2.1) inwavenumber space is

( ) ( ) [ ( )] ( ) ( )

( )( ) ( ) ( ) ( ) ( )

W A T i X T X T T

K T X X K T n M q K T

1 exp , ,

1 3.1
n

N

n n n n n

n n n M

1
1

0

å s f

f s

Y = Q Q = + F

= - = - + = 
=

The spectral components are identified by indices, n, in the range n N1 ,  where N is the total number of
components. A ,n Kn and nQ represent the amplitudes, wavenumbers and phases of the components, q is the
wavenumberwidth of the components, M is the index of the component with themaximumamplitude, andW1

is a normalisation factor determined by requiring that the dynamics remain unchanged as N . ¥ In contrast
to (2.8), the spectrum is generally asymmetric. During evolution, the componentwith themaximumamplitude

Figure 1.Evolution ofwave spectra in theCGLe. (a, left)Bounded evolutionwith time-constant wavenumber components [6–8]. (b,
right) Free evolution to smaller wavenumbers (this study). Green square: starting position of the central wavenumber component.
Red circle: sideband-stable final state.Higher numbers denote spectra at later times. Both figures start with the same low-amplitude
spectrum spanning the unstable wavenumber range in a perturbed 0Y = state. See thefigure 2 caption for further details. A video
showing both types of evolution is provided in appendix C.
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may change, inwhich case M changes to the index of the new such component at the next timestep in a
numerical solution. The ansatz (3.1) is an approximation that becomesmore accurate for narrow, single-peaked
spectra, which are typical in solutions of theCGLe (the unscaled initial spectral width is ( )O e ).

The purpose of s is to include both complex conjugate forms of the total wave, i.e. themodulation
combinedwith the basewave. The terminal condition determines the sign of s (section 3.2.3). The expressions
for the total wave and its components are

[ { ( ) }]
( ) [ {( )( ) }] ( )

i k X X T Total wave

A W i k K X X T Total wave Component n

exp

exp , 3.2
r r

n r n r n

0

1 0

s w
s w

Y - -
+ - - + F

The total wave (3.2) describes travelling and lengtheningwaves (section 3.2.6), whereas (2.8) describes standing
waves.

3.1.2. Solution procedure
The procedure for deriving the general evolution equations starts by substituting (3.1) in theCGLe (2.1). From
the resulting equation,ODEs for the evolution of An and n MF - F are derived, containing variables that are
functions ofT only. Both MF and KM remain undetermined by this general solution.Making the substitution
yields

[{ ( ( )) } ( ( ))]

( )( ) ( ( )) ( )

dA dT L i L T A i

W i A A A i

exp

1 exp 0 3.3
n

N

n n n n n n n

r i
j l m N

j l m jlm jlm

1
1 2

2
1 , ,

å

å

s s f

m m s f

- + - ¶Q ¶ + F

+ - + F =
=

 

whereW2 is another normalisation factor. The identity ∣ ∣ *2 2Y Y = Y Y is used to derive the nonlinear term in
(3.3), and the summation is defined by

( )3.4
j l m N j

N

l

N

m

N

1 , , 1 1 1
å ååå=

= = = 

The linear expressions L ,n1 L n2 and the phase terms ,jlmf jlmF are defined by

(( ) ) ( )L n M q K 3.5n r r M1
2g a= - - +

(( ) ) ( )L n M q K 3.6n i i M2
2g a= - - +

(( ) )( ) ( )j l m M q K X X 3.7jlm j l m M 0f f f f= + - = + - - + -

( )3.8jlm j l mF = F + F - F

The aim is to express (3.3) in the form

[{ ( ) ( ) ( )} ( )] ( )H T iH T iH X T A i, exp 0 3.9
n

N

n n n n
1

1 2 3å s+ + Q =
=

where the subscripted H are expressions containing real variables. Equation (3.9) then yields H 0n1 = and
H 0n2 = for n N1   which are N2 evolutionaryODEs, and H 03 = which, after inclusion of the auxiliary
conditions, determines the characteristic lines.

For (3.3) to conform to (3.9), a subset of the nonlinear terms in the second summation in (3.3) is grouped
within thefirst summation. This subset has combinations of j, l and m that satisfy

( )for j l m n N1 , , , 3.10jlm nf f=  

From (3.1) and (3.7), this condition requires

( )j l m n for j l m n N1 , , , 3.11+ - =  

This grouping accounts for all nonlinear termswith values of j, l and m in the range j l m N1 .+ -  The
other nonlinear terms give n outside this range and are ignored. Equations (3.10) and (3.11) are substituted in
(3.3), resulting in the following equation

( ) ( )⎡
⎣⎢

⎧
⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫
⎬⎭

⎤
⎦⎥A

dA

dT
g i

T
f A i

1
exp 0 3.12

n

N

n

n
n

n
n n n

1
å s s- +

¶Q
¶

- Q =
=

where

( ) ( ) ( )g T L A S S W for n N1 3.13n n n r Cn i Sn1 2m m= - +  

( ) ( ) ( ) ( )f T L S S W A for n N1 3.14n n i Cn r Sn n2 2m m= + -  
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( )S A A A S A A Acos sin 3.15Cn
j l m n

j l m N

j l m jlmn Sn
j l m n

j l m N

j l m jlmn

1 , , 1 , ,

å å= F = F
+ - = + - =
   

( )3.16jlmn j l m nF = F + F - F - F

The summations in (3.15) are defined by (3.4)with the terms restricted by (3.11). Later in the analysis nQ and nF
are expressed relative to the phase of component M.These relative phases are denoted by nMQ and nMF and are
defined by

( )3.17nM n M nM n MQ = Q - Q F = F - F

Equation (3.16) can be expressed in terms of the relative phases

( )3.18jlmn jM lM mM nMF = F + F - F - F

where ,jMF lMF and mMF are defined similarly to (3.17). Two relations used later follow from (3.1)

( ) ( ) ( )n M q X X 3.19nM nM0Q = - - + F

and therefore

( )T d dT 3.20nM nM¶Q ¶ = F

3.1.3. The ancillary function, F ,M and the general solution
Equation (3.12) is not yet in the required formof (3.9) because Tn¶Q ¶ are dependent on X from (3.1). This
problem is overcome by reformulating (3.12) in terms of differentials of the relative phases, T ,nM¶Q ¶ which
are independent of X as shownby (3.20). To accomplish this reformulation, the following expression (3.21) is
added to (3.12)within the summation sign and then subtracted as a separate group

[ ( ) ( )] ( )i F T T A iexp 3.21
n

N

M M n n
1

å s s¶ ¶ - ¶Q ¶ Q
=

In (3.21), ( )F X T,M is a general function of X andT , and is termed the ‘ancillary function’. After this
reformulation, (3.12) becomes

( )

( ) ( )

⎡
⎣⎢

⎧
⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫
⎬⎭

⎤
⎦⎥

⎛
⎝

⎞
⎠

A

dA

dT
g i

T

F

T
f A i

i
F

T T
A i

1
exp

exp 0 3.22

n

N

n

n
n

nM M
n n n

M M

n

N

n n

1

1

å

å

s s

s s

- +
¶Q
¶

+
¶
¶

- Q

-
¶
¶

-
¶Q
¶

Q =

=

=

Equation (3.22)nowhas the formof (3.9) and is solved by equating the individual terms under the first
summation sign to zero, giving

( )dA dT g for n N1 3.23n n=  

( ) ( )d dT f f for n N n M1 , 3.24nM n MsF = - ¹ 

( )F T f 3.25M M¶ ¶ =

where (3.20) and (3.25) are used to derive (3.24). These constitute N2 evolution equations for the N2 variables
A ,n ( )nM n MF ¹ and FM for n N1 .  Thefinal termof (3.22) is also required to be zero, i.e.

F T T .M Ms¶ ¶ = ¶Q ¶ From (3.1), this requirement can bewritten as

( ) ( )F

T
X X

dK

dT

d

dT
3.26M M M

0s s
¶
¶

= - +
F

Equation (3.26) expresses a condition thatmust be satisfied for the evolution equations (3.23–3.25) to be valid.
Equations (3.23–3.25) are the general evolution equations derived from the ansatz (3.1). K ,M MF and s

remain undetermined in this general solution. To derive a particular solution, FM needs to be expressed as a
unique function of KM such that the validity condition (3.26) ismet. The evolution equation for KM then follows
from (3.25). This procedure requires auxiliary conditions that are specific to an application. Section 3.2 describes
the procedure for free evolution.

3.2.Derivation of the particular equations for free evolution
3.2.1. Deriving the relation of FM to KM

The particular equations for free evolution are derived from three conditions that determine the ancillary
function FM as a function of thewavenumber K .M The third condition is the terminal condition for complex
diffusion, which is specific to free evolution.
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(1) The functional dependence, ( ( )( ))F X T K T X X, , ,M M 0- is a requirement for ( )K TM to signify a
wavenumber (the general form, ( ( ))F X T K T, , ,M M implies no specificmeaning for ( )K TM ).Without
losing generality, FM is expressed as a function of another general function ( )F X T,1 added to

( )( )K T X X .M 0- This form facilitates the derivation of F .M

( ( ) ( )( )) ( )F F X T K T X X Functional dependence of F, 3.27M M M1 0+ -

(2) From (3.25) and (3.14) for n M,= F TM¶ ¶ depends onT only, and therefore FM has the form

( ( )) ( ) ( )F F T K T F X X, 3.28M M2 3 0= + -

where ( ( ))F T K T, M2 and ( )F X X3 0- are general functions.

(3) For free evolution, the terminal condition requires that after KM reduces to k ,r- it remains at this value

( )dK dT when K k0 3.29M M r= = -

and the spectrum is truncated to exclude components having K k .n r< -
Conditions (3.27) and (3.28) state that FM is both a function of the product of ( )K TM and X X ,0- and the

sumof separate functions of ( )K TM and X X .0- To satisfy both conditions requires FM to be a logarithmic
functionwith, for generality, amultiplying constant. Thus, from (3.27)

( ( ) ( )( )) ( )F C F X T K T X Xln , 3.30M M M1 0= + -

where CM is a real constant. For FM to satisfy (3.28), F1must have the form ( )( )F T X X4 0- or
( ) ( )K T F X XM 5 0- where ( )F T4 and ( )F X X5 0- are general functions. A similar analysis to that below shows

the latter form for F1 is incompatible with (3.29). Substituting the first form for F1 in (3.30), FM becomes

{ ( ( ) ( )) ( )} ( )F C F T K T X Xln ln 3.31M M M4 0= + + -

Equation (3.31) has the required formof (3.28). The next step is to set F4 using the terminal condition (3.29).
Differentiating (3.31)with respect toT and incorporating (3.29) yields

( ) ( )F k F T C dF dT 3.32r M M4 4- ¶ ¶ =

To satisfy (3.32) for any value of CM requires F k .r4 = The terminal condition, but not the terminal time, is
specified as an auxiliary condition. Because the terminal time is unknown, the constraint imposed by the
terminal condition on the general solution (in this case, F kr4 = ) applies at all times. Substituting F kr4 = in
(3.31) gives the sought relation of FM to KM

{ ( ( )) ( )} ( )F C k K T X Xln ln 3.33M M r M 0= + + -

where K k .M r-

3.2.2. The evolution equation for KM

Differentiating FM with respect toT in (3.33) gives

( )F

T

C

k K

dK

dT
3.34M M

r M

M¶
¶

=
+

The evolution equation for KM is derived from (3.34) and (3.25)

( )
( )dK

dT

k K f

C
3.35M r M M

M

=
+

The sign of CM provides two solutions, for diffusive evolutionwhen dK dT 0M < and antidiffusive
evolutionwhen dK dT 0.M > The terminal condition allows only the diffusive solution, which requires CM to
have the opposite sign to fM

( )f C for diffusive evolution0 3.36M M <

3.2.3. The characteristic equation
The validity condition (3.26)needs to be satisfied. A comparison of (3.34)with (3.26) determines two properties
of the solution. Firstly, MF is constant with respect to time

( )d dT 0 3.37MF =
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This property and the initial condition determine .MF Secondly, ( )C k KM r M+ is required to satisfy

( ) ( ) ( )X X C k K 3.38M r M0s - = +

Equation (3.38) shows there is a family of solutions for different values of C .M Each value of CM corresponds to a
line in the X T, plane alongwhich the solution evolves. These lines are analogous to the characteristic lines in,
for example, solutions to hyperbolic PDEs. In the present case, they describe constant values of the spatial part of
the total wave phase for component M, (3.2). For a given characteristic line, the value of CM is determined from
the initial state. For this state, ( )K 0 0M = and Xin is the initial value of X for the characteristic line

( ) ( )C k X X 3.39M r in 0s= -

Figure 2(a) shows an example of the characteristic lines.
The sign of s (defined as 1 in (3.1)) is determined by the requirement that the solutions evolve diffusively

(not antidiffusively). If f 0,M > it follows from (3.36) that C 0M < and therefore from (3.38) that
( )X X 0.0s - < Similarly, if f 0,M < it follows that C 0M > and ( )X X 0.0s - > Thus, s is determined by

( ( )) ( ( )) ( )f X X C X Xsgn sgn 3.40M M0 0s = - - = -

3.2.4. Summary and numerical solution of the free evolution equations
Equations (3.23), (3.24) and (3.35) are N2 coupled, first-orderODEs describing the evolution of the N2
variables, A ,n ( )nM n MF ¹ and KM for n N1   along each characteristic line defined by C .M TheseODEs can
be solved numerically by a timestepping algorithm, such as a Runge–Kuttamethod. After the N2 variables are
calculated at each timestep, nMQ is determined by (3.19), MF by (3.37), and ( )Kn n M¹ and Y by (3.1). The
location in physical space relative to X0 is determined by the characteristic equation (3.38). M is updated if the
componentwithmaximumamplitude changes.

A numerical solution of the evolution equations requires that the normalisation factorsW1 in (3.1) andW2 in
(3.13) and (3.14) are determined. ForW ,2 there are coherent nonlinear terms (for which 0jlmnF = ) that need to
be considered separately from the non-coherent terms. These issues are addressed in appendix A. The evolution
equations (3.23), (3.24) and (3.35) are simplified if only the coherent nonlinear terms are included, resulting in
(A6)–(A8).

Figure 2(a) shows a set of characteristic lines in X T, space andfigure 2(b) shows the evolution of
component M in K A, space along different characteristic lines.

3.2.5. The fixed point, X0

The point X0 is a fixed point fromwhich themodulatedwaves lengthen to each side. The location of X0 is
determined by application-specific properties such as details of the perturbation in the initial state. For some
long domains, a singlefixed point would require long-range spatial correlations during evolution thatmight be
physically unrealistic, especially in the early stages. Such domains are conjectured to have two ormore

Figure 2.Evolution from a perturbed 0Y = state (centred on the green square in b) towards a sideband-stable SFP state (red circle in
b) computed from (A6) and (A8). (a, left)Characteristic lines defined by (3.38) in X T, space for equal increments of C ,M with
X X0> and 1.s = - The dashed line has C .M p= - Characteristic lines for X X0< show reflection symmetry about X X .0=
Distance: computed from (3.39). Time: computational timestepmultiplied by number of timesteps. (b, right)Evolution of
component M in K A, space for six characteristic lines for C 3M p= - to 2p- at intervals of 3.p- Spectral evolution for
CM p= - is shown infigure 1(b) and the video (appendix C). The equation constants simulate the experiment in section 4:

0.39,ra = 0.86,ia = 1.62,rg = 0.69,ig = 5.48,rm = 1.08,im = k 2.89.r =
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subdomains, eachwith afixed point determined by spatial variations in the initial perturbation. These
subdomainswould be separated by short transition regions for continuity of the total wave. Experimental
identification of single ormultiplefixed points requires further research.

3.2.6. Kinematic properties and the dispersion equation
Some kinematic properties are obtained from this analysis. The dispersion equation for a general component, n,
is given by

( ) ( )
T

X X
dK

dT

d

dT
f 3.41n

n n n
n0 sW = -

¶Q
¶

= - - -
F

= -

where (3.1), (3.17), (3.24), (3.35), (3.37) and (3.38) are used. The phase velocity vn is derived as

( )v
T

X

f

k K
3.42n

n

n tot

n

r n,

s
= -

¶Q ¶
¶Q ¶

= -
+

where n tot,Q is the total wave phase for component n, (3.2). Since fn rw is ( )O ,2e vn is slow comparedwith the
basewave phase velocity. Equation (3.41) is the sumof thewave frequencies resulting from the lengthening of
waves and the travellingwaveform. The separate expressions for the lengthening (subscript ‘le’) and travelling
(subscript ‘tr’)wave frequencies and phase velocities are

( ) ( )X X
dK

dT
f v

f

k K
3.43n le

n
M n le

M

r n
, 0 ,s

s
W = - - = - = -

+

( )
( )

( )d

dT
f f v

f f

k K
3.44n tr

n
n M n tr

n M

r n
, ,s

s
W = -

F
= - - = -

-

+

There are two competing processes that determine the lengthening frequency .n le,W This frequency increases
with distance from X0 owing to the lengthening of waves but decreases with distance because of the slower rate at
which thewavenumber evolves. These effects cancel each other, resulting in no explicit dependence of n le,W on
X X0- or dK dT .n There is an implicit dependence on these parameters because fM is a function of K ,M which
evolves at different rates according to the value of C .M

Equations (3.43) and (3.40) show that the lengthening phase velocity is always directed away from X .0

Equation (3.44)with n M= shows that the travelling frequency and phase velocity for component M are zero.
In summary, the total wave consists of a fast travellingwave (the basewave) combinedwith amodulation that
slowly lengthens in both directions away from X ,0 inwhich component M is non-travelling and the other
components travel slowly in a direction determined by the sign of ( )f f .n Ms- -

The dispersion equation (3.41) has the same functional form as for the bounded evolution equations (for
which the auxiliary conditions include dK dT 0M = for allT ). For bounded evolution,

T f ,n n nsW = -¶Q ¶ = - which follows directly from (3.12) because Tn¶Q ¶ are now independent of X.
Although the formof nW is the same for bounded and free evolution, the contributions of thewave lengthening
and travelling processes are different (for bounded evolution there is nowave lengthening, i.e. 0n le,W = and

fn tr n, sW = - ).

3.2.7. Symmetry properties
The particular solution for free evolution has no undetermined constants or functions apart from some simple
symmetries. These are (1) translational symmetry in space and time, (2) scaling symmetry (section 2.1), (3)
Galilean symmetry (appendix B) and (4) reflection symmetry about X0 (sections 3.2.3, 3.2.5 andfigure 2(a)).

There is no reflection symmetry in the sense that an identical counter-propagating wave at a given location
and time cannot exist. The particular solution for bounded evolution has phase symmetry [6] but for free
evolution this symmetry is broken. In the latter case, the validity condition (3.26) couples MF to the other
evolution equations, whereas for bounded evolution there is no validity condition and MF is isolated.

3.2.8. Uniqueness of the particular solution
Ademonstration of the uniqueness of (3.33) for FM is not attempted but a plausible alternative solution is
rejected. The following forms of FM and F1 in (3.27) satisfy (3.28) and the terminal condition (3.29) forfinite
values of the exponent, p

( ( ) ( ( )) ( ) ) ( ) ( )F C F X T K T X X F k X Xln , 3.45M M M
p p

r
p p

1 0 1 0= - - - = -

However, (3.45) gives rise to an unrealistic initial condition, which is apparent from the derived characteristic
equation

( ) ( ) ( ( ) ) ( )X X C p K k K 3.46M M
p

r
p

M
p

0
1s - = - - --
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This equation shows that, for the initial state inwhich ( )K 0 0,M = finite values of CM are possible only for
p 1.= The solutions for some complex diffusion equations other than theCGLe have k 0r = and KM replaced
by kM (section 5). For these solutions, (3.45) and (3.46) reduce to the case for p 1= with the characteristic
constant C p.M

3.3. Semi-free evolution
The derivation of the semi-free evolution equations follows section 3.2, with the location of X0 set at the single
boundary andwith differences to some auxiliary conditions. The terminal condition stands, but a different
initial condition applies and there is a boundary condition at X .0 The boundary condition relates to the
total wave.

The following example is for a boundary condition inwhich the total wave (3.2) is held at a time-constant
value of zero at X .0 This corresponds to the upstreamboundary condition in the experiment outlined in
section 4. This boundary condition can be satisfied either by fixing the amplitude to zero or by fixing the total
wave phase at a nodal value. The latter case is consistent with the ansatz (3.1) and allows for unrestricted
amplitude growth near the boundary. However, a standingwave arising from reflections between two
boundaries cannot occur. For this example, the only possibility to satisfy the boundary condition is a travelling
wavewhose total phase velocity is zero.

The initial total wavenumber is determined from the dispersion equation for the initial state, setting the total
wave frequency to zero. Such awave is represented by a single component, M. Its amplitude andwavenumber
evolve according to (3.23) and (3.35) respectively, provided it is unstable in the initial state. During evolution, the
travelling phase velocity remains at zero as shown by (3.44) for n M,= which is consistent with the boundary
condition. The rate of amplitude growth is generally slower than that of thewavenumber component, K ,M in
free evolution.

4.Qualitative evidence from channel sandbar experiments

Qualitative experimental evidence for the free and semi-free evolution equations (3.23), (3.24) and (3.35) is
presented in this section. Several experiments have been conducted in different laboratories on the evolution of
sandbars in straight channels inwhich the bars evolve alternately on each side of the channel [18–22]. In these
experiments, energy was transferred into the channel bywaterflowdriven by gravity over a sand layer on a gentle
downslope. The experiments had different constraints at the upstreamboundary, such as afixed bed level or a
partial barrier to create a stronger locally perturbedflow.Water and sediment leaving the channel at the
downstream endwere collected and recirculated. TheCGLe has been derived as a nonlinear evolution equation
for the bars on long time and space scales [17]. The experiments were designed to be just beyond the critical state
for instability of a uniform channel bed, and theoretically had sideband-stable SFPfinal states for the bars.

A quantitative comparison of predictions by the free and semi-free evolution equationswith the
experimental data is beyond the scope of this study. The purpose of this section is to compare qualitatively two
observed phenomenawith predictions by these equations and by the solution for bounded evolution, (2.9). The
first phenomenon is that two bar types evolved in different regions of the channel. Non-travelling bars evolved
near the upstreamboundary and travelling bars evolved further downstream. The second phenomenon is that,
for both bar types, the barwavelengths increasedwith time as the bars grew in amplitude. Thefirst phenomenon
is qualitatively described by the semi-free solution for the non-travelling bars near the upstreamboundary, and

Figure 3.Bed level profiles along one side of the channel at three times (see legends) in the experiments of [21, 22]. (a, left)An
experiment inwhich the bed at the upstreamboundary ismaintained at afixed level (−49 mmelevation). (b, right)A separate
experiment inwhich a vertical plate at the upstreamboundary extends fromone side into the channel. See the text of section 4 for a
description and interpretation of these figures. Figures 3(a) and 3(b) are redrawn fromfigures 11 and 8 respectively in [21].
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by the free solution for the travelling bars further downstream. The solution for bounded evolution predicts a
single bar type throughout the channel and therefore does not agree qualitatively with the observation of the two
bar types. The second phenomenon, the increase in barwavelengths with time, is qualitatively predicted by
(3.35) for free and semi-free evolution.However, the solution for bounded evolution predicts that the
wavelength of the spectral peak remains unchanged from its initial value (section 2.4,figure 1 and the video in
appendix C).

Figure 3(a) shows themeasurements of bed level profiles along one side of the channel from an experiment
reported in [21, 22]. Thesemeasurements weremade at three different times, approximately two hours apart.
The bed at the upstream endwasmaintained at afixed level. In the interior (longitudinally) of the channel, the
threemeasured profiles are out of phase indicating that the bars behave as travellingwaves (termed ‘free bars’ in
[23]). The bars in this region grew to reach amaximumamplitude in about 1–2 days. Close to the upstream
boundary the threemeasured profiles are approximately in phase indicating that the bars behave as non-
travellingwaves (termed ‘hybrid bars’ in [23]). Their amplitudes grewmore slowly than those of the free bars and
continued to increase after tens of days. Between the two types of bars is a narrow transition region at
approximately 6–7 m. The free and hybrid bar regions correspond to the application of the free and semi-free
evolution equations respectively.

In both regions, the barwavelengths increased as the bars grew in amplitude. In the upstreamboundary
region, themeasured hybrid barwavelengths increased by a factor of approximately 1.07 during evolution. For
the free bars in the channel interior,measurements near full development of the bars showed that the bar
wavelengths were approximately 1.5 times longer than thewavelength of the theoretical initially fastest growing
component.

Another study [18] presented the results of nine separate experiments on free bar evolution. For each
experiment,measurements of free barwavelengths weremade between four and seven different times during
the growth of the bars. Thesemeasurements showed that the free barwavelengths increased by factors between
1.3 and 5.3 from thefirstmeasured states to the full development of the bars.

Returning to the experiments of [21, 22],figure 3(b) refers to an identical experiment to that for figure 3(a)
butwith a verticalmetal plate at the upstream end, extending transversely fromone side for about two-thirds of
the channel width. This experiment also had hybrid (non-travelling) bars near the upstreamboundary and free
(travelling) bars in the interior region, separated by a narrow transition region at approximately 11–12 m. The
interior region is qualitatively described by the free solution, but the boundary region is less well described by the
CGLe because of the strong flowperturbation caused by the plate. This resulted in an upstreamboundary region
thatwas longer and had a faster growing hybrid bar amplitude than shown infigure 3(a), although the hybrid bar
wavelengths were similar.

5. Free evolution in other complex diffusion equations

5.1. The complex heat equation
In section 3, the free evolution equations for theCGLe are derived using the terminal condition for complex
diffusion as an auxiliary condition. This suggests that a similar procedure can be used to derive free evolution
equations for other time-dependent PDEswith a complex or imaginary diffusion term.One such PDE is the
complex heat equation

( ) ( )T i X 5.1r i
2 2a a¶Y ¶ = + ¶ Y ¶

For the analysis in sections 5.1 and 5.2, Y represents an unscaled, unmodulatedwave. All variables are unscaled
and the subscript u is dropped for clarity. The initial condition is afinite value of Y and there is no restriction on
thewavenumber range. For a real diffusion coefficient, there are twomainmethods to solve (5.1); see, for
example, [3]. These use a Fourier integral transform for an unbounded spatial domain, and a separation of
space-dependent and time-dependent variables for a bounded domain. A unified approachwas presented in
[24]with the twomethods as special cases. For a complex diffusion coefficient, the samemethods can be used if
the auxiliary conditions require a solutionwith time-constant wavenumbers. In [25], a solution for such cases
was obtained using the Fourier integralmethod.

The present study provides a thirdmethod for solving (5.1), which applies to free or semi-free evolutionwith
time-dependent wavenumbers. The procedure follows sections 2 and 3, adapted by setting theCGLe constants
for non-diffusive processes to zero ( 0r i r ig g m m= = = = ) and employing unscaled variables. Unmodulated
wavenumbers and frequencies are used (kn and nw replace Kn and ,nW with k 0r = and 0rw = ). Because the
complex heat equation is linear, the spectral components are treated as linearly independent. Consequently, the
ansatz (3.1) ismodified such that the relation ( ) ( ) ( )k T n M q k Tn M= - + does not apply forT 0.> This
removes the approximation in (3.1). Incorporating these changes, the analysis in section 3.1 yields (3.12)with gn
and fn given by
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( ) ( ) ( )g T A k f T k 5.2n r n n n i n
2 2a a= - = -

Separate ancillary functions ( )F X T,n are defined for each spectral component. The expression (5.3) is added
within the summation sign in (3.12) and then subtracted as a separate group.

[ ( ) ( )] ( )i F T T A iexp 5.3
n

N

n n n n
1

å s s¶ ¶ - ¶Q ¶ Q
=

This yields the general evolution equations

( )dA dT g F T f for n N1 5.4n n n n= ¶ ¶ =  

with the validity conditions

( ) ( )F

T
X X

dk

dT

d

dT
for n N1 5.5n n n

0s s
¶
¶

= - +
F  

TheODEs for free evolution are derived by applying the analysis in section 3.2 to each spectral component.
The subscript M in section 3.2 is replaced by n for n N1 .  In particular, the terminal condition (3.29)
becomes dk dT 0n = when k 0.n = The following evolution equations are derived

( )dk dT k C dA dT A k d dT for n N0 1 5.6n i n n n r n n n
3 2a a= - = - F =  

The sign of each Cn is chosen such that dk dT 0.n < These equations have the solution

( ) ( )
( ) ( )

k k p T A A p T

p k C p C for n N

1 1

2 2 1 5.7

n n n n n n
p

n n

n n i n n r n i

0 1
1 2

0 1 0

1 0
2

2

n2/

a a a

= + = + F = F

= =  
where the constants of integration are set by the initial values of wavenumber, amplitude and phase, k ,n0 An0 and

.n0F The solution for each component has separate characteristic lines. The power-law decay of amplitudewith
time contrasts with the exponential decay that occurs for a real diffusion coefficient. For each component,

fn n le n,w w s= = - and 0,n tr,w = which indicates that thewaves are lengthening and non-travelling.

5.2. The linear free Schrödinger equation
The heat equationwith an imaginary diffusion term is identical to the time-dependent Schrödinger equation in
the absence of external constraints (the free Schrödinger equation). In quantummechanics, this equation
describes the evolution of thewavefunction for a free non-relativistic particle, and has a plane-wave particular
solution. In classicalmechanics, the free Schrödinger equation has a different particular solution because the
auxiliary conditions include the terminal condition for a classical physical process (complex diffusion). For an
initial planewavewith amplitude AM0 andwavenumber k ,M0 themethod described in section 5.1 yields the
solution (5.7)with 0ra = and n M.= Thewavenumber decreases with time according to (5.7), duringwhich
the amplitude remains constant. In classicalmechanics, the diffusion term in the free Schrödinger equation acts
to lengthen an initial planewave.

5.3. The nonlinear Schrödinger equation (NLSe)
TheNLSe is a special case of the CGLewith 0,r i r rg g m a= = = = [1–3]

∣ ∣ ( )T i X i 5.8i i
2 2 2a m¶Y ¶ = ¶ Y ¶ + Y Y

TheNLSe can describe narrow spectralmodulations of a plane basewave, but the initial condition and the
physical interpretation of some parameters differ from theCGLe. Variables are scaled as in sections 2 and 3, but
Y has afinite initial value and e represents a small amplitude parameter such as the initial wave steepness. The
following analysis concerns the free evolution of a plane base wavewith a general initial amplitude A A ,M M0=
phase ,M M0F = F wavenumber K 0M = and total wavenumber k k .M r= Incorporating the stated changes, the
derivation in section 3 shows that KM decreases with timewhile AM and MF remain constant at AM0 and .M0F
From (3.35) and (3.14), the evolution equation for KM is

( )( ( ) ) ∣ ∣ ( )dK dT k K p K C p Asgn 5.9M i r M M M M i i3
2 2

3
1 2

0
/a x x x m a= + - = =

The sign of CM is chosen such that dK dT 0.M < Three solutions are derived for 0x > and k pr 3> in (5.10),
0x > and k pr 3< in (5.11), and 0x < in (5.12), using the definitions in (5.13). The constants of integration are

set by the initial wavenumber, K 0.M =

( ) ( ) ( ) ( ) ( )K k K p K p T k p1 1 1 exp 0 5.10M r M
p

M
p

r
1

3 3 1 3
4 5 b x+ + - = > >-

( )( ) ( ) ( ) ( )K k K p K p T k p1 1 1 exp 0 5.11M r M
p

M
p

r3 3 2 3
4 5 b x+ + - = > <- -

( )( ) [( ) ( )] ( ) ( )K k K p k p K p T1 1 exp tan exp 0 5.12M r M r M
2

3
2 1 2

3
1

3 3
/ b x+ + = <- -
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( ) ( )
( ) ( ) ( ) ( )

p p k p p p k p

k p C p k C p k C

2 2

5.13

r r

i r M i r M i r M

4 3 3 5 3 3

1
2

3
2

2 3
2 2

3 3
2 2b a b a b a

= + = -

= - = - = - +

AsT , ¥ these solutions give K pM 3 - for (5.10) and K kM r - for (5.11) and (5.12). The dispersion
equation is f ,M M le M, sW = W = - indicating a lengthening and non-travelling wave.

Much theoretical interest concerns themodulations that develop froman initial, sideband-unstable,
stationary plane basewave. This study shows that an external constraint, such as a spatial boundary condition, is
required tomaintain a planewave as stationary. In free evolution, a planewave is generally non-stationary,
irrespective of sideband stability. Thewavenumber of a sideband-stable planewave evolves according to
(5.10)–(5.12). For a sideband-unstable planewave,modulations develop in combinationwith thewavenumber
evolution.

6.Discussion

This study has derived freely evolving solutions of nonlinear complex diffusion equationswith sideband-stable
SFP states (aswell as linear equations). A future extension is to investigate analogous solutionswith sideband-
unstable SFP states. A related theoretical topic is to reconsider the stability criteria for SFP states, whichwere
derived for bounded evolution in [5]. Because of the extra degree of freedom in free evolution, stability analyses
of SFP states need to account for perturbations in KM and AM aswell as in the sidebands, whichwould result in
new stability conditions. Other theoretical topics could include an analysis of the transition regions between the
free and semi-free solutions, and a proof of the uniqueness of (3.33) for F .M Future reporting of quantitative
comparisonswith the channel sandbar experiments is planned.

The sandbar experiments have continuous forcing throughout the channel, and an upstreamboundary
conditionwhose influence persists for only a short distance (typically a fewmetres or one to two bar
wavelengths). The physical causes of this limited spatial persistence require further study. The elastic properties
of saturated granularmaterial have been investigated [26, 27], but no research appears to have considered how
the effects of boundary constraints decaywith distance in a granularmedium subjected to continuous and
ubiquitous forcing. This issue is relevant for othermaterialmediawith a similar type of forcing and sufficiently
long spatial extent.

Other particular solutions of theCGLe have been extensively researched. Awell-studied class of solutions
describes localised coherent structures such as pulses or fronts embedded in regular solutions (e.g. planewaves
or 0Y = ) elsewhere in the spatial domain [1, 10–13]. For other solutions, boundary conditions have an
essential role [9, 10]. Sideband-unstable systems can evolve to spatially extended turbulent or chaotic states
[1, 4], or display convective instabilities [1, 14]. However, these solutions do not predict waves lengtheningwith
time throughout the spatial domain, nor the qualitative features of the experiments outlined in section 4. An
open question is, starting from a perturbed 0Y = state or other physically realistic state, what criteria determine
which of themany possible particular solutions of theCGLe is selected as the evolutionary path? In addition to
theCGLe constants, relevant factors include the auxiliary conditions, domain length,materialmedium
properties and details of the initial perturbation. The particular solutions for free and semi-free evolution
derived in this study are possible outcomes.

7. Conclusions

Newordinary differential equations for the evolution of spectral components are derived from the complex
Ginzburg–Landau equation. They apply to one-dimensional spatial domains without boundaries (free
evolution) andwith one fixed boundary (semi-free evolution). In physical applications, they are relevant to long
domains. The semi-free evolution equations apply close to the boundaries where boundary conditions have an
influence. The free evolution equations apply in the interior of the domains away fromboundary effects. These
evolution equations are contrastedwith those previously derived for short spatial domains inwhich the
boundary conditions have an influence that extends throughout the domains (bounded evolution).

The derivation uses a novelmodification of a discrete spatial Fourier transform inwhich thewavenumber of
the peak spectral component (denoted by its index, M) is time-dependent. The other components have
wavenumbers fixed relative to M, implying that the spectrum as awhole evolves in wavenumber space.
Particular solutions for free and semi-free evolution are derived using a novel auxiliary condition obtained from
the terminal condition for complex diffusion (after wavenumbers evolve to zero, they remain at zero). The
terminal condition requires thatwavenumbers decrease with time. The outcome is a set of coupled, first-order
ordinary differential equations for the evolution of the amplitude, wavenumber and phase of all spectral
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components, applied along characteristic lines. A dispersion equation is derived that applies to lengthening
waves aswell as to travellingwaves.

Laboratory experiments on the evolution of subaqueous channel sandbars show regions corresponding to
free and semi-free evolution, and that the barwavelengths increase with time as the bars grow in amplitude. The
analysis applies to other complex diffusion equations, yielding new freely evolving solutions for the complex
heat equation and Schrödinger equation (linear and nonlinear).

Acknowledgments

The author is grateful to AlessandraCrosato for providing support throughout this work and to Ralph Schielen
andArjenDoelman for helpful discussions about theCGLe.

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

AppendixA.Normalisation and coherent nonlinear terms for free evolution

Appendix Adescribes the procedure to determine the normalisation factor,W ,2 for the nonlinear terms in the
free evolution equations (3.23), (3.24) and (3.35). This requires calculating the number of distinct combinations
of spectral components in the summations in SCn and SSn defined in (3.15), and ensuring that the dynamics
remain unchanged as the number of components, N . ¥ The normalisation factorW1 in (3.1) is also
determined.

A complication is that, during evolution, the amplitudes of some components can decay to zero (or close to
zero). For example, for a system evolving towards a sideband-stable SFP state, the spectrum reduces to a single
component at the end of the evolution. This requires N to be replaced by an expression for the number of active
components, N ,a that varies with evolution time and can be a non-integer, and that applies both as Na  ¥ and
as N 1.a  An expressionwith these properties is

( )N A A A1a
p

N

p M
1

2 2å=
=

The normalisation forW1 is Na
1 2/ in order that ∣ ∣Y is unchanged as N . ¥ RegardingW ,2 another

complication is that some combinations of spectral components have coherent phases, which occurs for values
of j, l and m that give 0.jlmnF = The summations in (3.15)need to be split into two groups for termswith
coherent and non-coherent phases, with different normalisation factors for each group. As shownbelow, the
coherent group itself has two subgroupswith different normalisations.

The sumof the coherent terms evolves systematically whereas the sumof the non-coherent terms fluctuates
about zero. Because the non-coherent terms depend on ,jlmnF their prediction requires accurate knowledge of
the phases of the components in the perturbation in the initial state. This is often unknown in applications, in
which case numericalmodels can use the summations of the coherent group only. For such cases, the evolution
equations (3.23), (3.24) and (3.35) are simplified. The normalisations and resulting evolution equations for the
coherent group only are derived below.

Coherent nonlinear terms occur for 0,jlmnF = i.e. when j m= or l m,= yielding from (3.15)

( )S 0 A2Sn =

( )S A A A for j m or l m A3Cn
j l m n

j l m N

j l m

1 , ,

å= = =
+ - =
 

The condition j l m n+ - = implies that l n= when j m,= and j n= when l m.= Thus, (A3) becomes

( )⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟S A A A A A A A A2 A4Cn n

j

N

j n
l

N

l n n
j

N

j n
1

2

1

2 3

1

2 3å å å= + - = -
= = =

The two summations in thefirst equation of (A4) are identical. The term that has j l m n= = = is included in
both summations, which requires that one of these occurrences is subtracted from the summations, resulting in
the An

3- term.
Thefirst term in the second equation of (A4) contains the sumof N component combinations and is

normalised by the number of active components, N .a The second term consists of a single component
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combination and is normalised by one. Thus, the normalised SCn (i.e. S WCn 2) is determined as

( ) ( )⎛

⎝
⎜

⎞

⎠
⎟

S

W

A

N
A

A
A A A

2

1
2 A5Cn n

a j

N

j
n

n M n
2 1

2
3

2 2å= - = -
=

The second equation in (A5) follows by substituting (A1) for N .a Because the normalised variables do not
depend on N , the dynamics are unchanged as N . ¥ TheODEs for free evolution using only the coherent
nonlinear terms are derived by substituting (A2) and (A5) in (3.13) and (3.14)

( ) ( )dA dT L A A A A for n N2 1 A6n n n r n M n1
2 2m= - -  

( ( )) ( )d dT L L A A for n N n M1 , A7nM n M i M n2 2
2 2s mF = - + - ¹ 

( )( ) ( )dK dT k K L A C A8M r M M i M M2
2m= + +

The phase evolution equations (A7) are decoupled from (A6) and (A8).

Appendix B.Galilean invariance of the free evolution equations

Appendix B demonstrates theGalilean invariance of the free evolution equations derived from theCGLe. A
Galilean transformation ismade from the X T, frame to the ˆ ˆX T, framemovingwith velocityV in the positive
X direction:

ˆ ˆ ˆ ˆ ˆ ˆ ( )X X VT T T X X T V X T B1= + = ¶ ¶ = ¶ ¶ ¶ ¶ = - ¶ ¶ + ¶ ¶

TheGalilean transformation (B1) is applied to (2.1) to derive theCGLe in the ˆ ˆX T, frame

ˆ ˆ ( ) ( )
ˆ

( )∣ ∣ ( )
T

V
X

i i
X

i B2r i r i r i

2

2
2g g a a m m

¶Y
¶

-
¶Y
¶

= + Y + +
¶ Y

¶
- - Y Y

The ansatz in the ˆ ˆX T, frame is

( ) ( ˆ ) [ ( ˆ ˆ )] ( ˆ ˆ ) ( ˆ )

( ˆ )( ˆ ˆ ) ( ˆ ) ( ) ( ˆ ) ( )
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Substituting (B3) in theCGLe (B2) gives

[{ ˆ ( ( ˆ )) } ( ( ))]

( )( ) ( ( )) ( )

dA dT L i L VK T A i

W i A A A i

exp

1 exp 0 B4
n

N
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1
1 2

2
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å

å

s s s f

m m s f

- + + - ¶Q ¶ + F

+ - + F =
=

 

All parameters are defined in sections 2 and 3, and apply herewith ˆ ˆX T, as the independent variables.
Processing the nonlinear terms similarly to section 3.1.2 transforms (B4) to

[{( ˆ ) ( ˆ )} ( )] ( )dA dT g A i T f VK A iexp 0 B5
n

N

n n n n n n n n
1

å s s s- + ¶Q ¶ - - Q =
=

The following equations, derived from (B3), apply to the relative phases in the ˆ ˆX T, frame

( ) ( ˆ ˆ ) ( )n M q X X VT B6nM nM0Q = - - + + F

ˆ ˆ ( ) ( )T d dT n M qV B7nM nM¶Q ¶ = F + -

The ancillary function, ( ˆ ˆ )G X T, ,M is introduced in the following expression

[ ( ˆ ˆ ) ( )] ( )i G T VK T A iexp B8
n

N

M M M n n
1

å s s s¶ ¶ + - ¶Q ¶ Q
=

The expression (B8) is addedwithin the summation in (B5) and subtracted as a separate group
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To obtain the general evolution equations, the individual terms in thefirst summation in (B9) are set to zero.
Equation (B12) is used to derive (B11)
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ˆ ( )dA dT g for n N1 B10n n=  
ˆ ( ) ( ) ( )T f f V K K for n N n M1 , B11nM n M n Ms¶Q ¶ = - + - ¹ 

ˆ ( )G T f B12M M¶ ¶ =

From (B7), (B11) and (B3)

ˆ ( ) ( )d dT f f for n N n M1 , B13nM n MsF = - ¹ 
The last term in (B9) is required to be equal to zero, giving ˆ ˆG T VK T .M M Ms s¶ ¶ = - + ¶Q ¶ Using (B3), this
requirement is expressed as

ˆ ( ˆ ˆ ) ˆ ˆ ( )G T X X VT dK dT d dT B14M M M0s s¶ ¶ = - + + F

The particular solution for free evolution is derived by returning to the X T, frame, in order to separate
distance and time variables in the expressions for phase, i.e. the form ( )( )K T X XM 0- rather than

( ˆ )( ˆ ˆ )K T X X VTM 0- + is required. The analysis continues in this frame until FM is derived as (3.33) and
F TM¶ ¶ as (3.34). GM is nowdefined such that

ˆ ( )G T F T B15M M¶ ¶ = ¶ ¶

Equation (3.34) is transformed back to the ˆ ˆX T, frame by (B15) and (B1)

ˆ [ ( ( ˆ ))] ˆ ( )G T C k K T dK dT B16M M r M M¶ ¶ = +

Comparing (B16)with the validity condition (B14) shows that

ˆ ( )d dT 0 B17MF =

( ˆ ˆ ) ( ) ( )X X VT C k K B18M r M0s - + = +

The evolution equation for KM is obtained from (B16) and (B12)

ˆ ( ) ( )dK dT k K f C B19M r M M M= +

The dispersion equation for a general component n is derived using (B3), (B13), (B17), (B18) and (B19)

ˆ ( )T f VK B20n n n nsW = -¶Q ¶ = - -

The outcome is that the evolution equations (B10), (B13) and (B19) are unchanged in the ˆ ˆX T, frame
comparedwith (3.23), (3.24) and (3.35) in the X T, frame.Wave frequencies undergo aDoppler shift by VKn-
in (B20) comparedwith (3.41) in the X T, frame.

AppendixC. Video of free and bounded evolving solutions of theCGLe

Appendix Cpresents a video of free and bounded evolving solutions of theCGLe (figure 4). It is available in the
online html version of the paper only. The runtime is 76 s.

Figure 4. Free and bounded spectral evolution of theCGLewith the same parameter settings. Both spectra grow in amplitude during
which the spectral width narrows. Thefinal states arefinite-amplitude planewaves. For free evolution, the spectrum as awhole shifts
to lower wavenumbers, whereas for bounded evolution the spectral peakwavenumber remains unchanged.
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The video shows simultaneous free (black line) and bounded (light blue line) evolution of wave spectra in a
wavenumber-amplitude plot. These lines are identified in the legend. Both spectra have the same equation
constants shown in the figure 2 caption. They evolve from the same initial low-amplitude spectrum (centred on
the green square) towardsfinal sideband-stable SFP states (red circles).

The equations for free evolution are (A6) and (A8), which have only coherent nonlinear terms. For bounded
evolution, (A8) is replaced by dK dT 0.M = The characteristic value for free evolution is C .M p= - The
numerical solution uses a fourth-order Runge–Kutta timestepping scheme. The spectra contain 3001
wavenumber components, the computational timestep is 0.00277 and the evolution time is 3800 timesteps.
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