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Abstract

New ordinary differential equations (ODEs) for the evolution of spectral components are derived
from the complex Ginzburg-Landau equation (CGLe) for one-dimensional spatial domains without
boundaries (free evolution) and with one fixed boundary (semi-free evolution). For such evolution, a
complex or imaginary diffusion term creates a tendency for waves to lengthen. This requires a novel
ansatz and auxiliary condition that treat wavenumbers as time-varying. The ansatz consists of a
discrete spatial Fourier transform modified with a time-dependent wavenumber for the peak spectral
component. The wavenumbers of the other components are fixed relative to this wavenumber. The
new auxiliary condition is the terminal condition for complex diffusion (after wavenumbers evolve to
zero, they remain at zero). The derived free and semi-free ODEs are solved along characteristic lines
located symmetrically about a fixed spatial point. Waves lengthen with time away from this point in
both directions. Laboratory experiments on the formation of channel sandbars, theoretically
described by the CGLe, show two regions whose evolutionary behaviour is qualitatively predicted by
the free and semi-free evolution equations. This analysis applies to other time-dependent partial
differential equations with complex or imaginary diffusion terms. New freely evolving solutions are
derived for the complex heat equation and Schrodinger equation (linear and nonlinear).

1. Introduction

Several partial differential equations (PDEs) with physical applications contain a complex diffusion term of the
form (o, + ic;)0*W/0X?, where o, and q; are real constants, i = /—1, U(X, T is the complex amplitude of
asystem variable, X is distance and T is time. These PDEs can be derived for a particular time and space scale
from a multiple-scale analysis of the (real) physical system equations. The imaginary part of the complex
diffusion term implies that solutions of these PDEs have wavelike as well as diffusive properties. Two examples
with many applications in physics are the complex Ginzburg-Landau equation (CGLe) and nonlinear
Schrodinger equation (NLSe) [1-17].

An aim of this study is to derive particular solutions of these complex diffusion equations for free evolution
(i.e. without spatial boundaries or other external constraints) in one-dimensional spatial domains. For many
applications, the auxiliary conditions for particular solutions are provided by initial and boundary conditions. In
experiments with bounded spatial domains, the boundaries often have an important role in pattern creation and
stability, which theories attempt to predict using boundary conditions appropriate to the experiments [9, 10].
Many mathematical and numerical studies use periodic boundary conditions [1, 10-12], which maintain
Galilean invariance and thereby reduce the number of equation constants. However, periodic boundary
conditions cannot represent free evolution. For a finite spatial domain, they restrict or select wavenumbers in
space-periodic solutions. In the limit as the domain length tends to infinity, they constrain the wavenumbers in
these solutions to be time-constant. The application to free evolution requires auxiliary conditions that are
different from any spatial boundary condition.

© 2024 The Author(s). Published by IOP Publishing Ltd
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An innovation in this study is to obtain the auxiliary conditions for free evolution from the terminal (i.e. final
or end-time) condition for a complex diffusive process, as well as from the initial condition. Complex diffusion
describes a physical process in which waves can lengthen with time. The terminal condition states that after a
wavenumber, k (T'), has evolved to zero, no further evolution of k takes place, i.e. dk/dT = 0 when k = 0. One
implication of the terminal condition is that it disallows antidiffusive solutions in which waves shorten with
time. This satisfies the well-posedness requirement for continuous dependence on initial data. The full role of
the terminal condition in deriving the particular solution for free evolution is described in section 3.2.1.

Another novelty is the ansatz from which the particular solution for free evolution is derived. This ansatz
consists of a discrete spatial Fourier transform modified to have wavenumbers as continuous functions of time.
The particular solution for free evolution is derived in the form of characteristic lines along which the
amplitudes, wavenumbers and phases of spectral components evolve as functions of time only. Coupled, first-
order, ordinary differential equations (ODEs) are derived for the evolution of these parameters. The particular
solution has a fixed spatial point with reflection symmetry. Waves lengthen with time away from this point in
both directions. The location of the fixed point may be determined by perturbations in the initial condition.

In physical applications, the spatial domain is necessarily finite, but free evolution can occur if the domain is
sufficiently long that the boundaries only influence shorter regions adjacent to them. The particular solution for
free evolution applies in the interior of the domain away from these boundary regions. Free evolution is
contrasted with ‘bounded’ evolution, which occurs in spatial domains that are sufficiently short that the
influence of the boundaries extends throughout the domain [1, 6-8]. For bounded evolution, the wavenumbers
in space-periodic solutions are constrained by the boundary conditions to be time-constant. The type of
evolution (free or bounded) in a given domain length can depend on the material medium properties (section 6).
A video comparing free and bounded spectral evolution is shown in appendix C.

This work also considers ‘semi-free’ evolution in which the spatial domain has a single fixed boundary but is
otherwise unrestricted. The derivation of the particular solution for semi-free evolution is similar to that for free
evolution, but the auxiliary conditions are obtained from the condition at the single boundary as well as from the
terminal and initial conditions. Semi-free evolution can occur in a boundary region of a long domain, with a
short transition to the region of free evolution in the interior of the domain. Experimental examples of free and
semi-free evolution for space-periodic channel sandbars, theoretically described by the CGLe [17], are shown in
section 4. Several such experiments show that these bars lengthen as they grow in amplitude [18-22].

This study concerns space-periodic solutions without local defects, but modified with time-dependent
wavenumbers. The focus is on nonlinear PDEs whose solutions evolve to sideband-stable SFP (stationary, finite-
amplitude, plane-wave) states, as well as on linear PDEs. Some implications for nonlinear PDEs with sideband-
unstable SFP states are briefly discussed in section 6. The particular solution for free evolution is derived initially
for the CGLe (section 3). The equivalent solutions for other PDEs with complex or imaginary diffusion terms are
then obtained as special cases by setting some of the constants in the CGLe to zero (section 5). For these cases,
some straightforward modifications to the ansatz are required to treat nonlinear terms and the differences in
scaling and initial conditions.

The remainder of the paper is structured as follows. Section 2 describes some of the main properties of the
CGLe required for the new work. Section 3.1 derives the general evolution equations from the CGLe for the new
ansatz. Section 3.2 derives the particular equations for free evolution, using the terminal condition for complex
diffusion. Section 3.3 adapts these equations for semi-free evolution. Section 4 presents qualitative evidence for
the free and semi-free evolution equations from laboratory experiments on channel sandbars. Section 5 derives
free evolution equations for other time-dependent PDEs containing a complex or imaginary diffusion term, as
special cases of the CGLe. Section 6 discusses some ideas for future studies. Section 7 summarises the main
conclusions. Appendix A considers the normalisation of the evolution equations and derives a simplification by
including only coherent nonlinear terms. Appendix B demonstrates the Galilean invariance of free solutions of
the CGLe. Appendix C shows a video of the evolution of wave spectra for free and bounded solutions.

2. Background to the CGLe

2.1. The CGLe and scaling
In partially scaled time (T') and space (X) coordinates the CGLe is

ov ) N .

— =+ M)V + (o + i) — — (1, — i) VPV 2.1

3T (% + )W +( )8}(2 (1, — i) V| 2.1)
where W is the partially scaled complex amplitude and ~,, ~,, v, o, pt, and p; are real constants (referred to as
the ‘CGLe constants’) derived from normalised variables in the underlying physical equations, with . > 0 and
o, 2 0. W describes the modulation of a plane base wave. The partially scaled variables ¥, X and T are related to
the unscaled variables with subscript u by
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U=,/ X =X, T = €T, (2.2)

The scaling factor, € (0 < ¢ < 1),isdefinedby €2 = (R — R,)/R, where R is a system constant whose value
moderately exceeds a critical value, R, at which a spatially uniform state is marginally unstable. A fully scaled
form of the CGLe is

0¥ . 32\I/f
— =¥+ (1 +iq) e
f

oT;
a = ai/a, Q= /1, (2.3)

The scaling relations for ¥y, X and Ty are functions of the CGLe constants [ 1, 4]. The fully scaled CGLe (2.3) is
used in section 2.4 for comparison with previous studies, but the rest of the paper uses the partially scaled CGLe
(2.1) in order that variables are closer to quantities measured in experiments and to consider cases where some of
the CGLe constants are zero.

General values of wavenumber and frequency are denoted by k, w, the base wave values by k,, w, and their
differences by K, €2

- (1 - iCz)l\I/flz‘I/f

K=k —k QD=w-—w, (2.4)

The wavenumbers are scaled by e ! and frequencies by £~2, giving kX = k,X,,, wT = w, T, KX = K, X, and
QT = Q,T,. The CGLe can express information on K and 2 but not k, or w,. Accordingly, K and (2 are called
the ‘wavenumber’ and ‘frequency’ in analyses of the CGLe and NLSe (sections 2.2-2.4, 3, 5.3 and the
appendices). The parameters k and w are termed the ‘total’ wavenumber and frequency; ‘total’ refers to the
modulation combined with the base wave. The auxiliary conditions may incorporate k, or w;,.

2.2.Initial and terminal conditions

Solving the CGLe is treated as an initial value problem in which W is set at an initial time, T = 0, and remains
bounded in amplitude at all future times. The initial condition is usually a spatially uniform state, ¥ = 0. This
state is unstable to perturbations in a limited wavenumber range of width O (¢) in unscaled units, centred on
K = 0. This central wavenumber component has the fastest growing amplitude initially.

The complex diffusion term tends to homogenise spatial gradients in ¥ by reducing both the amplitudes and
wavenumbers of the spectral components. For bounded evolution, the boundary conditions constrain
wavenumbers to be time-constant, but for free and semi-free evolution, wavenumbers can evolve to smaller
values. In the latter cases, the terminal condition for complex diffusion (postulated in this study as an auxiliary
condition) yields an ODE for wavenumber evolution (section 3.2). This terminal state might not be reached
because of other non-diffusive processes but there is a diffusive tendency towards this state.

2.3. Plane-wave solutions
SFP solutions of the CGLe are derived from the ansatz

U= Aexp[i(K(X — Xo) — QT)] (2.5)

where A is the absolute amplitude, K and 2 are given by (2.4), and X is a reference location. Substituting (2.5)
in (2.1)yields

o K? =5y — p, A (2.6)
Q= aiy — ay — (i, + arpy) A (2.7)

Equations (2.6) and (2.7) represent a family of SFP solutions of the CGLe in which K and €2 are functions of the
amplitude, A. These solutions are unstable to sideband perturbations for certain ranges of values of the CGLe
constants [5].

A non-stationary, plane-wave solution of the CGLe is derived if A and €2 are time-dependent in (2.5) and the
wavenumber is constrained as a constant, K,,. This ansatz yields decoupled equations for dA/dT and d2/dT,
with analytical solutions for A(T) and Q(T'). These solutions in the limit, T — oo, are known as the ‘Stokes
wave’ and are equivalent to setting K = K, in (2.6) and (2.7).

2.4. Bounded evolution equations for the CGLe
Space-periodic evolution equations for a finite spatial domain can be derived from the CGLe using a discrete
spatial Fourier transform [6-8]

N
Y, T) = S Zu(Tpexpling(Xy — Xpo)l (2.8)
n=—N

In (2.8), g is the width of the spectral components (i.e. their wavenumbers are K, = nq), Xy is a reference
location, Z, are complex variables, and N is a truncation limit for numerical computations. Following [6],

3
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Figure 1. Evolution of wave spectra in the CGLe. (a, left) Bounded evolution with time-constant wavenumber components [6-8]. (b,
right) Free evolution to smaller wavenumbers (this study). Green square: starting position of the central wavenumber component.
Red circle: sideband-stable final state. Higher numbers denote spectra at later times. Both figures start with the same low-amplitude
spectrum spanning the unstable wavenumber range in a perturbed ¥ = 0 state. See the figure 2 caption for further details. A video
showing both types of evolution is provided in appendix C.

substitution of (2.8) in the fully scaled CGLe (2.3) yields a set of N + 1 complex equations
dz,/dTy = (1 — > + iaVZ, — (1 —ie) Y. ZZiZ} (2.9)
jHl+m=n
b1 ImI<N
where * denotes the complex conjugate, n = 0, 1,...,N and Z_, = Z,. Neumann conditions are applied at the
boundaries. Numerical simulations of (2.9) for 1 — ¢ > 0 have shown that solutions evolve towards a
sideband-stable SFP state with n = 0 (the Stokes wave). This was demonstrated both for large values of N [7]
and for strong truncation (N = 1, 2, 3) [6]. These studies also investigated cases for 1 — ¢ ¢ < 0, for which
SFP states are sideband-unstable and complex dynamics can occur.

The present study considers cases with 1 — ¢ > 0 which should, according to (2.9), evolve towards the
Stokes wave. However, such evolution contradicts several laboratory experiments that show wavelengths
increasing with time (section 4). The boundary conditions for (2.9) are assumed to have an influence that
extends throughout the spatial domain, resulting in bounded evolution. The observed evolution in the
experiments is believed to be free and semi-free evolution, for which novel solutions are derived in section 3.
Figure 1 and the video compare free and bounded spectral evolution using the same CGLe constants and initial
condition.

3. Free and semi-free evolution equations for the CGLe

Novel particular solutions of the CGLe for free and semi-free evolution are derived in this section. In section 3.1,
general evolutionary ODEs are derived from an ansatz consisting of a discrete spatial Fourier transform
modified with time-dependent wavenumbers. In section 3.2, particular ODE:s for free evolution are derived
using the terminal condition for complex diffusion. In section 3.3, the adaptation for semi-free evolution is
described.

3.1. Derivation of the general evolution equations
3.1.1. The ansatz
The proposed ansatz to transform the partially scaled CGLe (2.1) in wavenumber space is

N
U =(1/W)) Au(T)exp [i00,(X, T)] O = ¢,(X, T) + ©,(T)
n=1

¢, = Ku(T)(X — Xo) Ky(T) = (n — M)q + Ku(T) o=+l (3.1

The spectral components are identified by indices, #, in therange 1 < n < N, where N is the total number of
components. A,, K, and ©, represent the amplitudes, wavenumbers and phases of the components, g is the
wavenumber width of the components, M is the index of the component with the maximum amplitude, and W;
is a normalisation factor determined by requiring that the dynamics remain unchanged as N — oc. In contrast
to (2.8), the spectrum is generally asymmetric. During evolution, the component with the maximum amplitude

4
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may change, in which case M changes to the index of the new such component at the next timestep in a
numerical solution. The ansatz (3.1) is an approximation that becomes more accurate for narrow, single-peaked
spectra, which are typical in solutions of the CGLe (the unscaled initial spectral width is O(¢)).

The purpose of o is to include both complex conjugate forms of the total wave, i.e. the modulation
combined with the base wave. The terminal condition determines the sign of o (section 3.2.3). The expressions
for the total wave and its components are

Wexp [io {k,(X — Xo) — w, T}] Total wave
(A /W) exp lio{(k, + K))(X — Xo) — w, T + ®,}1  Total wave, Component n (3.2)

The total wave (3.2) describes travelling and lengthening waves (section 3.2.6), whereas (2.8) describes standing
waves.

3.1.2. Solution procedure

The procedure for deriving the general evolution equations starts by substituting (3.1) in the CGLe (2.1). From
the resulting equation, ODEs for the evolution of A, and &, — ®,, are derived, containing variables that are
functions of T only. Both @), and K); remain undetermined by this general solution. Making the substitution
yields

N
Z [{dAn/dT - (Lln + i(LZn - ann/aT))An} eXP (IU(¢n + (I)n))]

n=1

+ /W), — i) D AjAIA exp (i0 (B, + Pim)) = 0 (3.3)

1<, m<N
where W, is another normalisation factor. The identity | ¥ = W2I* is used to derive the nonlinear term in

(3.3), and the summation is defined by
N N N

> =00 (3.4)

1< ,Lm<N  j=1l=1m=1

Thelinear expressions L;,, L,, and the phase terms gi)ﬂm, @, are defined by

Liy =% — a,((n — M)q + Ky)* (3.5
Ly =7 — ai((n — M)q + Ku)? (3.6)
Di = G5+ & — G = ((j+ 1 — m — M)q + Kn) (X — Xo) (3.7)
Dipy = O + & — Dy (3.8)
The aim is to express (3.3) in the form
i[{Hln(T) + iHu(T) + iH3(X, T)} Ay exp (i0©,)] = 0 (3.9)
n=1

where the subscripted H are expressions containing real variables. Equation (3.9) then yields H;,, = 0 and
H,, = 0for1 < n < N whichare 2N evolutionary ODEs, and H; = 0 which, after inclusion of the auxiliary
conditions, determines the characteristic lines.

For (3.3) to conform to (3.9), a subset of the nonlinear terms in the second summation in (3.3) is grouped
within the first summation. This subset has combinations of j,  and m that satisfy

¢j1m =¢, for 1 <j,,mn<N (3.10)
From (3.1) and (3.7), this condition requires
j+l—m=mn for1 <jL,mn<N (3.11)

This grouping accounts for all nonlinear terms with values of j, l and mintherangel < j + I — m < N.The
other nonlinear terms give 7 outside this range and are ignored. Equations (3.10) and (3.11) are substituted in
(3.3), resulting in the following equation

N1 (da, ( 00, . _
> [{A_n( - gn) + 1(0 o7 —fn)}An exp (10@,1)] =0 (3.12)

n=1
where
8,(T) = LiyAy — (u,Scu + p;Ss)/Wa for 1 <n <N (3.13)
fn(T) = L2n + (MiSCn - /LTSSn)/(‘/VZAn) fOT’ 1<n< N (314)
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SCn = Z AjAlAm COoS (I)jlmn Sgn = Z A]'AlAm sin (I)jlmn (3.15)
j+l—-m=n jHl—m=n
1<j,L,m<N 1<j,Lm<N

q)jlmn = q)j + @ - D, — P, (3.16)

The summations in (3.15) are defined by (3.4) with the terms restricted by (3.11). Later in the analysis ©, and ¥,

are expressed relative to the phase of component M. These relative phases are denoted by ©,,; and ®,; and are
defined by

Oum = 6, — Oy Oy = P — Py (3.17)
Equation (3.16) can be expressed in terms of the relative phases
Litn = Ppt + i — Pt — Pumr (3.18)
where @7, $jps and D, are defined similarly to (3.17). Two relations used later follow from (3.1)
Oum = (n = M)q(X — Xo) + Pum (3.19)
and therefore
00,0 /0T = d®yp /dT (3.20)

3.1.3. The ancillary function, Fyy, and the general solution

Equation (3.12) is not yet in the required form of (3.9) because 90, /0T are dependent on X from (3.1). This
problem is overcome by reformulating (3.12) in terms of differentials of the relative phases, 00,,,; /0T, which
are independent of X as shown by (3.20). To accomplish this reformulation, the following expression (3.21) is
added to (3.12) within the summation sign and then subtracted as a separate group

N
> [i(OFy/OT — 00Oy /OT) A, exp (i06,)] (3.21)

n=1

In (3.21), Fyy (X, T)isageneral function of X and T, and is termed the ‘ancillary function’. After this
reformulation, (3.12) becomes

N 1 (dA A 0O,  OFy .
- = - A An @n
Z[{An(ﬂ g”)+’(” or ot f") P (7O

n=1
N
- i(% - 088%)2 A, exp(i0©,) = 0 (3.22)

n=1

Equation (3.22) now has the form of (3.9) and is solved by equating the individual terms under the first
summation sign to zero, giving

dA,/dT = g, for1<n <N (3.23)
A, /dT = o(f, — fip) forl<n<N, n=M (3.24)
OF\/0T = f, (3.25)

where (3.20) and (3.25) are used to derive (3.24). These constitute 2N evolution equations for the 2N variables
Ay Cupin=pryand Fy for 1 < n < N. The final term of (3.22) is also required to be zero, i.e.
OFy;/0T = 000y;/0T.From (3.1), this requirement can be written as

O _ pox = xRy A0m 3.26
or ¢ o Y ar (3-26)

Equation (3.26) expresses a condition that must be satisfied for the evolution equations (3.23-3.25) to be valid.

Equations (3.23-3.25) are the general evolution equations derived from the ansatz (3.1). Ky, ®); and o
remain undetermined in this general solution. To derive a particular solution, Fy; needs to be expressed as a
unique function of Ky, such that the validity condition (3.26) is met. The evolution equation for Ky, then follows
from (3.25). This procedure requires auxiliary conditions that are specific to an application. Section 3.2 describes
the procedure for free evolution.

3.2. Derivation of the particular equations for free evolution

3.2.1. Deriving the relation of Fy to Ky

The particular equations for free evolution are derived from three conditions that determine the ancillary
function Fy, as a function of the wavenumber K);. The third condition is the terminal condition for complex
diffusion, which is specific to free evolution.
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(1) The functional dependence, Fy (X, T, Ky (T)(X — Xy)), is a requirement for Ky (T) to signify a
wavenumber (the general form, Fy (X, T, Ky (T)), implies no specific meaning for Ky (T')). Without
losing generality, Fy; is expressed as a function of another general function F, (X, T) added to
Ky (T)(X — Xp). This form facilitates the derivation of Fy,.

Fy(F(X, T) + Ky (T)(X — Xp)) Functional dependence of Fy (3.27)

(2) From (3.25)and (3.14) for n = M, OFy /0T depends on T only, and therefore Fy, has the form
EFy = F(T, Ku(T)) + F(X — Xo) (3.28)
where F, (T, Ky (T))and F5(X — X,) are general functions.

(3) For free evolution, the terminal condition requires that after Ky, reduces to —k;, it remains at this value

dKy;/dT = 0 when Ky = —k, (3.29)

and the spectrum is truncated to exclude components having K,, < —k,.

Conditions (3.27) and (3.28) state that Fy; is both a function of the product of Kj;(T) and X — X, and the
sum of separate functions of Ky;(T) and X — X,. To satisfy both conditions requires Fy; to be alogarithmic
function with, for generality, a multiplying constant. Thus, from (3.27)

Fy = Gy In(R(X, T) + Ky(T)(X — Xo)) (3.30)
where Gy is areal constant. For F), to satisfy (3.28), F; must have the form F;(T)(X — Xp) or
Ky (T)F5(X — X) where E(T)and F5(X — X,) are general functions. A similar analysis to that below shows
the latter form for F is incompatible with (3.29). Substituting the first form for F; in (3.30), F; becomes
Fy = Cy{In(E(T) + Ky (T)) + In(X — Xp)} (3.31)

Equation (3.31) has the required form of (3.28). The next step is to set F; using the terminal condition (3.29).
Differentiating (3.3 1) with respect to T' and incorporating (3.29) yields

(Ey — k;)OFy /0T = CydE/dT (3.32)

To satisty (3.32) for any value of Gy, requires F; = k,. The terminal condition, but not the terminal time, is
specified as an auxiliary condition. Because the terminal time is unknown, the constraint imposed by the
terminal condition on the general solution (in this case, F; = k,) applies at all times. Substituting F; = k, in
(3.31) gives the sought relation of Fy to Ky,

Fy = Cu{In(k, + Ku(T)) + In(X — Xo)} (3.33)

where Ky > —k,.

3.2.2. The evolution equation for Ky
Differentiating Fy; with respectto T in (3.33) gives

- (3.34)
orT k. + Ky dT
The evolution equation for Kj; is derived from (3.34) and (3.25)
k. + K
Ry _ (ke & Kt )y (3.35)

daT Cm

The sign of Gy, provides two solutions, for diffusive evolution when dK,;/dT < 0 and antidiffusive
evolution when dKj;/dT > 0. The terminal condition allows only the diffusive solution, which requires Gy, to
have the opposite sign to f,,

fir/Cu <0 for diffusive evolution (3.36)

3.2.3. The characteristic equation
The validity condition (3.26) needs to be satisfied. A comparison of (3.34) with (3.26) determines two properties
of the solution. Firstly, ®), is constant with respect to time

d®y /dT =0 (3.37)
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Figure 2. Evolution from a perturbed ¥ = 0 state (centred on the green square in b) towards a sideband-stable SFP state (red circle in
b) computed from (A6) and (A8). (a, left) Characteristic lines defined by (3.38) in X, T space for equal increments of Cy,, with

X > Xpand 0 = —1. The dashedline has Cy; = —. Characteristic lines for X < X, show reflection symmetry about X = X,.
Distance: computed from (3.39). Time: computational timestep multiplied by number of timesteps. (b, right) Evolution of
component M in K, A space for six characteristic lines for Cy; = —7/3 to —27 atintervals of —7 /3. Spectral evolution for

Cu = —m isshown in figure 1(b) and the video (appendix C). The equation constants simulate the experiment in section 4:

a, = 0.39, a; = 0.86, 7, = 1.62, 3, = 0.69, j1, = 5.48, ji; = 1.08, k, = 2.89.

This property and the initial condition determine ®y;. Secondly, Cy;/(k, + Kj) is required to satisfy
(X — Xo) = Cu/(k; + Kv) (3.38)

Equation (3.38) shows there is a family of solutions for different values of Cy;. Each value of Cy; correspondstoa
linein the X, T plane along which the solution evolves. These lines are analogous to the characteristic lines in,
for example, solutions to hyperbolic PDEs. In the present case, they describe constant values of the spatial part of
the total wave phase for component M, (3.2). For a given characteristic line, the value of Gy, is determined from
the initial state. For this state, K;(0) = 0 and X;, is the initial value of X for the characteristic line

Cy = ok, (Xin — Xo) (3.39)

Figure 2(a) shows an example of the characteristic lines.

The sign of o (defined as £11in (3.1)) is determined by the requirement that the solutions evolve diffusively
(not antidiffusively). If f,, > 0, it follows from (3.36) that Gy < 0 and therefore from (3.38) that
o(X — Xp) < 0.Similarly,if f,, < 0,itfollows that Cy; > 0and o(X — X;) > 0.Thus, 0 is determined by

o = —sgn(f, (X — Xp)) = sgn(Cy (X — Xo)) (3.40)

3.2.4. Summary and numerical solution of the free evolution equations

Equations (3.23), (3.24) and (3.35) are 2N coupled, first-order ODEs describing the evolution of the 2N
variables, A, $pr(npr) and Ky for 1 < n < N along each characteristic line defined by Cy;. These ODEs can
be solved numerically by a timestepping algorithm, such as a Runge—Kutta method. After the 2N variables are
calculated at each timestep, ©,, is determined by (3.19), ®y, by (3.37), and K-y and ¥ by (3.1). The
location in physical space relative to X is determined by the characteristic equation (3.38). M is updated if the
component with maximum amplitude changes.

A numerical solution of the evolution equations requires that the normalisation factors W;in (3.1) and W; in
(3.13) and (3.14) are determined. For W, there are coherent nonlinear terms (for which ®;,,,, = 0) that need to
be considered separately from the non-coherent terms. These issues are addressed in appendix A. The evolution
equations (3.23), (3.24) and (3.35) are simplified if only the coherent nonlinear terms are included, resulting in
(A6)—(A8).

Figure 2(a) shows a set of characteristic lines in X, T space and figure 2(b) shows the evolution of
component M in K, A space along different characteristic lines.

3.2.5. The fixed point, X,

The point Xj is a fixed point from which the modulated waves lengthen to each side. The location of X is
determined by application-specific properties such as details of the perturbation in the initial state. For some
long domains, a single fixed point would require long-range spatial correlations during evolution that might be
physically unrealistic, especially in the early stages. Such domains are conjectured to have two or more
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subdomains, each with a fixed point determined by spatial variations in the initial perturbation. These
subdomains would be separated by short transition regions for continuity of the total wave. Experimental
identification of single or multiple fixed points requires further research.

3.2.6. Kinematic properties and the dispersion equation
Some kinematic properties are obtained from this analysis. The dispersion equation for a general component, #,
is given by

00 dK do,
Q= - = (X — X)L 3.41
or ~ KOG Ty = G4
where (3.1), (3.17), (3.24), (3.35), (3.37) and (3.38) are used. The phase velocity v, is derived as
00,/0T af,

(3.42)

" 00w /0X ke + K,
where O, ,,; is the total wave phase for component 1, (3.2). Since f, /w, is O(g?), v, is slow compared with the
base wave phase velocity. Equation (3.41) is the sum of the wave frequencies resulting from the lengthening of
waves and the travelling waveform. The separate expressions for the lengthening (subscript ‘le’) and travelling
(subscript ‘tr’) wave frequencies and phase velocities are

dK, of,
Qne:_X_X L nle = — M 3.43
N/ ( 0) AT UfM Vi, 1 k + K, ( )
o, a(fy = fu)
Qn,tr = - AT = _U(fn _fM) Vitor = — k + K:/I (3.44)

There are two competing processes that determine the lengthening frequency €2,, .. This frequency increases
with distance from X, owing to the lengthening of waves but decreases with distance because of the slower rate at
which the wavenumber evolves. These effects cancel each other, resulting in no explicit dependence of €2, ;. on
X — XyordK,/dT. Thereis an implicit dependence on these parameters because f,, is a function of Ky, which
evolves at different rates according to the value of Cy,.

Equations (3.43) and (3.40) show that the lengthening phase velocity is always directed away from X.
Equation (3.44) with n = M shows that the travelling frequency and phase velocity for component M are zero.
In summary, the total wave consists of a fast travelling wave (the base wave) combined with a modulation that
slowly lengthens in both directions away from X, in which component M is non-travelling and the other
components travel slowly in a direction determined by the sign of —o (f, — f,,)-

The dispersion equation (3.41) has the same functional form as for the bounded evolution equations (for
which the auxiliary conditions include dKj;/dT = 0 for all T'). For bounded evolution,

Q, = —00,/0T = —of,, which follows directly from (3.12) because 0O, /0T are now independent of X.
Although the form of €, is the same for bounded and free evolution, the contributions of the wave lengthening
and travelling processes are different (for bounded evolution there is no wave lengthening, i.e. §2,,;, = 0 and

Qn,tr - _an )

3.2.7. Symmetry properties
The particular solution for free evolution has no undetermined constants or functions apart from some simple
symmetries. These are (1) translational symmetry in space and time, (2) scaling symmetry (section 2.1), (3)
Galilean symmetry (appendix B) and (4) reflection symmetry about X, (sections 3.2.3, 3.2.5 and figure 2(a)).
There is no reflection symmetry in the sense that an identical counter-propagating wave at a given location
and time cannot exist. The particular solution for bounded evolution has phase symmetry [6] but for free
evolution this symmetry is broken. In the latter case, the validity condition (3.26) couples @, to the other
evolution equations, whereas for bounded evolution there is no validity condition and ®,, is isolated.

3.2.8. Uniqueness of the particular solution

A demonstration of the uniqueness of (3.33) for F) is not attempted but a plausible alternative solution is
rejected. The following forms of Fy, and F, in (3.27) satisfy (3.28) and the terminal condition (3.29) for finite
values of the exponent, p

Fy = Gy In(R(X, T) — (=Ku(T)P(X — Xo)?) F=klX — Xo)? (3.45)

However, (3.45) gives rise to an unrealistic initial condition, which is apparent from the derived characteristic
equation

o(X — Xo) = Cup(=Kw)?~/(kf — (=Ka)P) (3.46)
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Figure 3. Bed level profiles along one side of the channel at three times (see legends) in the experiments of [21, 22]. (a, left) An
experiment in which the bed at the upstream boundary is maintained at a fixed level (—49 mm elevation). (b, right) A separate
experiment in which a vertical plate at the upstream boundary extends from one side into the channel. See the text of section 4 fora
description and interpretation of these figures. Figures 3(a) and 3(b) are redrawn from figures 11 and 8 respectively in [21].

This equation shows that, for the initial state in which Kj;(0) = 0, finite values of Cy; are possible only for

p = L. The solutions for some complex diffusion equations other than the CGLe have k, = 0 and K, replaced
by ks (section 5). For these solutions, (3.45) and (3.46) reduce to the case for p = 1 with the characteristic
constant Gy p.

3.3. Semi-free evolution

The derivation of the semi-free evolution equations follows section 3.2, with the location of X set at the single
boundary and with differences to some auxiliary conditions. The terminal condition stands, but a different
initial condition applies and there is a boundary condition at X,,. The boundary condition relates to the

total wave.

The following example is for a boundary condition in which the total wave (3.2) is held at a time-constant
value of zero at X. This corresponds to the upstream boundary condition in the experiment outlined in
section 4. This boundary condition can be satisfied either by fixing the amplitude to zero or by fixing the total
wave phase at a nodal value. The latter case is consistent with the ansatz (3.1) and allows for unrestricted
amplitude growth near the boundary. However, a standing wave arising from reflections between two
boundaries cannot occur. For this example, the only possibility to satisfy the boundary condition is a travelling
wave whose total phase velocity is zero.

The initial total wavenumber is determined from the dispersion equation for the initial state, setting the total
wave frequency to zero. Such a wave is represented by a single component, M. Its amplitude and wavenumber
evolve according to (3.23) and (3.35) respectively, provided it is unstable in the initial state. During evolution, the
travelling phase velocity remains at zero as shown by (3.44) for n = M, which is consistent with the boundary
condition. The rate of amplitude growth is generally slower than that of the wavenumber component, Ky, in
free evolution.

4. Qualitative evidence from channel sandbar experiments

Qualitative experimental evidence for the free and semi-free evolution equations (3.23), (3.24) and (3.35) is
presented in this section. Several experiments have been conducted in different laboratories on the evolution of
sandbars in straight channels in which the bars evolve alternately on each side of the channel [18-22]. In these
experiments, energy was transferred into the channel by water flow driven by gravity over a sand layer on a gentle
downslope. The experiments had different constraints at the upstream boundary, such as a fixed bed level or a
partial barrier to create a stronger locally perturbed flow. Water and sediment leaving the channel at the
downstream end were collected and recirculated. The CGLe has been derived as a nonlinear evolution equation
for the bars on long time and space scales [17]. The experiments were designed to be just beyond the critical state
for instability of a uniform channel bed, and theoretically had sideband-stable SFP final states for the bars.

A quantitative comparison of predictions by the free and semi-free evolution equations with the
experimental data is beyond the scope of this study. The purpose of this section is to compare qualitatively two
observed phenomena with predictions by these equations and by the solution for bounded evolution, (2.9). The
first phenomenon is that two bar types evolved in different regions of the channel. Non-travelling bars evolved
near the upstream boundary and travelling bars evolved further downstream. The second phenomenon is that,
for both bar types, the bar wavelengths increased with time as the bars grew in amplitude. The first phenomenon
is qualitatively described by the semi-free solution for the non-travelling bars near the upstream boundary, and
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by the free solution for the travelling bars further downstream. The solution for bounded evolution predicts a
single bar type throughout the channel and therefore does not agree qualitatively with the observation of the two
bar types. The second phenomenon, the increase in bar wavelengths with time, is qualitatively predicted by
(3.35) for free and semi-free evolution. However, the solution for bounded evolution predicts that the
wavelength of the spectral peak remains unchanged from its initial value (section 2.4, figure 1 and the video in
appendix C).

Figure 3(a) shows the measurements of bed level profiles along one side of the channel from an experiment
reported in [21, 22]. These measurements were made at three different times, approximately two hours apart.
The bed at the upstream end was maintained at a fixed level. In the interior (longitudinally) of the channel, the
three measured profiles are out of phase indicating that the bars behave as travelling waves (termed ‘free bars’ in
[23]). The bars in this region grew to reach a maximum amplitude in about 1-2 days. Close to the upstream
boundary the three measured profiles are approximately in phase indicating that the bars behave as non-
travelling waves (termed ‘hybrid bars’ in [23]). Their amplitudes grew more slowly than those of the free bars and
continued to increase after tens of days. Between the two types of bars is a narrow transition region at
approximately 6-7 m. The free and hybrid bar regions correspond to the application of the free and semi-free
evolution equations respectively.

In both regions, the bar wavelengths increased as the bars grew in amplitude. In the upstream boundary
region, the measured hybrid bar wavelengths increased by a factor of approximately 1.07 during evolution. For
the free bars in the channel interior, measurements near full development of the bars showed that the bar
wavelengths were approximately 1.5 times longer than the wavelength of the theoretical initially fastest growing
component.

Another study [18] presented the results of nine separate experiments on free bar evolution. For each
experiment, measurements of free bar wavelengths were made between four and seven different times during
the growth of the bars. These measurements showed that the free bar wavelengths increased by factors between
1.3 and 5.3 from the first measured states to the full development of the bars.

Returning to the experiments of [21, 22], figure 3(b) refers to an identical experiment to that for figure 3(a)
but with a vertical metal plate at the upstream end, extending transversely from one side for about two-thirds of
the channel width. This experiment also had hybrid (non-travelling) bars near the upstream boundary and free
(travelling) bars in the interior region, separated by a narrow transition region at approximately 11-12 m. The
interior region is qualitatively described by the free solution, but the boundary region is less well described by the
CGLe because of the strong flow perturbation caused by the plate. This resulted in an upstream boundary region
that was longer and had a faster growing hybrid bar amplitude than shown in figure 3(a), although the hybrid bar
wavelengths were similar.

5. Free evolution in other complex diffusion equations

5.1. The complex heat equation

In section 3, the free evolution equations for the CGLe are derived using the terminal condition for complex
diffusion as an auxiliary condition. This suggests that a similar procedure can be used to derive free evolution
equations for other time-dependent PDEs with a complex or imaginary diffusion term. One such PDE is the
complex heat equation

OV /0T = (a, + ia;)0*W/OX? (5.1)

For the analysis in sections 5.1 and 5.2, W represents an unscaled, unmodulated wave. All variables are unscaled
and the subscript u is dropped for clarity. The initial condition is a finite value of ¥ and there is no restriction on
the wavenumber range. For a real diffusion coefficient, there are two main methods to solve (5.1); see, for
example, [3]. These use a Fourier integral transform for an unbounded spatial domain, and a separation of
space-dependent and time-dependent variables for a bounded domain. A unified approach was presented in
[24] with the two methods as special cases. For a complex diffusion coefficient, the same methods can be used if
the auxiliary conditions require a solution with time-constant wavenumbers. In [25], a solution for such cases
was obtained using the Fourier integral method.

The present study provides a third method for solving (5.1), which applies to free or semi-free evolution with
time-dependent wavenumbers. The procedure follows sections 2 and 3, adapted by setting the CGLe constants
for non-diffusive processes to zero (y, = 7, = p, = p; = 0) and employing unscaled variables. Unmodulated
wavenumbers and frequencies are used (k, and w), replace K,, and §2,,, with k, = 0 and w, = 0). Because the
complex heat equation is linear, the spectral components are treated as linearly independent. Consequently, the
ansatz (3.1) is modified such that the relation k,,(T) = (n — M)q + ky(T) does notapply for T > 0. This
removes the approximation in (3.1). Incorporating these changes, the analysis in section 3.1 yields (3.12) with g,
and f, given by
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g,(T) = —a, Ak, f,(T) = —ajk; (5.2)
Separate ancillary functions E,(X, T) are defined for each spectral component. The expression (5.3) is added

within the summation sign in (3.12) and then subtracted as a separate group.

N
Z [i(OF,/O0T — 000, /0T)A, exp (ic0,)] (5.3)

n=1

This yields the general evolution equations
dA,/dT =g, OE,/O0T = f, for1<n<N (5.4)
with the validity conditions

OF d,  do
n — X _ X n + n
or = ¢ O T ar

for1<n<N (5.5)

The ODE: for free evolution are derived by applying the analysis in section 3.2 to each spectral component.
The subscript M in section 3.2 isreplaced by n for 1 < n < N. In particular, the terminal condition (3.29)
becomes dk,/dT = 0 when k,, = 0. The following evolution equations are derived

dk,/dT = —a;k>/C, dA,/dT = —o, Ak} d®,/dT = 0 for1l <n<N (5.6)
The sign of each C,, is chosen such that dk,,/dT < 0. These equations have the solution
kn = knO/(l + Py T)1/2 A, = AnO/(l + Py T)PZ,, D, = Dy

b, = 2kjai/Cy p,, = ,C/Qay) for1<n<N (5.7)

where the constants of integration are set by the initial values of wavenumber, amplitude and phase, ko, A,,o and
®,9. The solution for each component has separate characteristic lines. The power-law decay of amplitude with
time contrasts with the exponential decay that occurs for a real diffusion coefficient. For each component,

Wy = Wyle = —0f, and w, ; = 0, which indicates that the waves are lengthening and non-travelling.

5.2. Thelinear free Schrédinger equation

The heat equation with an imaginary diffusion term is identical to the time-dependent Schrodinger equation in
the absence of external constraints (the free Schrédinger equation). In quantum mechanics, this equation
describes the evolution of the wavefunction for a free non-relativistic particle, and has a plane-wave particular
solution. In classical mechanics, the free Schrodinger equation has a different particular solution because the
auxiliary conditions include the terminal condition for a classical physical process (complex diffusion). For an
initial plane wave with amplitude Az and wavenumber kyz0, the method described in section 5.1 yields the
solution (5.7) with o, = 0 and n = M. The wavenumber decreases with time according to (5.7), during which
the amplitude remains constant. In classical mechanics, the diffusion term in the free Schrédinger equation acts
to lengthen an initial plane wave.

5.3. The nonlinear Schrodinger equation (NLSe)
The NLSe is a special case of the CGLe with v = v, = p1, = o, = 0,[1-3]

OW/OT = ic; 0%V /X2 + iy |UPT (5.8)

The NLSe can describe narrow spectral modulations of a plane base wave, but the initial condition and the
physical interpretation of some parameters differ from the CGLe. Variables are scaled as in sections 2 and 3, but
W has a finite initial value and € represents a small amplitude parameter such as the initial wave steepness. The
following analysis concerns the free evolution of a plane base wave with a general initial amplitude Ay; = Apo,
phase &y = Dy, wavenumber Kj; = 0 and total wavenumber ky; = k,. Incorporating the stated changes, the
derivation in section 3 shows that Kj; decreases with time while A,; and ®,; remain constant at Ay;o and Pyy,.
From (3.35) and (3.14), the evolution equation for K is

dKy /dT = ai(k, + Ki)(p2sgn(€) — Ki/Cu py = 1E2Am0 €= i/ (5.9)

The sign of Cy; is chosen such that dK,;/dT < 0. Three solutions are derived for £ > 0and k, > p,in(5.10),
£ > 0and k, < pyin(5.11),and { < 0in (5.12), using the definitions in (5.13). The constants of integration are
set by the initial wavenumber, Ky, = 0.

(1 4+ Ku/kp) '(1 + Ku/py)h(1 = Ku/py)Ps = exp(BiT) >0 k> p; (5.10)
(1 + Kn/k)(1 + Kur/p;) (1 — Ky /p;)Ps = exp (3, T) £>0 k <p, (5.11)
(1 4+ Kn/k) (1 + Ky /p) 2 exp [(k,/ps) tan~! (Kug /py)] = exp (3:T)  £<0 (5.12)
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b= (P3 + kr)/2P3 ps = (ps - kr)/2P3
b= aitkl —p)/Cu  Ba=ai(p; —kD/Cu Bz = —ai(p; +k)/Cu (5.13)

As T — o0, these solutions give Kjy — —p, for (5.10) and Ky — —k, for (5.11) and (5.12). The dispersion
equationis = Q. = —0f,,,indicating alengthening and non-travelling wave.

Much theoretical interest concerns the modulations that develop from an initial, sideband-unstable,
stationary plane base wave. This study shows that an external constraint, such as a spatial boundary condition, is
required to maintain a plane wave as stationary. In free evolution, a plane wave is generally non-stationary,
irrespective of sideband stability. The wavenumber of a sideband-stable plane wave evolves according to
(5.10)—(5.12). For a sideband-unstable plane wave, modulations develop in combination with the wavenumber
evolution.

6. Discussion

This study has derived freely evolving solutions of nonlinear complex diffusion equations with sideband-stable
SEP states (as well as linear equations). A future extension is to investigate analogous solutions with sideband-
unstable SFP states. A related theoretical topic is to reconsider the stability criteria for SFP states, which were
derived for bounded evolution in [5]. Because of the extra degree of freedom in free evolution, stability analyses
of SFP states need to account for perturbations in Kj; and Ay, as well as in the sidebands, which would result in
new stability conditions. Other theoretical topics could include an analysis of the transition regions between the
free and semi-free solutions, and a proof of the uniqueness of (3.33) for Fy,. Future reporting of quantitative
comparisons with the channel sandbar experiments is planned.

The sandbar experiments have continuous forcing throughout the channel, and an upstream boundary
condition whose influence persists for only a short distance (typically a few metres or one to two bar
wavelengths). The physical causes of this limited spatial persistence require further study. The elastic properties
of saturated granular material have been investigated [26, 27], but no research appears to have considered how
the effects of boundary constraints decay with distance in a granular medium subjected to continuous and
ubiquitous forcing. This issue is relevant for other material media with a similar type of forcing and sufficiently
long spatial extent.

Other particular solutions of the CGLe have been extensively researched. A well-studied class of solutions
describes localised coherent structures such as pulses or fronts embedded in regular solutions (e.g. plane waves
or U = 0) elsewhere in the spatial domain [1, 10—13]. For other solutions, boundary conditions have an
essential role [9, 10]. Sideband-unstable systems can evolve to spatially extended turbulent or chaotic states
[1,4], or display convective instabilities [ 1, 14]. However, these solutions do not predict waves lengthening with
time throughout the spatial domain, nor the qualitative features of the experiments outlined in section 4. An
open question is, starting from a perturbed W = 0 state or other physically realistic state, what criteria determine
which of the many possible particular solutions of the CGLe is selected as the evolutionary path? In addition to
the CGLe constants, relevant factors include the auxiliary conditions, domain length, material medium
properties and details of the initial perturbation. The particular solutions for free and semi-free evolution
derived in this study are possible outcomes.

7. Conclusions

New ordinary differential equations for the evolution of spectral components are derived from the complex
Ginzburg-Landau equation. They apply to one-dimensional spatial domains without boundaries (free
evolution) and with one fixed boundary (semi-free evolution). In physical applications, they are relevant to long
domains. The semi-free evolution equations apply close to the boundaries where boundary conditions have an
influence. The free evolution equations apply in the interior of the domains away from boundary effects. These
evolution equations are contrasted with those previously derived for short spatial domains in which the
boundary conditions have an influence that extends throughout the domains (bounded evolution).

The derivation uses a novel modification of a discrete spatial Fourier transform in which the wavenumber of
the peak spectral component (denoted by its index, M) is time-dependent. The other components have
wavenumbers fixed relative to M, implying that the spectrum as a whole evolves in wavenumber space.
Particular solutions for free and semi-free evolution are derived using a novel auxiliary condition obtained from
the terminal condition for complex diffusion (after wavenumbers evolve to zero, they remain at zero). The
terminal condition requires that wavenumbers decrease with time. The outcome is a set of coupled, first-order
ordinary differential equations for the evolution of the amplitude, wavenumber and phase of all spectral
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components, applied along characteristic lines. A dispersion equation is derived that applies to lengthening
waves as well as to travelling waves.

Laboratory experiments on the evolution of subaqueous channel sandbars show regions corresponding to
free and semi-free evolution, and that the bar wavelengths increase with time as the bars grow in amplitude. The
analysis applies to other complex diffusion equations, yielding new freely evolving solutions for the complex
heat equation and Schrodinger equation (linear and nonlinear).

Acknowledgments

The author is grateful to Alessandra Crosato for providing support throughout this work and to Ralph Schielen
and Arjen Doelman for helpful discussions about the CGLe.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A. Normalisation and coherent nonlinear terms for free evolution

Appendix A describes the procedure to determine the normalisation factor, W5, for the nonlinear terms in the
free evolution equations (3.23), (3.24) and (3.35). This requires calculating the number of distinct combinations
of spectral components in the summations in S, and Sg,, defined in (3.15), and ensuring that the dynamics
remain unchanged as the number of components, N — oo. The normalisation factor Wj in (3.1) is also
determined.

A complication is that, during evolution, the amplitudes of some components can decay to zero (or close to
zero). For example, for a system evolving towards a sideband-stable SEP state, the spectrum reduces to a single
component at the end of the evolution. This requires N to be replaced by an expression for the number of active
components, N,, that varies with evolution time and can be a non-integer, and that applies both as N, — oo and
as N, — 1. An expression with these properties is

N
N, = > Ay /Ay (AD)
p=1

The normalisation for W; is N}/2 in order that |¥| is unchanged as N — co. Regarding W, another
complication is that some combinations of spectral components have coherent phases, which occurs for values
of j, l and m that give ®j,,,, = 0. The summationsin (3.15) need to be split into two groups for terms with
coherent and non-coherent phases, with different normalisation factors for each group. As shown below, the
coherent group itself has two subgroups with different normalisations.

The sum of the coherent terms evolves systematically whereas the sum of the non-coherent terms fluctuates
about zero. Because the non-coherent terms depend on ®j,,,,, their prediction requires accurate knowledge of
the phases of the components in the perturbation in the initial state. This is often unknown in applications, in
which case numerical models can use the summations of the coherent group only. For such cases, the evolution
equations (3.23), (3.24) and (3.35) are simplified. The normalisations and resulting evolution equations for the
coherent group only are derived below.

Coherent nonlinear terms occur for ®j,,,, = 0,i.e. when j = mor! = m, yielding from (3.15)

Ssn =0 (A2)

Sch = Z AjAIA, forj=mor Il=m (A3)
jHl—m=n
1<j,,m<N

The condition j + I — m = nimplies that = nwhen j = m, and j = nwhen ! = m. Thus, (A3) becomes
N N N
Scn = A| > AT + An(z Af) — A} =24, A7 - A7 (A4)
=1 =1 =1

The two summations in the first equation of (A4) are identical. The term thathas j = I = m = nisincluded in
both summations, which requires that one of these occurrences is subtracted from the summations, resulting in
the —A, term.

The first term in the second equation of (A4) contains the sum of N component combinations and is
normalised by the number of active components, N,. The second term consists of a single component
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combination and is normalised by one. Thus, the normalised S¢,, (i.e. Sc,/ W;) is determined as

Scn 2A, N 5 A3 2 5
= — E Ad | — =L =A,QA;y — A A5
W, N, ( o’ 1 (24 ) (8)

The second equation in (A5) follows by substituting (A1) for N,. Because the normalised variables do not
depend on N, the dynamics are unchanged as N — oco. The ODEs for free evolution using only the coherent
nonlinear terms are derived by substituting (A2) and (A5) in (3.13) and (3.14)

dA,/dT = Li,A, — 1,A,QAYy — A}) for1<n<N (A6)
d®,\/dT = o(Lyy — Loy + 11;(Ayy — AD) for1<n<N, n=M (A7)
dKp/dT = (k, + Ka) Loyt + 1A%/ Cu (A8)

The phase evolution equations (A7) are decoupled from (A6) and (A8).

Appendix B. Galilean invariance of the free evolution equations

Appendix B demonstrates the Galilean invariance of the free evolution equations derived from the CGLe. A
Galilean transformation is made from the X, T frameto the X, T frame moving with velocity V' in the positive
X direction:

X=X+ VT T="1T  9/0x=0/0X  8/0T = —-Vva/oX + o/0T (B1)
The Galilean transformation (B1) is applied to (2.1) to derive the CGLe in the X, T frame
ov ov 0%
— — V— =y + ¥ + (o, + ic;)—= — (u, — ip,) [ V*P B2
o7 9% (3 + %) ( )8X2 (p, — i) ¥ (B2)

The ansatz in the X, T frame s

N
T =1/ M) A(Dexplic0,(X, )] 6, = ¢,X, T) + &)

n=1
¢, = K(DX - Xo+ VD)  Ku(D)=(n—Mq+Ku(l) o==1 (B3)
Substituting (B3) in the CGLe (B2) gives
N
STHdA,/dT — (Liy + i(Lay + 0VK, — 000,/0T))A,} exp (i (¢, + ©,))]
n=1
+ /W), — i) Y AjAAy exp (o (B, + Bim)) = 0 (B4)

1<j,Lm<N

All parameters are defined in sections 2 and 3, and apply here with X, T as the independent variables.
Processing the nonlinear terms similarly to section 3.1.2 transforms (B4) to

N
ST HAA, /AT — g)/A, + i(000,/0T — f, — aVK,)} A, exp (i0©,)] = 0 (B5)
n=1
The following equations, derived from (B3), apply to the relative phases in the X, T frame
Omr = (n = M)qX — Xo + VT) + Qo (B6)
OO/ = Ay /dT + (n — M)qV (B7)

The ancillary function, Gy, (X , f), is introduced in the following expression

N
S 1i(0GM/OT + aVKy — 000y /9T) A, exp (i00,)] (B8)

n=1

The expression (B8) is added within the summation in (B5) and subtracted as a separate group

N
3 {Ai(dAn B gn) N i(g@@nM n 0Gum —f, — oV(K, — KM))}Anexp(ia@n)]
n=1 n

ar aT aT
[ 9Gy aeM)N .
— 1 — + oVKy — - A,exp(ic®,) =0 B9
(aT VK — 07 )3 A, explio®) (B9)

To obtain the general evolution equations, the individual terms in the first summation in (B9) are set to zero.
Equation (B12) is used to derive (B11)
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CGLe. Free and Bounded Spectral Evolution
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° Bounded |
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Figure 4. Free and bounded spectral evolution of the CGLe with the same parameter settings. Both spectra grow in amplitude during
which the spectral width narrows. The final states are finite-amplitude plane waves. For free evolution, the spectrum as a whole shifts
to lower wavenumbers, whereas for bounded evolution the spectral peak wavenumber remains unchanged.

dA,/dT =g, for1<n<N (B10)
00 /0T = a(f, — fi) + V(K, — Ky)  for1<n<N, n=M (B11)
OGy/0T = f,, (B12)
From (B7),(B11) and (B3)
AdQ,/dT = o (f, — fyy) for1<n<N, n=M (B13)

The last term in (B9) is required to be equal to zero, giving dGy/dT = —oVKy; + 09Oy/dT. Using (B3), this
requirement is expressed as

OGu/0T = o(X — Xo + VI)dKy/dT + 0d®y,/dT (B14)

The particular solution for free evolution is derived by returning to the X, T frame, in order to separate
distance and time variables in the expressions for phase, i.e. the form K, (T)(X — X,) rather than
Kuy(T)X = Xo + VI)is required. The analysis continues in this frame until Fy, is derived as (3.33) and
OFy;/OT as (3.34). Gy is now defined such that

0Gy/0T = OFy/0T (B15)
Equation (3.34) is transformed back to the X, T frame by (B15)and (B1)
0Gum/0T = [Cu/(k, + Kn(T)1dKy/dT (B16)
Comparing (B16) with the validity condition (B14) shows that
d®y/dT = 0 (B17)
o(X = Xo + VI) = Cu/(k; + Ku) (B18)
The evolution equation for K, is obtained from (B16) and (B12)
dKu/dT = (k; + Ku )fyy/Cu (B19)
The dispersion equation for a general component # is derived using (B3), (B13), (B17), (B18) and (B19)
Q, = —00,/0T = —of, — VK, (B20)

The outcome is that the evolution equations (B10), (B13) and (B19) are unchanged in the X, T frame
compared with (3.23), (3.24) and (3.35) in the X, T frame. Wave frequencies undergo a Doppler shift by — VK,
in (B20) compared with (3.41) in the X, T frame.

Appendix C. Video of free and bounded evolving solutions of the CGLe

Appendix C presents a video of free and bounded evolving solutions of the CGLe (figure 4). It is available in the
online html version of the paper only. The runtime is 76 s.
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The video shows simultaneous free (black line) and bounded (light blue line) evolution of wave spectra in a
wavenumber-amplitude plot. These lines are identified in the legend. Both spectra have the same equation
constants shown in the figure 2 caption. They evolve from the same initial low-amplitude spectrum (centred on
the green square) towards final sideband-stable SEP states (red circles).

The equations for free evolution are (A6) and (A8), which have only coherent nonlinear terms. For bounded
evolution, (A8) is replaced by dKy;/dT = 0. The characteristic value for free evolution is Cyy = —m. The
numerical solution uses a fourth-order Runge—Kutta timestepping scheme. The spectra contain 3001
wavenumber components, the computational timestep is 0.00277 and the evolution time is 3800 timesteps.
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