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ABSTRACT

Taniq develops technology for manufacturers of cord-reinforced rubber products to improve their
product performance and production process through product redesign and supply of software and
production equipment. Taniq’s technology is used for products ranging from straight large-bore
hoses (3600 [mm]) to small bellowed expansion joints (@ < 100 [mm]).

The current structural analysis used at Taniq is only able to predict fibre stresses of single-layered
products in basic load cases. As many products require local reinforcements and/or multiple fibre
layers this basic structural analysis is not proficient. Therefore these products are currently designed
by trial-and-error.

It is of importance to gain insights in the complete stress state throughout the product in any load
case to facilitate a more efficient design process. This stress state can be used for static and dynamic
strength predictions, and for the development of design guidelines for future products. Therefore the
research objective is:

To develop and validate a model for advanced structural analysis of multi-layered filament wound
cord-reinforced rubber products.

For the structural analysis of the unique combination of multi-layered filament wound cord-
reinforced rubber, numerical Finite Element Analysis methods have to be used. The finite
deformation of the flexible products requires aligned fibre meshes to prevent intra-ply shear locking.
This limits the available mesh constructions to aligned triangle or truss elements for the fibres and
aligned tetrahedral or unaligned hexahedral elements for the rubber.

Various combinations of elements for the fibres and rubber have been evaluated and compared.
Satisfactory agreement with test results of a pneumatic muscle, single-layered and multi-layered
expansion joints has been shown. The models are not accurate enough to give an exact prediction of
the strength of the product, but can be used for a comparison between different designs. It is
decided to use a robust model with linear triangle elements embedded in unaligned linear
hexahedral elements for further simulations. This model showed convergence for both the fibre
forces, reaction forces and rubber strains.

A comparison of various calibrated rubber material models has shown that the basic material
properties given by the rubber supplier are not able to accurately model the response of the rubber
in biaxial and planar shear deformation modes. However, the basic material properties provide a
slightly conservative approximation when modelling a complete expansion joint. It can therefore be
argued whether the improvements achieved by using a fully calibrated model are worth the
additional testing efforts.

The four characteristic failure modes of expansion joints are rubber cracking, fibre failure, fibre
compression and fibre fretting. The most important dynamic failure mode of Aramid expansion joints
is caused by fibre compression during lateral deformation. Nylon expansion joints are less sensitive
to this failure mechanism.



Design of experiments has been used for a parametric study to investigate the influence of all design
parameters on the performance of the product. The effect of the local reinforcement length on the
performance of the product has been investigated separately. The results have been used to
determine an optimal expansion joint design that satisfies all manufacturing constraints. Prototypes
of this optimal expansion joint have been built to validate the optimization. During lateral dynamic
testing the optimized design showed a major improvement. This proves that the numerical structural
analysis method can be a valuable tool during the development of cord-reinforced rubber products.

Some design guidelines for expansion joints have been determined based on the results of the
parametric study and the tests. These are listed below;

e Use Nylon Fibres

e Use a Corpo bellow

e Use the bridging procedure
e  Apply local reinforcements

The optimal length of the reinforcement layer is the length where the angle of the angle-ply local
reinforcement matches the fibre angle of the main fibre layer. This restricts the stiffness
discontinuity that causes stress concentrations.

Recommended improvements of the numerical model are listed below;

e Implement the non-linear Riks solution method to resolve structural instabilities.

e Aligned truss elements can be used to increase the computational efficiency.

e Viscoelastic effects can be incorporated to increase the solution accuracy.

e Local-global models can be used to investigate stress concentrations and delamination of
local reinforcements.

Next to the numerical improvements, it is recommended to investigate the effect of advanced
calibrated material models on the simulation of multi-layered expansion joints. Furthermore the
design of experiments can be improved by eliminating the reinforcement length design parameters
as these are not able to describe the rubber cracking failure mode. This can be accounted for by
writing an algorithm that determines the optimal reinforcement length for a given set of design
parameters based on minimizing the stiffness discontinuity.

Vi
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1 INTRODUCTION

Taniq develops technology for manufacturers of cord-reinforced rubber products to improve their
product performance and production process through product redesign and supply of software and
production equipment. Tanig’s technology is used for products ranging from straight large-bore
hoses (#600 [mm]) to small bellowed expansion joints (@ < 100 [mm]).

The current structural analysis used at Taniq is based on monotropic stress analysis and is only able
to predict fibre stresses of single-layered products in basic load cases. As many products require local
reinforcements and/or multiple fibre layers, this basic structural analysis is not proficient. Therefore
these products are currently designed by trial-and-error.

To facilitate a more efficient design process it is of importance to gain insights in the complete stress
state throughout the product in any load case. This stress state can be used for static and dynamic
strength predictions, and for the development of design guidelines for future products. Therefore the
research objective is:

To develop and validate a model for advanced structural analysis of multi-layered filament wound
cord-reinforced rubber products

To develop these models a literature study has been performed to investigate the products’
characteristic behaviour and the available analytical and/or numerical methods to model this
behaviour. This literature study has shown that the unique combination of materials, production
method and geometry limits the applicability of a general analytical model. Therefore a link between
Taniq's design software and various numerical analysis tools will be made.

The developed numerical structural analysis models will be evaluated and compared by applying
them to expansion joints. Design of Experiments will be used to investigate the main and interaction
effects of the design parameters of an expansion joint. These effects are used to determine an
optimal design, which will be validated by static and dynamic testing.

A brief overview of the state of the art structural analysis methods and characteristic behaviour of
cord-reinforced rubbers is given in Chapter 2. To improve the understanding of expansion joints,
Chapter 3 provides some technical background. Various numerical Finite Element Analysis (FEA)
methods will be evaluated and compared in Chapter 4. The simulations are dependent on the quality
of their input. Therefore the effect of the accuracy of the hyperelastic rubber material models on the
numerical analysis is investigated in Chapter 5. To translate the results predicted by the analysis to
actual product performance, the failure modes of expansion joints are studied in Chapter 6. These
failure modes enable a parametric study and optimization of an expansion joint. These are
performed in Chapter 7 to validate the applicability of the developed analysis model. At last, Chapter
8 gives the conclusion and some recommendations for future research.






2 STATEOF THE ART

The optimal fibre geometry of filament wound structures generally does not require local
reinforcement. However, the majority of cord-reinforced rubber products need local reinforcements
as their flanges cannot be wound in an optimal way. This results in the unique combination of
tapered filament wound cord-reinforced rubber products. Although numerous analytical and
numerical methods have been developed for each of these separate topics, a combination of these
topics is uncommon in literature. Therefore, in this Chapter an overview is given of the current state
of the art on structural analysis of filament wound structures as well as important characteristic
effects of cord-reinforced rubbers.

The structural analysis of filament wound structures will be discussed in Section 2.1. Next, the
characteristic effects that have to be accounted for during structural analysis of cord-reinforced

rubbers are presented in Section 2.2.

2.1 FILAMENT WINDING

Structural analysis of filament wound structures is often based on fundamental elasticity or shell
theories. Shell theories are a good approximation for shells up to a moderate thickness. The more
complex elasticity theories on the other hand offer a more accurate prediction of stresses in all three
dimensions and can thus be applied to structures with any thickness. [1]

Analytical structural analysis methods of filament wound structures can be divided into monotropic,
orthotropic and thick-walled analysis. The monotropic method neglects the matrix properties and is
limited to the analysis of fibre stresses. The orthotropic analysis does take the matrix into account
but is limited to thin-walled structures. The most advanced analytical analysis methods are thick-
walled theories based on elasticity theories and fully describe the through-thickness normal stress
distribution. [2-4] These through-thickness stresses have a significant effect on the stress-distribution
in cord-reinforced rubber products. Current analytical thick-walled analysis is limited to cylindrical
shells with a constant winding angle in each ply. Furthermore it is generally only applicable to
axisymmetric load cases, making them unsuitable for the structural analysis of most cord-reinforced
rubber products.

Numerical FEA is applicable to any load case and or geometry and is frequently applied for the
structural analysis of complex filament wound structures. FEA has shown significant effects of
winding patterns and through-thickness fibre angle distributions. [5, 6] Preceding research has shown
promising results for the applicability of FEA to single-layered filament wound cord-reinforced rubber
products. [7, 8] Furthermore, three dimensional FEA models are able to accurately predict the stress
distribution around local-reinforcements (tapered laminates). [9]



2.2 CORD-REINFORCED RUBBERS

Cord-reinforced rubbers have been investigated since the early 60s. They are a special subset of
composites that combine the flexibility of the rubber matrix with the strength of the cords to create
strong flexible structures. Their most common application is in tires that are reinforced by uni-
directional steel cords. Therefore most of the research devoted to this topic is performed in the tire
industry.

Due to the material characteristics of the rubber matrix material, rubber composites behave
different than typical polymer composites. When analysing cord-reinforced rubber, some important
effects have to be taken into account. These are non-linear incompressible hyperelastic stress-strain
behaviour, fibre shearing and interlaminar normal stresses.

Rubber is a hyperelastic incompressible material. The stress-strain behaviour is non-linear and
cannot be described by traditional linear-elastic analysis. Rubber is therefore modelled by non-linear
hyperelastic continuum mechanics material models.

An important effect of cord-reinforced rubbers is the effect of fibre shearing. This effect is caused by
the difference of matrix and fibre stiffness. In regular polymer composites this ratio ranges from 50
to 200, whereas cord-reinforced rubbers have a ratio between 500-5000. Cord-reinforced rubber has
a higher level of anisotropy that causes its strain dependent properties. When a load is applied, the
stiff fibres tend to align with the direction of maximum stress as illustrated in Figure 2.1. To account
for the shifting of the fibres, the stiffness properties of the deformed configuration have to be used
instead of the properties of the undeformed configuration. This is also known as finite deformation
analysis.
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FIGURE 2.1: HOMOGENEOUS ANISOTROPIC DEFORMATION [10]

A major challenge in multi-layered cord-reinforced rubber hoses is the load transfer between
different layers. Due to the hyperelasticity of the interply rubber matrix, the inner fibres are able to
stretch significantly before the outer fibres experience any loading. This causes an inhomogeneous
load distribution through the thickness. It has been shown that in the case of a two +54°-layered high
pressure hose with 20 [mm] diameter, the stress in the inner layer is 24% higher than the outer
layer. [11] This indicates that interlaminar normal stresses have to be accounted for when modelling
multi-layered cord-reinforced rubbers.



3 TECHNICAL BACKGROUND

In this work an attempt is made to develop a structural analysis method for filament wound cord-
reinforced rubber products in general. To validate this structural analysis method, it is compared with
test data of expansion joints. In the field of composites, the interaction between material,
manufacturing and design has to be kept in mind at all times. To understand the design drivers and
the limitations in the expansion joint design space, it is important to have some background
information on both the product and manufacturing methods.

In this Chapter the function of an expansion joint and different types of expansion joints are
discussed in Section 3.1. Next, Section 3.2 describes the unique manufacturing process developed by
Tanig. At last, the fundamental theory of the design of optimized bellows is presented in Section 3.3.

3.1 EXPANSION JOINTS

Currently Taniq’s main focus is the expansion joint market. There are multiple expansion joint
development projects in progress for a variety of manufacturers. A typical expansion joint is shown in
Figure 3.1. They are widely applied in fluid or gas piping systems to absorb axial, lateral, angular or
twisting movement between different pipes within the system. Their geometry varies from an inner
diameter of 100 [mm] up to 4000 [mm]. However, the production process of Taniq is currently
limited to a maximum diameter of 1200 [mm].

FIGURE 3.1: EXPANSION JOINT [12]

The length and shape of the bellow(s) varies between manufacturers. Taniq determines an optimal
bellow by using the Corpo technology, as will be discussed in Section 3.3. The three major types of
expansion joint designs for Taniq are standard, high-flow or multiple bellow designs as shown in
Figure 3.2.
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Next to the bellow shape an important design feature is the flange type. The flange geometry is
dictated by standards. However there are three different types of flange configurations, being the
full rubber flange, the standard floating flange or the bead ring floating flange. These are illustrated
in Figure 3.3. In the full rubber flange the bolt holes are cut directly through the rubber whereas in
the other flange types a metal flange compresses the expansion joint to create a seal.

FIGURE 3.3: FLANGE TYPES [13]
LEFT: FULL RUBBER FLANGE, MIDDLE: STANDARD FLOATING FLANGE, RIGHT: BEAD RING FLOATING FLANGE

The internal structure of the expansion joints typically exist of an inner rubber liner for chemical
protection and load distribution over the fibres and one or multiple filament wound fibre layer(s) to
carry the pressure loads. The outer rubber layer protects the expansion joint against environmental
influences. Furthermore there can be local axial, circumferential and/or cross-ply fibre reinforcement
layers. By varying these parameters, a wide variety of expansion joint designs is possible to tailor
their performance for specific requirements.



3.2 MANUFACTURING

One of the unique technologies that Taniq offers is their automated production process. They have
developed robot tools that are able to place fibres by filament winding, wind rubber and apply
wrapping tape. These three production steps are illustrated in Figure 3.4.
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FIGURE 3.4: EXPANSION JOINT PRODUCTION STEPS
LEFT: FIBRE WINDING, MIDDLE: RUBBER WINDING, RIGHT: TAPE WRAPPING

This production process has a number of benefits. First of all it is much quicker than the manual
production that is currently applied in the expansion joint industry. Another major benefit is the high
reproducibility of products and the accurate fibre placement. The design software is able to create
output of the precise geometry and fibre angles throughout the product. This data is essential for an
accurate structural analysis.

A recent development in the production of expansion joints at Taniq is the so called “bridging”
method. During traditional filament winding, the winding angle near the flanges approaches 90° to
prevent bridging of the fibres. Such high fibre angles are not able to provide sufficient axial stiffness
in this region to prevent rubber tearing. To increase axial stiffness in this region a lower fibre angle is
required. This can be achieved by the bridging procedure. In a bridging prototype the wound flange
region is elongated and fibre bridging is allowed. During the moulding, this region is compressed
towards its intended length causing the bridged fibres to neatly fold into the flange edges. The
winding and moulding profiles and fibre paths of a bridging prototype are illustrated in Figure 3.5.
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3.3 CORPO TECHNOLOGY

The Corpo technology is a geometric description of halve a bellow with two vertical ends. Due to the
vertical ends it is possible to combine multiple bellows to create multi-bellowed hoses. An example
of a Corpo profile, described by axial (z) and radial (r) coordinates is shown in Figure 3.6. [2]
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FIGURE 3.6: CORPO PROFILE [14]

A Corpo contour can be described by the dimensionless coordinates Y and Z given in Equation 3.1.
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A Corpo profile is typically loaded by an internal pressure (P) and an axial load (4). The axial load can
be made dimensionless using Equation 3.2.

A

= 3.2
o T[PT‘OZ

Combining these dimensionless parameters a Corpo profile can be fully described by just three
parameters (g, p and 7). The shape factor q relates the dimensionless radius of the equator (Yg,)
and the poles (Y;yin). The p factor is determined by the dimensionless axial force. Both are shown in
Equation 3.3.
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3.3

When the fibre orientation on a Corpo profile is precisely controlled by filament winding, it can lead
to optimally reinforced bellowed hoses. This is achieved by isotensoid and geodesic winding paths.



3.3.1 ISOTENSOID

Isotensoid loading is a constant load throughout the length of a fibre. This is an optimal loading
condition as it allows the full strength of the fibre to be utilized. Isotensoid loading is achieved by
matching the fibre angle with the direction of maximum load, as given by Equation 3.4. [2]

g,
£ = tan?a 3.4
]

Here «a is the fibre angle with respect to the longitudinal direction of the product, g, is the stress
component in the longitudinal direction and oy the stress component in the circumferential

direction.

3.3.2 GEODESIC

To obtain an optimally loaded structure, the fibre path has to fulfil the isotensoid condition.
However, the filament winding process limits the feasible winding paths. To control the fibre
placement, filament winding requires some tension in the fibre. When a fibre under tension is placed
on a frictionless surface it will naturally follow the shortest path between two points, also known as a
geodesic path. By limiting the fibre placement to these inherently stable paths, the feasibility of
production is guaranteed. On a rotational symmetric shape, geodesic fibre paths are given by the
Clairaut relation shown in Equation 3.5. [2]

rsina = constant 3.5

When the winding angle at a single position is chosen, the constant on the right hand side is set. The
entire geodesic fibre path is thus determined by the winding angle at a single position. In the case of
a Corpo profile a winding angle of 90° is specified at the theoretical smallest radius of the product 7.
This allows the Clairaut relation to be rewritten to Equation 3.6.

.1 . To
a = arcsin— = arcsin— 3.6
Y T

3.3.3  OPTIMAL WINDING

Now that the criteria for guaranteed windability (geodesic) and optimal loading (isotensoid) are
known, they can be combined to create optimal windable structures. Combining Equation 3.4 and
3.6, gives the condition described by Equation 3.7.

Ty : 2( . 1) 1 T,
_—= n T =] = = .
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The shell stresses in a double curved surface under pressure are related by their radii of curvature in
the meridional and polar direction, as shown in Equation 3.8. [15]

3.8



Matching these stresses with the force equilibrium in axial direction as given by Equation 3.9,
determines the complete stress state of a body of revolution.

dz
A+ Prr? = gp2nrt— 3.9
+ Prr Og 21T e

Combining Equation 3.1 to 3.9 yields a description of the dimensionless profile. The dimensionless
coordinates Y and Z are described by the Corpo parameters q, p and an independent integration
variable 8 (0 < 0 < TZ—T). These dimensionless coordinates are given in Equation 3.10. [2]

Y = Jquz c0s2 0 + Y% sin2 @

Y. . -1
7= —’””‘—<(1 +2q(1+ p))ellE (9 q——) 3.10

J1+2q(1+)p) "142q(1+p)

qg—1 )
(1+q+qp)ellF(9,1+2q(1+p) )

In this Equation ellE and ellF denote incomplete elliptic integrals of the first and second kind.[2] Any
profile described by this Equation fulfils the conditions for both isotensoid and geodesic winding
paths. In the software of Tanig, bellow profiles are constructed according to these Equations,

ensuring optimal windable bellows.
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4 FINITE ELEMENT ANALYSIS

The objective of this thesis is to develop tools for the analysis of a wide variety of cord-reinforced
rubber products. As there are no analytical models that are applicable to all relevant load cases and
products, the decision has been made to develop and evaluate more generally applicable numerical
approaches. These models will be tested and verified with an application to expansion joints, as
extensive experimental testing and development programs of these products are being performed by
Taniq.

Only a few numerical methods are able to accurately model intra-ply shear as indicated in Section
2.2. One way is by modelling each fibre separately using truss elements. Another way is to use
membrane/shell elements in combination with material models that capture the material
reorientation. In both cases a proper coupling between the fibre and rubber elements has to be
ensured.

A single-layered numerical shell model has shown promising results for the analysis of a filament
wound turbo-hose. [7] In this Chapter this model is extended to incorporate through-thickness
effects of the rubber and evaluate locally reinforced multi-layered products.

Both the specialized software package AniForm and the widely applied Abaqus software are
evaluated. AniForm is specialized in the analysis of forming processes of composite materials and
utilizes an updated Lagrangian solution method that is able to analyse fibre structures undergoing
large deformations. This updated Lagrangian solution method utilizes a continuously non-linear finite
strain definition whereas the conventional solution method discretizes the non-linear strain path by a
number of linear strain paths. [16] Abaqus on the other hand is widely applied in the rubber industry
and has one of the largest element and material model libraries. To investigate the difference
between the conventional (Abaqus) and the updated Lagrangian (AniForm) solution methods a
comparison is made between the different software packages.

In this Chapter the importance of mesh alignment to prevent intra-ply shear locking is investigated in
Section 4.1. Section 4.2 discusses the mesh requirements and meshing approaches that satisfy these
requirements. In Section 4.3 the analyses of a pneumatic muscle using different mesh approaches
are compared. Some of these approaches are validated using experimental results of a single layered
expansion joint in Section 4.4. A convergence study for the different mesh approaches is performed
in Section 4.5. Section 4.6 explains a method for automated mesh generation of aligned fibre meshes
in multi-layered products. This multi-layered model is validated using experimental data of an actual
expansion joint design in Section 4.7. The causes of the convergence issues encountered are
discussed in Section 4.8 and recommendations are made to improve the robustness of the analysis.
At last, a trade-off is made between the different software packages and mesh types in Section 4.9.
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4.1 MESH-FIBRE ALLIGNMENT

Intra-ply shear locking is a numerical phenomenon that overestimates intra-ply shear stiffness in
membrane elements. This obstructs realistic fibre reorientation in highly-anisotropic materials and
results in inaccurate structural analysis results. [17]

The extent of intra-ply shear locking depends on the level of anisotropy, being the ratio between the
stiffness of the fibre and the matrix material. In regular matrix composites, with a degree of
anisotropy ranging from 50-200, the effect is insignificant. On the other hand it has a major influence
on thermoplastic composite forming simulations with degrees of anisotropy ranging up to a million.
The degree of anisotropy of cord-reinforced rubber is somewhere in between 500-5000. Therefore it
has to be investigated whether intra-ply shear locking is present in the simulation of these materials.

Research has shown that one way to eliminate intra-ply shear locking is by aligning linear triangle
elements with the fibre direction. [17] To investigate the effects of intra-ply shear locking, aligned
and unaligned meshes of a pneumatic muscle are compared. This pneumatic muscle is a cord-
reinforced rubber that experiences large fibre reorientations. It has been used to validate both
analytical and numerical models in previous research. [7, 18, 19] In the simulation the pneumatic
muscle is pressurized to 5 [bar] causing axial contraction. Next, an axial load is applied at one end,
extending the muscle again. These load cases for a model with aligned rebar triangle elements and a
model with aligned truss elements are shown in Figure 4.1.

FIGURE 4.1: DEFORMATION MODES
LEFT: ALIGNED TRIANGLE ELEMENTS, RIGHT: ALIGNED TRUSS ELEMENTS
TOP: PRESSURIZED, BOTTOM: PRESSURIZED AND STRETCHED
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The undeformed fibre angle with respect to the axis of revolution is 17,68°. The applied axial load of
this muscle with respect to the axial stretch at a pressure of 5 [bar] is calculated. The indicated angle
describes the angle of the edges of the triangle elements with respect to the axis of revolution. In
Figure 4.2 the results for the aligned and various unaligned meshes calculated using Abaqus are
shown. Figure 4.3, shows the results calculated by AniForm, using the exact same mesh geometry.
The internal geometry, fibre angles and material properties of the pneumatic muscle are shown in
Appendix A.1.
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FIGURE 4.2: ABAQUS UNALIGNED MESH RESPONSE
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FIGURE 4.3: ANIFORM UNALIGNED MESH RESPONSE

As can be seen the effect of intra-ply shear locking is present. As the degree of misalignment
increases, the pneumatic muscle tends to become stiffer. Although the effect is less pronounced in
Aniform, it is still clearly visible. The use of an updated Lagrangian material model thus shows little
improvement with respect to a finite deformation approach on element level as used in Abaqus.
The effect of intra-ply shear locking is relatively small up to a misalignment of 20°. However, cord-
reinforced rubber products can have a winding angle range of 5° to 90°. Therefore it is best to use
aligned fibre meshes that ensure the best simulation accuracy for a wide range of products.
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4.2 MESH

An important part of FEA is the way the product is discretized, better known as the mesh. Depending
on the element types and material models available there are different approaches to discretize a
product and its behaviour. Subsequently the approach determines the results that can be generated
by the model and the computational efficiency at which the results are generated. In this Section the
mesh requirements will be discussed as well as multiple approaches that satisfy these requirements.

4.2.1  REQUIREMENTS

Cord-reinforced rubbers show characteristics that have to be accounted for when modelling them
using FEA. The most important is fibre shearing due to finite deformations. To account for this effect
it is important that such fibre shearing is incorporated in the element/material behaviour. Another
important effect is the hyperelastic material behaviour that has to be incorporated in the applied
material models.

Section 4.1 has shown that the fibre mesh has to be aligned with the fibre direction. As each fibre
layer needs to be aligned with its own fibre direction, it is not possible to combine multiple layers
into a single element layer. Each fibre layer has to be modelled by a separate layer of elements. The
connection of unaligned layers can only be achieved by modelling a 3-dimensional rubber layer.

4.2.2  APPROACHES

An overview of the available mesh approaches for cord-reinforced rubber expansion joints is shown
in Figure 4.4. One approach is to separate the fibre and rubber elements. As the fibres only possess
significant in-plane stiffness, their out-of-plane behaviour can be neglected. Therefore they can be
modelled using membrane, shell or truss elements.
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FIGURE 4.4: EXPANSION JOINT MESH APPROACHES

In Aniform the fibre layer can only be modelled using linear triangular membrane or shell elements.
To prevent intra-ply shear locking these elements have to be aligned with the fibre directions. The
fibre shearing effect is incorporated in an updated Lagrangian material model. The only 3D solid
elements available in Aniform are linear or quadratic tetrahedral elements.
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In Abaqus a similar approach can be applied. A major difference is the method of accounting for fibre
shearing. Whereas Aniform accounts for this behaviour within the material model, Abaqus uses so
called “rebar” elements. The rebar element description only attributes one-dimensional material
properties to the element in a given direction and rotates this principal material direction to account
for the fibre shearing. Abaqus thus handles fibre-shearing on element level, whereas Aniform
handles this effect on a material level.

Another approach that is available in Abaqus is to model the fibres or groups of fibres separately as
truss elements aligned with the actual fibre directions. One important advantage is that truss
elements do not encounter intra-ply shear locking.

The last approach is to model the fibres and rubbers together using an anisotropic hyperelastic
material model. These describe the interaction between the rubber and fibres within a single
material definition. A downside of such material models is that they require various combined
material properties as input. As these material properties are difficult to determine without
experimental testing, the application of these material models becomes unpractical.

4.3 FINITE ELEMENT ANALYSIS COMPARISON

Now the different meshing approaches have been determined, a comparison between these
methods has to be made. For this comparison the same product (pneumatic muscle) and load cases
are used as in Section 4.1. First of all there is the comparison between the different software
packages. Furthermore the fibre and rubber element types are varied. The different meshing
approaches that are evaluated are listed in Table 4.1.

TABLE 4.1: ANALYSIS CONFIGURATION

Rbe Elent :

Fib Elemets wid

' Appr Software

~ Abaqus _ Linear Triangles Linear Tetrahedrals
2 B ~_Abaqus Linear Triangles Quadratlc Tetrgﬁhedrals

3 Abaqus Qgidratlc Trlangles Quadratic TQeirabe_drals

] Aniforr; Linear Triangles Linear Iétrajedrals '
Aniform Linear Triangles : QuadratlcTetrahedrals

o 6 7Ab§‘cflus Linear Truss : _ Linear Hexahedrals
7/ Abaqus Quadratlichiuss Quagrrglg Hexahﬁeﬁ@ralsg

8 Abaqus Linear Triangles Llne(ernI:(laI;ZZ(;Irals

The first five mesh approaches are made using aligned triangle elements for the fibres and
tetrahedral elements aligned with these triangle elements, as depicted on the left side of Figure 4.1.
To investigate the influence of the order of the element both linear and quadratic elements and
combinations of these are tested. The 1* order linear elements are limited to a constant stress
throughout each element, where the stress in a quadratic element can vary linearly. Quadratic
elements are thus better able to model regions with large stress gradients. However, quadratic
elements require more nodes and thus more degrees of freedom, increasing the computational cost
of these elements. By comparing different order elements it can be investigated whether the
additional computational cost of higher order elements improves the solution accuracy and/or
convergence.
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Next to the mesh approaches with aligned triangle elements, some models are made using truss
elements to model the fibres. In these approaches, each fibre is modelled separately, eliminating the
risk of intra-ply shear locking. The first two models use aligned hexahedral meshes for the rubber of
which the nodes coincide with the fibre nodes, as depicted on the right side of Figure 4.1. The last
model uses unaligned hexahedral elements which are bound to the fibres using a so called
“embedded” constraint in which the nodal surface of the fibre elements is fixed within the
hexahedral elements. [20] This method is most suitable for automated mesh generation as the fibre
geometry does not have to be accounted for when discretizing the rubber.

To investigate the behaviour of all the different mesh approaches, three important parameters are
compared throughout the whole deformation spectrum of the product. These three parameters are
the axial reaction force (Figure 4.5), the maximum fibre stress (Figure 4.6) and the maximum rubber
strain (Figure 4.7), all with respect to the axial stretch of the pressurized pneumatic muscle. The
deformed geometries of the pneumatic muscle are illustrated in Figure 4.1.

As can be seen in Figure 4.5, there is little variation between the different meshing approaches with
respect to the axial reaction force. The variation in element types for the rubber has little effect in
this case as the behaviour of the total product is mainly determined by the stiff fibres and not by the
flexible rubber of the pneumatic muscle. When compared to the measured results, the stretch levels
differ. This is due to fibre plasticity. [18]
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FIGURE 4.5: AXIAL STRETCH VS. AXIAL FORCE
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Figure 4.6 shows the maximum fibre stress with respect to the axial stretch. In comparison with the
axial reaction force there is more variation between the different meshing approaches. As can be
seen there is one divergent approach, this is the only model that uses quadratic triangle elements for
the fibres. The cause of this deviation is that in this model the highest fibre stresses are given at the
edges whereas in the other models the highest fibre stresses are given in the middle. However, the
stresses in the middle of this quadratic triangle model match with the other models.

It is known that boundary conditions can result in overestimated stresses. These overestimated
stresses only show in the quadratic elements as these elements are the only elements that allow for
large stress gradients, allowing this asymptotic behaviour at the boundaries. Apart from these
overestimated stresses at the boundaries, all other fibre stresses throughout this model match with
the values of the other models.
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FIGURE 4.6: AXIAL STRETCH VS. MAXIMUM FIBRE STRESS

Figure 4.7 shows the maximum principal rubber strain in the model with respect to the axial stretch.
From all the parameters this graph shows the biggest variation between the different models. It
should be noted that the Aniform results are not included as this software is unable to provide
strains that are comparable with the Abaqus strain definition.

The fully linear models (1, 6 and 8) match quite well up to a stretch of approximately 1. Above this
stretch the unaligned hexahedral model (8) starts to deviate. This is likely caused by the fact that this
model has multiple elements through the thickness of the rubber and is thus able to predict a strain
gradient throughout the thickness, whereas the other linear models give a constant strain
throughout the thickness.

When the higher order element approaches are compared with the linear elements they give
significantly higher rubber strains. Again this effect is likely to be caused by the strain gradient
through the thickness of the rubber. Furthermore the quadratic triangle models (2 and 3) show some
unexpected perturbations at high stretch levels. These perturbations can be attributed to a shifting
location of highest rubber strain from the middle of the product to the edges. Where this is a smooth
transition in the linear models, this location jumps back and forth in the quadratic triangle models.
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FIGURE 4.7: AXIAL STRETCH VS. MAXIMUM RUBBER STRAIN

4.4 EXPANSION JOINT COMPARISON

Section 4.3 compared the different meshing approaches for a standardized pneumatic muscle. In this
Section a comparison is made with actual test results of a single layered expansion joint. The internal
geometry, fibre angles and material properties of the single layered expansion joint are shown in
Appendix A.2.

In the previous Section models have been made with hexahedral elements aligned with truss
elements for the fibres. These mesh approaches have not shown any significant improvement with
respect to the unaligned hexahedral with embedded triangle element approach. Furthermore these
meshes are difficult to construct for expansion joints with varying fibre angles and radii. Therefore
these two methods are omitted from the comparison. Table 4.2 shows the remaining mesh
approaches that are evaluated in this Section.

TABLE 4.2: EXPANSION JOINT ANALYSIS CONFIGURATIONS

== I, S

’”77 } uer es

~ Abaqus  LinearTriangles  Linear Tetrahedrals

2 Abaqus LinearTriangles  Quadratic Tetrahedrals.

3 Abagus Quadratic Triangles Quadratic Tetrahedrals |
VirfAn@rrrn iLinearTrian’gIes:x 7Linea[TetrahédraIé

5 Aniform Linear Triangles j_(ﬁll_lradratic Tgtrahedrals*
Linear Hexahedrals
_(loaligngd]

8 Abaqus Linear Triangles

Figure 4.8 shows the measured and simulated elongation of a single layered expansion joint during
unrestricted pressurization. In this case high elongations result from the closed end conditions of the
pipe causing high axial tensile forces. When comparing the different meshing approaches among
each other they all match quite well.
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FIGURE 4.8: UNRESTRICTED ELONGATION VS. PRESSURE

The Abaqus models with linear tetrahedral elements (1 and 2) behave slightly stiffer than the rest.
This is due to the fact that the hybrid tetrahedral element formulation in Abaqus is overconstrained
causing a small degree of volumetric locking. [21] However, for the modelling of the nearly
incompressible rubber the hybrid element formulation is required to achieve convergence of the

non-linear analysis.

Although the different meshing approaches match quite well, the stifness of the actual expansion
joint is much lower. There are two causes for this discrepancy. First of all the top layer of the rubber
at the flange ends was not well vulcanized, causing it to rupture at the flange ends at a rather small
elongation as can be seen in Figure 4.9. This event exposed the fibre layer and showed poor fibre-
rubber bonding at the cylindrical parts of the expansion joints which was likely to be caused by the

poor vulcanization as well.

FIGURE 4.9: RUPTURED OUTER RUBBER IN SINGLE-LAYERED PROTOTYPE
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As the winding angle at the cylindrical regions is far from geodesic, the fibres tend to shear towards
the direction of maximum stress, causing significant axial elongation. During the measurements it
was clearly visible that the majority of the elongation was achieved in the cylindrical region as the
bellow was able to retain it’s shape. In typical expansion joints additional axial reinforcement layers
are placed at these locations to limit the elongation of the cylindrical region. Therefore the ruptured
prototype is not representative for actual expansion joints. A comparison with realistic expansion will
be made in Section 4.7.

Next to the unrestricted pressurization load case, the different meshing approaches are compared
among each other in different realistic load cases. These load cases are illustrated in Figure 4.10 and
represent the most extreme deformations throughout the testing program for high-performance
expansion joints. Both the reaction forces and the maximum fibre forces are compared for each of
the load cases. The results of the different simulations are listed in Table 4.3 together with the
standard deviation as a percentage of the average result.

TABLE 4.3: REACTION FORCES AND FIBRE FORCES DURING DIFFERENT LOAD CASES
* = NO RESULT DUE TO NON-CONVERGENCE

Load Case

Restricted | Axial Reaction Force [N] | 4090 | 3715 | 3693 | 4453 | 3951 4221 | 67
Pressurized | Maximum Fibre Force [N] | 144,9 | 1413 1399 | 1416 | 1421 1447 | 1,3
Axial | Axial | Reaction Force  [N] | 14629 | 13636 | 13397 | 14424 | 13419 15088 | 4,6
_Elongation | Maximur Fibre Force  [N] | 1650 | 160,5 | 1614 | 162,6 | 1659 | 1646 | 1,2

T Adal |  Axial Reaction Force IN] | -5258 | -a216 | -4205 | 2235 | -1756 | -4945 | 349
Compressilen Maz<|mum Fibre Force [[(l] 127,r§ 7 156} fzé,l ES,Oﬁ’ 156‘5,7 771>2787,1‘7 2,3
| Axial Reaction Force N[ 3864 | * | 2622 | 6023 | 6019 | 4241 182
De:::;;at'ion Lateral Reaction Force [N] 7576 | * | so81 | 5357 4000 | 7874 | 251
1 Maxtmum F|bre Force [N] 371:54777 7: N 265,3 | §§9,QG 37{17?,57 :2§9,47 “12,;57

As can be seen the relative variation in the maximum fibre forces is very low in the axisymmetric load
cases. Furthermore the variation in reaction forces in the restricted and elongated cases is
satisfactory as well. In the compressive case there is however a large variation between the results of
Aniform (4 and 5) and Abaqus (1, 2, 3 and 8). In the compressive simulation of Aniform kinking occurs
at the end of the bellow where this does not occurs in the simulation of Abaqus. This kinking is
responsible for the difference in compressive stiffness between the two software packages.

The non-axisymmetric lateral load case shows a large variation in both the reaction forces and the
maximum fibre force. During the lateral analysis it is much more difficult for the models to converge
than in the axisymmetric cases. This indicates a higher level of non-linearity in this problem.
Furthermore the stress and strain gradients during this load case are much higher than in any of the
other cases. Therefore the use of linear elements is less suitable to achieve an accurate result.

In general the quadratic models behave less stiff than the linear models as these experience less
volumetric locking than the linear hybrid tetrahedral elements. However, as the linear models slightly
overestimate the fibre forces in every case, these computationally efficient models are a suitable
conservative choice for the analysis of expansion joints.
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FIGURE 4.10: EXPANSION JOINT LOAD CASE DEFORMATION
TOP-LEFT: UNDEFORMED, TOP-RIGHT: UNRESTRICTED PRESSURIZED
MIDDLE-LEFT: RESTRICTED PRESSURIZED, MIDDLE-RIGHT: 30 [MM] ELONGATION
BOTTOM-LEFT: 30 [MM] COMPRESSION, BOTTOM-RIGHT: 30 [MM] LATERAL DEFLECTION
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4.5 CONVERGENCE STUDY

In this Section a convergence study is performed to determine which mesh densities are sufficient to
give a converged solution. The convergence of the total reaction force, the maximum fibre force and
the maximum rubber strain are investigated. This is done for the restricted pressurized load case
illustrated in Figure 4.10.

As there is a minimum number of elements required to describe the expansion joint geometry this
determines the coarsest mesh. On the other hand the finest mesh is constrained by the memory size
of the computer as the analysis storage has to fit within the memory. As the final model should be
able to run on a regular workstation, this limits the maximum number of elements.

For the convergence study the relative error is determined with respect to the finest mesh that was
able to run. Figure 4.11 shows the convergence of the axial reaction force as a function of the
degrees of freedom. As can be seen every model shows some level of convergence, however the
error of the quadratic models (2, 3 and 5) remains too high. The linear models (1, 4 and 8) on the
other hand show satisfactory convergence (< 5%), even with relatively coarse meshes.
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FIGURE 4.11: RESTRICTED REACTION FORCE CONVERGENCE

Figure 4.12 shows the convergence of the maximum fibre force in the model. Just as with the axial
reaction force, all the models show some level of convergence and the linear models converge better
than the quadratic models. It should be noted that here the benefits of the updated Lagrangian
material model of Aniform show as even the coarsest Aniform model shows satisfactory
convergence.
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FIGURE 4.12: RESTRICTED MAXIMUM FIBRE FORCE CONVERGENCE

The maximum principal rubber strain convergence is shown in Figure 4.13. Just as in Figure 4.6 the
Aniform results are not included as the software is unable to provide strains that are comparable
with Abaqus its strain definition. Where the axial reaction force and maximum fibre force showed
convergence in all the mesh approaches, this is not the case for the maximum principal rubber strain.
All the models using tetrahedral elements do not show satisfactory convergence or even any form of
converging rubber strains at all. The only approach that shows sufficient convergence is the
unaligned hexahedral model (8). These linear hexahedral elements do not show the inherent
volumetric locking of the linear tetrahedral elements. The hexahedral elements are not over
constrained by the hybrid element definition used for the modelling of incompressible materials. [22]
Furthermore it is possible to have multiple elements through the thickness while maintaining limited
degrees of freedom. Therefore this is the only approach suitable to simulate meaningful rubber
strains. On the other hand the linear tetrahedral models (1 and 4) do show sufficient convergence for
the simulation of fibre stresses and reaction forces.
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FIGURE 4.13: RESTRICTED MAXIMUM RUBBER STRAIN CONVERGENCE
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4.6 MULTI-LAYERED ALLIGNMENT

In the previous Sections two products have been modelled that both contain a single fibre layer. To
be able to model all the different types of cord-reinforced rubbers, multi-layered products have to be
modelled as well. As the fibre layers have to be modelled using aligned meshes as shown in Section
4.1, each fibre mesh layer has to be aligned with its own fibre orientation. These different fibre layers
have to be connected to each other using 3-dimensional rubber elements as indicated in Section 4.2.
One method to connect these aligned fibre meshes, is by aligning the rubber element nodes with the
fibre nodes. This automated mesh generation method will be discussed in this Section.

Figure 4.14 shows aligned triangle meshes of a single layered and multi layered expansion joint. Each
fibre mesh can be seen as a collection of rings aligned with that fibre section. The rings of different
fibre layers can be connected by discretizing the solid in between into circumferential cones as
illustrated in Figure 4.15 for a multi-layered expansion joint.

FIGURE 4.14: ALIGNED TRIANGLE MESHES
LEFT: SINGLE LAYERD, RIGHT: MULTI-LAYERED

20 40 €0 £0 100 120
z[mm]

FIGURE 4.15: CONE DISCRETIZATION IN Z-R PLANE
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After this step a large number of circumferential rings are left for the modelling of the rubber. The
next step is to discretize this ring into single wedge sections. A single circumferential cone and wedge
section are illustrated in Figure 4.16. This single wedge section can now easily be discretized into
three tetrahedral elements.

—

FIGURE 4.16: DISCRETIZED CONE AND WEDGE SECTION
LEFT: SINGLE CIRCUMFERENTIAL CONE SECTION, RIGHT: SINGLE CONE WEDGE SECTION

By automating these discretization steps, multi-layered aligned tetrahedral elements can be
generated efficiently. Figure 4.17 shows cross section cuts of an aligned tetrahedral mesh for the
connection layer between the fibre layers and for a whole expansion joint.

FIGURE 4.17: CONNECTED ALIGNED FIBRE MESHES
LEFT: INTER-PLY RUBBER, RIGHT: COMPLETE EXPANSION JOINT

4.7 MULTI-LAYERED EXPANSION JOINT

Where the previous mesh comparisons were made for single-layered products, this Section
investigates the behaviour of the different models in a multi-layered expansion joint. This multi-
layered expansion joint design is part of a development project for one of the leading European
expansion joint manufacturers. The internal geometry and fibre angles of the reinforced expansion
joint are shown in Appendix A.4.
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An extensive testing sequence has been performed on this expansion joint design. This test data will
be used to validate the numerical models. For the validation a comparison is made for both axial and
lateral deformations, unpressurized and at working pressure. Furthermore the measured and
predicted burst pressures are compared. For this comparison the same models are used as indicated
in Table 4.2. However, as not all models were able to converge in the compressive and/or lateral load
cases, not all models are included in each comparison. The difficulties with convergence will be
discussed in Section 4.8.

Figure 4.18 shows the axial load-displacement graph of an unpressurized expansion joint. As can be
seen the Abaqus tetrahedral models (1, 2 and 3) overestimate the tensile stiffness of the expansion
joint significantly. Both Aniform models (4 and 5) perform slightly better, but the most accurate
simulation is done by the unaligned hexahedral model (8). It should be noted that the loop visible in
the measured response is due to elastic hysteresis of the rubber which is not accounted for in the
simulations.

Where most of the models overestimated the tensile stiffness, they underestimate the compressive
stiffness. In this case the most accurate model is the Abaqus linear tetrahedral model (1) whereas all
other models show approximately the same response. Furthermore there is a significant difference
between the linear and quadratic elements, indicating that there are large strain gradients in the
rubber. It is interesting to see that the large variation in the compressive response between Aniform
and Abaqus as noted in Section 4.4 has disappeared as both models do not kink at the end of the
bellow.
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FIGURE 4.18: AXIAL DEFORMATION VS. AXIAL REACTION FORCE

The lateral load displacement graph of the unpressurized expansion joint is shown in Figure 4.19.
Only the linear tetrahedral models (1 and 4) were able to give a converged solution over the whole
deformation range. The models that were unable to converge all predicted some form of buckling,
either locally in the cylindrical region or globally throughout the bellow.
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In this graph there is a more pronounced difference between the different models. The Abaqus linear
tetrahedral model (1) behaves overly stiff. This is caused by the inherent volumetric locking of this
type of element. The use of higher-order rubber elements (2 and 3) shows a more realistic response.
The variation between the linear and quadratic fibre element models indicates that there are large
stress gradients in the fibres in this load case.

An interesting note is the large variation between the linear models of Abaqus and Aniform. This is
partly caused by the fact that the linear tetrahedral elements in Aniform do not experience the
inherent volumetric locking as the hybrid elements in Abaqus do. Furthermore the updated
Lagrangian strain definition is more accurate in the modelling of the finite deformations.
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FIGURE 4.19: LATERAL DEFORMATION VS. LATERAL REACTION FORCE

The actual product specifications of the expansion joints tested in these cases restrict their use to
maximum axial and lateral deformations of +11 [mm)]. The simulated axial response of the expansion
joint in this deformation range is sufficiently accurate. Furthermore, the fully quadratic Abaqus and
linear Aniform models show fair agreement with the lateral test results throughout this deformation
range as well.

Next to the unpressurized stiffness response, the stiffness response at working pressure (16 [bar]) is
simulated as well. Figure 4.20 shows the axial response of the pressurized expansion joint. Only the
linear models were able to give a converged solution of a restricted expansion joint at working
pressure. As this is the starting point for the stiffness responses, only the simulation of these linear
models could be determined.
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As can be seen, the unaligned hexahedral (8) and linear tetrahedral (1) models show little variation.
This indicates that the through-thickness strain distribution, which is better predicted by the
hexahedral model, does not have a significant effect on the pressurized axial stiffness. Furthermore
both Abaqus models overestimate the axial stiffness. The Aniform model (4) shows a more flexible
response, which can again be attributed to the updated Lagrangian method and its ability to better
predict the finite deformations. However, all of the models overestimate the stiffness significantly.
This could be due to inaccurate rubber material parameters or due to poor rubber-fibre bonding in
the cylindrical section as mentioned in Section 4.4. The effect of more advanced rubber material
models on the results will be investigated in Chapter 5.
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FIGURE 4.20: PRESSURIZED AXIAL DEFORMATION VS. AXIAL REACTION FORCE

The lateral pressurized load displacement graph is shown in Figure 4.21. In contrast with the axial
deformation there is a slight difference between both Abaqus models. This indicates that the
through-thickness strain distribution does have an effect on the pressurized lateral stiffness.
Furthermore the Aniform model shows a more flexible lateral response. However, in this case the
stiffer Abaqus response matches better with the test results.

In general it can be concluded that the linear tetrahedral gives the most stiff response, due to
volumetric locking. The influence of the volumetric locking has a less pronounced effect in
pressurized simulation as in this case volumetric locking is likely to occur in the other models as well.
The AniForm models are less prone to volumetric locking as the updated Lagrangian solution method
is better able to cope with finite deformations. Therefore AniForm gives the most flexible responses.
Furthermore it can be concluded that through-thickness strain gradients do have an effect in most
load cases. Therefore it is recommended to use elements that capture these strain gradients, either
with higher-order tetrahedral, or multiple hexahedral elements through the thickness.
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FIGURE 4.21: PRESSURIZED LATERAL DEFORMATION VS. LATERAL REACTION FORCE

Although it is interesting to be able to predict the stiffness responses of expansion joints, it is not an
important design driver for expansion joint manufacturers. Therefore an accuracy of 30% over the
specified deformation range is sufficient. The most important design drivers are the burst pressure
and durability of expansion joints. Therefore, Table 4.4 shows a comparison between the measured
and predicted restricted burst pressures. As the linear tetrahedral models were the only models able
to give a converged solution at high pressures, only their results can be compared.

TABLE 4.4: STATIC BURST PRESSURES

é psre [bar] |

~ Design 48

_Measured 47

N 58,7
/ 572

As can be seen both simulations overestimate the burst pressure by approximately 20%. This
discrepancy is caused by viscoelastic behaviour of both the rubber and fibres which is not accounted
for in the simulation. Tests at Taniq at extreme load rates have shown burst pressures of over 70
[bar], whereas slowly loaded prototypes with exactly the same design showed burst pressures near
the design burst pressure of 48 [bar]. By changing the load rate the burst pressure can thus be
increased by 40%. Without the material efficiency factor of 0,8 the numerical models have an
accuracy of lower than 5% with respect to the burst pressure at extreme load rates. This indicates
that for an accurate burst pressure prediction, viscoelastic material behaviour and realistic load rates
have to be included in the simulations.
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4.8 CONVERGENCE PROBLEMS

As mentioned in Section 4.7 some of the models were not able to give a converged solution. The
non-linear solution method requires the loads or deformations to be applied in multiple increments.
In each increment iterations have to be made to achieve nodal equilibrium throughout the whole
model, including the effects of the deformed geometry and non-linear material behaviour. However,
if the iterative process does not give a converged solution the simulation becomes unstable. In that
case the increment size will be decreased to find a stable solution but this is not able to surpass
inherent numerical, structural or material instabilities.

The hyperelastic and incompressible behaviour of rubber is prone to such numerical and material
instabilities, causing difficulties with convergence. In this Section causes for numerical and structural
instabilities are discussed, whereas material instabilities will be discussed in Section 5.3.

The main numerical instability of incompressible rubber is volumetric locking. As the material is
incompressible, the hydrostatic pressure becomes extremely sensitive to deformations if the rubber
material is highly constrained. E.g., as the constrained rubber is limited in its movement and it is
unable to compress, a small change in deformation can lead to a very large change in forces.
Therefore unrestricted rubber models, such as balloons, are easy to analyse whereas highly
constrained rubber structures, such as cord-reinforced rubbers, are not.

To prevent or limit numerical instabilities Abaqus gives recommendations for the types of elements
to be used. Quadratic elements are recommended if strain gradients and element distortions remain
small. For large deformations linear elements are recommended as they remain stable under large
element distortions. Furthermore the use of hexahedral elements is recommended as they do not
have the inherent volumetric locking that linear tetrahedral elements possess. [21]

Next to the numerical instabilities, structural instabilities can occur. Important structural instabilities
are buckling or collapse. Due to the flexible nature of the cord-reinforced rubber, buckling can occur
at low compressive load levels. In the case of buckling a negative stiffness occurs requiring the
structure to release strain energy to maintain equilibrium.

One approach to model such behaviour is by using dynamic solution methods that do not require
static equilibrium in each increment. However, these solution methods increase the computational
cost significantly in comparison with a standard non-linear static analysis. Another approach is to
absorb small amounts of strain energy caused by local buckling using viscous damping throughout
the model to stabilize the analysis. An intermediate approach is to perform a quasi-static analysis in
which the inertia effects of the material absorb the strain energy released in local buckling modes.

An interesting alternative for these methods is the use of the so called “modified Riks method”.
Whereas a normal (Newton-Raphson) non-linear static analysis applies a given load and determines
the displacement for that specific load, the Riks method treats the load magnitude as an unknown
variable as well. The quantity used to measure the progress of the analysis is the arc length along the
static equilibrium path. For a given arc-length along this path, both the load and displacement are
determined. This method is able to provide solutions, regardless of whether the structural response
is stable or unstable. [23]
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The difference between the Newton-Raphson and Riks non-linear solution methods is illustrated in
Figure 4.22.

Load

““““"‘ L
"

Displacement

FIGURE 4.22: NON-LINEAR ANALYSIS METHODS
1=NEWTON-RAPHSON, 2 = RIKS METHOD

4.9 MESH TRADE-OFF

In the previous Sections the importance of mesh alignment to prevent intra-ply shear locking has
been demonstrated. This limits the fibre elements to aligned triangle surface or truss elements. The
rubber can be modelled as tetrahedral elements aligned with the fibre triangle elements, or as
unaligned hexahedral elements that are connected to the fibre layers using embedded constraints.

The most important requirements for the meshes are their convergence and robustness. The
convergence of higher-order elements did not show any improvement with respect to first-order
elements. The updated-Lagrangian solution method used in AniForm, did show improved
convergence in comparison to similar Abaqus models. However, the unaligned hexahedral element
shows similar convergence and is less prone to volumetric locking. Therefore this mesh type is
chosen for future simulation as it is the most robust model and shows satisfactory convergence.

It should be noted that this mesh approach has proven to be sensitive to local buckling during lateral
deformations. Therefore a linear tetrahedral model could be used for fibre force simulations of
lateral load cases, as this mesh approach is less sensitive to local buckling and shows satisfactory
convergence of the fibre forces.
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5 RUBBER MODELLING

Expansion joints consist of two constituent materials, being the fibres and the rubber matrix. The
fibres are easily modelled using linear elasticity. The rubber on the other hand has hyperelastic and
incompressible behaviour. Therefore the modelling of rubber is typically done using continuum

mechanics based material models.

Abaqus offers a wide variety of hyperelastic material models for the rubber ranging from the basic
single-parameter Neo-Hookean model to advanced high-order Ogden models. Rubber suppliers
typically provide only a single Neo-Hookean material parameter. This most basic model is not capable
to describe the behaviour of rubber at high strain levels (>100%) and complex strain states.
Therefore this Chapter makes a comparison between the use of different rubber material models
during the modelling of expansion joints. By fitting different material models to material test data,
the advantages of using calibrated material properties and complex material models will be

investigated.

To be able to determine the parameters required for the different material models, the types of tests
and their results will be discussed in Section 5.1. Next, Section 5.2 discusses the different material
models and the method of fitting their parameters to the test data. As some hyperelastic material
models can become unstable above certain strain levels, this will be investigated in Section 5.3. The
effect of these calibrated material models on the results of the expansion joint simulations is
investigated in Section 5.4. At last, Section 5.5 concludes whether the use of calibrated complex
material models is worthwhile.

5.1 RUBBER TESTING

As this work has an application to high-performance expansion joints, the same rubber compounds
are tested as used in these expansion joints. These are Chloroprene Rubber (CR) and Styrene-
Butadiene Rubber (SBR). Next to these two types of rubber, the most common type of rubber,
Natural Rubber (NR), is tested as well to see whether this material behaves differently.

The most commonly performed experiments to characterize the tensile hyperelastic material
behaviour are uniaxial tension, equibiaxial tension and planar tension. Uniaxial tension describes a
stretch in just a single direction, equibiaxial tension a constant stretch in a plane and planar tension a
stretch in a single direction where the contraction in the width direction is restricted. These

deformation modes are shown in Figure 5.1.

FIGURE 5.1: TENSILE DEFORMATION MODES[24]
LEFT: UNIAXIAL TENSION, MIDDLE: EQUIBIAXIAL TENSION, RIGHT: PLANAR TENSION
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For an incompressible material model, the nominal stress-strain response is developed using
derivatives of the strain energy function with respect to the strain invariants. The deformation
gradient in terms of principal stretch directions is given by Equation 5.1 where the principal stretches
A; are the ratios of current length with respect to the original length in the principal directions.

A 0 0
0 0 A

Assuming incompressibility requires the volume to stay constant and thus imposes the relation
between the principal stretches shown in Equation 5.2.

11/’12/13 = 1 5.2
This incompressibility results in the stretch states for the different types of tests listed in Table 5.1.

TABLE 5.1: STRETCH STATE AT DIFFERENT TENSILE DEFORMATION MODES [24]

eforation Mode |

_ Uniaxial [ A=Ay | dy=p=2,"%
_ Equibiaxial | A =1,=25 |1;=41,"
Planar | 4 =4 | 4, =1|4;= As? |

To fully describe the behaviour of a rubber material it is desirable to perform all three of these tests.
The equibiaxial and planar tension experiments require specialized equipment that is not available.
However, due to the incompressibility of the rubber, each tensile test has an equivalent compressive
test that results in the same deformation mode. The equivalent to equibiaxial tension is uniaxial
compression, which can be performed with standard equipment.

The same deformation mode between these experiments is achieved by a superposition of a tensile
hydrostatic stress. For fully incompressible materials this superposition results in different stresses
but does not change the deformation, as illustrated in Figure 5.2.

|
A

= —_— =
P ST . e +<—~ P sewie sy = S [ e
. ’

I 7 7
Uniaxial compression Hydrostatic tension Equibiaxial tension

FIGURE 5.2: EQUIVALENT DEFORMATION MODE THROUGH SUPERPOSITION OF HYDROSTATIC STRESS [24]

The experiments that have been performed to determine the behaviour of the three types of rubber
are thus a uniaxial tension experiment and a uniaxial compressive experiment. The tensile
experiments have been performed according to the ASTM D412a standard and the compressive
experiments according to the ASTM D575 standard. For both experiments ten specimens for each
type of rubber have been moulded by an external rubber supplier.
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The averaged uniaxial stress-strain responses for the three types of rubber are shown in Figure 5.3.
This Figure confirms that the SBR and CR compounds have a similar uniaxial tensile response as
indicated by the Neo-Hookean material parameters given by the supplier. The tested NR compound
behaves a little more flexible. It should however be noted that the stiffness of a rubber can be
altered significantly by adjusting the mixture and that NR is not by definition less stiff than SBR or CR.

FIGURE 5.3: UNIAXIAL TEST RESULTS

To ensure a deformation mode similar to biaxial tension during the compressive experiment, one
adjustment has been made from the ASTM D575 standard. The ASTM standard prescribes the use of
sandpaper to prevent slipping of the specimen. As this sandpaper would restrict the lateral expansion
of the specimens, it would prevent an equibiaxial deformation mode. Therefore this sandpaper has
been replaced by lubricant to minimize friction and maximize the equibiaxially deformed region
within the specimen. Figure 5.4 shows the undeformed and deformed state of the specimens during
compression. The nearly vertical sides of the specimen in the deformed state indicate that there is a
nearly homogeneous equibiaxial deformation mode.

FIGURE 5.4: BIAXIAL TENSILE STRAIN STATE DURING UNIAXIAL COMPRESSION

Figure 5.5 shows the averaged equivalent biaxial stress-strain response of the types of rubber. It is
interesting to note that in this deformation mode the SBR acts much stiffer than the CR. This
indicates that a similar response for one deformation mode does not imply a similar behaviour for
another deformation mode.
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FIGURE 5.5: BIAXIAL TEST RESULTS

It should be noted that all rubbers behave fully elastic throughout the strain ranges shown in Figure
5.3 and Figure 5.5 and that this strain range is representative for the strains experienced in expansion
joints.

5.2 MODEL FITTING

Hyperelastic material models are described by strain energy potentials. Therefore a relation between
the nominal stress and strain according to the strain energy potential is required before material
model parameters can be determined. The strain energy potentials describe the strain energy by
means of deviatoric strain invariants. In the case of an incompressible material there are two strain
invariants that are described by their principal stretches. These are shown in Equation 5.3. [25]

1_1 = /112 +A.22 + 3.32
i 5.3
12 = /11_2 + /12_2 + 2.3_2

The relation between the strain energy potential and nominal stresses and strains are determined
using the principal of virtual work. The virtual work for uniaxial and equibiaxial deformation modes
are given in Equation 5.4, where 8U is the virtual work and T is the nominal stress.

6U = Tué‘ﬂ.u
5.4
6U = 2Tz 5
Rewriting this equation to separate the nominal stresses gives Equation 5.5.
sU 86U 6, 46U 61,
Ty=/7F=——7+——
6y 8L 6Ay 6L, 67y
5.5

_ 86U U ST, L 8u s,
B 605 6L 6As 8L, 614
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Combining Equation 5.1 with Equation 5.5 and inserting the stretches of the uniaxial and equibiaxial
deformation modes given in Table 5.1 results in the nominal stress formulation as given in Equation
5.6.

_3 sU 68U
Ty =2(1-2 )(AU +51)
’ 5.6

o (8U 68U
Ty = 2(4s = 25™") (61 25" 61)

Now the nominal stress-strain relationship for both experiments is known with respect to the strain
energy potential. Material models can be curve fitted to the test data. This is done with Abaqus
which uses a least square method to determine the material model parameters.

A wide variety of material models will be curve fitted to investigate their abilities to accurately
describe the rubber behaviour. Each material model is best fitted to a certain type of test. The simple
models are only able to describe uniaxial deformation accurately and are therefore best curve fitted
to uniaxial tension data only. If these models would be fitted towards equibiaxial data too, they
would show an overly stiff result. [21] The characteristics and strain energy potentials of the different
material models can be found in Appendix B.1.

If detailed uniaxial tensile data is available, the Marlow material is a good choice as it exactly
describes the uniaxial data and shows a reasonable accurate response in equibiaxial and planar
tension.

A 3th-order Ogden model is recommended if detailed test data is available from multiple
deformation modes. If a product is modelled that experiences significant equibiaxial or planar shear
deformation and only uniaxial tension data is available, the equibiaxial and planar tension response
can be estimated as well to allow the use of a 3th-order Ogden model. For most rubber materials the
planar and equibiaxial stresses are respectively 20 and 40% higher than the uniaxial stresses at the
same strain levels in a strain range up to 100%. [21]

In Table 5.2 an overview of the material models investigated are given, together with the data
towards which they are fitted.

TABLE 5.2: EVALUATED MATERIAL MODELS AND FITTING DATA

| Material Model | _Abbreviation | Fittedto |

Neo- Iioglgé.ET E g<_7 Ii Parameters given by manufacturer |
Neo-Hookean | NHt

Arruda-Boyce N | AB

Mooney-Rlem ‘_‘( MR | Coarse uniaxial test data
vanderWaals |  vdw |

Yeoh | v | I
Marlow N_r I s ~ Detailed uniaxial test dEEL_M‘ ol
3th order Ogd;; T ﬂOa ‘Detailed uniaxial test @cgrﬁapprommated

, | | biaxial and planarshear results
ﬁh,order Oggenh ot Detalled uniaxial and biaxial test data |
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The curve fitted parameters for all material models for SBR are shown in Table 5.3. The C and u
material properties are bulk moduli in [Pa], 1,, is the polymer locking stretch [-] and a is either the
van der Waals polymer chain interaction factor [-] (van der Waals model) or the power of the
principal stretches [-] (Ogden model). It is interesting to note that the Neo-Hookean parameter as
given by the supplier is only 3% off with respect to a curve-fitted Neo-Hookean model. The material
model parameters for CR and NR can be found in Appendix B.2.

TABLE 5.3: MATERIAL MODEL PARAMETERS FOR SBR

‘MaterlaIModeI 5
 Neo- -Hookean Given 7 ) ‘7 “ | C1o = 6,10 10° P B
‘Neo-Hookean Measured | (3 =59110° -
Arruda-Boyce | w=116105 | py=11810° |_11 =632
WooneyRivin | Go=66610° | Gy=—1a110°
vanderWaals | p=11210° [ 2,=5, 3¢ | a=360
Yeoh €= 641105 | Cyp=—587 10* | Cyo = 1,02 10*
Marlow 7 Y 77; test dzatfaf 71 D A )
Ogden,N=3 7 lc[= a= | = |@=] m= |a=
approximation | 1,2110° | 1,18 | 1,8610* | 6,91 | 6,1510° | —3,32
Ogden, N=3 M= a = Ha = az = H3 = az =
fulltests | 1,8410° | -1,27 | 94810 | 10,1 | 1,4610% | —6,51

Figure 5.6 shows the measured uniaxial stress-stretch response and that of the different curve fitted
models for SBR. As can be seen almost all models match the actual tensile behaviour quite well. The
most deviating model is the Ogden model fitted to all test data. This is due to the fact that this model
is not only fitted to the uniaxial response but to the biaxial response as well. Furthermore it can be
noted that the Mooney-Rivlin model is less stiff in compression. Since there is little compression of
the rubber in expansion joints, it is expected that this will not influence the results of the FEA
simulation.

e \leasured

Neo-Hookean

=== \|ooney-Rivlin

== Arruda-Boyce

Yeoh

Stress [MPa]

van der Waals

e \]arlow

-Ogden Approximation

= (0Ogden

1,5
Uniaxial Stretch [-]

FIGURE 5.6: UNIAXIAL STRESS-STRETCH RESPONSE SBR

38



The equibiaxial stress-stretch responses of SBR are shown in Figure 5.7. In this deformation mode the
difference between the different material models are more pronounced than in the uniaxial
deformation mode. In this case only the 3th-order Ogden model is able to describe the
measurements well as this is the only one fitted to this data. Furthermore this Figure shows the
benefits of the Yeoh and van der Waals models, as they are able to describe the typical S-shape of
the stress-stretch curve. It is interesting to note that the Ogden model based on the approximated
biaxial test data is not able to show a significant improvement with respect to the models based on
uniaxial data only. This indicates that the approximation is not valid in this case.

/ " = \easured
/ Neo-Hookean
/ 2 / ===Mooney-Rivlin

/ === Arruda-Boyce

" ' \ : Yeoh
/ \ van der Waals

-1
3 / Marlow
====0gden Approximation

-3
-4 // Ogden

0,5 1,0 1,5 2,0 2,5
Biaxial Stretch [-]

o B N W B~ U1

Stress [MPa]

FIGURE 5.7: EQUIBIAXIAL STRESS-STRECHT RESPONSE SBR

Figure 5.8 shows the planar shear response of the different material models for SBR. As there is no
test data available for this deformation mode it cannot be determined which model performs better.
Typically it can be expected that the planar shear response will be somewhere in between the
uniaxial and equibiaxial response. In that case the Ogden model based on all available test data
would be most accurate but this cannot be verified without actual test data.
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FIGURE 5.8: PLANAR STRESS-STRETCH RESPONSE SBR
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In the previous Figures the results for SBR rubber has been shown. CR and NR show the same trend
where all models describe uniaxial deformation well while the Ogden model fitted to all data is the
only model able to accurately describe the other deformation modes. The stress-stretch responses
for these materials can be found in Appendix B.3.

When the Neo-Hookean material properties as given by the supplier are compared with the actual
measured data it can be concluded that this data is only sufficient to describe the uniaxial
deformation mode. If a product has to be simulated that experiences equibiaxial and/or planar
deformation modes this single material property will not be sufficient.

5.3 STABILITY

Next to the numerical (locking) and structural (buckling) instabilities discussed in Section 4.8,
hyperelastic strain energy potentials can become unstable too. This is the case when external loading
causes non-negative work within the material (e.g. a negative stress-strain gradient). As the least-
square curve fitting procedure within Abaqus is not constrained to create unconditionally stable
material models, their stability range has to be checked. In Abaqus the stability range for the three
main deformation modes is checked by default in a stretch range from 0,1 to 10. [21]

Only two material models show instabilities, their unstable stretch ranges for the three deformation
modes are shown in Table 5.4. As can be seen, the Mooney-Rivlin material shows the smallest stable
stretch range. This corresponds with the equibiaxial stress-stretch response shown in Figure 5.7. It
should be noted that as long as the stretch levels during the analysis are within the stable stretch
range, an unstable material model will not cause issues. The maximum uniaxial stretch within an
expansion joint during its most extreme deformation is typically not higher than 2,1. Therefore it is
expected that none of the unstable material models will cause problems during the analysis. The
unstable material models for CR and NR can be found in Appendix B.4.

TABLE 5.4: UNSTABLE SBR MATERIAL MODELS

| " Stability Range Uniaxial _ Stability Range Planar Shear _Stability Range Biaxial
‘Mooney-Rivlin 0,36 <1 < 2,26[] 0,47 <A< 2,15[] 0,67 <A<1,66[]

vanderWaals 0,07 < 1< 531[] 0,19 <A <525[] 043 <1<378[]

5.4 EFFECTS ON FINITE ELEMENT ANALYSIS

The previous Sections have investigated the response and stability of different materials in the case
of a pure rubber. Although significant differences have been discovered in biaxial deformation
modes, it is unknown whether this is a dominant deformation mode within expansion joints.
Furthermore the main load carrying material in cord-reinforced rubbers is the fibre, limiting the
effect of the rubber on the total product performance. This Section investigates the effect of the use
of different material models on the total product performance.
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As Figure 4.12 has shown that the only model showing converged rubber strains is the linear
hexahedral elements in combination with embedded triangle elements, this model is used to
compare the different material models. To prevent structural instabilities, a single-layered expansion
joint is modelled, as this product has a converged solution throughout the full deformation range. To
investigate the material model behaviour both axial (+ 30 [mm]) and lateral (20 [mm]) deformations
are applied at working pressure. The load cases can be seen in Figure 5.9.

It should be noted that in addition to Chapter 4, contact constraints are taken into account. These
contact constraints represent the metallic closing flanges that are attached during testing. Apart
from a more realistic simulation, these contact constraints eliminate local buckling in the cylindrical
parts of the expansion joints in compressive load cases, resulting in a more robust analysis.

FIGURE 5.9: MAXIMUM PRINCIPAL RUBBER STRAIN CONTOUR PLOTS
TOP LEFT: UNLOADED, TOP-MIDDLE: PRESSURIZED, TOP-RIGHT: AXIAL COMPRESSION

BOTTOM LEFT: AXIAL ELONGATION, BOTTOM RIGHT: LATERAL DEFORMATION

The parameters that are compared are the axial and lateral reaction forces, the maximum fibre
forces and the maximum principal rubber strain. The results for the material models calibrated using
only uniaxial data are shown in Table 5.5. As can be seen the difference between the given Neo-
Hookean parameter and the calibrated Neo-Hookean parameter is negligible. Furthermore the
differences between all the models are rather small, except for the Arruda-Boyce model. The Arruda-
Boyce model shows significant deviations from all the other results. This is unexpected as the stress-
stretch response shown in Section 5.2 is similar to the other models. It is thus assumed that this is
due to a numerical error within Abaqus when using the Arruda-Boyce model.
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Table 5.5 also shows the standard deviation among the different material models calibrated to
uniaxial tension data (except for the Arruda-Boyce model). This indicates that the differences
between these models are negligible, except from the maximum principal rubber strain during axial
compression. This is either due to the difference in uniaxial compressive behaviour of the Mooney-
Rivlin model (Figure 5.6) and/or due to the difference in biaxial tensile behaviour of the Mooney-
Rivlin, Yeoh and Marlow models (Figure 5.7). As the axial compressive load case is generaliy not a
critical load case, and the standard deviation between the different material models is rather small,
these differences will not affect the use of the numerical analysis methods.

TABLE 5.5: REACTION FORCES, FIBRE FORCES AND RUBBER STRAINS FOR UNIAXIAL CALIBRATED MATERIAL
MODELS

Load Case

Restricted Maximum Fibre Force IN] | 143 | 143,3|143,7| 143 | 143,3
Pressurized -

) Maximum Principal Rubber Strain  [-] | 0,239 | 0,240 | 0,239 | 0,246 | 0,231

L Axial Reaction Force IN] | 12925 | 12923 | 12988 | 12770 | 12799

Eloﬁ;‘:‘tion Maximum Fibre Force [N] | 160,6 | 160,3 | 161,3 | 161,1 | 159,9

Maximum Principal Rubber Strain  [-] | 0,818 | 0,819 | 0,806 | 0,828 | 0,833

e, Axial Reaction Force [N] | -8190 | -8195 | -8279 | -8161 | -8243

B Maximum Fibre Force IN] | 121,3 | 120,0 | 119,5 | 118,1 | 1211

Compression

Maximum Principal Rubber Strain  [-] | 0,585 | 0,577 | 0,524 | 0,592 | 0,557

Axial Reaction Force IN] | 1724 | 1722 | 1724 | 1692 | 1685

Lateral Lateral Reaction Force B [N] | 6057 | 6059 | 6111 | 5973 | 5986

Deformation Maximum Fibre Force IN] | 243,3 | 243,9 | 244,5 | 242,5 | 242,2

Maximum Principal Rubber Strain  [-] | 1,076 | 1,076 | 1,059 | 1,082 | 1,090

1 Materiral Modéli 7

e Axial Reaction Force ; N | | 3647 | 3925 | 1,4
st Maximum Fibre Force IN] | 142,7 | 1435 | 1333 | 0,2
Pressurized
- B Maximum Principal Rubber Strain  [-] | 0,2281 | 0,238 | 0,295 2,3
ol Axial Reaction Force ) [N] | 12753 | 12846 | 12089 0,6
R Maximum Fibre Force IN] | 1596 | 160,5 | 147,4 | 0,8
Elongation —_— -
Maximum Principal Rubber Strain  [-] | 0,870 | 0,821 | 0,785 2,3
- Axial Reaction Force ) [N] | -7827 | -8212 -5874 1.7
At Maximum Fibre Force IN] | 1196 | 1185 | 1125 | 0,9
Compression - =
Maximum Principal Rubber Strain ~ [-] 0,635 0,571 0,210 5,4
Axial Reaction Force [N] | 1683 1701 2539 1,0
Lateral Lateral Reaction Force [N] | 5967 6022 4606 0,8
Deformation Maximum Fibre Force [N] | 241,6 | 2433 | 2159 0,4
Maximum Principal Rubber Strain  [-] | 1,115 | 1,075 | 0,916 1,5
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The fully calibrated 3th order Ogden model is compared with the given Neo-Hookean material model
in Table 5.6. Again, the maximum fibre forces only show a negligible difference. However, a clear
deviation in the reaction forces can be seen. With the fully calibrated model, the expansion joint
behaves up to 10% stiffer than the given material model. An even larger difference can be seen in the
maximum principal rubber strains. This indicates that the biaxial and planar tension deformation
modes are present in the expansion joint and have a significant influence on the reaction forces and
rubber strains. It should however be noted that the given material model overestimates the
maximum rubber strains in each deformation mode. Therefore, this simple model provides a
conservative approximation.

TABLE 5.6: COMPARISON BETWEEN THE GIVEN AND FULLY CALIBRATED MATERIAL MODEL

Axial Reaction Force 7 [N] 3632 39.;:O &2
Restricted Pressurized 77|§/I;>(1|7mum Fibre Force N;[Nli 143 1421% 7 7 70?6 =1
P Max]rﬁu;r{ Prmmb%TR;dbb; Str’;ir—li -1 9,239 76,1?)8' : -1?‘
- : ;&);lz;l Reaction Force ) TN] 712¢925 13j969 » 71% 7
Axial Elongation 7 Ma);ﬁ;;um Fibre Force N ilﬁ[)lgAiESZ,? rlTl .
L MaX|mLIr‘r(1 PrlﬁaBaTRubber StramﬁT]AOi,giSV :0,%397 —9::6 =
- S Axial Reaction Force  [N]|-8190 :833:(-)— vf" fl,izi—
Axial Compression - MaX|mum Fibre Force [N] TZI,3 11(9:1 -1,8
| Maximum Principal Rubber Strain [-] | 0,585 | 0,486 ~ -16.9 N
— .uirdiér___Amal Reaction Force ~[N] ‘7192747 1908 10,7
. o Lateral Reaction Force ~IN]| 6057 | 6659 95
Lateral Deformation —— .
MaxumurnFErE Force [N]| 243,3 | 249,6 2.6 )
- - m@zﬁfhclpal Rubber Straln [1]1076|0,9% |  -80 ; -

The axial stiffness response of the expansion joint using different material models is shown in Figure
5.10. This Figure confirms that the difference between the uniaxial calibrated material models is
insignificant and that the fully calibrated Ogden model behaves slightly stiffer than the other models.
Furthermore it shows the erroneous results of the Arruda-Boyce model, as it should predict a smooth
load-displacement curve throughout the entire deformation range.
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FIGURE 5.10: AXIAL LOAD DISPLACEMENT OF DIFFERENT MATERIAL MODELS
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The lateral stiffness response is shown in Figure 5.11. Again the difference between the uniaxial
calibrated models is insignificant. The difference between the fully calibrated Ogden model and the
others is more significant during lateral deformation than during axial deformation. This indicates
that during this load case, biaxial and planar tension modes are more influential than during axial
load cases. The Arruda-Boyce model shows a large deviation with respect to the other models. The
cause of this deviation remains unclear, as the stress-stretch response of this model is similar to that
of the other models
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FIGURE 5.11: LATERAL LOAD DISPLACEMENT OF DIFFERENT MATERIAL MODELS

5.5 CONCLUSION

The previous Sections have shown that the material parameter given by the material supplier is not
able to accurately model the rubber response in biaxial or planar tensile deformation modes.
Different material models that are calibrated using only tensile data show little improvement in these
deformation modes. The effect of these deformation modes on the analysis results is however
limited. The maximum fibre forces are nearly independent of the material model used. Therefore the
most basic material model is able to accurately predict fibre failure modes.

A larger difference is visible in the reaction forces and rubber strains. However, the stiffness
response of an expansion joint is not an important design driver. Furthermore the most basic
material model overestimates the rubber strains, making it a conservative approximation for
expansion joints. It can thus be argued whether the improvements that can be achieved by using a
fully calibrated advanced material models, are worth the additional testing efforts.

It should be noted that the influence of biaxial and planar tensile deformation modes might be more
significant when modelling multi-layered expansion joints with interlaminar strains. As the fully
calibrated material model parameters are known anyway, these will be used in the remainder of this
research. The exact material model parameters of these models are given in Table 5.7.

TABLE 5.7: PARAMETERS OF THE 3™ ORDER OGDEN MATERIAL MODEL

Parameters

,,,,,, | =1,8410° | ay = ~1,27 | u, = 948102 | @, = 10,1 | 3 = 1,46 10° | @3 = —6,51
,,,,,I,uf,161106| , =025 | pp = 52810° | ay = 8,16 | s = 9,3210* | a3 =584
NR |,£!1,=154106|0f1—-088|uz—107103| @, =998 | py = 53510* | a3 =—657
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6 FAILURE MODES

So far the numerical analysis method and the influence of the material parameters on this analysis
have been investigated. To relate the results of these numerical analyses to actual product
performance, the dominant failure modes of the products have to be determined. In this Chapter
these failure modes are investigated and related to fracture mechanics of both the fibres and the
rubber. Fracture mechanics will be used to establish the critical parameters that determine the
products performance.

There are both static and dynamic failure mechanism that are dependent on the material used and
the load cases. Whereas a static analysis (fibre burst) is relatively simple, an accurate quantitative
dynamic analysis of cord-reinforced rubber is very complex. It would require viscoelastic effects
(Mullins Effect, Elastic Hysteresis) as well as detailed load rates to be incorporated in the analysis. As
these parameters are difficult to obtain without lengthy testing programs, it is chosen to relate the
dynamic failure mechanisms on the basis of qualitative reasoning. By determining force and strain
amplitudes of various designs, their dynamic performance can be compared without requiring an
exact quantitative prediction.

In consultation with the experience available at Taniqg, the performance of expansion joints and cord-
reinforced rubbers in general, has been traced back to four predominant failure mechanisms. Section
6.1 discusses the failure mechanism of rubber cracking, which is the only failure mode related to
rubber. The most important static and dynamic failure mode is burst failure caused by fibre breakage
and will be discussed in Section 6.2. An important dynamic failure mechanism for Aramid fibres in
lateral load cases is fibre compression. This failure mechanism will be investigated in Section 6.3. At
last fibre abrasion due to fibre shearing within the product will be discussed in Section 6.4.

6.1 RUBBER CRACKING

Rubber cracking is the only rubber related failure mode. Rubber cracking is typically a dynamic failure
mode that is highly compound specific. The critical region for rubber cracking in expansion joints is
the connection of the cylindrical part with the flanges. A typical rubber crack at this location can be
seen in Figure 6.1. These rubber cracks initiate at the top of the expansion joint during cyclic lateral
deformation of the joint and grow along the full circumference. Although these cracks of the outer
rubber are not critical for the performance of the expansion joint, they are inadmissible for the
customers.

FIGURE 6.1: RUBBER TEARING FAILURE[26]
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Cord-reinforced rubber failure typically initiates at the rubber-fibre interface, either perpendicular to
the fibre direction or along the rubber-fibre interface. Numerical simulation of the fatigue life of
cord-reinforced rubbers is based on J-Integrals determining strain-energy release rates and crack
growth on a micromechanical level. [27]

Dynamic failure behaviour of cord-reinforced rubbers is dependent on a large variety of parameters,
the most important are;

e Internal geometry

e  Rubber Compound

e Degree of Anisotropy (Stiffness Ratio between the Fibre and Rubber)
e Rubber-Fibre Bonding

e 3D-strain states

e load rates

The exact internal geometry of a product is required to determine the initial flaw geometry initiating
the rubber crack. This initial flaw geometry is the determining factor in the nucleation of cracks in
rubber. As the majority of the fatigue life of rubber consists of this crack initiation phase, knowledge
about the exact internal geometry is vital for an accurate fatigue life prediction.[28] The exact
geometry of the fibres within the rubber is however unknown due to fibre build-up and fibres
flowing through the rubber during vulcanization. The internal geometry of an expansion joint is
shown in Figure 6.2. As can be seen the exact distribution of the fibres throughout the expansion
joint varies and is thus not sufficient for a detailed simulation of the fatigue life.

FIGURE 6.2: FIBRE DISTRIBUTION NEAR THE FLANGES OF AN EXPANSION JOINT

Whereas a detailed fatigue life analysis is impossible with the limited knowledge of the exact fibre
geometry, the global models developed in this research are suitable for the prediction of critical
regions within the expansion joints for rubber cracking. [27] Uniaxial tests of cord-reinforced rubber
have shown reasonable agreement with Strain-Life curves and have shown an infinite fatigue life
below a certain strain threshold. [29] Extending these uniaxial tests to complex 3D-load cases has
indicated that the plane of maximum normal strain gives a good prediction of the direction of crack
growth. [30] The global models developed in this research can thus be used to indicate the critical
regions within the products. Furthermore the strains among different designs can be compared, as a
lower peak strain will result in a better fatigue life.
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6.2 FIBRE BURST FAILURE

The most important failure mode of expansion joints is fibre burst failure. During static testing this is
the dominant failure mode. A single fractured fibre instigates a chain reaction of adjacent fibres
breaking and the rubber tearing, causing complete failure of the expansion joint. A typical fibre burst
failure is shown in Figure 6.3. It clearly shows one main crack perpendicular to one of the two fibre

directions and smaller bifurcations in the other fibre direction.

FIGURE 6.3: FIBRE BURST FAILURE

Static burst pressures are typically close to their designed failure pressures, regardless of the fibre
type. The fibre fracture surface is however different for each material. Tensile failure of highly
oriented chain-extended polymer fibres such as Aramid is caused by axial split breaks, showing
frayed fibre ends. Melt-spun synthetic fibres such as Nylon or Polyester show ductile failure and
blunt fibre ends. [14] These can be seen in Figure 6.4.

FIGURE 6.4: FIBRE FRACTURES [31]
LEFT: AXIAL SPLIT BREAKS IN ARAMID FIBRE
MIDDLE: DUCTILE CRACK PROPAGATION IN NYLON FIBRE, RIGHT: DUCTILE FRACTURE OF NYLON FIBRE

47



The cause for this different behaviour is due to the internal molecular structure of the different
fibres. The highly-oriented aramid fibres have strong covalent bonds in their axial direction, but rely
on weaker van der Waals forces and hydrogen bonds for their transverse properties. Therefore they
are more prone to show cracks in the axial directions (axial split breaks). These axial split breaks
propagate through the length of a fibre up to the end of the molecular chains where they are able to
propagate in the transverse direction, as illustrated in Figure 6.5. If such a crack propagates through
the width, the fibre fails and shows its characteristic frayed fracture surface.

Crack propagation path

FIGURE 6.5: CRACK PROPAGATION PATH IN ARAMID FIBRES [31]

Melt-spun synthetic fibres such as Nylon are less oriented than Aramid fibres. Therefore they show
less anisotropy and have better properties in their transverse direction. Due to their molecular
structure these fibres allow some ductility as well, which shows in their fibre ends.

The tensile fatigue properties of Aramid fibres are excellent, as they show little degradation at load
levels close to its tensile breaking strength. Nylon on the other hand experiences some weakening
due to cyclic tensile loading. This is due to inherent defects that initiate crack growth in its transverse
direction. The extent of fatigue degradation of Nylon fibres depends on the exact fibre type. [31]

In general the maximum fibre force during different load cases is the most important parameter for
the performance of an expansion joint. The maximum fibre force determines the burst-pressure
which is the most important performance measure of cord-reinforced rubber products.
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6.3 FIBRE COMPRESSION

As most load cases for cord-reinforced rubbers cause pure tensile fibre loading, the previous Section
was concerned with static and dynamic tension-tension failure of the fibres. Lateral loading on the
other hand can cause fibre compression in the bellow of expansion joints. Depending on the fibre
type, compressive fibre stresses can be detrimental to the overall product performance.

Due to the poor properties in the transverse direction of Aramid fibres, they offer little resistance to
micromechanical buckling when loaded in compression. This micromechanical buckling is also known
as kink band formation and is shown in Figure 6.6. These kink bands initiate axial split breaks at very
low compressive strain levels. Furthermore the axial split break growth during repetitive compressive
loading is much quicker than during pure tensile loading. Therefore the tension-compression fatigue
performance of Aramid is poor, especially in comparison with their excellent tension-tension fatigue
properties. As Nylon fibres have good properties in their transverse direction, they are less prone to
kink band formation and show excellent tension-compression fatigue properties.

nﬁit}'{' SEr e R e f P e Ay 1 , 1 AN teed B TR TRpp
Fl s 2 IN\Y SRt ':.m‘\fﬂ‘v‘:}l-v YL AT N 2t SRR LR B oo
e Al

"} & Lida '+ .7 v T v ¥ SRR AT o
e e s are i e & N 0.3 %
%
1.5 %

S RSNl | SRR, R 2.5 %

3.7 %

FIGURE 6.6: FORMATION OF KINK BANDS DURING PURE AXIAL COMPRESSION IN ARAMID FIBRES [32]

Cyclic lateral deformation is one of the most stringent requirements for high-performance expansion
joints. Dynamic lateral testing has shown extreme degradation of the burst-pressure. The lateral
deformation cycles cause large stress amplitudes that can extend into compressive fibre forces. To
investigate the fibre load distribution during lateral deformation, an Aramid design without local
reinforcements has been simulated at working pressure (16 [bar]), test pressure (3 [bar]) and an
intermediate pressure (10 [bar]). The minimum, maximum and average forces in the fibres at the
centre of the bellow as a function of the lateral deformation are shown in Figure 6.7.
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FIGURE 6.7: CENTRAL BELLOW FIBRE FORCES DURING LATERAL DEFORMATION, UNREINFORCED ARAMID

As can be seen the average fibre forces in the centre of the bellow remain approximately constant,
regardless of the lateral deformation. The minimum fibre force shows a linear decrease with respect
to the lateral deformation whereas the maximum fibre force shows a linear increase. This indicates
that a significant part of the lateral deflection is absorbed by shear deformation of the bellow. The
filament wound angle-ply fibre layers experiences compressive forces in one fibre direction and
tensile forces in the other, in addition to the tensile fibres caused by the pressure.

Next to the shear deformation in the bellow, bending of the cylindrical parts of the expansion joint
absorbs part of the lateral deformation as well. To investigate the effects of the bending stiffness of
the cylindrical part on the bellow fibre force distribution, a design with local reinforcement on the
cylindrical part is simulated. The results of this Nylon prototype are shown in Figure 6.8.

In comparison with the unreinforced prototype this design shows compressive fibre forces at lower
levels of lateral deformation. The local reinforcement increases the bending stiffness of the
cylindrical part. Therefore this section is less able to absorb the lateral deformation by bending,
causing higher shear loads in the bellow.
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FIGURE 6.8: CENTRAL BELLOW FIBRE FORCES DURING LATERAL DEFORMATION, REINFORCED NYLON
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The regions with compressive forces during lateral deformation in one direction are shown in Figure
6.9. Next to the compressive forces, the fibres in the cylindrical region experience compression as
well. These compressive forces are less critical for the product performance as their maximum tensile
forces during a lateral cycle remain rather low. The fibres on the middle of the bellow are critical as
they experience the largest stress amplitude during a full lateral cycle. A lateral cycle goes up and
down in both directions, causing the sides of the bellow to experience the minimum fibre force at
one end and the maximum at the other. This has been confirmed during testing, as the location of
failure during lateral fatigue testing has been consistently on the side of the bellow.

FIGURE 6.9: COMPRESSIVE REGIONS DURING LATERAL DEFORMATION AT 16 [BAR]

One of the difficulties when simulating lateral deformation is buckling of the bellow. The compressive
fibre forces cause this structural instability that cannot be simulated using conventional solution
methods. The linear decrease of the minimum fibre stresses during lateral deformation can however
be used to predict the lateral deformation at which the forces become negative without actually
modelling such a large unstable lateral deformation. To verify this assumption linear trend lines are
determined for the minimum fibre forces as a function of the lateral deformation for the two
different simulations at all pressures.

The slope and coefficient of determination of these trend lines are shown in Table 6.1. The linear
approximation of the minimum fibre force response is valid, as the coefficients of determination are
close to unity. The slopes at different pressures vary and are thus not interchangeable. Therefore if a
prediction has to be made of the lateral deformation until compression at a given pressure level, the
average force at that pressure level has to be determined and the slope of minimum fibre force at
that pressure level up till a moderate lateral deformation. This slope can then be extrapolated to
determine the lateral deformation where fibre compression initiates.
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TABLE 6.1: LATERAL FIBRE FORCE EFFECT AND COEFFICIENT OF DETERMINATION

_Design | Pressure [bar] | dFF/dz [N/mm] | R*[]

3 3,08 0,9991

Unreinforced Aramid 10 4,49 0,9977
16 5,38 0,9981

3 2,76 0,9981

Reinforced Nylon 10 3,02 0,9987
16 2,66 0,9949

It should be noted that among the types of fibres used for expansion joints, only Aramid fibres
experience deterioration due to compressive fibre forces. Therefore this failure mode is only critical
for this fibre type.

6.4 FIBRE FRETTING

Another dynamic effect that influences the fatigue performance is fibre fretting. This is caused by
abrasion of fibres running along each other. The dry winding used by Taniq causes the fibres to be in
direct contact with each other without any protective resin layer in between. Furthermore the fibre
shearing during the large deformations causes significant movement between the fibres in contact.

Both Nylon and Aramid fibres experience significant fibre fretting. Due to the brittle nature of Aramid
it is more sensitive to abrasion. Figure 6.10 shows abrasion of an aramid fibre that has been in
contact with a rotating metallic pin. The cyclic shearing of fibres repeatedly scrapes of some of the
fibre material, gradually reducing the cross sectional area and its strength.

FIGURE 6.10: ABRASION OF AN ARAMID FIBRE [31]

As the through-thickness compressive stresses in cord-reinforced rubbers are low, this failure mode
in itself is unlikely to cause failure of an entire expansion joint. However, it does add up to the other
failure modes, contributing to a dynamic decrease in strength. Therefore the shear angle during
deformation is an interesting parameter to keep track when comparing different designs.
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7 PARAMETRIC STUDY

The purpose of the structural analysis methods investigated in the previous Chapters is to facilitate a
more efficient design process of cord-reinforced rubber products. To validate the usability of the
structural analysis method, a parametric study will be performed on an expansion joint. This
parametric study will show the effect of different design parameters on the stress distribution and
structural performance of the expansion joint. Furthermore these results can be used to determine
an optimal expansion joint design.

For an efficient parametric study, Design of Experiments (DOE) is applied. Design of Experiments
comprises of a set of statistical tools that enables statistically valid conclusion for a large design
population with as little experiments as possible. In this Chapter this method is used to investigate
the effects and interaction effects of multiple parameters with a limited number of numerical
experiments.

To facilitate a parametric study it is important to determine all significant and modifiable design
parameters. These are listed in Section 7.1, as well as their corresponding range of values. Section 7.2
discusses the actual design of the experiments and gives an overview of the experiments to be
performed. The performance measures used to analyse the numerical experiments are related to the
failure modes discussed in Chapter 6 and are given in Section 7.3. The results of the numerical
experiments are shown in Section 7.4. These results are used to determine the significant design
parameters for the different performance measures. Furthermore the effects of the different
parameters on the stress and strain distribution will be discussed. In Section 7.5, DOE is used to
determine an optimal expansion joint design that satisfies all manufacturing constraints. As DOE is
unable to include the continuous non-linear effect of the length of the reinforcement layer, the
optimal reinforcement length is determined separately in Section 7.6. This optimal design is validated
by static and dynamic testing in Section 7.7. At last Section 7.8 gives some recommendations and
design rules for future expansion joint developments.

7.1 PARAMETERS

An important part of a parametric study and a design of experiments is to determine which
parameters are of importance and which of those can be influenced. In this parametric study an
ID100 expansion joint is investigated (inner @ = 100 [mm]). Such a small size is generally made using
just a single main fibre layer, as this results in the shortest production times. Therefore the number
of main fibre layers is not a design parameter as it would be for larger sizes. In consultation with
Taniq the remaining significant design parameters have been determined. These are shown in Table
7.1.

TABLE 7.1: EXPANSION JOINT DESIGN PARAMETERS

~ Parameters
Fibre Materlal Upper Reinforcement
* Bellow Shape : Upper Relnforcem(e)rnilgnéth
~ Bridgng  LowerReinforcement
RubberType o Lower Remfo_rze;nent Length
- Reﬁarcement Angle
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The most important design parameter is the fibre material. Taniq has used a variety of fibre materials
with different stiffness’s and breaking strengths. Another important design parameter is the bellow
shape. Optimal (isotensoid geodesic) winding is ensured when using a Corpo bellow as described in
Section 3.3. However, some customers prefer other bellow shapes to increase the flexibility of the
expansion joint. Where the bellow shape defines the winding angle on the bellow, the winding angle
on the cylindrical region is controlled using fibre steering to satisfy the winding criteria for the
flanges. As described in Section 3.2 the fibre angle in this cylindrical section can be adjusted using the
bridging manufacturing method. Therefore the winding angles in the cylindrical regions are an
important design parameter as well.

Next to the main fibre layer, local reinforcements are often applied to limit the elongation of the
cylindrical regions and the corresponding high rubber strains. Either no reinforcement,
reinforcement at the top or the bottom, or both reinforcement at the top and the bottom are used.
Furthermore the length and fibre angle of both of these reinforcements can be varied. As proven in
Section 6.3, these reinforcements have a significant influence and are therefore important design
parameters.

The last design parameter that can be influenced is the type of rubber applied. This is usually
stipulated by the customer for the desired level of chemical resistance on both the in- and outside of
the product. However, the flexibility and dynamic performance of the rubbers can be significantly
adjusted by using different compounds. This can be beneficial to increase the rubber tearing
performance of an expansion joint.

Most of the design parameters are discrete. The only continuous variable parameters are the length
of the upper and lower reinforcement layers. Therefore it is chosen to perform a conventional 2-level
Design of Experiments. This requires a low and a high level for each parameter. These are listed in
Table 7.2.

TABLE 7.2: DESIGN PARAMETER LEVELS

| Parameter Low Level Levl

Fibréj\/ﬁla@erial 7 ; Sy Nylon  Aramid
Bélqrvi\)Shape:W”'W - o 7I;beqr!o‘pliic; i Cﬁérpo'
Bridging ~ No  Yes
RubberType  SBR  CR
Upper ﬁéiﬁfofcement ; - 3 No  Yes
Uppeir RgirnforiciéirﬁéhitiLep;gitih [mrmj]' 20 o 40
Lower Reinforcement  No  Yes
Lower Reinforcement Length [mm] 25 50
ReinforcementAngle  [] 0 45
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The fibre materials that are investigated during this parametric study are Nylon and Aramid. These
are the main fibre types used by Tanig. Aramid is a much stronger and stiffer fibre than Nylon
requiring approximately half the amount of fibres to achieve the same burst pressure. The
compressive performance of Aramid is however very poor, making it less suitable for lateral load
cases. Both of the fibres used are treated with a rubber coating to improve rubber fibre bonding. The
fibre supplier provides detailed test data for each batch of fibres, which are shown in Table 7.3. The
numbers of fibres shown are the number of fibres required for a design burst pressure of 48 [bar] of
an ID100 expansion joint.

TABLE 7.3: FIBRE PROPERTIES [33, 34]

Srength Poisson’s Ratio " Number of

A H e ImalE S UFibres o oy

CAramid 51,7 617 0,36 0279 248

Figure 7.1 shows the profile of representative designs for both a Corpo and Hyperbolic bellow. The
required height and length are typically given by the customer, limiting the design freedom of the
bellow shapes. In general hyperbolic bellows are more flexible, but they do not allow isotensoid fibre
paths.
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FIGURE 7.1: BELLOW SHAPES

The bridging and conventional winding paths corresponding with the given bellow shapes are given
in Figure 7.2. For a conventional winding path the winding angle next to the flange has to be 86°,
whereas the bridging manufacturing method allows for an angle of 78°. In the case that the fibre
angle at the end of the bellow does not reach these angles, the minimum amount of friction is
applied to reach the required winding angle next to the flange.

The local reinforcement material that is used is provided by the customer and can therefore not be
adjusted. The local reinforcements are applied in the form of Nylon-Rubber prepregs, either
unidirectional or angle-ply woven prepregs. These angle-ply prepregs are applied as #45°
reinforcements, whereas the unidirectional layers are applied as a single 0° layer. The properties of
the prepregs are given in Table 7.4.
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FIGURE 7.2: FIBRE ANGLES

Typically a full layer of upper and lower reinforcement is respectively 40 and 50 [mm] long along the
profile path. To improve the lateral flexibility of the expansion joint, these layers can be shortened.
For this parametric study it is chosen to take half of the full length as the low level. This allows
expansion joints with both no, half and full upper and/or lower reinforcement to be included in the
Design of Experiments.

TABLE 7.4: LOCAL REINFORCEMENT PROPERTIES [35]

| Youngs Modulus [GPa] _Poisson's Ratio -] _Area [mm’] _Spacing [mm]

1,388

0 0% GBS

The last design parameter is the type of rubber. For chemical resistance CR and/or SBR are used for
high performance expansion joints. For this parametric study it is chosen to investigate either fully CR
or fully SBR expansion joints. Their calibrated properties and the respective material model used are
given in Table 5.7. It should be noted that the stress-strain response of both rubbers in uniaxial
tension is very similar, but they do show a different response in biaxial tension. This parametric study
will show whether this difference has a significant effect on product performance.

7.2 DESIGN OF EXPERIMENTS

Now all the parameters and their corresponding levels are known, a Design of Experiments can be
made. To determine all main and interaction effects, a full factorial design with a total of 272
experiments would be required. To limit this number of experiments, a fractional factorial design is
used. This assumes that some interaction effects are not important, allowing the main effects and
important 2" order interaction effects to be studied with as little experiments as possible.[36]

For this parametric study it has been chosen to perform a 1/16" fractional factorial design. This limits
the number of experiments to 32. This gives a resolution IV Design which indicates that no main
effects are confounded with any other effects, but some two-factor interactions are confounded with
each other. Confounding is the combining of the influence of certain effects on the measurement by
which their effects cannot be estimated independently.
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Commercial statistics software called Minitab is used to construct the Design of Experiments. When
designing a fractional factorial design, this software allows the user to indicate the important two-
factor interaction effects that should not be confounded. From there on the software constructs the
design of experiments, indicating which designs have to be tested. An overview of the designs to be
analysed for this parametric study is given in Table 7.5. The confounded interaction effects of this
design of experiments are listed in Appendix C.1.

TABLE 7.5: EXPERIMENTAL OVERVIEW

Lower
Fibres Bellow Bridging Rubber  Reinforcement  Reinforcement

Upbér

Reinforcement

B e Ll 3
1 Nylon Hyperbolic Yes SBR 40 +45
2 Aramid Hyperbolic Yes  SBR 20 0
3 Nylon Corpo Yes SBR
4  Aramid Corpo Yes SBR ]
5 Nylon  Hyperbolic No SBR 7

6 Aramid Hyperbolic No SBR

| 7 Nylon Corpo No SBR 20 +45
8  Aramid Corpo No SBR 40 0
9 Nylon  Hyperbolic Yes CR
10 Aramid Hyperbolic Yes CR
11 Nylon Corpo Yes CR 40 0

| 12 Aramid Corpo Yes CR 20 +45
13 Nylon  Hyperbolic No CR 20 0
14 Aramid Hyperbolic No CR 40 45
15  Nylon Corpo No CR
16  Aramid Corpo No CR

| 17 Nylon  Hyperbolic Yes SBR 25 0
18 Aramid Hyperbolic Yes SBR 50 45
19 Nylon Corpo Yes SBR 25 40 145
20 Aramid Corpo Yes SBR 50 20 0
21 Nylon  Hyperbolic No SBR 50 20 +45
22 Aramid Hyperbolic No SBR 25 40 0

| 23 Nylon Corpo No SBR 50 0
24 Aramid  Corpo No SBR 25 +45

25 Nylon  Hyperbolic Yes CR 50 40 0
26  Aramid Hyperbolic Yes CR 25 20 +45
27 Nylon Corpo Yes CR 50 +45
28  Aramid Corpo Yes CR 25 0
29 Nylon  Hyperbolic No CR 25 +45
30 Aramid Hyperbolic No CR 50 0
31 Nylon Corpo No CR 25 20 0
32  Aramid Corpo No CR 50 40 +45
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7.3 PERFORMANCE

To determine the effects of the parameters on product performance, performance measures have to
be determined. The performance measures are related to the failure modes given in Chapter 6 and
are listed in Table 7.6. It should be noted that al load cases are simulated at the working pressure of
16 [bar].

TABLE 7.6: EXPANSION JOINT PERFORMANCE MEASURES

Mz’a‘ximun’liRub’ber gzrqin | E:rilbéddég Model 3&)? [m;ni]r 7 eilci)jrl'gg;cion
o Embedded Model |—————reotricted
Maximum Fibre Force |30 _[rrnrm] 7e;lgnrgat|on

Tetrahedral Model | 5 [mm] lateral
 Lateral Deformation | _ |
_Until Compressive Fibres | o 7 ey
Maximum Fibre§h¢arﬁqgle Embedded Model 30 [mm] elongation

Tetrahedral Model | 5 [mm] lateral

For the rubber performance the maximum principal rubber strain is evaluated in the elongated
pressurized load case. This deformation mode is known to give one of the highest rubber strains
throughout the specified deformation range of the expansion joint. The maximum fibre forces are
measured for both the restricted, elongated and lateral deformation modes to give an indication of
the static performance of the expansion joint throughout its deformation range. For a fair
comparison between different fibre types, the fibre force relative to its breaking strength is
measured.

As was indicated in Section 6.3, fibre compression is detrimental for lateral dynamic performance of
Aramid expansion joints. Therefore a prediction is made of the lateral deformation at which the
fibres on the bellow become compressive. This is done by linear extrapolation of the decrease in
fibre forces on the middle of the bellow up to 5 [mm] of lateral deformation. As this relationship is
nearly linear (as indicated in Table 6.1), this is a valid estimation.

To investigate the effect of fibre fretting, the maximum shear angle of the main fibre layer is
measured. As fibre shearing is most extreme during axial elongation, it is only measured for this
deformation mode.

It should be noted that wherever possible, a model with linear hexahedral elements for the rubber
and embedded linear triangle fibre elements is used. For the lateral load case, the linear tetrahedral
rubber elements aligned with the linear triangle fibre elements is more robust. This model has
proven to deliver accurate and converged fibre stresses, and is therefore used to determine fibre
forces during lateral deformation. To enable a fair comparison between all designs, a lateral
deformation of just 5 [mm] is simulated, as this provides a converged solution for each design.

Table 7.7 shows the simulated results for all the designs. In this table the actual maximum fibre force
is shown instead of the fibre force relative to the breaking strength, as this gives a better overview of
the differences between the various load cases.
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TABLE 7.7: EXPERIMENTAL RESULTS

0,49 71 99 75 15,0 -14,3

1
2 0,56 147 244 167 7,1 -16,2
3 0,60 63 75 70 37,4 -9,5
4 0,68 139 214 142 27,4 -11,4
5 0,98 71 78 63 20,7 -12,2
6 0,85 148 179 136 11,9 -13,2
7 0,83 69 91 74 27,2 -9,6
8 0,34 152 323 170 10,7 -16,0
9 0,65 71 98 70 26,7 -11,4
10 059 149 187 141 12,1 -12,0
1 0,78 69 129 78 B 21,2 -14,3
12 0,70 148 280 157 153 -10,7
13 0,82 71 94 70 16,7 -12,8
14 0,44 159 198 171 6,3 -15,5
15 0,76 68 75 71 40,3 -9,7
16 0,88 139 183 138 34,1 -11,5
17 0,60 70 100 74 14,2 -13,7
18 0,44 167 210 192 5,2 -15,8
19 0,49 68 96 80 16,9 -12,3
20 0,43 153 314 208 6,0 -17,6
21 0,52 66 97 77 10,1 -15,8
22 0,65 225 353 200 13,7 -20,8
23 0,59 68 130 82 16,0 15,9
24 0,37 140 223 177 9,8 -11,7
25 0,93 87 139 73 13,0 -19,9
26 0,44 146 209 184 6,0 -16,1
27 0,29 64 99 83 16,1 -11,8
28 0,45 150 282 182 9,0 -13,8
29 0,64 71 93 70 13,9 -12,5
30 0,53 209 345 184 5,1 -20,1
31 0,77 103 138 79 18,4 -11,0
32 0,81 138 298 197 6,8 -14,0

During the analysis of the results some interesting phenomena have been observed apart from the
parametric effects that will be discussed in the following Section. First of all the location of the
maximum rubber strain is dependent on the bellow shape. For the hyperbolic bellow this location is
on the inside of the middle of the bellow as the hyperbolic shape flexes outwards, as can be seen in
Figure 7.3. For the Corpo bellow the location of maximum strain is either at the end of the
reinforcement or, if no reinforcement is present, at the flange boundary. These locations show stress
concentrations that translate to high rubber strains.
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FIGURE 7.3: NOMINAL STRAIN CONTOUR PLOT ON ORIGINAL AND PRESSURIZED GEOMETRY
TOP: CORPO BELLOW, BOTTOM: HYPERBOLIC BELLOW

When looking at the fibre forces, the maximum fibre force for the hyperbolic bellow is approximately
on a quarter of the bellow. This is due to the curvature caused by the outward flexing of the bellow
when pressurized, resulting in non-optimal fibre directions at the given location on the bellow and
thus higher fibre forces. In an unreinforced Corpo bellow the forces throughout the majority of the
bellow are evenly distributed. However, when reinforcement layers are present these induce stress
concentrations causing the maximum fibre force to be located at the end of the reinforcement.

Considering the deformation until fibre compression, Nylon performs significantly better than
Aramid. This is due to the fact that the higher stiffness of the Aramid causes a higher bending
stiffness of the cylindrical region, requiring the lateral deformation to be absorbed by shearing of the
bellow. Therefore the poor performance of Aramid fibres in compression in combination with the
low levels of deformation before compression occurs accumulates to a poor dynamic lateral
performance of these expansion joints. Nylon performs much better, as it is better able to handle
compression and only shows compression at high levels of lateral deformation.

With respect to fibre shearing, hyperbolic bellows show somewhat higher shear angles than Corpo
bellows. This is again caused by the flexing of the bellow and the less optimal fibre angles. The
position of maximum fibre shear is at the top of the bellow for both bellow types.

7.4 PARAMETER EFFECTS

To investigate the main and interaction effects, Pareto charts are made for each performance
measure. A Pareto chart shows the sorted absolute values of the effects. Furthermore it indicates a
reference line indicating the level above which an effect becomes significant. The Pareto charts are
calculated using the same Minitab software that was used to create the Design of Experiments with a
reference line indicating a 5% significance.

Figure 7.4 shows the Pareto chart for the rubber strain. As can be seen the most important main
effects are the presence of upper reinforcement, bridging and fibre material. The most important
sensible interaction effects are those of upper and lower reinforcement, and material and
reinforcement angle.
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Upper reinforcement, or any combination of upper and lower reinforcement, causes stress
concentrations, explaining the significance of its effects on the rubber strain. The same holds for
material type and reinforcement angle, as the stiffness of Aramid fibres matches well with the 0°
Nylon reinforcement, whereas the lower stiffness of the Nylon fibres matches better with a +45°
Nylon reinforcement layer. Bridging on the other hand influences the axial elongation of the
cylindrical section, limiting the rubber strains in this region. Furthermore the fibre material has a
significant effect, as the stiffer Aramid fibres will result in smaller deformations throughout the
whole expansion joint, limiting the average rubber strains.
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FIGURE 7.4: MAXIMUM RUBBER STRAIN PARETO CHART

The Pareto chart for the maximum fibre force during restricted pressurization is shown in Figure 7.5.
The most important main effects are the fibre material, reinforcement angle, upper reinforcement
and bellow shape. The most important interaction effects are the upper reinforcement and
reinforcement angle, and bridging and reinforcement angle.

The effect of fibre material is caused by the fibre stiffness, as the Nylon fibres are more flexible such
expansion joints expand more during restricted pressurization. Therefore the deformed internal
surface on which the pressure is exerted becomes larger than is the case with Aramid fibres, causing
a slight increase in relative fibre forces. The effect of the reinforcement angle, upper reinforcement
and interaction of upper reinforcement and reinforcement angle on the maximum fibre forces is due
to the stress concentrations that they cause. The effect of the bellow shape on the fibre forces was
already indicated in the previous Section and is due to the non-optimal fibre angles (non-isotensoid)
on the hyperbolic bellow.
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FIGURE 7.5: RESTRICTED MAXIMUM FIBRE FORCE PARETO CHART

Figure 7.6 shows the Pareto chart for the maximum fibre force during axial elongation. This
performance measure is mainly influenced by the fibre material, upper and lower reinforcement and
reinforcement angle. Furthermore the interaction of upper reinforcement and reinforcement angle
has a significant effect.

Axial elongation has a bigger effect on Aramid fibres than it has on Nylon fibres. This is due to the
high stiffness of the Aramid fibres, that causes a larger increase in relative fibre force at a given
deformation than is the case for Nylon fibres. The main effects as well as the interaction effect of the
reinforcements and their angle are clearly visible as well. These reinforcements show the biggest
stress concentrations in the axial direction, causing a more significant effect than in the restricted
load case.
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FIGURE 7.6: ELONGATED MAXIMUM FIBRE FORCE PARETO CHART
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The effects on the maximum fibre force during lateral deformation are shown in the Pareto chart
given in Figure 7.7. The most important main effects are the fibre material, upper and lower
reinforcement. Furthermore the interaction of the fibre material with both upper and lower
reinforcement has a significant effect.

This corresponds with the findings from Section 6.3. The fibre material determines the bending
stiffness of the cylindrical region and thus the amount of shear deformation on the bellow. This shear
deformation in turn linearly increases the fibre force on one side and linearly decreases it on the
other for a single fibre direction. The same holds for the addition of reinforcement layers, these add
bending stiffness to the cylindrical region, increasing the level of shear stresses. It is interesting to
note that the upper reinforcement has a significantly higher effect than the lower reinforcement.
This is due to the fact that the lower reinforcement is closer to the neutral axis of the expansion joint,
thus adding less bending stiffness to the total expansion joint than the outer reinforcement layer.
Furthermore the length of the upper reinforcement layers is longer than the lower reinforcement.

Term 0,01227

Factor Name

Fibre Material

Bellow type

Bridging

Rubber Material

Upper Reinforcement

Lower Reinforcement

Upper Reinforcement Length
Lower Reinforcement Length
Reinforcement Angle

=T mmo me >

000 001 0,02 0,03 004
Effect

FIGURE 7.7: LATERAL MAXIMUM FIBRE FORCE PARETO CHART

The Pareto chart for the predicted lateral deformation at which compressive fibre forces occur is
shown in Figure 7.8. In addition to the main effects that were of importance for the maximum fibre
force during lateral deformation, the bellow shape and the interaction of upper reinforcement with
the bellow shape are of importance as well. The difference between these Pareto charts is due to the
fact that the maximum lateral deformation at which compressive fibres occur is determined by the
fibre forces on the middle of the bellow whereas the maximum fibre force is the actual maximum
fibre force throughout the model.

The effect of the bellow on the lateral deformation until compression can be explained by the size of
the actual bellow. The hyperbolic bellow is somewhat smaller than the Corpo bellow. Therefore the
same shear deformation has to be absorbed in a smaller region than is the case for a Corpo bellow.
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FIGURE 7.8: LATERAL DEFORMATION BEFORE COMPRESSIVE FIBRES PARETO CHART

The last Pareto chart shows the effects on the maximum fibre shear angle and is shown in Figure 7.9.
This performance measure is mainly determined by the bellow shape, upper and lower

reinforcement,

reinforcement angle and the fibre material.

The influence of the reinforcement layers and reinforcement angle is due to their added stiffness to

the cylindrical region. As this cylindrical region becomes stiffer the axial elongation has to be

absorbed by the bellow, causing larger shear angles in this region. Furthermore the non-isotensoid

fibre angles on the hyperbolic bellow causes larger shear angles than is the case with a Corpo bellow.
The effect of the fibre material is again due to the difference in stiffness. As the Aramid fibres are
stiffer, they tend to absorb the elongation by fibre shearing, whereas the Nylon fibres are more
flexible and can absorb part of the axial elongation by stretching.
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FIGURE 7.9: MAXIMUM FIBRE SHEAR PARETO CHART
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The Pareto charts show the absolute effects on each performance measure. This gives a good
indication on the most important effects, but does not show the actual effect itself. A complete
overview of the relative main effects on the different performance measures is shown in Appendix
C.2.

7.5 OPTIMAL DESIGN

The main and interaction effects can be used to determine an optimal design for the expansion joint.
The final design has to perform well in each load case, therefore all the performance measures have
to be accounted for when optimizing the design. As some performance measures are more
important than others, a weight factor is assigned to each performance measure. The weight factors
for both Aramid and Nylon designs are shown in Table 7.8.

For both material types, maximum rubber strain is an important performance measure as this is a
common failure mode during dynamic testing. The maximum fibre forces in the different load cases
all have an equal importance, as the expansion joints are burst tested in each deformation mode.
Compressive fibre forces are detrimental for Aramid fibres but not for Nylon fibres, therefore this
performance measure has a higher weight for Aramid designs. Next to the prediction of compressive
fibres, this performance measure gives a good indication of the stress amplitudes during a lateral
cycle. The maximum fibre shear angle has a fairly low weight as there has not been any expansion
joint that has failed due to this failure mode. As Aramid fibres are more sensitive to fibre fretting, a
slightly higher weight has been assigned.

TABLE 7.8: WEIGHT FACTORS PERFORMANCE MEASURES

Weight Factor | WeghFacor

___Aramid

Maxifﬂu;Rubber Straﬁnrﬂ 30 [WA eIongio 2 1 2
restricted 1 1
Maximum Fibre Force 30 [mm] elongation | 1 ; l o4 ;77
S 5 m[mm]: lateral 1 i juﬁ E ki
Late ion
Until Comr::ezjif:;?:iztrf Forces 4 [ri\m] 7Iateral 1 2 .
Mﬂ@ﬂﬂﬁj{iﬁéhear Angle | 30 [mm] elongation 0,5 075

Again the Minitab software is used to determine an optimal design. This software creates a
normalized general performance measure from the weighted performance measures. The effects of
the different parameters on this general performance measure are determined, by which an optimal
design can be determined. It is chosen to make separate optimal design for Nylon and Aramid fibres.
These are shown in Table 7.9.

TABLE 7.9: PARAMETRIC OPTIMAL DESIGNS

7 7 e e X prer Reinforcement Lower Reinforcement einforéement
S el R R I 16
| Nylon  Corpo  Yes SBR =18 - e
Aramid Corpo  Yes ~ SBR B “ 5 -
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Both optimal designs have a Corpo bellow, bridging and SBR rubber without any reinforcement. Both
static and dynamic tests have shown that expansion joints without any reinforcement show rubber
cracking next to the flange. The 2-level Design of Experiments is thus not able to accurately describe
this failure mode. Therefore it is required to enforce axial reinforcement during the optimization.
New optimal designs are made taking this constraint into account. These optimal designs are shown
in Table 7.10.

TABLE 7.10: REINFORCED OPTIMAL DESIGNS

Lower Reinforcement Reinforcement

Fibres Bellow Bridging Rubber

i ot e i _ length[mm]  Angle[’]
_Nylon Corpo  Yes ~ SBR 5 -~ #5
Aramid  Corpo  Yes ~ SBR I 2 0

The optimal reinforced designs still have a Corpo bellow, bridging and SBR rubber. For the Nylon
design an upper reinforcement layer with full length and fibre angle of +45° is given. The angle-ply
reinforcement has less axial stiffness, limiting the stiffness discontinuity in the axial direction and
thus the stress concentration. The optimal reinforced Aramid design on the other hand only has a
short lower reinforcement layer with a 0° fibre angle. This unidirectional reinforcement layer has a
higher axial stiffness that matches better with the stiff Aramid fibres. It should be noted that the 2-
level parametric study assumes a linear effect with respect to the reinforcement length, therefore
limiting the optimization to either the maximum or minimum allowed reinforcement length.

Next to the structural constraints there are some manufacturing constraints that have to be
accounted for. One of these constraints is that the customer requires an inner layer of SBR and an
outer layer of CR for the desired chemical resistance. Another manufacturing constraint is that a
lower reinforcement layer cannot be combined with the bridging procedure. Therefore the optimal
Aramid design has to be revised. This gives the optimal designs as shown in Table 7.11. It should be
noted that the overall optimal design is the Nylon design as it performs better with respect to the
normalized general performance measure.

TABLE 7.11: MANUFACTURABLE OPTIMAL DESIGNS

Uper Reinforcement Reinforcement |

LERiEaR e Biking. Bibberl _ Angle[]
_Nylon  Corpo  Yes SBR/CR 50  #45

Aramid  Corpo  Yes  SBR/CR 5 0

7.6 EFFECT OF REINFORCEMENT LENGTH

One of the major limitations of the 2-level parametric study that has been performed is that it
assumes a linear relation between both levels of continuous parameters. The only continuous
parameters that have been investigated are the reinforcement lengths. The relation between most of
the performance measures and these parameters is not linear. Therefore its effects will be studied
separately to determine the optimal length of the reinforcement layer. Both for the Nylon and
Aramid optimal designs 5 different lengths of reinforcement are modelled to investigate its effects
on the performance measures.
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Figure 7.10 shows the maximum principal rubber strain with respect to the reinforcement length at
each deformation mode. It is clearly visible that the lateral and axial elongated deformation modes
cause the highest rubber strains. Short reinforcement lengths show severe rubber strains which are
due to stress concentrations and subsequent necking of the rubber in the cylindrical region. The
maximum rubber strain during lateral deformation shows a minimum at a reinforcement length of
approximately 35 [mm)], whereas the maximum rubber strain during axial elongation tends to
decrease with increasing reinforcement length.
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FIGURE 7.10: RUBBER STRAIN VS. REINFORCEMENT LENGTH

The maximum fibre force during the restricted and axial deformation modes with respect to the
reinforcement length are shown in Figure 7.11. Again the most critical deformation mode is axial
deformation. This shows an increase in maximum fibre force with increasing fibre length. This is due
to the fact that the maximum fibre force during pressurization is evenly distributed over the bellow.
At short reinforcement lengths the stress concentration caused by the reinforcement layer does not
yet affect the forces in the bellow. With increasing reinforcement length this stress concentration
approaches the bellow, causing the rise in fibre forces. Once the reinforcement layer overlaps the
fibre bellow (>25 [mm]) the rise in fibre forces evens out as the stress concentration remains
approximately the same, just as the originally evenly distributed fibre forces in the bellow.
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The predicted lateral deformation at which compressive fibres occur with respect to the
reinforcement length is given in Figure 7.12. As can be seen the deformation at which fibre
compression occurs decreases with increasing reinforcement length. This is due to the increase in
bending stiffness of the prototype, increasing the shear deformation in the bellow. It should be noted
that during cyclic testing a maximum lateral deformation of 20 [mm] is applied, which does not result
in compressive fibre forces for the majority of the range of reinforcement lengths. Furthermore the
Nylon fibres are better able handle compressive stresses.
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FIGURE 7.12: LATERAL DEFORMATION BEFORE COMPRESSION VS. REINFORCEMENT LENGTH

The last performance measure that is investigated is the maximum fibre shear angle. These are
shown for different lengths of reinforcements during all deformation modes in Figure 7.13. As can be
seen the influence of the reinforcement length on fibre shear angle is rather small. The only
significant difference is visible during lateral deformation where a minimum is visible at a length of
approximately 30 [mm].
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FIGURE 7.13: FIBRE SHEAR VS. REINFORCEMENT LENGTH

68



Considering all these performance measures an optimal reinforcement length has to be chosen. The
maximum fibre shear angle is least important and therefore not taken into account. As the most
common failure mode for Nylon prototypes is rubber cracking, the optimal reinforcement length has
been based on Figure 7.10 resulting in an optimal reinforcement length of 35 [mm]. A shorter
reinforcement length will show lower fibre forces during axial elongation but is likely to show rubber
cracking. The final optimized expansion joint parameters are shown in Table 7.12. The internal
geometry and fibre angles of this optimal design are shown in Appendix C.3.

TABLE 7.12: FINAL OPTIMAL DESIGN
Reinforcement |

Up Reinforcement
_ Length [mm]

Fibres Bellow Bridging Rubber
_Nylon  Corpo  Yes  SBR/CR ol
The same graphs have been determined for Aramid expansion joints as well and are shown in
Appendix C.4. Even with an optimal reinforcement length, the Aramid expansion joints will show
compressive fibre forces at relatively low lateral deformations. This indicates that an Aramid
expansion joint is unable to deliver the same dynamic lateral performance as Nylon Expansion Joints.

7.7 VALIDATION

To validate the parametric study and optimization, prototypes have been made and tested. A great
number of Aramid expansion joints for a wide range of burst pressures have been made. Extensive
static and dynamic tests have been performed on these Aramid prototypes. Due to the limited
availability of Nylon fibres with the correct coating, only four Nylon prototypes have been made.
Therefore only two static and two dynamic tests have been performed on these prototypes.

Table 7.13 shows the average burst pressure of the most recent Aramid and Nylon expansion joints.
In total 8 similar Aramid and 2 similar Nylon expansion joints have been statically tested. The Aramid
expansion joints were designed for a burst pressure of 64 [bar] whereas the Nylon prototypes were
designed for a burst pressure of 48 [bar]. Automated placement of the inner rubber, fibre and
wrapping tape has been used on all prototypes. The outer rubber layers have been applied manually.
The average test pressure and standard deviation of these prototypes can be seen in Table 7.13. The
average burst pressures are nearly identical to the design pressure and the standard deviation is
acceptable. This indicates that both Aramid and Nylon expansion joints can be designed with an
accurate restricted burst pressure.

TABLE 7.13; DESIGN, AVERAGE AND STANDARD DEVIATION OF STATIC BURST TESTS
- o B Aramid Nylon |
Design Pressure _[bar] | 64 48

Average Test Pressure [bar] | 64,3 48,0 |

| Standard Deviation  [%] | 70 81
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One of the statically tested Nylon prototypes is nearly identical to the optimized design given in Table
7.12. Furthermore an Aramid prototype has been made with the exact same reinforcement length,
but with a design pressure of 64 [bar]. The static test results of both of these prototypes are given in
Table 7.14. Both prototypes exceed their design burst pressure and satisfy their static requirement.

TABLE 7.14: DESIGN AND BURST PRESSURE OF NEAR OPTIMAL DESIGNS

S o ‘rami ; ' '.1
Desiganriessurg”[par]rl 64 48

TestPressure  [bar] | 64,3 51,9

The static performance is satisfied for most expansion joints. Dynamic testing on the other hand is
more troublesome. So far there has not been an Aramid expansion joint that has satisfied the
dynamic requirements. This is due to fibre compression as discussed in Section 6.3. The poor
dynamic performance of these expansion joints has resulted in the change to Nylon fibres. The two
Nylon prototypes that have been dynamically tested were identical to the optimal design as
proposed in the previous Section. These Nylon prototypes are compared with two similar Aramid
designs that have been dynamically tested. All of the prototypes are designed for a burst pressure of
48 [bar].

The dynamic testing consists of one million lateral cycles at 10 and/or 15 [mm] and a test pressure of
3 [bar] after which the prototypes are burst tested. Their results are shown in Table 7.15.

TABLE 7.15: DYNAMIC LATERAL TEST RESULTS

B r resu 7 :

Dym ycls

| 1.000.000 Lateral 10 [mm] | 43
Aramld R e T e e . I e
| 150.000 Lateral 15 [mm] | Bursted during testing
1.000.000 Lateral 15 [mm] | 40

Nylon | 1.000.000 Lateral 15 [mm] -

1.000.000 Lateral 10 [mm] |
As can be seen one of the Aramid prototypes performs quite well at a lateral cyclic deformation of 10
[mm]. When the same design was tested at a lateral deformation of 15 [mm], it failed prematurely at
the test pressure of only 3 [bar]. This indicates the sensitivity of Aramid expansion joints to large
lateral deformations. On the contrary, both Nylon prototypes survived the cyclic lateral deformation
of 15 [mm] after which one of the prototypes has been burst tested at 40 [bar]. The other Nylon
prototype did an additional dynamic test at a lateral deformation of 10 [mm]. This prototype showed
a final burst pressure of 49 [bar]. This confirms that the cyclic lateral deformation has little effect on
the performance of Nylon expansion joints. Furthermore both prototypes have been the first
expansion joints that satisfy all static and dynamic requirements for the highest performance
expansion joints.
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7.8 EXPANSION JOINT DESIGN GUIDELINES

In this research the simulations, parametric study and performance tests have been applied to one of
the smallest sizes of expansion joints (@ = 100 [mm]). During the certification program of an entire
range of expansion joints, larger sizes have to be developed as well. Some basic simulations have
been performed on larger expansion joints (@ = 250 [mm] and @ = 600 [mm]) to investigate their
stress distribution during the characteristic deformations (axial elongation/compression and lateral
deformation). These simulations have confirmed that these larger sizes show a similar structural
response as the smallest expansion joints. Therefore some general design guidelines can be given for
the future development of expansion joints, these are listed below;

e Use Nylon fibres

When an expansion joint will be exerted to cyclic lateral deformation, Aramid fibres have to be
avoided as this deformation mode is detrimental to its performance.

e Use a Corpo bellow

A Corpo bellow ensures an optimal stress distribution over the bellow, the advantage of more
flexibility of a Hyperbolic bellow is neutralized, as an Hyperbolic bellow deforms to a similar shape as
a Corpo bellow at working pressure.

e Use the bridging procedure

Bridging increases the axial strength of the cylindrical region, limiting excessive stretching of the
rubber near the flanges that causes cracks.

e  Apply local reinforcement

Testing has shown that any unreinforced expansion joint will exhibit rubber cracking near the flanges
during cyclic testing. Therefore a layer of local reinforcement needs to be applied to limit the rubber
strains near the flanges.

e Optimal reinforcement length

To reduce stress concentrations in both the rubber and the fibres, the stiffness discontinuity at the
end of the local reinforcement has to be minimized. This is achieved by matching the fibre angle at
the end of the reinforcement layer with the main fibre (as illustrated in Figure 7.14). This limits both
the stiffness discontinuity as well as the interlaminar shear.
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FIGURE 7.14: FIBRE ANGLES OF OPTIMAL NYLON DESIGN

71






8 CONCLUSION AND RECOMMENDATIONS

8.1 CONCLUSION

For the structural analysis of the unique combination of multi-layered filament wound cord-
reinforced rubber, numerical FEA methods have to be used. The finite deformation of the flexible
products requires aligned fibre meshes to prevent intra-ply shear locking. This limits the available
mesh constructions to aligned triangle or truss elements for the fibres and aligned tetrahedral or
unaligned hexahedral elements for the rubber.

Various combinations of elements for the fibres and rubber have been evaluated and compared.
Satisfactory agreement with test results of a pneumatic muscle, single-layered and multi-layered
expansion joints has been shown. The models are not accurate enough to give an exact prediction of
the strength of the product, but can be used for a comparison between different designs.

During the simulations numerical instabilities have been encountered. These are caused by the
combination of incompressible rubber with stiff fibres. Therefore the most important requirements
for the meshes are their convergence and robustness. All combinations of linear elements showed
satisfactory convergence for the fibre forces and reaction forces. The rubber strains on the other
hand only showed a converged solution when using linear triangle elements embedded in unaligned
linear hexahedral elements in Abaqus. Therefore it has been chosen to continue with this mesh type

in further simulations.

During the simulations, only basic parameters for the rubber were known. To investigate the
importance of the accuracy of the rubber properties and material models, material tests have been
performed. The experimental results have been used to calibrate various material models. The basic
Neo-Hookean material model that was given by the material supplier was not able to accurately
model the response of the rubber in biaxial and planar shear tensile deformation modes. A
comparison between an advanced calibrated 3th order Ogden material model and the given Neo-
Hookean material model showed a noticeable difference in the reaction forces and rubber strains of
a complete expansion joint. However, the basic model is a conservative approximation and it can
therefore be argued whether the improvements achieved by using a fully calibrated model are worth
the additional testing efforts.

To relate the simulations to actual product performance, the characteristic failure modes of
expansion joints have been investigated. Rubber cracking is the most important failure mode of the
rubber. Dynamic rubber crack growth is dependent on many parameters and can therefore not be
predicted with the current model. However, the global analysis model that has been developed can
be used to indicate critical regions with large rubber strains that cause rubber crack growth.

Fibre breaking is the most important static and dynamic failure mode. Static fibre fracture is easily
determined by the simulated fibre forces. Dynamic fibre failure on the other hand is dependent on
the fibre material and load amplitude. It has been shown that lateral deformation of expansion joints
cause fibre compression, which is detrimental for Aramid fibres. Nylon fibres on the other hand are
less sensitive to compression and are thus a suitable alternative to improve the dynamic
performance of expansion joints.
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The last failure mode is fibre fretting. Although this failure mechanism cannot be solely attributed to
failure of an entire expansion joint it has an effect on the dynamic degradation of the fibres. This
failure mode is caused by the shear angle of the fibres during cyclic deformation.

Design of Experiments has been used for a parametric study to investigate the influence of all design
parameters on the performance of the product. The performance measures are based on the
characteristic failure mechanisms. The effect of the reinforcement length on the performance of the
product has been investigated separately. The parametric study and reinforcement length
investigation have been used to determine an optimal expansion joint design that satisfies all
manufacturing constraints. The optimal design parameters are repeated in Table 8.1.

TABLE 8.1: OPTIMAL EXPANSION JOINT DESIGN

pp Reinforcement Reinforcement
e P e ‘3 __Length[mm]  Angle[°]
Nylon Corpo  Yes  SBR/CR -

Bellow Bridging Rubber

To validate the parametric study, optimal expansion joints were built and tested. Both the old and
optimized design achieved their static pressure requirement. During lateral dynamic testing the
optimized design showed a major improvement as it was the first expansion joint to satisfy all
dynamic requirements. This improvement has proven that the numerical structural analysis method
can be a valuable tool during the development of cord-reinforced rubber products.

Some design guidelines for expansion joints have been determined based on the results of the
parametric study and the tests. These are listed below;

e Use Nylon Fibres

e Use a Corpo bellow

e Use the bridging procedure
e  Apply local reinforcements

The optimal length of the reinforcement layer is the length where the angle of the angle-ply local
reinforcement matches the fibre angle of the main fibre layer. This limits the stiffness discontinuity
that causes stress concentrations.

8.2 RECOMMENDATIONS

The current model has proven to be a valuable tool during the design process. There are however
numerical issues that limit the ease of use of the model during some extreme load cases. These are
caused by numerical and/or structural instabilities (buckling). The structural instabilities can however
be resolved by using the Riks solution method for the non-linear analysis. This will eliminate
convergence problems caused by structural instabilities.

Further improvements can be made by using aligned truss elements for the fibres. During the
simulations, truss elements have proven to be computationally efficient. Therefore the
computational costs of the models could be reduced by developing an algorithm that constructs
meshes with this type of element. This algorithm can be used for fully automated mesh generation
that can be integrated in Taniq’s design software.

74



An interesting extension of the current model is to incorporate viscoelastic effects. During the
research it was shown that the burst pressure is highly dependent on the load rate. Viscoelasticity
can be included in the numerical model if the correct material parameters are determined. It is
expected that this can lead to a significant improvement of the accuracy of the simulation.

A limitation of the current global model is that its mesh is too coarse for an accurate analysis of the
stress concentrations caused by local reinforcements. This could be investigated by using local-global
models that use the stresses and strains given by the global model as boundary conditions for a fine
mesh of a local region of the product. This will enable the investigation of delamination and crack
growth.

Another effect that is worth investigating is the effect of advanced calibrated material models on the
simulation of multi-layered expansion joints. During this research various material models were
applied to a single-layered expansion joint that experienced little biaxial tension and planar shear.
However, planar shear deformation could play an important role in the interlaminar behaviour of the
rubber. Therefore the use of advanced calibrated material models might show a more significant
difference when applied to these products.

Next to the structural analysis method itself, the Design of Experiments could be improved as well.
The current 2-level design was unable to describe the rubber cracking failure mode. This is due to the
non-linear relation between this failure mode and the length of the reinforcement layer. Experiments
have shown that axial reinforcement is required to prevent this failure mode. Therefore the presence
of a reinforcement layer is not a design variable anymore. This can be accounted for by writing an
algorithm that determines the optimal reinforcement length for a given set of design parameters
based on minimizing the stiffness discontinuity. This would eliminate the reinforcement parameters
and enable the Design of Experiments to capture the rubber cracking failure mode.
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Appendix A FINITE ELEMENT ANALYSIS

In this Appendix the designs of the products that have been used during the development of the FEA
models are shown. The design of the pneumatic McKibben actuator is given in Section A.1, whereas
the design of a single layered expansion joint is given in Section A.2. The method of calculating the
reinforcement fibre angle is explained in Section A.3. At last the design of a reinforced expansion
joint is illustrated in Section A.4.

A.1 MCKIBBEN ACTUATOR GEOMETRY AND FIBRE ANGLE

The McKibben actuator is a cylindrical rubber bladder with a braided fibre layer on top. lts profile is
shown in Figure A.1.

10

9 — == — _— B - _— = b ¢ - — P-4 b ¢ =1 g \- — -— _— — — _— — b ¢ _— b
E 8
E
o |

6

5

0 50 100 150 200 250
z[mm]
e Rubber Fibre

FIGURE A.1: MCKIBBEN PROFILE

The braid in the McKibben actuator has a constant angle, which is shown in Figure A.2.
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FIGURE A.2: MCKIBBEN FIBRE ANGLE
The properties of the materials used in the McKibben actuator are given in Table A.1.

TABLE A.1: MCKIBBEN MATERIAL PROPERTIES

Rubber Gy =1184kPa__

tubber ~ Coy = 105,7 kPa 7
Fibre E=35GPa v=037 A=1791mm? s=28mm
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A.2 SINGLE LAYERED EXPANSION JOINT GEOMETRY AND FIBRE ANGLE

The single layered expansion joint that has been modelled is a so called bridging prototype (see
Section 3.2). Its bellow has been designed using the Tanigwind software and is a so called Corpo
bellow (Section 3.3). The inner and outer rubber layers are both 3,3 [mm] thick. The profile of both
the rubber and the fibre layers are shown in Figure A.3.
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FIGURE A.3: SINGLE LAYERED EXPANSION JOINT PROFILE

As the expansion joint is a bridging type, its fibre angle towards the flanges remains rather low. It
should be noted that the effect on the bridging procedure on the actual fibre angles is unknown, as
this procedure has been developed recently. The assumed fibre angle of this bridging expansion joint
is shown in Figure A.4.
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FIGURE A.4: SINGLE LAYERED EXPANSION JOINT FIBRE ANGLE
The properties of the fibre and rubber of the single layered expansion joint are given in Table A.2.

TABLE A.2: EXPANSION JOINT MATERIAL PROPERTIES

T —r T —
Fibre FE =36,09GPa v=1036 A=028mm? n=248 l
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A.3REINFORCEMENT ANGLE DETERMINATION

In cord-reinforced rubber products, local reinforcements are applied manually. In the case of axial
unidirectional (0°) reinforcement the fibre angle will not shift due to the profile of the product.
However, this is not the case for a woven angle-ply layer (+45°). In this Section the Equations used to
determine the shifting fibre angles of such reinforcements are presented.

When applying a local reinforcement layers, the undeformed circumferential length is determined by
the circumference at the minimum radius of the reinforced region. At this location the angle-ply
prepreg will not be stretched and retain its fibre angle of +45°. However as the radius changes, the
stiff fibres will tend to shift to compensate for the stretch in circumferential direction. To determine
the shifted fibre angles it is assumed that the fibre length of an infinitesimally small section remains
constant while the circumference changes, as illustrated in Figure A.5.

lfibre

Tmin r
FIGURE A.5: FIBRE ANGLE SHIFT

This results in an inverse Clairaut relation, as given in Equation A.1.

Al

lripre = constant = s

The constant fibre length can be determined using the unshifted fibre angle at the minimum radius.
Therefore the shifted fibre angle can be determined at any position along the radial profile using
Equation A.2.

., (T SINApin
a = sin™! (_ A2

Tmin

A4 REINFORCED EXPANSION JOINT GEOMETRY AND FIBRE ANGLES

The reinforced expansion joint that has been modelled is an original design by Taniq and has been
extensively tested by one of its customers. It has both an outer and inner layer of angle-ply
reinforcement. The rubber thicknesses of the inner and outer layer are both 3,3 [mm]. The increased
thickness towards the ends is caused by the fibre build-up as the fibres approach a winding angle of
90° due to the manufacturing constraints of the flanges. The profiles of the fibre and rubber layers
are shown in Figure A.5.
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FIGURE A.6: REINFORCED EXPANSION JOINT PROFILE

The fibre angles of the main and reinforcement layers are shown in Figure A.6. The peak after the
bellow is made to reduce the tendency of the expansion joint to stretch in the axial direction during
pressurization.
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FIGURE A.7: REINFORCED EXPANSION JOINT FIBRE ANGLES

The fibre and rubber material properties for the reinforced expansion joint are the same as for the
single layered expansion join, as given in Table A.2. In addition, the material properties of the
reinforcement layer are given in Table A.3.

TABLE A.3: REINFORCEMENT MATERIAL PROPERTIES

| Fibre Reinforcement £ = 2,0GPa_v =039 A=083mm? s=139mm |
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Appendix B RUBBER

In this appendix the strain energy potentials that have been investigated are discussed in Section B.1.
Next the calibrated material model parameters for CR and NR are given in Section B.2, whereas their
stress-stretch responses for the three characteristic deformation modes are shown in Section B.3. At
last the stability ranges of the unstable models for these rubber types are given in Section B.4.

B.1 STRAIN ENERGY POTENTIALS

Strain energy potentials describe the strain energy stored per unit of reference volume as a function
of the strain. There are several strain energy potentials to model incompressible hyperelastic
materials. Most strain energy potentials are phenomenological models based on continuum
mechanics that use series expansion to imitate the characteristic stress-strain response. More recent
models are physically motivated models that are based on the micromechanical phenomena in the
elastomer. Each of the strain energy potentials has its own benefits and drawbacks but one of the
most important differences is the ease of calibration of the models. [37]

B.1.1  NEO HOOKEAN

The most basic hyperelastic material model is the Neo-Hookean model. This is a phenomenological
first-order reduced polynomial proposed by Treloar in 1943. [38] Its strain energy potential is given
by Equation B.1 where Cy, is a calibration constant based on the initial shear modulus.

U=Cy(; —3) B.1

B.1.2 ARRUDA-BOYCE

The Arruda-Boyce material model is one of the few physically motivated models. It is based on a
representative hexahedron volume in which 8 polymer chains emitting from the centre to the
corners are modelled. [39] It has been developed in 1993 and its strain energy potential is given by
Equation B.2. The material parameters are the initial shear modulus u and the polymer chain locking
stretch A,,, which defines the start of the characteristic upturn.

U=u (% (5 —3) + —zoimz (R -3)+ ——105101/%4 (R°-27)+ —7001016 (L*-81)

B.2
519
+—————(1,° - 243)
673750,
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B.1.3 MOONEY-RIVLIN

The Mooney-Rivlin model is one of the most commonly used models. It is a phenomenological
second-order full polynomial model that allows a slight change of shape in comparison with the Neo-
Hookean model, making it a reasonable fit up to moderate strains. The final model has been
proposed in 1948 and its strain energy potential is given in Equation B.3. [40] One of the drawbacks
of this model is that it can become unstable at low strains for certain combinations of parameters.

U= C10(1_1 = B} C01(1—2 ~3) B.3

B.1.4 VAN DER WAALS

The van der Waals model is a physically motivated model based on a network of polymer chains that
are bonded by van der Waals forces. It has been developed in 1987 and its strain energy potential is
given by Equation B.4. [41] Here p is the initial shear modulus again and Am the polymer chain
locking stretch. In addition, @ accounts for the van der Waals interaction between the polymer
chains. The 8 parameter is the strain invariant mixture parameter and has an empirical nature.

2
U (A% = 3)| In| 1 A IR ol 2 <7_3)§
—_— — -_— _— _—a —_—
: " Am2—3 )Lmz_3 3 2 B.4

I=@-mh+ 6L

B.1.5 YEOH

The Yeoh model is a phenomenological third-order reduced polynomial model that is able to capture
the characteristic upturn at large strains of hyperelastic materials. It was proposed in 1993 and its
strain energy potential is given by Equation B.5. [42]

U= Cio(ly = 3) + Cyo(I; — 3)? + C30(I; — 3)3 B.5

B.1.6 MARLOW

The Marlow model is a general first invariant model that exactly reproduces test data and has been
developed in 2003. [43] Its strain energy potential is described by a deviatoric function of the first
strain invariant as given in Equation B.6. This model works best when calibrated to detailed test data
from a single deformation mode.

U= Udev(l—l) B.6

86



B.1.7 OGDEN

The Ogden model is a phenomenological full polynomial model. This model differs from other models
in that it uses principal stretches instead of strain invariants. Furthermore the powers used are real
values rather than integers, providing more accuracy. The model was proposed in 1974 and its strain
energy potential for a common third-order model is given in Equation B.7. [44] Although this model is
able to describe the behaviour of the rubber accurately over large strain ranges, it has to be
calibrated with detailed test data of all characteristic deformation modes.

N
7 VT
= Za_-#zl(/llal TN e K me By B.7
=1 '

B.2 MATERIAL MODEL RARAMETERS FOR CR AND NR

The calibrated material model parameters for CR are given in Table B.1.

TABLE B.1: MATERIAL MODEL PARAMETERS FOR CR

ari?l Model '

Neo-Hookean Given . Cp=61010°

Neo-Hookean Measured a Cig = 6,23 107

Arruda-Boyce p=L2510F | uy=12518° [ 2, = 26810° |
Mooney-Rivlin Cio = 4,78 105 | Cpy =2,33105
vanderWaals | u=1,1810° A = 10,0 a=017
Yeoh o Cio =7,5810% | Cpo = —1,14105 | C3p = 1,63 10*
Marlow test data

Ogden, N=3 = a; = b= |a=| Hz= az =
“approximation ~ [1,2610°| 1,16 | 1,6110* | 6,81 | 6,81103 | —3,32
Ogden, N=3 W = a = Mz = @ =1 Pg= az =
fulltests | 1,6110° | —0,25 | 5,2810% | 8,16 | 9,3210% | —5,84 |

The calibrated material model parameters for NR are given in Table B.2.

TABLE B.2: MATERIAL MODEL PARAMETERS FOR NR

Neo-Hookean Measured

Arruda-Boyce u=926105 | 4y=947105 | A, =523

Mooney-Rivlin Ci0 = 6,12 10° | € =-23810°

van der Waals | u=89510° A = 4,73 a = 0,44

Yeoh Cio = 479105 | Cpo=—2,9710* | Cso = 6,45 103
' Marlow test data

Ogden, N=3 = @y = by = a=| MW= az =
| approximation 9,19 10° | 1,46 | 1,7210* | 6,77 | 1,7110* | —2,67

Ogden, N=3 M = @y = g = az =| Mz = az =

full tests 1,54 106 | —0,88 | 1,07 103 | 9,98 | 5,35 10* | —6,57
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B.3 FITTED MATERIAL MODELS FOR CR AND NR

The uniaxial stress-stretch responses for CR material models are shown in Figure B.1.
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FIGURE B.1: UNIAXIAL STRESS STRETCH RESPONSE CR

The biaxial stress-stretch responses for the CR material models are shown in Figure B.2.
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The planar shear stress-stretch responses for the CR material models are shown in Figure B.3.
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FIGURE B.3: PLANAR SHEAR STRESS STRETCH RESPONSE CR

The uniaxial stress-stretch responses of the NR material models are shown in Figure B.4.
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The biaxial stress-stretch responses for the NR material models are shown in Figure B.5.
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FIGURE B.5: BIAXIAL STRESS STRETCH RESPONSE NR

The planar shear stress-stretch responses of the NR material models are shown in Figure B.6.
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B.4 UNSTABLE MATERIAL MODELS FOR CR AND NR

The only unstable CR material model is the van der Waals model, its stability range is given in Table
B.3.

TABLE B.3: UNSTABLE CR MATERIAL MODELS

;lylai_érrial Mocjel wSit:fliljility VRénig/e' Uniaxial

0,02 <1 <10,00[-]

_Stébi_Ii-ty:lrgé;rl:giéﬁair\;rgﬁgaf VStrérbirlity_ Rangé Biaxial
0,1<1<9961[]

0,32<1<7,08[]

van der Waals

For NR the Mooney-Rivlin and the van der Waals model are unstable, their stability ranges are listed
in Table B.4.

TABLE B.4: UNSTABLE NR MATERIAL MODELS

Material Model _Stability Range Uniaxial _Stability Range Planar Shear _ Stability Range Biaxial |
Mooney-Rivlin 0,6<1<161[] 0,66 <1<153][] 0,79 <1<1,29[]
van der Waals 0,09 <1 <4,69[] 0,22 <1<4,621-] 0,46 <A< 3,35[-]
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Appendix C DESIGN OF EXPERIMENTS

In this Appendix the confounded interaction effects of the Design of Experiments are listed in Section
C.1. Section C.2 shows all main effects on the different performance measures. The final optimized
design geometry and winding angles are shown in Section C.3. At last the effects of reinforcement
length on the performance measures for Aramid expansion joints are illustrated in Section C.4.

C.1 CONFOUNDED INTERACTION EFFECTS

The confounded interaction effects for the fractional factorial Design of Experiments are listed in
Table C.1. It should be noted that confounding is only undesirable if both interaction effects that are
confounded are expected to have a significant influence on the performance measures. This is not
the case for the confounded interaction effects for this Design of Experiments and therefore it is able

to indicate all important parametric effects.

TABLE C.1: CONFOUNDED INTERACTION EFFECTS

7 Confounded Interactlon Effects gt

Lower Relnforcement -

Fibre - Bellow

Fibre - Fibre Angle

~ Upper Reinforcement Length
Lower Reinforcement —
Lower Reinforcement Length

F|bre Rubber - | Lower Reinforcement - Remforcement Anglef
" Fibre- Lower ‘» Bellow - Upper Fibre Angle - Lower Rubber - o
Reinforcement Reinforcement Length | Reinforcement Length Reinforcement Angle

~ Fibre - Upber Reinforcement Length | 7 BeIIow Lower Reinforcement 7
7_“ Fibre - Lower Reinforcement Length B Flbre Angle - Lower Reinforcement
L ; Fibre - Reinforcement Angle ,, Rubber - Lower Reinforcement _
ﬁj - Bellow - Fibre Angle 7 7777 Upper - Lower Reinforcement Lengthrrﬂ;

N g Bellow - Rubber e | :7 ‘Upper - Reinforcement Angle 7

ifféﬁe@yyrm’wer RemfoAreemenP Le‘ngth'”;: i ; 7F|bre Angle - Upper Remforcema Eengt_h ;m
o BeIIowShepe Relnforceme)nt—AngIe _: | Rubber Mgtgerral Ugger_Relnforcement Lglléth 7

Lower Reinforcement Length —
I Reinforcement Angle

F|bre Ang!ex Relnforcement Angle I Rubber Lower Remforcement Length

Fibre Angle - Rubber Material
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C.2EFFECTS OF MAIN PARAMETERS ON PERFORMANCE

The main effects on the maximum principal rubber strain are shown in Figure C.1.
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FIGURE C.1: MEAN EFFECTS OF MAIN PARAMETERS ON RUBBER STRAIN

The main effect on the maximum restricted fibre forces are shown in Figure C.2.
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The main effects on the maximum fibre force during axial elongation are shown in Figure C.3.

— ~ Materlal [ Below |  FibreAngle | Rubber | Upper Ref
1
[
O 0,40
S
O
uw“
o 038
b
._-9_ =i = 2= s = ,,,,_,./w.,
=
0,36
£
3
E om
X
©
E 0'32 b L Y . S . T — 7 o — - e = T
8 Nylon Aramid  Hyperbolic Corpo High Low SBR CR No Yes
® _ lowerRef | UpperReflength | LowerReflength | RefAngle
C:)‘.
2 0,40 -
(U]
g 0,38
5
o s
T o3 /
Y
(o]
c 0,34 -
©
(]
= 032 ] o = = o ——— e =]

z
o
<
143
N
w
w
o
nN
o
F
S
)
~
o

FIGURE C.3: MEAN EFFECTS OF MAIN PARAMETERS ON ELONGATED MAXIMUM FIBRE FORCE

The main effects on the maximum fibre force during lateral deformation are shown in Figure C.4.
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FIGURE C.4: MEAN EFFECTS OF MAIN PARAMETERS ON LATERAL MAXIMUM FIBRE FORCE
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The main effects on the lateral deformation at which fibre compression occurs are shown in Figure
C5.
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FIGURE C.5: MEAN EFFECTS OF MAIN PARAMETERS ON LATERAL DEFORMATION BEFORE COMPRESSIVE FIBRES

The main effects on the maximum fibre shear angle during axial elongation are shown in Figure C.6.
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FIGURE C.6: MEAN EFFECTS OF MAIN PARAMETERS ON MAXIMUM FIBRE SHEAR ANGLE

96



C.3 OPTIMAL EXPANSION JOINT DESIGN GEOMETRY AND FIBRE ANGLES

The optimal expansion joint has Nylon Fibres and only an upper reinforcement layer. The inner and
outer rubber thickness are 3,3 [mm)]. The profiles of the fibre and rubber layers are shown in Figure
Cals
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FIGURE C.7: OPTIMAL EXPANSION JOINT PROFILE

The fibre angle of the main fibre layer and the local reinforcements are given in Figure C.8. It should
be noted that at the end of the local reinforcement the fibre angle is approximately the same as that
of the main fibre layer, minimizing the stress concentrations.
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FIGURE C.8: OPTIMAL EXPANSION JOINT FIBRE ANGLES
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CAREINFORCEMENT LENGTH EFFECTS FOR ARAMID EXPANSION JOINTS

The effect of the reinforcement length on the maximum rubber strain during all deformation modes
for Aramid expansion joints are shown in Figure C.9.
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FIGURE C.9: RUBBER STRAIN VS. REINFORCEMENT LENGTH

The effect of the reinforcement length on the maximum fibre force during all axial deformation
modes for Aramid expansion joints are shown in Figure C.10.
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FIGURE C.10: FIBRE FORCE VS. REINFORCEMENT LENGTH
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The effect of the reinforcement length on the predicted lateral deformation at which fibre
compression occurs is shown in Figure C.11. It should be noted that the lateral deformation range is
up to 20 [mm)], and therefore even the design with the shortest reinforcement length will experience
fibre compression.
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FIGURE C.11: LATERAL DEFORMATION BEFORE COMPRESSIVE FIBRES VS. REINFORCEMENT LENGTH

The effect of the reinforcement length on the maximum fibre shear angle during all deformation
modes for Aramid expansion joints are shown in Figure C.12.
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FIGURE C.12: FIBRE SHEAR VS. REINFORCEMENT LENGTH
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