
i

3D noise
simulation
Final report

Constantijn Dinklo
Denis Giannelli
Laurens van Rijssel
Maarit Prusti
Nadine Hobeika

Synthesis project 2020
Master Geomatics, Faculty of Architecture and the Built
Environment

3D noise
simulation

Final report
by

Constantijn Dinklo
Denis Giannelli

Laurens van Rijssel
Maarit Prusti

Nadine Hobeika
Submitted on June 23rd 2020, public document

Project duration: April 20, 2020 – June 26, 2020
Supervisors: Prof. dr. ir. J. Stoter, TU Delft

Ir. B. Dukai, TU Delft
Clients: Dr. A. Kok RIVM

Dr. R. van Loon RIVM
Ir. R. Nota, RWS

An electronic version of this report is available at http://repository.tudelft.nl/.

teh source code of this project is available on Github DOI: 10.5281/zenodo.3929310

http://repository.tudelft.nl/

Preface

Constantijn Dinklo
Denis Giannelli

Laurens van Rijssel
Maarit Prusti

Nadine Hobeika
June 2020

In March 2020, several projects were offered to the students in the course Synthesis Project, part
of the MSc Geomatics at TU Delft to work on in the last period of the academic year. All the group
members in this project chose to participate in the 3D noise simulation project. As a group, we have
various backgrounds ranging from computer science to architecture. Although we have been working
as a group, each group member has had individual tasks.

The final report will show the steps that are taken, the choices that are made, and the results of our Syn-
thesis Project. This final report is written for our clients the Directorate-General for Public Works and
Water Management (RWS) and the National Institute for Public Health and the Environment (RIVM),
represented by Renez Nota, Arnoud Kok and Rob van Loon. Besides, it is written for our supervisors
from the TU Delft, Jantien Stoter and Balázs Dukai. Finally, it is written for the whole noise modelling
community.

In 2017, RWS and RIVM approached the TU Delft for a more efficient, cheaper, and standardised
way to generate input data for noise simulation. After three years of developing several approaches
based on height lines, it was concluded that another approach could be more efficient, namely an ap-
proach based directly on a Triangulated Irregular Network (TIN). The time frame of this project is from
the 20th of April 2020 until the 26th Of June 2020.

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 About the stakeholders. 1
1.3 Current state of sound propagation in noise simulation 2
1.4 Problem definition . 2
1.5 Goal . 2
1.6 Scope of this Project . 2
1.7 Requirements (MoSCoW) . 3
1.8 Expected Results . 3

2 Research Method 4
2.1 Method . 4
2.2 Technical Procedure . 4

3 Development 6
3.1 Input. 6

3.1.1 Raw Data . 6
3.1.2 Test Scenarios . 7
3.1.3 Constrained TIN . 8

3.2 Pre-processing . 9
3.2.1 Finding Source Points . 10
3.2.2 Propagation Paths: Theoretical Approach . 11
3.2.3 First-Order Reflection . 13
3.2.4 R-Tree. 15

3.3 Processing . 17
3.3.1 Finding the Receiver Triangle . 17
3.3.2 Straight Walking . 17
3.3.3 Constructing the cross-sections . 17
3.3.4 Adding Semantics . 18
3.3.5 Collinear sources . 20
3.3.6 Exporting the cross-sections . 20

3.4 Post-Processing . 20
3.4.1 Receiver Sound Level . 21

4 Results and limitations 22
4.1 Find sources . 22
4.2 Finding propagation paths . 22

4.2.1 First-Order reflections . 23
4.3 Cross-Sections . 23
4.4 Noise map . 25

5 Quality Assessment 27
5.1 Input Data. 27
5.2 Quality of Noise Maps . 28
5.3 Performance . 30

iii

iv Contents

6 Research Conclusion 33
6.1 Discussion . 33

6.1.1 Proof of concept . 33
6.2 Recommendations for Further Research . 34

Bibliography 35

7 Appendix 36
7.1 Simplifying Data Structure . 36
7.2 Constrained TIN using Triangle library . 36
7.3 Second-Order Reflections . 38

1
Introduction

1.1. Context
In the current state of the art of our cities, several challenges arise when it comes to providing citizens
with a healthy urban environment. Among these challenges, noise pollution is one of particular interest
since, albeit it cannot be visually perceived nor experienced by touch, it still has a significant impact
on general quality of life. “Europe is acting to fight noise pollution. The Environmental Noise Directive
(2002/49/EC) requires EU Member States to determine the exposure to environmental noise through
strategic noise mapping and elaborate action plans to reduce noise pollution.” (European commission
[4]). The present research is inserted in such context of assessing noise pollution and aims to provide
the noise research community with technical procedures for a better understanding of our built envi-
ronment.

In the context of the Synthesis Project for the MSc Geomatics at TU Delft, a group of students fo-
cused on finding noise propagation paths that could be used in Test_cnossos. In this chapter, the
project and its stakeholders will be introduced in more detail. In chapter 2, the research method and
technical procedures are discussed. In the next chapter, the different steps of the algorithm are de-
scribed. It states which choices, and why they have been made. In the fourth chapter, the results and
limitations of this project will be discussed. It describes why possible alternative theories have not been
applied and explains why the result is as it is. A quality assessment is done in the next chapter. Here
the produced results are compared with the current Dutch method. Afterwards, a conclusion is drawn
in the last chapter. Finally, an appendix will discuss several elements that were modelled but not used
in the final product for different reasons.

1.2. About the stakeholders
The National Institute for Public Health and the Environment (in Dutch: Rijksinstituut voor Volksgezond-
heid en Milieu, [8]) is a public body affiliated to the Ministry of Health, Welfare and Sport. Arnaud Kok
and Rob van Loon, who represent this client, work at the Noise Expertise Centre (Expertisecentrum
Geluid, [3]). This Centre aims ”to ensure that noise levels and their effects on the built environment
and public health are properly and reliably determined and monitored over time.” [3].

The Directorate-General for Public Works and Water Management (in Dutch: Rijkswaterstaat, [9]) is a
public body affiliated to the Ministry of Infrastructure and Water Management. Renez Nota, who rep-
resents this client, integrates a group of technicians which is responsible for performing noise studies
and monitoring noise production along national roads [7].

In collaboration with these two government agencies, the 3D Geoinformation research group at TU
Delft is investigating an efficient approach for automatically modelling 3D data on noise sources and
the environment for the whole of the Netherlands based on existing data from multiple sources [2].

As a group of students enrolled in the MSc Geomatics at TU Delft, for the present synthesis project,
we find ourselves involved in an ongoing project, and our current task is to conduct scientific research
on the efficiency of (geometrical) sound propagation techniques, according to the Common Noise As-

1

2 1. Introduction

sessment Methods in Europe (CNOSSOS-EU).

1.3. Current state of sound propagation in noise simulation
Noise simulations make use of one or multiple receiver points at positions where the noise level is
requested. Sources - such as roads, railways, and industries - are established as elements that emit
noise. Therefore, the path(s) between source(s) and receiver(s) must be found.

In the current commercial approach, only 3D polylines can be used as input to describe the terrain.
These 3D polylines are semi-automatically generated by noise experts, based on the principle of de-
scribing the terrain profile with as few height lines as possible, which leads to:

• The generation of breaklines at positions where height variance is high;

• The generation of more lines near the noise source, considering that the closer the height line is
from the source, the greater its relevance in the model.

In order to propose a more efficient, standardised and economic modelling approach, a partnership
between RIVM/RWS and the 3D Group was launched in 2017, aiming to generate these height lines
automatically from the available datasets, namely AHN3, BAG and BGT, which are publicly available
via PDOK for free. A digital terrain, modelled as a TIN directly from the AHN3, was then proposed by the
3D Geoinformation Group and was frequently tested in order to strike a balance between simplification
(due to computing performance) and height line accuracy.

1.4. Problem definition
From the last reports of this research [2], it was concluded that extracting height lines from a TIN is still
not a satisfactory technique in order to substitute the semi-automatic approach. Moreover, the original
TIN preserves the most accurate height data, so there is no point in proceeding with all the conversion
steps to satisfy the input requirements of commercial simulation software, especially because it will
(re)create a TIN for calculation kernel.

The research hypothesis, therefore, is: Using a TIN directly allows automated 3D noise modelling
according to the guidelines of CNOSSOS-EU. Nevertheless, this was never tested because existing
software cannot take the TIN as input.

1.5. Goal
Considering the aforementioned panorama, the goal of this synthesis project is answering the research
question: Is it possible to obtain propagation paths in noise simulation studies by directly using a 2.5
TIN representing a DTM, rather than the currently used 3D height lines?

Therefore, adding to our hypothesis, by implementing an algorithm that is capable of eliminating such
undesirable conversion steps, the noise modelling process will be most likely more efficient and ac-
curate. Once implemented and tested in terms of effectiveness, this new approach would potentially
represent a milestone in noise simulation. This could be a game-changer in noise simulation not only
in the Netherlands but also in Europe due to CNOSSOS-EU regulations. Therefore, it is useful to
compare possible results with current methods.

1.6. Scope of this Project
In this project, the noise propagation pathfinder is based on a TIN. The noise propagation pathfinder
provides the paths to the algorithm for noise emission and propagation of CNOSSOS-EU. At first, we
prepare the raw input datasets. Then, we prepare the constrained TIN for different scenarios. At first,
direct paths are computed, but later on, reflected propagation paths of the first-order are modelled as
well. Besides direct and reflected paths, there are diffracted paths. Vertical diffracted paths are taken
care by Test_cnossos, while the horizontal diffracted paths could have been done in this project. This
is not the case however. Propagation paths can occur in homogeneous, favourable, and unfavourable

1.7. Requirements (MoSCoW) 3

conditions. Homogeneous conditions are when the sound rays are straight segments and when the
sound waves are considered constant in all directions [11]. When the sound rays are curved towards
the ground, it is a favourable condition. An unfavourable condition occurs when the sound rays are
curved towards the sky [11]. The main priority of this project is modelling propagation paths in ho-
mogeneous conditions. If the time allows it, propagation paths can also be modelled in favourable
conditions. However, this has a low priority. Finally, a noise map is produced to visualise the sound
levels per receiver.

The calculation of noise propagation can be time-consuming. Therefore, a balance must be found
between the optimisation of the calculation time and the overall accuracy of the noise propagation
paths. At first, the project is more focused on the accuracy of the code. Afterwards, an optimisation of
the code can be made.

The main limit in this project might be the time period of nine weeks. In this project, big datasets
are going to be tested on many variants of each scenario. This will take a lot of time.

1.7. Requirements (MoSCoW)
At the beginning of this project, a table conforming to the MoSCoW method was created. This method
consists of four different categories of requirements: must have, should have, could have, and won’t
have requirements [1].

The requirements labelled as ”must have” are critical. If these are not present in the code, the code
is considered a failure. ”Should have” requirements are important, but not as necessary in the current
time period. Requirements labelled as ”could have” are desirable, but not necessary. However, they
could improve the experience of the result. These requirements are typically included, if the time allows
it. ”Won’t have” requirements are the least-critical requirements for the code [1].

Must Have Should Have Could Have Won’t Have
LoD 1.2 1.3 2.0 3.0 or higher
Paths Direct propagation

paths (in homoge-
neous by the group
and favourable
conditions by
Test_cnossos)

1st order reflections
(in both homoge-
neous conditions
by the group and
in favourable
conditions by
Test_cnossos

Diffraction (hori-
zontal)

higher order re-
flections and
unfavourable
conditions

Additional
elements

Evaluating the ef-
ficiency of TINs in
these conditions

Evaluating the ef-
ficiency of TINs in
these conditions

Optimisation to cre-
ate a noise map of
defined area

1.8. Expected Results
The research question of this project is: ”Is it possible to obtain propagation paths in noise simulation
studies by directly using a 2.5 TIN representing a DTM, rather than the currently used 3D height lines?”
In order to prove this concept, a pathfinder algorithm is modelled in this project. It is expected this al-
gorithm offers a valid and efficient alternative to noise propagation. The research question is answered
in section 6.

2
Research Method

2.1. Method
Considering the scientific purpose of the synthesis project, a first development step was addressing
the present research with an appropriate rational path towards the answer of its question: ‘Is it possible
to obtain propagation paths in noise simulation studies by directly using a 2.5 TIN representing a DTM,
rather than the currently used 3D height lines?’

Such interrogation brings the challenge of comparing both technical procedures, i.e. the currently
commercially available one and the one proposed through this investigation. In this sense, sound
propagation modelling would then become the core of the project.

In a modelling approach, features of the real-world built environment, such as buildings, terrain, roads,
etc. are gathered into abstract classes with specific attributes and operations. Therefore, since objects
belonging to the same class share a common data schema, it is possible to implement an algorithm that
repetitively iterates through these objects and computes sound propagation, the phenomenon under
study.

This deductive reasoning, i.e. applying general rules which hold over every single building, piece of
terrain, etc., despite their particular characteristics, configures the methodological core of this project,
and it is used while conducting all technical procedures dealt by the main algorithm.

Once the algorithm is implemented, the empirical comparison between these two modelling techniques
(currently commercial one vs. proposed one) takes place, and the research question is answered.

2.2. Technical Procedure
Several technical procedures are used in this project. First of all, a literature study is done. This is done
to understand the basic principles of noise propagation. The JRC Reference Reports, written by the
European Commission to be used for strategic noise mapping in the European Union [5], is studied. It
explains the different path types that the Test_cnossos software can handle:

• Direct path potentially with horizontal diffraction

• Reflected path

• Reflected path with horizontal diffraction

• Vertically diffracted path

Besides these path types, the image method for reflected paths is explained. Finally, the calculation of
the power levels is explained.

The second technical procedure is the algorithm. In figure 2.1, the workflow of the project is visible.
A 2.5D TIN representing a DTM is used to create cross-sections from the matching source-receiver
pairs. Using road lines and receiver points, the source points are generated. The buildings are used

4

2.2. Technical Procedure 5

for establishing reflection points. These cross-sections, written to an XML file, are then used to run in
Test_cnossos. Beside the cross-section, additional information about the power level is added to the
XML file before it is run in Test_cnossos. Test_cnossos takes these XML files as input and calculates
noise levels at the receivers. Afterwards, the Test_cnossos output XML files with the noise levels cor-
responding to the same receiver, are energetically added.

In the next chapter, the decisions made throughout the project are explained, step by step, starting
from the raw input data to the results at the end.

Figure 2.1: Flowchart of the process in general.

The third technical procedure is the verification of the proof of concept. The goal of this project is to
investigate the possibility of obtaining noise propagation paths directly using a 2.5D TIN representing
a DTM.

The last technical procedure that is used in this project is the comparison. The results of this algo-
rithm are compared to other results, namely the results of the Dutch noise simulation software.

3
Development

3.1. Input
3.1.1. Raw Data
There are several input files as can bee seen in figure 2.1. At first, the clients provided the project with
several files containing receiver points. These files were different in terms of the number of receiver
points in the files. In the end, however, a 3m x 3m regular grid of receiver points is created, thus allow-
ing a successive interpolation, at the receiver’s position, of noise power values in order to generate a
continuous field of sound, which is represented by a noise map.

A JSON file with a semantic constrained TIN was also provided.

Regarding noise sources, it was decided to work exclusively with road segments rather than a com-
bination of these roads with railways and/or industrial plants. The reason for this decision is the fact
that railway noise emission is more difficult to handle since trains are long and the noise produced by
them is not omnidirectional. A similar issue applies to industrial plants, considering that their area is
not negligible. In this sense, road segments were the only noise source taken into account. Among all
four available road datasets in our disposal (’NWB wegvakken’, ’TOP10NLWegdeelhartlijn’, ’RWS Ver-
keersongevallen wegvakgeografie’ and ’Geluidregister homogenewegvakken’), the first three of them
satisfy the condition of presenting local roads as line segments, the only requirement in order for the
algorithm to run properly. The RWS Verkeersongevallen wegvakgeografie was used for testing the
scenarios that we created, but using another road dataset would not modify the proof of concept.

The building models were prepared in a collaboration between the RWS, RIVM, and the 3D geoin-
formation research group from TU Delft. They prepared a file with building models with an LoD1.2 and
LoD1.3. The latter was used in this project. Table 3.1 contains more specifics about the building model
files.

Format Size
building1.2 ESRI Shapefile 18.6MB
building1.3 ESRI Shapefile 15.6MB

Table 3.1: Input Files: Building Models.

The terrain data was also provided. There are several options to use the terrain data. First of all,
the terrain data is provided for TINs and 3D lines, the so-called height lines. For the scope of this
project, the files concerning the TIN are used. The threshold of the errors could be 0.3m, 0.5m, or
1m. The terrain was provided in different formats, namely ESRI Shapefile, OGC GeoPackage, and
Wavefront OBJ. The input files concerning terrain data are summarised in table 3.2. For this project,
the TIN with an error threshold of 0.3m was chosen in Wavefront OBJ format. The TIN is quite accurate
and the file itself is the most compact using this format.

6

3.1. Input 7

Error Threshold Name Format Size
0.3 tin_03m.shp ESRI Shapefile 132.6MB
0.3 tin_03m.gpkg OGC GeoPackage 159MB
0.3 tin_03m.obj Wavefront OBJ 72MB
0.5 tin_05m.shp ESRI Shapefile 61.6MB
0.5 tin_05m.gpkg OGC GeoPackage 73.4MB
0.5 tin_05m.obj Wavefront OBJ 33.2MB
1.0 tin_1m.shp ESRI Shapefile 17.7MB
1.0 tin_1m.gpkg OGC GeoPackage 20.8MB
1.0 tin_1m.obj Wavefront OBJ 9.1MB

Table 3.2: Input Files: Terrain Data.

Besides the terrain data, the ground types were also provided and used. The file with the ground
types is based on the BGT (Dutch: Basisregistratie Grootschalige Topografie, English: Basic Register
for Large-Scale Topography). The acoustic classification is added to this BGT. It states whether an ob-
ject is absorbing or reflecting noise. The minimum object area can be chosen between 6m2, 12m2, and
18m2. For this project, a minimum object area of 6m2 was chosen as it is the most accurate. These
files were provided in two formats, namely ESRI Shapefile and OGC GeoPackage. ESRI Shapefile
was chosen since it is the industry standard right now. An overview of these input files is given in table
3.3.

Minimum Object
Area

Name Format Size

6m2 tiles_bodemvlakken_6.shp ESRI Shapefile 12.6MB
6m2 tiles_bodemvlakken_6.gpkg OGC GeoPackage 13.8MB
12m2 tiles_bodemvlakken_12.shp ESRI Shapefile 12.1MB
12m2 tiles_bodemvlakken_12.gpkg OGC GeoPackage 13.2MB
18m2 tiles_bodemvlakken_18.shp ESRI Shapefile 11.8MB
18m2 tiles_bodemvlakken_18.gpkg OGC GeoPackage 12.8MB

Table 3.3: Input Files: Ground Types.

3.1.2. Test Scenarios
While analysing the input data, three scenarios were defined, each one of them representing a partic-
ular environment. The first one, a suburb block, was used throughout the developing process and was
repetitively tested for debugging. The other two scenarios were generated in order to check if there
would be exceptions that had not been foreseen in the code.

Scenario 1 - Suburb block: Located in between Amazonenlaan, Cilostraat, Plutostraat, and Cassan-
drastraat, in the city of Rotterdam, this is a one-block scenario with building blocks and road segments.
Considering its similarity with the scenario available in the CNOSSOS-EU guidelines (figures VI-1 to
VI-5) in terms of urban design, it was specifically selected for testing the algorithm while this was still
under development.

Scenario 2 - Rural land: Located on the edge of Golfpark Rotterdam, next to the corner of Broekkade
and Rotterdam Rechter Maasoever, in the city of Rotterdam, this is a 100m x 100m scenario with no
buildings and a local road segment. The purpose of this scenario is testing if the algorithm would run
properly with a greater terrain height difference and a larger reflective surface, considering the artificial
hills of the relief.

Scenario 3 - City Centre: Located at Beurs underground station, in the city centre of Rotterdam, this is
a 100m x 100m scenario with high buildings and some road segments. The purpose of this scenario is
testing if the algorithm would run properly with high buildings, considering the diffraction phenomenon

8 3. Development

Table 3.4: Suburb block - Aerial image. Source: Google Earth. (left); Scenario 1 (right).

Table 3.5: Rural Land - Aerial image. Source: Google Earth. (left); Scenario 2 (right).

in noise propagation.

A comparison among these three scenarios highlights the difference between them (see table 3.7).

3.1.3. Constrained TIN
The project started with an LoD 0 TIN [6]; however, this led to many intersection tests that complicated
and slowed down the process. Therefore, it was clear that creating an LoD 2 TIN [6] would simplify and
optimise the algorithm. To create the constrained TIN, which will be used as input, two steps are taken.
First, a CityJSON is created which has all the triangles and the semantics of each triangle. Secondly,
an OBJP file is created which stores all triangles with their corresponding adjacent triangles and the
semantics of each triangle.

CityJSON
The first step is to create a constrained TIN CityJSON file. It generates the constrained TIN from two
input files. The first is a TIN of the corresponding area, of which only the vertices will be used. The
second is the buildings and ground-type polygons file which will be used as constraints. Triangulating
the TIN vertices with its constraints generates a constrained TIN which is then stored in a CityJSON
file. In the cityjson, a CityObject presents a semantic type with all boundaries in the CityObject being

3.2. Pre-processing 9

Table 3.6: City Centre - Aerial image. Source: Google Earth. (left); Scenario 3 (right).

Area
(sq.m)

Roads (m) Building
parts (#)

Maximum
building
height (m)

Ground
Type (%)

Terrain
height
difference
(m)

Scenario 1 11.400,0 622,2 56 5,14 Absorbing:
94,4%
Reflecting:
5,6%

1,73

Scenario 2 10.000,0 137,4 0 - Absorbing:
10,1%
Reflecting:
89,9%

15,5

Scenario 3 10.000,0 255,6 25 92,9 Absorbing:
92,1%
Reflecting:
7,9%

6,0

Table 3.7: Comparison among the three scenarios.

triangles that have that semantic type. Therefore, this also gives the triangles their semantic value from
this file. The semantic of a triangle is which building or ground-type it belongs to.

OBJP file format
While the CityJSON file does provide all constrained triangles and their semantics it does not provide
the adjacency of triangles. Since this is an unnecessary cost to the program if it needs to be done
each time the program is run, it is done as a pre-processing step. This step takes the CityJSON as
an input and determines all the adjacencies of the triangles. The result is then stored in an .objp file.
This file is very similar to obj, but every face (f) has six (6) values instead of three (3). The last three
(3) represent the index of the face that is adjacent to f. Furthermore, it also stores an attribute for each
triangle. These lines start with an ’a’. This means that there are as many face (f) lines as attribute (a)
lines. This file can then be used as the semantic constrained TIN input to the program.

3.2. Pre-processing
The pre-processing in this project is needed to add more information to the input data before the pro-
cessing phase. In this project, the processing purpose is creating the cross-sections. This means that

10 3. Development

Figure 3.1: Conforming TIN.

Figure 3.2: Constrained TIN with Buildings and Ground Types.

finding the source points and generating the first-order reflections are part of the pre-processing.

3.2.1. Finding Source Points
In order to create the cross-sections, the source points per receiver point must be found. At first, an
input file containing receiver points is used. The receiver points are equidistant from each other and
outside of buildings. This is visible in figure 3.3. The red lines represent the roads, the pink shapes
represent buildings and the blue dots are the receiver points.

In the case of this project, there are several receiver points placed in a test scenario. From each
receiver point, 2km long rays are shot at a two-degree interval. The distance of 2km is standardised
by the CNOSSOS-EU guidelines. The length of the ray is a parameter and can be adjusted. The
two-degree interval between the rays is a standard and recommended by RIVM and RWS to use. The
result is a receiver point with 180 rays. Every ray is checked whether it intersects with a road in the
test scenario or not. If the ray from the receiver intersects with a road, the intersection point represents
a source point and will be saved. In figure 3.4, multiple rays are shot from one of the receiver points.
Multiple source points belong to one receiver point.

Since the intersection points are from a direct propagation paths, some of them are collinear. Sim-
plification is done by sorting the source points that intersect the same ray. They are sorted so that the
cross-section only has to be made once. The other source points that lie within this cross-section are
dividing the cross-sections into parts.

In addition to the source location, an estimation of the road length that the source represents is made.
It is computed by making a (virtual) intersection with the same road element both half of the interval

3.2. Pre-processing 11

Figure 3.3: Receiver Points in Test Scenario.

Figure 3.4: Finding the Source Points.

angle to the left and to the right, as can be seen in figure 3.5. The intersection is virtual since the road
element might stop within one degree, but in many cases, a new road element in (roughly) the same
orientation will be there. The distance between the left and right point is determined and stored with the
source. In short, the length estimation takes into account the distance between source and receiver,
and the relative orientation of the source-receiver line compared to the road line.

3.2.2. Propagation Paths: Theoretical Approach
The CNOSSOS-EU guidelines [4] elaborates on elementary propagation paths for sound-propagation
modelling and indicates four types of paths to be considered, namely:

• Type 1 - ’Direct’ paths

• Type 2 - Paths reflected on vertical (or slightly sloping) obstacles

• Type 3 - Paths diffracted by lateral edges of obstacles

• Type 4 - Mixed Paths.

Among these four, the first two types are the ones taken into account for the purpose of this synthesis
project, in accordance with the MoSCoW table.

12 3. Development

Input : 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 point;
Set of 𝑟𝑜𝑎𝑑𝑠 (only road within search radius are selected

Output: receiver point with the corresponding source points ordered on distance
for 𝑎𝑛𝑔𝑙𝑒 from 0 to 360 in steps of 2° do

𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡 ← the end of a 2.000 m ray from receiver in direction of 𝑎𝑛𝑔𝑙𝑒;
for each 𝑟𝑜𝑎𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in 𝑟𝑜𝑎𝑑𝑠 do

if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 - 𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡 line intersects with 𝑟𝑜𝑎𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 then
𝑠𝑜𝑢𝑟𝑐𝑒 ← intersection point;
𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ← estimation for the source length;

end
end

end
Algorithm 1: Finding noise sources, executed for each receiver

Figure 3.5: Estimation of the Road Length (red: road lines, blue dot: receiver, green: one-degree rays, blue dotted lines:
estimated road length)

1. Type 1 paths are ”‘direct’ paths from the source to the receiver, which are straight paths in plane
view and which may nevertheless include diffraction on the horizontal edges of obstacles.” (fig-
ure 3.6)

2. Type 2 Paths, in turn, are the ones ”reflected on vertical or slightly sloping (< 15°) obstacles
(...)” and may also include diffraction on the horizontal edges of obstacles (...)” (figure 3.7 and
figure 3.8)

Figure 3.6: Example of Type 1 path (direct path). Adapted from CNOSSOS-EU.

First, direct paths are computed from the noise source’s position towards the receiver’s position.
Second, for the purpose of this project, the reflection paths are generated by first analysing the model
and computing, for each pair of source (S) and receiver (R), what are the candidate points on building
facades and/or on other vertical surfaces such that, starting from the source point (S), once a sound

3.2. Pre-processing 13

Figure 3.7: Example of Type 2 path (reflection path) without diffraction. Adapted from CNOSSOS-EU.

Figure 3.8: Example of Type 2 path (reflection path) with diffraction on horizontal edge. Adapted from CNOSSOS-EU.

wave hits them, the sound wave will be reflected towards the receiver point (R).

The technical solution for finding these candidate points is the ’image method’. Within this technique,
each vertical obstacle, i.e. a 2D line segment in the XY plane, acts as a mirror and produces a virtual
image source (S’) from the original source (S) that is present in the model. By connecting the image
source (S’) with the final receiver point (R) or successive reflection point, it is possible to determine the
intersection of the virtual propagation path and the wall segment under analysis, if there is any.

It is worth mentioning that, ”when dealing with reflections on significantly sloping obstacles, the
method should be applied in 3D”. Since the modelling is implemented with LoD 1.2/1.3 buildings,
all walls are treated as absolute vertical planes. Moreover, reflections on the ground are not dealt
with by the ’image method’, but rather dealt with by the Test_Cnossos software. According to the
CNOSSOS-EU guidelines, they are taken into account in the calculations of attenuation due to the
boundary (ground, diffraction).

Finally, once the reflection point(s) are found, it will be possible to define a 2D cross-section of the
geometry, created by the succession of all vertical planes passing through the straight line segments
located between source, reflection point(s) and receiver. The CNOSSOS-EU guidelines characterises
this process with the metaphor of a Japanese screen being unfolded in order to create a single plane.

3.2.3. First-Order Reflection
A reflection path may have one or multiple reflection points along its trajectory. If there is ’n’ reflection
point(s), there is a n-order reflection.

When dealing with first-order reflection, the algorithm has a very straightforward approach: In the 2D
plane, given a pair of source (S) and receiver (R), for each building facade, i.e. a line segment, there

14 3. Development

Figure 3.9: Example of reflection on an obstacle dealt with by the image source method (S: source, S’: image source, R: receiver).
Adapted from CNOSSOS-EU.

Figure 3.10: Example of the one-degree test applied to a first-order reflection. By rotating R-S’ to the left and to the right, the
algorithm verifies if these two rotated paths intercept one of the walls of the building.

Figure 3.11: Japanese screen metaphor: Sound ray reflected to the order of 4 in a track in a trench: actual crosssection (top),
unfolded crosssection (bottom). Adapted from CNOSSOS-EU.

3.2. Pre-processing 15

Figure 3.12: Computed first-order reflection. Given a source (S) and a Receiver (R) points, finding the reflection point (REF)
does not require any testing. The system of linear equations determines the x and y coordinates of this point.

will be either zero or one reflection point (REF) within this facade that satisfies the image method. If
the REF point lies in between the vertices of this line segment, the reflection takes place. If not, there’s
no possibility that this particular facade reflects the sound towards the receiver.

If the path could theoretically reflect upon the building, in advice of the clients, two validity tests are
implemented to verify the reflection.

1. The buildings in which the sound waves are being reflected need to be checked in order to verify if
their dimensions and/or distance from the source point are significant enough to produce reflection
points. According to the CNOSSOS-EU guidelines, this test should be simple: “The obstacles
where at least one dimension is less than 0.5 m should be ignored in the reflection calculation,
except for special configurations.” However, it should be noticed that, depending on the distance
from the noise source to the reflection point, 0.5m could be rather (in)significant. As an alternative,
requested by the clients a one-degree test is applied: having the receiver point as the center, the
reflection point is rotated one degree to the left (counterclockwise) and one degree to the right
(clockwise), and if these two new left and right lines still intercept any wall of the same building,
then the reflection point (REF) is valid for a reflection path.

2. In urban areas, buildings are often connected through adjacent walls, commonly seen in housing
blocks (rijtjeshuizen in Dutch) Therefore, the exterior side of a wall can, at the same time, be the
interior wall of another building. In this case, the reflection is only valid when the reflecting build-
ing is at least one meter higher than the adjacent building. The one-meter threshold is chosen to
cope with the simplifications due to the LoD level (flat roofs). This causes buildings with similar
roof heights to have a larger spread of mean roof height. Note that in case of a small gap in
between the two buildings, this test will pass although it might be unlikely. The building height,
defined in the output file, is in this case relative to the roof of occluding building.

3.2.4. R-Tree
R-trees are data structures used to index geo-referenced data. They group nearby objects into min-
imum bounding boxes. All objects that are part of that minimum bounding box are leaves of a node.
The node then sub-dives all objects within into smaller bounding boxes containing fewer objects. This
is repeated until a leaf node contains only one object. This makes it very easy to determine which
objects lie within a given area without having to search through every object.

The noise map that needs to be generated has many receiver points covering a large area. How-
ever, any individual receiver point covers a smaller area. While dealing with an individual receiver
point, only a subset of the overall data is required. This is where R-trees are used. The building and
road data sets are indexed through the use of R-trees. This provides the opportunity to quickly retrieve
the necessary data for a given receiver point.

16 3. Development

Figure 3.13: Second Validity Test Reflected Paths; verifies that if the reflecting wall is a common wall of two buildings, the building
on the exterior of the reflecting building is at least 1 meter lower than the reflecting building. The height of the source or receiver
has no influence on the test. the red paths are valid, the yellow path is not valid and therefore not further processed.

Input : buildings_dict : BuildingManager object - stores all the building objects.
Output: Stores reflection points, and their corresponding heights in the class; Returns True if

reflections are found, False if not.

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 ← [];
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_ℎ𝑒𝑖𝑔ℎ𝑡𝑠 ← [];
for 𝑖𝑑, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 in buildings do

for each 𝑤𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in the building do
if both 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 are on the exterior side of the wall then

𝑆 ← projected source image with respect to the wall;
if the 𝑆 - 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 line intersects with the 𝑤𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 then

𝑅𝐸𝐹 ← point of intersection;
𝑙𝑒𝑓𝑡_𝑝𝑜𝑖𝑛𝑡 ← rotate 𝑆 1° left;
if 𝑙𝑒𝑓𝑡_𝑝𝑜𝑖𝑛𝑡 intersects with a 𝑤𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 of the 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 then

𝑟𝑖𝑔ℎ𝑡_𝑝𝑜𝑖𝑛𝑡 ← rotate 𝑆 1° right;
if 𝑟𝑖𝑔ℎ𝑡_𝑝𝑜𝑖𝑛𝑡 intersects with a 𝑤𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 of the 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 then

𝑔𝑟𝑜𝑢𝑛𝑑_𝑚𝑎𝑡 ← the material of the triangle on the exterior side on the
𝑤𝑎𝑙𝑙_𝑠𝑒𝑔𝑚𝑒𝑛𝑡;
if 𝑔𝑟𝑜𝑢𝑛𝑑_𝑚𝑎𝑡 is a 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 then

if building ℎ𝑒𝑖𝑔ℎ𝑡 - exterior building ℎ𝑒𝑖𝑔ℎ𝑡 > 1 m then
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 ← append REF;
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_ℎ𝑒𝑖𝑔ℎ𝑡𝑠 ← append building ℎ𝑒𝑖𝑔ℎ𝑡;

end
else

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 ← append REF;
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛_ℎ𝑒𝑖𝑔ℎ𝑡𝑠 ← append building ℎ𝑒𝑖𝑔ℎ𝑡;

end
end

end
end

end
end

end
Algorithm 2: First-order reflection path, executed for each source - receiver pair.

3.3. Processing 17

Input : A 2D origin point 𝑜𝑟𝑖𝑔𝑖𝑛;
A destination point 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛;
A receiver triangle 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟;

Output: next edge that intersects the 𝑜𝑟𝑖𝑔𝑖𝑛-𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 segment;
next triangle to walk to;

while not in 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 do
for each 𝑒𝑑𝑔𝑒 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟 do

𝑣𝑒𝑟𝑡𝑒𝑥_𝑟𝑖𝑔ℎ𝑡 ← 𝑒𝑑𝑔𝑒[0];
𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑓𝑡 ← 𝑒𝑑𝑔𝑒[1];
if (𝑣𝑒𝑟𝑡𝑒𝑥_𝑟𝑖𝑔ℎ𝑡 on the right side of 𝑜𝑟𝑖𝑔𝑖𝑛-𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 segment OR on
𝑜𝑟𝑖𝑔𝑖𝑛-𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 segment) & 𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑓𝑡 on the left side of 𝑜𝑟𝑖𝑔𝑖𝑛-𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
segment then
return 𝑒𝑑𝑔𝑒 & 𝑒𝑑𝑔𝑒_𝑖𝑛𝑑𝑒𝑥

end
end

end
Algorithm 3: Straight-walk Algorithm

3.3. Processing
The processing purpose of this project is constructing a cross-section written into an XML file. It will
then be possible for Test_Cnossos to read the XML files and calculate the sound levels per receiver
point. The construction of the cross-sections will be explained step by step.

3.3.1. Finding the Receiver Triangle
First, the triangle that the receiver point is located in needs to be found. To find the triangle a point is
located in, the ”walk” algorithm is used. The algorithm starts at a triangle (T) in the TIN. Using orien-
tation calculations on the edges of T and the position of the receiver point, the algorithm determines
which incident triangle to T the walk algorithm needs to go to next to get closer to the receiver point.
Repeat this process until the walk algorithm is inside the triangle that the receiver point is located in.

It is computationally expensive to find the triangle a point is located in. Therefore, performing the op-
eration as few times as possible is the goal. Since there are fewer receiver points than source points,
it is more efficient to find the starting triangle for each receiver point.

Furthermore, It is assumed that the closest vertex to the receiver point is part of a triangle that is
(or is very close to) the triangle in which the receiver is. Therefore, a 2D KDtree is created for the
vertices in the TIN and the closest vertex to the receiver point is queried. Afterwards, a triangle having
that vertex as boundary is selected as the starting triangle. Finally, once the starting triangle for an
individual receiver point is found, it can be stored in a dictionary. The dictionary can later be used for
instant lookup when the same receiver point is used again.

3.3.2. Straight Walking
To create a cross-section, a straight path is required from the receiver point to the source point. The
straight walk algorithm is used to solve this issue, see Algorithm 3. To start the algorithm, the re-
ceiver point, source point, and starting triangle, which is the triangle the receiver point is located in, are
needed. At each iteration of the walk, the edge of a triangle that the straight path intersects with next
is returned. This is done by conducting a side-test between each vertex of the edge and the receiver-
source segment. See Algorithm 3. The process is repeated until the walk has arrived at the destination
point. This provides a list of all edges that the straight path intersects on its walk from receiver point to
source point. These edge are used to make the cross-section. See Figure 3.14 for a visual of how the
algorithm works.

3.3.3. Constructing the cross-sections
There are two types of cross-sections to construct:

18 3. Development

Figure 3.14: Straight Walking to the Receiver Triangle

• Direct path cross-sections, from receiver to source;

• Reflected path cross-section, from receiver to reflected point to source.

Therefore, the reflection point and source are stored in a list of destinations that needs to be looped
over. The origin is set to the receiver at first and then, when looping through the second destination,
the origin is set to the reflection point.

When an edge is found while straight walking, the 2D intersection point between the edge and the
segment origin-destination is computed. In the case an edge is collinear with the [origin, destination]
segment, the intersection point is in half way between the two end-points of the edge.

The height of the intersection point is interpolated using the side test that was used to find the designated
edge to assign weights to the end-points of the edge. Before adding that point to the cross-section, the
point still needs to be provided with semantics, its material (see section Adding Semantics). Once a se-
mantic point, the interpolated point is added to the cross-section and then the algorithm keeps walking.
When the algorithm reaches the destination triangle, the ground height of the source is interpolated in
the TIN and it is appended with the material of the triangle. In the end, the order of the vertices in the
cross-section is reversed to have a source-receiver cross-section. A simplification step consists of not
adding a point in the cross-section if that point lies within 10 cm (3D Manhattan distance, sum of the
distance per axis) of the previous point.

Figure 3.15: Creating a correct Cross-Section.

3.3.4. Adding Semantics
Since the straight-walk algorithm moves from receiver to source, and not from source to receiver, the
intersection point inherits from the next triangle on the straight path instead of the current triangle to
adhere to the CNOSSOS-EU guideline.

If the current triangle and the next triangle are both ground, each intersection point inherits the ground
material of the next triangle. For this, the absorption index of the triangle is checked and the intersection
point is assigned a letter, ’C’ or ’G’. ’C’ for absorption since, according to the CNOSSOS-EU guideline,
refers to ”uncompacted, loose ground (turf, grass, loose soil)” with an absorption index of 1.0 and a
sigma of 80. ’G’, for reflection according to the CNOSSOS-EU guideline, refers to ’hard surfaces (most
normal asphalt, concrete) with an absorption index of 0.0 and a sigma of 20000. [11] Furthermore,
since the datasets provided have accuracy limitations, it was decided that any difference of plus or
minus ten centimeters between two points of the same material is superfluous in the cross-section. As
a consequence, a threshold was set to skip these close points.

When a building is reached, the cross-section needs to go up, which means both the intersection point

3.3. Processing 19

and the lifted intersection point to roof level, with their corresponding building material, are added to the
cross-section. In the code, all building materials are given an ’A0’ letter according to the CNOSSOS-EU
guideline. A marker is also added to indicate that a cross-section is in a building. This marker helps
avoid adding intermediate points that are not part of the Digital Surface Model (DSM) cross-section
before going down again. (figure 3.15) If the cross-section is already in a building and the next triangle
is the same building or has the same height (plus or minus 10 cm) and the same material, then the
cross-section ignores the corresponding intersection points.

If the cross-section is already in a building and the next triangle has a different roof height, two points
are added each at the height of the current and the next triangle. If the cross-section is already in a
building and the next building is ground, both the lifted point with the building material and the inter-
section point with the ground type are added to the cross-section. To make the code more robust, a
condition to skip a building that has a roof level lower than the ground TIN level is added.

Input : A 2D receiver point 𝑜𝑟𝑖𝑔𝑖𝑛;
A list of destination points 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠;
A receiver triangle 𝑟 𝑟;
A semantic constrained TIN class.

Output: A list of vertices of the cross-section between receiver and source;
A list of vertices materials;
information about the receiver and source

𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← initialise with projected receiver point;
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ← initialise with projected receiver point corresponding material;
𝑖𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ← False;
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟 ← 𝑟 𝑟;
for 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 in 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 do

while not in 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 do
𝑒 ← edge of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟 between 𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛;
𝑝 ← interpolate intersection point between 𝑒 and 𝑜𝑟𝑖𝑔𝑖𝑛-𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 segment;
𝑝 ← get semantics of intersection point;
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ← material of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟;
𝑛𝑒𝑥𝑡_𝑡𝑟 ← next triangle on other side of 𝑒;
𝑛𝑒𝑥𝑡_𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ← material of 𝑛𝑒𝑥𝑡_𝑡𝑟;
if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 and 𝑛𝑒𝑥𝑡 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 are ground then

𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝;
else

if not 𝑖𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 then
𝑖𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ← True;
𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝;
𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝 elevated to roof level;

else
if 𝑛𝑒𝑥𝑡_𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is a building then

𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝 elevated to roof level of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟;
𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝 elevated according to roof level of 𝑛𝑒𝑥𝑡_𝑡𝑟;

else
𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝 elevated to roof level of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟;
𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append 𝑝 to cross-section;
𝑖𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ← False;

end
end

end
end
𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← append projected source ;
𝑜𝑟𝑖𝑔𝑖𝑛 ← destination;

end
Algorithm 4: Extract cross-section.

20 3. Development

Input : A list with succeeding vertices in Cartesian space 𝑣𝑡𝑠;
A list with the material of each matching vertex 𝑚𝑎𝑡;
A dictionary where key is vts id and value is the extension type and information 𝑒𝑥𝑡;
A dictionary with the source noise settings.

Output: None (writes output xml file)
𝑣𝑡𝑠 ← subtract the source (first point) from each vertex to make the path local (e.g. relative to
the source) (the source therefore becomes [0, 0, 0]);
if min(𝑣𝑡𝑠.𝑧) < 0 then

𝑣𝑡𝑠 ← add min(𝑣𝑡𝑠.𝑧) to lift the path such that all vertices have a positive height;
end
𝑝𝑎𝑡ℎ ← initiate the xml tree with standard Test_cnossos setup, meteo, method and validation
settings;
𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 ← adapt the default noise levels to the source length;
𝑝𝑎𝑡ℎ ← insert all control points (𝑣𝑡𝑠) and their extensions;
Write the xml tree to ”path_i_j.xml” where:
𝑖 ← the receiver number;
𝑗 ← the cross-sections number within the receiver.

Algorithm 5: Prepare and write cross-sections to xml files.

3.3.5. Collinear sources
Since sources are created by intersecting rays from a receiver, constructing cross-sections can be
optimised by walking from receiver to the furthest source point along a ray and then each source point
along the path splits the cross-section. To split the overall cross-section, 2D sources are located in
the overall cross-section and their heights are linearly interpolated from the edges in that cross-section
(figure 3.16). Weights are assigned to each endpoint of an edge according to the distance along an
axis between those points respectively and the interpolated point.

Figure 3.16: Linear Interpolation at the Edges, red lines are road, s1 to s4 are collinear sources

3.3.6. Exporting the cross-sections
The cross-section is stored as a list of Cartesian points (in euclidean space), supported by their ma-
terials and extensions. In order for the Test_Cnossos software to process this cross-section, it should
be written to an xml file, according to requirements from the JRC-2012 calculation method mentioned
in [11]. However, to produce a valid xml file, a few changes are required. These changes, which are
described in algorithm 5, should produce a valid and correct xml file. The source, receiver and option-
ally wall extension are added to the respective points. It holds the relative height and optionally the
material of the extension. In accordance with the clients, the sources are stored as type point sources,
which broadcast their noise equally in all directions (omnidirectional). The result after this step in the
program is one xml file for each cross-section. The requirements only allow for one cross-section to
be stored in one xml file. These xml files are to be read by the Test_Cnossos software to compute the
noise levels at a receiver position, this is described in 3.4: Post-Processing.

3.4. Post-Processing
Post-processing is the phase in which the processing products are edited or enhanced. In this project,
the Test_cnossos software calculated the noise levels based on the cross-sections. In the post-processing
phase, these noise levels are visualised in a noise map.

3.4. Post-Processing 21

3.4.1. Receiver Sound Level
Once all the cross sections have been produced the sound level for each receiver can be calculated
using the Test_cnossos software. The following pipeline is used to generate the sound level at each
receiver:

1. Write a shell file to run Test_cnossos automatically

2. Go over each xml output file and extract the A-weighted equivalent sound level (LeqA) value

3. Energetically sum all LeqA values for each receiver respectively

4. Create a shapefile containing the 2D receiver points with the sound level as attribute

The result is a shapefile with each receiver point having a sound level value.

4
Results and limitations

In this chapter, the results of the algorithm are described. It describes what the outcome of the algo-
rithms ((sub)-results), and what can be said about how this implementation is a simplification of reality
(known limitations). A limitation may explain functionalities that were introduced in the Project Initiation
Document (PID) that have not been implemented (yet). It may also explain why some theories were
not implemented, which may cause artefacts in specific cases. The sub-results are discussed for the
technical procedures to find sources, the set of technical procedures to find possible propagation paths
and creating the cross-sections. At last, the final result, the noise map, is discussed.

4.1. Find sources
Any method of localising noise sources is a simplification of reality, the implemented method was re-
quested by the client but, as any, is a simplification. This simplification of reality is accepted, as it
provides a reasonable estimation and is quick to determine. In most occasions, mainly highways and
railways are used. These source line types tend not to have sudden stops or bends. But in cases
of a junction, a turn is segmented. Depending on which segment intersects with the receiver ray, the
estimated length may be higher or lower than reality (see figure 3.5).hou This is only an issue when
the source segment stops before the 1° and is not extended with a new source segment in the same
orientation.

The second limitation of finding the noise sources concerns the default noise values. Every source
is treated equally in this method. However, some roads are much busier than other roads, which
should result in a higher noise level. On top of that, the speeding limit of the roads can differ from road
to road. The higher the speed of a vehicle, the higher the noise level. These aspects are currently not
taken into account.

Finally, an artefact can be created when a receiver has a short perpendicular distance with the road.
This especially happens when the receiver is below or above the road line. As a result, it will have
very few sources that will have a long length. This will eventually cause artefacts when running the
cross-sections in Test_cnossos(see figure 4.1).

4.2. Finding propagation paths
In collaboration with the clients, a selection of the CNOSSOS propagation path types is implemented.
This selection applies to the horizontal (i.e. top view) plane since the vertical part is taken care of by
the Test_cnossos software. The implemented types are type 1 and 2, respectively direct and reflected
paths. In the case of type 2, it was decided to only implement single order reflections. This was decided
since higher-order reflections have shown to cause a low impact on the noise levels. It also leads to
multiple unknown variables in the formulas which are computationally expensive to solve. This theory
is applied and implemented for second-order reflection paths, but not actively used. It is described in
7. Due to limited time, horizontally diffracted paths were not considered. This adds little value to the
proof of concept, and quality control had a higher priority. At last, due to limited time, only horizontal
homogeneous conditions were implemented.

22

4.3. Cross-Sections 23

Figure 4.1: A receiver point beyond the end of a road segment (lower) receives much fewer paths (12 vs 86) The estimated
source length will solve the difference, but as the intersections get further away from the receiver, the chance of missing a part
of the road is inevitable.

Figure 4.2: An example of a set of reflections for one receiver and two roads on both side. There are two housing blocks included
in the paths, and 5 other buildings cause reflections

4.2.1. First-Order reflections
The reflection algorithm produces validated propagation paths for which cross-sections can be made.
(see figure 4.2) After a theoretical reflection is found (i.e. disregarding surroundings, building size
and height), it is validated according to two tests, as explained in 3.2.3. Both may cause artefacts as
visualised in figures 4.3 and 4.4. The test to verify the size of the building can be shown, however, the
validity check (whether the reflection is valid in connection to its surroundings) is a result of simplification
in the input data since (slanted) roofs are modelled as flat.

Despite the general quality of the results coming from the algorithm, it is important to observe that
modelling sound propagation by means of noise sources and receivers is a discrete approach, whereas
in reality, the noise phenomenon is continuous. Understanding this discrepancy is important since the
exact position of noise sources and receivers plays a fundamental role in determining the reflection
path.

In order to overcome this limitation, the algorithm is fed by a regular grid of receivers. This will ap-
proach a continuous field while keeping a reasonable processing time. In practice, computing a highly
dense grid would be impossible, not only due to computing efficiency but also because the source
image method is meant for discrete objects and not for continuous fields.

4.3. Cross-Sections
Limited number of materials

In this code, only two absorption indices for ground type according to the CNOSSOS-EU guidelines
are supported: ’G’ for an absorption index of 0, and ’C’ for an absorption index of 1. Other absorption

24 4. Results and limitations

Figure 4.3: An example of reflections that are valid according to our tests, since the size test does return True, as both 1° left and
right do intersect with the building, but in such a different spot that it is not in line with the idea behind the test. Note, however,
that although these paths will be created and processed, it will result in a very low noise level and will therefore barely influence
the noise map

Figure 4.4: Example of a building size verification in which it produces slight artefacts, it is coherent with the current method, but
as the building size is tested only from the perspective of the receiver, reflections quickly become invalid on the top side, where
they continue to be valid up until the corner of the building on the south side of the building.

indices should be added later on.

Buildings are only assigned one material ’A0’ according to the CNOSSOS-EU guidelines. It could
be that the roof has a different absorption index than the walls.

Line Barriers Not Supported
Barriers are only supported when they are incorporated in the DTM, or as a building. This will then be
accepted as a building, not as extension type barrier.

Spikes
The semantic constrained TIN provides coordinates with up to three digits after the comma whereas
the buildings shapefile provides coordinates with up to six digits after the comma. This precision dis-
crepancy causes spikes at the reflection point in cross-sections because it does not correctly identify
the triangle in which the reflection point exists. Tolerances were introduced; however, some spikes
remained. Increasing the tolerance would result in topological inconsistencies while straight-walking to
the source. The shapefiles could have been rounded to the precision of the constrained TIN; however,
this does not guarantee topological consistency between both datasets. Therefore, given the time limit,

4.4. Noise map 25

Figure 4.5: Noise map for a suburb block (Scenario 1), with contour representation.

it was decided to leave the remaining spikes for this stage of the project.

4.4. Noise map
Noise levels, as could be expected, are highest near the source of noise and decrease further away.
Due to reflections around buildings, thus higher noise levels near buildings, noise contour lines are
pulled towards the buildings where reflections exist. The inhibitory effect behind buildings could be
seen also due to the reflective nature of buildings

The previously mentioned spikes at reflected points were found in the lower right building block of
figure 4.5. At this point, the effect of these spikes on the noise map can not be determined. A compar-
ison with the noise map after spikes are fixed would give a better idea of how spikes affect the output.
The result for scenario 1, a suburb block with a single road, is shown in figure 4.5. The result for sce-
nario 2, a rural area with no buildings and a 15.5m height difference, is shown in figure 4.6 The result
for scenario 3 was not computed using this technical procedure because the constrained TIN provided
had missing triangles and severe outliers which raised an error while walking the TIN.

26 4. Results and limitations

Figure 4.6: Noise map for a rural land (Scenario 2), with contour representation.

5
Quality Assessment

In this chapter, a quality assessment is done on the results shown in the previous chapter. Not only the
results are assessed, but the algorithm itself as well.

5.1. Input Data
Dealing with geo-data means dealing with data imperfections that cause disruptions in the general
pipeline of the workflow. Identifying these imperfections entails additional pre-processing steps; how-
ever, these steps allow the code to run without errors and with fewer conditions to check. The following
table presents data issues found in the initial input data.

Ground-type data set
Data issues Fix
invalid polygons: self-
intersecting

QGIS: buffer by 0

Bodemfactor == None Skip

Table 5.1: Ground-type data set clean-up.

Buildings data set
Data issues Fix
no unique identifier for LoD1.3 (2
parts have same bag_id)

give id in qgis before starting un-
der ”part_id” column

h_maaiveld == None and
h_maaiveld < h_dak

Skip

Table 5.2: Buildings data set clean-up.

Fixing these issues was enough to be able to merge those two datasets and to generate Scenario
1, which is a simple representative neighbourhood . However, both datasets were not a perfect match,
and joining them in more complicated scenarios, not necessarily covering larger areas, caused multiple
problems. Most of the problems were caused when clipping the ground-type dataset with the buildings
dataset such as dangling segments, spikes in polygons, and sliver polygons. Fixing these problems
created gaps, and fixing gaps resulted in topological inconsistencies. Using our code with this data
would either result in a ”Topological inconsistency” error or an infinite loop. Since cleaning so much
data inconsistencies was not in the scope of the project, constraining the TIN for the rest of the sce-
narios was outsourced.

Outsourcing the constrained TIN also came with some issues. The semantic constrained TIN pro-
vides coordinates with up to three digits after the comma whereas the buildings shapefile provides
coordinates with up to six digits after the comma. This precision discrepancy causes problems with
identifying the triangle in which the reflection point exists. A tolerance was introduced; however, it is

27

28 5. Quality Assessment

not enough and it is better to have consistent precision in datasets or output with the constrained TIN
its respective buildings dataset.

5.2. Quality of Noise Maps
The methodological comparison between the two technical procedures (the RIVM one and the TU Delft
one) was carried out having the noise power level datasets as inputs. Since these were discrete point
shapefiles with power level values at precise locations, a first step for comparison was interpolating the
noise phenomenon in order to generate a continuous field.

This procedure was carried out in a GIS environment, with the possibility of interpolating values by
means of an Inverted Distance Weight (IDW) or a Linear TIN interpolator. Between these two, the
second one displayed better results, not only because the points were already pre-defined in a grid
structure, but also because the IDW interpolator demands a search radius as an input, and choosing
a value for this parameter was problematic: if the search radius were too small or too large, the con-
tinuous field would present undesired artifacts.

Therefore, for each scenario, the TIN interpolator was applied for both point datasets (the RIVM one
and the TU Delft one). Both datasets had the same amount of points at the same position in order to
guarantee the verisimilitude of the comparison, and no other user-defined parameter as chosen. The
continuous fields are then represented with the same colour ramp, ranging from 30 dB to 79 dB, i.e.
the minimum and maximum values for all fields under analysis. The homogeneous treatment for all
maps guarantees the comparison among scenarios and between the two technical procedures.

Successively, the absolute power level difference is generated with map algebra, subtracting, for each
pixel, the RIVM values from the TU Delft ones (TU Delft – RIVM). This first comparator generates one
new continuous field per scenario, named Noise Power Level Difference (dB), which expresses how
far the results generated by the synthesis project are from the currently method used by RIVM.

Albeit interesting to be compared in absolute terms, for the purpose of quality assessment, it is also
advantageous to confront both results in terms of relative noise power level difference. This is achieved
by subtracting values of one field from the other one, and dividing the difference with these subtracted
values ((TU Delft – RIVM) / RIVM). This new field is thus normalised to the range 0 – 100.

Finally, the histogram of the Relative Noise Power Level Difference indicates how far the set of pix-
els is from the 0% value, i.e. the case in which there is no difference at all. The standard deviation
value makes possible to measure the spread of the curve, indicating the closeness of TU Delft results
with respect to the RIVM ones.

Figure 5.1: Noise Map of Scenario 1 by RIVM Figure 5.2: Noise Map of Scenario 1 by TU Delft

5.2. Quality of Noise Maps 29

Figure 5.3: Power Level Difference in dB Scenario 1 Figure 5.4: Power Level Difference in % Scenario 1

Figure 5.5: Power Level Difference Scenario 1

The comparison will start with Scenario 2 because it only deals with direct paths. A qualitative com-
parison shows that the distribution of the sound levels as well as the sound range is similar between
both methods. However, the tested method seems to have more local minima and maxima whereas
the RIVM method seem to be more continuous. This could be attributed to the use of the TIN instead
of height lines. More tests should be done to verify this conclusion.

A quantitative assessment is carried out based on the histogram in figure 5.5. The majority of pix-
els are within plus or minus one decibel from zero. This means that the difference is mostly attributed
to the extra details provided from the TIN.

In Scenario 1, a qualitative comparison shows that both methods present the same distribution of
sound levels and sound range. However, in flat reflecting areas, the RIVM model tends to have a lower
noise level as we get further away from the source. In the absorbing areas the tested method tends
to generate lower noise levels The tested method seems more susceptible to local height differences.
What can also be seen in figure 5.4 is that in occluded areas the RIVM model tends to a higher noise
level. These areas will receive most of their noise coming from reflections. As described, the new
constrained tin caused spikes for reflected cross sections, which occur much more on the buildings in
the lower right side. These spikes will cause the reflection to have a smaller impact on the noise level.
This could be the explanation for the lower noise levels in occluded areas.

A quantitative assessment, based on the histogram in figure 5.10, shows that the majority of pixels are
within plus or minus one decibel from 1.5 dB. The only major difference between the two scenarios are
the introduction of reflections. These reflections could lead to such differences since a longer distance

30 5. Quality Assessment

Figure 5.6: Noise Map of Scenario 2 by RIVM Figure 5.7: Noise Map of Scenario 2 by TU Delft

Figure 5.8: Power Level Difference in dB Scenario 2 Figure 5.9: Power Level Difference in % Scenario 2

is travelled in reflections and the details from the TIN could finally add up and create higher noise levels.

For scenario 3, the noise map could not be produced using the developed method, as there were
inconsistencies in the TIN as described in section 5.1. Therefore, no comparison could be made.

These comparisons clearly show how similar the outputs are between both approaches. This proves
that the current method of modelling noise can be replaced with using the TIN directly.

5.3. Performance
While the performance of the program was not a big concern for the project, since it is only a proof of
concept, it is worth taking a short look at it.

Both the construction of the constrained TIN and post-processing steps will not be evaluated here
since they are irrelevant for the task at hand. These steps will be performed by others using their own
technical procedures. Therefore, their performance is not relevant.

This test was run on Scenario 1, an area of 11400 square meters with a total of ten receiver points.

Quick Numbers:

1. Total Time: 2916.57 seconds

2. Reading Time: 0.74 seconds

5.3. Performance 31

Figure 5.10: Power Level Difference Scenario 2

Figure 5.11: Noise Map of Scenario 3 by RIVM

3. Source Point Time: 125.55 seconds

4. Reflection Path Time: 183.32 seconds

5. Cross-Section Time: 1340.31 seconds

6. Writing Output Time: 1266.65 seconds

From the quick numbers, it becomes clear that there are 2 parts of the program that take up the ma-
jority of its time. The first of which is generating the Cross-Sections. When broken up into generating
Cross-Sections for direct paths and for reflected paths, they have a run time of 661.97 seconds and
678.40 seconds respectively. For direct paths, an optimised technique is used. For all source points
(𝑆 , 𝑆 , ..., 𝑆) on a single ray from the receiver point (𝑅) only one Cross-Section (𝐶𝑆) is created, mainly
for the furthest source point (𝑆). This is the reason they are sorted at the start. For any other source
point (𝑆) that lies on 𝐶𝑆 created between 𝑆 and 𝑅, the Cross-Section is simply split at 𝑆 , creating a
new Cross-Section in the process. This allows for simply copying the data from one 𝐶𝑆 to another and
prevents the need to re-calculate. However, for the reflected paths there is no optimization done at this
point. In the quick numbers this optimization is not represented because there is only one (1) source

32 5. Quality Assessment

Figure 5.12: Zoomed In Area Scenario 2 by RIVM Figure 5.13: Zoomed In Area Scenario 2 by TU Delft

segment. This means that the optimization for direct paths has no benefit as there are no collinear
direct paths. However, in other scenarios it provided a great benefit.

The other section that takes up a lot of time is writing to the output files. This is mainly because of
the need to write a single XML file for each path, be it a direct or a reflected path. Since writing to disk
is already expensive, it is not a surprise that this will take a long time. However, writing to files will
not be needed when implementing the algorithm in C. This is because the Test_cnossos functions can
than be accessed directly.

6
Research Conclusion

In this chapter, the proof of concept will be discussed. Furthermore, the recommendations for further
research are mentioned.

6.1. Discussion
6.1.1. Proof of concept
The proof of concept in this report is an empirical assessment of the possibility to use a TIN for 3D
noise modelling.

The genesis of the concept
As mentioned in section 1.4, using height lines generated either manually or through the use of a TIN is
not an efficient approach for 3D noise modelling. Moreover, since this approach is highly monopolised
by commercial companies in the Netherlands, the community of noise modelling is seeking a more
open-source approach, in line with the open data policy of the EU. Finally, a TIN is already used to
generate the height lines and it is easily and freely generated from the point cloud dataset AHN3.

The hypothesis
The hypothesis set at the beginning of this project is: Using a TIN directly allows automated 3D noise
modelling according to the guidelines of CNOSSOS-EU.
The TIN used represents a DTM of the area studied. When the hypothesis was formulated, this TIN
was initially considered as an LoD 0 TIN [6], which means that the triangles inside the TIN do not hold
any semantic information. The semantic information, ground absorption index or building information,
would be extracted later on from different datasets.

The intervention
In order to prove this hypothesis, the following steps were followed:

1. Extracting cross-sections of the DSM representing the area studied

2. Visually checking these cross-sections in Rhinoceros software

3. Checking the validity of these cross-sections in Test_cnossos software

4. Running the Test_cnossos software with these cross-sections, creating a noise map and com-
paring it with a noise map using height lines

For the first step, it was concluded to create an LoD 2 TIN [6], which constrains the TIN to buildings
and ground absorption and stores semantic information in the triangles without creating a DSM (which
includes not only the natural bare terrain but also the human-made objects). This simplifies the pro-
cessing steps and increases the consistency and time efficiency of the algorithm.

33

34 6. Research Conclusion

The proof
Getting results from the Test_cnossos software and comparing them to noise maps from the height
lines approach proves that a semantic TIN can be used directly for automated 3D noise modelling.
Therefore, an extra step to generate height lines becomes unnecessary. For now, time-efficiency is
not taken as a criterion because, depending on the resolution of the height lines, the performance can
vary greatly. However, with optimisation and the use of a different programming language like C++,
using height lines can become obsolete. In addition to the automation advantage of using a TIN over
height lines, using a TIN gives more accurate cross-sections and thus more accurate noise levels in
Test_cnossos software.

6.2. Recommendations for Further Research
The scope of this project was to conduct scientific research to check if it was possible to derive the noise
propagation paths directly from the TIN instead of the ground height lines. However, some elements
are not included in this project and could be valuable in further research. In this project, only direct
paths, first-order reflections, and vertical diffraction were taken into account. These are all modelled in
the horizontal plane and are therefore in homogeneous conditions. There is also horizontal diffraction
and higher-order reflections that could be modelled. This is quite complex and not required, therefore it
is not a part of this project. However, horizontal diffraction contributes to the sound levels and therefore,
could be interesting in future projects.

In the scope of this project, only roads were taken into account. Besides these noise sources, rail-
ways, industrial buildings and air planes contribute to noise pollution. Therefore, these options could
be explored as well in future research. On top of that, there is a difference between busy and calm
streets that are not taken into account in this project. This could be an option to explore in further
research.

In the current algorithm, buildings with an LoD1.3 are taken into account. However, it could be in-
teresting for further research to integrate LoD2 buildings. This way it will be a truly 3D path-finding
algorithm in which slanted roofs are taken into account.

The absorption in this algorithm is highly deduced. Currently, a ground type is either completely re-
flecting or absorbing. There are no values in between. On top of that, the current algorithm does not
take vegetation into account.

The study area used in this project are tiles from the AHN3. The tiles resemble an area that par-
tially overlaps with the city of Rotterdam. It would be interesting to scale this area up since there are
cities bigger than Rotterdam in Europe that have noise pollution as well.

Finally, another approach to noise modelling could be suitable. Nowadays, the virtual 3D world is
more often used. Therefore, it could be an option to make use of voxelisation. Noise simulation could
be visualised in 3D for a whole city for example. This could be an interesting approach to investigate
in the future.

Bibliography

[1] Moscow method. https://en.wikipedia.org/wiki/MoSCoW_method. Accessed: 2020-
04-27.

[2] 3D geo-information. Automated reconstruction of 3d input data for noise studies. https://3d.
bk.tudelft.nl/projects/noise3d/. Accessed: 2020-04-27.

[3] ECG. Expertisecentrum geluid. https://www.rivm.nl/geluid/
expertisecentrum-geluid. Accessed: 2020-04-27.

[4] European commission. Common noise assessment methods in europe (cnossos-
eu). https://ec.europa.eu/jrc/en/publication/reference-reports/
common-noise-assessment-methods-europe-cnossos-eu. Accessed: 2020-04-29.

[5] Stylianos Kephalopoulos, Marco Paviotti, and Fabienne Anfosso Ledee. Common noise assess-
ment methods in europe (cnossos-eu). page 180, 01 2012.

[6] Kavisha Kumar, A. Labetski, H. Ledoux, and Jantien Stoter. An improved lod framework for the
terrains in 3d city models, 09 2019.

[7] Peters, R. and Commandeur, T and Dukai, B. and Stoter, J. 3d-inputgegevens voor gelu-
idssimulaties gegenereerd uit landsdek. https://3d.bk.tudelft.nl/rypeters/pdfs/18_
geoinfo_noise3d.pdf. Accessed: 2020-04-27.

[8] RIVM. Rijksinstituut voor Volksgezondheid en Milieu. Ministerie van Volksgezondheid, Welzijn en
Sport. https://www.rivm.nl/. Accessed 2020-04-27.

[9] RWS. Rijkswatersaat. ministerie van infrastructuur en watersaat. https://www.
rijkswaterstaat.nl/index.aspx. Accessed: 2020-04-27.

[10] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, May 1996. From the First ACM Workshop on Applied Computational Geometry.

[11] D van Maercke. Task 2: Propagation software modules; user’s and programmer’s guide. unpub-
lished (comes with TestCnossos software; requests mailed to: dirk.van-maercke@cstb.fr, 2012.
company: Centre Scientifique et Technique du Bâtiment (CSTB).

35

https://en.wikipedia.org/wiki/MoSCoW_method
https://3d.bk.tudelft.nl/projects/noise3d/
https://3d.bk.tudelft.nl/projects/noise3d/
https://www.rivm.nl/geluid/expertisecentrum-geluid
https://www.rivm.nl/geluid/expertisecentrum-geluid
https://ec.europa.eu/jrc/en/publication/reference-reports/common-noise-assessment-methods-europe-cnossos-eu
https://ec.europa.eu/jrc/en/publication/reference-reports/common-noise-assessment-methods-europe-cnossos-eu
https://3d.bk.tudelft.nl/rypeters/pdfs/18_geoinfo_noise3d.pdf
https://3d.bk.tudelft.nl/rypeters/pdfs/18_geoinfo_noise3d.pdf
https://www.rivm.nl/
https://www.rijkswaterstaat.nl/index.aspx
https://www.rijkswaterstaat.nl/index.aspx

7
Appendix

In this chapter, some implementations that were modelled for this project but not included in the finale
product are discussed.

7.1. Simplifying Data Structure
A functioning algorithm that simplifies the data structure is implemented, i.e. it removes unnecessary
points. This is done according to the principles of a Douglas-Peucker algorithm, it respects point ma-
terials and extensions (see figure 7.1). However, it has not proven to be required for the program to
run nor has it proven to save time (i.e. the cost to simplifying the path is not necessarily less than the
decrease of sound level computation). The code is still in the program, but the function is not called
for.

Another reason for not implementing is that it is not yet tested with a wide variety of scenarios. The
principle behind Douglas-Peucker is that it keeps, iteratively, adding the vertices which have the high-
est error with the simplified model to this model. This continues until all errors are within a tolerance.
This is preferred, but in the current implementation, it does not yet respect vertical walls, as can be
seen in figure 7.1, vertical wall segments can be combined into one sheer line. Although it has not
been tested, this could lead to an error in the computed noise level.

7.2. Constrained TIN using Triangle library
To prove the advantages of having a semantic constrained TIN, at the start of the project, a trial semantic
constrained TIN was created using the Triangle Python library [10]. To get the constrained TIN, pre-
processing the datasets is required. The datasets are a ground TIN LoD 0, ground type dataset, and
building dataset.

1. In QGIS, buffer the ground type dataset by 0 to fix for the invalid polygons

2. Apply a difference overlay on the ground type dataset by using the LoD1.3 buildings polygons

3. Merge the difference overlay with the buildings dataset.

The resulting dataset is polygons that are either ground type or buildings, no overlaps between
those two which is important for the next steps.

Figure 7.1: Simplification by Douglas-Peucker (Green: Grass, Grey: Road, Pink: Building, Red Dot: Source Point, Blue Dot:
Receiver)

36

7.2. Constrained TIN using Triangle library 37

Input : Cross-Section including 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 and 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠;
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 maximum error between input and output path;

Output: simplified cross-section
𝑠𝑖𝑚𝑝𝑙𝑒_𝑝𝑎𝑡ℎ ← 1st and last vertex, vertex with extension, vertices where material changes;
𝑐𝑢𝑟𝑠𝑒𝑟 = 0 while 𝑐𝑢𝑟𝑠𝑒𝑟 has not reached end of path do

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ← segment from 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑐𝑢𝑟𝑠𝑒𝑟] till next vertex;
if there are no original vertices in between 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 points then

𝑐𝑢𝑟𝑠𝑒𝑟 + 1;
end
𝑚𝑎𝑥_𝑜𝑓𝑓𝑠𝑒𝑡 ← highest offset of vertices in 𝑠𝑒𝑔𝑚𝑒𝑛𝑡;
𝑚𝑎𝑥_𝑜𝑓𝑓𝑠𝑒𝑡 is greater then 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑠𝑖𝑚𝑝𝑙𝑒_𝑝𝑎𝑡ℎ ← insert the vertex with the
𝑚𝑎𝑥_𝑜𝑓𝑓𝑠𝑒𝑡;
𝑐𝑢𝑟𝑠𝑒𝑟 + 1;

end
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 ← remove the materials of the removed vertices;
𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠 ← update with correct locations;

Algorithm 6: Implementation of simplification algorithm for cross-sections(not in use)

In Command Prompt, pip install Triangle, a python library that generates the constrained TIN with
the correct input. In python, first import triangle, then read the resulting dataset (ground type + buildings)
and the LoD 0 TIN using fiona.

The LoD 0 TIN is a 2.5D DTM. However, the TIN can be considered either as a 2D TIN or a 3D
one. Considering as a 3D TIN is computationally expensive and the provided TIN has no vertical walls,
i.e. for each (x,y) there is only one z. This means the 2.5 D TIN can be projected into 2D and as
long as the 2D vertices inserted keep the same order as the 3D vertices, the triangle-base data struc-
ture (v0, v1, v2, t0, t1, t2) after constraining the 2D TIN will always refer to the correct 3D vertices
making it possible to lift the 2D TIN into a 2.5D TIN easily and quickly. Therefore the first step is to
project all vertices to a 2D plane, then add building and ground type segments as constraints to the TIN.

While adding the constraints, the datasets are filtered by making sure that each ground type poly-
gon has an absorption index as an attribute and that a building has roof level higher than ground level.
Along with the segments, the id of the features is extracted as semantics for the TIN to reference back
to either a building class or a ground type class. For the method to work using the triangulate function
from the triangle library, the attribute must be inside the boundary of the respective polygon and the
attribute must be of integer type or can be transformed to integer type. To always get a point in a poly-
gon, two vectors are created, one created by the first and second vertex of the polygon and the other
created by the first and last vertex of the polygon. Those 2 vectors are summed, the result is multiplied
by epsilon and then added to the first vector again.

In the case of a multi-polygon (this can occur with ground types because the difference overlay that
might disconnect one polygon), each polygon gets a unique id.

Finally, the triangulate function of Triangle is applied. This step outputs all vertices from the TIN, ground
type polygons and building polygons, all triangles created as a list of 3 indices that refer to the vertices
list (2D or 3D), a list of triangle neighbours as 3 indices referring to the triangles list, and the attributes
per triangle. However, we noticed that the function adds Steiner points in 2D that don’t exist in the 3D
vertices list which will create problems when triangles have indices to non-existing vertices. For now,
the function seems to add these points at the end of the list. Therefore, the extra points are interpolated
and added to the 3D vertices list.

38 7. Appendix

Input : shapefile with buildings and ground polygons, obj file of an LoD0 TIN
Output: vertices, triangles, neighbours of triangles, and semantics of each triangle in the

constrained TIN

𝑣𝑡𝑠 ← vertices of LoD0 TIN 𝑣𝑡𝑠 ← add vertices of the shapefile;
𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← segments of polygons in shapefile as constraints;
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ← attributes of polygons;
triangulate TIN;

Algorithm 7: Create constrained semantic TIN.

7.3. Second-Order Reflections
Although second-order reflections are not calculated in this synthesis project, it is worth explaining the
reason why such paths were not considered in this 3D noise simulation.

Unlike first order-reflection, multiple-order-reflection are the ones in which there is a combination of
reflection points (REF1, REF2, … REFn) such that, starting from the source point (S), the sound wave
passes through all these reflection points and then finally hits the receiver point (R).

This fact creates a paradoxical situation, in which determining the position of one reflection point de-
pends on the position of the successive reflection point and vice versa. Therefore, second-order re-
flections do not have a straightforward approach like the one of the first-order reflection.

For second-order reflection, there are two unknown points, which creates an under-determined system
of equations. The algorithm, therefore, would have to perform a series of trials, in which candidate
points would be tested for each building wall. If a candidate point (C) is capable of reflecting the sound
wave in such a way that another point in a facade (REF) reflects the wave towards the receiver point
(S), then the path is also possible.

Figure 7.2: Candidate points, located along a building walls, to be tested as valid reflection points second-order reflection.

The heuristics of such an approach increase the computing time of the algorithm according to the
number of candidate points to be tested. The more candidate points present in the model, the more
second-order reflections are computed. However, the heuristics would also require a certain threshold
from the receiver point.

The decrease of computing efficiency caused by multiple-order reflection does not compensate for
the overall accuracy in terms of power level at the receiver points. Moreover, in a meeting with RIVM
and RWS, it was explained that approximately 90% of the noise effect is due to straight paths and first-
order reflections. Additionally, even if second-order reflection is important for a certain scenario (such
as street canyons and open roofs), its results are not realistic, since facades, in reality, are not perfect
mirrors. Therefore, it is worth working with power levels that are underestimated by a few decibels

7.3. Second-Order Reflections 39

rather than losing computing efficiency and accuracy.

Figure 7.3: Computed second-order reflection. Given a source (S) and a receiver (R) points, finding the reflection points REF1
depend of the position of REF2, and vice versa. Considering the approximation of this procedure, candidate points are tested to
check if they produce such a ray that gets close to the receiver point, considering a threshold.

	Introduction
	Context
	About the stakeholders
	Current state of sound propagation in noise simulation
	Problem definition
	Goal
	Scope of this Project
	Requirements (MoSCoW)
	Expected Results

	Research Method
	Method
	Technical Procedure

	Development
	Input
	Raw Data
	Test Scenarios
	Constrained TIN

	Pre-processing
	Finding Source Points
	Propagation Paths: Theoretical Approach
	First-Order Reflection
	R-Tree

	Processing
	Finding the Receiver Triangle
	Straight Walking
	Constructing the cross-sections
	Adding Semantics
	Collinear sources
	Exporting the cross-sections

	Post-Processing
	Receiver Sound Level

	Results and limitations
	Find sources
	Finding propagation paths
	First-Order reflections

	Cross-Sections
	Noise map

	Quality Assessment
	Input Data
	Quality of Noise Maps
	Performance

	Research Conclusion
	Discussion
	Proof of concept

	Recommendations for Further Research

	Bibliography
	Appendix
	Simplifying Data Structure
	Constrained TIN using Triangle library
	Second-Order Reflections

