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Abstract

As the world continues to embrace cloud computing, more applications are being scaled elastically.
Elastic scaling allows applications to add or remove computing resources based on the load experi-
enced by the application. When the load is high more resources are provisioned enabling the applica-
tion to keep up with the load. When the load is low resources are removed ensuring that no resources
are sitting idle. When implemented correctly elastic scaling allows applications to use fewer resources
while maintaining application performance. One type of application that can benefit greatly from elastic
scaling is a distributed stream processing application. Distributed stream processing applications are
suited well for elastic scaling because the data coming through the data stream can be dynamic. This
dynamic data stream makes it difficult to provision the right amount of computing power. One way to
solve this problem is by using an auto-scaler that elastically scales the stream processing application.
In this thesis, we compare different auto-scaling techniques for the distributed stream processing ap-
plication Apache Flink. We implement a modern version of DS2 [20] using metrics native to Apache
Flink. An auto-scaler designed specifically for Apache Flink by Varga et al. [32]. A modified version of
the Dhalion [8], and a simple CPU based Kubernetes Horizontal Pod Auto-scaler (HPA). We compare
the auto-scalers on the average number of resources used, the average latency, and the number of re-
scale operations. Our results show the importance of a cooldown period between scaling events. The
benefits of incorporating metrics from the message queue into the scaling decision, and that throughput
based evaluation methods work well for determining by how much to scale.
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Introduction

Cloud computing has revolutionized how businesses build and operate their applications. Before the
advent of cloud computing, companies would have to procure, configure and upgrade their own hard-
ware. With cloud computing, companies can rent the hardware they need at the click of a button.
This ease of provisioning hardware has allowed developers to create applications that scale out (add
servers) or scale in (remove servers) based on the load on the application. This has historically not
been possible due to the long procurement time of hardware. Companies had to choose between
over-provisioning or under-provisioning their hardware. Over-provisioning would waste resources but
the application would be able to handle more traffic while under-provisioning would maximally utilize
resources but could lead to service level agreement (SLA) violations. Applications that have the ability
to scale in and out are called elastic applications. In this relatively new world of elastic applications,
questions have arisen such as: When should an application scale in or out? By how much should
an application scale in or out? What metrics are good indicators that an application needs to be re-
scaled? A system that answers all these questions is known as an auto-scaler. An auto-scaler monitors
the elastic application and determines when to scale the application in or out and by how much.

Auto-scalers can be divided into two groups, auto-scalers that look at the current state of the system
and base their scaling decisions on this state, these are known as reactive auto-scalers. Or auto-scalers
which forecast the future state of the system and make scaling decisions based on the forecasted future
state, these are known as proactive auto-scalers. The downside of reactive auto-scalers is that they
always lag behind the true needs of the system, as the re-scale operation is triggered only when some
SLA is violated. The proactive auto-scalers can mitigate this problem as long as they can reasonably
forecast the future state of the system [26].

Another emerging trend in the information revolution is stream processing. Traditionally companies
would use batch processing for their data processing and analytic needs. With batch processing data
is collected into batches and analyzed at a specific time period, resulting in a delay between the time
that the data was collected and when it is processed. With stream processing data is processed and
analyzed in real-time. Stream processing also plays an important role in the deployment of machine
learning models. For example, credit card fraud can be detected right after a credit card swipe using a
machine learning model deployed on a stream processing framework. As companies continue to push
for real-time data analytics the adoption of stream processing frameworks will only increase.

Stream processing is suited particularly well for the elastic environment of the cloud as data streams
are inherently unbounded. This unbounded nature of the incoming data is not the case for batch pro-
cessing where the size of the input data is already known. Provisioning resources for batch processing
is relatively straightforward as the system needs to process batches of a certain known size. In re-
gard to stream processing applications, it would be ideal if the provisioned resources are dependent
on the amount of data coming in. If the number of resources is dependent on the amount of data com-
ing in, then a balance can be found between the number of provisioned resources and the streaming
applications SLAs.

The idea of utilizing cloud resources in an environmentally friendly way by using them efficiently
while meeting SLA requirements fits into the green computing paradigm [21]. More efficient usage of
computing resources leads to less energy consumption which in turn leads to less greenhouse gas
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Figure 1.1: Different resource allocation scenarios for a hypothetical sinusoidal system load.

emissions for as long as most energy is obtained from hydrocarbons. Utilizing fewer resources is not
just beneficial for the environment but also for companies’ bottom lines as cloud resources incur costs
based on the pay-as-you-go model. Meeting SLA requirements is also important as users demand
fast response time. No customer wants to wait seconds before a payment is processed or a movie
recommendation is made. The relative importance of resource utilization versus SLA requirements is
dependent on the business context of the application.

In this work we compare six different auto-scalers implemented for Apache Flink running on Ku-
bernetes. The auto-scalers are tested in an experimental setup that creates a sinusoidal load pattern
augmented with some noise. The six implemented auto-scalers are the state of the art stream process-
ing auto-scaler DS2 [20] adapted to use metrics native to Apache Flink, a reactive auto-scaler based
on the Dhalion auto-scaling framework [16], the Kubernetes Horizontal Pod Auto-scaler (HPA) [5], an
auto-scaler designed specifically for Apache Flink by Varga et al. [32], the last two auto-scaler are mod-
ified variants of our DS2 and Varga auto-scaler implementations made after observing the experimental
results of their unmodified counterparts.

1.1. Problem Statement

Many papers have been written proposing different types of auto-scalers for distributed stream pro-
cessing such as DRS [17], DS2 [20], and Dhalion [16], but there are few that compare these different
auto-scalers. Papers such as DRS [17] and Varga et al.[32] show only how their own auto-scaler per-
forms without any comparison to the state of the art. This lack of comparisons is detrimental to the field
of auto-scaling distributed stream processing applications as there is no clear consensus on which
auto-scalers perform best under which scenarios.

The experiments that were performed to test the performance of the proposed auto-scalers were
quite simple. The load on the stream processing application was often static or modified slightly at
a certain time point which was the case for Kalavri et al. [20] and Fu et al. [17]. In a real world
stream processing application the load could be much more dynamic. Without testing auto-scalers for
distributed stream processing under a more realistic system load the true benefit of the auto-scalers
can not be determined.

Furthermore, most experiments do not mimic a real world setup of stream processing applications.
In the paper by Kalavri et al. [20] the source operators of the streaming dataflow also generate the
data. In a real world system, the source of the streaming dataflow would read from a messaging queue
such as Apache Kafka. When such a message queue is in place, metrics from this message queue
can be used to make scaling decision creating more complex auto-scaling solutions which combine
application metrics from both the stream processing application and message queue.
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1.2. Research Questions
Given the problems described we will explore the following research questions in this thesis:

(RQO): Which auto-scalers from the literature can be used for scaling distributed stream processing ap-
plications?

(RQ1): How can we compare these auto-scalers?

(RQ2): How can these auto-scalers be improved?

1.3. Organization

To answer RQO, we explore different auto-scaling implementations from the scientific literature in chap-
ter 2. In chapter 3 we describe the implementations of the different auto-scalers for the stream pro-
cessing framework Apache Flink. In chapter 4 we describe the experimental setup for comparing these
different auto-scalers (RQ1). In chapter 5 we describe the results of our experiments and use these
results to answer RQ2. Finally, in chapter 6 we reflect on the limitations of the experiments and propose
some ideas for future work.






Background & Related Work

In this section, we explain different auto-scaling techniques. We explain some of the basics of stream
processing. Furthermore, we look at the modern infrastructure stack for distributed applications and
what performance metrics can be used by an auto-scaling system. We also describe how the messag-
ing queues present in front of most stream processing applications work. Finally we discuss some of
the promising auto-scalers for distributed stream processing found in the literature.

2.1. Auto-scaling

A system that automatically adjusts the resources needed by an application is called an auto-scaling
system. All auto-scaling systems have to deal with the following problems.

» Over-provisioning: the application has more resources than needed, resulting in resources
sitting idle or operating below their capacity. However, slight over-provisioning of resources is
desirable in practice to cope with minute workload fluctuations [22].

» Under-provisioning: the application does not have enough resources to comply with the SLA
for the application.

» Oscillation: oscillations occur when scaling operations are carried out in quick succession before
the effect of the scaling operation can be properly measured. Using a cooldown period is a
common solution to this problem [10].

Two forms of scaling exist namely vertical scaling (definition 2.1.1) and horizontal scaling (definition
2.1.2). In this thesis, we focus on horizontal scaling because vertical scaling is bounded by hardware
limitations while horizontal scaling is unbounded [31]. Furthermore horizontal scaling of an application
also contributes to fault tolerance and high availability which is not the case for vertical scaling.

Definition 2.1.1 (Vertical scaling). Vertical scaling entails adding more computing power by upgrading
the existing machine in the resource pool of the application.

Definition 2.1.2 (horizontal scaling). Horizontal scaling entails adding more computing power by adding
more machines to the resource pool of the application.

The type of application being re-scaled also matters to the auto-scaling system, in particular, whether
the application has state (definition 2.1.3). Scaling a stateful application (definition 2.1.5) incurs more
overhead than scaling a stateless application (definition 2.1.5). In order to scale stateful applications,
the state has to be saved periodically [13]. When a scaling event is triggered the application expe-
riences some downtime while resources are added or removed. Once this process has finished the
previously saved state can be reloaded onto the available resources and the application can start pro-
cessing again.

Definition 2.1.3 (State). A set of conditions at a moment in time.

5



6 2. Background & Related Work

Definition 2.1.4 (Stateful application). A stateful application is an application that remembers one or
more preceding events in a given sequence of interactions.

Definition 2.1.5 (Stateless application). A stateless application is an application that has no record of
previous interactions, each interaction is handled based entirely on the information that comes with it.

An auto-scaling process satisfies the MAPE loop of autonomous systems [24]. MAPE stands for
monitor, analyze, plan and execute. A monitoring system collects and stores performance metrics,
these metrics are then analyzed to see if they violate an SLA or will violate an SLA in the future. Then
in the planning phase, the auto-scaler determines when to scale and by how much. In the execution
step the application is actually scaled in our out. When designing an auto-scaler only the analysis and
planning steps have to be considered, the monitoring and executing steps are usually taken care of by
other systems.

* Monitor: to meet the SLA requirements of an application the auto-scaling system needs to obtain
metrics about application performance. Cloud providers typically provide these types of metrics
through an API. The quality and availability of these metrics are important for the auto-scaler as
it uses these metrics to make decisions. The metrics looked at by an auto-scaling system can
range anywhere from hardware metrics such as CPU utilization to application-level metrics such
as the queue length of a messaging queue. The cadence at which these metrics are collected is
also important as forecasting methods work better when more data is available.

» Analyze: the analysis step of an auto-scaler can be split into two types, checking if the system is
currently violating any SLA (reactive) or forecasting the observed metrics to see if an SLA violation
will likely occur in the future (proactive). Reactive auto-scalers always lag behind the true needs of
the system as scaling an application is not instantaneous, therefore from a theoretical standpoint,
proactive auto-scalers appear superior given some ability to correctly predict the future needs of
the system.

* Plan: in the planning phase of the auto-scaling system, the auto-scaler must decide how many
resources to add or remove to find the correct balance between resource utilization and SLA
compliance. The system must also decide when would be the best time to scale to optimally use
resources and balance potential SLA violations.

» Execute: the execution step of scaling the application can be done by using the API of the cloud
provider. The cloud provider will then add or remove resources. If the infrastructure that the ap-
plication runs in is configured correctly then all the networking will also be changed automatically.
The execution step can also be handled by container orchestration solutions more on those in
section 2.4.

2.1.1. Auto-scaling Techniques

Many different types of auto-scalers have been designed over the years. In a review article by Lorido-
Botran et al. [22] auto-scalers were classified into five groups: threshold-based, reinforcement learning,
queuing theory, control theory, and time series analysis.

» Threshold-based rules: threshold-based auto-scalers are the simplest. If a certain metric is
above or below a threshold for a set amount of time the auto scaler will scale in or out. This type
of reactive auto-scaler is widely used and available from most cloud providers.

* Reinforcement learning (RL): reinforcement learning based auto-scalers model the auto-scaler
as an agent in an environment. The agent has three possible moves, do nothing, scale in or
scale out. Based on the decisions of the agent, it receives a reward, the reward is based on
some function that combines both resource utilization and SLA compliance. Using RL the auto-
scaler can learn through trial and error a scaling policy. In theory, this type of auto-scaler sounds
great as no tuning of the auto-scaler will be required it just "learns”, but in practice, RL is plagued
by long learning times resulting in low industry adoption [22].

* Queuing Theory (QT): queue theory based auto-scalers model the system as a queue. A queue
has items going in, waiting, and going out. From an application perspective, this could be seen
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as requests coming in, being processed, and leaving. When a system can be modeled as queue
useful properties can be derived such as queue length. These properties can then be used to
determine if the system is appropriately scaled given the input and output rates. Queue theory
based models work best when an application is in steady state meaning the input and output
rates of the queue are not changing. However, in practice, steady state is rarely the case so the
queueing model needs to be recomputed often [22].

» Control Theory (CT): control theory based auto-scalers also rely on a model of the application.
Control theory based auto-scalers work by trying to maintain the value of a controlled variable
(e.g. CPU utilization) close to a certain target value, by adjusting the manipulated variable (e.g.
number of servers). The effectiveness of control theory based auto-scalers is model-dependent
similar to queuing based auto-scalers. An example of a feedback control system can be seen in
Figure 2.1, within the controller there is a model that determines what the value of the manipulated
variable should be based on the control error.

Control Manipulated Controlled

error variable variable
—> : >—>] Controller H System }——)
Target |

|
value 1 Feedback }

Figure 2.1: Block diagram of a feedback control system.

» Time series analysis (TS): time series based auto-scalers use time series forecasting methods
to predict performance metrics of the system. The forecasted performance metrics allow the auto-
scaler to proactively make scaling decisions. The effectiveness of time series based auto-scalers
is highly dependent on getting an adequate fit of the time series model on metric data. If a poor
fit is obtained then the forecasts will not be representative of the actual observed values.

2.2. Stream Processing

Stream processing is a term that encompasses a variety of systems. A stream processing system (SPS)
typically contains modules that compute in parallel [28]. These modules can have different functions.
Sources that pass data into the system; operators that perform some computations and sinks that pass
data from the system. SPS use streams to communicate between different modules. In Figure 2.2
an architecture of a system that uses a SPS is displayed. Various devices stream data to a message
queue, the message queue is then consumed by the stream processor which performs some form of
computation and publishes the results to various destinations.

Definition 2.2.1 (stream). A stream is an infinite list of elements ay, a;, a,, ... taken from some data
set of interest A, and is usually formalized mathematically as a function T - A, wherein T= N = {0,1,2,
...} represents discrete time [28].

Since a data stream is an infinite list of elements (definition 2.2.1) that can vary, there is an inherent
need for scaling. This is not the case for batch processing systems as with batch processing systems
the size of the number of records to be processed is already known before the batch job is started.
In this work, we compare different auto scalers for the stateful stream processing framework Apache
Flink [12]. Apache Flink was released in 2011 and has seen widespread industry adoption.
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Apps \ APIs
Devices\} Message Queue —»| Stream Processor Visualizations
/
Sensors Alerts
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Figure 2.2: Architecture of an application that obtains data from various sources, stores data in a message queue which is
consumed by a streaming framework.

2.2.1. Datastream Operations

Data going through a datastream or stored in batches can be analyzed using queries. A query is
simply a request to the application managing the data, to retrieve and/or modify said data. A common
language to express queries on datasets is called Structured Query Language(SQL). Distributed stream
processing frameworks like Apache Flink do not directly support SQL for processing data streams.
Developers have to write code that extends common data processing operations available in Apache
Flink. Some common operations are:

» Map: A map function takes one element and maps it to another element.

* Filter: A filter function evaluates a boolean expression for each element and keeps only those
for which the expression is true.

+ Keyby: A keyby function partitions the datastream into disjoint datastreams. The keyby function
is vital for distributed stream processing as it ensures that records with the same keys go to the
same nodes for processing.

* Window: A window function groups data according to some characteristics. For example, all
data that arrived in the last 5 seconds.

* Union: Combines one or more datastreams into a single datastream.

* Window Join: Joins two datastream into one based on a certain key and common window.

In Listing 2.2.1 an example query is shown on a dataset containing bids for an auction. The query
selects the ids and amounts of all bids that are higher than 1000. In Figure 2.3 this query is shown as
a dataflow graph. The data containing the bids is read from a source, passed through a filter operator
where only bids higher than 1000 are selected, and then passed on to a sink where the resulting data
is stored. This dataflow graph can be parallelized and therefore distributed over multiple computing
nodes.

SELECT bids.id, bids.USD amount, FROM bids WHERE bids.USD amount > 1000;

Figure 2.3: Dataflow graph with parallelism of 1 of SQL query found in Listing. 2.2.1
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Figure 2.4: Dataflow graph where filter operator has parallelism of 2.

2.2.2. Auto-scaling Stream Processing

Auto-scaling a stream processing application requires two main steps. The first step is to determine
whether the application is over or under-provisioned, this can be done by observing and analyzing
application metrics which will be discussed in section 2.4.1. Once it is determined that the application
is not provisioned correctly it needs to be re-scaled. The dataflow graph of the query being executed
can be re-scaled by adding or removing nodes and adjusting the parallelism of the operators in the
dataflow graph. As an example, given the dataflow graph in Figure 2.3, its operators can be parallelized
to increase throughput as can be seen in Figure 2.3. However, finding the optimal parallelism is non-
trivial as operators have inter-dependencies and operators have different processing rates. Some
operators like maps typically process records quite fast while joins are much slower. Apache Flink
[12] has recently released Reactive Mode [2] which abstracts away the scaling of the Apache Flink
dataflow graph. If resources are added or removed from the Flink cluster then Apache Flink will scale
each operator to the maximum possible parallelism on the provided resources [2]. This abstraction
simplifies developing auto-scalers for Apache Flink, however, the amount of resources to add or remove
still needs to be determined by the auto-scaler.

2.3. Messaging Services

Message queuing systems have become commonplace in distributed systems. Applications need to
communicate to exchange data with each other which can become complex quite quickly [23]. With-
out a messaging service layer between applications, every application needs custom integrations to
exchange data as can be seen in the left part of Figure 2.5. This integration problem can be solved by
putting a message queueing system in-between applications which produce and consume data. A mes-
sage queue provides a common interface for exchanging data which greatly simplifies the application
architecture as can be seen in the right of Figure 2.5.

(Consumer 1] | Producer 1 |

{Consumer 2| [ Producer 2 ——[Messaging System——{Consumer 2

Producer 3 {Consumer 3| | Producer 3 | Consumer 3
Figure 2.5: On the left, a distributed system without a messaging queue. On the right, a distributed system with a messaging
queue.

2.3.1. Apache Kafka

Apache Kafka [1] was initially open-sourced as a message queuing platform in 2011 by LinkedIn. Since
then its functionality has evolved considerably and now also supports stream processing. In this thesis,
we will only be utilizing Kafka as a message queue and use Apache Flink for stream processing. A
diagram of a Kafka cluster can be seen in Figure 2.6. A Kafka cluster contains one or more brokers, a
broker is simply a server that is running Kafka. Producers which produce data and consumers which
consume data can connect to the Kafka cluster. Data is produced to and consumed from a topic. A
topic can be further split into one or more partitions. Finally, the replication factor of the topic has to be
set which defines the number of copies of the topic. There is always one partition which is the leader.
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Data from producers is written to the leading partition. The Kafka cluster automatically copies data
from the leading partition to the replicas. Kafka is designed for high availability, if a broker goes down
Kafka will elect a new leader partition. Producers and consumers will also not notice if a broker goes
down as failover happens seamlessly as long as there are enough brokers and the replication factor is
appropriately set.

[ | Leader
Topic A partition 0 [ Replica

Topic A partition 2

Topic B partition 1

Topic A partition 1

Broker O

Topic A partition 2

Topic B partition 0

Topic A partition 1

Topic B partition 2

Broker 1

opie partfion ™

Topic B partition 1

Topic A partition 0

Topic B partition 2

Broker 2
Kafka Cluster

Figure 2.6: The architecture of a Kafka cluster with three brokers, two topics, three partitions per topic, and a replication factor
of two.

2.4. Modern Infrastructure

The runtime environments of applications are constantly evolving. A couple of years ago virtual ma-
chines (VMs) were the go-to solution for running applications, but the industry has now shifted to con-
tainers. Containers can be thought of as lightweight VMs, as they are orders of magnitude smaller than
VMs [25]. This smaller size allows more applications to be put on a single compute node as can be
seen in Figure 2.7. This smaller size is a result of using kernel-level namespaces (a feature of Linux
kernels) which isolate the container from the host. A container is therefore simply an isolated process
[25]. Now imagine an organization that has to manage hundreds or even thousands of containers.
How will containers be restarted when they go down? How will secrets be managed? This is where
container orchestration technologies, such as Kubernetes [5], come into play. Kubernetes is one of the
most used container orchestration solutions currently on the market. Kubernetes also comes with its
own auto-scaling solution which we will explain further in section 3.2.
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App 1 App 2 App 3

Container Engine

0S

Hardware

Node

Figure 2.7: Modern solution stack for running containerized applications.

2.4.1. System Metrics
The runtime environment generates metrics of all levels of abstraction of the computing node, from
hardware metrics all the way up to application metrics. An auto-scaling system needs these metrics to
measure and analyze application performance and check if SLA violations are occurring or are likely to
occur in the future. Different auto-scaling systems look at different metrics, the simplest auto-scalers
look at low-level metrics such as CPU utilization. This type of auto-scaler is then usable for every
application as every application is generating CPU utilization metrics. For more complex applications,
metrics such as message queue size could be looked at. However, an auto-scaler that uses queue
metrics would then only be appropriate for applications that actually utilize a message queue or can be
modeled as one. Examples of common metrics can be found below.
» Hardware metrics
- CPU utilization: the amount of time the CPU is used divided by the elapsed time
- Memory usage: the amount of memory being used
* OS metrics
- CPU time per process: the amount of time the CPU is used for a specific process divided
by elapsed time
- Load: number of processes waiting for CPU time
» Stream processing metrics
- Latency: the time it takes for a record to be processed
- Throughput: number of records processed in a given time period
- Consumer latency: the amount of time a record spends in a queue before being consumed
by a streaming service.
- Consumer lag: the amount of unconsumed records in the message queue
- Operator idle time: the amount of time an operator is idle
- Operator busy time: the amount of time an operator is busy
- Operator throughput: the amount of records per second processed by an operator
- Backpressure: this metric will be explained in section 2.4.2
* Message queue metrics
- Queue length: length of the queue
- Arrival rate: number of records arriving in a given period of time

2.4.2. Backpressure

Backpressure occurs in a stream processing system when some operator(s) cannot process records
at the rate at which they are being received. This causes the input buffers of that operator to build up,
then the upstream operators’ output buffers will also fill up [3]. When the output buffer of an operator
is full its processing rate is reduced. Backpressure propagates all the way through the system until it
reaches the source operator. In Figure 2.8 the buffer queues of the map operators are shown, if the
source operator sends records to the map operators at a rate faster than they can be processed, the
buffer queues will fill up. Once the buffer queues of the map operators are full, the output buffer of the
source operator will fill up. When the source operators’ output buffer is full, its processing rate will be
reduced.
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Figure 2.8: Dataflow graph showing buffer queues of operators and Kafka queue.

2.4.3. Prometheus

All the metrics mentioned in the previous section need to be exposed and collected. This can be done
with a monitoring application called Prometheus [6]. Prometheus scrapes metrics from application
endpoints and stores them in a time series database. These metrics can then be queried using the
Prometheus Query Langauge (PromQL). Apache Flink, Apache Kafka, and Kubernetes all support
settings for publishing their metrics to a specific endpoint. Prometheus is then configured to scrape
these endpoints, allowing for monitoring of all applications in the cluster.

2.4.4. Apache Flink on Kubernetes

Apache Flink can be run on Kubernetes. To run Apache Flink on Kubernetes we need a pod containing a
Jobmanager container and a pod containing a Taskmanager container. A pod is the smallest deployable
unit of compute that can be created and managed in Kubernetes'. A pod can contain one or more
containers. The Jobmanager pod contains the Flink query to be executed, manages checkpoints, and
coordinates the Taskmanagers. The pod containing the Taskmanager will do the actual computations
instructed by the Jobmanager. Kubernetes can be instructed to remove or add Taskmanger pods.
When the amount of Taskmanagers changes and Reactive Mode (see section 2.2.2) is enabled the
Jobmanager will automatically rescale the query on the available Taskmanagers. We will use different
auto-scalers to instruct Kubernetes to add or remove Taskmanagers based on metrics monitored by
Prometheus. An overview of a simple setup of Apache Flink on Kubernetes can be seen in Figure 2.9.

Kubernetes

Manage

Scaling
metrics

Taskmanager 0

Auto Scaler

Rescale
Taskmanager 1

Figure 2.9: An overview of the pods required to run Apache Flink as well as Prometheus for monitoring metrics and an
auto-scaler to add or remove Taskmanagers.

2.5. Related Work

Fu et al. published a paper where they introduced DRS a queue theory based auto-scaler for real-
time stream analytics systems [17]. DRS uses queueing networks to model the dataflow graph. By
using metrics from the streaming system such as input rate, processing rate, number of processors per
operator, and inter-arrival times of inputs to an operator in combination with a queueing model, DRS is

"https://kubernetes.io/docs/concepts/workloads/pods/
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able to estimate the latency per operator given a certain number of processors assigned to that operator.
By being able to estimate the latency of every operator the entire latency of the streaming dataflow
can be determined by summing up the latencies of each operator. DRS is then able to determine the
amount of processors required per operator to satisfy a latency SLA. Fu et al. [17] then go on to conduct
some experiments with DRS under a dynamic load. DRS is shown to be able to successfully adjust
a streaming dataflow given a variable input rate. A downside of DRS is that it is not able to deal with
dataflow graphs with multiple sources or sinks, as the latency calculation of the entire system is then
no longer the sum of the latency of all individual operators.

In 2017 Floratou et al. published a paper about self-regulating stream processing in Heron [16].
Self-regulation includes, auto-scaling the streaming job, self-healing after a crash, and detecting and
removing slow instances. Floratou et al. then go on to introduce a system that allows a stream process-
ing engine to become self-regulating called Dhalion. The system has three parts, a symptom detection
phase, a diagnosis generation phase, and a resolution phase. In the symptom detection phase, spe-
cific metrics are measured such as backpressure and buffer queue lengths. These symptoms are then
used to diagnose different problems such as over or under-provisioning, or slow computing nodes. In
the final phase, Dhalion has policies to resolve the diagnosed problems. The authors then go on to
implement an auto-scaler using the Dhalion system. The auto-scaler detects backpressure and pend-
ing packets. Where pending packets are the amount of records in the input queues of the operators.
If there is no backpressure and the number of pending packets is close to zero then the auto-scaler
will scale down the operator by some configurable factor. If there is backpressure and the number of
pending packets for the same operators are equal then there is under-provisioning. The factor that
the operator that created the backpressure is scaled up by is determined by the amount of time that
the operator is consuming data normally divided by the amount of time that data consumption for that
operator is suspended. If 80% of the time data is consumed normally by the operator and 20% of
the time data consumption is suspended then the operator is not able to handle i of the data and thus
needs to be scaled up 25%. The authors then go on to test the auto-scaler in some simple experiments
where the desired throughput must be reached given a certain parallelism. The auto-scaler is able to
reach the desired throughput after some time but takes many re-scale operations to get to the required
parallelism to meet the desired throughput.

In 2018 one year after the Dhalion paper was published Kalavri et al. published a paper proposing
a new method for auto-scaling distributed streaming dataflows named DS2 [20]. DS2 combines a
general performance model of the of the streaming dataflow with some system metrics to estimate the
true processing and output rates of individual operators [20]. This performance model and the true
processing rates could then be used to determine the optimal parallelism of the streaming dataflow.
The details of how DS2 works will be discussed in section 3.5. Kalavri et al. showed that DS2 was
able to converge to an optimal parallelism in fewer steps than Dhalion, on a range of queries. DS2
was shown to be stable and have short settling times. Where stability entails that the parallelism of
the dataflow is not oscillating, the short settling time refers to the fact that within a few configuration
changes a parallelism is found to satisfy a target throughput rate. For DS2 to find the optimal parallelism
the input rate to the streaming dataflow should be constant. However, in a real-world system, this is
often not the case. The experiments carried out by Kalavri et al. do not contain substantial experiments
about how DS2 performs in a dynamic environment.

More recently in 2021, Varga et al. [32] published a paper where they described a scaling architec-
ture for Apache Flink deployed on Kubernetes. The scaling architecture utilized the Kubernetes HPA
framework described later in section 3.2. Varga et al. incorporated metrics from the Kafka queue in
front of the stream processing system. The auto-scaler built by Varga et al. [32] was not compared
against other auto-scaling systems. The authors did investigate the effect of state size on scaling
downtime. Larger state times result in a longer scaling downtime. There was some variance in the
scaling downtime caused by variability in the time to delete and initialize pods. Further experiments
were conducted where the Kubernetes variability was removed by directly measuring the restore time
of a single operator. The authors found that there was a linear relationship between state size and
load time. Varga et al. suggested that future auto-scalers should take into account the state size and
scaling downtime when making scaling decisions.

Almost no previous research has been done comparing multiple different auto-scalers for distributed
stream processing under a dynamic load. The comparison made between Dhalion [16] and DS2 [20]
by Kalavri et al. was geared towards finding the optimal parallelism given a certain throughput target.
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The target throughput was changed once during one of the experiments by Kalavri et al. but this can
hardly be considered a dynamic load. However previous research has been conducted on comparing
auto-scalers for general-purpose scaling of stateless applications like web servers. One such paper
by Bauer et al. proposed a new auto-scaler called Chameleon [11]. Bauer et al. then went on to com-
pare Chameleon with five popular auto-scalers from the literature: Adapt [9], Hist [30], ConPaaS [15],
Reg [19], and Reactive [14]. Unfortunately, we cannot use these auto-scalers for distributed stream
processing as they do not take into account the inter-dependencies between resources. These auto-
scalers are developed mostly for stateless web servers. Bauer et al. generate workloads based on 5
real-world traces. Experiments were run in 3 different environments, a private CloudStack-based envi-
ronment, a public AWS EC2 environment, and an OpenNebula based cloud environment. The evalua-
tion metrics used by Bauer et al. come from a paper by Herbst et al. [18]. Herbst et al. define metrics
called over and underprovisioning accuracy. Which determines how much an auto-scaler was over or
under-provisioned throughout an experiment. Herbst et al. also define the over and underprovision-
ing timeshare which determines the amount of time the auto-scaler is either over or under-provisioned
throughout the experiment duration. For exact details on how to calculate these metrics, we refer to
the original paper by Herbst et al. [18]. Bauer et al. ended up showing that the Chameleon auto-scaler
performed significantly better than the other auto-scalers.

2.6. Conclusion

In this chapter, we explored the theory behind auto-scaling systems and how auto-scalers satisfy the
MAPE loop of autonomous systems. We looked at different auto-scaling techniques; rule based, time
series, reinforcement learning, queue theory, and control theory. We also explored some of the basics
of stream processing and how to scale stream processing frameworks. The architecture of Apache
Kafka was explained in detail as well as what metrics are important for monitoring stream processing
applications. Finally, we looked at related work on auto-scaling distributed stream processing applica-
tions. From the discussed auto-scalers we will be implementing DS2 [20] as it is highly regarded based
on the number of citations. We will be implementing a modified version of Dhalion as the original version
of Dhalion performed worse than DS2 in the experiments conducted by Kalavri et al. [20], however,
some of the principles explained in the Dhalion paper can be used to create a new auto-scaler. We will
also be implementing the auto-scaler proposed by Varga et al. [32] as it has been published recently
and is easy to implement with the Kubernetes HPA. We will not be implementing DRS [17] as the un-
derlying queuing model is too rigid. The underlying queueing model does not allow for the modeling of
dataflow graphs with multiple sources which is quite common for stream processing queries. Finally,
we will also be implementing a Kubernetes CPU HPA explained further in section 3.2. The Kubernetes
CPU HPA will serve as a baseline as it is an out of the box general purpose auto-scaler.



Auto-scaler Implementations

In this section, we describe the metrics, evaluation criteria, and implementations of six different auto-
scalers. The first auto-scaler is the out of the box horizontal pod auto-scaler (HPA) [4] from Kubernetes
configured to use CPU utilization. The second is the reactive auto-scaler proposed by Varga et al.
[32] which we will refer to as Vargav1. The third is an adaptation of the Varga et al. auto scaler named
Vargav2. The fourth is an adaptation of the Dhalion auto-scaler [16], the fifth is a modern implementation
of DS2 [20] called DS2-modern, and the final auto-scaler is a modified DS2 auto-scaler that has some
extra logic to deal with the presence of a queue in front of the streaming application called DS2-modern-
adapted.

3.1. Auto-scaling Architecture

All auto-scalers for stream processing systems have to solve three key problems. The first problem
that must be solved is how to detect if there is over or under-provisioning. This detection is achieved by
monitoring certain metrics which vary across auto-scaler implementations. After detecting an undesired
state the auto-scaler has to determine how many resources should be added or removed. The amount
of resources to add or remove can be determined using a performance model or could simply be a
user configurable parameter. Finally, the scaling operation has to be carried out. For all auto-scalers,
we will use Flinks’ Reactive Mode to re-scale the dataflow topology. Flinks Reactive Mode sets the
parallelism of all operators to the maximum value possible given the provided resources.

Detection Evaluation Resolution

Figure 3.1: The three main steps an auto-scaler for stream processing has to implement.

3.2. Kubernetes HPA

The first implemented auto-scaler is the horizontal pod auto-scaler which is build into Kubernetes. The
horizontal pod auto-scaler automatically adds or removes pods based on a certain metric. A pod is
a group of one or more containers. The HPA will add or remove pods containing an Apache Flink
Taskmanger application. The Apache Flink Jobmanager will then rescale the dataflow topology on the
remaining Taskmanager pods.

3.2.1. Metrics

The target metric configured for the Kubernetes HPA is CPU utilization. CPU utilization is a commonly
used metric to scale applications, as CPU utilization can give an indication of how much load an appli-
cation is under. When there are multiple Taskmanagers, the CPU utilization of each task manager pod
is averaged.

15
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3.2.2. Evaluation
Once the Kubernetes HPA has obtained the CPU utilization value it is evaluated against a target CPU
utilization to determine the ideal number of Taskmanagers. The HPA determines the ideal number
of replicas using equation 3.1. As an example let's say the desiredMetricValue is set to 60%, the
currgntMetricValue average across all pods is 90% and currentReplicasis 10. Thenthe desiredReplicas =
10 * = = 15.

2

currentMetricValue

desiredReplicas = ceil |currentReplicas *

(3.1)

desiredMetricValue

3.2.3. Implementation

The YAML file for the Kubernetes HPA can be found in Figure 3.2.3. The performance metric chosen
can be seen on line 10 of Figure 3.2.3. The minReplicas and maxReplicas determine the minimum
and maximum amount of Taskmanagers. For scaling down there is a default stabilization window of 5
minutes. When the HPA is evaluating the state of the system it looks at all desired states within the past
5 minutes and selects the state with the maximum desired number of Taskmanagers. This stabilization
window tries to prevent the auto-scaler from oscillating.

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: flink-taskmanager
namespace: default
spec:
maxReplicas: 16
minReplicas: 1
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: flink-Taskmanager

Figure 3.2: Kubernetes YAML configuration for CPU based HPA.

3.3. Vargav1

The second implemented auto-scaler was proposed in a paper by Varga et al. [32]. The proposed
auto-scaler leverages the Kubernetes HPA framework in combination with two custom metrics designed
specifically for Apache Flink.

3.3.1. Metrics

Relative lag change The first metric used by Varga et al. is called Relative Lag Change. To obtain the
change of the lag we must first obtain the lag. The lag refers to the number of records stored in the
Kafka queue that have not yet been consumed by Apache Flink. Since the data is split up into partitions
on the Kafka cluster, the total lag is the sum of the lag for each partition as can be seen in equation
3.2. Flink does not keep track of the lag for every partition only the maximum lag across all partitions,
so the maximum lag value is used.
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totalLlag = Z records_lag max; x assigned_partitions; (3.2)

i€Epartitions

To obtain the change in the totalLag (in records/second) the derivative of the totalLag is taken
using the deriv function available in PromQL. Varga et al. [32] then divide the derivative of the totalLag
by the rate at which the job is processing records. The rate at which the job is processing records is
obtained by summing up the records_consumed_rate for the source operators. Dividing the rate of
change of the totalLag by the totalRate at which messages are consumed and adding 1 gives a metric
that determines the required amount of replicas. The calculation for the relativeLagChangeRate can
be found in equation 3.3. The target value for the relativeLagChangeRate is 1 as in that case the
system can keep up with the load.

deriv(totalLag)
totalRate

relativeLagChangeRate = 1+ (3.3)
Utilization The second metric used by Varga et al. [32] is called Utilization. The Utilization metric
uses the the idleTimeMsPerSecond metric exposed by Apache Flink. This metric represents the time
in milliseconds that an operator is idle. A task can be idle due to two reasons, there is no data to be
processed, or data being processed by the system is bottle-necked at some downstream operator. The
Utilization metric is calculated using equation 3.4 The target utilization is set to a number less than 1.

L avg(idleTimeMsPerSecond)
utilization =1 — 1000 (3.4)

In the original implementation by Varga et al., the source operators were excluded from the uti-
lization calculation due to the observation that the idleTimeMsPerSecond was either 0 ms when the
job was able to keep up with records and there was no lag or 1000 ms when the job was at maxi-
mum capacity. In Flink 1.14.3 the Kafka consumer was replaced with a Kafka Connector for which
the idleTimeMsPerSecond metric behaves normally so the source operators were not removed in our
implementation.

3.3.2. Evaluation

Since the Vargav1 auto-scaler is implemented using the Kubernetes HPA framework the evaluation
formula is the same as described previously in equation 3.1. However, for Vargav1 there are two
metrics evaluated. When the Kubernetes HPA evaluates two metrics the higher desired replica count
is always chosen.

Given the fact the higher of the two desired replica counts is chosen. A problem with the
relativeLagChangeRate arises. When the auto-scaler can keep up with the number of records and
there is no lag it might be appropriate to scale down. However the relativeLagChangeRate in this case
is 1, so no down-scaling can occur as the dersiredMetricValue equals the currentMetricValue so
the number of replicas remains constant. This problem can be resolved by adding another term to the
equation for the Relative Lag Change metric which can be seen in equation 3.5 When the totalLag
is below the user set threshold the currentMetricValue becomes negative. The HPA will then only
use the Utilization metric to make scaling down decisions as the utilization metric will yield the larger
desired number of replicas.

totalLag — threshold
abs(totalLag — threshold)

*relativeLagChangeRate (3.5)

3.3.3. Implementation

Vargav1 was implemented using Kubernetes HPA YAML which can be seen in Figure 3.3.3. To use
the Kubernetes HPA with custom metrics a Prometheus adapter [7] was installed on the cluster. The
Prometheus adapter obtains and computes the metrics from Prometheus and makes them available to
the Kubernetes HPA.
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apiVersion: autoscaling/v2beta?
kind: HorizontalPodAutoscaler
metadata:
name: Taskmanager-hpa
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: flink-Taskmanager
minReplicas: 1
maxReplicas: 16
metrics:
- type: Pods
pods:
metric:
name: utilization
target:
type: AverageValue
averageValue: 0.7
- type: Pods
pods:
metric:
name: lag rate
target:
type: AverageValue
averageValue: 1
behavior:
scaleDown:
stabilizationWindowSeconds: 480

Figure 3.3: Kubernetes YAML configuration for Vargav1.

3.3.4. Vargav2

After running experiments described in chapter 4 and observing the performance of Vargav1 described
in chapter 5 we decided to try to improve Vargav1 by implementing a cooldown period. A cooldown
period is beneficial for scaling stream processing systems because when the system re-scales, lag
builds up. This lag needs to be processed when the stream processing system is back online causing
a temporary spike in metric values when working away the lag. The Kubernetes HPA framework does
not allow for the easy configuration of a cooldown period after scaling. We implemented a type of
cooldown by multiplying both the Utilization and Relative Lag Change metric by the term in equation
3.6. The cooldownPeriod is a user configurable parameter. When there has been a scaling operation
during the cooldownPeriod the derivative will be non-zero. The expression will then evaluate to zero.
During the cooldownPeriod the Utilization and Relative Lag Rate will both be zero. To prevent the
HPA from scaling down when both metrics evaluate to zero the downscale stabilization window can be
increased.

deriv(numRegisteredTaskmanagers[cooldownPeriod]) == (3.6)

3.4. Dhalion-adapted

The original implementation of the Dhalion [16] was much more than just an auto-scaler, it could also
detect slow instances and data skew. We have decided to create a new auto-scaler inspired by some of
the Dhalion features. In the DS2 paper by Kalavri et al. [20] experiments showed that DS2 outperformed
Dhalion in every scenario. This is why we have decided to not implement the original version of Dhalion
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but to create a new auto-scaler with some similarities to the original Dhalion implementation.

3.4.1. Metrics

The original implementation of Dhalion contained a backpressure detector [16], to detect backpressure.
This is one of the features we keep from the original version as backpressure is a good indicator for an
under-provisioned streaming dataflow.

In the original implementation, there was a pending packets detector. The pending packets detector
determined the input buffer queue lengths of the operators. If the buffer queues are close to zero then
the streaming dataflow can handle the input rate. If the buffer queues are non zero then the streaming
dataflow could likely not handle the input rate. For our implementation, we will not be looking at buffer
queues directly but at the Kafka queue in-front of the streaming application. If the Kafka queue length
is close to zero then the streaming dataflow can handle the input rate. If the Kafka queue length is
non zero then the streaming dataflow can likely not keep up. However, instead of looking at the length
of the Kafka queue, we look at the consumer latency. The consumer latency represents the average
amount of time a record spends in the Kafka queue. The consumer latency is more interpretable when
compared to the Kafka queue size.

We also use the Average CPU utilization, Kafka input rate, the derivative of Kafka queue lag, and
throughput, the reasoning for these metrics will be explained in the evaluation section. A list of all
metrics used for our Dhalion implementation can be seen below:

+ Maximum backpressure: this metric returns the maximum of the amount of time that each
operator is backpressured in ms.

» Average CPU utilization: the average CPU utilization of the Taskmanagers.

» Average event time lag: the amount of time that a record spends in the Kafka queue averaged
by partition.

» Kafka input rate: the number of records per second written into Kafka.
» Throughput: the number of input records to the Sink.

 Derivative of Kafka lag: the number of records the Kafka lag is increasing/decreasing per sec-
ond.

3.4.2. Evaluation

The stream processing system is under-provisioned if the average event time lag is above a user
specified threshold and the derivative of the Kafka lag is positive. If the Kafka lag is increasing then the
streaming processing system cannot keep up with the input rate. The event time lag threshold ensures
that a scale up is not triggered due to noise.

When the stream processing system can keep up with the input rate there is no event time lag, if
there is also no backpressure and the CPU utilization is low then the stream processing system is likely
over-provisioned. The evaluation criteria for over-provisioning is therefore: the maximum backpressure
is below a user specified threshold, the event time lag is below a user specified threshold and the CPU
utilization is below a user specified threshold.

In the original implementation of Dhalion [16] the scale up factor was determined for each operator
individually. The scale up factor was computed by dividing the amount of time data consumption was
suspended by the amount of time the operator was processing records normally. For example, if 20%
of the time data consumption was suspended and 80% data flow was normal then the scale up factor

is % = 25%. Instead of calculating the parallelism for each operator, we will take a global approach to
determine the scale up factor. We look at the throughput of the entire system and the input rate to the

Kafka cluster. The scale up factor is then W, as an example say the input rate to the Kafka
Throughput

queue is 200 records per second and the throughput is 100 records per second then the scale up factor
is i—gg = 2. The scale up factor only works for scaling up because when there is lag the throughput will
be at a maximum value. When the cluster is over-provisioned the throughput will be equal to the input
rate of the Kafka cluster. To scale down we will use a user configurable percentage, which is the same
method as in the original Dhalion implementation. We also implemented an over-provisioning factor

and cooldown period.
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3.4.3. Implementation
Dhalion-adapted is deployed to the Kubernetes cluster as a python script running in a container. Metrics
are queried from the Prometheus REST API. The user configurable parameters are:

+ COOLDOWN The minimum amount of time between scaling operations.
LATENCY_THRESHOLD The event time lag threshold.
OVERPROVISIONING_FACTOR The percentage to over-provision the Taskmanagers by.

BACKPRESSURE_THESHOLD The minimum backpressure threshold value.
CPU_THESHOLD The minimum CPU utilization threshold value.

MIN_REPLICAS The minimum amount of replicas.

MAX_REPLICAS The maximum amount of replicas.
SCALING_FACTOR_PERCENTAGE The percentage to scale the Taskmanager down by.

3.5. DS2-modern

The fifth implemented auto-scaler is a modern version of DS2 created by Kalavri et al. [20]. DS2 works
by using knowledge of the topology of the dataflow graph in combination with measured processing
rates to determine the true processing rate of operators. Once the true processing rates of the operators
are known the optimal parallelisms can be computed.

3.5.1. Metrics

When Kalavri et al. [20] implemented DS2 in Apache Flink version 1.4.1 in 2018, few metrics were
exposed natively by Apache Flink. Kalavri et al. edited the source code of Apache Flink to measure
the input rate per operator, output rate per operator, and the useful time per operator. In 2022 the patch
applied to create those metrics no longer works on Flink 1.14.3. However, Flink now provides similar
metrics to those implemented by Kalavri et al. therefore we decided to use the metrics provided by
Apache Flink to implement DS2. The metrics we used to implement DS2 are:

* numRecordsInPerSecond - The number of records the operator receives per second.
* numRecordsOuPerSecond - The number of records the operator outputs per second.

* busyTimeMsPerSecond - The time (in milliseconds) the operator is busy (neither idle nor back
pressured) per second.

* kafka_server_brokertopicmetrics_messagesin_total - The number of records the Kafka clus-
ter has received.

3.5.2. Evaluation
To understand how DS2 evaluates the state of the streaming dataflow we first have to establish some
definitions. Kalavri et al. define the following terms:

Definition 3.5.1 (Useful time). The time spent by an operator instance in deserialization, processing,
and serialization activities.

When the useful time is measured, it can be used to calculate the true processing rate.

Definition 3.5.2 (True processing rate). The number of records an operator instance can process per
unit of useful time.

In our implementation, we use the busyTimeMsPerSecond metric described in the previous section
as the useful time equivalent. We chose the busyTimeMsPerSecond metric because it measures
the duration an operator is actually processing and not idle or backpressured. The processing time
includes the serialization, deserialization, and processing times which were measured in the original
implementation of the useful time metric by Kalavri et al. [20]. The true processing rate is calculated
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by dividing the input rate per operator by the useful time of that operator. Using the true processing
rates and knowledge of the dataflow topology the optimal parallelism can be computed using equation
3.7 There is one problem though, the source operators do not have an upstream operator. So for
the Kafka connector operators we use the Kafka input rate as the aggregate true output rate of the
upstream operator when determining the optimal parallelism.

. ) aggregated true output rate of upstream operators
Optimal parallelism for operator 0; = average true processing rate of o, (3.7)
i

To calculate the optimal parallelism of the first operator in the dataflow topology DS2 used a statically
set input rate as the numerator in equation 3.7. We however want DS2 to adjust to a dynamic input rate.
So for the first operator in the dataflow topology, we set the numerator for the in equation 3.7 equal to the
rate of the number of messages being produced to the Kafka cluster. This rate can be obtained by using
the PromQL rate function on the kafka_server_brokertopicmetrics_messagesin_total metric.

3.5.3. Implementation

In the original version of DS2 the parallelism was adjusted per operator. We are only interested in
the maximum parallelism outputted by DS2 as this is what we re-scale the number of Taskmanager
to, Flinks Reactive Mode will then scale each operator to the maximum parallelism. Scaling operators
individually results in more scaling overhead when running on Kubernetes because the Jobmanager
executing the query has to be stopped and a new one has to be started. We implement the DS2 evalua-
tion script in a container by using the original Rust code which was open sourced by Kalavri et al. [20].
Metrics are collected from Prometheus to compute the processing rates. The true processing rates and
dataflow topology are then used as inputs to the DS2 script, which outputs the optimal parallelism for
the dataflow graph. The maximum parallelism is then used as the required number of Taskmanagers.
We also implemented a cooldown period after scaling events and an overprovisioning factor. The user
configurable parameters are:

+ COOLDOWN The minimum amount of time between scaling operations.

+ OVERPROVISIONING_FACTOR The percentage to overprovision the Taskmanagers by.
* MIN_REPLICAS The minimum amount of replicas.

* MAX_REPLICAS The maximum amount of replicas.

3.5.4. DS2-modern-adapted

The original version of DS2 does not take into account the lag built up in the Kafka queue. Which
led to some poor results explained in detail in section 5.12. The DS2-modern implementation is only
concerned with the input rate into the Kafka queue and whether it can handle that rate. To make DS2
aware of the lag in the Kafka queue we add the event time lag metric. If the event time lag is above
a certain threshold then scaling up is allowed, if the Event time lag is below a certain threshold then
scaling down is allowed. These parameters are meant to stabilize DS2-modern as for example DS2-
modern-adapted cannot scale down if there is still lag. The user configurable parameters are:

+ COOLDOWN The minimum amount of time between scaling operations.

+ OVERPROVISIONING_FACTOR The percentage to overprovision the Taskmanagers by.

* MIN_REPLICAS The minimum amount of replicas.

*+ MAX_REPLICAS The maximum amount of replicas.

*+ SCALE_UP_LAG_THRESHOLD The event time lag threshold before scaling up is allowed.

+ SCALE_DOWN_LAG_THRESHOLD The event time lag threshold before scaling down is al-
lowed.

"https://github.com/strymon-system/ds2
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3.6. Conclusion

In this section we have described the metrics, evaluation methods, and implementation of six different
auto-scalers. Starting from the simplest auto-scaler a Kubernetes HPA which scales based on CPU
utilization. A more complicated Kubernetes HPA utilizing custom metrics proposed by Varga et al. [32]
designed for stream processing. A second version of the Varga auto-scaler with a cooldown period. An
adapted implementation of Dhalion using a variety of metrics along with an evaluation strategy based
on Kafka input rates and throughput. Finally, we implemented DS2 using metrics provided by Apache
Flink. We also adapt DS2 to take into account the Kafka queue as the original implementation was not
designed with a queue application in front of the stream processing system. In the next chapter we will
describe the experimental setup used to compare these different auto-scalers.



Experimental design

In this chapter, we describe the experimental setup used to compare the different auto-scalers. We
explain the dataflow topologies of different queries from the Nexmark dataset [29], the setup of our
Kubernetes cluster, the different auto-scaler configurations, the varied parameters across experiments,
and the load pattern used.

4.1. Nexmark Queries

To evaluate the different auto-scalers we use three different queries from the Nexmark benchmark
suite [29] for stream processing applications. The Nexmark dataset contains queries over three entity
models representing an online auction application [29]. The three entity models are:

» Person: a person submitting an item for auction or making a bid.
* Auction: represents an item under auction.

+ Bid: represents a bid for an item under auction.

The three chosen queries represent some basic operations possible in Apache Flink but by no
means represent all possible operations. The reason for testing the auto-scaling applications with
different queries is that different queries have different dataflow topologies. In a longer dataflow graph
backpressure will take longer to propagate than in a shorter dataflow graph. The different queries also
have different operators which can produce different metric behaviors. The behavior of the metrics
monitored by each auto-scaler will thus differ per query. To account for this variable behavior per query
we test the auto-scalers on the three queries specified in the next section.

4.1.1. Query 1

The first query we use is query 1 in the Nexmark benchmark. The query answers the question "what
are the values of the bids in euros?” The query illustrates a simple mapping operation, where the bid
values are converted from USD into euros. In the original implementation of the Nexmark benchmark,
a custom Flink source was constructed which generated the bids. In our setup, we create a Kafka
producer which produces bids to a Kafka topic. The bids are then read by the Flink Kafka connector
source. Finally, the records are disposed of with a Sink operator. The dataflow graph of Query 1 can

be seen in Figure 4.1

Figure 4.1: Dataflow graph of Nexmark query 1.
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4.1.2. Query 3

The second query chosen for our experiments is query 3 from the Nexmark benchmark. Query 3
is more complicated than query 1 as it contains multiple sources and joins them together. Query 3
answers the question: "What people are selling in the states Oregon, Idaho, or California, and in what
auctions?” For those familiar with SQL the query can be seen in Listing 4.1.2. The dataflow graph of
this query can be seen in Figure 4.2.

SELECT Istream(P.name, P.city, P.state, A.id)
FROM Auction A [ROWS UNBOUNDED], Person P [ROWS UNBOUNDED]
WHERE A.seller = P.id AND (P.state = 'OR' OR P.state = 'ID' OR P.state = 'CA');

Source Join

Figure 4.2: Dataflow graph of Nexmark query 3, the bottom source represents a Kafka connector consuming a datastream of
Persons from Kafka. The person stream is filtered to only contain persons from Oregon, Idaho, and California. The top source
is a Kafka connector consuming a datastream of Auctions from Kafka. The two data streams are joined in the join operator and

discarded by the Sink operator.

4.1.3. Query 11

The third query answers the question: "How many bids did a user make in each session they were
active?” This question can be answered using session windows. In this query, a session window collects
the bids for a specific user until there is a gap larger than a certain amount of seconds in between bidding
events. As an example let's say we have four bids all from the same user. The bids were generated at
minutes 0, 1, 3, and 7 the session window size is set at 3 minutes. Then bids 0,1,3 would be grouped
into one session and the bid with event time 7 would be in its own session. Within these windows, the
aggregation would be performed. Query 11 is different from the other two queries because it is stateful.
The session windows collect and hold previous records, if the system were to crash these session
windows would have to be reloaded or the computation would be incorrect. The SQL equivalent of
query 11 can be seen in Listing 4.1.3. The dataflow topology of query 11 can be seen in Figure 4.3.

SELECT Dbid.bidder, COUNT(*) FROM bid TIMESTAMP BY bid.datetime
GROUP BY bid.bidder, SessionWindow (seconds, 10)

Session

Window

Figure 4.3: Dataflow graph of Nexmark query 11, bids are read from Kafka using the Kafka connector source. The timestamp
of the bids is then made available to Apache Flink using the Timestamps operator. The bids are then collected and aggregated
in the Session Window before the aggregated data is sent to the Sink.

4.2. Load Profile

The load experienced by a stream processing system can vary greatly per use case. Consumer-facing
applications typically have some form of periodic behavior while other systems might have static or
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more random load patterns. To test both the up-scaling and down-scaling capabilities of the auto-
scalers have chosen to generate a sinusoidal load pattern for each query mentioned above. The rate
at which records are produced is updated every minute i using equation 4.1. We also add some noise
to the sinusoidal load pattern to make sure that the tested auto-scalers can handle a noisy environment.
To add the noise to the signal we add randomV alue to the signal which is a positive or negative number
in a certain range.

I
) (4.1)

RecordsPerSecond; = randomValue + verticalShift + Amplitude * cos(i * period

4.3. Evaluation Metrics

We will compare the different auto-scalers on three different metrics, the average latency of the records
in the Kafka queue (also know as the event time lag) for the duration of the experiment. The average
number of Taskmanagers for the duration of the experiment and the number of re-scaling operations.
The average amount of Taskmanagers will allow us to compare the amount of resources used by the
different auto-scalers. Stream processing applications often have latency SLAs so we use the average
latency as one of our evaluation metrics. We expect to see a trend that with more resource consumption
the average latency will go down. The number of rescaling operations is chosen as an evaluation metric
as in our setup the rescale operations do not incur large overhead due to the small experiment scale.
In real-world use cases re-scaling can incur a much larger overhead so auto-scalers that scale less
frequently are preferred.

4.4. Experimental Setup

To test the different auto-scalers we set up a Kubernetes cluster using the Google Cloud Kubernetes
engine. The cluster contains three Kafka brokers. A load generator that produces records to a Kafka
topic. Apache Zookeeper which coordinates the Kafka brokers. Flink Taskmanagers which execute
the operations of the streaming dataflow. A Flink Jobmanager which manages the streaming dataflow
coordinating the Taskmanagers and taking checkpoints and savepoints. Checkpoints and savepoints
are stored by mounting a locally running NFS server as an NFS volume on the Flink Jobmanagers and
Taskmanagers. The NFS server uses a GCP persistent disk with 10GB of storage to save files. The
cluster also contains a Prometheus pod which scrapes and stores all metrics from applications within
the cluster. An overview of the different applications present in the cluster can be seen in Figure 4.4
The versions of the various technologies used are: Google cloud GKE version: 1.21.6-gke.1503, Node
type: e2-standard-4 (4 vcPU, 16 GB memory), Number of nodes: 4, Apache Kafka version: 2.7.0,
Apache Flink version: 1.14.3, Zookeeper version: 3.4.10, Prometheus version: 2.34.0, Prometheus
adapter version: 0.9.1.

4.5. Experiment Monitoring

Given the experimental setup described in the previous section, a large number of metrics will be
collected by Prometheus. To observe the health of the streaming dataflow we only need to look at a
subset of these metrics. In Figure 4.5 the important metrics used to monitor the health of the streaming
dataflow are shown. The Kafka input rate represents the number of records per second written to
the Kafka brokers. Taskmanagers represents the number of registered Taskmanagers available to the
Flink Jobmanager. The lag represents number of records stored in the Kafka queue not yet consumed
by Flink. The latency represents the average number of seconds that a record spends waiting in the
Kafka queue. The CPU utilization represents the average CPU utilization of the Taskmanagers. The
busy time represents the average busy time per operator. The idle time represents the average idle
time per operator. Finally, the backpressure represents the maximum backpressure of all operators.
These metrics will be used in the next chapter to explain experimental results.
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Figure 4.4: An overview of the pods contained in the Kubernetes cluster used to run experiments.

Kafka input rate (records per second)

200000 /W ‘

Taskmanagers

-

1e7 " ' " ' Lag (records)

n_ Ao /N n n_n A ﬂ\_/W‘LN_/\_n_r ‘

Latency (s)

A A I\ A /\A‘{\ A A A A N‘\ /N”\. M | A L ‘

Throughput (records per second)

]
|
i
S T B e T B et St O et A M e A
)
)
|
i

1
2

CPU utilization

N L i Ly |

Busy time (ms)

N A P b A e~ N

Idle time (ms)

VW W T W VO Wy WV V¥ ‘

Backpressure (ms)

A A A ~ NN AN Mﬂj\ N ‘
100 120

0.
0.
200

0 20 40 140

Y
S

80
Minutes

Figure 4.5: Telemetry metrics collected per experiment.



4.6. Experiment Parameters 27

4.6. Experiment Parameters

For each of the three queries, we use a slightly modified load pattern. The load pattern is different
per query because the computational complexity is different per query. Therefore the three experiment
queries have different values for the load generation equation 4.1. The values used for the load gen-
eration function can be seen in Table 4.1. For query 3 there are two source functions the rate of each
source function is half the value obtained from equation 4.1.

Query Experiment Time (minutes) period (minutes) yshift amplitude randomValue (range)
query-1 140 60 150,000 100,000 (-10000, 10000)
query-3 140 60 50,000 25,000 (-10000, 10000)
query-11 140 60 100,000 50,000 (-10000, 10000)

Table 4.1: Parameters for load generation function described in equation 4.1 for each of the three queries.

For each query, we run the auto-scalers with three different values of a specific metric. For the
CPU HPA, we change the target CPU utilization as this is the only metric the CPU HPA uses to scale.
For Vargav1 and Vargav2 we change the target utilization because the utilization has a wider range
of values depending on the state of the streaming dataflow and thus has a larger effect on scaling
decisions than the relativeLagChangerate which according to Varga et al. [32] should have a target
of 1 or slightly below 1 to add some over-provisioning. For Dhalion-adapted there are quite a few
configurable parameters. We chose to adjust the LATENCY _THRESHOLD to see if scaling earlier or
later would have an effect. We did not alter other parameters as we had limited cloud computing budget.
For DS2-modern and DS2-modern-adapted we only change the OVERPROVISIONING_FACTOR as
DS2-modern does not have any other parameters except COOLDOWN which we decided to keep
constant across experiments to limit experiment count. The values for all auto-scalers were simply
best guesses, no hyper-parameter tuning has taken place due to the excessive effort that would be
required. All auto-scalers have the same minimum amount of 1 Taskmanager and maximum amount
of 16 Taskmanagers. The configurable parameters for the autos-scalers are as follows:

CPU HPA
+ varied parameter: CPU utilization, values 50, 70, 90

Vargav1

+ Stabilization window: 480 seconds

» Threshold: 50000 records

+ varied parameter: utilization, values 0.3, 0.5, 0.7

Vargav2

« Stabilization window: 480 seconds

» Cooldown period: 2 minutes

* Threshold: 50000 records

 varied parameter: utilization, values 0.3, 0.5, 0.7

Dhalion-adapted

+ COOLDOWN: 120 seconds

+ OVERPROVISIONING_FACTOR: 20%

+ BACKPRESSURE_THESHOLD: 100 ms

+ CPU_THESHOLD: 60%

* SCALING_FACTOR_PERCENTAGE: 20%

* varied parameter: LATENCY_THRESHOLD: 1, 5, 10 seconds

DS2-modern
+ COOLDOWN: 240 seconds
+ varied parameter: OVERPROVISIONING_FACTOR, values 0%, 33%, 66%

DS2-modern-adapted
+ COOLDOWN: 240 seconds
+ SCALE_UP_LAG_THRESHOLD: 5 seconds
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+ SCALE_DOWN_LAG_THRESHOLD: 1 second
 varied parameter: OVERPROVISIONING_FACTOR, values 0%, 33%, 66%

4.7. Conclusion

In this chapter we described the experimental setup. We explained the topologies of Nexmark queries
1,3 and 11. The sinusoidal load profile used during the experiments. The three evaluation metrics used
to compare the different autoscalers: average number of Taskmanagers, average latency, and number
of rescaling operations. We also discussed the applications running in our Kubernetes environment.
Finally, we described the auto-scaler parameters used throughout the experiments. In the next chapter
we will discuss the results of these experiments.



Results

In this chapter, we discuss the results of our experiments. We show scatter plots of the different auto-
scalers with different parameters for each query type. We also show the actual numerical results of the
experiments including the number of rescaling operations per auto-scaler in section 5.7. Finally, we
investigate individual experiments to explain the causes behind some unexpected results.

5.1. Query 1

In Figure 5.1 we can see the results for query 1. Most auto-scalers are towards the left of the Figure at
around an average of 3 to 4 Taskmanagers. This indicates that the auto-scalers are using resources
efficiently. Within this 3 to 4 auto-scaler range, there is a large difference in the average latency be-
tween the different auto-scalers. The pattern observed by the points plotted on the scatter plot is not
unexpected as there is a trade-off between the number of resources used and average latency. If a
lot of resources are used then the average latency is low, if few resources are used then the average
latency is expected to be higher. Vargav1 appears to be an outlier in regards to this trend, the reason
for this will be discussed later in section 5.9.

5.2. Query 3

In Figure 5.3 we can see the same pattern as for query 1. Most auto-scalers are clustered towards the
left of the scatter plot, which is again not unexpected as auto-scalers try to use resources efficiently.
The average number of Taskmanagers required does appear to be higher for most auto-scalers. This
is due to the increased computational complexity of query 3. The average latency is much higher for
most auto-scalers for query 3 when compared to query 1, this can again be attributed to the increased
complexity of the dataflow topology.

5.3. Query 11

In Figure 5.5 again we see auto-scalers clustered towards the left between 4 and 6 Taskmanagers
on average. However, there are quite a few outliers that were not observed in query 1 and query
3. These outliers which have both high average latency and high average number of Taskmanagers
include Dhalion-adapted and the CPU HPA with a utilization target of 70%. This is unexpected as we
expect auto-scalers with a high number of average Taskmanagers to have a low latency as observed
in queries 1 and 3. The cause for these outliers has to do with backpressure buildup explained in detail
in section 5.8.

29
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5.4. Results Query 1
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Figure 5.1: Scatter plot showing the average number of Taskmanagers used and average latency for the different auto-scalers
for query 1.
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Figure 5.2: Zoomed in version of scatter plot showing the average number of Taskmanagers used and average latency for the
different auto-scalers for query 1.
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5.5. Results Query 3
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Figure 5.3: Scatter plot showing the average number of Taskmanagers used and average latency for the different auto-scalers
for query 3.
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Figure 5.4: Zoomed in version of scatter plot showing the average number of Taskmanagers used and average latency for the
different auto-scalers for query 3.
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5.6. Results Query 11
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Figure 5.5: Scatter plot showing the average number of Taskmanagers used and average latency for the different auto-scalers

for query 11.
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Figure 5.6: Zoomed in version of scatter plot showing the average number of Taskmanagers used and average latency for the
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5.7. Summarized Results

Auto-scaler Metric value Latency (s) Taskmanagers Latency + Taskmanagers Scaling operations
HPA 70 1.16 5.02 6.18 28
Vargav2 30 2.05 4.60 6.65 26
Vargav2 50 3.39 3.33 6.72 17
Dhalion-adapted 01 3.58 3.16 6.74 22
Dhalion-adapted 05 3.88 2.89 6.77 20
Dhalion-adapted 10 5.58 3.15 8.72 23
HPA 50 0.79 8.25 9.04 40
HPA 90 6.31 3.84 10.15 16
Vargav2 70 9.25 2.96 12.21 13
DS2-modern-adapted 33 12.88 2.95 15.83 16
Vargav1 50 1.95 13.96 15.91 39
Vargav1 30 1.09 14.88 15.97 40
Vargav1 70 4.34 12.87 17.21 49
DS2-modern 33 17.59 2.90 20.49 16
DS2-modern-adapted 66 21.13 3.36 24 .49 21
DS2-modern 66 25.24 3.19 28.43 24
DS2-modern-adapted 00 43.19 2.35 45.54 1
DS2-modern 00 121.59 219 123.78 13

Table 5.1: Query 1 experiment evaluation metrics per auto-scaler.

Auto-scaler Metric value Latency (s) Taskmanagers Latency + Taskmanagers Scaling operations
Dhalion-adapted 05 3.18 4.27 7.45 23
Dhalion-adapted 01 3.27 4.25 7.53 24
Dhalion-adapted 10 4.58 4.36 8.93 30
HPA 70 6.16 524 11.41 27
HPA 50 3.58 9.71 13.29 42
Vargav1 30 2.97 14.78 17.74 37
Vargav1 50 3.82 14.35 18.17 43
Vargav1 70 10.18 11.46 21.65 47
Vargav2 30 19.94 6.42 26.36 44
DS2-modern-adapted 66 22.78 3.65 26.42 16
DS2-modern 66 25.18 3.50 28.68 20
Vargav2 50 31.79 4.43 36.22 32
DS2-modern-adapted 33 48.23 3.16 51.39 1
Vargav2 70 47.43 4.07 51.50 33
HPA 90 121.42 3.13 124.55 8
DS2-modern 33 164.96 2.97 167.93 22
DS2-modern-adapted 00 247.74 3.1 250.85 9
DS2-modern 00 971.28 2.52 973.80 31

Table 5.2: Query 3 experiment evaluation metrics per auto-scaler.

Auto-scaler Metric value Latency (s) Taskmanagers Latency + Taskmanagers Scaling operations
DS2-modern-adapted 33 2.94 4.20 7.13 14
DS2-modern 66 2.38 5.63 8.01 28
DS2-modern-adapted 66 3.56 5.79 9.35 15
Vargav2 50 4.89 5.71 10.60 27
Vargav2 30 3.69 8.15 11.84 29
HPA 50 3.16 10.74 13.91 44
DS2-modern 00 13.60 3.75 17.35 24
Dhalion-adapted 05 13.91 3.85 17.76 22
Vargav1 50 4.44 14.30 18.74 40
Vargav1 30 4.14 15.31 19.45 36
Vargav1 70 6.27 13.92 20.19 38
Vargav2 70 18.01 4.75 22.76 29
DS2-modern 33 18.67 6.31 24 .98 25
Dhalion-adapted 10 43.46 5.20 48.66 27
HPA 70 48.16 7.88 56.04 26
Dhalion-adapted 01 64.66 7.62 72.28 29
DS2-modern-adapted 00 92.06 6.47 98.53 18
HPA 90 428.35 2.73 431.08 7

Table 5.3: Query 11 experiment evaluation metrics per auto-scaler.
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5.8. HPA

The HPA performs well for queries 1 and 3 but performs poorly for query 11.

For query 1 the CPU HPA performs well for all three CPU utilization values as can be seen in Figure
5.2. When the target CPU utilization value is increased, fewer resources are used. However, this
comes at the cost of some average latency. For query 3 the CPU HPA still performs quite well with a
target value of 70 % as can be seen in Figure 5.4. For query 3 the performance of the HPA with a target
CPU utilization of 90% is poor because backpressure builds up due to not scaling. When backpressure
builds up the average CPU utilization stays at around 90% which is the target so no scaling command
is issued. The HPA with a target CPU utilization of 50% has low average latency but used almost twice
as many resources as the HPA with a target CPU of 70% as can be seen in Table 5.2. For query 11 all
the HPA perform quite poorly compared to the other auto-scalers as can be seen in Figure 5.5.

The HPAs poor performance for query 11 is a result of a scale-up loop which could be prevented
with a cooldown period.

In Figure 5.7 we see some key experiment metrics for the HPA with a target CPU utilization of 70%.
At around 50 minutes the HPA makes a decision to scale up by one Taskmanager. Due to the scaling
operation, some latency builds up. Flink starts processing records again and the throughput is higher
than before the scaling operation. Instead of working away the lag, the HPA decides to scale up again,
resulting in more lag build-up. When Flink is reconfigured it starts to process the records stored in the
Kafka queue spiking the CPU utilization again triggering a scale-up operation. The HPA gets stuck
in this loop and scales up to the maximum number of allowed Taskmanagers. This can be prevented
by having a cooldown period after scaling but the Kubernetes HPA does not provide a configurable
cooldown period out of the box. After the maximum number of Taksmanagers is reached we expect
the throughput to go up very high as all the lagged records are processed away. However, this does
not happen as can be seen between minutes 70 and 90. The throughput is "stuck” at around 100,000
records per second. The throughput is limited because the job is backpressured as can be seen in the
Backpressure plot in Figure 5.7. The backpressure is high due to the computationally and memory-
intensive session windows unique to query 11.
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Figure 5.7: Telemetry data of HPA with target CPU utilization of 70% for query 11.
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5.9. Vargav1

Vargav1 has low average latency but high average number of Taskmanagers due to constantly
being overprovisioned.

Vargav1 performed poorly in all experiments. From Figure 5.2, Figure 5.4 and Figure 5.6 we can
see that the Vargav1 auto-scaler has a high average number of Taskmanagers. Constantly having a
high number of Taskmanagers results in a low average latency as there are always enough resources
available to process the incoming load. When varying the utilization parameter between 30, 50, and
70% we see that with a higher utilization fewer resources are used and the average latency is slightly
higher. This is is the same trend observed with the CPU HPA. This is not unexpected as the utilization
metric used by Vargav1 is a subset of the CPU utilization metric.

Vargav1 is almost constantly overprovisioned due to its difficulty scaling down caused by lack
of cooldown period.

The constant overprovisioning is caused by difficulty scaling down as can be seen in Figure 5.8. After
scaling down some lag builds up, when the dataflow is back online there is a large amount of lag to be
processed. These records are consumed at the maximum possible rate by Flink spiking the utilization
triggering a scale-up event. So almost every time Vargav1 attempts to scale down it scales right back
up again. This can be prevented by implementing a cooldown which we have done for Vargav2.

5.10. Vargav2

Adding a cooldown period to Vargav1 yielded a great reduction in the number of resources used
while slightly increasing the average latency.

The performance of Vargav2 is much better than Vargav1 as can be seen in Figures 5.2, 5.4 and 5.6.
The improved performance is not surprising as Vargav2 can scale down normally due to the imple-
mented cool-down mechanic described in section 3.3.4. The normal scale-down behavior can be seen
in Figure 5.9. Vargav2 does have a higher average latency but this is a result of using fewer resources
than Vargav1. The trend identified for Vargav1 with regards to varying the utilization parameter is the
same for Vargav2, a higher utilization uses fewer resources but at a cost of higher average latency.

5.11. Dhalion-adapted

Dhalion-adapted performed well for queries 1 and 3 due to its latency threshold metric.
Dhalion-adapted performed well compared to the other auto-scalers for queries 1 and 3, but not for
query 11 as can be seen in Figures 5.1, 5.3 and 5.5 respectively. In Figure 5.10 we can see the
telemetry data for query 1 Dhalion-adapted with a latency threshold of 5 seconds. Every time some
latency builds up above the set threshold and the auto-scaler is not in cooldown more resources are
added. Resources are only added when Flink cannot keep up with the input rate resulting in low
resource utilization. At the same time when Flink is underprovisioned the latency in the Kafka queue
increases and more resources are added until the latency is below the threshold value keeping the
latency low throughout the experiments. The latency threshold for scaling up allows Dhalion-adapted
to efficiently balance resource consumption and latency, resulting in a good performance for queries
1 and 3. For queries 1 and 3 varying the latency threshold value had little effect as can be seen in
Figures 5.2, 5.4.

Dhalion-adapted had mixed results for query 11 due to a low cooldown period causing instability.
In Figure 5.11 we can see the telemetry data for query 11 Dhalion-adapted with a latency threshold of
1 second. At approximately 50 minutes Dhalion-adapted starts to scale up in rapid consecutive steps.
Dhalion-adapted determines the scale-up factor by looking at the input rate and throughput value as
described in chapter 3. However the throughput has not stabilized yet, Dhalion-adapted is using a
lower value for throughput making the scale-up factor greater than 1, triggering a scaling event. This
problem could likely be resolved by increasing the cooldown period letting the throughput stabilize
before computing the scale-up factor. The variability in the results of Dhalion-adapted with different
latency thresholds is due to the fact that for a threshold of 1 and 10 seconds the scale-up problem
described above was observed. For the experiment with the latency threshold of 5 seconds it appears
we got "lucky” and the scale-up loop did not take place. With an increased cooldown we would expect
the Dhalion-adapted auto-scalers with 1 and 10 seconds latency thresholds to be close to the one with
a 5 second latency threshold as we observed in query 1 and query 3.
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Figure 5.8: Telemetry data of Vargav1 with target utilization of 50% for query 1.
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Figure 5.9: Telemetry data of Vargav2 with target utilization of 50% for query 1.
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Figure 5.11: Telemetry data of Dhalion-adapted with a latency threshold of 1 second for query 11.
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5.12. DS2-modern

DS2-modern performed poorly for queries 1 and 3 due to overestimating the true processing
rates of operators.

For DS2-modern the results are mixed across the experiments. In Table 5.1 we see the results of
all DS2-modern experiments for query 1. The DS2-modern with 0% over-provisioning performed so
poorly that the average latency was over 100 seconds. The reason DS2-modern performed so poorly
was because it was constantly under-provisioned. The under-provisioning was due to the fact that the
true processing rates of the operators was overestimated. The true processing rates of the operators
was estimated using the output rate of the upstream operators divided by the busy time per operator.
The busy time per operator was often lower than expected for query 1. At maximum throughput, the
busytime per operator would often be around 800 ms while it would be expected to be at 1000 ms.
This low busy time results in a higher than expected true processing rate per operator and thus a lower
maximum parallelism. This under-provisioning can be mitigated with the over-provisioning factor. We
see that when over-provisioning by 66% and 33% the results of DS2-modern are much better. For
query 3 we observe the same as can be seen in Table 5.2, DS2-modern under-provisions causing high
average latency. For query 11 the model does not appear to under-provision as much this is caused
by the higher computational load of query 11 increasing the busyTimePerSecond metric resulting in a
lower estimated true processing rate and thus a higher maximum parallelism.

DS2-moderns’ performance model does not yield the appropriate parallelism required by Flink
due to the input rate used to determine the optimal parallelism differing from the actual input
rate into Flink.

The DS2 performance model tries to find the optimal parallelism based on the input rate into the Kafka
queue (producer rate). However, the input rate (consumer rate) into the stream processing system is
not equal to the input rate into the Kafka queue. If lag builds up then the stream processing system
should scale up to deal with this lag, however, the DS2 model is partially oblivious to the lag as it bases
the optimal parallelism on the input rate to the Kafka queue. DS2 does measure the processing rates
of the operators which would be higher than expected when lagged records are being processed. This
difference between the rate at which DS2 thinks it should be processing records and the rate at which
it is actually processing records causes the model the oscillate occasionally worsening performance.
The input rate of DS2 cannot be set based on the aggregated output rate of the Flink Kafka connector
because optimal parallelism of the Kafka connectors also needs to be determined. Furthermore, DS2-
modern occasionally makes decisions that are not ideal such as scaling down when there is lag present,
this phenomenon can be observed in Figure 5.12 where at around 50 minutes a scale down occurs
while there is a large amount of lag present. This can be mitigated by only scaling down if the lag/latency
is below a certain threshold as described in section 3.5.4.

5.13. DS2-modern-adapted

DS2-modern-adapted had fewer scaling operations compared to DS2-modern resulting in in-
creased performance for most experiments.

DS2-modern-adapted implemented some safeguards into DS2-modern stopping it from scaling down
if the latency is above a certain threshold and triggering model evaluation if the latency is above a cer-
tain threshold. In Table 5.1 we can see that the DS2-modern-adapted outperformed its DS2-modern
counterpart with the same over-provisioning factor. This same fact holds for query 3 as can be seen in
Table 5.2. For query 11 the results are a bit mixed between DS2-modern and DS2-modern-adapted,
DS2-modern with an over-provisioning factor of 66% appears to outperform DS2-modern with an over-
provisioning factor of 66% as can be seen in table 5.3. The reason for this is that DS2-moderns perfor-
mance model worked exceptionally well for query 11 versus query 1 and query 3. So DS2-modern made
few decisions that led to excess latency. However, the difference in the number of scaling operations
between DS2-modern with an over-provisioning factor of 66% is large. In a setup where there is more
overhead for rescaling DS2-modern-adapted would likely come out on top as it is more conservative
with its scale-up operations.
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For query 11 DS2-modern-adapted with 0% over-provisioning unperformed by a large amount
when compared to DS2-modern with 0% over-provisioning due to a scale-up loop.

For query 11 DS2-modern-adapted with a scale-up factor of 0% performed very poorly as can be seen
in Table 5.3, the root cause was a too small scale-up step in combination with a short cooldown period.
The small scale up resulted in lag not being worked away, the DS2-modern-adapted model then again
wanted to scale up creating more lag. This could have been prevented with a longer cooldown time just
like for Dhalion-adapted or by increasing the over-provisioning factor. The other DS2-modern-adapted
auto-scalers did not suffer from this problem because the over-provisioning factor caused them to make
larger scale up steps.

Kafka input rate (records per second)

Taskmanagers

w L1 T il

le7

Lag (records)

0 20 80 100 120 140

40 60
Minutes

Figure 5.12: Telemetry data of DS2-modern with over-provisioning factor of 66% for query 1

5.14. Conclusion

In this chapter we discussed the results of our experiments. We showed visualizations of the average
latency and the average number of Taskmanagers for each auto-scaler. Dove into the root causes of the
results by looking at telemetry plots of individual auto-scalers. We found that adding a cooldown period
to Vargav1 makes it perform better. The Dhalion-adapted auto-scaler performed well for query 1 and
query 3 put poorly for query 11 due to a too short cooldown period. DS2-modern did not perform very
well when compared to other auto-scalers due to the performance model not taking lag into account
causing instability and under-provisioning which can be mitigated somewhat using an overprovisioning
factor. DS2-modern-adapted fixed some of the problems of DS2 performing better across queries 1, 3,
and 11.






6.1.

Discussion & Future Work

Discussion

In this thesis, we implemented different auto-scalers for distributed stream processing. We set up
experiments to compare these auto-scalers for three different queries. After running the experiments
and analyzing the results we are now ready to reflect on the research questions posed in section 1.2.

(RQO):

(RQ1):

Which auto-scalers from the literature can be used for scaling distributed stream process-
ing applications?

From the literature, we identified four different auto-scalers for distributed stream processing DS2
[20], DRS [17], Vargav1 [32], and Dhalion [16]. DS2 [20] was the most highly regarded based
on the number of citations and its improvements over Dhalion [16]. Prior to DS2, Dhalion was
the state of the art based on its citations. Vargav1 [32] had only been published recently but
is simple to implement due to its utilization of the Kubernetes HPA framework. We did not end
up implementing DRS due to the underlying queueing model which is too rigid. The queueing
model does not allow for complex dataflow topologies such as that of query 3 of the Nexmark
benchmark [29]. No previous research has been done on using a Kubernetes CPU HPA to scale
stream processing applications, however, we decided to include it in our experiments as the
Kubernetes CPU HPA served as a simple baseline that requires little extra effort to implement.
Throughout the auto-scaling literature, there are many proposed and implemented auto-scalers,
however, they are rarely applicable to stream processing. Simple stateless applications with no
scaling downtime can rely on coarse metrics such as CPU utilization and memory as there is
no complicated behavior such as backpressure. Auto-scalers designed for simple stateless ap-
plications like web servers also have an easy time determining how many resources to add as
the relationship between number of requests processed and servers is one to one. For stream
processing applications there is overhead due to the interdependence between operators on dif-
ferent servers making the relationship between number of requests processed and the number
of servers non-trivial.

How can we compare these auto-scalers?

To compare the different auto-scalers we needed to set up a test environment. The test envi-
ronment consisted of a load-generating application that wrote records to a Kafka queue. The
records on the Kafka queue would then be consumed by the distributed stream processing appli-
cation Apache Flink. The infrastructure was monitored using Prometheus, the metrics provided
by Prometheus could then be used by the auto-scalers to make scaling decisions. Throughout the
experiments, the average number of resources used by Apache Flink was monitored, the average
latency of the records in the Kafka queue, and the number of re-scaling operations. These met-
rics gave us insights into how well the auto-scaler performed. The auto-scalers all had different
configurable parameters. To determine the effect that these parameters had on the auto-scalers,
we altered one of the configurable parameters per auto-scaler. Furthermore, stream process-
ing applications can run many different types of queries which all have different computational
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complexities and stress resources in a different manner. To account for this difference in com-
putational complexities we tested all auto-scaler on three different queries. Unfortunately, due
to cost constraints, we were only able to run experiments once per auto-scaler. Given the non-
deterministic characteristics of distributed systems, we cannot say with any statistical significance
that one auto-scaler is better than another.

(RQ2): How can these auto-scalers be improved?

For Vargav1 the improvement was quite simple, implementing a cooldown period after a scaling
operation. However, the Kubernetes HPA framework makes implementing this cooldown quite
difficult so through a rather convoluted approach a cooldown can be implemented by setting the
metrics to zero if a scaling event had occurred. Improving DS2-modern was also quite straightfor-
ward, incorporating knowledge of the amount of lag present. Dhalion-adapted, Vargav1, Vargav2,
and DS2-modern-adapted all use metrics from the Kafka queue to make scaling decisions. The
Kafka queue gives a clear indication of whether the streaming job can keep up with the load. If
the lag in the Kafka queue is increasing the job is under-provisioned, if there is no lag then the job
could be over-provisioned. Dhalion-adapted and DS2 both look at throughput rates to determine
how much to scale. The throughput rate gives a much better indication of how much to scale,
in the case of Dhalion-adapted by dividing the input rate by the throughput to obtain the scaling
factor and in the case of DS2 by creating a performance model based on the throughput rates.
Using throughput-based evaluation methods yielded better results than non throughput based
methods like that of the CPU-based HPA. A problem we did not solve for DS2 was how to set the
input rate of the performance model. The original implementation of DS2 [20] generated records
from within the Flink source, there was no queue in front of the stream processing application. If
Flink was not able to handle the input rate backpressure would occur and the source rate would
be throttled. In a real-world system, a producer would never be throttled lag would just build up
in the queue. When lag has built up in the queue the real input rate into the stream processing
system no longer matches the input rate used by the performance model causing the model to
yield sub-optimal results.

6.2. Limitations

One aspect we did not take into account in our experiments was the effect of scaling overhead. Varga
et al. [32] showed that depending on the state size the re-scale operation can vary a lot. Query 1
and 3 had very little state stored (only the consumer offsets of the Kafka connectors), query 11 was
the only query with state where the maximum state was about 600 MB. The re-scale operation for all
three queries was therefore quite low in the seconds range. In production setups, the state stored by a
query can be in the gigabyte range and scaling operations can take minutes. If there is more overhead
then auto-scalers that have fewer scaling operations perform better. However, the auto-scalers were
not tested under these conditions. In Tables 5.1, 5.2 and 5.3 we do show the number of re-scaling
operations per Taskmanager which gives an indication of which auto-scalers would perform better in
contexts with high scaling overhead.

We only explored one configurable parameter per auto-scaler while there are many more that could
be configured differently. The state-space of the different auto-scalers, in particular, Dhalion-adapted
with six configurable parameters is too large to test as computing power is not free. Furthermore, the
auto-scaler parameters were not tuned in any way, they were simply best guesses and held constant
across experiments. This led to some poor results for Dhalion-adapted for query 11 which would have
performed better if the cooldown period was longer. We tested the different auto-scaler for three differ-
ent queries but there are many more possible queries. The extended Nexmark benchmark’ contains
22 queries. Each query is computationally different and produces different metric behaviors.

Given the non-deterministic nature of distributed systems running in a cloud environment, our re-
sults are not statistically significant as we only ran experiments once per auto-scaler. If experiments
were run twice there is no doubt that the outcomes would not be identical. We have however not
quantified how much this difference is due to only running the experiments once. However, for the
Dhalion-adapted implementations with a different latency threshold, we see that for queries 1 and 3 in
Figures 5.2 and 5.4 that they are clustered quite closely together, giving some indication of the vari-

"https://github.com/nexmark/nexmark
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ance between experiments. We were limited in how many experiments could be run due to the cost of
running experiments in the cloud.

6.3. Next Generation Auto-scaler

Given the experimental results, the next generation auto-scaler should not be implemented using the
Kubernetes HPA framework due to its lack of easy to configure cooldown and set evaluation method.
Furthermore, the Kubernetes HPA uses the same metrics for detecting the need for a re-scaling oper-
ation and determining by how much to scale. We imagine an auto-scaler that would take into account
the state of the queue in front of the stream processing application for detecting the need for re-scaling.
If there is no lag then the auto-scaler could potentially scale down, if there is lag and it’s increasing the
auto-scaler should scale up. To determine how much to scale we imagine an auto-scaler that keeps
track of its configuration and the maximum achieved throughput rate for that configuration. Instead
of using a performance model like DS2 the application measures and stores the true processing rate
of the application. Once the maximum throughput is known for a certain configuration the throughput
per Taskmanager can be determined. Once the throughput per Taskmanager is determined scaling
decisions can be made based on the input rate and an over-provisioning factor. The throughput should
only be measured at its maximum which occurs when there is lag in the Kafka queue.

6.4. Future Work

When re-scaling the streaming job, the streaming job had to be stopped. Stopping the streaming job
caused lag to build up which had to be processed after the streaming job was back online. Recent
research such as CLONOS [27] has shown that it is possible to have an operator failure in a streaming
job that can be recovered without stopping the streaming job by using standby operators. Extending
this technology to allow streaming jobs to scale up by adding an operator while the job is still running
would remove the scaling overhead for scaling up. This would reduce the latency as the streaming job
can keep processing records when scaling up.

There is currently no benchmark or standard for testing auto-scaling applications in general and
specifically for stream processing. This lack of benchmarks makes it difficult for researchers to com-
pare and test the performance of the auto-scalers that they have implemented. If there was a bench-
mark for auto-scaling techniques researchers could spend their time iterating on their ideas instead of
implementing their own testing environment which requires a substantial amount of engineering. The
Nexmark? benchmark on Github already supports reading data from a Kafka queue. Perhaps with
some slight modifications, it would be possible to run the benchmark with different load patterns on a
Kubernetes cluster with monitoring already set up. This would allow researchers to use a common test
environment to test their auto-scalers.

Throughout this thesis, we have utilized Flinks’ Reactive Mode which scales each operator to the
maximum possible parallelism. This differs from the approach taken by the original implementation of
DS2 [20] where each operator was scaled independently. It would be interesting to see the difference
in performance between these two approaches for different stream processing systems. If the perfor-
mance difference is minor then an equivalent version of Flinks’ Reactive Mode could be implemented
for other stream processing applications. This simplifies the evaluation step greatly as now the per
operator parallelism no longer has to be determined just the parallelism of the system as a whole.

2https://github.com/nexmark/nexmark
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