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A Characterization of Linear
Independence of THB-Splines in R

n

and Application to Bézier Projection

Kevin W. Dijkstra and Deepesh Toshniwal

1 Introduction

In recent years, isogeometric analysis [16] has been an active topic of research in
numerical mathematics. Using higher regularity finite dimensional spaces for the
finite element method allows for better approximation power per degree of free-
dom [1, 24]. Additionally, this allows the domain to be more accurately imported
from Computer Aided Design software, which results in a reduction/elimination
of domain meshing errors [7, 16]. For this reason, B-splines are commonly used
as basis functions. However, B-splines cannot be refined locally. Different types of
splines spaces have been introduced that can be locally refined, for example T-splines
[5, 26], LR-splines [4, 9, 17, 22], S-splines [18] and HB-splines [12, 23, 30]. HB-
splines have later been modified in [13] to form the Truncated Hierarchical B-splines
(THB-splines), a spline space that has the partition of unity property, and where the
basis functions have smaller support compared to the HB-splines. While B-splines,
(T)HB-splines [21], T-splines [5], LR-splines [4, 22] and S-splines [18] are all lin-
early independent, onlyB-splines and—under suitable assumptions on theunderlying
mesh—T-splines and LR-splines are locally linearly independent. This paper con-
siders the space of THB-splines, characterizes the pseudo-local linear independence
of the THB-spline basis on certain macro elements, and uses that to introduce a local
projector from L2(�) onto the spline space.

Such projectors are of great value for numerical analysis and scientific computing.
For example, they can be used for curve and surface fitting, enforcement of boundary
conditions, solution methods with non-conforming meshes, multi-level solver and
data compression for image, signal and data processing.
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Hierarchical spline fitting has been an active topic of research since the introduc-
tion of Hierarchical B-splines. Global fitting methods have been investigated in [15]
while quasi-interpolants have first been extended to hierarchical splines in [23]. In
[27, 28], efficient quasi-interpolation has been introduced for THB-splines. In par-
ticular the latter sets up a general framework to construct quasi-interpolants in the
Sobolev spaces W p+1

q , 1 ≤ q ≤ ∞. However, only explicitly constructed interpo-
lates from the space of continuous functionsC(�) onto the THB-spline space can be
actually found in these two works. More recently, a different local THB-spline pro-
jector has been introduced in [14] that requires less function evaluations per degree
of freedom then the projector of [28] while being slightly more accurate. Lastly, in
[11, 19], a (T)HB-spline approximant that uses the Bézier projection philosophy was
proposed in [29]. Note that this approximant is not a projector as it fails to preserve
THB-splines.

We introduce a Bézier projector for considered THB-spline spaces. This projector
is an extension of the Bézier projector introduced by [29] for B-splines and analysis-
suitable T-splines. This local projector consists of two steps. For all mesh elements,
an initial local L2 projection onto the local polynomial space on that element. All of
these element-wise projections together define a global C−1 approximation. Then,
these C−1 projections are smoothed to produce a global spline projection. In this
second step, local linear independence of the THB-splines is required for every mesh
element. Unfortunately, this property is not verified in general by THB-splines. In
this paper, under suitable assumptions on the mesh such as graded refinements, we
construct local collections ofmesh elements, called projection elements, such that the
THB-splines are linearly independent over them. These collections are local in the
sense that they consist of adjacent mesh elements. Furthermore, the number of mesh
elements included in a projection element is only dependent on the spline degree. To
be able to talk about pseudo-local linear independence of functions on collections of
mesh elements, we introduce the following definition of overloading.

Definition 1.1 For a given set of functions, S, defined on �, we say that ˜� ⊂ � is
overloaded if the functions supported on it are linearly dependent; else, ˜� is not
overloaded.

Therefore, the projection elements that we will introduce will not be overloaded
for THB-splines, allowing the formulation of a Bézier projection. See Fig. 1 for an
example of application of the projector. Various assumptions are required to construct
these projection elements. Some of them appear in the literature, for example, mesh
grading [6], others are new. One of these new assumptions is non-constructive in
the sense that if a mesh violates it, it is unclear which mesh modifications should be
performed to satisfy it. Therefore, we also provide a set of stronger and constructive
assumptions in two dimensions for quadratic and cubic THB-splines. They are used
to formulate a first adaptive refinement scheme.

The remaining sections of the paper are organized as follows. Section2 recaps the
Bézier projector from [29] for multivariate B-splines. In Sect. 3 we introduce non-



A Characterization of Linear Independence of THB-Splines in R
n … 117

Fig. 1 An initial projection onto projection elements, that is, suitable local collections of mesh
elements, and a global smoothing step to produce a global projection of the target onto a THB-spline
space

overloaded macro-elements that are used in Sect. 4 to formulate the Bézier projector
for THB-splines. In Sect. 5 the local error estimates are validated numerically, and
the adaptive refinement routine is compared to [14].

2 B-Splines and Bézier Projection

In this section, B-splines will be briefly introduced and a small recap of [29] will
be given on Bézier projection for multivariate B-splines. For an introductory text on
B-splines, we refer the reader to [20].

2.1 Univariate B-Splines

Consider the unit domain� = (0, 1), a polynomial degree p ∈ N0, and an increasing
sequence of m ∈ N real numbers over � as follows:

ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξm},
= {0, . . . , 0

︸ ︷︷ ︸

p+1 times

< ξp+2 < · · · < ξm−p−1 < 1, . . . , 1
︸ ︷︷ ︸

p+1 times

}. (1)

Such a sequence is called a (p + 1)-open knot sequence, where every individual
value is called a knot; note that we assume that all internal knots are distinct. This
knot sequence describes a partition of �, where the unique knots indicate element
boundaries for the partition. For a given knot, the number of occurrences is denoted
by its multiplicity. Thus, for our purposes, every knot either has multiplicity of 1 or
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p + 1. By convention, all non-empty open knot intervals (ξk, ξk+1) constitute the
mesh elements.

For the knot sequence ξ , we can define M := m − p − 1 B-splines recursively,

Bj,p,ξ := x − ξ j

ξ j+p − ξ j
B j,p−1,ξ + ξ j+p+1 − x

ξ j+p+1 − ξ j+1
Bj+1,p−1,ξ , j = 1, . . . , M. (2)

Here we assume the fractions to be zero when the denominator is zero. The base case
p = 0 is defined by the following unit functions:

Bj,0,ξ :=
{

1 if x ∈ [ξ j , ξ j+1),

0 otherwise,
for j �= m − p − 1,

Bm−p−1,0,ξ :=
{

1 if x ∈ [ξm−p−1, 1],
0 otherwise.

(3)

The functions Bj,p,ξ are non-negative, form a partition of unity on �̄ and the
collection of B-splines with support on any given mesh element �e = (ξk, ξk+1) is
linearly independent and can reproduce any polynomial of degree p on�e. Therefore,
none of the mesh elements are overloaded with respect to B-splines. The span of the
B-spline set Bp,ξ is called the B-spline space and is denoted as:

Bp,ξ := span
{

Bp,ξ
}

. (4)

With the spline degree p fixed, we will omit it from the notations to simply write
Bj,ξ , Bξ and Bξ .

2.2 Multivariate B-Splines

In the case of a multivariate domain � = (0, 1)n , where n denotes the dimension, let
the vector p := (p1, . . . , pn) denote the polynomial degrees per dimension and let
� = (ξ 1, . . . , ξ n) collect the knot sequences in each dimension. In this setting, the
multivariate B-spline space Bp,� is defined as the span of tensor product B-splines
over knot sequences ξ i , i = 1, . . . , n. The B-splines Bj,p,� that span Bp,� are given
by:

Bj,p,�(x1, . . . , xn) := Bj1,p1,ξ 1(x
1) × · · · × Bjn ,pn ,ξ n (x

n). (5)

Just like in the univariate case, we will assume that the degree p is fixed and drop it
from all notation and simply denote the B-splines as Bj,�, the set of all B-splines as
B�, and the spline space as B�.



A Characterization of Linear Independence of THB-Splines in R
n … 119

Here, we also introduce the following notation for the mesh corresponding
to �. All k such that pi + 1 ≤ ki ≤ mi − pi − 1, define a mesh element �e =×n

i=1(ξ
i
ki , ξ

i
ki+1). We will index all of these mesh elements �e in a sequential order

and collect themesh element indices e in the setM�. Since the relation between e and
k relies on �, and our main goal is to have spline spaces of different levels of refine-
ment derived from different �, explicitly denoting this relation will quickly clutter
notation. Hence we will use index e to refer to an element, where the underlying
relation to � and k is implicit.

2.3 Bézier Projection for B-Splines

In this section we introduce the Bézier projection for B-splines introduced in [29],
which is a local approach to project functions in L2(�) onto the space of B-splines,
B�. There are two main steps in this approach, see Fig. 2.

Given the target function f ∈ L2(�), the first step is to project f onto the
space of C−1 splines of degree p. In the second step, this piece-wise defined C−1

approximation is smoothed out to construct a spline in B� that approximates f .
The initial C−1 spline projection can be performed on each element separately.

For this, consider element�e =×n
i=1

(

ξ i
ki , ξ

i
ki+1

)

and let the local knot sequence for
each dimension be given by

ξ i,e := {

ξ i
ki , . . . , ξ

i
ki

︸ ︷︷ ︸

pi+1 times

, ξ i
ki+1, . . . , ξ

i
ki+1

︸ ︷︷ ︸

pi+1 times

}

, i = 1, . . . , n. (6)

Let �e = (ξ 1,e, . . . , ξ n,e) collect these local knot sequences such that B�e defines
the local spline space on element �e.

B�e is the Bernstein polynomial basis on �e and they span Pp (�e). The initial
L2 projection of f |�e onto the space Pp(�

e) gives us

Fig. 2 The two main steps of Univariate Bézier B-spline projection. The Target function is initially
projected on to a local polynomial basis of degree p, on every element. These C−1 spline functions
are smoothed to obtain a global projection in the B-spline space Bξ . Note the similarity to Fig. 1,
however, instead of using macro projection elements, the initial step is performed element-wise



120 K. W. Dijkstra and D. Toshniwal

�e f :=
p1+1
∑

j1=1

· · ·
pn+1
∑

j n=1

aej Bj,�e , (7)

where �e f is the solution to the minimization problem

�e f := argmin
fh∈B�e

‖ f − fh‖L2(�e).

Let now Ie(B�) denote the set of indices of B-splines whose support contains
�e, that is,

Ie(B�) := {

j : Bj,� ∈ B�, supp(Bj,�) ∩ �e �= ∅ }. (8)

The B-spline basis of B�, restricted to element �e, also spans Pp(�
e). Hence, a

mapping exists such that Bj,� = ∑

i C
e
j,iBi,�e for each j ∈ Ie(B�). This matrix Ce is

called the Bézier extraction matrix [2, 25] and describes each B-spline as a linear
combination of Bernstein polynomials on element �e. Exploiting this relation, we
can express approximation (7) as follows, where be := (Ce)−T ae,

�e f =
∑

j∈Ie(B�)

bej Bj,�
∣

∣

�e . (9)

Performing the above local projections for each element, we get piecewise-
polynomial descriptions of the form (9) on each mesh element. However, if j ∈
Ie(B�) ∩ Ie′

(B�), then in general bej �= be
′

j . See Fig. 2. Consequently, the piecewise
descriptions together do not define a spline in B�. This is rectified by a smoothing
operation that, for a given B-spline Bj,�, takes all associated coefficients bej and
performs a weighted averaging to yield a single coefficient bj,

bj :=
∑

e∈Ej(B�)

ωe
j b

e
j , (10)

where ωe
j are the averaging weights and Ej(B�) is the set of all elements where Bj,�

is supported,that is,

Ej(B�) := {

e ∈ M� : Bj,� ∈ B�, �e ∩ supp(Bj,�) �= ∅ }. (11)

They can be defined in different ways, we follow the recommendations of [29] and
choose them as

ωe
j :=

∫

�e Bj,�dx
∫

�
Bj,�dx

. (12)

Finally, the global Bézier projection operator � : L2(�) → B� is defined by



A Characterization of Linear Independence of THB-Splines in R
n … 121

� f :=
∑

j:Bj,�∈B�

bjBj,�. (13)

Observe that
∑

e∈Ej(B�) ωe
j = 1. In Lemma 3.2 of [29], it is shown that this is required

for (13) to be a projector.

3 Pseudo-Local Linear Independence of THB-Splines

While B-splines exhibit many nice properties, they lack the ability to be locally
refined. With this in mind, Hierarchical B-splines (HB-splines) and, later, Truncated
Hierarchical B-splines (THB-splines) have been introduced. These are defined in
terms of a sequence of nested multivariate B-spline spaces and a sequence of nested
regions. However, in contrast to the B-spline spaces, certain mesh elements will be
overloaded for both HB-splines and THB-splines (see Definition 1.1). In this section,
under suitable assumptions on the mesh, we identify the non-overloaded elements of
the mesh and use them to partition the mesh into non-overloaded macro-elements.

3.1 Construction of THB-Splines

Consider a nested sequence ofmultivariateB-spline spaces over domain� = (0, 1)n:

B1 ⊂ B2 ⊂ · · · ⊂ BL . (14)

Here the multivariate B-spline space B� := B��
containing the B-splines Bj,� :=

Bj ∈ B��
, is a level-� tensor-product B-spline space defined over the knot sequences

{

ξ i
�

}n

i=1 =: ��. As before, these knot sequences ξ i
� are all (p + 1)-open knot

sequences where the interior knots have multiplicity 1. In this setting, nestedness
of the B-spline spaces is ensured if and only if:

ξ i
1 ⊂ ξ i

2 ⊂ · · · ⊂ ξ i
L , i = 1, . . . , n. (15)

We will denote the sets containing level-� mesh element indices asM� := M��
.

Next, consider a sequence of nested, closed subsets of �:

�L ⊆ · · · ⊆ �1 := �, (16)

where �� is the closure of the union of mesh elements �e for some e ∈ M�−1. The
collection of those subsets is denoted by:

� := {�1, . . . , �L}, (17)
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and will be referred to as the domain hierarchy on �. For a given level �, we can
use this hierarchy to split the B-spline basis functions B�:

Bin
� := {

Bi,� ∈ B� : supp(Bi,�) ⊆ ��

}

, (18)

Bex
� := {

Bi,� ∈ B� : supp(Bi,�) � ��

}

. (19)

Using the above, the following defines the Hierarchical B-spline basis functions, or
HB-spline basis functions.

Definition 3.1 Given a domain hierarchy �, the corresponding set of HB-spline
basis functions is denoted by H� and defined recursively as follows:

1. H1 := B1 ,
2. for � = 2, . . . , L:

H� := HC
� ∪ HF

� ,

where

HC
� := {

Bj,k ∈ H�−1 : supp(Bj,k) � ��

}

,

HF
� := Bin

� ,

3. H� := HL .

See the top plot of Fig. 3 for an example. HB-spline basis functions lack the
partition of unity property, which is shown in red in Fig. 3. In addition, the number
of overlapping basis functions associated with different hierarchical levels increases
easily. This motivates the construction of a different basis, for example, the THB-
spline basis, based on the following truncation mechanism.

Definition 3.2 Given � = 2, . . . , L . Let f ∈ B�−1 be represented in the B-spline
basis B�:

f =
∑

j:Bj,�∈B�

cj,�Bj,�. (20)

The truncation of f at hierarchical level � is defined as the the sum of the terms
appearing in (20) corresponding to the B-splines in Bex

� :

trunc�( f ) :=
∑

j:Bj,�∈Bex
�

cj,�Bj,�. (21)

The THB-spline basis functions are constructed by successively truncating the
functions from Definition 3.1.

Definition 3.3 Given a domain hierarchy �, the corresponding set of THB-splines
basis is denoted by T� and defined recursively as follows:
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Fig. 3 An example of an HB-spline basis (top) and a corresponding THB-spline basis (bottom).
The blue splines are from the first level and the orange splines are from the second one on a two
level hierarchy. Notice that the total sum of all splines (red line) is 1 only for the THB-spline basis

1. T1 := B1 ,
2. for � = 2, . . . , L:

T� := T C
l ∪ T F

� ,

where

T C
� := {

trunc�(T ) : T ∈ T�−1, supp(T ) � ��

}

,

T F
� := Bin

� ,

3. T� := TL .

The N := |T� | THB-spline basis functions are linearly indexed by some ordering
i = 1, . . . , N :

T� = {Ti }Ni=1. (22)

The space of THB-splines will be denoted as T� . Finally, we define the set of active
level-� mesh elements Min

� as

Min
� := {

e ∈ M� : �e ⊂ �� and �e ∩ ��+1 = ∅ }. (23)

In Fig. 3 a comparison between THB-splines and HB-splines is given.
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3.2 Some Assumption on the Hierarchical Meshes

For our purpose, we assume that from this point forward all THB-spline spaces
conform to the the following assumptions.

Assumption 3.1 The mesh element sizes at level � = 1 satisfies quasi-
uniformity. That is, there exists a constant η ≥ 1 such that for any two adjacent
non-empty knot intervals, the mesh-size ratio is bounded as

η−1 ≤ ξ i
j+1,1 − ξ i

j,1

ξ i
j,1 − ξ i

j−1,1

≤ η, i = 1, . . . , d. (24)

Moreover, for � > 1, the level-� knot sequence in each direction is obtained by
bisecting each non-zero knot interval of the corresponding level-(� − 1) knot
sequence.

Assumption 3.2 Given a mesh element �e, e ∈ Min
� , the only THB-splines

that can be supported on �e correspond to (truncated) B-splines from at most
two levels: � − 1 and �.

Assumption 3.2 is a particular class of mesh admissibility introduced in [6],
specifically, the mesh is of admissibility class 2.

3.3 An Example of Overloaded Mesh Elements in R
1

In contrast to B-splines, mesh elements can be overloaded even for univariate THB-
splines. In Fig. 4 an example of an overloaded element is depicted in blue for a
quadratic THB-spline space.

Fig. 4 The basis functions of a quadratic THB-spline space consisting of two levels are shown.
While the blue coloured element is overloaded, the combination of the blue and orange is not
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This univariate example motivates the following observations, which drive the
developments in the next sections in the general multivariate setting.

• As a result of the truncation mechanism and Assumption 3.2, at most p elements
that are adjacent to the border of �� can be overloaded.

• The undesirable overloading on the blue element can be resolved by creating a
macro-element that combines the blue and the orange elements.

Then, in the next section, we will characterize the non-overloaded elements for
THB-splines and use them to create macro-elements, called projection elements, that
are not overloaded.

3.4 Characterizing Non-overloaded Mesh Elements in R
n

As shown in Sect. 3.3, THB-spline spaces suffer from overloading even under
Assumption 3.2. While characterizing the overloaded elements in 1D is simple,
the situation in R

n , n > 1, is more involved. We perform this characterization in
this section under suitable assumptions. These assumption help us prove a general
statement for R

n , n ≥ 1.
Consider e ∈ Min

� , � > 1. The element �e can only be overloaded if:

�e ⊂ supp(Bj,�) for some Bj,� ∈ Bex
� . (25)

Each such Bj,� will contribute to some THB-spline that is obtained by truncat-
ing a level-(� − 1) B-spline and is supported on �e. Our characterization of non-
overloadedness assumes that such THB-splines do not vanish at ∂�e ∩ (∂��\∂�).
Unfortunately, this requirementmaynot bemet, for instance, if the refinement domain
is too “thin”.

For example, consider the situation shown in Fig. 5 for the cross-hatched level-
� element �e. On this �e, B is some level-� B-spline that clearly vanishes at
∂�e ∩ (∂��\∂�) and, therefore, there may be a level-(� − 1) THB-spline which
also vanishes at this boundary.

To prevent such cases, we impose two additional assumptions on the mesh. This
leads to the desired characterization of non-overloaded elements in R

n and forms
the basis for the construction of non-overloaded macro elements. We begin this
discussion by decomposing the boundary of �e as follows.

Definition 3.4 Given�e =×n
i=1

(

ξ i
ki ,� , ξ i

ki+1,�

)

, e ∈ M�, the following boundary

facets,
r−1×
i=1

[

ξ i
ki ,�

, ξ i
ki+1,�

]×{

ξrkr ,�

}

n×
i=r+1

[

ξ i
ki ,�

, ξ i
ki+1,�

]

,

r−1×
i=1

[

ξ i
ki ,�

, ξ i
ki+1,�

]×{

ξrkr+1,�

}

n×
i=r+1

[

ξ i
ki ,�

, ξ i
ki+1,�

]

,

(26)

are called r -normal facets of �e.
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Fig. 5 A possible scenario for p = [2, 2]T where a level-� B-spline B ∈ Bex
� that is supported on

a level-� element �e (cross-hatched) may vanish at ∂�e ∩ (∂��\∂�). Such cases are ruled out by
the additional assumptions introduced in Sect. 3.4

See Fig. 6a, b for an example of facets in 2 dimensions. In addition, we will need
to refer to elements obtained by translations of �e in index space. To quantify this,
we introduce these element translations.

Definition 3.5 Given�e =×n
i=1

(

ξ i
ki ,� , ξ i

ki+1,�

)

, e ∈ M�, the translation of�e by

t = (t1, . . . , tn) is defined as the element τt(�
e) :=×n

i=1

(

ξ i
ki+t i ,� , ξ i

ki+t i+1,�

)

.

For every overloaded element, (25) holds. However, in general there will exist
elements for which (25) holds but which are in fact not overloaded. We will call
these well-behaved border elements and they are defined as follows.

Definition 3.6 Given e ∈ Min
� and 1 ≤ i ≤ n, let di,e

� ∈ Z≥0 be the smallest number
such that one of the following translations t of �e,

(

0, . . . , 0, di,e
�

︸︷︷︸

i-th position

, 0, . . . , 0

)

or

(

0, . . . , 0, −di,e
�

︸ ︷︷ ︸

i-th position

, 0, . . . , 0

)

. (27)

(a) (b)

Fig. 6 Given element �e =×n

i=1

(

ξ i
ki ,�

, ξ i
ki+1,�

)

, an example of the 1-normal facet is shown in

a and an example of the 2-normal facet in b
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Fig. 7 An example of
Definition 3.6. For the
element �e denoted with the
cross-hatch, d1,e� = 2 and

d2,e� = 0. Thus, it is a
well-behaved border element
if p1 ≤ 2

gives an element τt(�
e) where one of its i-normal facets is contained in ∂��\∂�.

If such a di,e
� does not exists, we define it be ∞. Then �e is called a well-behaved

border element if

• ∂�e ∩ (∂��\∂�) �= ∅, and,
• for all i , di,e

� = 0 or di,e
� ≥ pi .

See Fig. 7 for an example of a well-behaved border element. The well-behaved
border elements touch the border ∂�� in a specificmanner. The next assumptions that
we will shortly impose will ensure that cases such as the one shown in Fig. 5 do not
exist. This will in turn imply that well-behaved border elements are not overloaded.
As the r -normal facets are closed sets, the intersection of any two of them is either
empty or is a subset of ∂�e (e.g., a vertex, an edge, a face, and so on). This allows us
to describe the set ∂�e ∩ (∂��\∂�) as a union of certain intersections of r -normal
facets as follows. Given a set A containing normal facets of �e, let intrsct(A) denote
the intersection of all facets in A. Then, for a well-behaved border element �e, let
Fe be the set containing the minimal number of r -normal facets of �e such that the
union of all possible intersections coincides with ∂�e ∩ ∂��\∂�.

Fe = arg min
F

⎧

⎪

⎨

⎪

⎩

|F | :
⋃

A⊂F
intrsct(A)⊂∂��\∂�

intrsct(A) = ∂�e ∩ (∂��\∂�)

⎫

⎪

⎬

⎪

⎭

. (28)

Then, we associate a direction to �e, denoted ne
�, and define it as the sum of unit

normals for each facet in Fe (by convention, we assume that each unit normal is
pointing into �e). See Fig. 8 for an example in 3D. Note that, since �� is the closure
of the union of level-(� − 1)mesh elements, ne

� is always a non-zero vector as a result
of Assumption 3.1. Indeed, this implies that, for a fixed r , at most one r -normal facet
of �e can be in Fe.

As motivated at the beginning of this section, we desire that all B-splines Bj,� ∈
Bex

� with support on a well-behaved border element�e do not vanish on the boundary
∂�e. For this we will assume that �� contains enough elements so that it can never
be too “thin.”



128 K. W. Dijkstra and D. Toshniwal

Fig. 8 An example of the facet set Fe for an element�e where f i are the facets such that f 1, f 2 are
the left and right sides respectively, f 3, f 4 the bottom and top sides and f 5, f 6 the sides behind and
in front. Let ∂�e ∩ ∂��\∂� be the region shown in red (i.e., it consists of a face and an edge). Then,
the set Fe = { f 2, f 4, f 6} is the smallest set that can represent ∂�e ∩ ∂��\∂� = f 2 ∪ (

f 4 ∩ f 6
)

.
For this element �e, the direction is then given by ne

� = (−1,−1,−1)T

Assumption 3.3 For any well-behaved border element �e=×n
i=1

(

ξ i
ki ,� , ξ i

ki+1,�

)

and the direction ne
� associated to it, the following

inclusion must hold,
⋃

t∈×n
i=1 G

i

τt
(

�e
) ⊆ ��, (29)

where

Gi :=

⎧

⎪

⎨

⎪

⎩

{0}, ni,e� = 0,
{

0, 1, . . . , 2pi − 1
}

, ni,e� = 1,
{

0,−1, . . . ,−(2pi − 1)
}

, ni,e� = −1.

Note that Assumption 3.3 is stronger than strictly necessary for obtaining that all
coarse, truncated B-splines on �e do not vanish on its border. However, we will also
need the latter fact to hold for certain macro elements that contain �e, and this is
why the stronger statement is assumed.

Definition 3.7 Given a well-behaved border element �e =×n
i=1

(

ξ i
ki ,� , ξ i

ki+1,�

)

,

and the direction ne
� associated to it, we define the projection element generated by

�e as
�̂e =

⋃

t∈×n
i=1 G

i

τt(�
e), (30)

where

Gi :=

⎧

⎪

⎨

⎪

⎩

{0}, ni,e� = 0,
{

0, 1, . . . , pi − 1
}

, ni,e� = 1,
{

0,−1, . . . ,−(pi − 1)
}

, ni,e� = −1.
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Note that as a direct consequence of Assumption 3.3, a level-� well-behaved
border element �e will generate a projection element which is fully contained in
�� ⊇ �̂e. In addition, we desire that any possible overloaded mesh element, see
(25), is contained in a unique projection element.

Assumption 3.4 Let �e, e ∈ Min
� , be so that its t = (t1, . . . , tn) translation,

where |t i | < pi for all i , satisfies ∂τt(�
e) ∩ (∂��\∂�) �= ∅. Then, there exists

a unique projection element that contains �e.

Note that overlapping projection elements do occur in general, and that’s why the
above assumption is needed. See Fig. 9 for an example in 2D. Here there are two
projection elements (generated by the cross-hatched well-behaved border elements)
that overlap. In 2D, this is due to “stair-like” refinements, i.e., when the boundary of
�� has stair-like steps which have smaller widths / heights than projection elements.

We start by showing a technical lemma that will be useful later for proving the
non-overloadedness of well-behaved border elements.

Lemma 3.1 Let �e be a well-behaved border element, and let τt1 (�e) , τt (�e) ⊂
�̂e, |t i1| ≥ |t i | for all i , such that they are both contained in the same level-(� − 1)
element. Let Br,�−1 be a level-(� − 1) B-spline containing this level-(� − 1) element,
and let T ∈ T� be its truncation. Then if T does not vanish on τt1(�

e) then it does
not vanish on τt(�

e) either.

Proof Assumewithout loss of generality that all components of ne
� are non-negative,

implying that t i1 ≥ t i ≥ 0 for all i .
As both τt1 (�e) and τt (�e) are contained in the same level-(� − 1) element,

Br,�−1 has support on both elements. Then, for some s1, . . . , sn , we can express
Br,�−1 as

Br,�−1 =
s1+p1+1
∑

q1=s1

· · ·
sn+pn+1
∑

qn=sn
cqBq,�. (31)

Fig. 9 Without imposing
Assumption 3.4, it is possible
to generate refinement
domains, for which
projection elements can
overlap. For p1 = p2 = 3,
the two well-behaved border
elements (cross-hatched)
shown above generate
projection elements that
overlap
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Since T has support on τt1 (�e), there is a non-zero cq1 for Bq1,� ∈ Bex
� with support

on τt1 (�e). If Bq1,� has support on τt (�e), we are done. Otherwise,

qi
1 ≥ si + t i1 ≥ si + t i1 − t i , i = 1, . . . , n. (32)

As Bq1,� ∈ Bex
� has support on some element of index e′ ∈ Min

�−1 and since 0 ≤
t i1 − t i ≤ 1, we have that Bq1−t1+t,� has support on the same level-(� − 1) element
�e′

and thus Bq1−t1+t,� ∈ Bex
� . But then, Bq1−t1+t,� and by extension T have support

on τt (�e). �

We are now ready to show that well-behaved border elements and projec-
tion elements are non-overloaded. Both are a direct consequence of the following
proposition.

Proposition 3.1 Consider a well-behaved border element �e and consider any
t1 = (t11 , . . . , t

n
1 ) such that τt1(�

e) ⊂ �̂e. Then, the following set of THB-splines
on τt1(�

e) is linearly independent,

{

Tj : supp(Tj ) ∩ τt1 (�
e) �= ∅, and,

supp(Tj ) ∩ τt(�
e) = ∅ where τt(�

e) ⊂ �̂e, t1 �= t and |t i1| ≥ |t i | for all i
}

.

(33)

Proof Assume without loss of generality that ne
� is such that all of its components

are non-negative, and let �e =×n
i=1

(

ξ i
ki ,� , ξ i

ki+1,�

)

. In the following, we use t to

denote a translate vector such that τt(�
e) ⊂ �̂e, t1 �= t, t i1 ≥ t i for all i .

The claim is immediate for the special case when there exists a t such that τt1(�
e)

and τt(�
e) are contained in a common element e′ ∈ M�−1. In this case, fromLemma

3.1, the THB-splines that contain τt1(�
e) in their support but not τt(�

e) only corre-
spond to level-� B-splines. The claim then follows from the linear independence of
level-� B-splines.

The only other case to consider is when τt1(�
e) is not contained in a common ele-

ment of level (� − 1), with any τt(�
e) satisfying the above conditions. In particular,

this means that all t i1 are even numbers due to Assumption 3.1. Here, we will show
that the desired set of THB-splines (33) spans a subspace of Pp

(

τt1(�
e)
)

, where
each polynomial in the subspace vanishes pi times at the hyperplane ξ i = ξ i

ki+t i1,�
if

t i1 > 0. This will be shown, by first constructing a basis which spans the subset. Then,
each of these basis functions will be related to a particular THB-spline, showing that
the THB-splines span the same space.

Let the element e′ ∈ M�−1 contain �e ⊂ �e′
and let the level-(� − 1) B-splines

supported on �e′
, be Bq,�−1, where

q ∈ Ie′
(B�−1) =

n×
i=1

{

r i , . . . , r i + pi
}

. (34)
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Then, the B-splines supported on τt1(�
e) and not on any τt(�

e) as above correspond
to q ∈×n

i=1 S
i
�−1:

Si�−1 :=
{
{

r i + pi + t i1
2

}

, t i1 > 0,
{

r i , . . . , r i + pi
}

, else.
(35)

Similarly, let the level-� B-splines supported on �e be Bq,�, where

q ∈ Ie(B�) =
n×

i=1

{

si , . . . , si + pi
}

. (36)

Then, the B-spline supported on τt1(�
e) and not any τt(�

e) correspond to q ∈×n
i=1 S

i
� where

Si� :=
{

{

si + pi + t i1
}

, t i1 > 0,
{

si , . . . , si + pi
}

, else.
(37)

Moreover, the active level-� B-splines from the above set correspond to Bq,�, q ∈
⋃n

l=1×n
i=1 A

i,l
� , where

Ai,l
� :=

⎧

⎪

⎨

⎪

⎩

{

si + pi + t i1
}

, t i1 > 0,
{

si + pi
}

, t i1 = 0 and di,e
� = 0 or i = l,

{

si , . . . , si + pi
}

, t i1 = 0 and di,e
� > pi and i �= l.

(38)

As a specific example, in Fig. 10a, b the supports of the level-� B-splines from×n
i=1 A

i,1
� and×n

i=1 A
i,2
� can respectively be seen for a well-behaved border element.

Combining these B-spline index sets, one obtains the full index set of level-� B-
splines with support on the well-behaved border element, but no support outside
��.

The level-(� − 1) B-splines from×n
i=1 S

i
�−1 that are truncated to 0 on τt1(�

e) by

the above active level-� B-splines are Bq,�−1, q ∈ ⋃n
l=1×n

i=1 I
i,l
�−1, where

I i,l�−1 :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{

r i + pi + t i1
2

}

, t i1 > 0,
{

r i + pi
}

, t i1 = 0 and di,e
� = 0 or i = l,

{

r i , . . . , r i + pi
}

, t i1 = 0 and di,e
� > pi and i = l,

(39)

From the above, we notice that the cardinalities of×n
i=1 S

i
�−1 and×n

i=1 S
i
� are the

same, and the number of level-(� − 1)THB-splines truncated to zero above is exactly
equal to the number of active level-� THB-splines. Consequently, the complete set
of THB-splines supported on τt1(�

e) and not τt(�
e) is linearly independent. Each

of them is either a truncated level-(� − 1) B-splines from the following set,
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(a) (b)

Fig. 10 a For a well-behaved border element with p = [2, 2]T , the supports of the level-� B-

splines Bq,� with q ∈×d

i=1
Ai,1

� = {s1 + p1} × {s2, . . . , s2 + p2} are outlined in red. b For a

well-behaved border element with p = [2, 2]T , the supports of the level-� B-splines Bq,� with

q ∈×d

i=1
Ai,2

� = {s1 + p1} × {s2, . . . , s2 + p2} are outlined in red

n×
i=1

Si�−1

∖ n
⋃

l=1

n×
i=1

I i,l�−1, (40)

or a level-� B-spline from the following set,

n
⋃

l=1

n×
i=1

Ai,l
� . (41)

�

Corollary 3.1 Well-behaved border elements are not overloaded.

Proof The result follows by considering t = (0, . . . , 0) in Proposition 3.1. �

Theorem 3.1 Let�e be a well-behaved border element. Then, �̂e is not overloaded.

Proof Consider the following representation of the zero function on �̂e as a linear
combination of THB-splines on �̂e,

0 =
∑

j

c j Tj |�̂e . (42)

Starting from the linear independence on the well-behaved border element�e shown
in Corollary 3.1, we can conclude that some of the c j in the above sum should be
zero. Consequently, repeated applications of Proposition 3.1 can be used to show
that all the remaining c j should be zero as well since every element in �̂e can be
obtained by translations of �e. �
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We finish this section by defining well-behaved interior elements and the
corresponding projection elements.

Definition 3.8 Given e ∈ Min
� , �

e is called a well-behaved interior element if the
THB-splines supported on it only correspond to level-�B-splines. The corresponding
projection element is defined as �̂e := �e.

Clearly, a well-behaved interior element is not overloaded. Moreover, as a result
of Assumption 3.4, each mesh element is contained in a unique projection element
generated by a well-behaved (interior or border) element.

4 Bézier Projection for THB-Splines

Based on the main result of the previous section, we formulate a Bézier projection
for THB-splines by using the notion of projection elements. There are various ways
to extend the Bézier projector from [29], and we will show theoretical error estimates
for these extensions.

4.1 General Formulation of the Projector

From the results and assumptions from Sect. 3, we can make two observations:

• each mesh element is contained in a unique projection element �̂e (by Definitions
3.7 and 3.8 and Assumptions 3.3 and 3.4), and,

• none of the projection elements are overloaded (by Theorem 3.1).

As a consequence, we can formulate the following generalized Bézier projection
methodology for THB-splines.

Step 1: Local projections on �̂e

Given an arbitrary well-behaved (border or interior) element �e, e ∈ Min
� , denote

with V(�̂e) some local spline space defined on �̂e; we will make the choice of this
spline space concrete in the next subsection. Then, in the first step of the projec-
tion, and given a target function f ∈ L2(�), we project f |�̂e onto the space V(�̂e).
Denote this projection operator as �̂e

0. Denote by M̂e := dim(V(�̂e)) the dimension

of V(�̂e) and let
{

V̂ j

}M̂e

j=1
be a basis of V(�̂e). Then we can write

�̂e
0 f =

M̂e
∑

j=1

f̂ ej V̂ j . (43)
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In the next step, we apply a subsequent L2-projection �̂e
1 : V(�̂e) → T̂

e
� , where

T̂
e
� is defined to be the restriction of the THB-spline space T� to the projection

element �̂e. Let Îe(T�) contain the indices of THB-spline basis functions supported
on �̂e. These are linearly independent by Theorem 3.1. The action of �̂e

1 can be
encoded in a matrix D̂e such that ĉe = D̂e f̂

e
and:

�̂e
1�̂

e
0 f =

∑

j∈Îe(T�)

ĉej Tj |�̂e . (44)

Step 2: Weighted-averaging to form the global projection on �

For a THB-spline Tj , the above process gives a coefficient ĉej for each projection

element �̂e on which Tj does not vanish. Then, as in the B-spline case, we perform
a weighted averaging of the coefficients ĉej to define a unique coefficient for Tj ,

c j :=
∑

e∈Ê j (T�)

ω̂e
j ĉ

e
j , (45)

where ω̂e
j are the averaging weights and Ê j (T�) is the set of all projection elements

where Tj does not vanish,

Ê j (T�) :=
{

e : �̂e ∩ supp
(

Tj
)

with Tj ∈ T�

}

. (46)

In particular, similarly to B-splines, we choose the weights to be,

ω̂e
j :=

∫

�̂e Tj dx
∫

�
Tj dx

. (47)

Observe that by Assumption 3.4, the sum over all e ∈ Ê j (T�) of ω̂e
j is one. This

leads to the following definition of the Bézier projector for THB-splines, denote
� : L2(�) → T� ,

� f :=
N
∑

j=1

c j Tj . (48)

4.2 Possible Choices for V(�̂e)

The above general methodology provides several options for formulating the Bézier
projection operator for THB-splines by varying the choice of V(�̂e) on each projec-
tion element �̂e. We outline three such choices over here. Two common features of
the following choices are that:
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• they lead to local projections �̂e
1�̂

e
0 that yield optimal a priori error estimates with

respect to the mesh size, and,
• the corresponding matrices D̂e are independent of the mesh size, in the sense that
they stay invariant when the domain and the hierarchical mesh are both scaled up
or down.

Choice 1: discontinuous piecewise-polynomials on �̂e

The first choicewe propose is to pickV(�̂e) = B
−1
p,�̂e

, whereB
−1
p,�̂e

is defined to be the

space of discontinuous piecewise-polynomials on �̂e.With this choice, the projection
�̂e

0 can be formulated as a combination of L2-projections onto Pp(�
e′
), see (7), for

every �e′ ⊂ �̂e. In general, V(�̂e) ⊃ T̂
e
� , and so the projection �̂e

1 is equivalent to
a least-squares problem and the matrix D̂e is a pseudo-inverse of the corresponding
linear system. This choice most resembles the Bézier projector from [29] as it starts
with local element-wise approximations that can be computed very efficiently and
the matrix D̂e is constructed by collecting the transposed inverse Bézier extraction
matrices of all the elements �e′ ⊂ �̂e. In practice, these inverses are not explicitly
needed.

Choice 2: THB-splines on �̂e

An alternative is to directly project onto the local THB-spline space by choosing
V(�̂e) = T̂

e
� . Here, the projection �̂e

0 can be formulated as in (7) using the basis
functions Tj |�̂e . Consequently, the projection �̂e

1 is the identity and the corresponding
matrix D̂e is an identity matrix. The numerical results of the next section indicate that
for high degrees, this approach performsworse than choice 1 due to an ill-conditioned
projection onto the THB-splines restricted to �̂e.

Choice 3: global polynomials on �̂e

As a last choice, one can pick V(�̂e) = Pp(�̂
e). With this choice, the projection

�̂e
0 can be formulated exactly as in (7), albeit for a projection element �̂e instead

of a mesh element �e. Moreover, since Pp(�̂
e) ⊂ T̂

e
� , the projection �̂e

1 is the
identity and knot insertion can be used to assemble the corresponding matrix D̂e.
However, we do not consider this choice because the resulting � does not preserve
THB-splines, and hence is not a projector. Note that this choice can still be used to
define a THB-spline approximant and is similar in philosophy to [19]. To see that the
latter is also not a projector, we can apply its reconstruction approach to a spline in
the THB-spline space. In that case, restricted to �e, the control points of the target
spline are mapped to those of its approximation using the following map:

(

Le
)T (

LeCe
)−T (

Ce
)T

, (49)

where the so-called transmission matrix Le encodes an intermediate projection onto
a coarser space. Since (Ce)T is a rectangular matrix with more columns than rows
and LeCe is square, in general the above map will not preserve the control points of
the THB-spline.
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4.3 A Priori Local Error Estimates

We begin this section by defining the support extensions of elements, and showing
that the assumptions placed so far imply that the size of the support extension is
bounded by the local mesh size.

Definition 4.1 We define the support extension of�e, e ∈ Min
� , with respect to T�

as:

˜�e :=
⋃

j∈Ie(T�)

⋃

e′∈Ê j (T�)

clos
(

�̂e′)
, (50)

Define the mesh size associated to an element �e =×n
i=1

(

ξ i
ki ,� , ξ i

ki+1,�

)

, e ∈
Min

� , as

he := max
i

(

ξ i
ki+1,� − ξ i

ki ,�

)

, (51)

and of a projection element �̂e =×n
i=1

(

ξ i
ki ,� , ξ i

ki+bi ,�

)

, as

ĥe := max
i

(

ξ i
ki+bi ,� − ξ i

ki ,�

)

, (52)

where bi only depends on pi . From Assumptions 3.1 and 3.2 placed on the hierar-
chical mesh, and by definition of the projection elements, there exists a constant C0,
dependent only on the degree, such that the mesh size of a projection element is

he ≤ ĥe ≤ C0h
e. (53)

Let the corresponding support extension ˜�e be contained in the smallest bounding
box cube(˜�e) :=×n

i=1

(

˜ξ i
0 , ˜ξ i

1

) ⊇ ˜�e. Then, the mesh size for ˜�e is defined as

˜he := max
i

(

˜ξ i
1 −˜ξ i

0

)

. (54)

Again, there is a constant, C1, independent of he, such that

he ≤˜he ≤ C1h
e. (55)

Using the above, we now state the following local error estimates for the Bézier
projector.

Theorem 4.1 For e ∈ Min
� , 0 ≤ k ≤ m ≤ min(p) + 1 and f ∈ Hm(˜�e):

| f − � f |Hk (�e) ≤ C(he)m−k | f |Hm (cube(˜�e)), (56)
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where C is a constant independent of the mesh size he and cube(˜�e) is the smallest
hypercube that contains ˜�e.

The proof for this theorem is an adaptation of the proof given in [29] and relies on
standard polynomial approximation estimates, and spline-reproduction and stability
of the projection �. We first prove the latter results in Lemma 4.1, and thereafter
provide a proof of Theorem 4.1.

Lemma 4.1 The projector � has the following properties:

• � f = f for f ∈ T� , (spline reproduction)
• ‖� f ‖L2(�e) ≤ Cstab‖ f ‖L2(˜�e) for f ∈ L2(˜�e), (local stability)

where Cstab is independent of the mesh size he.

Proof Spline preservation follows trivially by construction since every step (andwith
Choices 1 and 2 for the local spaces) perfectly preserves the piecewise-polynomial
representation of the THB-spline.1 For local stability, observe that on �e the global
projection � f combines the local approximations on the elements in the support
extension ˜�e:

� f |�e =
∑

j∈Ie(T�)

⎛

⎜

⎝

∑

e∈Ê j (T�)

ω̂e
j ĉ

e
j

⎞

⎟

⎠
Tj .

Then,
∣

∣

∣

∣

� f |�e

∣

∣

∣

∣

≤ max
j∈Ie(T�)

∣

∣

∣

∣

∣

∣

∣

∑

e′∈Ê j (T�)

ω̂e′
j ĉ

e′
j

∣

∣

∣

∣

∣

∣

∣

∑

j∈Ie(T�)

Tj ≤ max
j∈Ie(T�)

e′∈Ê j (T�)

∣

∣

∣ĉe
′
j

∣

∣

∣, (57)

where we have used partition-of-unity of THB-splines. For any given e, ĉej are com-

puted using (44) and, since the matrix D̂e is mesh size independent, ‖D̂e‖∞ is mesh-
size independent.Moreover, the values f̂ ej in (43) are computed via an L2-projection.
For an L2-projection on a single element �e to a finite element polynomial space
that is non-negative and obeys partition of unity, we can bound the coefficients by

max
k

| f ek | ≤ C
√

(he)n
‖ f ‖L2(�e), (58)

whereC is a constant independent of mesh size. See [29, Lemma A.5] for a proof for
the Bernstein polynomials in case of choice 1. This proof can be trivially extended to
hold for a finite element polynomial space which is non-negative and obeys partition
of unity. For a projection element �̂e, this bound becomes

1 Choice 3 will instead preserve the polynomials of P(�̂e).
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max
k

| f̂ ek | ≤ C√
(he)n

‖ f ‖L2(�̂e). (59)

Here we used that the number of elements in a projection element is dependent on
spline degree p, and their size is bounded from below by he. Combining the above
and integrating over �e:

‖� f ‖L2(�e) ≤ Cstab‖ f ‖L2(˜�e),

for a constant Cstab that is independent of he. �

Proof (Theorem 4.1) For any polynomial fh ∈ Pp(˜�
e),

| f − � f |Hk (�e) = | f − fh + fh − � f |Hk (�e)

≤ | f − fh |Hk (�e) + |�( f − fh)|Hk (�e)

≤ | f − fh |Hk (˜�e) + CinvCstab(h
e)−k‖ f − fh‖L2(˜�e),

where we have used the inverse inequality for polynomials with constant Cinv

and local stability of � from Lemma 4.1. Consequently, using standard polyno-
mial approximation estimates for both terms on the hypercube cube(˜�e), we obtain
the desired claim for a constant C that depends on Cstab, Cinv and the polynomial
degree. �

5 Numerical Results

We perform several numerical experiments to validate our findings. Here we limit
ourselves to the two dimensional THB-spline spaces of various polynomial degrees.
First, the local estimate from Theorem 4.1 is numerically validated for Choice 1 and
2 from Sect. 4.2. Secondly, we introduce a global refinement scheme and perform
tests to compare the proposed Bézier projection to [14].

5.1 Verification of Error Estimates

To validate the error estimates of Theorem 4.1, the target function f (x, y) =
sin(πx) sin(πy) is projected onto T� with L = 2 levels, where

�1 := �, �2 := {(x, y) ∈ �1 : x ≥ 0.5, y ≥ 0.5}. (60)

On the above domain hierarchy, THB-spline spaces T� are constructed for each
p ∈ {(p, p) : p = 1, . . . , 5}. The coarsest mesh consists of 2 × 2 elements, and the
subsequent refinements are built by bisecting the meshes at all levels. The results for
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Fig. 11 Numerical Convergence rates for projection of f (x, y) = sin(πx) sin(πy) onto the THB-
spline space built for the domain hierarchy from (60). For both choice 1 (solid line) and choice 2
(dash dotted line) are compared to Theorem 4.1 (dashed line). The elements sizes per dimension
vary between h = 2−1 and 2−6 (for level 1) while ensuring an even number of elements. Note that
choice 2 performs worse choice 1

both choice 1 and choice 2 can be seen in Fig. 11, the error converges optimally with
respect to the mesh size. However, for choice 1 (for p = 5) and choice 2 (for p = 4
and p = 5), the accuracy stagnates for a small enough mesh size. This problem is
worse for choice 2, as we have observed that the matrices D̂e from Sect. 4.1 exhibit
a worse conditioning number for choice 2, compared to choice 1. For example, for
degree 5 and for the projection element touching the lower-left corner of �2, the
condition number for the L2 projection matrix for choice 2 is 1.7 × 1016, while the
matrix D̂e of choice 1 has a condition number of 2.4 × 107 (provided one uses a
QR-decomposition).

5.2 Adaptive Refinement Tests

In this section, we compare our projector to the one from [14] on an adaptive refine-
ment test borrowed from the latter. To do this, we propose an adaptive refinement
scheme that ensures that the hierarchical refinements satisfy all assumptions required
for the formulation of the Bézier projector.

The numerical results show comparable performance in relation to the results
from [14]. For practical purposes, a first implementation of the refinement scheme
was formulated for the restricted setting of quadratic and cubic THB-splines, and for
a stronger set of assumptions that automatically imply Assumptions 3.3 and 3.4.
New assumptions on the mesh
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The first new assumption is borrowed from [30] and it states that the refinement
domains �� must be equal to the union of supports of a subset of level-(� − 1)
splines.

Assumption 5.1 For all � > 1, ∃S ⊂ B�−1 such that

�� :=
⋃

Bj,�−1∈S
supp

(

Bj,�−1
)

, � = 2, . . . , L . (61)

Assumption 5.1 was originally introduced so that the HB-spline functions can
represent unity with strictly positive coefficients wj,� > 0,

∑

(j,�):Bj,�∈H�

wj,�Bj,� = 1. (62)

For the second assumption, we strengthen an assumption in [21]. For this, we
introduce the open complementary region:

�c
�+1 := �\��+1. (63)

Assumption 5.2 For each level � = 1, . . . , L − 1, and for any B-spline basis
function Bj,� ∈ B�, the overlap defined as:

overlap
(

Bj,�
) := supp

(

Bj,�
) ∩ �c

�+1, (64)

is connected.

Assumption 5.2 is used in [21] to show that Hierarchical B-spline spaces are
linearly independent and contains the space of piecewise polynomials over the same
mesh.

The above two assumptions are sufficient for quadratic THB-splines. In the case
either p1 or p2 is 3, projection elements can overlap (such as in Fig. 9). In this case,
we impose the following additional assumption on the refinement domains ��.
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Assumption 5.3 When either p1 = 3 or p2 = 3, and for each � = 2, . . . , L ,
�� can be described as the following unions:

• if p1 = 3 and p2 ≤ 2, then ∃K 1
� ⊂ N

2 such that:

�� =
⋃

(k1,k2)∈K 1
�

[

ξ 1
2k1,�−1, ξ

1
2k1+2,�−1

]× [

ξ 2
k2,�−1, ξ

2
k2+1,�−1

]

. (65)

• if p1 ≤ 2 and p2 = 3, then ∃K 2
� ⊂ N

2 such that:

�� =
⋃

(k1,k2)∈K 2
�

[

ξ 1
k1,�−1, ξ

1
k1+1,�−1

]× [

ξ 2
2k2,�−1, ξ

2
2k2+2,�−1

]

. (66)

• if p1 = p2 = 3, then ∃K 3
� ⊂ N

2 such that:

�� =
⋃

(k1,k2)∈K 3
�

[

ξ 1
2k1,�−1, ξ

1
2k1+2,�−1

]× [

ξ 2
2k2,�−1, ξ

2
2k2+2,�−1

]

. (67)

• if p1 ≤ 2, p2 ≤ 2, no change.

The following results, proved in the Appendix, show that these assumptions imply
Assumptions 3.3 and 3.4 required for formulating the Bézier projector.

Proposition 5.1 Assumptions 5.1, 5.2 and 5.3 imply Assumptions 3.3 and 3.4 in two
dimensions.

Adaptive refinement scheme
We now propose a simple refinement scheme consisting of four main routines:

• Project : builds THB-splines on the given mesh and applies the projector
described in Sect. 4;

• ElemError : returns the maximum error for every mesh element;
• MarkElem : marks mesh elements for refinement based on Dörfler marking [10]
and 0 < θ < 1;

• ConformMesh : updates the set of marked elements so that Assumptions 3.2, 5.1,
5.2 and 5.3 are satisfied.

The only non-standard routine here is ConformMesh. The pseudo-code for this
is shown in Algorithm 1 and consists of three routines:

• SupportCover : for every level �, initializes�� as a union of supports of Bj,�−1

that cover the marked level-� elements;
• GradeMesh : conforms mesh to admissibility class 2 using [3];
• ConnectedSupport : for any � and Bj,�−1 ∈ B�−1 such that overlap(Bj,�−1) is
not simply connected, marks the support of Bj,�−1 for refinement.
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In addition, for cubic THB-splines, each of these routines is made to conform to
Assumption 5.3.

input : mesh to conform to Assumptions 3.2, 5.1, 5.2 and 5.3 while adding
marked_elem.

output: mesh.

1 mesh ← SupportCover(marked_elem,mesh);
2 alter ← true;
3 while alter do
4 mesh_new ← GradeMesh(mesh);
5 mesh_new ← ConnectedSupport(mesh_new);
6 if mesh_new = mesh then
7 alter ← false;
8 end
9 mesh ← mesh_new;

10 end

Algorithm 1: Schematic for ConformMesh

Comparison with [14]
The performance of our Bézier projector with the proposed adaptive refinement
scheme is compared to the local THB-spline projector introduced in [14]. As a test
case, we use the following target function:

f (x, y) = 1 − tanh

(
√

(2x − 1)2 + (2y − 1)2 − 0.3

0.05
√
2

)

, (x, y) ∈ [0, 1]2. (68)

The same function was used in [14, Example 1] albeit by transforming it from [0, 1]2
to a scaled and translated domain [−1, 1]2. This will not cause any problems for our
comparison as we will measure the errors in the L∞ norm.

As in [14], the quadratic scheme is allowed to refine up to level 5, while the
cubic case refines up to level 4. In Fig. 12a, b, the maximum element error for our
refinement scheme can be seen for the quadratic and cubic case for various choices
of θ . The final refinement domain for the quadratic case and θ = 0.5 can be seen in
Fig. 13a, and for the cubic case and θ = 0.75 in Fig. 13b. In [14], they use an adapted
Dörfler marking scheme for θ = 1, where they additionally add extra elements to
control the locality of refinement.

While in this paper we focus on the characterization of pseudo-local linear inde-
pendence for THB-splines, we can still compare our proposed projector to [14]. The
main difference being that our method relies on Bézier extraction, for which efficient
implementations exists, for instance, [8]. In the case of [14], for every degree of free-
dom, a local THB-spline projection is required. While the projection matrices can
be precomputed (as can ours), this local projection is required for every DOF sepa-
rately. In contrast to our method where each projection elements indirectly projects
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(a) (b)

Fig. 12 Maximum element error for the adaptive refinement of Eq. (68) in the quadratic case a and
the cubic case b

(a) (b)

Fig. 13 The final meshes for θ = 0.5 in the quadratic case a and for θ = 0.75 in the cubic case b

to multiple DOF at a time, but multiple projection elements need to be computed
before the final coefficient can be computed. The biggest advantage for [14], is that
it requires less strict assumptions on the mesh.

6 Conclusion

Truncated Hierarchical B-spline spaces suffer from overloading of mesh elements,
for example, there exist mesh elements restricted to which the basis functions are
linearly dependent. In this paper, we considered these spaces in an arbitrary number
of spatial dimensions. For hierarchically refined meshes that satisfy certain assump-
tions, we showed that we can identify the elements that are not overloaded. Using
those non-overloaded elements, we partitioned the entire mesh into a set of local
macro-elements, none of which are overloaded. These macro-elements, which we
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call projection elements, are local in the sense that they consists of adjacent ele-
ments, and the number of elements in each macro-element solely depends on the
spline degree.

Using these projection elements, we extended the Bézier projector from [29] to
the Truncated Hierarchical B-spline spaces. In particular, the notion of projection
elements is useful for performing local projections onto the spline space restricted
to those macro-elements. These local projections can be chosen in different ways,
and we outlined some simple choices that stay close to the original Bézier projector
from [29].

Finally, we derived optimal local error estimates for our proposed projector. These
estimates were numerically validated in a two-dimensional setting. In addition, a
first adaptive refinement scheme was proposed for quadratic and cubic splines that
produces hierarchically refinedmeshes conforming to our assumptions. Note that this
refinement scheme was only proposed for performing numerical comparison with
the results of [14]; theoretical results (for example, on its complexity) are outside the
scope of this paper. The results showed that the performance of the Bézier projector
and the proposed refinement scheme are comparable to that of [14].

There are several generalizations of our results that may be of interest in applica-
tions, we list a couple of them here. First, we only considered hierarchical meshes of
admissibility class 2 [3]; extending the characterization of local linear independence
to higher admissibility classes will allow one to work with more general hierarchical
refinements. Another interesting open question is formulation of refinement schemes
with linear complexity, simple implementations, that can yield meshes conforming
to our assumptions, and that work for arbitrary choices of degrees in both 2D and
3D. These and other questions will be the focus of our future work.

7 Appendix: Proof of Proposition 5.1

Assumption 3.3:
Wefirst show thatAssumptions 5.1 and 5.2 implyAssumptions 3.3 in two dimensions
and spline degree p = (p1, p2)T . Here, there are three kinds of well-behaved border
elements shown in the schematics below.
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For the first two cases (left and centre), the well-behaved border elements shown
in blue and the respective domain specified by Assumption 3.3 is shown by blue
line. Due to Assumption 5.1, if di

�(e) = 0, the adjacent 2pi + 2 elements, must be
contained in ��, which are shown in orange. Then, consider the level-(� − 1) B-
spline with the boundary of its support displayed with bold, teal lines (these are
chosen to encompass the domain of Assumption 3.3 and the level-(� − 1) elements
sharing the border ∂�� with the well-behaved border element of interest). Then, the
level-(� − 1) elements in its support and fenced by the light blue border must be
contained in �� due to Assumption 5.2, and therefore Assumption 3.3 is satisfied.
For the last case (right), assume without loss of generality that d2

� (e) > p2. In this
case, d2

� (e) > p2, forces the pink coloured elements to be refined. While the orange
elements are refined by the same reasoning as the other cases. In this setting, again
the level-(� − 1) elements contained in the domain specified by Assumption 3.3,
must again all be contained in ��, as otherwise Assumption 5.2 is violated.

Assumption 3.4:
We will now show that Assumptions 5.1, 5.2 and 5.3 imply Assumptions 3.4 in two
dimensions for the quadratic and cubic cases. We start by showing that for any of
the possibly overloaded elements, there exists a projection element containing it.
Lastly, we will show that no two projection elements can overlap, hence showing
uniqueness.

Existence
As in the premise of Assumption 3.4, consider an element �e′

for which we want
to show the claim: the existence of �e such that �e′ ⊂ �̂e. Let t be the minimal
translation in l1 norm to an element ofM�\Min

� . Without loss of generality, assume
t i ≤ 0 for all i .

If both entries t i are non-zero, then for �e = τt+[1,1]T (�e′
), we have:

• ∂�e ∩ (∂��\∂�) �= ∅
• di

�(e) > 0 for all i = 1, 2.

But then, due to Assumption 5.3, for both the cubic and quadratic case:

di
�(e) > pi , i = 1, 2. (69)

Hence �e′
is contained in the projection element generated by well-behaved border

element �e.
In case both entries t i are zero, di

�(e
′) = 0 and �e′

is a well-behaved border
element and contained in the projection element �̂e′

.

The last case is less trivial, assume without loss of generality that t1 = 0. Then
the element at translation t1 = (0, t2 + 1) is the first candidate for �e. Denote this
element as�e∗ = τt1(�

e′
). If d1

� (e∗) > p1 or d1
� (e∗) = 0,�e′ ⊂ �̂e∗

. Else, assuming
without loss of generality that the translation for which d1

� (e) > p1 is in the negative
x-direction, we claim that the element at translation t2 = (−d1

� (e∗), t2 + 1) is the
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Fig. 14 For the starting
element �e′

shown in blue,
the candidate shown in green
does not satisfy
d1� (e∗) > 3 = p1. Hence, the
orange element is the true
candidate �e for which
d1� (e) = d2� (e) = 0. If this
were false, the teal B-spline
would violate Assumption
5.2

desired well-behaved border element �e = τt2(�
e′
). See Fig. 14 for this case, the

black arrows are the translation vector t1, while the combination of the black and
pink are t2. This element �e must be a well-behaved border elements, as otherwise
Assumption 5.2 is violated for the level-(� − 1) B-spline indicated.

Uniqueness:
To show uniqueness, it is sufficient to show that any arbitrary projection element
cannot overlap with any other. In 2D, there are four possible projection elements.
Namely, those generated by the condition that di

�(e) = 0 or di
�(e) > pi for i = 1, 2.

• d1
� (e) = 0, d2

� (e) > p2 or d2
� (e) = 0, d1

� (e) > p1:
For this case, Assumption 3.3 ensures the projection element �̂e is unique. See
Fig. 15a, the domain stated by Assumption 3.3 consists of projection elements,
none ofwhich can overlapwith �̂e. Notice that in Fig. 15a, for a different projection

(a) (b)

Fig. 15 a For a given well-behaved border element indicated by the crosshatch pattern with either
d1� (e) = 0, d2� (e) > p2 or d2� (e) = 0, d1� (e) > p1, Assumption 3.3 guarantees that no other pro-
jection elements can overlap the projection element filled in with blue. b Assumption 5.3 makes
sure that there is enough “space” between any vertex of ��. These vertices produce projection
elements which are fully contained in the “blocks” from Assumption 5.3 (shown in black), hence
non-overlapping
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element �̂e1 , to overlap with �̂e, some part of ∂�e1 ∩ ∂��\∂� must lie within the
domain specified by Assumption 3.3, which would violate Assumption 3.3.

• d1
� (e) = 0, d2

� (e) = 0 or d1
� (e) > p1, d2

� (e) > p2 : the previous bullet, it suffices
to check against other projection elements of these types. However, in 2D, these
are all generated by the vertices of ��, and span pi elements in each direction.
Depending on spline degree, these are contained in either 1 × 1, 1 × 2, 2 × 1
or 2 × 2 level-(� − 1) elements (since we are only considering at most bi-cubic
splines). By Assumption 5.3, these blocks (generated by the vertices) can never
overlap in conjunction with Assumption 5.1, hence these projection elements do
not overlap. See Fig. 15b for an example in case of p1 = 3, p2 = 2 where the
relevant blocks from Assumption 5.3 are given in red.
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