
MSc thesis in Geomatics for the Built Environment

Automatic construction of 3D tree models in
multiple levels of detail from airborne LiDAR data

Geert Jan (Rob) de Groot

2020

A U TO M AT I C C O N S T R U C T I O N O F 3 D T R E E M O D E L S I N M U LT I P L E
L E V E L S O F D E TA I L F R O M A I R B O R N E L I DA R DATA

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Geert Jan (Rob) de Groot

April 2020

Geert Jan (Rob) de Groot: Automatic construction of 3D tree models in multiple levels of
detail from airborne LiDAR data (2020)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Department of Urbanism
Faculty of the Built Environment & Architecture
Delft University of Technology

Supervisors: Prof. Dr. Jantien Stoter
Dr. Hugo Ledoux
ir. Tom Commandeur

Co-reader: Dr. Liangliang Nan

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

Automatically generated three dimensional (3D) city models are becoming less of a
futuristic, demanding or even impossible to attain goal, and more of a necessary, or
vastly sought after, means for a multitude of applications. The current prevalence
of open geographic information, such as nationwide-covering Light Detection and
Ranging (LiDAR) datasets in the Netherlands, opens up opportunities for different
parties to experiment in a search for solutions based on LiDAR data. A current
approach in answering this demand for 3D city models is 3dfier, which is an ongoing
project to automatically generate, disseminate and maintain a 3D city model based
on open source airborne LiDAR datasets as a main source. Trees are currently not
included in the 3D city models generated by 3dfier, while trees are an integral part
of any city landscape.

In this thesis, an implementation is developed that goes through multiple stages
of the construction of 3D tree models. First, an initial classification method of the
available LiDAR point cloud data is done. This results in a new intermediate point
cloud that consists of mostly points belonging to trees. These classified tree points
need to be segmented, such that each segment consists of a group of points that
represent a single tree. A second classification is constructed after the segmentation,
which is called data cleaning. This step ensures that every segment that consists of
tree points, is checked for misclassifications and outliers and that these are removed.
After cleaning every segment, tree models can be constructed in various Levels of
Detail (LODs) and additionally, the types of trees are classified based on identifying
features of these trees.

The conclusions of this research are that it is possible to construct 3D tree models
based on airborne LiDAR point cloud data and that these can be made to fit in an
existing 3D city model. This is demonstrated by creating a 3D city tree model for
an existing 3D city model and merging them into one dataset. While further work
is required to achieve a seamless fit, the integrated results show that the datasets
complement each other well.

v

http://tudelft3d.github.io/3dfier/
http://tudelft3d.github.io/3dfier/

A C K N O W L E D G E M E N T S

I would like to express my gratitude to my mentor, Dr. Hugo Ledoux. During
this intensive and lengthy process that has been the writing of this thesis, he was
always ready to provide insightful feedback and help me whenever any struggles
presented themselves. Thanks to Tom Commandeur, who helped me immensely
during the early stages of this thesis. Thanks to Prof. Dr. Jantien Stoter and Dr.
Liangliang Nan for providing helpful feedback in the later stages of this research.

A special thank you to all my friends and family, who stood by me during my
entire academic journey. Your continuous support and eternal confidence in me has
been an enormous factor in me finishing this chapter of my life.

vii

C O N T E N T S

1 introduction 1

1.1 Objectives and Research Questions . 2

1.2 Proof of Concept . 3

1.3 Scope of Research . 4

1.4 Thesis Outline . 4

2 related work 5

2.1 Modelling of Trees . 5

2.1.1 Levels of Detail . 5

2.1.2 Iconization . 7

2.1.3 Convex Hull . 7

2.1.4 Alpha Shape . 8

2.2 Applications for 3D Trees . 8

2.2.1 Non-visualization . 9

2.2.2 Pure visualization . 10

2.2.3 Practical visualization . 10

2.2.4 3D city model generation . 12

2.2.5 Highly detailed automatic tree modelling 12

2.3 Classification of Point Cloud Data . 13

2.3.1 Point cloud classes and formats 13

2.3.2 Classification using height . 14

2.3.3 Classification using intensity . 14

2.3.4 Classification using number of returns 15

2.3.5 Classification using a combination of properties 15

2.4 Segmentation of Point Cloud Data . 15

2.4.1 Region growing segmentation 15

2.4.2 Height-based segmentation . 16

2.4.3 Watershed segmentation . 16

2.5 Data Cleaning: Cleaning of segments 17

2.5.1 Plane detection: RANSAC method 17

2.5.2 Outlier detection . 17

2.6 Supervised Classification of Trees . 18

2.6.1 Supervised machine learning . 18

3 methodology 19

3.1 Classification of Point Cloud Data . 19

3.2 Segmentation of Trees . 20

3.3 Data Cleaning of Segmented Trees . 20

3.4 Modelling of Single Trees . 21

3.5 Adding Tree Types Based on Tree Parameters 24

3.5.1 Training Dataset . 24

3.5.2 Feature Selection . 24

4 implementation 25

4.1 Requirements . 25

4.2 Classification . 25

4.2.1 Lasheight . 25

4.2.2 Lasclassify . 26

4.2.3 Las2las . 26

4.2.4 Classification Validation . 27

4.3 Segmentation . 28

4.3.1 Segmentation Benchmarks . 29

4.4 Data Cleaning . 30

4.4.1 Filtering . 31

ix

x contents

4.4.2 Segment Planarity Check . 32

4.4.3 Segment Subsection Planarity Check 35

4.4.4 Segment Outlier Check . 36

4.5 Modelling . 40

4.5.1 Parameter Extraction . 40

4.5.2 LOD0: Hexagon on ground level 42

4.5.3 LOD1: Raised hexagon . 42

4.5.4 LOD2: Implicit tree model . 43

4.5.5 LOD3.0 Convex Hull crown + Implicit trunk 44

4.5.6 LOD3.1 Alpha Shape crown + Implicit trunk 45

4.5.7 Integration with 3dfier . 47

4.6 Adding Tree Types . 47

4.6.1 First Iteration: Tree Genera . 48

4.6.2 Second Iteration: Grouped Classification 52

5 results and analysis 55

5.1 Results . 55

5.2 Analysis . 58

5.3 Comparison . 62

6 conclusions 65

6.1 Research Overview . 65

6.2 Limitations . 67

6.3 Future work . 68

L I S T O F F I G U R E S

Figure 1.1 3dfier output in Blender . 2

Figure 1.2 Simplified steps showing the pipeline of this thesis 3

Figure 2.1 Building LOD specifications . 6

Figure 2.2 Vegetation LOD specifications 6

Figure 2.3 Implicit Tree Models . 7

Figure 2.4 Convex Hull Examples . 8

Figure 2.5 2D Convex hull compared with 2D alpha shape 9

Figure 2.6 ENVI-met voxelized urban model 10

Figure 2.7 Time series 3D city . 10

Figure 2.8 Tree Change Visualization . 10

Figure 2.9 Tree models . 11

Figure 2.10 Tree crowns from the tree register 12

Figure 2.11 Steps classification, abstraction and reconstruction 12

Figure 2.12 Reconstructed tree models from various data sources 13

Figure 2.13 Unclassified points from AHN3: Boats and cars 13

Figure 2.14 Higher number of returns suggests a vegetation classification 15

Figure 2.15 Segmentation methods . 16

Figure 2.16 RANSAC estimation and outlier detection 18

Figure 3.1 Workflow . 19

Figure 3.2 Watershed segmentation visualization 20

Figure 3.3 Applying the watershed segmentation to a DEM of trees . . . 20

Figure 3.4 Data cleaning workflow . 21

Figure 3.5 Tree construction parameters 22

Figure 3.6 Example features and their box plots 24

Figure 4.1 Filtering point cloud . 26

Figure 4.2 Classification of point cloud . 26

Figure 4.3 Unclassified and classified point cloud data 27

Figure 4.4 Points that are filtered out. 27

Figure 4.5 Classified trees with some noise 27

Figure 4.6 Point incorrectly classified as vegetation 28

Figure 4.7 Digital Elevation Model . 28

Figure 4.8 Watershed results . 29

Figure 4.9 Segmented vegetation point cloud 29

Figure 4.10 Segmentation examples . 30

Figure 4.11 Six examples of segments with a low point count 32

Figure 4.12 Segments with an average intensity value of >100. 33

Figure 4.13 Segments with an average number of returns <1.5 34

Figure 4.14 Segments with a maximum height >50m. 35

Figure 4.15 Inlier points . 35

Figure 4.16 Inlier points . 36

Figure 4.17 Planes in segments . 37

Figure 4.18 Removing a plane that is a subset of a segment 37

Figure 4.19 RANSAC plane detection and removal 38

Figure 4.20 DBSCAN outlier detection and removal 39

Figure 4.21 Example of a pretty-printed CityJSON file 40

Figure 4.22 Vertices on a hexagon . 41

Figure 4.23 LOD0: Views of the hexagon on ground level 42

Figure 4.24 LOD0: Views of the hexagon on ground level (2) 42

Figure 4.25 LOD1: Views of the raised hexagon 43

Figure 4.26 LOD1: Views of the raised hexagon (2) 43

xi

xii list of figures

Figure 4.27 LOD2: Views of the implicit tree model 44

Figure 4.28 LOD2: Views of the implicit tree model (2) 44

Figure 4.29 Half-edge triangle sorting . 45

Figure 4.30 LOD3.0: Views of the convex hull tree model 45

Figure 4.31 LOD3.0: Views of the convex hull tree model (2) 46

Figure 4.32 LOD3.1: Views of the alpha shape tree model 46

Figure 4.33 LOD3.1: Views of the alpha shape tree model (2) 46

Figure 4.34 City model enriched with tree models 47

Figure 4.35 Suitable and unsuitable data for training 49

Figure 4.36 Box plot of intensity values for different tree genera 50

Figure 4.37 Box plot of lower periphery radius values for different tree
genera . 51

Figure 4.38 Box plot of height ratios for different tree genera 51

Figure 4.39 Box plot of radius ratios for different tree genera 51

Figure 4.40 Box plot of ratios between periphery height and periphery
radius for different tree genera 52

Figure 4.41 Relative difference between average values for each genera
per feature . 53

Figure 4.42 K-fold cross-validation concept 53

Figure 4.43 Box plots of features . 54

Figure 4.44 Scatter plot for classification . 54

Figure 5.1 Overview LOD0 . 55

Figure 5.2 Overview LOD1 . 56

Figure 5.3 Overview LOD2 . 56

Figure 5.4 Overview LOD3.0 . 56

Figure 5.5 Overview LOD3.1 . 56

Figure 5.6 Trees that are constructed as desired 57

Figure 5.7 Trees that are not constructed as desired 57

Figure 5.8 Under-segmentation can get fixed by DBSCAN 57

Figure 5.9 Integration example of this implementations output and 3dfier
output . 58

Figure 5.10 Overview shots of 3dfier integration 59

Figure 5.11 Trees that are scored as Good - Acceptable 60

Figure 5.12 Trees that are scored as Bad - Combination 61

Figure 5.13 Sub-optimal fit with 3dfier . 61

Figure 5.14 Output comparison with related work 62

Figure 5.15 Tree construction based on LiDAR point cloud data 63

Figure 5.16 Samples from the AHN3 point cloud 63

L I S T O F TA B L E S

Table 2.1 AHN3 classifications . 13

Table 2.2 LAS record format . 14

Table 3.1 Proposed LODs . 23

Table 4.1 Benchmark raster resolution . 30

Table 4.2 Benchmark seed-to-saddle difference 31

Table 4.3 Vertex construction. 41

Table 4.4 Feature ranking on average correlation values 49

Table 4.5 Feature ranking on differences between average values per
tree genera . 50

Table 4.6 Best eight features . 51

Table 6.1 Proposed tree LODs . 66

xiii

A C R O N Y M S

2D two dimensional

3D three dimensional

AHN Actueel Hoogtebestand Nederland

ASPRS American Society for Photogrammetry and Remote Sensing

CCW Counterclockwise

CHM Canopy Height Model

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DEM Digital Elevation Model

FME Feature Manipulation Engine

GIS Geographical Information System

LAS LASer File Format

LAZ Compressed LASer File Format

LiDAR Light Detection and Ranging

LOD Level of Detail

LODs Levels of Detail

ML Machine Learning

OPTICS Ordering Points To Identify the Clustering Structure

PC Point Cloud

PDOK Publieke Dienstverlening Op de Kaart

QGIS Quantum Geographical Information System

RANSAC Random Sample Consensus

SAGA System for Automated Geoscientific Analyses

SILVI-STAR SILVIgenesis and Single-tree Three-dimensional Architecture

SVF Sky View Factor

TIN Triangular Irregular Networks

UHI Urban Heat Island

UI User Interface

xv

1 I N T R O D U C T I O N

Automatically generated three dimensional (3D) city models are becoming less of
a futuristic, demanding or even impossible to attain goal, and more of a neces-
sary, or vastly sought after, means for a multitude of applications [Biljecki et al.,
2015; Elberink et al., 2013; Verdie et al., 2015]. The current prevalence of open
geographic information, such as nationwide-covering Light Detection and Rang-
ing (LiDAR) datasets in the Netherlands [Publieke Dienstverlening op de Kaart,
2020], opens up opportunities for different parties to experiment in a search for
solutions based on LiDAR data.

The generation of 3D city models can help with a number of applications, such as:
monitoring phenomena as the Urban Heat Island (UHI) effect [Unger, 2009; van der
Hoeven and Wandl, 2018], maintaining and displaying advanced 3D cadastral own-
ership parcels [Stoter and van Oosterom, 2005], estimating solar radiation for solar
energy harvesting purposes [Hofierka and Zlocha, 2012] and generally 3D models
can be advantageous in city planning. Besides all these applications, it can also be
stated that it is desirable to have 3D city models simply as it is a more true repre-
sentation of reality, rather than having two dimensional (2D) city models, which is
currently the norm. 3D adds a more intuitive feel to users and can be used to more
clearly convey information.

Research has been done on various fields that connect with this goal, such as
research on standards or rules on how 3D city models should be generated, with
regards to buildings and network infrastructure [Lafarge and Mallet, 2012; Elberink
et al., 2013] and vegetation [Ortega-Córdova, 2018]. Furthermore, many scientists
have delved into automatically generating buildings [3D Geoinformation Group,
2019] and automatically classifying and segmenting vegetation data [Li et al., 2012;
Rutzinger et al., 2008], however this has not yet all been put together into one
elegant solution using LiDAR datasets as a main source.

Currently maintained 3D city models are usually semi-manually made and on a
city-only basis. This will be increasingly difficult to maintain if and when more
cities need to be included. An approach has been made with 3dfier1, which is a
currently ongoing project developed at Delft University of Technology, to automat-
ically generate, disseminate and maintain a 3D city model based on open source
airborne LiDAR data for the Netherlands.

It is an open source tool that creates a 3D city model based on 2D Geographical
Information System (GIS) datasets by lifting polygons to its height obtained with
airborne LiDAR point cloud data sets [3D Geoinformation Group, 2019]. Any 2D

data can be used as input, and each class must be mapped to one of the following:

1. Building

2. Terrain

3. Road

4. Water

5. Forest

6. Bridge

1 http://tudelft3d.github.io/3dfier/

1

http://tudelft3d.github.io/3dfier/

2 introduction

Figure 1.1: 3dfier output in Blender [3D Geoinformation Group, 2019]

7. Separation (concrete slabs along canals)

Number 5 leads to the impression that trees are already included in 3dfier, which
is, however, not the case. When viewing example data, like Figure 1.1, one can
see that tree models are not included in the 3D model [Biljecki, 2017]. The green
polygons that are included represent the maaiveld2.

The necessity of the addition of 3D tree models can be drawn from the aforemen-
tioned reasons for having a 3D city model in the first place, with the added specific
applications such as modelling the cooling factor trees can have in the UHI phenom-
ena, maintaining an open tree register for purposes such as monitoring the state of
trees and upholding information on which party is responsible for the maintenance
of said trees. Since 3D tree models are currently missing from many applications,
but primarily from 3dfier, this is the gap that this research will aim to fill.

1.1 objectives and research questions
The main research question for this thesis is:

How can 3D tree models at varying Levels of Detail (LODs) be automatically constructed
from airborne LiDAR point cloud data?

The goal of this research is to devise and put into effect a workflow that automat-
ically constructs 3D models of trees based on airborne LiDAR point cloud data. To
achieve this, the following sub-questions will be relevant:

1. What applications require what type or Level of Detail (LOD) of 3D tree models?

2. What LODs are most fitting for which type of tree models (single vegetation object or
vegetation group)?

2 Dutch term for ground level or surface level

http://tudelft3d.github.io/3dfier/
http://tudelft3d.github.io/3dfier/

1.2 proof of concept 3

(a) Raw point cloud data (b) Roughly classified point cloud data

(c) Segmented point cloud data (d) Tree models in various LODs

Figure 1.2: Simplified steps showing the pipeline of this thesis

3. How can an implementation be made to fit into the 3dfier pipeline?

4. Is it possible to determine which tree type a tree belongs to, based on features that can
be extracted from trees in airborne LiDAR point cloud data?

1.2 proof of concept
This thesis presents how the openly available point cloud data, Actueel Hoogtebe-
stand Nederland (AHN)3 from the Dutch platform for geodata, Publieke Dienstver-
lening Op de Kaart (PDOK), can be used as a source for the construction of 3D models
of trees by developing a proof of concept which describes all necessary steps in or-
der to do so.

The first step in this process is to roughly classify the point cloud data from
AHN3 into a vegetation class. After the rough classification the point cloud can be
segmented into groups of points that ideally represent a single tree. When the data
is segmented, a second classification, or data cleaning, needs to be done. After data
cleaning, the parameters can be extracted, these are used for modelling, but also
for tree type classification. When this is finished the data can finally be used to
construct trees in the desired LOD. The simplified process can be seen in Figure 1.2,
and can be concisely summed up as follows:

1. Classification

The trees from the airborne LiDAR point cloud data need to be roughly
classified.

2. Segmentation

The classified trees need to be segmented, such that each segment consists
of a group of points that represent a single tree.

3. Data Cleaning

Every segment needs to be checked for misclassification and outliers, and
these need to be removed.

4. Modelling

Every cleaned segment can now be used to construct tree models in dif-
ferent LODs.

4 introduction

5. Tree Type Classification

With the simplest LOD, a training dataset can be made with a comparable
dataset that contains trees and their type, or genus, as is used in this thesis.
With this, predictions can be made for each tree and their genus, which can
then be added as additional information per tree model.

1.3 scope of research
The focus of this research is on the construction of 3D models of trees for smaller
areas in the Netherlands. The implementation is tested through the following area
sizes: A subsection of the Delftse Hout, a district in the Northwest in Delft, consist-
ing of approximately 150 trees. The Noordereiland in Rotterdam, a district that is
located on an island, with clear borders and ground truth values for existing trees
from 3D Rotterdam, consisting of around 500 trees. Multiple districts from Rotter-
dam, namely Noordereiland, Katendrecht, Het Park and Kop van Zuid, consisting
of roughly 5000 trees. With the success of these regions it can be stated that this
implementation can be scaled to an even larger extent, however that falls outside of
the scope of this research.

A short summary on what this thesis does, and does not do:

• The final implementation is not scaled to the whole country of the Nether-
lands.

• It does not make use of any other datasets than AHN3 for the construction of
tree models.

• The following properties of LiDAR are used for the classification and data clean-
ing:

X, Y, Z coordinates, intensity and number of returns.

1.4 thesis outline
Chapter 2 provides insight in related work that has been done on this subject, this
includes applications that make use of 3D tree models and previously done research
on the various subjects related to the construction of 3D tree models from airborne
LiDAR point cloud data. In Chapter 3 the methodology applied to this thesis is
described. Chapter 4 goes into detail of the implementation of the chosen methods
and reasoning for the parameters chosen for every step in the process. In Chapter 5

final results are presented as well as their respective measured accuracy and validity,
wherever possible. Chapter 6 concludes this research by answering the research
questions and suggesting future research options.

2 R E L AT E D W O R K

This chapter reviews the scientific research related to this graduation thesis. It is
divided into six sections to outline the relevance and scope of this research. These
sections cover the following: modelling of trees, related applications, classification
of airborne LiDAR point cloud data, segmentation of airborne LiDAR point cloud data,
data cleaning and supervised classification of tree types.

2.1 modelling of trees

The construction of tree models need to be done in accordance with existing stan-
dards, however tree models are, as of writing, not officially standardized. Due to
the absence of standards for tree models, this thesis will consider proposals and
existing standards for other 3D models and construct tree models on at least one of
each LOD.

2.1.1 Levels of Detail

The LOD of a 3D city model is one of its most important characteristics. It denotes the
adherence of the model to its real-world counterpart, and it has implications on its
usability [Biljecki et al., 2014]. There are existing standards or proposed standards
concerning 3D models in city models for various LODs. One of the latest proposals
for 3D buildings in city models is done by Biljecki et al. [2016], it is depicted in Fig-
ure 2.1. For 3D trees in city models, the latest proposal is done by Ortega-Córdova
[2018], it is depicted in Figure 2.2. The final goal of this research is to have aa least
one model of each LOD as possible output, therefore a few potential models from
Ortega-Córdova [2018] are discussed briefly.

LOD0.A: Is described to be either a point representing the location of a tree or
a crown buffer based on the crown diameter. Both are valid LOD0 options, and
possible to implement. Depending on the final chosen output file, simpler shapes
than a circle would be less verbose for storing data.

LOD1.A: Ortega-Córdova [2018] mentions it to be a regular canopy extrusion,
scaled in height and width. However it seems more like the previous LOD, scaled in
height alone. A valid option for a final LOD1 model.

LOD1.D: An implicit tree symbol, called the billboard. Made up of two flat images
of a tree crossed through each other. Not a valid choice for tree model construction
based on airborne LiDAR point cloud data.

LOD2.A: An implicit volumetric tree model, based on pre-made models. Scaled in
height and width. A valid LOD2 representation, and relatively easy to implement.

LOD3.A: A parametric tree model, based on parameters extracted from a collection
of points representing a tree. A valid LOD3 representation.

LOD3.B: Model with one of the highest adherences to reality, while still being a
simplified representation of it. Also a valid LOD3 representation.

5

6 related work

Figure 2.1: Building LOD specifications [Biljecki et al., 2016]

Figure 2.2: Vegetation LOD specifications [Ortega-Córdova, 2018]

2.1 modelling of trees 7

(a) [Koop, 1989] (b) [Ortega-Córdova, 2018]

Figure 2.3: Implicit Tree Models: (a) SILVI-STAR model (b) Rotterdam 3D Implicit Model

2.1.2 Iconization

The modelling of single trees or a collection of trees can be based on their ap-
pearance in the point cloud, using a set of rules as is often done with procedural
modelling [Parish and Müller, 2001]. Procedural modelling is widely used in 3D

city modelling [Biljecki et al., 2015] and is closely related to iconization. As with
iconization, a number of parameters that are extracted, for example from the point
cloud, are used to fit the icon as close as possible to the true representation of the
tree.

An early example of iconization is demonstrated in the SILVIgenesis and Single-
tree Three-dimensional Architecture (SILVI-STAR) method [Koop, 1989]. A 3D tree
model based on the SILVI-STAR method is constructed using five parameters: the top
of the tree (T), the periphery point (P), the crown (C), the fork (F) and the stem base
(B). This model can be seen in Figure 2.3a

Parameters such as T, P and B can directly be extracted from LiDAR point cloud
data, as is shown in the Rotterdam 3D project [Ortega-Córdova, 2018; Municipality
Rotterdam, 2020]. The top of the tree is extracted using the maximum height for a
segmented tree, the periphery point is considered the height interval where most
points are located and the stem base can be derived from ground point data, as the
trees need to be connected to ground level.

Furthermore, in the Rotterdam 3D project [Ortega-Córdova, 2018; Municipality
Rotterdam, 2020], the fork is not included, as they assumed that the trunk is con-
nected to the crown, which is implicitly extracted using the 1

st or 5
th percentile

of the maximum height for each tree. This means for e.g. the 5
th percentile that

the crown base is determined to be at the height where 5% of all points belong-
ing to that crown fall below it. In addition to these parameters, the project also
extrapolated two midway divisions to add further detail to the crown shape. These
parameters and their associated model are displayed in Figure 2.3b

2.1.3 Convex Hull

When the desired LOD is of the highest level, the best way to approach this is by
explicitly constructing a 3D model of the tree, rather than implicitly modelling it
based on parameters. A method that produces such a model of a tree, based on a
collection of points, is the construction of a convex hull [Machucho et al., 2012].

The convex hull of a collection of points is the smallest convex set that contains
those points [Berg et al., 2008]. The convex hull in 2D may be visualized as the
collection of points enclosed by a rubber band stretched around it [Preparata and
Shamos, 2011], meaning that every point has an uninterrupted line of sight of every
other point in the set. In 3D it is similar, instead of a flat collection of points that

8 related work

(a) (b)

Figure 2.4: Convex Hull Examples: (a) 2D Convex Hull(b) 3DConvex Hull

are enclosed by a rubber band, it is now a triangulated collection of points that is
convex. The rule that every point has an uninterrupted line of sight of every other
point in the set still remains. Two simple examples can be found in Figure 2.412.

2.1.4 Alpha Shape

Another method that explicitly constructs a model of a collection of points is the al-
pha shape [Kreveld et al., 2011]. Similar to the convex hull, the alpha shape encloses
a collection of points. The main difference is that the alpha shape has an additional
parameter alpha, which defines the radius of a circle that is used to bend the convex
edge between two points inward. A more intuitive description is how Edelsbrun-
ner and Mücke [1994] described the alpha shape with the following analogy: one
can intuitively think of an alpha shape as a mass of ice cream containing choco-
late pieces. The chocolate pieces represent the collection of points here and the ice
cream represents the space in between. Using a sphere formed spoon, remove as
much space in between each point as possible without actually touching the points.
At the end of the process there will be a, not necessarily convex, 3D shape bounded
by caps, arcs and points. If all faces are straightened to triangles and line segments,
it represents an alpha shape. It might not longer be convex, as not all points are
in uninterrupted line of sight of each other any longer. In case of a large enough
value chosen for alpha, the final form would still be convex. The value chosen for
alpha determines whether or not the resulting shape is convex. The goal is to ulti-
mately, most accurately, represent reality with alpha shapes. A simple 2D example
comparing a convex hull with an alpha shape can be found in Figure 2.5.

2.2 applications for 3d trees

A recent overview study on applications of 3D city models [Biljecki et al., 2015] cat-
egorizes use cases for 3D city models into two groups: Non-visualization applications
and visualization applications. A similar subdivision can be made for 3D tree mod-
elling, where an added group can be a distinction between types of visualization
applications, as the 3D models are either:

1 https://hcmop.wordpress.com/category/combinatorics/
2 https://www.barradeau.com/hidiho/index2003.html?p=1883

2.2 applications for 3d trees 9

(a) (b)

Figure 2.5: (a) 2D Convex hull compared with (b) 2D alpha shape [Eich et al., 2020]

• The instrument, where the 3D vegetation or tree data is necessary for computa-
tions, but not vital for the presentation of the final information that needs to
be conveyed. This will be called non-visualization.

• The objective, where the goal is to communicate information about the envi-
ronment or impacts of the vegetation or trees on the environment. This will
be called pure visualization.

• Both the instrument as the objective, where the 3D vegetation data or tree mod-
els are required to compute the necessary information and is also vital for the
presentation of the final information. This will be called practical visualization.

For each of these categorizations an example will be demonstrated and what type
of 3D vegetation data is required for this specific application.

2.2.1 Non-visualization

A non-visualization application is the software suite ENVI-met [ENVI-met, 2020].
ENVI-met is a three-dimensional model software suite for the simulation of fluid
dynamics of surface-plant-air interactions for urban areas. It makes use of a vox-
elized 3D space, in which mainly the buildings, trees and empty space need to be
voxelized. Such a voxelization of space is presented in Figure 2.6. The biggest limi-
tation ENVI-met faces is the limited resolution that can be used, namely a maximum
of 300.000 voxels can be used for a single simulation. Due to this limitation the tree
models that are used in these simulations are often of a low resolution, which can
still be useful by adding the parameter leaf area density. The models used for trees
are mostly pre-defined in their vast model library, which contains many models of
conifers, deciduous trees and palm trees. As ENVI-met uses predefined models, it
is safe to assume that it makes use of a certain form of iconization. As these are
either scaled to represent reality as close as possible, or the best fitting model from
the predefined model library is chosen based on parameters extracted from reality.

A second non-visualization application is the calculation of the Sky View Fac-
tor (SVF), which can be based on point cloud data [Bouzas et al., 2018], vector
calculations based on 3D models [Matuschek and Matzarakis, 2010] or on fish-eye
photographs [Svensson, 2004]. SVF is typically represented by a dimensionless value
between 0 and 1, where 0 indicates the sky is completely obstructed by obstacles and
1 indicates there are no obstructions [Brown et al., 2001]. Vegetation and other ob-
structions are required for the computation of SVF, but are not necessarily included
in the final output. The final output is a single value between 0 and 1, indicating the
level of obstruction from any given location, it is possible to add plots showing the
obstruction, however this is purely a visualization for the user; further calculations
only make use of the numerical value.

10 related work

Figure 2.6: ENVI-met voxelized urban model [ENVI-met, 2020]

Figure 2.7: Time series 3D city [Kanuk et al., 2015]

2.2.2 Pure visualization

There are several examples of pure visualization modelling applications, where veg-
etation is included. One example being urban planning with the visualization of
the environment as a primary goal. Kanuk et al. [2015] generate a time series of a
3D city model in which the changes over time in the urban environment are visual-
ized. In this case, trees were handled separately as coordinate points represented
by 3D symbols with a defined tree type and height, also a form of iconization. An
example of such a time series of a 3D city model is shown in Figure 2.7.

A second example is the visualization of change in trees based on their age or
seasonal differences [Lim and Honjo, 2003]. This can be either change in height,
width and overall shape or change due to seasonal cycles, such as leaf-on or leaf-off
seasons resulting in there being no foliage or a reduced amount of foliage. This
can be done in order to intuitively realize forest landscapes, some examples of both
these change based visualizations are shown in Figure 2.8.

2.2.3 Practical visualization

3D tree models can be used to communicate information about the trees themselves,
as is done in Rotterdam 3D [Municipality Rotterdam, 2020]. Where trees are visual-

(a) (b)

Figure 2.8: Visualization of change based on: (a) age and (b) season [Lim and Honjo, 2003]

2.2 applications for 3d trees 11

(a) [Municipality Rotterdam, 2020] (b) [Gross and Pfister, 2007]

Figure 2.9: Tree models: (a) Rotterdam 3D models (b) SPLAT modelling

ized and contain attribute information about each tree such as, but not limited to,
the planting year, type of tree, risk group and several size attributes. Due to the
information that is coupled with each individual tree, it is safe to assume that this
is more than just a visualization.

Figure 2.9a displays the two visualization methods Rotterdam 3D utilizes: on the
left the implicit billboard model and on the right the implicit tree model as have
been described in Section 2.1.1 [Ortega-Córdova, 2018]. Rotterdam limits itself to
eight models of the most common species of trees, out of the over 300 that can be
found in Rotterdam, due to technical limitations. The use of implicit tree models
suggests that the modelling technique used for the trees in this city model is also
based on iconization.

Another method that can be used for visualizing point cloud data are points
that are rendered as circular disks, also known as splats [Gross and Pfister, 2007].
Splats can be used to visualize massive point clouds in a more intuitive way by
retaining a good depth-perception and finally rendering much less points than in
the original point cloud [Peters and Ledoux, 2016; Richter et al., 2014]. Models
constructed using splats have a higher level of detail than iconized models, as can
be seen in Figure 2.9b. Models based on splats are visually pleasing, however when
further calculations or simulations need to be done with these models it can prove
problematic as surface approximation with splats is difficult [Richter and Döllner,
2014]. Difficult is, however, not impossible and this doesn’t mean that splats are not
fit for further applications besides visualization.

Another example of practical visualization of trees is the cooperative Boomregis-
ter3. Boomregister started in the Netherlands, which is an initiative to generate a
nation-wide tree register [van den Pol et al., 2016]. It is a registry covering nearly
100 million tree objects with their height, surface and geometry. An example of
what this tree register looks like is seen in Figure 2.10. The sheer existence of this
register highlights the need for more information on trees in the Netherlands, how-
ever since private companies are involved in the creation of this registry, the data
they generated is behind a paywall and thus not openly available. According to
Meijer et al. [2015], this registry is based on the AHN2 raster data that is openly
available at PDOK [Publieke Dienstverlening op de Kaart, 2020]. Furthermore Meijer
et al. [2015] suggest that the resulting tree extraction would have a higher success
rate (more correct, more complete) if it was based on the underlying LiDAR data
that the AHN2 raster was based on. This suggests that basing tree modelling on the
AHN3 LiDAR data is a sane decision which can and should lead to (more) accurate
results.

3 http://boomregister.nl/

http://boomregister.nl/
http://boomregister.nl/

12 related work

Figure 2.10: Tree crowns from the tree register [van den Pol et al., 2016]

Figure 2.11: Steps classification, abstraction and reconstruction [Verdie et al., 2015]

2.2.4 3D city model generation

An approach in automatically creating a detailed 3D model of an urban scene is
given by Verdie et al. [2015], see Figure 2.11. It is an approach based on input
meshes rather than raw LiDAR, which will be the case for this paper. While the
input data is different, the overall approach is sensible and well-documented. Their
approach is divided in three steps: Classification, Abstraction and Reconstruction,
of these steps only the first two are relevant to this paper, as the last step focuses on
assembling planar proxies for building models. The classification step distinguishes
their input mesh into four urban classes: ground, tree, façade and roof, which is done
based on a set of rules on geometric attributes. The abstraction step uses iconization
for the tree models, where they fit 3D icons to the vegetation of the input mesh, using
the centre of mass of the tree, the height of the crown base, the height of the crown
and the width or diameter of the crown.

2.2.5 Highly detailed automatic tree modelling

Research is done in 2019 by Du [2019], developing a method that can automatically
reconstruct tree models, with detailed branch structure, from point cloud data. This
method is proven to be effective and produces highly detailed tree models, based on
various sources of point cloud data. Data sources that are used are point clouds de-
rived by: Mobile scanning, static scanning and airborne scanning. Some examples
of results from this research are given in Figure 2.12.

Differences in quality can be noted based on different point cloud sources, as
datasets retrieved with airborne scanning contain sparse points, results with this as
input are said to be of a plausible topological tree branch structure. Based on this
it can be concluded that airborne LiDAR data is not be optimal for highly detailed
model construction, as presented by Du [2019].

2.3 classification of point cloud data 13

(a) (b) (c)

Figure 2.12: Reconstructed tree models from various data sources. (a) Mobile scanning (b)
Static scanning (c) Airborne scanning [Du, 2019]

Classification Value Class Dutch Class Standard or User Defined

1 Unclassified Overig ASPRS Standard
2 Ground Maaiveld ASPRS Standard
6 Buildings Bebouwing ASPRS Standard
9 Water Water ASPRS Standard
26 Civil Structure Kunstwerk User Defined

Table 2.1: AHN3 classifications [Actueel Hoogtebestand Nederland, 2015]

2.3 classification of point cloud data

2.3.1 Point cloud classes and formats

The AHN3 point cloud is classified into five classes. Four of these classes are ac-
cording to the American Society for Photogrammetry and Remote Sensing (ASPRS)
Standard LiDAR Point Classes [The American Society for Photogrammetry and Re-
mote Sensing, 2013] and one is defined by AHN [Actueel Hoogtebestand Nederland,
2015]. The classes that can be found in AHN3 data can be seen in Table 2.1.

The most relevant class for this research will be class 1: Unclassified, as this class
includes trees, but also, other data such as: cars, power lines, street furniture and
any other points that have not been classified into any of the other classes chosen
by AHN3. A concrete example of this can be seen in Figure 2.13. Each data point
inside a point cloud has the following record format according to the ASPRS LASer
File Format (LAS) specification 1.2 [The American Society for Photogrammetry and
Remote Sensing, 2008], which is the specification that AHN3 complies with [Actueel
Hoogtebestand Nederland, 2015].

Figure 2.13: Unclassified points from AHN3: Boats and cars

14 related work

Item

X
Y
Z
Intensity
Return Number
Number of Returns (given pulse)
Scan Direction Flag
Edge of Flight Line
Classification
Scan Angle Rank (-90 to +90) – Left side
User Data
Point Source ID

Table 2.2: LAS record format [The American Society for Photogrammetry and Remote Sens-
ing, 2013]

There are various methods of classifying airborne LiDAR data, this can be done us-
ing the height values, intensity values, number of returns or a combination of these
parameters. The following paragraphs will provide a short overview of methods
that use one or more of these parameters.

2.3.2 Classification using height

The height of a point, or rather the height variance of a neighbourhood of points,
is often used in order to separate planar surfaces from vegetation [Xu et al., 2012].
LAStools4 [Isenburg, 2020] is a software suite for the operational processing of data
from advanced airborne LiDAR sensor systems. LAStools provides many modules
for LiDAR processing, for the classification of LiDAR the modules lasground, lasheight
and lasclassify are relevant. Lasclassify is a tool that is capable of classifying buildings
and high vegetation data (trees). It requires that the bare-earth points have been
identified (e.g. with lasground) and that the height with respect to the ground is
also computed for each point (e.g. with lasheight). When the prerequisites are met,
lasclassify looks at points above a tunable threshold height, and evaluates them,
using an adjustable threshold, against their neighbouring points as either planar or
rugged. Planar points are classified as buildings, and rugged points are classified
as vegetation [Thomas, 2015]. It is said that lasclassify does not use region growing,
but uses Triangular Irregular Networks (TIN) densification5 instead, however this is
not confirmed [Axelsson, 2000]. It is possible to add a height threshold for trees,
which can be used to filter unwanted misclassifications. A downside of lasclassify is
that it only uses the X, Y and calculated height values of points, limiting this spatial
classification to approximately 60-70% accuracy due to misclassifications and points
that remain unclassified [McIver et al., 2017]. This conclusion suggests that it is
advisable to combine multiple classification methods.

2.3.3 Classification using intensity

LiDAR intensity can be defined as the ratio of the strength of the light reflected from
an object related to the light emitted [Song et al., 2012]. Maoa et al. [2008] suggest
that intensity values can be used in addition to spectral data to achieve more accu-
rate classification results. Besides this they also mention that different objects, or
classes, display clear differences in ranges of intensity/reflectance. Natural objects
such as vegetation data or grass show a reflectivity of approximately 50% [Hug and

4 https://rapidlasso.com/lastools/
5 https://groups.google.com/forum/#!topic/lastools/qdjOVfoBjfg

https://rapidlasso.com/lastools/
https://rapidlasso.com/lastools/

2.4 segmentation of point cloud data 15

Figure 2.14: Higher number of returns suggests a vegetation classification [Environmental
Systems Research Institute (ESRI), 2020]

Wehr, 1997; Antonarakis et al., 2008]. Reflectivity of trees ranges between 30% for
coniferous trees and 60% for deciduous trees [Charaniya et al., 2004].

2.3.4 Classification using number of returns

The number of returns a pulse records can be used to help in classifying vegetation
data. When a pulse hits a hard surface, such as a roof or terrain, there is only
one return. If leaves or branches of a tree are hit by the pulse, there will be at
least two returns [Environmental Systems Research Institute (ESRI), 2020], this is
demonstrated in Figure 2.14. Charaniya et al. [2004] suggest that the first and last
returns can be used to determine the height difference between these points, and
that this feature can effectively be used to identify trees.

2.3.5 Classification using a combination of properties

The municipality of Rotterdam utilized a combination of the height parameters
and the intensity data to complement the classification of their aerial LiDAR data
for the Rotterdam 3D project [Ortega-Córdova, 2018; Municipality Rotterdam, 2020].
The dataset that they used contained buildings alongside with the vegetation data
and similar noise as in the AHN3 point cloud, and thus needed to be reclassified.
The buildings were filtered out using a mask of their footprints and the remaining
points were processed with lasclassify. During the classification, the points’ intensity
and height above the ground were used as a basic filter, points with an intensity
that surpassed their set threshold or were below a two meter ground offset, were
dropped from consideration for belonging in the vegetation class.

2.4 segmentation of point cloud data

2.4.1 Region growing segmentation

Point cloud segmentation can be used in order to support further classification,
Vosselman [2013] describes how this is done by segmenting planar and non-planar
components of a point cloud. For the non-planar components, such as vegetation, a
segment growing algorithm is used. This segment growing algorithm can be based
on the similarity (or dissimilarity) of feature values between neighbouring points,
such as the echo width [Rutzinger et al., 2008] or the points’ normal vectors scaled
by planarity [Vosselman, 2013]. The normal vectors scaled by the typically low pla-
narity in vegetation gives a clear distinction between vegetation and other objects, as
the resulting vectors of vegetation will be close to the null vector. Vosselman [2013]

16 related work

(a) [Li et al., 2012] (b) [Yao et al., 2012]

Figure 2.15: (a) Usage of spacing between two points of different trees for segmentation
(b) Watershed under-segmentation happening due to overlap between trees.
Smaller trees get segmented in the same segment as the larger tree.

mentions that the segment growing algorithm based on normal vectors is insuffi-
cient, as some points within a tree were not included in the segment. This is fixed
by some post-processing based on a majority filter, e.g. searching for neighbouring
points within a radius.

2.4.2 Height-based segmentation

Li et al. [2012] published a paper on segmenting individual trees from the LiDAR

point cloud. In this paper they provide a successful algorithm they used in order
to segment forestry areas into a collection of single trees. For this algorithm to
work it is necessary to classify the vegetation data into ground and above-ground
points. After this they normalize the vegetation data, in order for the vegetation
points to indicate the height from the ground, rather than their absolute height
values, as is similarly done with lasheight. This was necessary as their dataset was
created in a mountainous area. The way their algorithm works is by sequentially
classifying vegetation points, starting at the maximum height. This is demonstrated
in Figure 2.15a They do this based on the spacing between vegetation points, which
makes it more difficult to classify the vegetation at lower levels. A solution for this
is to use an adaptive spacing threshold in classifying points.

2.4.3 Watershed segmentation

A similar method to the height-based segmentation method is a watershed segmen-
tation [Vincent and Soille, 1991]. It is similar in that it makes use of local maxima
and is proven to be applicable in both urban and dense forestry areas [Kwak et al.,
2007; Reitberger et al., 2009]. A watershed segmentation makes use of a Canopy
Height Model (CHM), which can be derived from a LiDAR point cloud consisting
of vegetation data. This CHM will be reversed changing vegetation canopy into
surface depressions whose depth reveal their height, and when ‘filled’, the water
delineation reveals the vegetation’s contour lines [Ortega-Córdova, 2018]. A down-
side to the watershed segmentation method is when closely grouped trees consist
of varying heights, the height of the dominant tree will often occlude the smaller
trees, resulting in a segmentation of just one tree, while in reality there are multiple
trees [Yao et al., 2012]. This is a form of under-segmentation (i.e. a division into too
few segments) and is demonstrated in Figure 2.15b.

2.5 data cleaning: cleaning of segments 17

2.5 data cleaning: cleaning of segments

Ideally, whenever the segmentation is done, a segment represents a single tree,
which actually is a tree and has no noise around it. In reality, a segment can repre-
sent multiple things: A single tree, a tree that has extra points that were misclassi-
fied, something that is not a tree entirely or multiple trees segmented as only one.
A few examples of this are given in Figure 5.6 and Figure 5.7.

2.5.1 Plane detection: RANSAC method

In order to check if a segment is or is not a tree, it needs to be considered if the
segment consists of a plane or some other shape of points. An approach to do
so is using Random Sample Consensus (RANSAC), an iterative method to estimate
parameters of a mathematical model from a set of observed data that contains out-
liers, when outliers are to be accorded no influence on the values of the estimates
[Fischler and Bolles, 1981].

An example usage of RANSAC is the fitting of a line to a collection of 2D points,
which make up a straight line, but has some noise added to it. So the data set to
which a line needs to be fitted contains clear (for the viewer) in- and outliers. A
least squares method for line fitting should produce a line which is generally a bad
fit, as it tries to fit a line to all points, in- and outliers. This is demonstrated in
Figure 2.16a.

RANSAC attempts to exclude the outliers from the points that are used to create a
linear plot, by fitting linear models to a number of random samplings of the points
and finally returning the linear model with the best fit to a subset of the points [W.
and Portal, 2018]. Because the inliers are more linearly related than any combination
of in- and outliers, the best fitting subset of the points, has a very high probability
of actually being the inliers. However, there is no guarantee of success with the
RANSAC algorithm, so it is important to carefully choose the algorithm parameters
that should best fit the data that it is trying to fit. RANSAC can also be adjusted to
add a third dimension, fitting 3D planes instead of 2D lines, as is demonstrated in
Schnabel et al. [2007].

2.5.2 Outlier detection

Outlier detection is a common practice in data analysis and is used in different fields
[Piepel et al., 1989; Hodge, 2004; Kimber, 1985; Zimek et al., 2012]. ”There is no
rigid mathematical definition of what constitutes an outlier; determining whether
or not an observation is an outlier is ultimately a subjective exercise” [Zimek and
Filzmoser, 2018]. This leads to the assumption that the researcher/analyst of the
data needs to choose the outlier detection method, knowing what his data looks
like.

An outlier detection method that is fitting for close collections of points resem-
bling a tree crown, is using a clustering algorithm. A clustering algorithm finds a,
or multiple, clusters in a group of data points [Estivill-Castro, 2002]. In the case
for this thesis, a density-based cluster seems to be the best fit. Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) is a data clustering algorithm
proposed by Ester et al. [1996]. DBSCAN groups points in clusters, by calculating
the distances between any two points within a set of points. Points that are located
closely together are added to a cluster, points that lie more secluded, in low-density
regions, are determined to be outliers. This is demonstrated in Figure 2.16b.

18 related work

(a) (b)

Figure 2.16: (a) RANSAC estimation of a line (b) Clusters and their respective outliers [Pe-
dregosa et al., 2011]

2.6 supervised classification of trees
In Section 2.2 various applications for 3D trees are presented. In some of those,
additional information such as the tree type is included in the final datasets [Ortega-
Córdova, 2018; van den Pol et al., 2016]. These are nice additions that definitely
enrich the data, however they are manually checked and added.

In case trees are clearly distinguishable on a taxonomic rank, it should be possible
to add a tree type classification, in order to automatically assign tree types to trees.
Machine Learning (ML) is a suitable approach to perform such a classifying task. For
the case of this thesis, classifying trees based on their features, supervised learning
seems to be the strongest option. Supervised learning is the ML task of learning
a function that maps an input to an output based on example input-output pairs
[Russell and Norvig, 2003].

2.6.1 Supervised machine learning

Supervised ML infers a function from labelled training data consisting of a set of
training examples [Mohri et al., 2012]. In supervised learning, training data con-
sists of a set of input features and a set of desired target values. The ML algorithm
analyses the training data and produces an inferred function, which can be used
for mapping new examples. It is imperative that the training data is representa-
tive of real-world data and that the features representing the varying classes are
distinguishing enough for the algorithm to differentiate different classes.

3 M E T H O D O LO GY

To automatically construct 3D models of trees from airborne LiDAR point cloud data
at varying LODs, a five-step implementation plan is proposed here: Classification,
segmentation, data cleaning, modelling and the addition of tree types. This imple-
mentation plan is displayed in Figure 3.1. The point cloud will need to be classified
into vegetation only first, then single trees will need to be segmented and finally
these segmented single trees will be the source of data that will enable the 3D tree
models to be constructed. These steps will be elaborated in the next chapters.

3.1 classification of point cloud data

The point cloud (AHN3) that will be used for this research is already classified into
five different classes, as is described in Section 2.3.1. The unclassified class will be
used for this project, it will need to be classified further in order to create a dataset
containing only vegetation data, meaning cars, boats, structures, street furniture
etc. need to be removed. This will be done using the point features X, Y, and the
normalized height.

These features are used to determine the ruggedness of neighbourhoods of points.
When neighbourhoods are determined to be within a given ruggedness threshold,
they are determined to be of the class vegetation, these are the points that are
required to construct tree models with. Neighbourhoods of points are classified as
rugged, when there is a high difference between these points their height values
[Vukomanovic and Orr, 2014]. If a group of points has similar height values, it is
likely a plane, and not a tree. When the standard deviation between points and their
neighbouring points’ height is high enough, it is classified as vegetation [Isenburg,
2020]. Additionally, a ground offset of 2 meters is used to quickly filter out cars,
other noise near ground level and anything that is unlikely to be a tree, due to their
low height.

Figure 3.1: Workflow

19

20 methodology

(a) Watershed segmentation using local min-
ima

(b) Watershed segmentation using local max-
ima

Figure 3.2: Watershed segmentation visualization where green points represent seeds, red
point represent the saddle [Roudier et al., 2008]

Figure 3.3: Applying the watershed segmentation to a DEM of trees

3.2 segmentation of trees

When the vegetation is classified, it will be necessary to segment this data. Even
when trees or other vegetation types are far apart, they will need to be recognized
as single objects. This can be done using the three segmentation methods that
are described in Section 2.4. The watershed segmentation method is proven to
be applicable in both urban and dense forestry areas, however a downside to this
method is that closely grouped trees of varying heights can be segmented into one
single tree. This is called under-segmentation.

A watershed segmentation is done using a Digital Elevation Model (DEM), where
typically local minima are used to separate adjacent drainage basins. These local
minima, the deepest point in a basin, are called seeds, which are the starting point
of this segmentation. If basins are closely adjacent, the point where they typically
meet is higher than the seeds. This point is called the saddle, and is used to define
when a drainage basin is singular or two different basins next to each other. A
simplified 2D visualization of this process using seeds and their saddles is depicted
in Figure 3.2.

In order to apply this segmentation method to trees, local maxima need to be
used instead of local minima. Trees have a local maxima, their tree top, and the
saddles are the points where e.g. two trees meet. The principle remains the same,
the seed-to-saddle difference defines whether or not two seeds belong to the same
segment. An example of segmentation using a DEM of urban trees is given to show
the effectiveness of the watershed segmentation, this is demonstrated in Figure 3.3.

3.3 data cleaning of segmented trees

The purpose of data cleaning after segmentation is to improve the classification
of the point cloud based on additional properties of each segment. Using solely
coordinate values of points limits the accuracy of a classification to 60-70% [McIver
et al., 2017], adding intensity and number of return values to this increases the

3.4 modelling of single trees 21

Figure 3.4: Data cleaning workflow

accuracy by 10-20% [Yan et al., 2015] and 10% [McIver et al., 2017] respectively.
Intensity and number of returns can be used as an initial filter in the classification
process, however the cons (loss) due to false-positives do not outweigh the pros of
a stronger classification. Data cleaning takes place after the segmentation in order
to diminish these cons, while achieving a stronger classification. This is done by
finding flaws on a tree-to-tree basis, where the features are used to find similar
points in order to remove noise. This will be done using the related data cleaning
methods described in Section 2.5, these methods will be, where possible, combined
with the point cloud features intensity and number of returns. Data cleaning is
done in four steps, these steps are given in Figure 3.4. Each segment needs to go
through the following process:

• A segment needs to consist of at least 50 points. The average intensity value of
a segment needs to be below 100. The average number of returns of a segment
should be above 1.5 returns. The maximum height of a segment is not allowed
to be higher than 50m.

• A segment is checked for its planarity. If an entire segment is deemed a plane,
it is not considered to be a tree and discarded. This is done using RANSAC.

• A segment is checked for having planes as subsections. These subsections are
found by using a key characteristic of points that do not typically belong to
trees, a low number of returns. If a section of a segment is deemed a plane, it
needs to be removed from the segment. This process is repeated to the point
that no planes are detected in the segment. This is done using RANSAC.

• A segment is checked for outliers. If outliers are detected, they are removed
from the segment. This process is repeated to the point that no outliers are
detected. This is done using DBSCAN.

3.4 modelling of single trees
The modelling of vegetation will be based on procedural modelling and iconiza-
tion. Making use of the proposed LOD specifications by Ortega-Córdova [2018], the
parameters required will need to be extracted from the segmented vegetation, and
modelled accordingly. The parameters that will need to be extracted are:

• Top of the tree, which is the 99th height percentile.

22 methodology

Figure 3.5: Tree construction parameters

• Base of the tree, which is the ground height.

• Periphery point, which is considered the height interval where most points
are located.

• Crown base of the tree, which is the 5th height percentile.

• Two midway divisions for extra detail, which are determined using the halfway
point between the periphery point and the top and crown base of the tree re-
spectively.

These are the parameters that are required for the construction of single vegeta-
tion objects, Figure 3.5 gives an example of an implicit tree model that makes use of
all parameters. It is possible that it will prove to be troublesome, unnecessary and
outright wrong to model denser forest areas as a single vegetation object. Due to
under-segmentation, this can result in ridiculously large trees.

This research proposes different models to use for different LODs, based on the
available LOD proposals and/or existing standards as are mentioned in Section 2.1.1.
The source data used in this thesis is a strong factor in the LOD proposal. Many trees
that have been encountered in AHN3 show a limited number of points in the trunk
region. Due to this, if trunks are included in a constructed tree model, they are
implicitly modelled, based on the periphery radius of the tree. An overview of all
proposed LODs is found in Table 3.1. The images are created from output of this
implementation, rendered in Blender.

Every LOD uses a different combination of extracted parameters in order to con-
struct tree models. LOD0 only uses the periphery radius and base of the tree. LOD1

uses the periphery radius, base of the tree and the tree top. LOD2 makes use of all
parameters that are extracted and LOD3.0 and LOD3.1 only make use of the param-
eters required to implicitly construct a trunk, the crown is constructed explicitly
from the trees their representation in the point cloud. LOD3.1 is a tree model that is
slightly more detailed than LOD3.0, but also more complicated and computationally
heavy to construct. In final outputs, approximately 2% of these constructed models
in LOD3.1 are invalid and removed. Because of this, LOD3.0 remains in the final
proposal, as these constructed tree models are always valid.

The 3D tree models are constructed in accordance to CityJSON specifications. It
is of importance that the vertices are put in a Counterclockwise (CCW) order, when
viewed from outside, as is a common rule for 3D modelling, in order for the faces
to have outwards-facing normals. This ensures that the constructed geometry is
visible in any rendering software (with 3D capabilities) and that it is in compliance
with ISO standards [International Organization for Standardization, 2019].

https://www.blender.org/
https://www.cityjson.org/
https://www.cityjson.org/specs/1.0.1/

3.4 modelling of single trees 23

3D view Front View Top View

LOD0

LOD1

LOD2

LOD3.0

LOD3.1

Table 3.1: Proposed LODs

24 methodology

(a) (b)

Figure 3.6: Example features and their box plots

3.5 adding tree types based on tree parameters
After the extraction of tree parameters, an attempt can be made to classify the
tree types based on these parameters. Neural networks in ML are a useful tool for
classifying data based on descriptive features. Before a neural network can be set
up, the following is required:

• A training dataset containing trees with their respective types.

• A sample size that is statistically significant.

• Features that are distinguishing per tree type.

• Features that are not strongly correlated.

3.5.1 Training Dataset

A training dataset is one that contains both input features and target values. Input
features in this case can e.g. be descriptive features such as the shape and size of
different trees. Target values will be the tree type at a certain level, i.e. different
tree Genera, a rather low taxonomy level distinction of trees, such as e.g. Chestnut
trees and Oak trees. Target values can also i.e. be different tree Clades, which
are a higher level distinction as e.g. coniferous trees and flowering trees. In any
case, it is imperative that the sample size of any to-be classified taxonomy level, is
representative enough in order to be statistically significant.

3.5.2 Feature Selection

Feature selection is an important process in ML, as features that are not descrip-
tive/distinguishing lead to a bad classification. In a simple scenario, where a differ-
ence between e.g. an ant and a human needs to be made, a single feature would be
enough: Height. In the case of trees, however, there is not a single feature that can
distinguish, with high certainty, what type a tree belongs to. Due to this, it is likely
that complementary features are required.

In Figure 3.6, two features belonging to four different example types are shown.
Feature one clearly distinguishes type A and B from type C and D. Feature 2 clearly
distinguishes type A and C from B and D. Features like these would give a strong
classification, as an object with a low value for feature 1 combined with a low value
for feature 2, will always lead to the classification of type A. Features like these
would be desirable, and in addition to this, features need to be tested for correlation,
in order to prevent similar features from being added to the classification, while
attributing little to no extra information.

4 I M P L E M E N TAT I O N

This chapter discusses the steps taken and the choices made in order to construct
3D tree models based on LiDAR point cloud data. Substantiation for the choices
made are found at the bottom of every section, this is done by, where possible,
benchmarking various settings and/or input datasets. By doing this, optimal results
are ensured, however there will always be room for improvement.

4.1 requirements
A number of software packages and libraries are used in this thesis:

• LAStools

• QGIS

• SAGA

• Python 2.7 with

LasPy

NumPy

LASzip

Scikit-learn

matplotlib

• FME

4.2 classification
A rough classification of the AHN3 point cloud needs to be done first. Throughout
this chapter, the Noordereiland in Rotterdam is used as an example. For this LAS-
tools is used. This is a (mostly) licensed software suite for point cloud processing.
The choice for lastools is mainly because it is a pre-existing and fast library. Writing
classification code for a large point cloud is computationally heavy and thus time
consuming to experiment with.

4.2.1 Lasheight

The suite lasheight computes the height of each point above the ground. This is
done using the ground points that are pre-classified in AHN3 data with standard
classification 2.

This is done for two reasons:

1. It is a prerequisite for the following suite lasclassify.

2. It allows the storage of height values in mm in a separate field with the com-
mand -store precise as extra bytes.

25

https://rapidlasso.com/
https://www.qgis.org/en/site/
http://www.saga-gis.org/en/index.html
https://www.python.org/
https://pypi.org/project/laspy/
https://numpy.org/
https://laszip.org/
https://scikit-learn.org/
https://matplotlib.org/
https://www.safe.com/
https://rapidlasso.com/
https://rapidlasso.com/
https://rapidlasso.com/lastools/lasheight/
https://rapidlasso.com/lastools/lasclassify/

26 implementation

(a) (b)

Figure 4.1: (a) Unfiltered point cloud (b) Only unclassified and ground points

(a) (b)

Figure 4.2: (a) Unclassified and ground points (b) Classified vegetation (green)

Besides calculating the height values of each point, any suite from LAStools
comes with filtering capabilities. In order to save space/processing speed in the
following steps, here the output data is filtered to only keep the classes 1 and 2. Un-
classified and ground points, the precomputed classes 6, 9 and 26 are filtered out,
representing Buildings, Water and Civil Structures as is mentioned in Section 2.3.1.
This can be seen in Figure 4.1

4.2.2 Lasclassify

Lasclassify is a tool to classify buildings and high vegetation (trees) in LAS and
Compressed LASer File Format (LAZ) files. Prerequisites are that ground points
are pre-classified, as is the case with AHN3, and that the height of each point has
been calculated, as is done with lasheight. The classification is done using default
parameters and the calculated height values.

This tool makes use of the point features X, Y, and the normalized height values.
These features are used to determine the ruggedness of neighbourhoods of points.
When neighbourhoods are determined to be within a given ruggedness threshold,
they are determined to be of the class vegetation, these are the points that are re-
quired to construct tree models with. Neighbourhoods of points are classified as
rugged, when there is a high difference between these points their height values
[Vukomanovic and Orr, 2014]. If a group of points has similar height values, it is
likely a plane, and not a tree. When the standard deviation between points and
their neighbouring points’ height is high enough, it is classified as vegetation [Isen-
burg, 2020]. Figure 4.2 shows the classification from unclassified points and ground
points to ground points, classified trees and the remaining unclassified points.

4.2.3 Las2las

After the classification is done, a filter needs to be applied to keep only the vegeta-
tion. This can be done within the previous step, but in order to view intermediate
results, it is done in a new step. For this las2las is used. It is an open source pack-
age, that can apply many operations to LAS or LAZ files, here the filtering is only
used. Figure 4.3 shows the remaining unclassified points and the classified vege-
tation (trees) respectively. From a top-down view a few misclassifications can be
spotted: some large structures and bridges are classified as vegetation.

Looking at the remaining unclassified points, the following objects can be recog-
nized that are filtered out of the dataset:

• Boats and Cars, which are clearly demonstrated in Figure 4.4a and Figure 4.4b.

https://rapidlasso.com/
https://rapidlasso.com/lastools/lasclassify/
https://rapidlasso.com/lastools/lasheight/
https://rapidlasso.com/lastools/las2las/

4.2 classification 27

(a) (b)

Figure 4.3: (a) Unclassified points (b) Points classified as vegetation

(a) Boats and parked cars (b) Comparison [Google, 2020b]

(c) Bridge and Light posts (d) Comparison [Google, 2020a]

Figure 4.4: Points that are filtered out.

• A bridge and light posts, which might be difficult to see as 3D data does not
always visualize well in 2D, this can be seen in Figure 4.4c and Figure 4.4d.

Visually inspecting the points classified as vegetation yields the following obser-
vations:

• Trees are classified as vegetation, however there is some noise. This is demon-
strated in Figure 4.5.

• A tall structure is misclassified as vegetation, this structure is visualized in
Figure 4.6a and Figure 4.6b.

• Components belonging to a soccer field are misclassified as vegetation, in-
cluded are fences and goal-posts. This is shown in Figure 4.6c and Figure 4.6d.

The classification comes with some errors, these will be further addressed in
Section 4.4.

4.2.4 Classification Validation

Validating a classification of a dataset can be done with a true dataset. One that
is classified into all classes, and one of which is known that it is a 100% accurate.

Figure 4.5: Classified trees with some noise

28 implementation

(a) Structure (b) Structure (c) Soccer field (d) Soccer field

Figure 4.6: Points incorrectly classified as vegetation [Google, 2020b]

(a) Complete DEM (b) close-up view of DEM

Figure 4.7: DEMs, colour coded from blue (low, 2m) to red (high, 35m)

Besides this, the dataset should also be similar to the datasets that are used through-
out this implementation. It is hard finding such a training-set, and at the time of
writing this implementation one that met the requirements was not found.

Therefore the final output of the initial classification is verified by visually inspect-
ing the various data-sets that are generated using different settings. These settings
being, the two variables selected in lasclassify: planar and rugged. The final choice
has been made to keep these values default, as they seemed to give the best results,
this is however hardly verifiable without a proper training dataset.

4.3 segmentation
The segmentation of the point cloud containing only points classified as vegeta-
tion is done using a Watershed Segmentation. This is done using Quantum Geo-
graphical Information System (QGIS), using the Watershed Segmentation Module by
System for Automated Geoscientific Analyses (SAGA).

This module works with a DEM, so before segmentation can begin, the point cloud
needs to be converted to a DEM. This is done using lasgrid, using the point cloud
and the calculated height values from Section 4.2.1. The DEM chosen has a raster
size of 0.75m. This results in the DEM, or CHM, shown in Figure 4.7.

The watershed segmentation is applied to this raster, using the following param-
eters:

• Output: Segment ID, as the goal is to identify different segments.

• Method: Maxima, since the goal is to find the opposite of an actual water
basin; a tree.

https://rapidlasso.com/lastools/lasclassify/
http://www.saga-gis.org/saga_tool_doc/2.1.4/imagery_segmentation_0.html
https://rapidlasso.com/lastools/lasgrid/

4.3 segmentation 29

(a) (b)

Figure 4.8: Watershed with resulting IDs visualized: Random colour per ID (a) Noorderei-
land (b) Double row of trees segmented as expected

Figure 4.9: Segmented vegetation point cloud

• Threshold Value: Seed to saddle difference, as trees are often close to each
other, the saddle is defined as the location where the tree crowns meet, the
seeds being the local maxima.

• Threshold: 1.4m, if the difference between the seeds and saddles is below the
threshold value, it is considered a single tree.

This segmentation results in the segmented raster shown in Figure 4.8.
Now it is time to assign the segments that are made with the raster to the point

cloud again. This is done using Feature Manipulation Engine (FME) by Safe, with the
PointCloudOnRasterComponentSetter transformer. Which is done by overlaying
the point cloud over the raster containing the segments. Band values (segment ids)
from the generated raster are stored as point cloud component values, by checking
in what pixel points lie. The result from this process is given in Figure 4.9, from a
side view perspective.

4.3.1 Segmentation Benchmarks

Two things are benchmarked to ensure the best results: The raster-size and the
threshold value for the segmentation. First the raster-size will be discussed. For
both benchmarks the Rotterdam 3D dataset has been used as ground truth [Ortega-
Córdova, 2018]. The Noordereiland trees have been imported and converted to
centroids, in order that the segmented trees can be compared with these points.

A segmentation is considered good if there is no under-segmentation and no
over-segmentation. Under-segmentation means that one segment consists of e.g.
two trees, where in reality the segment should have been two segments. Over-
segmentation means that multiple segments are created, where in reality there is
only a single tree. This can be described in other words as a single tree being
segmented into multiple components. Examples are found in Figure 4.10. The final
output is checked as follows:

• Polygons that contain exactly 1 point and points that are exactly within 1

polygon are used to measure good segmentation.

https://www.safe.com/
https://www.safe.com/transformers/point-cloud-on-raster-component-setter/
https://www.3drotterdam.nl/#/

30 implementation

(a) Good segmentation: 1 point
within 1 polygon

(b) Under-segmentation: Multi-
ple points within 1 polygon

(c) Over-segmentation: One
point within multiple
polygons

Figure 4.10: Segmentation examples: Polygons are constructed by this implementation,
points are centroids from the ground truth dataset

DEM resolution Underseg. Overseg. Good segmentation

0.25m 4.3% 20.6% 75.0%
0.50m 10.6% 8.6% 80.8%
0.75m 12.5% 4.0% 83.6%
1.00m 13.3% 3.4% 83.2%
1.25m 17.3% 1.2% 81.4%
1.50m 18.5% 2.3% 79.3%

Table 4.1: Benchmark raster resolution

• Polygons that contain more than 1 point are used to measure under-segmentation.

• Points that are within more than 1 polygons are used to measure over-segmentation.

Having these rules set up, a comparison table can be constructed. Where the
percentages of good and bad segmentations can be compared quickly. An overview
of the results of this benchmark is found in table Table 4.1. For every resolution the
same seed-to-saddle threshold of 1.5m has been used.

It can be seen from Table 4.1 that there is no optimal resolution for a DEM, as none
are perfect. It is a trade-off between more/less under-segmentation vs more/less
over-segmentation. The most balanced choice is the resolution that yields the high-
est combined segmentation, which is a resolution of 0.75m with a score of 83.6%.

The next benchmark is about the seed-to-saddle threshold, which will be done us-
ing the resolution that came out of the previous benchmark. The comparison rules
will be the same, however the final number of trees that are recognized will also be
used as a measure of quality. The true dataset contains 467 trees, when compared
to all generated segmentations, 407 of these trees are located. An overview of the
results of this benchmark is found in table Table 4.2.

In this case it seems that the higher the threshold goes, the better the results are.
This is why the recognized number of trees is added as a measure of quality, as this
number goes down as the threshold gets higher. The optimal threshold is 1.40m,
as here the recognized number of trees is still above 80% and the overall quality
of the segmentation is relatively good, having an under-segmentation of 12.5% and
over-segmentation of 3.7%.

4.4 data cleaning
Data cleaning is done in multiple steps, each segment goes through the following
cleaning procedures:

• A series of initial filters are applied. A segment needs to consist of at least
50 points. The average intensity value of a segment needs to be below 100.

4.4 data cleaning 31

Threshold Trees recognized Underseg. Overseg. Good segmentation

1.00m 91.6% 9.1% 7.7% 83.2%
1.10m 89.7% 10.4% 6.7% 82.9%
1.20m 88.0% 11.2% 5.7% 83.1%
1.30m 85.7% 12.3% 4.5% 83.2%
1.40m 84.5% 12.5% 3.7% 83.8%
1.50m 82.8% 12.5% 4.0% 83.6%
1.60m 81.8% 12.6% 3.2% 84.2%
1.70m 81.8% 12.6% 3.2% 84.2%
1.80m 81.3% 13.3% 3.5% 83.2%
1.90m 80.6% 13.1% 2.2% 84.6%
2.00m 79.9% 13.5% 2.2% 84.2%

Table 4.2: Benchmark seed-to-saddle difference

The average number of returns of a segment should be above 1.5 returns. The
maximum height of a segment is not allowed to be higher than 50m.

• A segment is checked for its planarity. If an entire segment is deemed a plane,
it is not considered to be a tree and discarded.

• A segment is checked for having planes as subsections. If a section of a seg-
ment is deemed a plane, it needs to be removed from the segment. This
process is repeated to the point that no planes are detected in the segment.

• A segment is checked for outliers. If outliers are detected, they are removed
from the segment. This process is repeated to the point that no outliers are
detected.

Justifications for these parameters are given in the subsequent sections.

4.4.1 Filtering

A minimum number of points is necessary in order to extract the parameters needed
for the construction of a 3D tree. Segments that consist of less than 50 points are
often no trees at all, and if they were trees, the point count is so low, that parameters
extracted from this would be incorrect. A few examples of segments consisting of
less than 50 points are displayed in Figure 4.11.

Points belonging to vegetation data usually have different intensity values, often
on the lower end of the spectrum, while points belonging to more reflective classes
have higher intensity values. This is demonstrated in a few examples of segments
which are clearly not trees, this can be seen in Figure 4.12. This property is used
to filter segments out of the process, whenever a the average intensity value of a
segment is above 100, it is considered not to be a tree at all. Point cloud collections
that consist of only trees typically have a low intensity value in the range between
30 and 60. Since the tree segments for this implementation can contain other points
with higher intensity values, a threshold of 100 intensity is selected. This threshold
is effective in filtering out non-tree segments, but does not throw away segments
that contain outliers among trees.

The same principle applies for the number of returns that points belonging to
vegetation data have versus points belonging to other, more reflective classes. When
the average number of returns of a segment is below 1.5, it is not a tree at all.
Trees typically average 3 to 5 returns, however outliers and misclassified points
additionally belonging to the segment can skew this value. Some examples of this
process is displayed in Figure 4.13.

32 implementation

(a) (b) (c)

(d) (e) (f)

Figure 4.11: Six segments consisting of a low number of points, clearly not trees

The highest tree in the Netherlands is approximately 50m, and trees above 35m
exist, but are few. Therefore, any segment higher than 50m is immediately skipped,
this saves unnecessary computing time. A few examples are shown in Figure 4.14.

4.4.2 Segment Planarity Check

Segments should not be planes, as this is already considered in the classification
process. Unfortunately, a number of planes remain to be found in the point cloud
that should consist of vegetation points alone. In order to check whether or not a
segment is a plane, RANSAC is used.

For this, Scikit Learn is used. In addition to the RANSAC estimator, it uses a linear
regression model to compare with as well. This algorithm is designed for 2D data,
as can be seen in this example. It can easily be altered to work with 3D data as well,
which is suitable for point cloud data, as is mentioned in Section 2.5.1.

It is made to work with 3D data by setting the predictor feature to be of the shape
X, Y, rather than X, so that it searches for a plane as Equation 4.1 instead of a line
as Equation 4.2. It finds a plane by searching with a minimum number of samples
of 3 and the algorithm stops whenever it reaches an inlier percentage of 55%.

z = ax + by + c (4.1)

y = ax + b (4.2)

RANSAC always finds a plane, even when the inliers that are used to construct
the plane have a relatively large distance from the plane. In order to ensure that
only real planes are discarded, the feature average distance to plane is calculated. This
is done using the distances between inliers from the actual X, Y, Z points and the
inliers’ calculated X, Y, Z points using the derived plane formula. If this distance is
below a certain threshold, in this case 100 mm, the segment is considered a plane
and thus discarded. If the distance is above it, it is not an actual plane, and will
proceed to the next step in the process.

In Figure 4.15 images can be seen of some clear planes being found and, perhaps
even more important, in Figure 4.16 planes that are found but not deleted. The
images display points marked green as inliers for the plane formula. Looking at

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html#sphx-glr-auto-examples-linear-model-plot-ransac-py

4.4 data cleaning 33

(a) Average intensity: approximately 1460

(b) Comparison: Point Cloud
(PC) viewer

(c) Compari-
son photo
[Google,
2020a]

(d) Average intensity: approximately
300 (e) Comparison: PC viewer

(f) Comparison
photo [Google,
2020a]

(g) Average intensity: approxi-
mately 150 (h) Comparison: PC viewer

(i) Comparison
image [Google,
2020b]

(j) Comparison tree examples

(k) Legend for PC compar-
ison images. Gray pix-
els have intensity val-
ues >500

Figure 4.12: Segments with an average intensity value of >100.

34 implementation

(a) Average number of returns:
approximately 1.1 (b) Comparison: PC viewer

(c) Comparison photo
[Google, 2020b]

(d) Average number of returns: approximately 1.3 (e) Comparison: PC viewer

(f) Comparison
photo by Nils
Hilbers

(g) Average number of returns: ap-
proximately 1.4 (h) Comparison: PC viewer

(i) Comparison [Google,
2020b]

(j) Comparison tree examples
(k) Legend for PC compar-

ison images

Figure 4.13: Segments with an average number of returns <1.5

4.4 data cleaning 35

(a) Point plot
(b) Comparison:

PC viewer
(c) Comparison

[Google, 2020a]

(d) Point plot (e) Comparison: PC viewer (f) Comparison [Google, 2020a]

Figure 4.14: Segments with a maximum height >50m.

(a) Average distance: 5 mm (b) Average distance: 7 mm (c) Average distance: 8 mm

Figure 4.15: Inlier points and their average distances from the derived planes

images where planes are detected with a high average distance, it can be seen why
the distance threshold is an important addition to the process, as these are not actual
planes.

4.4.3 Segment Subsection Planarity Check

At this point in the process, ideally, each segment either represents a tree, or a tree
with noise. The biggest source of noise detected, are planes that are segmented
with a tree. This is due to the closeness these planes often have and is a mentioned
downside of the watershed segmentation. Two examples of planes being segmented
with trees are given in Figure 4.17, together with their real-world imagery. These
planes are mostly rooftops of cars, stands or containers that came through the initial
classification process.

These planes can be found by using their characteristic low number of returns or
high intensity. In this implementation the low number of returns is used to roughly
find the points that do not belong to the trees. All points within a segment that
have only 1 number of returns is not filtered out, the RANSAC method is applied to
fit a plane to these points. If this plane is considered to be an actual plane, i.e. the
average distance from inlier points to this plane is below 100mm, all points from
the entire segment are checked to see if they lie within 750mm of this plane. If they

36 implementation

(a) Average distance: 798 mm (b) Average distance: 600 mm (c) Average distance: 1425 mm

Figure 4.16: Inlier points and their average distances from the derived planes

do, another check is done to determine whether these points also lie within 2m to
the original inlier points, which is done to prevent skewed planes that slice through
the tree-crown that would also remove points from within the crown. An example
of this is given in Figure 4.18 The distance thresholds are as follows:

• Inlier distance to plane for plane validation: 100mm.

• Point distance to plane for point removal: 750mm.

• Point distance to inlier points: <2000mm.

This summarizes the process of plane detection within segments, which is done
recursively to the point that no more planes are detected. Whenever this is the case,
the Y and Z values are swapped, in order to detect planes that are oriented parallel
to the Z-axis. This is, again, repeated to the point that no planes are detected. The
algorithm is finished whenever:

• No more planes are found.

• Subsections consists of less than 10 points in total.

• No more subsections with a low number of returns exist.

When a subsection consists of less than 10 points, this approach is no longer as
effective in finding planes, and the points are automatically removed. The remain-
ing noise is left to be filtered out in the next step. Figure 4.19 gives a few examples
of planes being removed from tree segments.

4.4.4 Segment Outlier Check

To find the final outliers, Scikit Learn their DBSCAN module is used. For each seg-
ment, the data needs to be normalized, as is done in this example. DBSCAN uses
several parameters in order to find clusters, for this implementation two of these
parameters are used.

• epsilon: The maximum distance between two points for one to be considered
as in the neighbourhood of the other. This is the most important DBSCAN pa-
rameter, as it determines which points will belong to a cluster based on the
density of these points. By repeating this algorithm multiple times, differ-
ent values for distance thresholds can be used to account for different point
densities within segments.

• min samples: The number of samples or points in a neighbourhood or cluster
for a point to be considered as a core point. For this implementation the same
number of points is chosen that a tree needs to have to be considered a useful
tree: 50 samples.

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

4.4 data cleaning 37

(a) Segments consisting of trees and planes (b) Comparison [Google, 2020b]

(c) Segment consisting of trees and planes. (d) Comparison [Google, 2020b]

Figure 4.17: Planes in segments

(a) Example of wrong point removal
(b) Example of secondary threshold pre-

venting wrong point removal

Figure 4.18: Removing a plane that is a subset of a segment

38 implementation

(a) Segment with planes (b) Detected planes in red (c) Cleaned segment

(d) Segment with plane (e) Detected plane in red (f) Cleaned segment

(g) Segment with plane (h) Detected plane in red
(i) Cleaned segment with left-

over noise

Figure 4.19: RANSAC plane detection and removal

4.4 data cleaning 39

(a) Segment with noise (b) First noise check (c) Second noise check (d) Cleaned segment

(e) Segment with noise (f) First noise check (g) Second noise check (h) Cleaned segment

Figure 4.20: DBSCAN outlier detection and removal

Every tree is different, the same goes for trees that are represented by points
in the segments. The total number of points and the density of points vary on a
segment to segment basis. In order to account for this, a fixed threshold can not
be used. A layered iteration is implemented in order to make this outlier detection
method more versatile. Every segment goes through a number of iterations where
the distance threshold increases in each iteration. The number of points required
to form a cluster are fixed at 50. Which is the same as the initial filter of points
that are required to ensure only usable trees are found. Besides these parameters,
another is used in the layered iteration, the outliers detected are supposed to be just
that, outliers. Due to this the number of outliers is not allowed to be larger than
five percent. The iteration goes as follows:

1. The first iteration is done using a maximum distance value of 0.50, outliers
that are found are only outliers if they make up less than 5% of the total
number of points of the segment.

2. The second iteration is done using a maximum distance value of 0.75, outliers
that are found are only outliers if they make up less than 5% of the total
number of points of the segment.

3. The third iteration is done using a maximum distance value of 1.00, outliers
that are found are only outliers if they make up less than 5% of the total
number of points of the segment.

4. The fourth iteration is done using a maximum distance value of 1.50, outliers
that are found are only outliers if they make up less than 5% of the total
number of points of the segment.

5. The fifth iteration is done using a maximum distance value of 2.00, outliers
that are found are only outliers if they make up less than 5% of the total
number of points of the segment.

DBSCAN sometimes finds multiple clusters, meaning that some outliers consist of
more than 50 points. In this case, the largest cluster, which is the most likely to be
the tree, is kept. In the case where the secondary cluster is in reality a second tree,
due to under-segmentation, this tree is removed as if it were a cluster of outliers. A
few outlier removal examples are given in Figure 4.20.

40 implementation

{
” type ” : ”CityJSON ” ,
” vers ion ” : ” 1 . 0 ” ,
” Ci tyObjec t s ” : {

ob jec t ID : {
” type ” : ” S o l i t a r y V e g e t a t i o n O b j e c t ” ,
” a t t r i b u t e s ” : {} ,
”geometry ” : [

{
” lod ” : 3 . 0

” type ” : ” Mult iSurface ”
” boundaries ” : []
” m a t e r i a l ” : {}

}
]

}
}
” v e r t i c e s ” : [] ,
” appearance ” : {

” m a t e r i a l s ” : []
}

}

Figure 4.21: Example of a pretty-printed CityJSON file consisting of one empty SolitaryVeg-

etationObject.

4.5 modelling
This section describes the steps taken to construct the tree models in different LODs.
As mentioned in Section 3.4, the 3D tree models are constructed in accordance to
CityJSON specifications. Meaning that they are stored as CityObjects, that are con-
structed as SolitaryVegetationObjects, as the outputs consist of single trees. An ex-
ample CityJSON-file consisting of one ”empty” tree of output from this implemen-
tation is given in Figure 4.21. Relevant concerning the modelling of trees are the
vertices and boundaries. The vertices represent the points that the final model are
constructed from with their X, Y and Z coordinates.

Every implicit model is based on hexagons, this is chosen due to the relatively
low amount of vertices involved in such a shape, as opposed to e.g. a circle. The
amount of vertices is of importance, as the models need to written in CityJSON.
A higher number of vertices leads to more verbose data files, while adding an
insignificant amount of extra detail. The choice for a hexagonal shape is made in
order to maintain a low number of vertices necessary in order to construct a tree
model, while still looking somewhat circular, as opposed to e.g. a square. Keeping
a low number of vertices helps decrease verbosity of the final output files.

The vertices are constructed using the calculated horizontal centre of the tree (X
and Y coordinates) and the radius of the concerning section of the model it repre-
sents e.g. the periphery. The construction formulas for all 7 vertices of a hexagon
are displayed in Table 4.3 and an accompanying image showing the positions of the
vertices is given in Figure 4.22. The boundaries form the faces by connecting these
vertices in CCW order.

4.5.1 Parameter Extraction

Most trees are modelled based on parameters, these are extracted directly from
each segment representing a tree. Before calculations can be done with the existing
points, a small correction needs to be applied. Up to this point, every point has
used the calculated height value. In order to, in the end, have a dataset that will fit
into 3dfier, the current height values need to be corrected. This is currently done
by subtracting the average of the differences between Z values and the calculated

https://www.cityjson.org/
https://www.cityjson.org/specs/1.0.1/
https://www.cityjson.org/

4.5 modelling 41

Vertex X Y Z

v0 x = a x = b x = c
v1 x = a − r x = b x = c
v2 x = a − cos(60) ∗ r x = b + sin(60) ∗ r x = c
v3 x = a + cos(60) ∗ r x = b + sin(60) ∗ r x = c
v4 x = a + r x = b x = c
v5 x = a + cos(60) ∗ r x = b − sin(60) ∗ r x = c
v6 x = a − cos(60) ∗ r x = b − sin(60) ∗ r x = c

Table 4.3: Vertex construction, given that a and b are the horizontal centre, c is the height at
which the hexagon is constructed and r is the radius of the concerning section the
hexagon represents.

Figure 4.22: Vertices on a hexagon

height values from a segment of points, from the current height values used. For
parameter extraction, every segment is divided into ten equal sections that are based
on the minimum and maximum height. For every division the following values are
stored: point count, the centre, height and radius. With these values the following
parameters are extracted:

• Ground height:

Currently set to zero minus the correction value for a fit into 3dfier. Zero
is used, as all height values are calculated as height from ground.

• Tree trunk radius:

Set to 10% of periphery radius.

• Crown base

Set to 5
th percentile of all height values of segment.

• Periphery height and radius

Extracted from the division with the highest point count.

• Lower periphery height and radius

Calculated height as the half-way point between Periphery height and
crown base. Radius is extracted from the division in which the calculated
height lies.

• Higher periphery height and radius

Calculated height as the half-way point between periphery height and
tree top. Radius is extracted from the division in which the calculated height
lies.

• Tree top

Set to 99
th percentile of all height values of segment.

42 implementation

(a) Front view (b) Side view (c) Top view

Figure 4.23: LOD0: Views of the hexagon on ground level

(a) Perspective view 1 (b) Perspective view 2 (c) Bottom view

Figure 4.24: LOD0: Views of the hexagon on ground level

4.5.2 LOD0: Hexagon on ground level

As is the case with LOD0 of the reviewed literature [Ortega-Córdova, 2018; Biljecki
et al., 2016], the lowest LOD is very simplistic. In this case, a flat hexagon. The
Hexagon is modelled to always consist of:

• 7 Vertices, which are constructed using:

Periphery radius

Ground height

• 6 Faces

6 Triangles

Figure 4.23 and Figure 4.24 display a constructed hexagon from six different an-
gles.

4.5.3 LOD1: Raised hexagon

Similar to the model for LOD0. It consists of two hexagons, which are connected by
constructing quadrangular faces between these hexagons. The first hexagon is on
ground level, the second at the extracted tree top. This is a comparable approach as
used in Biljecki et al. [2016].

The raised hexagon is modelled to always consist of:

• 14 Vertices, which are constructed using:

Periphery radius

4.5 modelling 43

(a) Front view (b) Side view (c) Top view

Figure 4.25: LOD1: Views of the raised hexagon

(a) Perspective view 1 (b) Perspective view 2 (c) Bottom view

Figure 4.26: LOD1: Views of the raised hexagon

Ground height

Treetop height

• 18 Faces

12 Triangles

6 Squares

Figure 4.25 and Figure 4.26 display a constructed raised hexagon from six differ-
ent angles.

4.5.4 LOD2: Implicit tree model

Similar to LOD3.A by Ortega-Córdova [2018], the implicit tree model is used for
LOD2 in this thesis. This is done because it is the nearest to reality, while still being
completely implicitly modelled. Meaning it is based on the parameters extracted
from each tree their points in the point cloud.

The implicit tree model is modelled to always consist of:

• 32 Vertices, which are constructed using:

Ground height

Trunk radius

Crown base height

Lower periphery height and radius

Periphery height and radius

Higher periphery height and radius

44 implementation

(a) Front view (b) Side view (c) Top view

Figure 4.27: LOD2: Views of the implicit tree model

(a) Perspective view 1 (b) Perspective view 2 (c) Bottom view

Figure 4.28: LOD2: Views of the implicit tree model

Treetop height

• 36 Faces

12 Triangles

24 Squares

Figure 4.27 and Figure 4.28 display a constructed implicit tree model from six
different angles.

4.5.5 LOD3.0 Convex Hull crown + Implicit trunk

The models for LOD3 are no longer implicitly constructed from parameters extracted
from the trees in the point cloud, rather they are explicitly constructed using the
appearance of the points of each tree. The convex hull, as is mentioned in Sec-
tion 2.1.3, is constructed using spatial algorithms by SciPy. In particular, for LOD3.0,
the Delaunay triangulation is used in combination with the ConvexHull module.
The ConvexHull module is used to find the points that are necessary to construct
a convex hull. This module is used to return an array of indices of vertices. These
vertices are subsequently used to construct a Delaunay triangulation with the De-
launay module. This returns an array of indices, representing triangles connecting
the convex hull vertices.

These triangles, however, are unsorted. This means that the normals of these
triangles are pointing in different directions, rather than all pointing towards the
outside or inside of the hull. This is problematic, as the resulting model will appear
to have missing triangles, this needs to be addressed.

This is addressed by sorting the triangles in such a way that they all have the
same orientation, meaning that the normals of a triangle are pointing in the same

https://docs.scipy.org/doc/scipy/reference/spatial.html
https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html#scipy.spatial.Delaunay
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html#scipy.spatial.ConvexHull

4.5 modelling 45

(a) Starting triangle with neigh-
bours

(b) Neighbouring triangles
sorted

(c) New starting triangle with
neighbours

Figure 4.29: Half-edge triangle sorting

(a) Front view (b) Side view (c) Top view

Figure 4.30: LOD3.0: Views of the convex hull tree model

direction as each direct neighbouring triangle. This is done by making use of half-
edges, which represent the sharing edge between two polygons, in this case trian-
gles [McGuire, 2000]. By starting with any triangle in the Delaunay triangulation
of a convex hull, all three neighbors can be found by looking for the same indices.
These indices may or may not be in the same order, in both cases they need to
be identified. When the neighbouring triangles are identified, they can be sorted to
match their orientation with the starting triangle. After this, any of the sorted neigh-
bours can be used as a new starting triangle. This process needs to be repeated to
the point that every triangle has been used as a new starting triangle, the process is
visually explained in Figure 4.29.

When the triangles are sorted, it is not guaranteed that they have the orientation
in the correct direction. This is corrected by finding the highest elevated triangle
and calculating its normal. If it is pointing upward, no action needs to be taken. If
the normal is pointing downwards, every triangle is oriented incorrectly, and their
edges need to be reversed.

After these operations the construction of the crown is finished, and a tree trunk
is added. The tree trunk is constructed in the same way as is done in LOD0, LOD1

and LOD2. The resulting models are given in Figure 4.30 and Figure 4.31. The
number of vertices and faces is not consistent in convex hulls based on different
input data (trees).

4.5.6 LOD3.1 Alpha Shape crown + Implicit trunk

An alpha shape is similar to the convex hull, the difference is that it allows vertices
inside of the convex hull to be determined as a hull vertex, as long as its distance
is within alpha value α. As is explained in Section 2.1.4. For the output this im-
plementation yields, an alpha value of 0.5 is chosen. Lower values often result in

46 implementation

(a) Perspective view 1 (b) Perspective view 2 (c) Bottom view

Figure 4.31: LOD3.0: Views of the convex hull tree model

(a) Front view (b) Side view (c) Top view

Figure 4.32: LOD3.1: Views of the alpha shape tree model

more complex shapes, whereas higher values become more and more similar to the
convex hull.

After the alpha shape construction, the triangles that make up the alpha shape
undergo the same steps in order to ensure that every triangle normal is pointing
outward. The tree trunk is constructed in the same way as is done in LOD0, LOD1

and LOD2. The resulting models are given in Figure 4.32 and Figure 4.33. The
number of vertices and faces is not consistent in alpha shapes based on different
input data (trees).

(a) Perspective view 1 (b) Perspective view 2 (c) Bottom view

Figure 4.33: LOD3.1: Views of the alpha shape tree model

4.6 adding tree types 47

Figure 4.34: LOD1.0 City model from 3dfier enriched with LOD1.0 tree models

4.5.7 Integration with 3dfier

In order to combine the output data from this implementation with the output from
3dfier, the tool cjio1 is used. Not only does this tool validate the created CityJSON
files, it also provides the function merge, which, as expected, merges two CityJSON
files into one. After the datasets are merged, an example of a 3D city model enriched
with tree models can be viewed in a renderer of preference (that supports CityJSON)
files. An example of this is given in Figure 4.34.

4.6 adding tree types
Before tree types can be added, a training dataset needs to be created. The dataset
from Municipality Rotterdam [2020] has trees with additional information such as
treetypes. These are imported and processed to become centroids only, which can
be combined with the output from this implementation. The output of LOD0 is used
to determine which trees are suitable for training. A simple, yet effective, rule is
used to decide which trees are suitable and which are not:

• Only use polygons that contain one point.

• Only use points that are within one polygon.

Examples of trees that are considered suitable and not suitable are displayed in
Figure 4.35. Using only suitable data, a training set with target values is set up. Af-
ter this is done, a dataset is available that has both input features and target values,
with which a ML model is created. The dataset that is used for this implementation
consists of four different districts in Rotterdam, in order to create a diverse dataset
with a high sample size per tree type. The four districts are: Noordereiland, Katen-
drecht, Het Park and Kop van Zuid. These four districts combined have over 2700

suitable trees for a training dataset. These suitable trees can be subdivided into:

• 41 different tree genera.

• 21 different tree families.

• 13 different tree orders.

• 3 different tree clades.

1 https://github.com/cityjson/cjio

https://github.com/cityjson/cjio

48 implementation

19 different features are extracted from segments, or have been generated with
these features, to test which are most suitable for distinguishing tree types. These
19 features are:

1. Point Count

2. Crown Base

3. Periphery Height

4. Periphery Radius

5. Lower Periphery Height

6. Lower Periphery Radius

7. Higher Periphery Height

8. Higher Periphery Radius

9. Tree Top

10. Height Ratio: Higher Periphery/Lower Periphery

11. Height Ratio: Higher Periphery/Periphery

12. Height Ratio: Periphery/Lower Periphery

13. Radius Ratio: Higher Periphery/Lower Periphery

14. Radius Ratio: Higher Periphery/Periphery

15. Radius Ratio: Periphery/Lower Periphery

16. Height Ratio: Tree Top/Crown Base

17. Average Intensity

18. Average Number of Returns

19. Ratio Periphery Height/Periphery Radius

The first nine features are the features that are used in the construction of tree
models. The ratio features are generated in order to have features that describe the
shape of the tree, which are estimated to be helpful in differentiating different tree
types. These ratio features are more independent than their individual counterparts,
this is proven by the summary of a correlation matrix shown in Table 4.4. This table
shows the ranks of the 19 different features, based on their average correlation values.
The full correlation matrix is available on this GitHub Repository.

Based on the average correlation values of the features, the average intensity,
average number of returns and the ratio features are best suitable as complementary
features. If other features are considered distinguishing features, they can still be
used, but it needs to be kept in mind that these are likely strongly influenced by
other features, and usage of these features should be minimal.

4.6.1 First Iteration: Tree Genera

Out of the 41 different tree genera that exist in the training dataset, there are 21

different genera that have a sample size of at least 30 trees. The other 20 tree genera
are not taken into account, as the available data does not have a representative
sample size. For these 21 tree genera, all 19 possible features have been plotted in
box plots per genera. This gives a more intuitive insight into usable and unusable
features. Besides these visual plots, a numerical comparison is made using the

https://github.com/RobbieG91/TreeConstruction

4.6 adding tree types 49

Rank Feature Avg. Correlation

1 Average Intensity 0.08

2 Ratio Radius Higher Periphery / Periphery 0.09

3 Ratio Periphery Height / Periphery Radius 0.20

4 Ratio Height Higher Periphery / Periphery 0.21

5 Ratio Radius Higher Periphery / Lower Periphery 0.22

6 Ratio Radius Periphery / Lower Periphery 0.23

7 Average Number of Returns 0.28

8 Height Crown Base 0.31

9 Ratio Height Higher Periphery / Lower Periphery 0.34

10 Ratio Height Tree Top / Crown Base 0.35

11 Ratio Height Periphery / Lower Periphery 0.36

12 Point Count 0.39

13 Lower Periphery Height 0.40

14 Periphery Height 0.44

15 Higher Periphery Radius 0.45

16 Periphery Radius 0.46

17 Higher Periphery Height 0.47

18 Tree Top 0.48

19 Lower Periphery Radius 0.48

Table 4.4: Feature ranking on average correlation values

(a) Suitable: One polygon con-
taining one point

(b) Unsuitable: One polygon
containing multiple points

(c) Unsuitable: Multiple poly-
gons containing one point

Figure 4.35: Suitable and unsuitable data for training

50 implementation

Rank Feature Score

1 Lower Periphery Radius 0.39

2 Periphery Radius 0.37

3 Ratio Height Higher Periphery / Lower Periphery 0.36

4 Ratio Radius Higher Periphery / Periphery 0.36

5 Higher Periphery Radius 0.35

6 Ratio Height Higher Periphery / Periphery 0.35

7 Ratio Radius Periphery / Lower Periphery 0.34

8 Point Count 0.34

9 Ratio Radius Higher Periphery / Lower Periphery 0.33

10 Ratio Height Tree Top / Crown Base 0.33

11 Ratio Height Periphery / Lower Periphery 0.30

12 Height Crown Base 0.27

13 Average Number of Returns 0.27

14 Ratio Periphery Height / Periphery Radius 0.26

15 Lower Periphery Height 0.23

16 Higher Periphery Height 0.22

17 Average Intensity 0.22

18 Periphery Height 0.22

19 Tree Top 0.22

Table 4.5: Feature ranking on differences between average values per tree genera

Figure 4.36: Box plot of intensity values for different tree genera

difference in average values of each feature per tree genera, this comparison is
found in Table 4.5. As there are many different features to measure, only a few of
the best and the worst features are shown here. For a complete insight into all data,
visit this GitHub Repository.

While the feature average intensity scores high in the correlation matrix, the score
it achieves based on the differences in average values is one of the lowest. The
highest scoring feature based on these values is the lower periphery radius. The
box plots for these two features and three ratio features are shown in Figure 4.36,
Figure 4.37, Figure 4.38, Figure 4.39 and Figure 4.40.

These plots show that, while the average difference values may suggest that these
features are feasible for classification, there is still a strong overlap between these
features of tree genera. As the differences in average values are higher for the
lower periphery radius, the smaller overlap between the box plots suggest that the
intensity is a better feature to estimate tree genera with. However, due to the high
number of different genera, it is difficult to draw decisive conclusions based on
the difference in averages alone. Based on these numerical scores, and how they are
represented by their box plots, a selection of eight best features is created. These are,
with their respective distinguishing score and correlation score given in Table 4.6.

https://github.com/RobbieG91/TreeConstruction

4.6 adding tree types 51

Figure 4.37: Box plot of lower periphery radius values for different tree genera

Figure 4.38: Box plot of height ratios for different tree genera

Figure 4.39: Box plot of radius ratios for different tree genera

Feature Score Avg. Correlation

Average Intensity 0.22 0.08

Ratio Radius Higher Periphery / Periphery 0.36 0.09

Ratio Periphery Height / Periphery Radius 0.26 0.20

Ratio Height Higher Periphery / Lower Periphery 0.35 0.21

Lower Periphery Radius 0.39 0.48

Ratio Height Higher Periphery / Lower Periphery 0.36 0.34

Ratio Radius Higher Periphery / Lower Periphery 0.33 0.22

Ratio Radius Periphery / Lower Periphery 0.34 0.23

Table 4.6: Best eight features with their distinguishing score and average correlation to other
features

52 implementation

Figure 4.40: Box plot of ratios between periphery height and periphery radius for different
tree genera

By taking the maximum value for each tree genera classified by these eight fea-
tures, their combined estimated accuracies per genera are shown in Figure 4.41.
Using these values, an estimate can be made for their combined accuracy, resulting
in a estimation of approximately 49%.

In order to classify trees, Scikit-learn their MLPClassifier is used [Pedregosa et al.,
2011]. A number of parameters are available for this module, which are mainly left
to their default values or are optimized using Scikit-learn their GridSearchCV. This
is an exhaustive search over a selected set of parameter values for an estimator,
showing the result for each parameter set combination possible. Making it easy
to select parameters that yield the best results for the tree dataset. The parameters
that are optimized with this method are: what solver is used for weight optimization,
what alpha value is used for regularization and what learning rate is used.

Besides these parameters it is important to recognize the early stopping point, in
order to prevent overfitting. As the training of a ML model is done in an itera-
tive method, in which every iteration improves the fit of the model, this comes at
the expense of increased generalization error. Early stopping limits the number of
iterations that can be run before the model begins to over-fit [Girosi et al., 1998].

When training a ML model, cross-validation is often used in order to estimate the
generalisation accuracy of a supervised ML algorithm. This implementation makes
use of k-fold cross-validation, which divides all samples of trees into k groups of
samples of equal size, which are called folds. These folds are subsequently used as
both training data to fit the model and test data to validate the model, this concept
is demonstrated in Figure 4.42. By using cross-validation, a more reliable estimate
on the accuracy of the trained ML model can be given on the performance of the
model on other datasets than the one it is based on.

Finally, after training the ML model, the output accuracy is estimated to be 51%.
Which coincides roughly with the estimated maximum accuracy, based on the aver-
age values of each feature for given tree genera, which was 49%. That being said,
this is achieved only using the available genera. While these genera make up a large
portion of the dataset (95%), the genera that are not fit into the training model will
always be misclassified, as the model is not aware of these genera. An estimated ac-
curacy of 51% is not reliable in estimating tree types. Because of this, a classification
of a lower taxonomy level is needed, this is done in the second iteration.

4.6.2 Second Iteration: Grouped Classification

All trees are grouped up to their clade: Angiospermae, Coniferae or Ginkgophyta.
The tree type Ginkgophyta does not have a large enough sample size, resulting in
only the two remaining classification possibilities. The final dataset consists of 2743

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

4.6 adding tree types 53

(a) First ten genera with their score for each feature

(b) Last eleven genera with their score for each feature

Figure 4.41: Relative difference between average values for each genera per feature. A higher
value for a given genera, means that the average value for this feature is more
distinguishing than features with lower values. The maximum score per type
translates to how well these features combined should be able to classify these
tree genera

Figure 4.42: K-fold cross-validation concept [Pedregosa et al., 2011]

54 implementation

(a) (b)

(c) (d)

Figure 4.43: Box plots of features (a) intensity (b) number of returns (c) radius ratio and (d)
ratio height and radius

Figure 4.44: Scatter plot of features average intensity and average number of returns

trees in total, of which 96 (3.5%) are of the group Coniferae and 2647 (96.5%) are of
the group Angiospermae.

As two groups are easier to visually compare, only their box plots are used to
decide what features are optimal for training a ML model. Four examples are given
in Figure 4.43, the two best features and two examples of features that are not dis-
tinguishing enough. Looking at these plots, it becomes clear that only the intensity
and number of returns are the most viable features to distinguish trees into their
two groups. In order to get more insight in how complementary these two features
are, they are plotted against each other in a scatter plot in Figure 4.44. This plot
shows that there is, on average, a clear difference between the two groups, but that
still some overlap exists. This overlap means that it will likely not lead to an ideal
classification of trees into their two largest classifying groups.

After the ML model is trained in order to classify trees into these two groups, an
estimated accuracy of approximately 97% is achieved, using both an early stopping
point and cross-validation. Point cloud features, such as average intensity and aver-
age number of returns of a tree are better suited for classifying trees into the groups
Coniferae and Angiospermae, while physical features such as e.g. the ratios of radii
and ratios of heights of periphery sections have too much overlap to be suitable for
the classification of trees into these two groups.

5 R E S U LT S A N D A N A LY S I S

This chapter presents various results from the construction of tree models based
on LiDAR point cloud data. Large datasets are constructed and evaluated, but also
singular tree models are put under the magnifying glass, as there will always be
some imperfections and these need to be highlighted.

5.1 results
A few overview images of the Noordereiland are found in Figure 5.1, Figure 5.2,
Figure 5.3, Figure 5.4 and Figure 5.5. These show the Noordereiland from the same
angle, and should give a good impression of what output data looks like. One
thing that stands out, is that several trees have some overlap with their neighbour-
ing trees, this is prevalent in all LODs. In reality, this is often also the case, trees that
are close together, can touch each other. In the output this is also the case, which
is likely the result of applying a 2D segmentation on 3D data. It can be noticed that
the tree trunks do not have their brown material applied to them, as has been the
case with the trees presented so far. This is due to the fact that the previous trees
have been manually edited to display their material colours. The material colours
are stored in the JSON-files, however most renderers do not support different ma-
terials in cityJSON files yet. Figure 5.3 clearly displays the versatility of the implicit
tree model. Many different trees are visually distinguishable due to their crown-
shape, for example, some tree crowns have a conical shape, while others look more
spherical.

In order to validate the trees, a few have been selected. Outputs consisting of
more trees, on any LOD, can be found on this GitHub repository1. For further
validation purposes, and to keep the number of images slightly restrained, only
the highest LOD is discussed: LOD3.1. Figure 5.6 are some examples of trees that
are correctly constructed. However not every tree that is constructed, is as desired.
This is due to a number of factors:

• Under-segmentation leads to multiple trees constructed into one wide tree

1 https://github.com/RobbieG91/TreeConstruction

Figure 5.1: Overview LOD0

55

https://github.com/RobbieG91/TreeConstruction

56 results and analysis

Figure 5.2: Overview LOD1

Figure 5.3: Overview LOD2

Figure 5.4: Overview LOD3.0

Figure 5.5: Overview LOD3.1

5.1 results 57

(a) Tree example 1 (b) Tree example 2 (c) Tree example 3

Figure 5.6: Trees that are constructed as desired

(a) Under-segmentation (b) Outliers (c) Misclassification

Figure 5.7: Trees that are not constructed as desired

• Outliers that are not removed lead to trees with spikes from their crown

• Segments that are not trees that should have been removed remain in the
dataset

The examples in Figure 5.7 present trees that are wrongly constructed due to
one of these previously mentioned factors: Under-segmentation, outliers or mis-
classified segments. Besides trees that are wrongly constructed, there are also trees
that are not constructed at all, due to the segment not making it through the data
cleaning process. As is mentioned in Section 4.4.4, it can occur that an under-
segmentation is somewhat fixed due to the clustering algorithm, as can be seen in
Figure 5.8. The downside to this is that valuable data is lost in the process, one of
two trees gets removed, rather than split up into two individual trees.

(a) Under-segmented tree (b) One crown removed

Figure 5.8: Under-segmentation can get fixed by DBSCAN, however data is lost

58 results and analysis

Figure 5.9: Integration example of this implementations output and 3dfier output

Finally, the output tree models can be integrated with 3dfier. An example of
what this looks like for three different LODs is seen in Figure 5.9, more examples
are given in Figure 5.10. A relatively small example dataset has been used from
3D Geoinformation Group [2019] to demonstrate what an integrated output dataset
would look like. The existing and colliding vegetation or maaiveld from the 3D city
model has been removed to make room for the tree models.

5.2 analysis
As presented in Section 4.3.1, there are differences found between the used true
dataset and the constructed trees, based on the segmentation. The biggest differ-
ences are:

• True dataset has 467 trees.

• Constructed dataset has 538 trees.

• From the true dataset, 407 trees are within constructed trees (Point in poly-
gon).

• From the constructed dataset, only 344 trees contain one or more true trees
(Polygon containing points).

• From those 344 trees, only 301 trees have a one-on-one relation with the true
dataset (Polygon contains exactly one point).

It is difficult to quantify the accuracy of the construction method using these
examples. Under the assumption that the true dataset is perfect, approximately
75% of existing trees are recognized and modelled, while approximately 65% has a
one-on-on relation with the true dataset. This further verifies the results presented
in Table 4.2, where it is suggested that this segmentation method recognizes 84.5%
of trees and of these trees, 83.8% is segmented correct. Multiplying these outcomes
gives an accuracy of approximately 70% being correctly recognized having a one-
on-one relationship with the ground truth.

This being said, the dataset that has been used as truth, is definitely not perfect.
As is shown before, this construction method produces approximately 80 more trees.
This is due to a number of possible reasons: the ground truth appears to only, or at
least mostly, consist of trees in the public domain, while the construction method
registers every tree as it uses airborne LiDAR as source data. Furthermore, it is also
possible that the ground truth also misses several trees in the public domain. These
are, however, just speculations of the author based on multiple hours of reviewing
these datasets, and confirming these speculations fall outside of the scope of this
research.

5.2 analysis 59

(a) LOD1 tree models

(b) LOD2 tree models

(c) LOD3 tree models

Figure 5.10: Overview shots of 3dfier integration

60 results and analysis

(a) View 1 (b) View 2 (c) View 1 (d) View 2

Figure 5.11: Trees that are scored as Good - Acceptable (a, b) has a possible outlier below
the crown (c, d) is constructed with relatively large triangles, likely due to a low
number of points.

Going forward with 70% as an accuracy estimate of trees being correctly recog-
nized (no over- or under-segmentation), this is not the final accuracy estimate. As it
has been shown that several extra inaccuracies still exist in the final dataset due to
e.g. misclassifications and outliers. These inaccuracies are difficult, but not impos-
sible, to quantify, as there is no ground truth to compare to. A manual validation
of tree models can be performed.

Knowing what trees should look like (Figure 5.6) and what they should not look
like (Figure 5.7), a validation of tree models is done. This is done manually, by visu-
ally inspecting single trees. The output dataset of the Noordereiland in Rotterdam
in LOD3.0 is used, consisting of 538 trees. This is done to get the most complete
result on how well trees are constructed, as there is no real ground truth dataset to
compare with.

Trees are scored based on their individual appearance. Trees are scored in a
subjective manner, as follows:

• Good

Good

Acceptable

• Bad

Outliers

Under-segmentation

Misclassification

Combination

A tree is determined to be Good if there are no clear extreme outliers present,
no obvious under-segmentation can be seen and they are recognizable as an actual
tree, examples are given in Figure 5.6. If there are some less extreme outliers present,
which do not heavily reduce the overall quality of the representation of a tree, trees
are qualified as Acceptable. This also goes for tree models that are constructed with
e.g. a low number of points, which results in their constructed models being made
with rather large triangles. They may look off, but are not necessarily wrong, two
examples are given in Figure 5.11.

Whenever a tree model has one or more of the defects as shown in Figure 5.7, or
just seems generally wrong, it will be scored in the category Bad. Two examples of
constructed trees that have a combination of these defects, or just seem generally
wrong, are given in Figure 5.12. The ratio between Good and Bad trees is the final
validity that is attributed to this implementation.

An inspection of 538 tree models is done. Out of these 538 trees, 250 trees have
no visible defects, 119 trees have an irregular shape, but are not determined to be
erroneous. This means that 168 tree models are constructed in the Bad category, out
of these 168 there are 31 models with obvious outliers that disturb the tree model, 59

5.2 analysis 61

(a) View 1 (b) View 2 (c) View 1 (d) View 2

Figure 5.12: Trees that are scored as Bad - Combination due to a multiple factors. (a, b) is
wrong, because it has large triangles (possible outliers) and a completely flat
bottom. (c, d) is either a result of under-segmentation, outliers or a misclassi-
fication. What exactly goes wrong is unclear, but it is clear that this model is
incorrect.

(a) (b)

Figure 5.13: Sub-optimal fit with 3dfier: (a) Tree partially penetrating the ground, due to
irregular ground shape (b) Complete ground penetration and visible gap.

tree models are clearly the result of multiple trees segmented as one, 8 tree models
are distinctly constructed from points that do not belong to actual trees and 70 tree
models are misshapen due to a combination of these errors.

With these numbers it can be estimated that approximately 70% of trees that are
constructed can be classified as Good trees, while approximately 30% are Bad trees.
This percentage is not multiplied with previous estimates, as both estimates take
into account segmentation errors, which would then be counted twice. Further-
more, the first estimate only makes use of ground truth values, whereas the second
estimate uses all tree models that are constructed, in order to estimate the overall
accuracy of the entire output.

Finally, at first glance the output looks like it may fit the 3dfier output well, but
in order to have a seamless fit, more work needs to be done. Trees have an approx-
imately appropriate height on the ground, however at certain locations the ground
is irregular, leading to the bottom side of the tree trunk partially penetrating the
ground. Besides this, trees also have a tendency to either float slightly above the
ground or penetrate slightly through the ground. Some examples of this are demon-
strated in Figure 5.13. This can be due to the calculation method for the corrected
height, meaning that a different approach, like triangulating the ground points from
the original point cloud, could prove to do better.

That being said, even if the calculated height were correct, an additional workflow
needs to be described and implemented in order to create a topologically valid fit
of the two datasets, as there will likely be gaps that needs to be closed between e.g.
the grassy field and the tree trunk of a tree model. This is, however, beyond the
scope of this thesis.

62 results and analysis

(a)

(b)

Figure 5.14: Output comparison with related work (a) work from Verdie et al. [2015] (b) Own
work

5.3 comparison

While a complete one-on-one comparison is rather difficult to do, the outcome can
be compared to related work producing similar products. It is difficult to compare,
as a similar approach going from raw LiDAR data to constructed tree models in
various LODs has not been found.

By comparing the work of Verdie et al. [2015] with this implementation, it is
apparent that this implementation is strongly inspired by their work. A comparison
image is given in Figure 5.14, here it can be seen that there are strong similarities
between their first two LODs and LOD0 and LOD1 of this implementation. These
constructed models look to be constructed based on similar parameters, which can
not be said for their last two LODs, where they use icons that are fitted to parameters
as centre of mass, height of the crown base, tree top and the width or diameter of
the crown. By dividing the tree crown into different sections, while storing height
and radius values of these sections, or explicitly using the points representing the
tree crown, the physical shape of a tree is preserved and displayed stronger in most
comparable outputs from this implementation, LOD2 and LOD3.

A final comparison is made to the output of Du [2019]. Who constructs highly
detailed LOD tree models based on point cloud data from various sources. Instead
of modelling a simplified crown structure, an output is constructed of the entire
tree branch structure, which is an amazing feat. It produces results of high quality
with dense point clouds generated with static and mobile LiDAR data and manages
to create topologically plausible results with airborne LiDAR data, which is the same
source of data for this implementation. While results are plausible, the geometrical
accuracy may be compromised.

This is an important conclusion that, to some extent, explains why this level of
detail might not be achievable for this implementation. Besides the geometrical
accuracy being compromised, it is important to take a closer look at the source

5.3 comparison 63

Figure 5.15: Tree construction based on LiDAR point cloud data [Du, 2019]

(a) (b) (c)

Figure 5.16: Samples from the AHN3 point cloud (a) nearly no points in the trunk region for
smaller trees (b) some points in the trunk region for mid-size trees (c) relatively
high number of points in the trunk region for a relatively large tree

data, this is seen in Figure 5.15. It can be seen that the trunk of this tree is clearly
represented in the point cloud data, which has not been the case for many of the
trees in this implementation. This might give some information on what size tree
has been used, as there are trees detected with trunks in the source data for this
implementation, however, these have mainly been only trees. The average tree that
this implementation uses, has a few points for the tree trunk, which are typically
not enough to be representative for the explicit construction of a tree trunk. This
can be seen in Figure 5.16. Additionally, as it is a given that airborne LiDAR data may
compromise the geometrical accuracy, it is uncertain if this issue is more prevalent
for the average tree, which consists of even less points than the example that is
used.

With that being said, it is definitely worth trying to construct trees of this LOD

with airborne LiDAR data. If it does prove to be possible in any way, shape of form,
it could be a nice addition to the proposal of LODs that this thesis presents.

6 C O N C L U S I O N S

In this chapter, the research questions of this thesis are reviewed. Not only are the
outcomes underlined, limitations will be presented as well as their accompanying
recommendations for future endeavours in research related to the construction of
3D tree models based on airborne LiDAR data.

6.1 research overview

In order to draw conclusions, the research questions stated in Section 1.1 are an-
swered. The main research question for this thesis was:

How can 3D models of trees at varying LODs be automatically constructed from airborne
LiDAR point cloud data?

Firstly it can be concluded that it is possible to do so. The long answer to this
question would be to follow the implementation that is devised and expansively ex-
plained throughout Chapter 4. By following this procedure, an estimated accuracy
of 70% should be achieved. This percentage is estimated by comparing trees from
a ground truth dataset [Municipality Rotterdam, 2020] with this implementations
output. This implementation produces more trees than the ground truth dataset,
however, from the trees that exist in both, 70% are correctly segmented. Further-
more, out of all tree models that are constructed by this implementation, 70% are
estimated to be constructed in a manner that is representative of their real-world
counterparts. This is based on a subjective validation of a single output dataset,
which is done manually by inspecting over 500 tree models. These are two separate
accuracy or validity estimates, and can not be combined.

The more concise answer to the question would be the following: One first needs
to roughly classify the LiDAR data, in the case of this example AHN3 has been used
as source data. Part of this classification process is calculating the height above
ground of every point, this is optional but strongly recommended. So why only a
rough classification? This is the case since it is difficult to get a good classification
of vegetation when the data to work with is large and processed in one go. That
being said, the stronger the initial classification, the less computationally heavy the
following steps become.

After an initial classification is done, and the dataset is filtered to only contain
trees, the next step is to create a DEM based on the highest points. This is also called
a CHM. Using this CHM, a watershed segmentation can be applied, which results
in a segmented raster. The segments in this raster can then be set onto the original
point cloud containing only points of the class vegetation.

When the vegetation point cloud is segmented, every segment can be processed
individually. This opens up opportunities to apply data cleaning to the data. At first
a series of filters need to be applied: The number of points, the average intensity
values, the average number of returns and maximum height values per segment are
the first few rules to define whether a segment is a tree or not. Afterwards segments
are checked on whether they consist wholly of a plane, whether subsections of a
segment are planes and whether each segment contains outliers. The goal is to
remove any planes and outliers.

65

66 conclusions

LOD0 LOD1 LOD2 LOD3.0 LOD3.1

Table 6.1: Proposed tree LODs

When the point cloud data is entirely processed and presented in a way that each
segment represents a tree, it is time to start constructing actual tree models from this
data. Tree models are built as CityJSON files. Trees are constructed in five different
LODs, these are displayed in Table 6.1. These trees need to be constructed by a set of
parameters that are extracted from the segmented and cleaned point cloud, except
for the trees of LOD3, as these use the direct point cloud representation as a basis
for their crown construction, via constructing convex hulls or alpha shapes. That
is how 3D models of trees at varying LODs can be automatically constructed from
LiDAR point cloud data.

What applications require what type or LOD of 3D tree models?

As is described in Section 2.2, there are a multitude of applications that require
3D data. Non-visualization applications such as fluid dynamic simulations and the
effects of vegetation on the UHI through SVF calculation. These examples require 3D

vegetation data in the form of roughly modelled trees such as voxelized trees, or
not modelled trees at all, rather just raw point cloud data.

Visualization applications like time-series generation for the simulation of change-
over-time for an urban environment or the visualization of seasonal differences in
vegetation for urban environments. These examples vary strongly in what type of
3D vegetation is necessary, as the first gives an overview for an environment, where
the LOD could be arguably lower than what is needed in order to visualize age
based or seasonal based differences in vegetation itself. In the latter it is of high
importance that details as size, leaves and colours are included in the 3D vegetation.

Furthermore, more practical examples like the Rotterdam 3D project and the tree
register require different types of vegetation, but have several overlaps in their pur-
poses. Both maintain an extensive database containing specific information about
each tree. The Rotterdam 3D project requires 3D models for its visualization, whereas
the tree register merely saves tree crown outlines in 2D, saving many geometrical
properties as additional information. The last practical example is the visualization
of cities in 3D with 3dfier, it is lacking 3D vegetation entirely, and adding 3D trees to
this should make their output more complete.

Finally, an additional reason to support the need for constructing tree models
from airborne LiDAR point cloud data, is for real looking visualizations. To convey
spatial information in a way that represents reality as close as possible [Cartwright
et al., 2007]. After this short review, it can be said that there is a definite need for
3D tree models, with many different types or LODs of 3D data requirements spread
among a multitude of applications.

What LODs are most fitting for which type of tree models (single vegetation object or
vegetation group)?

For single vegetation objects any LOD can be chosen, it mostly depends on the ap-
plication and its purposes that requires these models. In the case of e.g. displaying
change-over-time for a large (urban) environment, it can suffice to use the lowest
LOD, in the case of e.g. visualizing (a part of) an urban environment, purely for

https://www.cityjson.org/

6.2 limitations 67

visualization purposes, the highest LOD would be best suited, as it depicts reality
best.

Secondly, for highly under-segmented trees, the highest LOD would make the
most sense. But, in this case, without a trunk. Lower LODs would just be warped
out of proportion, higher LODs would be a decent representation. That being said,
having multiple LODs in a single dataset would be wrong. A better solution, for the
time being, would be to omit heavily under-segmented trees from final models of
lower LODs.

How can a final implementation be made to fit into the 3dfier pipeline?

For visualization purposes, the output fits 3dfier well enough. However, the inte-
grated output is not topologically valid, as is mentioned in Section 5.2, a number of
issues still exist before this is achieved. The calculation of the height might need to
be revised, as there are some examples where trees slightly hover above or penetrate
through the ground. That being said, another possibility would be to merge these
datasets based on their proximity, as the locations of the trees seem accurate enough,
and the differences in height are minimal. It should prove possible to devise of an
implementation that merges the outputs together, based on proximity. This merger
could fill in the existing gaps, which should result in topologically valid data. An
example of the integration of both datasets in various LODs is given in Figure 5.9.

Is it possible to determine which tree type a tree belongs to, based on features that can be
extracted from trees in airborne LiDAR point cloud data?

Yes, this is possible. It is shown that different levels of accuracy can be achieved
in classifying tree types, dependent of the level of taxonomy that is classified. Two
levels of types have been classified in this implementation, the lowest level being
the tree genera, such as oak and chestnut trees. The highest taxonomy level that is
classified are tree clades, such as conifer and flowering trees. For the low level clas-
sification, the most distinguishing features are ratios between physical properties
such as the radii or height values of different periphery sections and the average in-
tensity of these trees. These features still have a strong overlap between the various
tree types, resulting in an accuracy of approximately 50% in classifying these tree
genera.

The high level classification depends wholly on the features average intensity
and average number of returns per tree clade. While there is still some overlap,
this is relatively small when compared to the low level classification. Because of
this smaller overlap, it is possible to classify this higher level classification with
an estimated accuracy of 97%. The physical properties and ratios between these
properties have too much overlap to be of use in the distinction between these
higher level classification.

6.2 limitations

This implementation is not free of flaws. This has been addressed in Chapter 5, and
will be summed up here.

Classification: For the purposes of this implementation, it does what it is sup-
posed to do. However, that being said, a lot of data cleaning is still required after
the initial classification. Within this data cleaning, many planes are detected and re-
moved, this shows a definite weak point of the initial classification, as planes should
not come through here. Other than this, structures like bridges make it through the
classification as vegetation. While these are eventually filtered out, it would still be

68 conclusions

desirable to do so in an earlier stage. Besides this, it has been proven difficult to
verify the overall accuracy of the initial classification.

Segmentation: While it does a decent job, with an estimate of about 70% correctly
segmented segments, there is still about 30% room for improvement. The limitation
of the segmentation can be attributed to two factors: the segmentation method and
the static inputs required, raster resolution and seed-to-saddle threshold. While it is
admittedly hard to find a balance between over- and under-segmentation, improve-
ments should be possible.

Data cleaning: Outliers remain to disturb the final tree models that are con-
structed, while they are few, they are not completely removed from the tree seg-
ments. The reason for the outliers remaining present in the final dataset, lies in
the static process involved in outlier removal. The chosen method uses set distance
thresholds to determine whether or not points belong to a cluster. In addition to
existing outliers, several issues from earlier steps in the process haunt the final tree
models: mainly under-segmentation and misclassifications cause the biggest issues.

6.3 future work

Based on the limitations presented in Section 6.2 and ideas of the author that have
not been implemented due to time limits, a number of recommendations can be
made for future work in this final section. These recommendations aim to further
improve the proposed methodology, but can also be generally seen as improve-
ments to this field of research. The recommendations are the following, not in any
particular order:

Ground truth: It has been difficult to verify the accuracy of classified LiDAR

point cloud data. Pre-classified data sets exist, however they were deemed non-
comparable to the AHN3 datasets that were used as source data, mostly due to the
large difference in densities between the datasets. Having a pre-classified LiDAR

point cloud available which can be considered ground truth, would greatly help in
the process of determining whether or not a classification is getting more or less
accurate with every change made.

Improved segmentation method: Under- and over-segmentation remain present
in the dataset, which is either due to the segmentation method or the limited dy-
namic of the segmentation method. It would be helpful if other segmentation ap-
proaches are tried, to find out if they provide better or worse results. It would also
be helpful if the used segmentation method could be altered, to allow for an adap-
tive seed-to-saddle threshold based on e.g. average distance between seed points
or average height difference in a region. Benchmarking often showed that certain
areas profited off of a higher threshold, while other areas would yield better result
if a lower threshold was used.

Outlier removal improvement: Outliers remain present in the dataset, which is
estimated to be due to the non-dynamic process that is used. DBSCAN uses a fixed
distance threshold to estimate whether or not a point belongs to a cluster or not,
which is good, assuming that the point cloud density is homogeneous for every
cluster. An idea would be to use the Ordering Points To Identify the Clustering
Structure (OPTICS) algorithm in order to estimate clusters more effectively, as this
algorithm accounts for different cluster densities.

Post-segmentation, segmentation improvements: During the outlier removal
process, some promising results showed up which have not been followed through

6.3 future work 69

on as of yet. The clustering algorithm used, sometimes resulted in under-segmented
trees being detected as just that. Multiple clusters (trees) in one segment. This imple-
mentation has used the easy way of handling this, by removing the smallest cluster.
A better implementation would make use of these results, and should create new
segments based on the number of clusters detected. If effectively implemented, this
could greatly reduce the percentage of under-segmentation and possibly even al-
low for the use of a different DEM resolution. A higher resolution has proven to give
more under-segmentation, but yield less over-segmentation. If under-segmentation
is no longer a problem due to post-segmentation, segmentation improvements, this
could theoretically lead up to segmentation accuracy of max. 99%, as can be seen by
the segmentation accuracy estimates in Table 4.1.

User-friendly Interface: The process to go from an airborne LiDAR point cloud
dataset to a 3D urban tree model currently goes through a series of different soft-
ware implementations. It has been a promising idea of the author to finally create
an intuitive User Interface (UI) in order to make this implementation accessible to
anyone that is interested, but does not possess the knowledge of the different pro-
grams used. It would be great if any person could just download an executable file,
where they have to load their LiDAR point cloud data and just click on one button
in order to construct a 3D model of the urban area they desire. An application like
this would also reduce the difficulty in finally constructing tree models on a larger
scale, if it is more accessible, more people can contribute.

Tree trunks: As of yet tree trunks are exclusively constructed implicitly, meaning
they are based off of parameters that trees have, in this case the crown periphery
radius. This choice has been made as tree trunk data is mostly not included, or not
included enough, in AHN3 point cloud data. It might be possible if this application
would be adjusted to be able to work with different sources of (denser) LiDAR point
clouds, which has not been tested as of yet.

Seamless integration with 3dfier: It is mentioned that the output of the current
implementation has a decent fit to the 3dfier 3D city model. However, in order for
the two datasets to be seamlessly merged and topologically valid, additional steps
need to be taken. A future endeavour in creating a workflow that seamlessly merges
this output, or similar output, with existing 3D city models in CityJSON, would be
a good addition to the tools that are currently available for CityJSON.

Tree type classification: The accuracy of the classification of tree types on a lower
level using the constructed features is approximately 50%, while the classification
of trees on a higher level is 97%. It is possible that a level somewhere in between
these two taxonomy levels can be adequately classified using the features that are
used in this thesis, however this has fallen outside of the scope of this research.
Also, it is possible that there exist different features, that are not constructed during
this research, that would prove to be more effective in the classification of trees. A
botanical literature review could possibly shed more light on stronger features that
can be used for tree type classification.

B I B L I O G R A P H Y

3D Geoinformation Group (2019). Open source code for reconstruction of 3d topog-
raphy. http://tudelft3d.github.io/3dfier/.

Actueel Hoogtebestand Nederland (2015). Besteksvoorwaarden ”inwinning lands-
dekkende dataset ahn2014-2019”. Technical report, AHN.

Antonarakis, A., Richards, K., and Brasington, J. (2008). Object-based land cover
classification using airborne lidar. Remote Sensing of Environment, 112:2988–
2998.

Axelsson, P. (2000). Dem generation from laser scanner data using adaptive tin
models. Photogrammetry and Remote Sensing, 33:110–117.

Berg, M., Kreveld, M., and Overmars, M. (2008). Computational Geometry: Algorithms
and Applications.

Biljecki, F. (2017). Delft in 3d. https://vimeo.com/181421237.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved lod specification for 3d
building models. Computers Environment and Urban Systems, 59:25–37.

Biljecki, F., Ledoux, H., Stoter, J., and Zhao, J. (2014). Formalisation of the level of
detail in 3d city modelling. Computers, Environment and Urban Systems, 48:1–15.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications
of 3d city models: State of the art review. ISPRS International Journal of Geo-
Information, 4(4):2842–2889.

Bouzas, V., de Groot, G. J., Sajadian, M., Tzounakos, N., and Wu, T. (2017-2018).
Urban horizon: A technical report on the development of a web application for
sky view factor calculation. Technical report, TU Delft.

Brown, M. J., Grimmond, S., and Ratti, C. (2001). Comparison of methodologies for
computing sky view factor in urban environments.

Cartwright, W., Peterson, M., and Gartner, G. (2007). Multimedia cartography: Second
edition.

Charaniya, A., Manduchi, R., and Lodha, S. (2004). Supervised parametric classifi-
cation of aerial lidar data. volume 2004, pages 30– 30.

Du, S. (2019). Accurate, detailed and automatic tree modelling from point clouds.
Master’s thesis, Delft University of Technology.

Edelsbrunner, H. and Mücke, E. (1994). Three-dimensional alpha shapes. ACM
Transactions on Graphics, 13(1):43–72.

Eich, M., Dabrowska, M., and Kirchner, F. (2020). Semantic labeling: Classification
of 3d entities based on spatial feature descriptors.

Elberink, S. O., Stoter, J., Ledoux, H., and Commandeur, T. (2013). Generation
and dissemination of a national virtual 3d city and landscape model for the
netherlands. Photogrammetric Engineering & Remote Sensing, 79(2):147–168.

ENVI-met (2020). Envi-met software. https://www.envi-met.com/.

71

http://tudelft3d.github.io/3dfier/
https://vimeo.com/181421237
https://www.envi-met.com/

72 BIBLIOGRAPHY

Environmental Systems Research Institute (ESRI) (2020). What is lidar
data? https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/

what-is-lidar-data-.htm.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. volume 96, pages
226–231.

Estivill-Castro, V. (2002). Why so many clustering algorithms: a position paper.
SIGKDD Explorations, 4:65–75.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.

Girosi, F., Jones, M., and Poggio, T. (1998). Regularization theory and neural net-
works architectures. Neural Comput, 7.

Google (2020a). Google streetview. https://www.google.com/streetview/.

Google (2020b). Satellite imagery. https://www.google.com/maps/.

Gross, M. and Pfister, H. (2007). Point-based Graphics. Elsevier.

Hodge, V. (2004). A survey of outlier detection methodologies. Artificial Intelligence
Review, 22:85–126.

Hofierka, J. and Zlocha, M. (2012). A new 3-d radiation model for 3-d city models.
Transactions in GIS, 16(5).

Hug, C. W. and Wehr, A. (1997). Detecting and identifying topographic objects in
imaging laser altimeter data.

International Organization for Standardization (2019). Iso 19107:2019 geographic
information — spatial schema.

Isenburg, M. (2020). Lastools. https://rapidlasso.com/lastools/.

Kanuk, J., Gallay, M., and Hofierka, J. (2015). Generating time series of virtual 3-
d city models using a retrospective approach. Landscape and Urban Planning,
139:40–53.

Kimber, A. (1985). Outliers in statistical data. by vic barnett; toby lewis. Journal of
the Royal Statistical Society. Series A (General), 148:165–166.

Koop, H. (1989). Forest Dynamics, SILVI-STAR: a Comprehensive Monitoring System.
Springer.

Kreveld, M., van Lankveld, T., and Veltkamp, R. (2011). On the shape of a set of
points and lines in the plane. Computer Graphics Forum, 30:1553 – 1562.

Kwak, D., Lee, W.-K., Lee, J., Biging, G., and Gong, P. (2007). Detection of individual
trees and estimation of tree height using lidar data. Journal of Forest Research,
12:425–434.

Lafarge, F. and Mallet, C. (2012). Creating large-scale city models from 3d-point
clouds: A robust approach with hybrid representation. International Journal of
Computer Vision, 99(1):69–85.

Li, W., Guo, Q., Jakubowski, M., and Kelly, M. (2012). A new method for segment-
ing individual trees from the lidar point cloud. Photogrammetric Engineering &
Remote Sensing, 78(1):75–84.

https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-lidar-data-.htm
https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-lidar-data-.htm
https://www.google.com/streetview/
https://www.google.com/maps/
https://rapidlasso.com/lastools/

BIBLIOGRAPHY 73

Lim, E.-M. and Honjo, T. (2003). Three-dimensional visualization forest of land-
scapes by vrml. Landscape and Urban Planning, 63:175–186.

Machucho, R., Rivera, J., and Bayro-Corrochano, E. (2012). 3d object reconstruction
using convex hull improved by a peeling process. volume 7657, pages 106–110.

Maoa, J., Zenga, Q., Liua, X., and Laib, J. (2008). Filtering lidar points by fusion of
intensity measures and aerial images. channels, 580:660.

Matuschek, O. and Matzarakis, A. (2010). Estimation of sky view factor in complex
environment as a tool for applied climatological studies.

McGuire, M. (2000). The half-edge data structure. Website: http://www. flipcode.
com/articles/article halfedgepf. shtml.

McIver, C. A., Metcalf, J. P., and Olsen, R. C. (2017). Spectral lidar analysis for terrain
classification. In Turner, M. D. and Kamerman, G. W., editors, Laser Radar
Technology and Applications XXII, volume 10191, pages 129–142. International
Society for Optics and Photonics, SPIE.

Meijer, M., Rip, F., van Benthem, R., Clement, J., and van der Sande, C. (2015).
Boomkronen afleiden uit het actueel hoogtebestand nederland. Technical re-
port, Alterra Wageningen.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of machine
learning.

Municipality Rotterdam (2020). Rotterdam 3d. https://www.3drotterdam.nl/#/.

Ortega-Córdova, L. M. (2018). Urban vegetation modeling 3d levels of detail. Mas-
ter’s thesis, TU Delft.

Parish, Y. I. H. and Müller, P. (2001). Procedural modeling of cities. In in Proceed-
ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
pages 301–308. Press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Peters, R. and Ledoux, H. (2016). Robust approximation of the medial axis trans-
form of lidar point clouds as a tool for visualization. Computers and Geosciences,
90:123–133.

Piepel, G., Rousseeuw, P., and Leroy, A. (1989). Book review of ”robust regression
and outlier detection”. Technometrics, 31:260.

Preparata, F. and Shamos, M. (2011). Convex Hulls: Basic Algorithms, pages 95–149.

Publieke Dienstverlening op de Kaart (2020). Ahn3 downloadpage. PDOK.

Reitberger, J., Schnörr, C., Krzystek, P., and Stilla, U. (2009). 3d segmentation of
single trees exploiting full waveform lidar data. volume 64, pages 561–574.

Richter, R., Discher, S., and Döllner, J. (2014). Out-of-Core Visualization of Classified
3D Point Clouds.

Richter, R. and Döllner, J. (2014). Concepts and techniques for integration, analysis
and visualization of massive 3d point clouds. Computers, Environment and Urban
Systems, 45:114–124.

https://www.3drotterdam.nl/#/

74 BIBLIOGRAPHY

Roudier, P., Tisseyre, B., Poilvé, H., and Roger, J.-M. (2008). Management zone
delineation using a modified watershed algorithm. Precision Agriculture, 9:233–
250.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach, vol-
ume 82.

Rutzinger, M., Höfle, B., Hollaus, M., and Pfeifer, N. (2008). Object-based point
cloud analysis of full-waveform airborne laser scanning data for urban vegeta-
tion classification. Sensors, 8.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient ransac for point-cloud shape
detection. Comput. Graph. Forum, 26:214–226.

Song, J.-h., Han, S.-h., Yu, K., and Kim, Y.-i. (2012). Assessing the possibility of
land-cover classification using lidar intensity data. International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 34.

Stoter, J. and van Oosterom, P. (2005). Technological aspects of a full 3d cadastral
registration. International Journal of Geographical Information Science, 19(6):669–
696.

Svensson, M. K. (2004). Sky view factor analysis – implications for urban air tem-
perature differences. Meteorological Applications, 1(3):201–211.

The American Society for Photogrammetry and Remote Sensing (2008). Las spec-
ification 1.2. https://www.asprs.org/a/society/committees/standards/asprs las

format v12.pdf .

The American Society for Photogrammetry and Remote Sensing (2013). Las spec-
ification 1.4. https://www.asprs.org/wp-content/uploads/2010/12/LAS 1 4 r13.

pdf .

Thomas, J. J. (2015). Terrain classification using multi-wavelength lidar data. Mas-
ter’s thesis, Naval Postgraduate School, Monterey, California.

Unger, J. (2009). Connection between urban heat island and sky view factor ap-
proximated by a software tool on a 3d urban database. Int. J. Environment and
Pollution, 36(1/2/3).

van den Pol, P., Janssen, H., and Rip, F. (2016). Unieke coöperatieve samenwerk-
ingsvorm leidt tot kadaster voor boominformatie. Geo-Info, 13(6):12–14.

van der Hoeven, F. and Wandl, A. (2018). Haagse Hitte. TU Delft Open.

Verdie, Y., Lafarge, F., and Alliez, P. (2015). Lod generation for urban scenes. Trans-
action on Graphics, 34(3):15.

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm
based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13:583–
598.

Vosselman, G. (2013). Point cloud segmentation for urban scene classification. IS-
PRS - International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-7/W2:257–262.

Vukomanovic, J. and Orr, B. (2014). Landscape aesthetics and the scenic drivers of
amenity migration in the new west: Naturalness, visual scale, and complexity.
Land, 3:390–413.

W., R. and Portal, A. (2018). Multiple view geometry in computer vision.

https://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf
https://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf

BIBLIOGRAPHY 75

Xu, S., Oude Elberink, S., and Vosselman, G. (2012). Entities and features for classifi-
cation of airborne laser scanning data in urban area. In Shortis, M. and Madden,
M., editors, ISPRS 2012 Proceedings of the XXII ISPRS Congress, pages 257–262.
International Society for Photogrammetry and Remote Sensing (ISPRS).

Yan, W. Y., Shaker, A., and El-Ashmawy, N. (2015). Urban land cover classification
using airborne lidar data: a review. Remote Sensing of Environment, 158:295–310.

Yao, W., Krzystek, P., and Heurich, M. (2012). Tree species classification and esti-
mation of stem volume and dbh based on single tree extraction by exploiting
airborne full-waveform lidar data. Remote Sensing of Environment, 123:368–380.

Zimek, A. and Filzmoser, P. (2018). There and back again: Outlier detection between
statistical reasoning and data mining algorithms. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, page 1280.

Zimek, A., Schubert, E., and Kriegel, H.-P. (2012). A survey on unsupervised out-
lier detection in high-dimensional numerical data. Statistical Analysis and Data
Mining, 5:363–387.

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 Objectives and Research Questions
	1.2 Proof of Concept
	1.3 Scope of Research
	1.4 Thesis Outline

	2 Related work
	2.1 Modelling of Trees
	2.1.1 Levels of Detail
	2.1.2 Iconization
	2.1.3 Convex Hull
	2.1.4 Alpha Shape

	2.2 Applications for 3D Trees
	2.2.1 Non-visualization
	2.2.2 Pure visualization
	2.2.3 Practical visualization
	2.2.4 3D city model generation
	2.2.5 Highly detailed automatic tree modelling

	2.3 Classification of Point Cloud Data
	2.3.1 Point cloud classes and formats
	2.3.2 Classification using height
	2.3.3 Classification using intensity
	2.3.4 Classification using number of returns
	2.3.5 Classification using a combination of properties

	2.4 Segmentation of Point Cloud Data
	2.4.1 Region growing segmentation
	2.4.2 Height-based segmentation
	2.4.3 Watershed segmentation

	2.5 Data Cleaning: Cleaning of segments
	2.5.1 Plane detection: RANSAC method
	2.5.2 Outlier detection

	2.6 Supervised Classification of Trees
	2.6.1 Supervised machine learning

	3 Methodology
	3.1 Classification of Point Cloud Data
	3.2 Segmentation of Trees
	3.3 Data Cleaning of Segmented Trees
	3.4 Modelling of Single Trees
	3.5 Adding Tree Types Based on Tree Parameters
	3.5.1 Training Dataset
	3.5.2 Feature Selection

	4 Implementation
	4.1 Requirements
	4.2 Classification
	4.2.1 Lasheight
	4.2.2 Lasclassify
	4.2.3 Las2las
	4.2.4 Classification Validation

	4.3 Segmentation
	4.3.1 Segmentation Benchmarks

	4.4 Data Cleaning
	4.4.1 Filtering
	4.4.2 Segment Planarity Check
	4.4.3 Segment Subsection Planarity Check
	4.4.4 Segment Outlier Check

	4.5 Modelling
	4.5.1 Parameter Extraction
	4.5.2 LOD0: Hexagon on ground level
	4.5.3 LOD1: Raised hexagon
	4.5.4 LOD2: Implicit tree model
	4.5.5 LOD3.0 Convex Hull crown + Implicit trunk
	4.5.6 LOD3.1 Alpha Shape crown + Implicit trunk
	4.5.7 Integration with 3dfier

	4.6 Adding Tree Types
	4.6.1 First Iteration: Tree Genera
	4.6.2 Second Iteration: Grouped Classification

	5 Results and Analysis
	5.1 Results
	5.2 Analysis
	5.3 Comparison

	6 Conclusions
	6.1 Research Overview
	6.2 Limitations
	6.3 Future work

