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Abstract

This thesis explores how accurate state estimation can support Distribution System Operators (DSO) in
managing MV grids. As the energy transition drives increasing complexity in electricity networks, more
precise and reliable data is necessary for planning and operational decisions. Although state estimation
offers a way to enhance data, DSOs struggle to implement it. The main objective of this thesis is to
develop a general strategy for placing measurements to achieve accurate state estimation using as few
measurements as possible.

Multiple cases were designed to assess the impact of specific measurement placement. A reference ”per-
fect case” network load scenario was created, and the values were corrupted using normally distributed
noise, with standard deviations reflecting the expected accuracy of each measurement type. These
noisy measurements were fed into the PandaPower Weighted Least Squares (WLS) state estimation
algorithm, implemented in Python. The resulting state estimates were compared to the perfect case
values to evaluate the state estimator’s accuracy and the placement strategy’s effect.

The results show that Power Injection Measurements (PIMs) primarily improve accuracy at the node
where they are placed. In contrast, Medium Voltage Measurement Units (MVMUs) offer broader
improvements across the entire feeder where they are installed. One strategic measurement location
was identified based on financial grounds. Results also indicate that improving the accuracy of an
inaccurate node is possible without improving its measurement, but requires widespread deployment
elsewhere, which is rarely justifiable economically. Retrofitting stations solely for measurement purposes
is generally not considered worthwhile.

The main focus should be on identifying the substations with the poorest measurement accuracy, typi-
cally pseudo-measurements. As a consequence, overall pseudo-measurement accuracy will also improve.
This makes it more likely that the state estimates will fall within predetermined limits. The number of
measurements that need to be placed depends on this predetermined limit.
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1
Introduction

The first chapter contains the motivation and background behind the research, a brief historical intro-
duction to state estimation and the objective and research questions. It ends with a rough outline of
the thesis.

1.1. Motivation
The Netherlands is undergoing an electrical energy revolution. Renewable energy solutions like wind and
solar replace traditional power plants like coal to reduce emissions [1]. This significant development is
expected to strengthen over the coming years due to the ambitious climate goals set by the Netherlands
[2] and, in a broader sense, the European Union [3]. However, these advancements will have implications
for the electricity networks.

In the past, systems were designed and operated assuming they were passive. This has shifted with
integrating distributed energy resources such as solar panels and electric cars, which exhibit volatile
and irregular behaviour [4], [5]. Factors such as sizing and location are beyond the control of all
Distribution System Operators (DSO), as individuals can independently decide to install solar panels
on their roofs and connect them to the grid, creating implications that all DSOs must address. This
uncontrolled integration can result in decreased voltage stability, increased harmonics and reverse power
flow, possibly damaging the network’s equipment and growing losses in the system [6], [7]. The problems
that generally characterise distributed generation are stability and power quality [8].

In addition to these developments, there is an increasing demand for electricity as many processes
in daily life and industrial operations are gradually being electrified [9]. The dynamic profile of the
emerging Renewable Energy Sources (RES) and the rising electricity demand can increase pressure on
the electricity grid.

As the pressure on the electricity system increases, it becomes crucial for distribution operators to
gather comprehensive data about their grids [10]. This data can inform critical decisions, such as
disconnecting RES or implementing load curtailment and, in the worst case, load shedding during
periods of congestion in specific areas. Additionally, it can provide insights into whether maintenance
is needed sooner, particularly in the case of persistent overloads.

This data also enables effective congestion mapping and facilitates timely planning for network expan-
sion. Since installing measuring equipment at every station to gather data incurs significant costs, this
is generally avoided until the economics can be justified. State estimation calculates all states in the net-
work without requiring direct measurements at all points. Under states fall parameters such as power,
voltage, current and voltage phase. Real-world data is utilised to determine the missing states through
a state estimation algorithm while considering the accuracy of the measurement data. A system is con-
sidered observable if sufficient measurements are available to perform state estimation effectively. This
approach bridges the gap between the theoretical framework, where systems are assumed to function
flawlessly and the real-world scenario, where data is often imperfect or incomplete. It also filters the

1



1.2. State Estimation 2

raw data before being used in potential use cases like control and protection. This is done by detecting
corrupted data in the measurement sets.

1.2. State Estimation
State estimation for power systems originated in the late 1960s. This development was driven by the
rise of digital computers and advancements in state estimation within the aerospace field, particularly
for military purposes. Fred C. Schweppe is widely regarded as the founder of state estimation for power
systems. In addition to his scientific contributions [11],[12],[13], he also collaborated with American
Electric Power, an American electric utility company, on the first successful real-time power system
state estimator.

Currently, state estimation is widely used by Transmission System Operators (TSOs) to calculate the
real-time status of the power grid. Due to the high demand for redundancy, the transmission sys-
tem is well-measured (observable), enabling state estimation. DSOs, however, do not have this luxury.
Historically, there was no need for a well-measured distribution system, as the system was more straight-
forward with one-directional flow and less strain, making it easier to predict. Hence, the distribution
networks mostly have little to no real-time measurement capability. As a result, the system tends to
be unobservable, making state estimation impossible.

1.3. Objective and Research Questions
This research aims to develop a workflow for analysing existing medium-voltage (MV) networks oper-
ated by DSOs to acquire observability. The process will then identify strategic locations within the
network where measurement equipment can be placed, prioritising placements from the most to the
least strategic, building the network to achieve a certain accuracy. The main objective focuses on
the fundamental requirements for achieving basic observability and accurate state estimation. It is
formulated as follows: What is the minimum of actual measurements required to achieve observability
and adequate state estimation? Answering this question should provide a clear understanding of how
DSOs can achieve network observability by implementing minimum measurements in their networks
while keeping technical and practical perspectives in mind. This thesis could serve as a guide for DSOs
during the design phase of their measurement equipment deployment.

Different aspects should be taken into account to reach a well-considered conclusion. One key aspect
is evaluating how the placement of additional measurements affects the accuracy of state estimation
and whether associated costs would be justified. Since these measurements can be carried out using
different devices, such as Remote Terminal Units (RTU) or Phase Measurement Units (PMU), it be-
comes essential to evaluate whether investing in specific devices yields better results. This includes
determining whether power flow direction is a vital piece of information for DSOs in some regions of
the network. Another aspect to explore is strategic locations for placing measurement equipment in the
networks. As the research is conducted in collaboration with Stedin, it will mainly focus on Stedin’s
specific priorities regarding measurement placement. At the same time, the findings will be generalised
to address the needs of other DSOs, ensuring the broader applicability of the results. This translates
into the following research questions.

Research Question 1:What are the minimum conditions to create an observable network?

At first, the basic conditions for an observable network must be defined without looking at certain
difficulties that may complicate the situation, such as existing equipment or Technically Not
Feasible (TNF) substations due to complications like physical characteristics of the substation or
deployed location. The minimum number of measurements and their placement will be discussed
in this question.

Research Question 2:What is the effect of placing more than the minimum amount of measurements?

If the minimum amount of measurements is placed, a company could choose to place more mea-
surements, but it would have to be worth it. So, it is interesting to see what effect additional
measurements have on accuracy and if their location is important to the accuracy of the system’s
state.
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Research Question 3:Is the type of measurement taken of great importance to the accuracy of the system’s
state?

Different types of measurement equipment are available on the market at different prices. For
example, simple measurements give just P and Q and their direction (negative or positive). More
sophisticated measurements may also provide the voltage magnitude. Measurements can also be
distinguished into power injection and line measurements. Both carry different advantages. Phase
Measurement Units (PMU) are also available but tend to be expensive, as they measure power,
voltage magnitude, and phasor at an exact time. Obtaining greater accuracy can be achieved with
more expensive equipment, but it might also be possible to solve it with less expensive options.

Research Question 4:Which strategic substations would benefit the most from the placement of a mea-
surement?

As substations differ in a technical and non-technical sense, some substations could be more
influential in obtaining better results or lower costs. Identifying these differences is important so
that DSOs can make the best choices for their networks.

1.4. Outline
This thesis is structured as follows: Chapter 2 provides a comprehensive background on state estimation
and network observability. Chapter 3 presents a literature review focused on measurement placement.
In Chapter 4, a method is proposed to address the main research question. This method is applied
to two network scenarios. An empty network is analysed in Chapter 5 to isolate the impact of spe-
cific measurements. In Chapter 6, an operational network utilising its existing equipment is analysed,
representing a real-world DSO scenario. Both chapters present the results and discuss the method’s
effectiveness and limitations. Finally, conclusions and recommendations are provided in Chapter 7.



2
Theoretical Background

This chapter provides the background and context necessary to understand the decisions made through-
out the thesis. It also presents various methods relevant to the research that may complement the
method designed in chapter 4. The chapter explains the Dutch MV grid and its operation. Next, the
concept of weighted least squares state estimation is introduced. Following this, a deeper understanding
of the two forms of observability is provided.

2.1. Dutch Medium Voltage Distribution System
The Dutch electricity grid is divided into two layers. The transmission system and the distribution
system. Their difference is the voltage levels at which they operate High Voltage (HV) (50-380 kV)
and MV (3-25 kV) or Low Voltage (LV) (0,4 kV), respectively [14]. Figure 2.1 illustrates the different
voltage levels in the Dutch electricity network.

Figure 2.1: Voltage levels for transport and distribution levels[14].

This study will focus on the MV level of 10 kV, mainly used to distribute electricity from the transmission
network into the LV network or to feed larger customers. A characteristic of the distribution network
is that it has many more stations than the transmission network, while the measurement density is
severely lower [15], [16]. This results in a poorly observed distribution network where historical records

4



2.2. State Estimation 5

usually predict its states. Important to note is that while distribution grids may have a mesh or a ring
structure, they are operated in a radial configuration for better control and operation [14], [17].

The MV distribution system was initially designed for a one-sided power flow where energy is generated
in large power plants and gradually fed to consumers at the end of the MV or LV grid. With the
introduction of RES and sustainable energy technology, the dynamics of the distribution grid will change.
Power generation shifts from one-sided to two-sided due to solar power on the roofs of consumers or
car batteries that may be discharged at certain times. RES also come with peak generation, which can
cause voltage violations and power congestion, leading to equipment damage, shorter lifespan, losses
and even outages [18]. Therefore, the system needs to be monitored better to prevent it from violating
its boundaries. A popular way is state estimation.

2.2. State Estimation
State estimation for power systems is a procedure for obtaining all the states of nodes/buses in a given
network. The states are estimated using available measurements in the network and possibly pseudo-
measurements to complement the available measurements where necessary. For state estimation, it is
assumed that the network topology and parameters are perfectly known. The power system is considered
to be operating in a steady state under balanced conditions. This means all branch power flows and
bus loads are three-phase and balanced, all transmission lines are fully transposed, and the series and
shunt devices are symmetrical in all three phases. These assumptions allow using a single-phase positive
sequence equivalent circuit for modelling the power system [19]. Loads and generators will be modelled
as power injections, thereby not affecting the network model.

State estimation will be explained primarily based on the work of M. Brown [20] and secondarily on
the works of Abdur et al. and Monticelli [19],[21]. A standard measurement problem equation can be
defined as in Equation 2.1. Here, the z is the measurement, the x is the actual value, and v is the error
in the measurement.
Throughout this MSc thesis, consider the following: lowercase and uppercase italicised boldface letters
denote column vectors and matrices, respectively. Superscript t indicates a vector or matrix transpose.

z = x + v (2.1)

When multiple measurements are available, it results in a matrix form called the SE measurement
model, which is seen in Equation 2.2.

z = Hx + v (2.2)

If combined with the least squares method developed by Gauss, the objective function of this problem
can be written as:

J(x) = (z1 − H1x)2 + · · · + (zm − Hmx)2 (2.3)

The objective function equals the error in Equation 2.2. To minimise the error, the first-order derivative
of J(x) should be taken and set equal to zero. In this way, x̂ is computed. The H values are all 1 in
this problem.

∂J

∂x

∣∣∣∣
x=x̂

= 0 → x̂ = H1z1 + · · · + Hmzm

H2
1 + · · · + H2

m

→ x̂ = z1 + · · · + zm

m
(2.4)

As illustrated by the results, this represents the most intuitive solution. Gauss also acknowledged this
and reasoned that measurement accuracy should be considered. This consideration resulted in the
formulation of the Weighted Least Squares (WLS) method with an alternate objective function from
Equation 2.3.

J(x) = w1(z1 − H1x)2 + · · · + wm(zm − Hmx)2 (2.5)
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2.2.1. Linear WLS state estimation
Linear state estimation, also known as Direct Current (DC) state estimation, is a simplified form
of state estimation. While its simplicity reduces accuracy compared to non-linear state estimation, it
remains valuable for multiple applications, including pricing calculations, analysis techniques for network
security, transmission planning, transfer analysis, contingency screening, and transmission loading relief.
The simplification assumes that all bus voltages are set to 1 p.u. and neglects network branches’ series
resistances and shunt admittances.

As power networks deal with multiple measurements of multiple states Equation 2.5 can be rewritten
in matrix form.

J(x) = (z − Hx)tR−1(z − Hx) (2.6)
With R = E(vvt) = diag[σ2

1 , . . . , σ2
m] where E(v2

1) = σ2
i . The linear state estimation solution can be

computed by ∂J(x)
∂x

∣∣∣
x=x̂

= 0t, obtaining:

HtR−1(z − Hx̂) = 0 → HtR−1z − HtR−1Hx̂ = 0 → HtR−1Hx̂ = HtR−1z (2.7a)
G = (HtR−1H) (2.7b)
Gx̂ = HtR−1z (2.7c)

x̂ = G−1HtR−1z (2.7d)
x̂ = (HtR−1H)−1HtR−1z (2.7e)

Where G is the gain matrix (symmetric) and 0 is the zero vector. The gain matrix can be used to
calculate the covariance matrix of the estimation error of the state.

G−1 = Σ = cov(x − x̂) = E[(x − x̂)(x − x̂)t] (2.8)

2.2.2. Non-linear WLS state estimation
The relationship between measurements and state variables in physical power systems is often nonlinear.
The simplified linear version will not suffice to accurately estimate the states of a distribution system.
This is due to a high reactance to resistance ratio (X/R ratio) needed for the DC power flow model [20],
which is low for distribution systems [22], [23]. Therefore, the measurement model and the following
WLS objective function should be expressed as:

z = h(x) + v (2.9a)

J(x) = [z − h(x)]tR−1[z − h(x)] (2.9b)

The same steps as those for the linear process are followed, where the gradient of J(x) must be set to
zero, i.e. ∂J

∂x

∣∣
x=x̂

= 0t. This results after a transpose operation in:

HtR−1[z − h(x)] = 0 or f(x) = 0 (2.10)

Where H(x̂) = ∂h(x)
∂x

∣∣∣
x=x̂

is the Jacobian matrix. Since Equation 2.10 represents a system of non-linear
equations, it must be solved through an iterative process, such as the Newton method, as follows:

∂f(x)
∂x

∣∣∣∣
x=x(k)

∆x(k) = −f(x(k)) (2.11)

∂f(x)
∂x

∣∣∣∣
x=x(k)

= ∂

∂x
HtR−1[z − h(x)]

∣∣∣∣
x=x(k)

⇒ ∂f(x)
∂x

∣∣∣∣
x=x(k)

= (−HtR−1H + H)
∣∣
x=x(k) (2.12a)

where (k) is the iteration index, ∆x(k) = x(k+1) −x(k) and H an (m x m) matrix. The matrix elements,
typically denoted as (p, q), depend on the second derivatives of hℓ(x), the covariance matrix R−1

ℓℓ and
the corresponding measurement residuals for any set of ℓ measurements, as illustrated in Equation 2.12b.
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Hpq =
m∑

ℓ=1

∂2hℓ(x)
∂xp∂xq

R−1
ℓℓ [zℓ − hℓ(x)] (2.12b)

As the matrix H is expensive to compute its contribution in Equation 2.12a and Equation 2.12b is
typically neglected. Therefore, the solution of x̂ can be obtained through the convergence of the
iterative process known as the Gauss-Newton method:

G(k)∆x(k) = [H(k)]tR−1[z − h(x(k))] (2.13a)

G(k) = [H(k)]tR−1H(k) (2.13b)

Where Jacobian matrix H(k) = ∂h(x)
∂x is evaluated for x = x(k). If the system is observable, the

gain matrix G(k) is symmetric, sparse and positive definite. The iteration process continues with
x(k+1) = x(k) + ∆x(k) until absolute value of ∆x(k) becomes smaller than a specified tolerance.

2.2.3. Non-linear state estimation for power systems
Active and reactive power flow measurements are most commonly used in power system state estima-
tion. The voltage magnitude and angle, important states in power systems, can be derived from these
measurements. The power flow measurements can be divided into two types. The power injection
measurements and the line flow measurements. The formulas for injection into a bus and power flow in
a branch, respectively, are shown in Equation 2.14, [20]:

Power injections into a bus

Pi = |Vi|
n∑

l=1

|Vl| (Gil cosθil + Bil sin θil) (2.14a)

Qi = |Vi|
n∑

l=1

|Vl| (Gil cosθil − Bil sin θil) (2.14b)

Power flow in a branch

Pi−k = |Vi|2(gi−k + gsh
i ) − |Vi||Vk|(gi−k cosθik + bi−k sin θik) (2.14c)

Qi−k = −|Vi|2(bi−k + bsh
i ) − |Vi||Vk|(gi−k sin θik − bi−k cosθik) (2.14d)

It is assumed that the parameters Gil,Bil, gi−k, gsh
i , bi−k and bsh

i are known. The Jacobian matrix H

can be formed from here. First we start with h(x(k)) and apply H(x̂) = ∂h(x)
∂x

∣∣∣
x=x̂

where x will consist
of the desired states. Table 2.1 exemplifies how this could look.

The derivatives corresponding to the power flows and injections and voltage magnitudes mentioned
above in the Jacobian matrix are further detailed in the Equations (A.1)(A.2)(A.3)(A.4)(A.5) which
are found in Appendix A.

The iteration process itself usually begins with a flat start for power systems, i.e.:

x(0) =



θ
(0)
1
...

θ
(0)
n

|V (0)
1 |
...

|V (0)
n |


=



0
...
0
1
...
1


where Vn is in p.u. and θ in degrees.
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h(x(k)) = . . . P
(k)
i−k . . . P

(k)
i . . . Q

(k)
i−k . . . Q

(k)
i . . . |V (k)

i | . . .

H . . . ∂/∂θi . . . ∂/∂θk . . . ∂/∂|Vi| . . . ∂/∂|Vk| . . .
...

...
...

...
P

(k)
i−k … ∂P

(k)
i−k/∂θi … ∂P

(k)
i−k/∂θk … ∂P

(k)
i−k/∂|Vi| … ∂P

(k)
i−k/∂|Vk| . . ....

...
...

...
P

(k)
i . . . ∂P

(k)
i /∂θi . . . ∂P

(k)
i /∂θk . . . ∂P

(k)
i /∂|Vi| . . . ∂P

(k)
i /∂|Vk| . . ....

...
...

...
Q

(k)
i−k . . . ∂Q

(k)
i−k/∂θi . . . ∂Q

(k)
i−k/∂θk . . . ∂Q

(k)
i−k/∂|Vi| . . . ∂Q

(k)
i−k/∂|Vk| . . ....

...
...

...
Q

(k)
i . . . ∂Q

(k)
i /∂θi . . . ∂Q

(k)
i /∂θk . . . ∂Q

(k)
i /∂|Vi| . . . ∂Q

(k)
i /∂|Vk| . . ....

...
...

...
|V (k)

i | . . . 0 . . . 0 . . . 1 . . . 0 . . .

Table 2.1: Partial derivatives in the power system analysis.

2.3. Observability Analysis
Observability refers to the ability to calculate the system’s state. A commonly used formula that
provides a simple and quick approach to assess observability is given in Equation 2.15.

m ≥ 2n − 1 (2.15)

Here, m represents the number of measurements, and n denotes the number of buses in the network.
This value is used because each node has two unknown states: the voltage magnitude and the phase
angle. One less measurement is required since one phase angle is set to zero as the reference bus. The
number of measurements is chosen to construct a Jacobian matrix with a rank equal to the number
of unknown states. The number of m ≈ 4n is taken for reasonable performance in practical situations
[24].

This represents the minimum requirement for system observability. However, having sufficient mea-
surements does not guarantee the system will be observable. For instance, if all measurements are
concentrated in a small network section, the system might still pass the observability test of Equa-
tion 2.15 but remain unobservable. More advanced methods have been developed to address such cases,
categorised into numerical and topological observability, involving manipulation of Jacobian, Gain and
Gram matrices and graph-based theory.

2.3.1. Numerical Observability
According to [20], numerical observability can be checked using the linear decoupled/DC model. This
entails a few assumptions: all power measurements are in pairs (active/reactive), and the system is
simplified to a state where branch parameters do not influence observability. Shunt resistances to the
ground are ignored. Equation 2.16 describes the linear decoupled model:

za = Haθ + va (2.16a)

Gθ̂ = Htza (2.16b)

G = HtH (2.16c)

In this model, H is filled with the relations between measurements and their surrounding buses and
will take on the following form.
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Ha … θi … θj … θk …
...

...
...

...
Pi−k 1 0 -1
Pi nbi -1 -1...

...
...

...
θi 1 0 0

Iai−k 1 0 -1...
...

...
...

Here nbi is the number of buses connected to bi, and Iai−k is a current measurement on a branch. Now
observability can be checked via the G matrix. If observable, the G matrix is non-singular, i.e. it has
no zero pivots after Gauss elimination.

Unobservable branches and nodes can also be identified. Various ways are given by [19], [25] and [26].
They each manipulate the Gain matrix with triangular decomposition. Their methods can take several
iterations to expose the numeral unobservable parts of the network.

The Gram matrix method from [27] is an alternative to the Gain matrix method used above. Instead of
creating a matrix corresponding to the nodes in the system as in Equation 2.16c, this matrix is coupled
to the measurements by:

A = HHt (2.17)

It can identify non-redundant measurements through triangular decomposition, where zero pivots cor-
respond to non-redundant measurements. Furthermore, a method for identifying observable islands is
given by using the minimum norm formulation:

θ = Ht
nrA

−1
nr z (2.18)

Where Ht
nr is the DC-model Jacobian matrix with an added phase angle pseudo measurement at the

node where an island may be detected, the vector z contains all zeros except at the position of the
pseudo measurement and θ is a matrix that contains ones for nodes belonging to the observable island
and zeros for nodes that are not part of the observable island.

2.3.2. Topological Observability
Topological observability uses graph theory to obtain the network status [20]. Graph theory makes use
of the relationship between objects. These objects are nodes or buses for power systems, and edges
imply a relationship between them. Graphs can be modelled in specific ways, with undirected, directed
and coloured edges and as simple and multi-edged graphs as shown in Figure 2.2. The simple graph’s
edge indicates a relationship between two nodes, whereas a directed graph suggests the direction of the
relation. A multi-graph is used when there are multiple relations between nodes.

(a) Simple graph. (b) Directed graph. (c) Multigraph.

Figure 2.2: Basic graphs [20].

For the observability test in power systems, it is assumed that the measurements come in pairs; i.e.,
if there is an active power measurement, there is also a reactive power measurement. A distinction is
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made between power injection measurements and power flow measurements. Power flow measurements
are associated with a specific edge. In contrast, a power injection measurement at a node can become an
edge to one of all neighbouring nodes, i.e. a node linked by a line to the node with the power injection.
An example given in [20] shows all possibilities of a given network illustrated in Figure 2.3

(a) Five bus network [20]. (b) Five bus multi graph [20].

Figure 2.3: Representation of a normal network into a graph network.

The method discussed in [20] firstly created a multi-graph Zm containing all nodes. Next, it processes
all flow measurements into Tf , a sub-graph containing all flow edges, while ensuring no double lines
exist between nodes to avoid creating loops in the graph. For example, in Figure 2.3b, there are two
measurements between nodes 5 and 2. This method selects only one measurement to be added to Tf .
Now, power injection measurements are added. Important to note is that all measurements will be given
a distinct colour, as P4 in Figure 2.3b has three options. All these edges have the same colour. This
way, a colour constraint can be implemented so that one colour will not occur twice in the multi-graph.
So, a colour and a loop constraint are needed to add injection measurements. Depending on the order
in which the power injection measurements are added, the spanning tree may not be created in one
iteration. To combat this a bipartite graph is needed which saves existing edges and remembers which
constraints are active. If a path with more than edges in the bipartite graph than the current path is
found, the path should be replaced with the found path. This process is shown in Figure 2.4 with the
completed spanning tree of the five bus network from Figure 2.3a in the bottom left and the bipartite
graphs on the right. Once all steps of the method are completed, the optimal spanning tree for a given
network is constructed. If spanning tree T encompasses the whole network, i.e. it is of full rank [28],
the network is deemed observable.

Figure 2.4: Creation of rainbow spanning tree [20].

The method is validated in [19]. Earlier implementations can be found in [28] and [29]. The same
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procedure is applied universally. All flow measurements are assigned to their respective edges for a
given network of nodes, ensuring no loops are created. Subsequently, all injection measurements should
be assigned edges. This process iterates through all injection measurements until the optimal spanning
tree is identified. If the spanning tree does not achieve full rank, the network is deemed unobservable
and consists of multiple sub-graphs called forests.

2.3.3. Hybrid Methods for Observability
The methods mentioned in subsection 2.3.1 and subsection 2.3.2 can also be combined, creating a hy-
brid method. In [30], a topological method based on three rules is employed to check for observability.
Some observable islands may be overlooked as these rules state adequate but not mandatory conditions.
Therefore, the simplified network is analysed using a numerical method to determine its observability.
Due to the simplification of the network by the topological part, the computational time for the numer-
ical part is significantly reduced. This time reduction makes the hybrid method faster than just the
numerical method.

The methods used in [31] and [32] have more in common with a numerical method. It also simplifies
the network through a topological process that merges parts of the network. Subsequently, it performs
observability analysis using the echelon form of the reduced network matrix. The method in [31] relies
exclusively on 0, +1 and -1 entries, making it resistant to rounding errors, which can occur in the
traditional numerical methods involving triangular decomposition of the gain matrix.

2.3.4. Used Method for Observability
For this thesis, the PandaPower State Estimation code will be used for running the state estimation
[33]. The first observability check in this code assesses the number of available measurements. If the
number of measurements does not exceed or is equal to 2n − 1, where n is the number of nodes, the
estimation will not proceed. The second check follows the numerical method, where the networks Gain
matrix is checked for singularity.



3
Literature Review

This chapter explores various approaches to the meter placement problem, ranging from straightforward
reasoning and strategic location selection to complex optimisation methods considering multiple types
of measurements. Based on the reviewed literature, a decision will be made regarding the most suitable
approach to achieving observability with actual measurements for DSOs, with a particular focus on
Stedin.

3.1. Strategic locations
In [34], a categorisation of the importance of network capabilities is presented, with substation automa-
tion ranked as the highest priority and load management as the lowest. Under substation automation
fall services like fault location and isolation, service restoration, power factor control and transformer
load balancing. Load management concerns load control, surveys and remote meter readings. With
this in mind, the main focus of measurement placement is around switches, as accurate estimation at
these points plays a significant role in network control. In addition, it is recommended that the loads
between the measuring point on lines be as balanced as possible. This balance creates a more uniform
state estimation with similar accuracy for those nodes. This balance is achieved by prioritising the
measurement of outlier nodes with higher loads.

The cost of placing measurement equipment can be significant. The research in [35] suggests that all
nodes with more than two flow branches should be fully measured. Figure 3.1 shows such a node
in orange. Beware that the blue nodes are also substations and not loads. This approach prioritises
minimising the number of locations that require measurement equipment rather than the total number
of measurements. The rationale is that the primary expense lies not in the measurement devices but
in their installation, revision and maintenance. Therefore, maximising the number of devices placed
at a single station during these operations is practical. The branch voltage phasor and complex power
flow and failure rate were chosen as a criterion for further placement. The paper stopping conditions
for voltage regulations, switching consequence assessment and loss estimation are met when 20% of the
point of connection stations are measured. The obtained voltage requirements do not indicate a high
accuracy for the other systems states. While the method is effective for the predefined requirements,
its adaptability should be assessed if these constraints change. Expanding the requirements increases
computational complexity, potentially necessitating a more efficient selection process or alternative
methodologies.

12
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Figure 3.1: Stategic location of splitting point feeder displayed as orange node.

Today, many distribution networks are without actual measurements and use pseudo-measurements,
often inadequate for an accurate state estimation. Work [36] suggests a method to place actual mea-
surements based on the uncertainty level of the pseudo-measurements. It classifies networks as observ-
able if the estimated states are confidently accurate enough so that the possible actual states would be
inside the physical constraints of the system. If this is not the case, it looks at where placing an actual
measurement would make it so that the states of most pseudo-measurement nodes will be within these
uncertainty boundaries. It does this one measurement at a time. Due to this, the best solution might
not be found if multiple measurements are placed in the network.

If only a few parameters are of concern, observability can be achieved using pseudo-measurements.
In [37], an initial selection of measurements is made at locations considered of high importance, and
pseudo-measurements are then used to supplement the network to achieve observability. When the
calculated network states do not meet the desired accuracy range, additional actual measurements are
incorporated until the required accuracy is achieved. This technique prioritises certain buses over others,
which is advantageous for a DSO who knows the importance of specific bus parameters. However, if
such information is unavailable, the method would require a random starting point, potentially leading
to unnecessary costs.

3.2. Criteria for accuracy
Identifying the impact of measurement placement and type of measurement on the accuracy of various
states and reliability of the SE is the focus of [38]. The study primarily relies on pseudo-measurements,
supplemented by actual measurements, to achieve the desired accuracy or meet a predefined measure-
ment quantity. It suggests that achieving observability solely through actual measurements is not
economically feasible. The paper also emphasises the increasing importance of effective voltage control
in the presence of higher levels of distributed generation. Additional criteria considered include bad
data detection and redundancy. To address these issues, measurements should be strategically placed
at critical locations to maximise redundancy, enabling data comparison to filter out erroneous data
and enhance system stability during faults. Directly monitoring switches provides better insight into
network topology, while directional measurements are crucial in the case of uncertain flow direction, as
non-directional measurements can lead to convergence issues. These criteria are satisfied by focusing
on the accuracy of critical states, utilising directional measurements, directly metering large distributed
generation units and metering switches.

An example of the extensive use of pseudo measurements is presented in [39]. The study demonstrates
that a network can be observable primarily through pseudo measurements, supplemented by a few actual
measurements at the primary busbars. However, the state estimator frequently failed to converge, and
the resulting estimates were inaccurate due to contradictions between the measurements. The constant
failing of the state estimation shows the necessity of incorporating actual or more precise pseudo-
measurements to ensure reliable state estimation.

3.3. Location Selection
The work [40] addresses network observability by identifying unobservable branches and selecting buses
for power injection measurements to resolve unobservability. This is achieved by manipulating the gain
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matrix and randomly selecting buses adjacent to an observable island. However, the method can be
inefficient, as choosing a second adjacent bus could enable placing two line measurements in a single
operation and achieve observability while significantly reducing operational costs. Notably, these must
be actual measurements, as pseudo measurements for line power flow are unavailable.

3.3.1. Heuristic for RTUs and Measurements Planning Algorithm
Creating a radial network while minimising costs, ensuring observability, and eliminating critical mea-
surements and sets is the main objective in [41]. Only assuming radial networks is a simplification, as
distribution networks can also have ring or meshed topologies. The Heuristic for RTU and Measurement
Planning (HRMP) algorithm is proposed to meet the minimum observability requirements, based on
the graph theory of [42]. RTUs collect data from all surrounding measurements, i.e. power flow and
injection measurements. The paper demonstrates that HRMP is more cost- and time-efficient than
a genetic algorithm. The tests are conducted on different networks under three scenarios: achieving
observability, eliminating critical measurements and eliminating essential sets.

However, the study only considers the failure of individual measurements when evaluating criticality. If
an RTU fails, all its associated measurements become unavailable, meaning that only a network without
critical sets would retain full observability in such a case.

3.3.2. Singular Value Decomposition Algorithm
In [43], a list of potential measurement locations is generated using the singular value decomposition
algorithm. The method is also used in [44] for harmonic state estimation. The candidate locations are
then evaluated through a Monte Carlo Simulation (MCS) to assess their accuracy. If the resulting ac-
curacy does not meet the predefined requirements, the singular value decomposition algorithm is rerun
to generate a new set of potential locations, and the process is repeated until the target accuracy is
achieved. The computational time is very high for large networks, as it has to evaluate all potential
locations. The proposed algorithm tries to prevent this by shortlisting high-potential candidates. How-
ever, this approach may not always find the optimal solution, as the best location may not be included
in a given candidate list that meets the accuracy threshold. Additionally, the method relies heavily on
pseudo measurements, as achieving full observability with actual measurements is deemed economically
unfeasible.

3.4. Optimization Techniques
3.4.1. Mixed Integer Linear Programming
Mixed-Integer Linear Programming (MILP) is used in several meter placement problems [45], [46], [47].
The work in [46] builds on the MILP formulation of [45] to review multiple scenarios. It determines
the optimal meter placement for a radial nine-bus system, considering scenarios with and without
Distributed Generation (DG). The approach provides a solution for both scenarios, ensuring optimal
placement even when DERs are not generating power. MILP based on error minimisation is employed
to identify the best placement. It is a mixed integer problem as the decision variable of placement can
be 0 or 1, where other variables are not bound to be integers—the load, for example.

As elements in state estimation like the Gain matrix are nonlinear, linearising is necessary to use them
in an MILP format. Which comes with extra effort. Linear problems are easier to solve than non-linear
problems. However, linearization introduces additional constraints to the problem, which may lead to
over-constraining while increasing complexity. This added complexity results in higher computational
effort and longer solution times. The issue becomes even more prominent for more extensive networks.
This challenge arises quickly since DSOs operate networks with numerous potential placement locations.
The solution’s reliability is connected to the scenarios tested. A good scenario sample is crucial for a
good result, so if not correctly chosen, the result is unreliable. As DER penetration increases, network
volatility leads to higher error levels. The study highlights that error indices can vary significantly
across different scenarios, emphasising the importance of running multiple scenarios to ensure a robust
and reliable solution.
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3.4.2. Optimal Experimental Design Algorithms
The goal in [48] is to minimise the maximum error covariance error by selecting the optimal subset of
measurements to achieve an observable network. Their approach is based on the state error covariance
matrix, which adapts the gain matrix. This method serves as a measurement planning tool, allow-
ing DSOs to incorporate their preferences regarding economic, geographical and technological factors.
It is flexible in adjusting the desired number of measurements and is applicable to both observable
and unobservable networks. The method utilises the gain matrix G(x) to formulate an M-optimal
experimental design task, focusing on the minimisation of the maximum variance of the worst states,
which is then transformed into a mixed-integer semidefinite programming (SDP) model. Their findings
indicate that a combined placement of power flow and voltage magnitude measurements is the most
effective approach. However, if a single type of measurement is preferred, power flow measurements are
recommended due to their ability to provide information on both state variables (θ and V ).

Optimal experimental design is also employed in [49], specifically in D-optimality, to create a Boolean-
convex optimisation model. The D-optimal method maximises the determinant of the system Fisher
information matrix by selecting a predefined number of new measurements from a given candidate set.
The study highlights that the combined placement of power flow and voltage meters yields the highest
accuracy.

The method in [50] works along the same line as [48], using the state error covariance matrix and
formulating the problem as a mixed integer semidefinite programming problem. It uses four optimal
design methods to minimise a distinct part of the error covariance matrix. A disadvantage is the longer
run time that comes with these methods. However, this is not a significant obstacle, as the methods are
intended for the design phase, which is not subject to time constraints. The comparison between the
branch and bound method and the proposed method is made where the proposed method works faster
but will only find local optima. The faster runtime is preferred when specific parameters like budget or
uncertainty levels still need to be fine-tuned.

These algorithms require significant computational time as system complexity and size increase, which
is particularly relevant for MV grids. Additionally, they are sensitive to the assumptions about the
problem they aim to solve. Inaccuracies in these assumptions, such as variations in network topology or
measurement noise, can lead to suboptimal solutions. Given that such discrepancies are likely to occur,
designing meter placement using this algorithm becomes challenging.

3.4.3. Binary Particle Swarm Algorithm
The study presented in [51] focuses on optimising state estimation accuracy under specific constraints.
The optimisation problem is addressed using a binary particle swarm algorithm, which has also been
used successfully in [52] but then for LV networks. To reduce computational time, the authors employ
an analytical approach instead of the traditional MCS method to determine the accuracy of the state es-
timation. The work prioritises uncorrelated measurements, considers multiple load levels, and addresses
the high computational costs associated with MCS. The study concludes that allocating measurements
based on the probability of exceeding the maximum risk is an effective metric for improving state estima-
tion accuracy. Additionally, it identifies a correlation between active and reactive power measurements,
suggesting that their accuracy should be coupled. The analytical approach demonstrated in the paper
proves to be significantly less computationally intensive.

The binary particle swarm optimisation algorithm differs from the standard one because it operates in
a binary search space. Particles navigate this space based on three key vectors: their current direction,
personal best position, and the swarm’s best-known position. These vectors are updated iteratively to
guide the search process. The algorithm can converge to a suboptimal solution if the balance between
these vectors is not well-maintained. In the context of measurement placement in MV grids, the problem
can become complex due to the numerous factors influencing placement, such as network topology, load
variability, and DG. As a result, the search space can grow large, increasing computational demands
and convergence time.

3.4.4. Simulated Annealing Algorithm
The simulated annealing algorithm uses a temperature gradient and an acceptance probability. It
starts with a high initial temperature, where the acceptance probability is high, allowing the algorithm
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to accept worse solutions. This helps it escape local minima. The acceptance probability decreases
as the temperature decreases following a set pattern over time. Consequently, the algorithm will only
accept lower-cost solutions as the temperature and acceptance probability decrease.

The works [53], [54], [55], [56] focus on creating an observable and reliable network with the simulated
annealing algorithm at the lowest possible cost. [56] analyses three cases distinguished by the presence
of critical measurements or critical sets. These scenarios range from a network composed entirely of
critical measurements to one dominated by critical sets and finally to a network with no criticality.
This approach is achieved at a relatively low cost. However, as the network studied is highly meshed,
it raises questions about whether the relative price of achieving redundancy remains similarly low in
other networks.

The simulated annealing algorithm selects measurements based on even distribution, monetary cost,
and the inclusion of critical measurements and sets. The measurements considered include active and
reactive power and voltage magnitude. The computation time is extensive for larger networks due to
the vast search space and iteration process. This could be brought back by ’cooling down’ faster, but
the most optimal solution may not be found then. The solution is based primarily on the cost of specific
properties, making the algorithm very selective.

3.4.5. Genetic Algorithm
Genetic algorithms used in [57], [58], [59], [60] mimic natural evolution through the principle of survival
of the fittest. The process begins with an initial population of possible solutions. The fittest individuals
from this population are selected as parents for the next generation. Some offspring are exact copies
of their parents, while others are created through crossover between two parents or mutation. This
process continues over many generations, allowing the algorithm to converge on an optimal solution.
The algorithm can be stopped after several generations or when specific thresholds are met.

PMUs provide more detailed data than conventional measurement devices, as they precisely capture
the voltage phase. In [59], the authors analyse the accuracy of different measurement types, reporting a
range of 1% for substation and PMU measurements, 10% for Smart Metering (SM), and 50% for pseudo-
measurements. Substation measurements are excluded from the optimisation process since they are
limited to slack buses. The study concludes that combining measurement types is optimal for achieving
predefined accuracy at the lowest cost. The optimisation accounts for multiple grid configurations,
acknowledging that dynamic grid topology changes will become an inevitable feature of future active
distribution grids.

In [60], the work of [59] is expanded to address the lack of information about the distribution grid.
The study considers the possibility of non-Gaussian distributions for DG and the impact of data loss
and degradation. The proposed method successfully meets the N-1 objective for robustness and data
integrity. The approach relies solely on PMUs and smart metering devices. According to [60], ”the
term smart meter is used to identify either single metering devices or data concentrators, which collect
and process active and reactive power measurements provided by the aggregated loads at the distribution
feeders or secondary substations.” This definition suggests that the smart meters considered in the
study primarily measure power flow entering or exiting the MV grid but do not capture line power flow
through substations. As a result, the study overlooks MV power flow measurements on lines that could
potentially enhance cost-effective grid observability. The sampling frequency of such smart metering is
also not stated, so it might not be helpful or accurate for operating a real-time distribution management
system.

3.4.6. Tabu Search Algorithm
The Tabu Search Algorithm is a heuristic algorithm similar to simulated annealing and the genetic
algorithm, but some regard it as superior due to its flexible memory [61],[62]. Tabu Search can use
its flexible memory to prevent getting stuck in local optima and cycling through previously attempted
configurations. It starts with a feasible solution, exploring the ’neighbourhood’ for better solutions. In
this way, it can escape local optima. A list is created to store all visited solutions to prevent revisiting
them. For large networks, significant memory storage is needed for the tabu list. After a certain amount
of movement, it moves to the best solution from the tabu list. From here, it will begin the search for
better solutions again, only stopping after a maximum number of iterations if satisfactory results are
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found.

PMU placement based on redundancy and observability is discussed in [61]. The method begins by
placing PMUs at nodes with the highest number of incident branches, as these nodes contribute the
most to network observability. Each step decreases the number of incident branches until the network
becomes fully observable. However, this approach may result in more PMUs than necessary. To address
this issue, the Tabu Search algorithm optimises placement and eliminates redundant PMUs. According
to the authors, the typical ratio of buses equipped with PMUs is approximately one-third to one-fourth
of the total number of buses in the system. This relatively low ratio is attributed to the meshed nature
of the grids studied and the presence of zero-injection buses. In contrast, networks operated by Stedin,
which are more radial, would likely require a higher number of PMUs to achieve full observability. The
focus on PMUs may also be unnecessary. This type of equipment is expensive, and the problem could
be addressed through alternative solutions.

3.4.7. Sub-modular Saturation Algorithm
Sub-modular saturation algorithms start with an empty data set that can be filled with possibilities
from another set, in this case, measuring points, based on the marginal profit these measuring points
provide. The marginal profit diminishes as the set grows. The algorithm stops when certain conditions
are met, such as when the network’s state estimation is accurate enough. It can also stop after a
predefined number of iterations. For sub-modular saturation algorithms to work, the marginal gain of
each option must be calculated. This results in high computation times for large networks. Heuristic
algorithms may be faster by not evaluating every option.

Due to the dynamic changes in topology within active distribution systems, the meter placement prob-
lem could call for a more robust formulation. In [63], a robust algorithm called sub-modular saturation
is proposed, which surpasses greedy and genetic algorithms in most cases and competes with them in
others. The algorithm optimises the worst-case total estimation variance, which could be an outlier from
a faulty measurement. Therefore, it may be more beneficial to assess the overall variance rather than
focusing solely on the worst case. Furthermore, the algorithm relies only on voltage magnitude meters
and PMUs, meaning additional costs can be minimised by opting for more cost-effective measurements.

3.4.8. Adaptive Step Multidimensional Fruit Fly Algorithm
The Adaptive Step Multidimensional Fruit Fly Algorithm adapts the standard fruit fly optimisation
algorithm. The standard algorithm starts at a specific location and has a fixed population size. The
number of iterations is chosen beforehand. Each fruit fly is sent to a random location from the original
location, and their distance is calculated. The smell concentration judgment is made based on this
distance. This is, in turn, used to determine the smell of the location. The best smell will determine the
new location of the fruit flies. This process is repeated while keeping track of the best smell so far. The
algorithm will stop if no new location is found within a given amount of iterations. Adding an adaptive
step allows the algorithm to dynamically adjust the search area under certain conditions, improving
convergence speed and preventing the algorithm from getting stuck in local optima. Multidimensional
means that the algorithm can process three or more variables to optimise. It is, in a way, quite similar
to the tabu search algorithm that also explores the ’neighbourhood’ for potential solutions.

In [64], the most critical network nodes are identified for PMU placement to achieve network observ-
ability. Subsequently, the fruit fly optimisation algorithm is applied to minimise the number of PMUs
required to observe the network. This algorithm seeks the global optimum by exploring alternatives to
an existing solution and iteratively converging on the best placement scheme. The method demonstrates
accelerated convergence and generates placement schemes within smaller solution spaces compared to
earlier approaches. However, the study focuses only on PMU placement and does not account for other
types of measurement devices that could achieve the same goal at a lower cost.

3.5. Critics on available literature
The science of state estimation has been established for approximately 55 years. Over time, it has
evolved into a mature and well-developed method, although ongoing advances continue to refine the
approach. It has been used widely by TSOs, but the technology has yet to see widespread adaptation
among DSOs.
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The covered literature addresses various aspects of meter placement. However, all the studies pre-
sented above focus on algorithms for measurement allocation in new or ‘empty’ networks. A significant
challenge in achieving observability is the high cost of deploying sufficient actual measurements. Sur-
prisingly, none of the discussed algorithms consider existing meter placements. Leveraging already
installed measurements could significantly reduce placement costs. While existing measurements can
be incorporated with minimal effort, it is an aspect that requires deliberate consideration.

Additionally, the literature does not account for the practical constraints of real-world networks. Con-
struction limitations or ageing infrastructure may prevent meter installations at theoretically optimal
locations. Most algorithms require significant computational resources, data storage, and processing
time. These resources incur costs that DSOs preferably avoid. While computational time may not be
an immediate issue during the design phase, it increases exponentially with network size, eventually
exceeding what DSOs can feasibly manage.

Most studies propose tailored solutions optimised for specific conditions, such as a fixed topology and
predefined load scenarios. However, these solutions become ineffective when network conditions change
significantly due to topological modifications or highly variable load patterns, which are increasingly
relevant with the rise of DG. Furthermore, minimising errors for certain network states does not ensure
accuracy across all conditions. As a result, existing approaches are often too specialised and complex
to implement in practice. There is a clear need for DSOs to adopt more general, intuitive solutions that
can adapt to changing network conditions.

This thesis aims to bridge these gaps by providing a workflow for DSOs to redesign or enhance their
existing networks while addressing their practical challenges. Rather than seeking a specialised solution,
the workflow focuses on a broader approach to ensure a generally reliable state estimation, even as net-
work conditions change. Additionally, it is designed to be practical and feasible for DSOs to implement
in real-world scenarios.



4
Accurate State Estimation in

Distribution Networks

This chapter introduces the preparatory steps for measurement placement and outlines a workflow for
determining how measurements should be placed within an existing or yet-to-be-built network.

4.1. Network Conditions
Some assumptions were made during this research to simplify the analysis. First, the network operates
under balanced conditions and in a steady state. MV networks operate from a nominal 10 kV to
30 kV, and the measurement equipment used should be capable of handling these conditions. MV
networks consist of a primary station and substations. The primary station will be called a slack bus,
and substations will be called nodes. The primary station is the connection to the HV grid, where
substations connect to customers or LV grids.

The nodes in the Figures 4.2 to 4.4, 5.2 and 6.1 represent locations with connected loads, though these
loads are not explicitly drawn. These loads can vary from residential and industrial consumers to
generation units. Slack buses will have no load. For the state estimation, all nodes will have a load
directly connected to them without a transformer in between the node and the load.

All active and reactive power measurements are taken in pairs. According to Stedin’s policy, the primary
substation behind the HV/MV transformer is always fully equipped with measurements. These are line
power flow measurements.

Stedin aims to operate its MV networks in a radial configuration. For simplicity, this research assumes
that all networks are operated in this manner. A node is considered ”measured” only if all active MV
network lines connected to it are measured.

4.2. Measurement Types
Multiple types of measurement placements are possible. A brief overview of the available types, along
with an explanation of their consequences, will be given in this section. This analysis considers only
active and reactive power measurement pairs and voltage measurements. The Figure 4.1 is used to
illustrate the placement of the measurements. For simplicity, this research assumes fixed accuracy
values across each type of measurement, ensuring consistency in analysis and comparison.

4.2.1. MV Measurements
The red circles in Figure 4.1 indicate possible locations for MV-side measurements, which include P, Q
and V magnitude values. The top two are line measurements and can only represent their respective
lines. However, the measurement between the transformer and MV node functions as a node power
injection measurement (PIM). This measurement represents a load or generation on a node. According
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Figure 4.1: Possible locations for MV and LV measurements.

to subsection 2.3.2, PIMs can represent one of the outgoing lines. This measurement will not be included
in further cases since Stedin’s current Medium Voltage Measurement Units (MVMU) do not support it.

The accuracy of the measurement is essential as it influences the error of the state estimator. In
subsection 4.5.4, the process from accuracy to an accompanying standard deviation will be explained.
The same relative standard deviation must be applied to a measurement pair in simulations, as both
values originate from the same instrument.

Stedin has implemented the ComPass B 2.0 for the MV side, a directional short-circuit and earth fault
indicator with high-precision monitoring capabilities [65]. This device integrates with SCADA and
provides current, voltage, and power measurements. Current measurement errors range between 0.5%
and 5%, while voltage measurements maintain a maximum error of 0.5% if the voltage remains within
80–120% of Vnom. A generalised accuracy of 5% for P and Q and 0.5% for V magnitude is assumed for
the MVMU to ensure robustness while reflecting worst-case conditions.

Due to outdated equipment, MVMUs are not feasible in all substations. Therefore, measurement
devices should be installed immediately whenever a substation is revised, built or upgraded to up-to-
date equipment, as the additional cost is relatively low.

4.2.2. LV Measurements
The blue circle in Figure 4.1 indicates the LV side measurement, which provides P, Q and voltage
magnitude values. While P and Q are reliable, the voltage magnitude requires a conversion step.
Accurate MV-side voltage values depend on knowing the transformer’s tap position. However, tap
positions are often not accurately recorded in practice, making the voltage measurement unreliable.
This research generalises this limitation to all cases.

LV side measurements are less costly as they require less specialist equipment due to their operation at
a lower voltage level. They can be used as bus PIMs, offering the same advantages as those described
in subsection 4.2.1.

The importance of accuracy applies here, just as it does for MV measurements. The same relative
standard deviation must be applied to a measurement pair in simulations, as both values originate from
the same instrument. Stedin plans to adapt the so-called DA3-box to perform LV-side measurements.
The device for processing these measurements is the Mikronika MEM-102 [66]. In-house testing has
shown that its accuracy ranges between 3% and 5%. For this research, the maximum error of actual
LV-side PIMs is assumed to be 5%.

4.2.3. Pseudo Measurements
Pseudo-measurements contribute to observability in the same way as LV measurements. However, since
they are essentially estimates or approximations, they tend to be less accurate, potentially reducing the
overall accuracy of the state estimation. Their main advantage is their low cost, as they do not require
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physical measurement equipment, making them a preferred option in case of budget constraints.

In DSO terminology, pseudo-measurements are referred to as profiles. Due to privacy restrictions, DSOs
usually cannot access detailed individual consumption data. Therefore, they create profiles to estimate
electricity usage at a given historical moment. These profiles are created based on variables such as
solar panels or electric cars. The aggregated consumption can be divided over this profile to get the
load. This allows the load on an MV/LV transformer to be estimated by aggregating the consumption
of all customers connected to it. While the aggregated load tends not to shift significantly from year to
year, it can change noticeably over more extended periods [67].

While most profiles are reasonably accurate, errors can arise due to outdated network topologies or
incorrect data allocation. These inaccuracies make it difficult to determine for which nodes larger
errors occur. Consequently, all pseudo-measurements will be considered uniform, with a maximum
error of 50% at first, based on [36], [59].

Stedin profiles can differ widely in accuracy. Their accuracy is verified by comparing the profiles with
temporary measurement data of the identical network element. Of this research, 48% of the profiles fell
in a ±10% margin [68]. However, which network elements are associated with the inaccurate profiles
remains uncertain if untested.

4.3. Standards for Placement
Following Stedin’s standard, the main substation will always be fully measured. To ensure only single-
line non-measured radial feeders occur, every node with more than one outgoing line should also be
fully measured. This process is illustrated in Figure 4.2. The next step is to make these single-line
unmeasured radial feeders observable by implementing measurements. All lines in the network must
be measured for full observability, thereby creating a spanning tree of full rank, as explained in sub-
section 2.3.2. As discussed in section 4.2, three measurements can be implemented to achieve this goal:
MV, LV and pseudo measurements.

Figure 4.2: Transformation of a network into single-line non-measured radial feeders through the addition of MVMUs.

4.3.1. Power Injection Measurement Implementation
To illustrate the possibilities of PIM placement, an example uses a four-node unmeasured radial MV
feeder, of which the loads are not drawn, shown in Figure 4.3. As discussed in subsection 2.3.2, PIMs,
which are taken at the LV side, can serve as line measurements for one of the lines on the MV side
connected to the bus of the PIM. For instance, a PIM measurement at node 1 can only be used as a
line 1-2 measurement, whereas an LV measurement at node 2 can provide data for lines 1-2 or 2-3.

Following this logic, placing PIMs at nodes 1, 2, and 3 would ensure an observable network. How-
ever, alternative configurations are possible. Table Figure 4.1 outlines all valid measurement placement
options for this example. As shown, leaving one node in the feeder unmeasured is possible while main-
taining network observability. If more than one node cannot be measured due to technical constraints,
MVMUs must be added to ensure observability.

4.3.2. Medium Voltage Measurement Unit Implementation
MVMUs should be placed at nodes with the most unmeasured lines available for the most efficient
deployment. For a radial feeder without branches, this excludes the two outermost nodes. A single PIM
is required to minimise the number of measurements in unmeasured radial feeders with an even number
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Figure 4.3: Four-node unmeasured radial MV feeder.

PIM Measurement
Placement

1, 2, 3
1, 2, 4
1, 3, 4
2, 3, 4

Table 4.1: Possibilities with PIM measurements.

of nodes. Otherwise, an MVMU must be placed, resulting in one line receiving double measurements,
which is inefficient and more expensive.

The possible measurement configurations for Figure 4.3 are summarised in Table 4.2. Observability
is achieved most efficiently for unmeasured radial feeders with an odd number of nodes by placing
measurements at every other node, beginning at the second node. For example, in Figure 4.4, the most
strategic placement is at the second and fourth nodes. This setup ensures that lines 1-2, 2-3, 3-4, and
4-5 are measured, achieving network observability with minimal measurement deployment.

Figure 4.4: Five-node unmeasured radial MV feeder.

MVMU Placement
4 node feeder MVMU: 2 PIM: 3

MVMU: 2 PIM: 4
MVMU: 3 PIM: 1
MVMU: 3 PIM: 2

5 node feeder MVMU: 2, 4

Table 4.2: Possibilities with MVMUs.

4.4. Network Changes
Network topologies can change due to risks such as cable and transformer overloading. To mitigate this,
DSOs adjust the network topology to distribute the load more efficiently. When placing measurements,
these potential topology changes should be considered to ensure the network remains observable even
after adjustments.

If PIMs are used, all nodes connected to a line with a switch or breaker should be measured to maintain
observability. The logic described in subsection 4.3.1 for minimum observability no longer holds. One
of the nodes in the radial feeders that did not require measurements now has to be measured to retain
observability during a topology change. The leftover unmeasured node cannot be connected to a line
with a switch or breaker. Instead, it must be connected only to lines that will always remain online.

For MVMUs, the most effective approach is to consider offline lines as if they were online. This method
creates a larger unmeasured feeder that can be equipped with measurements. The network remains
observable even after topology changes if these measurements are placed according to the steps in
subsection 4.3.2.

A part of the network deemed ’observable’ should be reviewed to verify that it meets the necessary
conditions for power injection and MV-side measurement placement, as this may not always be true.

4.5. General Workflow
A general workflow can be followed to test a placement strategy to get an image of what this placement
strategy did to improve the accuracy of state estimation. This can be applied to each network, but it
should be tailored for its exact purpose. The workflow can be summarised in seven steps, shown in
Figure 4.5 where green boxes are choices to be made by the DSO. The steps will be explained in more
detail in sections 4.5.1 to 4.5.7.



4.5. General Workflow 23

Figure 4.5: General workflow for assessing a placement strategy.

4.5.1. Mapping Existing Network and Equipment
Before designing the measurement placement strategy, it is essential to fully understand the network and
its components. DSOs typically use specialised programs to establish the standard network topology for
a given area. Once the nodes, lines, and transformers are mapped, the MV network should be prepared
to include only MV components by eliminating all unnecessary elements, such as transformers.

Additionally, network components such as switches and existing equipment must be identified. Existing
measurement devices are crucial, as they can be integrated into the state estimator, reducing the need
for additional equipment. Identifying potential distributed generation sources is also vital. DG can
introduce errors in the state estimation process and must be accurately represented. In the next step,
DG is modelled as a negative load to ensure proper integration into the network analysis.

For a smooth process, it is advised to realise the network topology in the same programme that will
later be used to run the estate estimator. This will minimise the change in conversion errors.

4.5.2. Load Scenario
The realised network topology is taken for the network that will be studied. First, loads need to be
designated to their corresponding nodes. These loads can be generated randomly, creating various
possible network situations. This choice ensures the network is tested in multiple scenarios, as load
is not fixed in real life. The downside is that it introduces another variable, making it harder to find
solutions to solve the inaccuracies in a network, and the tests are inconsistent. It can be used to find
the general effect of a measurement.

Another option is to create scenarios that reflect situations a DSO may encounter in practice, mir-
roring real-life conditions. Depending on load levels or measurement placements, these tests provide
insights into how specific nodes behave. Ideally, a DSO should base its strategy on a general case
representing typical, everyday consumption patterns. The resulting state estimation will likely perform
optimally under normal operating conditions by placing measurements according to this representative
scenario. Other scenarios can be created to test the measurement placement strategy under more severe
conditions.
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4.5.3. The Perfect Case
To ensure meaningful comparisons of state estimation results, a reference ”perfect case” must be estab-
lished, i.e., a scenario in which all actual values are known. To achieve this ”perfect case”, a power
flow analysis is conducted, producing the true state values of the network under study. These repre-
sent the ”perfect case” network conditions. In practice, however, measurement equipment introduces
imperfections, meaning real-world data deviates from these ideal values.

4.5.4. Introduction of Noise
Measurement equipment corrupts the ”perfect case” states, so noise must be applied to simulate real-life
Supervisory Control and Data Acquisition (SCADA) results.

As with most equipment, the accuracy is known, not the standard deviation, so the accuracy needs
to be converted to a standard deviation to fit in the PandaPower formatting. Measurement errors are
expected to follow a Gaussian distribution [69], as illustrated in Figure 4.6. Based on this distribution,
99.7% of all measurements should fall within ±3σ, where σ represents the standard deviation. For
simplicity, it is assumed that 100% of measurement errors fall within this range, meaning the maximum
error equals three standard deviations. This results in Equation 4.1, where %max.error represents the
accuracy of the measurement equipment used in the network. The measurement input for calculating
the standard deviation can be P, Q or voltage magnitude.

If the noise for active power is determined by applying a random variation based on the standard
deviation, the noise for reactive power is calculated relative to P using Equation 4.2, as both values
originate from the same measurement device and are likely to be affected by similar errors. Determining
the noise added to the V magnitude measurement goes through the same process as that for P.

This approach ensures that simulated SCADA data accurately reflects real-world measurement varia-
tions while maintaining consistency in error modelling.

Figure 4.6: Normal distribution [70].

σ = %max.error ∗ Measurement input

3
(4.1)

noise.Q = real.Q ∗ noise.P

real.P
(4.2)

4.5.5. Location Configuration Selection
PIMs, MVMUs, and pseudo-measurements are initially produced for all nodes and lines. This setup
allows for a selective approach in determining which measurements will be utilised. Measurement
selection is done manually, with the location and measurement type chosen from the complete list,
which includes added noise. The specific locations selected for study are chosen with deliberate reasoning.
Different types of measurements, as outlined in section 4.2, may be used individually or in combination.
Since this thesis investigates the effect of measurement placement, multiple configurations will be tested
to evaluate their impact. Based on observed effects, assumptions will be formed and incorporated into
subsequent configurations. In this iterative manner, the research aims to identify strategic measurement
placements that improve state estimation accuracy. If no strategic placement emerges, the study will
focus on nodes with the highest estimation error from the initial baseline configuration.

The accuracy of these measurements can vary depending on the equipment used for actual measurements
and the algorithms applied to generate pseudo-measurements. If the measurement selection is made
correctly, the result should be a functional state estimator. However, additional measurements must be
incorporated to achieve observability if the state estimator fails to operate effectively, indicating that
the network is unobservable.
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4.5.6. State Estimation
The non-linear WLS state estimation is used to obtain results as explained in subsection 2.2.2. This
approach is necessary because the relationship between state variables and measurement equations is
inherently nonlinear.

In transmission networks, a simplification of a linear model is sometimes possible. However, this is not
feasible due to the distribution networks’ relatively low X/R ratio. While linear state estimation is
often preferred for speed, it is less accurate. Since one of the objectives is to evaluate the accuracy of
the state estimator, the non-linear approach is the better choice as it provides more precise results. The
additional computational time is not a concern in this case, as the estimation is performed during the
design phase, which is not subject to real-time constraints. The non-linear WLS state estimation is run
from a flat start, i.e. initial voltage and angles will be set at 1 p.u. and zero degrees, respectively. The
state estimator gives all the network’s variables, which can be used for multiple applications depending
on what the DSO finds essential.

All calculations will be performed using PandaPower in Python, executed within the Spyder IDE [33].

4.5.7. Assessment
After obtaining the state estimation results, the effectiveness of the measurement placement can be
evaluated. To assess the state estimation error, Equation 4.3 is used, showing the error percentage
for all buses in the network, where X can be any state. These results show how adjustments can be
made by adding or replacing measurements. For example, a pseudo measurement could replace an LV
measurement if the error is significantly below the threshold. At the same time, pseudo-measurements
could be replaced with more accurate alternatives if errors remain too high.

New measurements can be placed purely based on error values, but other factors should also be consid-
ered. Additional measurements may not be justified if the error is high at a low-impact load. The most
strategic locations for extra measurements are industrial loads and distributed generation sites, which
exhibit the most unpredictable load and generation patterns and locations that, on average, experience
high loads [71], [72].

ϵi,j (SE)(%) =
Xi,j (SE) − Xj (true)

Xj (true)
∗ 100, where i = iteration, j = node (4.3)

Since the results depend on the initial load assignments and numerous load scenarios are possible in a
network, two networks will be analysed. The first will have randomised load values for each iteration,
analysing the measurement impact without a load preference. The second will work with a standard
load scenario and numerous iterations. These results can be more dependent on the reload scenario
chosen. The measurement setup from the second network will undergo a sensitivity analysis in two
different load scenarios to see the impact of this change. Averaging the percentage errors per node
across these iterations, as shown in Equation 4.4, can provide a more comprehensive understanding of
the state estimator’s overall performance, identifying nodes where performance is consistently firm or
weak.

absolute mean ϵj(%) =
∑i

1 |ϵi,j (SE)|
i

, where i = iteration, j = node (4.4)

Outliers can heavily influence the mean, which is acceptable for illustrating the effect of measurements
in network 1. For the second network, results will be presented using boxplots, where the median is
represented by a line and the mean by a plus symbol (+), providing a more comprehensive overview.



5
Case Study: Network 1

This chapter utilises the simulation methodology designed in chapter 4 to evaluate the accuracy of
the state estimation process for a network with a specific measurement placement. All simulations are
conducted in the Spyder IDE, utilising Python and the PandaPower package for WLS state estimation.
The network has a mean X/R value of 0.82, making linear state estimation inexact. An overview of
Network 1 is shown in Figure 5.1.

A generation source is added at node 5 in the network for further simulations. This setup allows for
assessing state estimation performance under realistic conditions, considering the impact of distributed
generation on the network’s observability and accuracy. One of the objectives of this research is to
provide recommendations for preparing the network for distributed generation with volatile generation
patterns. Ensuring observability will also be addressed in this case.

All existing measurement equipment will be removed from the network, except for the standard mea-
surements present in the primary substation. This creates a ”clean slate” that allows for testing the
impact of measurements without interference from existing measurements. As a result, observations
can be directly attributed to the placed measurements.

Figure 5.1: Topology formation of network 1.

26



5.1. Workflow Related to Network 1 27

5.1. Workflow Related to Network 1
The general workflow shown in Figure 4.5 for analysing strategic measurement placement is adapted
for use on network 1. The adaptations in the workflow are the following:

1. Mapping Existing Network and Equipment

Initialising network from company files to a PandaPower network. All unnecessary compo-
nents are removed from the network, leaving only MV components and the transformers
connecting to the external grid. Existing measurements are removed except the standard
measurements done by Stedin in the primary substation.

2. Load Scenario

The load is generated randomly over 50 iterations for the case study of network 1. In this way,
multiple load scenarios are considered, and the load will have less effect on the result. The
iteration number was chosen so that there were enough iterations so that a certain iteration
did not play a big enough role, and to keep the number of iterations low regarding speed.
More iterations will not lead to convergence due to the random generation in each iteration.

5. Location Configuration Selection

The locations are selected purely based on reasoning, as this case study aims to demonstrate
the effect of a specific measurement on its corresponding feeder and the wider network. This
approach is intended to enhance understanding for future decision making. A more detailed
explanation of the reasoning will be provided for each case.

7. Assessment

Once all iterations are completed and the state estimation results are collected, they will be
compared to the ”perfect case” values for each respective node. This case study focuses on
the absolute mean error, as defined in Equation 4.4. The absolute mean error for each node
will be visualised in a bar plot to allow for easy comparison across all feeder nodes.

5.2. Network Conditions
The network must first be constructed to generate perfect values. This research uses Stedin’s code to
convert BM-GIS files into a PandaPower network. The initial network includes buses, loads, external
grids, lines, and transformer elements. It is then refined by removing irrelevant components and retain-
ing only key elements of interest. These include all MV nodes and lines, two HV/MV transformers and
two buses that connect the transformers to the external grid to model it as one network. The external
grid voltages are set to 1.00 vm_pu.

Next, loads are assigned to all nodes except nodes 0, 1, 2 and 3, as these either represent the external
grid or function as slack buses. The assigned loads are randomly generated between 0.5 MW and 5 MW
for most nodes. However, for nodes 5, 7 and 11, where generation occurs, the randomly generated loads
range from -5 MW to -0.5 MW. The same range, but negative, is chosen for the loads as the error can
depend on the magnitude of the load. The power factor for this Stedin distribution system is assumed
to be 0.95 [73]. Finally, a power flow analysis is executed to create all baseline voltage and power values
within the network, serving as the reference dataset for evaluating state estimation accuracy.

Since nodes 2, 3, 16, 19 and 23 are fully measured, no additional measurements will be placed there.
This principle applies to all cases performed for this network.

5.3. Effect State Estimation
Currently, pseudo-measurements are primarily used to predict future loads in the network. However,
they can also be integrated with Stedin’s standard measurements,i.e. all substations receive a pseudo
measurement regarding state estimation. In this case, state estimation could be used for real-time
load prediction. As shown in Table 5.1, using active state estimation instead of profiles (pseudo-
measurements) improves accuracy, reducing the average error from 11.5% to 8.1%.
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Index node Real
active load (MW)

Error of created
noise in measurements (%)

Error of
state estimation (%)

4 3.835 11.003 0.448
5 −7.807 −26.287 −17.085
6 4.836 8.646 −3.832
7 −3.855 −0.026 4.628
8 1.849 21.037 17.520
9 2.928 −3.837 −7.434
10 −4.800 31.385 5.419
11 1.137 −0.898 −3.420
12 4.993 −7.370 6.133
13 3.562 −6.268 −10.119
14 3.331 −18.913 −23.703
15 2.888 23.507 17.703
16 0.661 1.389 −0.884
17 3.053 −2.388 −8.846
18 1.349 −4.850 −7.661
19 1.803 −33.719 0.589
20 1.174 5.901 3.026
21 1.659 −7.882 −3.440
22 1.959 −15.139 −18.263
23 3.976 1.321 1.867

Absolute total X 231.766 162.019

Table 5.1: Comparison created measurements with noise before and after state estimation.

5.4. Empty Network Cases
The network’s topology from Figure 5.1 was created as a PandaPower network from a BM-GIS file using
a Python algorithm developed within Stedin. In these cases, the network will be stripped of all existing
measurements except those at the Slack buses, nodes 2 and 3, as those are always present in a Stedin
network. This allows for a better analysis of the implications of specific measurement placements, as
no other factors interfere with the results once they are removed.

The scanned network is shown in Figure 5.2, where red lines represent unmeasured sections and green
lines indicate measured ones. Although the network appears to consist of two separate systems due
to the omission of the open switch line in Figure 5.2, it is technically a single network. In practice,
however, it operates as two individual networks. Nodes 2 and 3 are slack buses, so they have no loads.
According to the theory explained in subsection 2.3.2, the network remains unobservable until all lines
or branches are measured. Each case begins with a baseline reference where pseudo measurements are
placed at all nodes, except for nodes 2, 3, 16, 19, and 23, as these are already fully measured by the
standard measurements on the slack buses at nodes 2 and 3. This baseline configuration is the first
configuration in all cases unless stated otherwise.
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Figure 5.2: Empty network 1 including standard measurements.

5.4.1. Case 1: Only Pseudo Measurements
Pseudo-measurements are the most cost-effective option, as they can be constructed. This case explores
whether a minimalistic use of pseudo-measurements, including them only to reach observability, is
beneficial. While potentially reducing computational effort, albeit only marginally, it could significantly
affect accuracy. This simulation was performed with randomised loads, and the absolute mean error
(Equation 4.4) was taken over 50 iterations.

Figure 5.3 illustrates 4 different configurations. The second, third, and fourth configurations minimise
the measurements by removing a pseudo measurement from a radial feeder, only at feeders longer than
one node. The exact nodes containing pseudo-measurements are displayed in Table 5.2.

Configuration Nodes
2 10, 12 6, 14, 20, 5, 22 7, 13, 8, 15 4, 11
3 12, 21 14, 20, 5, 22, 17 13, 8, 15, 9 11, 18
4 10, 21 6, 14, 20, 22, 17 7, 13, 15, 9 4, 18

Table 5.2: Nodes with pseudo-measurements per configuration for case 1.

The first configuration has a better state estimation accuracy for all nodes. A key observation is that
omitting a pseudo-measurement from a single node significantly worsens state estimator results, even
affecting the accuracy of other nodes within the exact radial feeder due to the loss of comparative
data. When only the minimum number of measurements required for observability is available, the
state estimator lacks the redundancy needed to validate and compare data. As a result, it must assume
missing values based solely on the total measured power flow in the feeder, subtracting all available
pseudo-measurements. This leads to higher estimation errors.

Since pseudo-measurements are almost always available, they should be placed on all unmeasured nodes
when no other measurements exist. This shall ensure the best results for a state estimator based on
pseudo measurements and ensure observability.
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Figure 5.3: Configurations with only pseudo-measurements where one pseudo measurement is taken away per feeder on a
different location for configurations 2, 3 and 4.

5.4.2. Case 2: Influence of Power Injection Measurements
Using only pseudo-measurements does not provide an adequately functioning state estimator, as shown
in Figure 5.4. PIMs with higher precision are introduced to study the improvements in accuracy.
When placing PIMs, pseudo-measurements are removed unless stated otherwise. This simulation was
performed with randomised loads, and the absolute mean error was taken over 50 iterations.

Figure 5.4 illustrates four different configurations. In the second configuration, PIMs are placed at
the short radial feeders, starting with nodes 10 and 4. This significantly reduces the absolute mean
error at those locations, but the influence on nodes outside their respective feeders is negligible. This
is likely because the improved accuracy only enhances the estimation of the total power consumption
within those specific feeders. For feeders that rely solely on pseudo-measurements, the total power
consumed is still determined by other measurements. Although PIMs in one feeder could theoretically
improve the accuracy of MVMUs at the beginning of different feeders, this effect is relatively small.
The improvement in accuracy becomes further diluted when distributed across all nodes in a feeder.

The third configuration explores placing a single PIM on each long radial feeder, starting at nodes 6
or 7. This placement positively impacts the entire feeder by improving the accuracy for most nodes.
Although a slight increase in error may occur infrequently at nodes, the overall effect remains beneficial.
The observed improvement is primarily due to the reduction in uncertainty across the entire feeder,
which enhances the state estimation along its length.

In the fourth scenario, pseudo-measurements are retained when PIMs are placed to asses whether these
measurements would conflict and whether pseudo-measurement, being less accurate, should be removed.
Figure 5.4 shows that using both measurements at the same location leads to significant errors. This
occurs because PandaPower struggles to process both measurement types correctly. Therefore, pseudo-
measurements should be permanently removed when PIMs are placed at a specific location to ensure
accurate state estimation.



5.4. Empty Network Cases 31

10 12 21 6 14 20 5 22 17 7 13 8 15 9 4 11 18
Node Index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ab
so

lu
te

 E
rro

r P
 (%

)
Absolute Mean Error P_MW per Node

Configuration
1. Pseudo only
2. PIM at [10, 12, 21, 4, 11, 18]
3. PIM at [10, 12, 21, 4, 11, 18, 14, 13]
4. PIM at [10, 12, 21, 4, 11, 18], with pseudo

Figure 5.4: Effect PIM measurements on nodes.

5.4.3. Case 3: PIM placement ratio
From subsection 5.4.2, it is evident that PIM measurements only influence the radial feeder they are a
part of. Now, it is essential to quantify the effect of the ratio of PIMs against pseudo measurements.
This will be done by adjusting the number of measurements per configuration. The focus will be on
the feeders, starting with nodes 6, 7, and 4, with six, five, and three unmeasured nodes, respectively.
Figure 5.5 illustrates the five different configurations. This simulation was performed with randomised
loads, and the absolute mean error was taken over 50 iterations.

The second configuration starts with two PIMs placed from the starting node. Each configuration from
here adds one more measurement per configuration. A clear pattern emerges that with the addition
of PIM, the overall error decreases. The jump is significant at the spot of the PIM placement as the
accuracy of the measurement is much larger, but only slightly for nodes that are measured with pseudo
measurements. If state estimation with high accuracy is preferred, only one node can be left unmeasured
or multiple if their accuracy is not essential.

The inaccuracy of the nodes with the pseudo measurements comes down to the total uncertainty of that
feeder. At the beginning of the unmeasured feeder, the line measurement will give the range in which
the sum of all nodes most probable will be. The more accurate measurements are taken, the smaller
the range becomes for the remaining nodes with pseudo measurements. As the pseudo measurements
(lowest weight in WLS) will be corrected the most, it is better to measure nodes with low loads. This
is confirmed in Figure 5.6. For this confirmation, the loads on nodes [4, 11, 18] were 1, 1, and 8
MW, respectively. Three configurations were used, with the pseudo measurement on a different node
each time. The second configuration had the pseudo measurement on node 18 with the highest load.
The overall error was the lowest for this configuration, even having a mean lower than 2.5% over 50
iterations.
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Figure 5.5: Effect of increasing the PIM ratio on accuracy of non measured nodes.
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Figure 5.6: Difference in accuracy of unmeasured node with PIM placed on nodes with a high or low load.

5.4.4. Case 4: Influence spacing of PIMs
In literature [34], it was recommended to have loads of equal magnitude between actual measurements,
as the state estimator would work best in that case. This drives the question of whether a homogenous
spread of PIM would obtain the best results. However, note that as the loads are randomly generated
for these configurations, the load will probably never be of equal magnitude. In Figure 5.7, two config-
urations are illustrated next to the pseudo-only baseline. Both configurations have three measurements
for the feeders starting with nodes 6 and 7, and 2 measurements for the feeder starting with node 4. In
Configuration 2, the PIMs are all placed at the beginning of the feeder, whereas in Configuration 3, a
more homogenous spread is chosen. In all feeders, two nodes are left unmeasured.

The homogeneous distribution of measurements did not lead to significantly different results. Among
the comparable nodes, the homogeneous setup yielded better accuracy in two out of three cases, though
this may be attributed to randomness in the load scenarios. Additionally, the feeders might be too
short to observe the effects of different measurement spreads clearly. If this observation holds more
broadly, DSOs would have greater flexibility in choosing measurement locations. They could prioritise
nodes based on practical considerations, such as accessibility or cost, without accounting for whether
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nearby nodes are already measured. This would simplify the planning process and potentially reduce
implementation costs.
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Figure 5.7: Influence of spacing PIMs homogenous throughout the feeder or concentrated at the beginning .

5.4.5. Case 5: Combination of MVMUs with Pseudo Measurements
In subsection 5.4.2, it was shown that PIM and pseudo measurements should not both be fed into a state
estimator to achieve the best results. This case compares three approaches: using minimal MVMUs
alone, minimal MVMUs with pseudo measurements everywhere except at the nodes where MVMUs
are placed, and minimal MVMUs while keeping pseudo measurements at all nodes. These approaches
correspond to the second, third, and fourth configurations.

Using pseudo measurements at all nodes resulted in the most accurate state estimation, as shown
in Figure 5.8. Still, the difference with pseudo measurements everywhere except at the nodes where
MVMUs are placed is minor. Pseudo-measurements should always be used with MVMUs if no PIMs
are placed at any nodes, as the result is generally favourable.
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Figure 5.8: Combination of MVMUs and pseudo measurements.

5.4.6. Case 6: Reach of MV Measurement Units
To showcase the reach of an MVMU influence compared to that of a PIM, one MVMU and one PIM
shall be placed at nodes 13 and 14 of the feeders, starting with nodes 6 and 7. As the MVMU consists
of multiple measurements, it will probably result in a better estimate. This simulation was performed
with randomised loads, and the absolute mean error was taken over 50 iterations.

The second scenario contains only PIM, and the third scenario only MVMU. It can be seen in Figure 5.9
that the placement of a PIM results in a better estimate at that specific node. The placement of an
MVMU has an excellent effect on the node it is placed on and the node next to it at the end of the
unmeasured feeder, nodes 6 and 7 in this case. It does not seem to affect the other nodes of the feeders
much. A slight improvement can be observed as the room for error has been decreased by the placement
of the MVMU.
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Figure 5.9: The effect of MVMU vs PIM for other nodes in the respective feeder.
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5.4.7. Case 7: Influence of MV Measurement Unit placement
In this case, the influence of the MVMU’s starting point is considered. The scenarios will take place on
the feeder of node six and will each contain two measurements for a fair comparison. This simulation
was performed with randomised loads, and the absolute mean error was taken over 50 iterations.

All scenarios in Figure 5.10 start at a different node and skip two subsequent nodes before placing
another MVMU. The second configuration starts at node 6, the third at node 14 and the fourth at
node 20. The most significant reduction of the absolute mean error concerning the baseline is obtained
with the third configuration, as shown in Table 5.3. As discussed in subsection 5.4.2, the influence of
measurements is negligible outside of their feeder, so these nodes are not shown. This result complies
with the advice in subsection 4.3.2 to start at the second node for the most efficient MVMU placement.

Table 5.4 shows the same case but then performed on the feeder of node seven, and only one node is
skipped before placing another MVMU. Again, the third configuration, which starts at the second node,
has the best results.
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Figure 5.10: MVMUs placed at different locations in the feeder with a spacing of two nodes.

Index 6 14 20 5 22 17 Total
MVMU at [6, 5] 8.95 4.49 1.61 10.37 2.98 2.73 31.13

MVMU at [14, 22] 7.76 9.18 0.56 2.58 9.00 9.27 38.35
MVMU at [20, 17] 3.31 2.22 8.69 2.78 1.64 9.27 27.99

Table 5.3: Improvements of absolute mean error per node towards scenario blue.

Index 7 13 8 15 9 Total
MVMU at [7, 8] 5.68 5.76 6.37 2.90 4.32 25.09

MVMU at [13, 15] 4.75 6.89 6.17 6.99 11.41 36.18
MVMU at [8, 9] 1.27 2.06 6.09 8.30 11.47 29.19

Table 5.4: Improvements in absolute mean error to scenario blue at the feeder of node 7.
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5.4.8. Case 8: Spacing of MV Measurement Units
The cases in subsection 5.4.6 and subsection 5.4.7 showed the reach towards PIM and the optimal
starting point of MVMUs. This case shall showcase the effect of the spacing between two MVMUs.
The starting point will be the second node of the unmeasured feeder as this gave the best results in
subsection 5.4.7. From here, the space between MVMUs will be increased by one node in the following
configuration, starting at a gap of one node. The fourth configuration showcases the effect of one MVMU
on a three-node feeder. This simulation was performed with randomised loads, and the absolute mean
error was taken over 50 iterations.

The second and third configurations in Figure 5.11a show one and two nodes spacing, respectively.
Introducing one extra space between two MVMUs almost nullifies the effect the MVMUs had on the
one node between them. A spacing of two nodes between MVMUs is, therefore, inefficient.

The fourth configuration is seen in Figure 5.11b, which shows that for short unmeasured feeders, one
MVMU placement can substantially increase the accuracy for multiple unmeasured nodes. This only
applies if one node on either side is without a PIM or MVMU.
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Figure 5.11: Influence of spacing between MVMUs for all feeders.

5.4.9. Case 9: Prevented Placement
DSOs might envision a scenario in which all LV sides of the MV network that can be measured are
equipped with PIMs. However, in some cases, placing a PIM at a specific node may not be possible. It
is essential to determine whether the number of installed measurements would still be sufficient for an
adequate state estimator.

Figure 5.12 illustrates five configurations starting with the reference baseline applied to the radial feeder
starting at node six. The second configuration examines the effect of removing one PIM. The third
scenario further worsens the conditions by removing two PIMs. The fourth and fifth scenarios introduce
an MVMU between the nodes where PIM placement was impossible, which was node 14 in this case,
with each configuration testing a different placement position.

Examining the second and third configurations, it is clear that for each PIM lost in a feeder, the absolute
mean error increases at all nodes without a PIM. Configurations four and five show that introducing
an MVMU between the two unmeasurable nodes significantly improves accuracy for both unmeasured
nodes. This effect is likely due to the MVMU effectively dividing the long radial feeder into two smaller
sections, where the total power flow is known for each. As a result, only one unmeasurable node remains
per section. Therefore, when more than two unmeasurable nodes are present in a feeder, placing an
MVMU between them is advisable.



5.5. Results: Network 1 37

6 14 20 5 22 17
Node Index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ab

so
lu

te
 E

rro
r P

 (%
)

Absolute Mean Error P_MW per Node
Configuration

1. Pseudo only
2. PIM at [6, 20, 5, 22, 17]
3. MPIM at [6, 20, 5, 17]
4. MVMU at [20] and PIM at [6, 5, 17] 
5. MVMU at [5] and PIM at [6, 20, 17]

Figure 5.12: Possible configuration solutions in the case of prevented placement on certain nodes.

5.5. Results: Network 1
The case studies performed in section 5.4 provide information about the effect of pseudo measurements,
PIMs and MVMUs on networks and, more specifically, within radial feeders. More significant inaccu-
racies were typically found at lower loads, i.e. the accuracy of a node was highly dependent on the load
randomly generated for that node. That is why the resulting accuracies were not considered directly,
but the effect shown when placing a measurement was analysed, making this part of the thesis a more
heuristic approach. If a measurement placement is selected where the most significant inaccuracies are,
the loads assigned to the nodes should mirror the real-life network. PIMs could be placed at all nodes
using the method with randomised loads to acquire somewhat of the same improvement in accuracy.
Actual network measurements are best placed at nodes with volatile behaviour, such as solar panel
generation or industry nodes. In this way, only predictable loads remain, and the general maximum
error of the pseudo measurements decreases, resulting in better overall state estimation.

However, some general results can be used to implement state estimation for DSOs. Firstly, pseudo
measurements should always be placed on all nodes as a foundation. This will give better results than
the minimum amount, as more reference points are provided for the state estimator to consider and will
ensure observability. The exception is if a PIM is placed, then the pseudo measurement for that node
should be deleted, or it will negatively affect the state estimation. This is not a problem for MVMU as
it is a different type of measurement. As pseudo-measurements are relatively cheap to acquire for every
node when enough data is available, this should not be a problem.

Secondly, placing measurements on a node only affects the state accuracies on the respective node’s
feeder. So, to decrease the inaccuracies of all nodes in the network, every radial feeder should have
measurements. This is probably due to the number of measurements on the slack buses, which makes
their states perfectly known, so uncertainties can only propagate within a feeder.

Thirdly, to get an adequate state estimation, a substantial number of the nodes on the radial feeders
have to be covered with measurements and have a foundation of pseudo-measurements. Currently,
with an accuracy of 50% for pseudo measurements, there can only be one node without an actual
(MVMU/PIM) measurement between two MVMUs or on the whole feeder if there are only PIMs. Then,
the state estimation’s absolute mean error towards the ’perfect case’ will be at its lowest while using
the least amount of measurements possible within the accuracy standards. It is best to leave the node
with the highest load unmeasured, as this results in the least error towards the ’perfect case’ values for
the nodes.

Lastly, a distinction between MVMUs and PIMs should be highlighted. PIMs are node-specific mea-
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surements, which means they directly improve the accuracy of the targeted node. They also lead to a
modest improvement in the accuracy of other nodes within the same feeder. This indirect benefit occurs
because the total uncertainty across the feeder is slightly reduced. The change in accuracy is primarily
positive but can be negative. MVMUs, as they are line measurements, have a good effect on the node
it is placed around, but also impact the surrounding nodes. Especially when it singles out a node, for
example, if the MVMU is placed on the second or second-to-last node of an unmeasured radial feeder,
it will single out the first or last node, thereby measuring the power flow towards it. This property of
MVMUs can also be used to divide a feeder into two parts, of which the total flow is measured. In
this way, both sides can have one node without an actual measurement. It will still have a pseudo
measurement. This is particularly handy if the placement of the measurement is prohibited due to
physical building constraints.

These results have demonstrated how certain measurements can influence the state estimation accuracy
of specific nodes or along a feeder. However, they do not yet provide a general solution to the problem.
Therefore, a second case study will be conducted on Network 2 in Chapter 6 to reach a more general
solution.

5.6. Discussion: Network 1
The results from chapter 5 are not very general for every case, as there are still many variables. This
chapter describes what specific measurements do regarding accuracy and how they could be strategically
implemented in certain conditions.

The main problem is the randomness of the loads and, thereby, the measurements and results. As
the loads are randomly generated to represent the different situations that could occur in a network,
the accuracy of the nodes is not stable. So, in this case, there were no specific nodes from which you
could say that they were more accurate than others. This is simultaneously a problem with designing
the network based on the accuracy of state estimation. To find the best locations for measurement
placement, only one load scenario can be considered to see differences in the state estimation accuracy
per node. However, this load scenario may not represent the network in real life, making the concluded
measurement locations absolute.

The network also contains switches, which can change its whole topology. It is uncertain if topology
changes significantly influence the network’s accuracy. The topology of the used network is simple.
Average MV distribution networks are more extensive and may have more complex topologies than
radial designs. Some conclusions drawn from the results may be null and void when tested in these
more comprehensive, complex networks, as different conditions may present themselves.

Networks often contain existing equipment that can be utilised for state estimation. However, in this
study, such pre-installed measurements were deliberately excluded, as the focus was solely on evaluat-
ing the impact of strategically placed measurements. To ensure that the analysis was not influenced
by existing infrastructure, a ”clean slate” network model was used. In the actual design process for
measurement placement, equipment that has already been installed should be considered to minimise
costs and avoid unnecessary installations.

DSOs should also assess whether existing equipment can provide measurements, even if it is not cur-
rently used. Leveraging such capabilities can enhance the functionality of installed equipment without
requiring additional investments. Additionally, DSOs must consider the feasibility of placing new mea-
surements. Space limitations or other physical building constraints may restrict installation options.
DSOs must either find alternative solutions or plan for necessary substation modifications.

The HV/MV transformer was included in the topology of this network, but measurements were only
taken on the MV side. This approach was initially chosen to represent the complete network structure.
However, aside from having the same external network, it did not fully achieve this goal. Since this
level of modelling did not contribute meaningfully to the analysis, it will be excluded from future case
studies.



6
Case Study: Network 2

This chapter will apply insights from the literature and chapter 5 to design measurement locations and
types in a more extensive Stedin network. A generalised approach for measurement placement will be
presented, considering key network design factors such as load magnitude, load volatility, and practical
placement constraints. The significance of these factors will first be discussed, followed by an overview
of their distribution within the network. A simple network graphic design is shown in Figure 6.1.

6.1. Workflow Related to Network 2
The general workflow shown in Figure 4.5 for analysing strategic measurement placement is adapted
for use on network 2. The adaptations in the workflow are the following:

1. Mapping Existing Network and Equipment

Initialising the network from the company files to a PandaPower network. All unnecessary
components are removed from the network, leaving only MV components. Existing measure-
ments are considered to simulate real-life conditions and decision-making for a DSO.

2. Load Scenario

A single load scenario is used for most cases, representing a network snapshot at a specific
moment. Load levels can influence the accuracy of certain nodes. At the end, the load
scenario is changed to perform a sensitivity analysis and assess the robustness of the results.

5. Location Configuration Selection

The measurement location will be chosen based on reasoning and accuracy factors. Certain
network characteristics have presented more opportunities to test based on reason. When
strategic points are determined, an effort will be made to fix the accuracy gap with placement
targeting low-accuracy nodes to see if this is an effective strategy to tackle the problem.

7. Assessment

Once all iterations are completed and the state estimation results are collected, they will
be compared to each respective node’s ”perfect case” values. This case study focuses on
the absolute values of all the results, looking not just at the mean but also the median, the
outliers, and the error distribution, which are visualised in boxplots.

6.2. Network Design Factors
Current circumstances should influence the design process for measurement allocation. This section cov-
ers the most important factors that DSO and Stedin should consider when designing new measurement
locations.

39
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6.2.1. Stedin's Vision
It is vital to consider Stedin’s existing plans for their network to ensure that different policies do not
conflict, allowing for a streamlined process within the company. In [74], Stedin Groep announced its
plans to install 22.000 DA3 boxes as measurement equipment. These are primarily LV-side measure-
ments but can also contribute to MV network observability. Given this, designing the network with
power injection measurements may align best with Stedin’s strategic goals.

6.2.2. Network Loads
Due to key aspects within the network, some locations are more likely to receive measurements. However,
a measurement may not have the same effect in every location. Here are two examples of how the location
or the load influence the effectiveness of the measurement.

When MVMUs are placed at the beginning of a feeder, it can result in higher errors in the power
consumption of that node than placing it at the end of a feeder. This phenomenon occurs as the line
measurements are relatively high towards the power consumption of that node. If, for example, an error
occurs of just 0.5% in both line measurements in opposite directions that are 4.2 and 4 MW, the value
chosen for power consumption by the state estimation will likely be around 0.241 MW instead of the
exact value of 0.2 MW. So the 0.5% line power flow error introduces an error of 20.5% in the node’s
power consumption. Therefore, if MVMUs are placed at the beginning of feeders, the outgoing line to
the load should also be measured.

This effect also occurs when using PIMs. Since the feeder’s total load is known, the nodes’ accumulation
must be equal (minus losses). By accurately measuring smaller rather than larger loads, the possible
error introduced in the summation remains smaller. The inaccurate measurements will be adjusted
using state estimation to fit the total load of the feeder. However, this only works when all nodes
except one have accurate measurements. When two or more nodes are not accurately measured, the
error can still be introduced by one with a higher load than the actual load and the other with a lower
load.

6.2.3. Network Details
Every Network has existing components and possible gaps in data. This test network was no exception;
its details will be explained further to help you better understand the design choices.

Load Allotment
The test network is loaded from internal BM-GIS files and has predefined loads for most nodes. There
are a few exceptions. According to the file, nodes 12 and 14 had a zero load, which is likely false, so it
has to be changed. No node data was available for [10, 24, 28, 47, 74, 95]. This data was created by
cross-checking in PowerFactory at a similar time on another day and comparing with one of the nodes
next to the node with the most compatible information. In PowerFactory, no load existed for nodes 28
and 74, so their loads are set to 0.001 MW, so the state estimation keeps working as it can not process
values too close to zero. According to PowerFactory, the power factor of the network is 0.98. This value
is used in the simulations

Technically not Feasable
Real-life physical limitations can prevent the placement of measurement equipment in substations. Ste-
din experiences these TNF substations in around 15% of their MV substations [75]. For the test network,
no data on TNFs was available. From the 98 substations, fifteen have been randomly selected to be
such a TNF substation, resulting in prevented placement at substations [12, 17, 22, 29, 34, 41, 48, 56,
63, 75, 83, 89, 92, 97, 101].

Generation Measurements
In the Netherlands, all large energy producers on the MV network have to place metering devices and
communicate this to their respective DSO under [76]. Following this, all places in the test network that
have distribution according to their topology map will receive a PIM of the same accuracy explained in
subsection 4.2.2.

Intellegent Fault Indicators
The existing intelligent fault detectors are assumed to function identically to the MVMUs discussed in
subsection 4.2.1. Any MVMU placed within the network will be assigned the same accuracy as these
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devices to maintain consistency.

Profile Accuracy
Pseudo measurements, also called profiles in Stedin terminology, can differ widely in accuracy. In
subsection 4.2.3, it was discussed that 48% of the profiles fell in a ±10 margin [68]. Different levels of
pseudo-measurement accuracy occur in a network, but which network elements are associated with the
inaccurate profiles remains uncertain for untested networks. Therefore, they are generalised to all have
the same maximum error.

6.2.4. Simulation Conditions
All measurements used for state estimation are generated in advance. One dataset includes all line
and node power and voltage measurements with a maximum error of 5% and 0.5%, representing highly
accurate measurements. Four additional datasets simulate different levels of pseudo-measurement ac-
curacy, with maximum errors of 50%, 40%, 30%, and 20%. These datasets are generated for multiple
load scenarios to capture varying network conditions.

Since the noise introduced in the measurement process is random, the accuracy of the state estimation
will fluctuate per iteration. In Figure 6.2, the mean of the error is shown, and the results converge
around 5000 iterations. Every configuration number can be multiplied by 1000 to get the number
of iterations done, i.e. configuration 5 has the mean of 5000 iterations. Therefore, a Monte Carlo
simulation with 5000 iterations will be conducted to account for this variability. This ensures that
results are statistically robust and reflect various possible conditions. These generated measurement
sets will be used to evaluate different metering placement configurations. All 5000 iterations will be
processed through the state estimator, and the results will be compared against the ‘perfect case’ for
accuracy assessment. To mitigate the influence of outliers, the median error across all iterations will
be used as the primary metric for evaluating state estimation performance per node and line. Different
cases are discussed, and the feeders are classified from 1 to 5. Table 6.1 shows which nodes belong to
each feeder. For all cases, substations will again be referred to as nodes
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Figure 6.2: Convergence of result due to number of Monte Carlo iterations.
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Feeder Nodes

First [91, 78, 21, 18, 35, 97, 52, 40, 90, 71, 69, 73, 81, 16, 89, 9, 51, 8, 48, 63]

Second [87, 62, 54, 85, 19, 47, 70, 98, 95, 20, 58, 44, 11, 77, 80, 61, 42, 38, 60, 92, 82,
4, 93, 64, 67, 45, 83, 59, 37, 74, 13, 41]

Third part 1 [39, 28, 43, 46, 27, 84, 66, 30, 34, 76, 12, 6, 56, 94, 96, 50, 33, 100]

Third part 2 [32, 88, 75, 26, 7, 36, 49, 22, 68, 5, 99, 65, 79, 55, 25, 86, 24, 72, 15, 29, 101]

Fourth [31, 14, 57]

Fifth [23, 17, 10, 53]

Table 6.1: Feeder categorisation for further reference.

6.3. Case 1: Addition of MVMUs on feeder splitting nodes
In literature [35], nodes, where a feeder splits into multiple feeders, are identified as strategic locations
for measurement placement. These locations offer higher cost-effectiveness than most nodes, as various
measurements can be placed simultaneously. Additionally, placing an MVMU at these points provides
the advantage of knowing the total power flow of each feeder, thereby reducing the total possible error
for the nodes on each feeder. For these reasons, the measurement configuration of the standard network
will be tested against one where MVMUs are placed at these feeder splitting points.

Looking at the results of the second feeder in Figure 6.3, starting with node 87, the effect of the MVMUs
is noticeable, especially near the end of the feeder upward from node 82. The impact on node 77 is
significant, as expected from the previous cases in the empty network. Node 11 does not seem to be
impacted as much. This is likely due to the difference in magnitude of the node’s power consumption
towards the power going through the lines as explained in subsection 6.2.2.

The cost advantages and improvements in accuracy while strategically dividing the feeder into multiple
known total loads, reducing the possible total error of the feeder part, make nodes with multiple outgoing
feeders a strategic point. In further cases, MVMUs will be placed at the split points of feeders.
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Figure 6.3: Improvement of adding measurements on splitting points for the second feeder.

6.4. Case 2: Improved Pseudo-Measurements
Pseudo-measurements are the backbone of the state estimator. They ensure observability at all times
and are cheaper to fabricate. Their accuracy, however, is a problem. Good pseudo measurements are
necessary if a DSO wants to use state estimation with a relatively small amount of actual measurements
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while ensuring observability and adequate accuracy. This is because if there are two or more nodes in
one feeder part of which the total power flow is known, their inaccuracy could theoretically cancel each
other’s error if their load is the same.

It is essential to assess whether, with improved measurements, the most significant errors shift to other
nodes or if the nodes that initially exhibited the highest errors continue to experience the worst errors.
Understanding this pattern is crucial for determining the optimal ratio and placement of actual and
pseudo measurements within the system.

Furthermore, it is essential to consider whether design choices should be based on current circumstances
or if future developments, such as improvements in pseudo-measurements, should also be incorporated
into the decision-making process. This foresight can help avoid the need for a system redesign in the
future, ultimately leading to cost savings while achieving the best possible accuracy.

Logically, the state estimation error decreases as the accuracy of the pseudo measurements improves,
as shown in Figure 6.4. Configurations 1, 2, 3, and 4 have a pseudo measurement max error of 50%,
40%, 30% and 20%, respectively. The median declines almost linearly over a node with every 10%
increase in accuracy. The nodes with the worst accuracy change through the pseudo-measurement
configurations. To ensure proper meter placement, one can compare the worst errors in all nodes for all
pseudo configurations. Starting with the node with the worst error for every configuration. If the node
does not occur in every configuration’s worst error node list, increase the list containing the worst error
nodes with one node for all configurations. In Table C.1, the selection of nodes for placement resulting
from this method is given.
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Figure 6.4: Difference between pseudo accuracy for the second feeder.

6.5. Case 3: PIM Placement Ratio
This case will illustrate a gradual introduction of additional measurements into the network. The
placement of these measurements will be determined based on the accuracy of the state estimation in
the initial configuration, where no extra measurements were placed. In practice, the characteristics of
the consumers behind a node should also be considered, as they may be an even more critical factor
than the accuracy of the specific node. This is because a node selected for measurement placement
might serve a relatively insignificant load. Figure 6.5 to Figure 6.8 display the error in P of each
node for different max error of the pseudo measurements, going from 50% to 20 % in steps of 10%.
Configurations 1,2,3 and 4 display a difference in additional measurement coverage of 0%, 30%, 50%
and 70%, respectively.
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Figure 6.5: Errors in the nodes of the second line with a 50% max error for pseudo measurements.
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Figure 6.6: Errors in the nodes of the second line with a 40% max error for pseudo measurements.
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Figure 6.7: Errors in the nodes of the second line with a 30% max error for pseudo measurements.
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Figure 6.8: Errors in the nodes of the second line with a 20% max error for pseudo measurements.

The error in nodes that rely solely on pseudo-measurements either remains unchanged or decreases
slightly, even with increased coverage of additional measurements, as shown in Table 6.2 for a 30%
maximum error. This trend is observed across all levels of pseudo-measurement accuracy. Therefore,
the pseudo-measurements’ accuracy must be improved to nearly five times the desired level of an
acceptable median to achieve adequate state estimation. Despite this, error outliers of up to 25% still
occur in unmeasured nodes, even when pseudo-measurements have a maximum error of 20%. This
discrepancy arises because, as discussed in subsection 4.5.4, a simplification was applied, meaning that
the stated 20% maximum error does not represent a strict upper bound.
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Nodes 0% Coverage 30% Coverage 50% Coverage 70% Coverage

Median Mean StD Median Mean StD Median Mean StD Median Mean StD

3 0.42 0.49 0.37 0.41 0.48 0.36 0.40 0.46 0.34 0.23 0.27 0.21
87 6.55 7.77 5.90 1.11 1.33 1.00 1.10 1.33 1.00 1.11 1.33 1.00
62 6.63 7.89 5.98 6.68 7.89 5.95 1.12 1.31 0.99 1.12 1.31 0.99
54 6.66 7.87 6.06 1.13 1.33 1.01 1.13 1.33 1.01 1.13 1.33 1.01
85 6.61 7.75 5.81 1.15 1.34 1.01 1.15 1.34 1.01 1.15 1.34 1.01
19 6.46 7.55 5.66 6.30 7.35 5.48 1.11 1.32 0.99 1.11 1.32 0.99
47 6.48 7.72 5.91 1.12 1.31 0.99 1.11 1.31 1.00 1.11 1.31 1.00
70 6.74 7.99 6.02 1.13 1.33 1.00 1.13 1.33 1.00 1.13 1.33 1.00
98 6.61 7.74 5.80 1.13 1.34 1.02 1.14 1.34 1.02 1.13 1.34 1.02
95 5.70 6.90 5.29 5.28 6.30 4.78 4.94 5.83 4.43 4.88 5.78 4.40
20 6.63 7.86 5.93 1.13 1.32 0.99 1.13 1.32 0.99 1.13 1.32 0.99
58 6.53 7.73 5.89 1.11 1.30 0.99 1.11 1.30 1.00 1.11 1.30 1.00
44 6.66 7.90 5.96 1.12 1.34 1.02 1.11 1.34 1.02 1.12 1.34 1.02
11 6.57 7.78 5.89 6.53 7.73 5.87 1.10 1.31 0.99 1.09 1.31 0.99
77 1.12 1.31 0.98 1.12 1.31 0.98 1.12 1.31 0.98 1.12 1.31 0.98
80 5.66 6.77 5.19 5.65 6.76 5.17 5.65 6.76 5.17 5.32 6.37 4.83
61 6.74 7.95 6.06 1.15 1.34 1.00 1.15 1.34 1.00 1.15 1.34 1.00
42 6.17 7.21 5.40 6.12 7.16 5.37 6.13 7.16 5.37 1.11 1.31 1.00
38 5.71 6.71 5.08 5.68 6.67 5.05 5.68 6.67 5.05 1.10 1.31 1.00
60 6.53 7.81 6.05 1.11 1.33 1.00 1.11 1.33 1.00 1.11 1.33 1.00
92 5.66 6.83 5.25 5.66 6.80 5.24 5.66 6.80 5.24 1.14 1.32 0.99
82 6.43 7.51 5.66 6.39 7.51 5.66 6.38 7.51 5.66 1.16 1.36 1.01
4 2.83 3.35 2.54 2.84 3.35 2.54 2.83 3.35 2.54 2.60 3.11 2.38
93 4.88 5.81 4.46 4.88 5.81 4.46 4.87 5.81 4.46 4.58 5.43 4.19
64 5.38 6.46 4.93 5.38 6.46 4.93 5.38 6.46 4.93 5.22 6.28 4.78
67 6.10 7.39 5.70 6.10 7.39 5.70 6.10 7.39 5.70 1.12 1.32 1.00
45 4.85 5.84 4.54 4.85 5.84 4.54 4.69 5.60 4.36 3.52 4.18 3.02
83 6.70 7.91 6.01 6.70 7.91 6.01 6.71 7.90 6.01 6.64 7.85 5.94
59 5.89 7.13 5.49 5.89 7.13 5.49 5.90 7.02 5.39 1.13 1.33 1.01
74 6.68 8.02 6.09 1.09 1.31 0.99 1.09 1.31 0.99 1.09 1.31 0.99
13 6.37 7.70 5.86 6.37 7.70 5.86 1.12 1.31 0.98 1.12 1.31 0.98
41 6.64 7.89 6.02 6.64 7.89 6.02 6.65 7.89 6.03 6.70 7.89 6.02

Table 6.2: Median, mean and standard deviation of the absolute error in % for each coverage level for each node of feeder
2 while the maximum error of the pseudo measurements is 30%.

This research assumes that the accuracy of pseudo-measurements is uniform across all nodes. However,
some nodes may be significantly more straightforward to predict than others. Prioritising nodes with
the poorest pseudo-measurement accuracy, most likely those serving industrial loads or RES due to their
volatility, has the most significant impact. This approach improves the accuracy of those specific nodes
and enhances the accuracy of the pseudo-measurements overall across the network. This is confirmed in
[68] where 48% of distribution transformer profiles fall within a 10% margin of the measured values. For
further cases, it is assumed that with a coverage of 50%, a max error of 30% is achieved. The achieved
results of 50% coverage and 30% pseudo measurement maximum error are displayed in Table 6.2.
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6.6. Case 4: Placement in TNFs
Circumstances may arise when placing a measurement at the TNF location is the best option for overall
improved accuracy. However, this could be costly, requiring a revision of the node. Alternative solutions
may be utilised to work around the TNF node, which, while involving additional measurements, could
prove to be more cost-effective. This case is designed to find the possible necessity for station revision
or an alternative placement. As it is now considered that a 30% max pseudo-measurement error is
achieved with 50% PIM coverage, the nodes for PIM placement will be selected on this 30% error with
0% coverage. Table 6.3 displays to selected nodes for PIM placement. For clarity, a split in the third
feeder occurs between nodes 56 and 32. The numbers are shown in the order of their error, from largest
to smallest. A comparison will be made between placement at TNF spots and avoiding them.

Feeder Nodes

First [90, 81, 16, 35, 18, 78, 48, 63, 21, 91, 97, 69]

Second [61, 70, 83, 74, 44, 54, 37, 41, 20, 62, 85, 98, 11, 87, 58, 60, 47, 19]

Third part 1 [66, 43, 84, 34, 28, 46, 94, 76, 27, 56, 6]

Third part 2 [88, 68, 32, 55, 75, 86, 5, 15, 72, 49, 7, 29, 26]

Fourth and Fifth [31, 17, 23]

Table 6.3: Selected PIM locations for 30% pseudo accuracy and 50% coverage.

There is no improvement in the overall state estimation, as shown in Figure 6.9 and Figure 6.10.
Configuration 1 is the situation where TNFs can not be considered as nodes for measurement placement.
In configuration 2, they are considered, resulting in different nodes with PIM. The only difference in
configuration 2 is that the TNF nodes have become accurate, but the nodes where the PIMs were placed
before now have become less accurate. The error has shifted to different nodes. Revising TNF nodes
would cost a lot of money. It would not be worth it. Other options would be cheaper, like a specialised
pseudo measurement for the specific TNFs, increasing accuracy or MVMU on nodes neighbouring the
TNF. The MVMU option would only work towards the end of a feeder, considering the logic explained
in subsection 6.2.2.
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Figure 6.9: Active power error in nodes for whether or not TNF was taken into account for Line 1.
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Figure 6.10: Active power error in nodes for whether or not TNF was taken into account for Line 2.

6.7. Sensitivity analysis
The selected measurement locations are based on a specific load scenario associated with the network.
However, these choices may have been significantly different under an alternative load scenario. To
assess the robustness of the designed network, the network with added measurements will be tested
against more extreme load scenarios. This will help evaluate the impact of these changes and determine
whether the state estimation remains accurate under varying conditions.

Given the growing role of RES in future distribution systems, one load scenario will focus on high renew-
able energy penetration. Additionally, since voltage magnitude estimation has shown high accuracy,
another scenario will introduce high loads at the end of feeders to challenge voltage levels and assess
whether the state estimation remains reliable under such conditions.

A comparison will be made between the network with 50% coverage and pseudo measurement with
a maximum error of 30% and a network following Stedin’s vision, i.e., all measurable nods will be
measured. This network will also receive a pseudo measurement of 30% so a comparison can be made.
In reality, the error might be lower due to the 85% foreseeable coverage of the Stedin network.

To highlight the differences in error across load scenarios, the error for the standard load scenario with
50% measurement coverage and 30% pseudo-measurement accuracy will be presented in Figure 6.11 for
feeder 3.1, and in Figure 6.12 for feeder 2. The PIM placement of Table 6.3 without TNFs is used.
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Figure 6.11: Errors for feeder 3.1 in a standard load scenario and PIM placement for 30% pseudo-measurement accuracy.
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Figure 6.12: Errors for feeder 2 in a standard load scenario and PIM placement for 30% pseudo-measurement accuracy.

6.7.1. High Renewable Energy Peneration
This case focuses on introducing RES and bi-directional flow within the network. A generation of 0.75
MW is introduced on all nodes in Table 6.4. The designed network will be evaluated under these new
conditions to see if accuracy is challenged.

Feeder First Second Third part 1 Third part 2 Fourth and Fifth

Nodes [78, 35, 73] [62, 19, 42] [46, 66, 56, 50] [65] [57, 53]

Table 6.4: Selected Nodes with RES.

The Figure 6.13 illustrates the absolute error in P for two different configurations. Configuration 1 has a
50% measurement coverage, while Configuration 2 aligns with Stedin’s vision, where all possible points
receive a PIM. The worst-performing node, indexed as 34, exhibits approximately the same median error
of 6.7% in both configurations. However, due to the higher measurement coverage in Configuration 2,
slightly improved accuracy can be observed across multiple nodes. This improvement is particularly
noticeable at nodes with actual measurements absent in Configuration 1, which is expected given the
accuracy difference. However, nodes measured in both configurations show slight accuracy gains in
Configuration 2 due to the high coverage level.

In Figure 6.11, the errors are shown for a standard load scenario of the same feeder as in Figure 6.13.
Surprisingly, the error in some nodes decreased when RES was introduced into the feeder. This is likely
due to lower power flows in some parts of the feeder where MVMU placement makes the error in their
estimates relatively lower. The opposite is happening around nodes 96 and 50. Due to the generation
in 50, the power flow measured on the line between 94 and 96 will be relatively high compared to the
load on 96.
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Figure 6.13: Error in estimated power with high RES penetration.

6.7.2. Heavy loads at the end of feeders
To challenge voltage levels in the network, all nodes given in Table 6.5 will have a load of 1 MW. Line
2 is shown in Figure 6.14 as it includes the most nodes where a heavy load was introduced.

Feeder First Second Third part 1 Third part 2 Fourth and Fifth

Nodes [8, 63] [77, 93, 45, 74] [33] [55, 15] [14, 10]

Table 6.5: Selected Nodes with a Heavy Load.

Again, the two configurations are comparable, with Stedin’s vision configuration having slightly better
state estimation accuracy due to higher measurement coverage. When compared with the standard
load scenario from Figure 6.12, the statement in subsection 6.2.2 about that higher loads should be
measured later than smaller loads is confirmed. The accuracy of the nodes that were given higher loads
increased.

Again, the two configurations are comparable, with Stedin’s vision configuration achieving slightly
better state estimation accuracy due to higher measurement coverage. When compared to the standard
load scenario from Figure 6.12, the statement in subsection 6.2.2 that smaller loads should be measured
before high loads is confirmed. The accuracy of the nodes with higher assigned loads in the heavy load
scenario improved while the measurement locations remained the same.
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Figure 6.14: Error in estimated power with the introduction of heavy loads for line 2.
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6.8. Reflection on State Estimation
The consensus is to lower all pseudo measurements by placing actual measurements where pseudo
measurements tend to be poor. But if all pseudo-measurements suddenly fall within the set requirements
for accuracy, can a state estimator still add value to the results? To showcase this, the measurements
with noise will be compared with the states after the state estimation for nodes 34 and 39 picked from
Figure 6.11, with the standard load scenario and PIM locations based on the measurement error. The
exact locations of the PIMs can be found in Table 6.3.

Figure 6.15 and Figure 6.16 display the bell curves for nodes 34 and 39. In each figure, part (a) illustrates
the noise introduced using a normal distribution with a maximum error of 30%. Part (b) shows the
results at the respective nodes after state estimation. It is evident that state estimation significantly
improves the accuracy for some nodes, while the effect is minimal for others. Beyond improving data
accuracy, state estimation can also be employed for bad data detection, further reinforcing its value in
distribution networks.
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(a) Bell curve of the error of the noise added.
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Figure 6.15: Bell curves of Node 34.
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Figure 6.16: Bell curves of Node 39.

6.9. Results: Network 2
This chapter explores various cases to identify the most effective workflow for developing a reliable state
estimator for a DSO. The emphasis is on entirely using existing measurement equipment within the
network. Any installed devices with measuring capabilities should be assessed and, if currently under-
utilised, updated or reconfigured to contribute to the estimation process. Once all existing equipment
is optimally employed, additional measurements can be considered.

One specific type of substation stands out. If a substation has multiple outgoing feeders (not considering
the load), it is one of the most efficient spots in the network for measurement placement. While only
working in one station, multiple measurements can be placed simultaneously, saving time and cost.
Next to the slack bus, these stations have the highest possible measurement density in the system. In
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addition to the cost efficiency of selecting these stations for measurements, they are also in strategic
locations for information flow. The MVMUs at these stations measure the power flow into the separate
feeders. In this way, the feeder is split into all single-line feeders, the total power flow of which is known.

From a finance perspective, the least amount of measurements would be best. Pseudo-measurement
expenses are relatively low compared to actual measurements and, keeping costs in mind, will contribute
a large part to the results. Improving these measurements should be one of the key points for a DSO and
can roughly be done in two ways. Improving the algorithms behind making the pseudo measurements or
placing actual measurements at substations with bad pseudo measurements. The second consequence is
that the overall pseudo-measurement accuracy will improve, and so will the state estimation. Finding
the substations with these poor pseudo-measurements is a challenge on its own and out of the scope of
this research.

The stations classified as TNFs do not have to be revised. The results of placing measurements on
these substations did not influence the overall outcome. The costs are too high for the achieved results.
The combination of actual measurement and good pseudo-measurement can ensure a good enough state
estimation. A problem can, however, arise when the poor pseudo measurements are all at the TNF
substations.

The sensitivity analysis demonstrated that good results can be achieved even when more extreme load
scenarios arise. The substation median error remained approximately consistent with the standard load
scenario. Additionally, the analysis confirmed two suspicions: that the MVMU, if placed at a substation
with high line power flow, will not ensure accurate load measurements on the substations it is placed
at or that it singles out and that measuring substations with low loads is better than measuring higher
substations.

The reactive power results were comparable to the active power in terms of error. The median errors
for voltage magnitude and phase estimates were below 0.1% and 1%, respectively. Consequently, no
further research was conducted on placing additional voltage measurements or PMUs. These results
will be shown in Appendix B.

The state estimation process generally positively impacted noisy measurements, improving overall accu-
racy. This improvement was reflected in bell curves, where a reduced standard deviation for substation
39 indicates more precise estimations. For substation 34, the effect was negligible.

6.10. Discussion: Network 2
The Role and Limits of State Estimation
State estimation can be a valuable tool to enhance measurement accuracy, but it is not a panacea. A
solid foundation of measurements, both actual and pseudo, is essential. The lowest accuracy among these
measurements will still determine the worst estimation performance, mainly when only an economically
feasible number of actual measurements is deployed. Its additional functionalities, such as bad data
detection, should also be utilised to fully leverage the potential of state estimation. Incorporating these
capabilities can better justify the computational demands associated with state estimation.

The Impact of Pseudo Measurements
The most significant improvement in state estimation accuracy was achieved by enhancing the quality
of the pseudo-measurements. As shown in Table 6.2, increasing the measurement coverage had little
to no impact on substations relying solely on pseudo-measurements. The most inaccurate substation
continued exhibiting an error of 7.89% with a standard deviation of 6.02. Operating under these
conditions does not allow a reliable view of the system states. However, the assumed 30% maximum
error for pseudo-measurements was chosen conservatively, meaning the state estimator would likely
perform better in practice.

Building on this, it becomes clear that improving pseudo-measurements is a priority. However, the
process of doing so remains complex. The substations associated with significant errors must first be
identified to enhance their accuracy. These inaccuracies often originate from imperfect data. Yet, this
creates a paradox: how can inaccurate locations be identified using flawed data? Since DSOs typically
do not know which data is unreliable, pinpointing the source of error becomes challenging. As a result,
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what appears to be a potential solution in this thesis ultimately presents another complex problem for
DSOs.

Active Measurements
The locations identified for existing measurements only considered SCADA data. However, direct MV
customers also have measurements, although these occur less frequently. If state estimation is used to
enhance historical data, these customer measurements can be incorporated as well. Still, because they
are actual measurements, they do not contribute to improving the accuracy of pseudo-measurements.
The unmeasured outgoing LV fields introduce the largest inaccuracies. Following Stedins’ research, a
50% increase in measurements at currently unmonitored LV stations is necessary to address this.

Location Selection
The thesis’s method for selecting measurement locations is based on each substation’s current error, not
the system’s total. However, the best progression can be made by reducing the worst errors affecting
the most substations. Selectively targeting errors can be helpful if the system performs well overall but
has a few outliers.

The simulations and reasoning show that larger errors are more likely to occur at substations with
smaller loads, as any absolute error in the total load is relatively significant compared to the size of
the small load. This effect of placing measurements at low loads is compounded by the fact that when
most small-load substations in a feeder are measured, the accuracy of larger-load substations also tends
to improve. This occurs because the total feeder power flow acts as a constraint, limiting the possible
estimation error at those larger substations. Consequently, prioritising the measurement of smaller-load
substations is generally advantageous for improving overall accuracy.

However, this strategy comes with a trade-off. Errors at high-load substations can have more severe
operational consequences, such as transformer overloading, mainly if the estimated load is significantly
lower than the actual value and the state estimation is used for active system control. Therefore, a
DSO must decide between optimising overall estimation accuracy or safeguarding critical substations.
If state estimation is not intended for real-time control, prioritising overall accuracy is preferred.

Topology Changes
The strategy regarding split points has only identified active split points as strategic locations for MVMU
placement. However, the network contains numerous switches that, if activated, could create additional
split points within the feeders. To ensure the network remains adaptable to potential topology changes,
all substations adjacent to a switch that could turn a substation into a splitting point should also be
measured. This proactive approach would ensure readiness for topology changes.

The solution given is general, and if applied to all networks, topology changes should not influence the
state estimation accuracy. All the worst measurements are replaced with actual, accurate measurements,
creating a threshold over all networks. There were no indications in the studied networks that certain
topological formations could impact this accuracy.

Feeder Length and Load Variability
The length of the feeder can influence the effectiveness of measurement placement strategies. For shorter
feeders, it was confirmed that if only one substation lacks an accurate measurement, it is strongly
influenced by the accuracy of the other substations. However, it is unclear if the same effect occurs in
longer feeders where the line power flow is only measured at the start of the feeder. The law of large
numbers could come into effect,i.e., the number of substations with positive and negative deviations
might balance out if all loads were identical. This is not the case in reality, where load sizes vary. The
smaller proportion of high-load substations increases the chance that several fall on the same side of the
deviation, leading to higher total feeder flow errors and adaptations in the states. This effect is more
random in shorter feeders, and the law of large numbers does not apply.

Noise Distribution
The nature of the noise introduced in the ”perfect case” can play an active role in the results. The
noise introduced in this study is assumed to follow a normal distribution. However, whether the actual
measurement equipment follows this same distribution is uncertain. This discrepancy could potentially
affect the overall state estimation. If the measurement noise distribution is non-normal and, for example,
heavy-tailed, so closer to the true values most of the time, the state estimation will likely become more
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accurate, with more outliers. In this case, reducing the required measurements might be possible if
the outliers are ignored. On the other hand, if the distribution is more uniform, meaning there is
more variability in the noise of the measurements, more measurements would be needed to reduce the
maximum error and improve the accuracy of the state estimation.

Data Reliability
Despite the limitations discussed, the data used in this research is considered reliable for drawing
conclusions. The perfect case, constructed as a reference, can be adjusted as needed. It is up to the user
to define load scenarios that represent the network’s daily operation. Some simplifications were made
when calculating the standard deviation, where the maximum error was assumed to be three standard
deviations. Following a normal distribution, the maximum error can exceed three standard deviations,
which explains why outlier errors in the state estimation sometimes exceed the measurement’s maximum
error. The randomness introduced by the noise in the perfect case was filtered out using a Monte Carlo
Simulation with 5000 iterations. This number could be increased, as variations between 5000 and 7000
iterations were still visible, as shown in Figure 6.2. Improved computational power would be necessary
to store and process all the information, as the equipment used during this research was pushed to its
limits. While the PandaPower state estimator is reliable, better versions may offer greater precision.
However, PandaPower was sufficiently accurate for this research, as the conclusions drawn are more
general and do not require the highest level of precision.

6.11. Future Research
The workflow proposed in this thesis has identified a problem surrounding adequate state estimation, but
it does not provide a complete solution. Reducing the worst measurements, particularly the maximum
error in pseudo measurements, is crucial for success. However, it remains uncertain which specific
substations contribute to poor-performing pseudo measurements. Previous research by Stedin employed
temporary measurements or accumulated data to assess their profiles. While this approach might offer
valuable insights, it is not feasible for all existing MV networks due to the extensive time and equipment
requirements. To reduce the overall maximum error in pseudo measurements, it is essential to identify
the substations responsible for the significant errors and understand the underlying causes of these
errors. Suppose the issue concerns flawed data allocation from existing equipment, such as topology
errors in LV networks. In that case, addressing these errors may be a more straightforward solution
than pinpointing the exact substations with substantial errors for accurate measurement placement.

The proposed method has been limited to radial networks, the most common configuration for MV
networks. However, there may be instances where ring or meshed topologies are used instead. It is
necessary to evaluate whether the measurement placement strategy employed in this thesis would remain
effective under these alternative network conditions. These different topologies may require additional
measurements or more advanced equipment, such as PMUs, to ensure accurate state estimation and
network observability.



7
Conclusion

This thesis presents a general workflow for DSOs to prepare radial networks for state estimation, fo-
cusing on ensuring both observability and accuracy. The conclusions are drawn from research into
the effects of measurement placement on individual substations and the overall network section. To
explore these effects, two networks were modelled, enabling simulations across different load scenarios
and measurement configurations. This approach provided a comprehensive understanding of how dif-
ferent measurements impact system behaviour. The resulting workflow offers guidance on identifying
problematic measurement configurations across different topologies and load conditions, providing a
general solution that can be applied under various circumstances.

Research Question 1: What are the minimum conditions to create an observable network?

The minimum conditions for an observable network are straightforward. A minimum of 2n − 1
measurements is required, where n represents the number of network substations. The number
4n is usually considered to perform well for practical purposes. These measurements must be
distributed across the network in a way that allows the formation of a spanning tree. However,
relying solely on this minimum number of measurements has a significant drawback: the state
estimator lacks redundancy, meaning it cannot cross-verify measurements. Instead, it must as-
sume the provided measurements are valid values and will not change them. Additionally, the
choice between pseudo-measurements, PIMs or MVMUs used to achieve minimum observability
is generally flexible, as long as at least one voltage measurement is included.

Research Question 2: What is the effect of placing more than the minimum amount of measurements?

The most significant difference is that the state estimation process begins to function as intended,
balancing the network based on the available measurements while accounting for their accuracy.
However, this can only be achieved if sufficient measurements are available for comparison. The
larger the number of measurement units, the more comparisons can be made, improving state
estimation results. Additionally, selecting measurements with higher accuracy, such as going
from pseudo-measurements to PIMs, has a considerable impact on the node accuracy of the state
estimation. It improves the mean error from approximately ±12.5% to around ±1.3%. When a
sufficient number of measurements are strategically placed, less accurate substations can benefit
from the accuracy of their surrounding substations, ultimately enhancing their accuracy.

Research Question 3: Is the type of measurement taken of great importance to the accuracy of the
system’s states?

PIMs generally have the most significant impact on substation accuracy, as they directly measure
the parameter of interest. Introducing distributed generation within a feeder can also lead to
high inaccuracies, particularly at the tipping point in a cable when the generation offsets the
loads at the end of the feeder. This creates a zero point in the cable where state estimation
inaccuracies given in (%) can become high for line power flows. Node power injections remain
accurate. MVMUs can be used to measure this tipping point; the challenge lies in their dynamic
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nature, which constantly shifts depending on generation and consumption patterns, making it
difficult to assign a fixed measurement location. However, MVMUs can effectively ’split’ feeders
into multiple known segments, improving state estimation accuracy. This approach is particularly
beneficial when a single substation within the segmented feeder has poor measurement accuracy.
This method is most effective when line power flows are relatively low compared to the load in
the poorly measured substation. PMUs are not necessary for MV networks like the one tested, as
the voltage phase was estimated with a median accuracy below 1%.

Research Question 4: Which strategic substations would benefit the most from the placement of a
measurement?

Distinct types of strategic substations can be identified. The first strategic location is any sub-
station situated at a feeder splitting point. Placing an MVMU at such a station is the most
cost-efficient approach. It also allows a large feeder to be divided into distinct radial single-line
feeders, each with a known total load. Other strategic substations contribute more generally to
improving state estimation accuracy. Substations with known poor pseudo-measurements should
be prioritised for measurement, as this enhances the overall accuracy of pseudo-measurements and,
consequently, the state estimation. This is the only scenario in which revising a TNF-labelled
substation would be justified. In other cases, the cost would not be worthwhile. Additionally,
MVMUs have a negligible effect if the power flow in the line is too high relative to the load
of the substation at which they are placed. When selecting measurement locations, prioritising
substations with smaller loads over larger ones generally benefits state estimation. However, this
decision should be based on an average assessment since load distribution can shift over time.

7.1. Recommendations
This research has led to a few key recommendations. While these are tailored to Stedin’s specific
conditions and assumptions, other DSOs may also benefit from applying them to improve their state
estimation.

1. MVMU should be placed at substations where feeders split into two or more sections.

Placing measurements at these points is economically the most logical point, as the possible
measurement density is at its highest at these points. It also cuts the feeder into smaller
sections, for which the total power flow is known, increasing accuracy.

2. Place PIMs at the most inaccurate pseudo measurements.

To lower the error in the state estimation, the nodes with the worst pseudo measurements
need to be measured, or almost everything else has to be measured. The first is financially
more responsible, but comes with a new problem.

3. Find out which network elements have inaccurate pseudo measurements.

DSO must know which pseudo measurements are bad without measuring all nodes currently
relying on pseudo measurements, as this would consume too much time and money. A
few tests could indicate similarities that nodes with bad pseudo measurements share and
choose to place measurements based on that knowledge, but this would not ensure accurate
placement.

4. Ensure reliable data coupled to the right locations, as reliance on pseudo measurements acquired
from this data is considerable.

Accurate pseudo measurements are based on accurate historic data to create a proper pro-
file. If data is coupled to the wrong locations, it interferes with creating accurate profiles.
Therefore, accurate data acquisition is of high importance.

5. Do not revise TNFs substations except if it is done to improve overall pseudo measurement accu-
racy.

The revision of a substation is expensive, so it should be avoided at all times if not necessary.
The only trade-off worth it is if a TNF substation experiences the worst accuracy among the
nodes.
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6. Place measurements if stations are built or revised.

If a station is already undergoing work, it presents an ideal opportunity to install measure-
ments at a low additional cost, as the supplementary expense of placing them is minimal.
The increase in measurements will eventually lead to a better state estimation.
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A
Derivatives Power Flow Equations

All these equations are obtained from [20].

Active Power Flows
∂Pi−k

∂θi
= |Vi||Vk|(gi−k sin θik − bi−k cosθik) (A.1a)

∂Pi−k

∂θk
= −|Vi||Vk|(gi−k sin θik − bi−k cosθik) (A.1b)

∂Pi−k

∂|Vi|
= −2|Vi|(gi−k + gsh

i ) − |Vk|(gi−k cosθik + bi−k sin θik) (A.1c)

∂Pi−k

∂|Vk|
= −|Vi|(gi−k cosθik + bi−k sin θik) (A.1d)

Reactive Power Flows
∂Qi−k

∂θi
= −|Vi||Vk|(gi−k cosθik + bi−k sin θik) (A.2a)

∂Qi−k

∂θk
= |Vi||Vk|(gi−k cosθik + bi−k sin θik) (A.2b)

∂Qi−k

∂|Vi|
= −2|Vi|(bi−k + bsh

i ) − |Vk|(gi−k sin θik − bi−k cosθik) (A.2c)

∂Qi−k

∂|Vk|
= −|Vi|(gi−k sin θik + bi−k cosθik) (A.2d)

Active Power Injections
∂Pi

∂θi
= |Vi|

n∑
l=1
l ̸=i

|Vl|(−Gil sin θil + Bil cosθil) (A.3a)

∂Pi

∂θk
= |Vi||Vk|(Gik sin θik − Bik cosθik) (A.3b)

∂Pi

∂|Vi|
= 2|Vi|Gii +

n∑
l=1
l ̸=i

|Vl|(Gil cosθil + Bil sin θil) (A.3c)

∂Pi

∂|Vk|
= |Vi|(Gik cosθik + Bik sin θik) (A.3d)
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Reactive Power Injections

∂Qi

∂θi
= |Vi|

n∑
l=1
l ̸=i

|Vl|(Gil cosθil + Bil sin θil) (A.4a)

∂Qi

∂θk
= |Vi||Vk|(−Gik cosθik − Bik sin θik) (A.4b)

∂Qi

∂|Vi|
= −2|Vi|Bii +

n∑
l=1
l ̸=i

|Vl|(Gil sin θil − Bil cosθil) (A.4c)

∂Qi

∂|Vk|
= |Vi|(Gik sin θik − Bik cosθik) (A.4d)

Voltage magnitude
∂|Vi|
∂θj

= 0 . . . ∀j (A.5a)

∂|Vi|
∂Vj

= 0 . . . j ̸= i (A.5b)

∂|Vi|
∂Vj

= 1 . . . j = i (A.5c)



B
Other Network States Results
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Figure B.1: Reactive power absolute error of Feeder 2 without an with the addition of MVMUs at the split points of the
Feeder.
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Figure B.2: Voltage magnitude absolute error of Feeder 2 without an with the addition of MVMUs at the split points of
the Feeder.

3 87 62 54 85 19 47 70 98 95 20 58 44 11 77 80 61 42 38 60 92 82 4 93 64 67 45 83 59 37 74 13 41
Node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Er
ro

r v
a_

de
gr

ee
 (%

)

Comparison of va_degree across Selected Nodes
Configuration

Configuration 1
Configuration 2

Figure B.3: Voltage phase absolute error of Feeder 2 without an with the addition of MVMUs at the split points of the
Feeder.



C
Selected Nodes for Placement

Amount
Feeder
Measured

Nodes

30% 50, 53, 57, 65, 73, 16, 78, 90, 35, 18, 69, 52, 47, 85, 58, 20, 44, 87, 98, 54, 74,
61, 70, 60, 66, 43, 84, 27, 46, 94, 86, 49, 88, 26, 68, 72, 5, 31, 23

50% 50, 53, 57, 65, 73, 16, 78, 90, 97, 81, 35, 18, 69, 52, 91, 62, 11, 19, 13, 85, 58,
20, 87, 44, 47, 98, 54, 74, 61, 70, 60, 66, 43, 84, 27, 46, 94, 76, 28, 6, 33, 88, 5,
24, 26, 7, 72, 55, 15, 86, 68, 49, 31, 14, 23, 10

70% 50, 53, 57, 65, 73, 16, 69, 21, 91, 52, 18, 78, 40, 35, 71, 81, 97, 90, 8, 38, 92, 82,
59, 42, 62, 11, 67, 19, 13, 85, 58, 20, 37, 87, 44, 47, 98, 54, 74, 61, 70, 60, 66,
43, 84, 27, 46, 94, 76, 28, 6, 33, 30, 12, 39, 29, 68, 32, 56, 24, 36, 49, 88, 86, 15,
55, 72, 7, 26, 5, 31, 14, 23, 10

Table C.1: Selected PIM Locations for Different Pseudo Accuracy
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