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SUMMARY

Observing vegetation water dynamics from space offers insights into plant-water rela-
tions and water and carbon fluxes across ecosystems at local to global scales. A promis-
ing technique to observe water in the vegetation layer is radar, an active form of mi-
crowave remote sensing. Interactions between microwaves and vegetation material de-
pend on dielectric properties of the vegetation tissue, which are a function of water con-
tent.

The research presented within this thesis aims to extend our physical understand-
ing of the relationship between vegetation water dynamics and radar backscatter. The
particular focus was on sub-daily dynamics, motivated by the dynamic nature of plant-
water interactions and developments in the availability of sub-daily spaceborne radar
observations. Moreover, we examined the effect of vertical water dynamics inside the
vegetation layer on backscatter, which is relevant for better understanding which parts of
the vegetation layer control the signal. To limit complexity, we focused on homogeneous
corn fields. During ground-based experimental campaigns, we collected scatterometer
data in vertical (VV), horizontal (HH) and cross (VH and HV) polarizations, and exten-
sive measurements of water dynamics from these fields. These datasets were analyzed
using statistical analyses and electromagnetic models.

First, we tested a common assumption that sub-daily changes in vegetation water
content (VWC) have a negligible effect on backscatter (Chapter 3). Changes in water
content were quantified from crop emergence to harvest. Here, we separated (a) sur-
face soil moisture (SSM), measured with sensors, (b) internal VWC, measured by means
of destructive sampling, and (c) surface canopy water (SCW), such as dew and rain-
fall interception, measured using leaf wetness sensors and geometric measurements.
Next, variations in these ‘moisture stores’ were compared with variations in L-band radar
backscatter, both on sub-daily and seasonal scales. In the early season, we found the
largest sub-daily variations in backscatter, which were mainly due to changes in soil
moisture and dew deposition on the soil surface. In mid- and late season, sub-daily
backscatter patterns showed substantial similarities to SCW and the sap flow cycle. In
addition, we found that VWC decreased by 0-20% between 6:00 and 18:00, while the
backscatter coefficients also significantly dropped in this period. These results suggest
that, in mid- and late season, both VWC and SCW play a much more important role in
the sub-daily variation of radar backscatter than has often been assumed.

An important limitation of this study, and of many other studies on microwave ob-
servations of vegetation as well, is the lack of high temporal resolution VWC data. With-
out these data, it is difficult to separate and quantify signals from vegetation and soil.
This should be addressed when we aim to understand and use sub-daily variations in
microwave signals. Therefore, we investigated an alternative for the laborious and time-
consuming destructive sampling during the day, using sap flow measurements and tran-
spiration estimates (Chapter 4). This method allowed us to extrapolate VWC with a 15-
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minute resolution. Our results showed that the water content in our corn varied by 10-
20% during the day under non-stressed conditions, and up to 35% under stressed condi-
tions. We also found that, from all polarizations, VV-pol was most sensitive to variations
in VWC and SCW, closely followed by the average of the cross-pols. Moreover, backscat-
ter variations during a typical dry day were two (HH- and cross-pol) to four (VV-pol)
times more sensitive to the diurnal VWC cycle than to variations in soil moisture. Hence,
with the 15-minute VWC extrapolations it was confirmed that the sub-daily variations of
our radar backscatter observations were highly affected by VWC.

Finally, we also investigated the effect of the vertical moisture distribution within
the vegetation layer on radar backscatter (Chapter 5). The goal was to understand which
parts of the vegetation layer control the backscatter dynamics. Through destructive sam-
pling, we found that the largest diurnal changes in VWC originated from the lower parts
of the stems and the largest leaves and ears in the center of the plant. By placing leaf
wetness sensors on different heights across the corn plants, we found that dew was de-
posited mainly in the upper and middle parts, and rainfall was intercepted throughout
the entire plant. These results were used to divide the widely used Water Cloud Model
(WCM) into three different layers. The model simulations suggest that, from mid-season
onward, total backscatter was largely controlled by water in the layer with the largest
leaves, 50-100 cm above the ground, which also contained the ears in the late season. Ac-
cording to the simulations, the two-way attenuation of the microwaves by the vegetation
layers leads to a smaller contribution from the lower 50 cm to the total radar backscatter,
while the top 100 cm is semi-transparent due to low water storage in that layer. These
results show the importance of taking the vertical moisture distribution of a vegetation
layer into account when studying the contribution of vegetation to backscatter.

Ultimately, understanding backscattering from a vegetated area will remain chal-
lenging because of complex interactions between microwaves, vegetation and soil. This
thesis builds towards further understanding backscatter time series by using unique field
observations with unprecedented detail. For the first time, variations in radar backscat-
ter were linked to continuous, separate measurements of internal vegetation water con-
tent, surface canopy water and soil moisture. Insights from the field campaigns and
modelling studies provide a foundation for further research on the opportunities for sub-
daily and multi-frequency radar. Certainly, sub-daily radar has the potential to become
an important source of data for local to global scale studies on processes related to veg-
etation water dynamics.



SAMENVATTING

Het observeren van vegetatiewaterdynamiek vanuit de ruimte biedt inzichten in plant-
water relaties en water- en koolstoffluxen in ecosystemen op lokale tot mondiale schaal.
Een veelbelovende techniek om vegetatiewater te observeren is radar, een actieve vorm
van microgolf remote sensing. Interacties tussen microgolven en vegetatiemateriaal wor-
den bepaald door diëlektrische eigenschappen van het vegetatieweefsel, die op hun beurt
een functie zijn van watergehalte.

Het onderzoek gepresenteerd in deze scriptie heeft als doel om ons fysiek begrip van
de relatie tussen vegetatiewaterdynamiek en radarweerkaatsing uit te breiden. De na-
druk lag in het bijzonder op de sub-dagelijkse dynamiek, gemotiveerd door the dynami-
sche aard van plant-water interacties en ontwikkelingen in de beschikbaarheid van sub-
dagelijkse observaties van radarweerkaatsing uit te ruimte. Bovendien onderzochten we
het effect van verticale waterdynamiek in de vegetatielaag op radarweerkaatsing, wat re-
levant is om beter te begrijpen welke delen van de vegetatielaag het signaal beheersen.
Om complexiteit te beperken hebben we ons gericht op homogene maïsvelden. Tijdens
experimenteel veldonderzoek verzamelden we scatterometer data in verticale (VV), ho-
rizontale (HH), en kruis (VH en HV) polarisaties, en omvangrijke metingen van waterdy-
namiek in deze velden. Deze datasets werden geanalyseerd met behulp van statistische
analyse en elektromagnetische modellen.

Ten eerste testten we de vaak gedane aanname dat sub-dagelijkse veranderingen
in vegetatiewatergehalte (VWG) een verwaarloosbaar effect hebben op radarweerkaat-
sing (Hoofdstuk 3). Van opkomst van het gewas tot de oogst werden veranderingen
van watergehalte gekwantificeerd. Hierbij werd onderscheid gemaakt tussen (a) bodem-
vocht aan de oppervlakte, gemeten met sensoren, (b) intern VWG, gemeten door middel
van destructieve bemonstering, en (c) vegetatie- oppervlaktewater (VOW), zoals dauw
en regenvalinterceptie, gemeten met behulp van bladvochtigheidssensoren en geome-
trische metingen. Variaties in deze drie ‘vochtreservoirs’ werden vervolgens vergele-
ken met variaties in L-band radarweerkaatsing, zowel op sub-dagelijkse- als seizoens-
schaal. In het vroege seizoen vonden we de grootste dagelijkse variaties in radarweer-
kaatsing, die met name toegeschreven konden worden aan veranderingen in bodem-
vocht en dauwafzetting op het grondoppervlak. In het midden- en late seizoen toonden
sub-dagelijkse patronen in radarweerkaatsing substantiële gelijkenissen met VOW en de
omgekeerde sapstroomcyclus. Daarnaast vonden we dat VWG tot 20% verminderde tus-
sen 6:00 en 18:00, terwijl radarweerkaatsing ook significant daalde in deze periode. Deze
resultaten suggereren dat, in het midden- en late seizoen zowel VGW als VOW een veel
belangrijkere rol spelen in de dagelijkse variatie van radarweerkaatsing dan tot nu toe
vaak werd aangenomen.

Een belangrijke beperking van deze studie, en ook van vele andere studies naar mi-
crogolfobservaties van vegetatie, is het gebrek aan VWG gegevens met hoge temporele
resolutie. Zonder deze data is het moeilijk om signalen van vegetatie of bodem te schei-
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viii SAMENVATTING

den en te kwantificeren. Dit zal moeten worden aangepakt wanneer we sub-dagelijkse
variaties in microgolfsignalen willen begrijpen en gebruiken. Daarom onderzochten we
een alternatief voor de arbeid- en tijdrovende destructieve bemonsteringsmethode om
VWG te meten (Hoofdstuk 4). Variatie in VWG werd bepaald middels een methode ge-
baseerd op de waterbalans: sapstroom (in) en transpiratie (uit). Deze methode maakte
het mogelijk VWG te bepalen met een resolutie van 15 minuten. Uit de resultaten bleek
dat het vochtgehalte in onze maïsplanten dagelijks met 10-20% varieerde onder normale
condities, en tot 35% tijdens waterstress. Verder vonden we dat, van alle polarisaties, VV-
pol het meest gevoelig was voor variaties in VWG en VOW , gevolgd door het gemiddelde
van de kruis-polarisaties. Op een typische droge dag was het zelfs zo dat de variatie van
radarweerkaatsing gedurende de dag twee (HH- en kruis-pol) tot vier (VV-pol) keer meer
bepaald werd door de dagelijkse VWG cyclus dan door variatie in bodemvocht. Met be-
hulp van de geëxtrapoleerde VWG gegevens werd dus bevestigd dat VWG grote invloed
had op de sub-dagelijkse variaties van onze radarweerkaatsingsobservaties.

Tot slot onderzochten we ook wat het effect van de verticale vochtverdeling is binnen
de vegetatielaag op radarweerkaatsing (Hoofdstuk 5). Het doel hiervan was om te begrij-
pen welke delen van de planten het radarsignaal het meeste bepalen. Door destructieve
bemonstering vonden we dat de grootste dagelijkse veranderingen in VWG voornamelijk
kwamen uit de onderste delen van de stengels, en de grootste bladeren en maïskolven
in het midden van de plant. Met behulp van bladvochtigheidssensoren, geplaatst op
verschillende hoogtes langs de maïsplanten, vonden we dauwafzettingen vooral op de
bovenste en middelste delen van de plant, en regeninterceptie overal. Deze resultaten
hebben we gebruikt om het veelgebruikte Water Cloud Model (WCM) in drie verschil-
lende lagen op te delen. De modelsimulaties suggereerden dat, vanaf het midden van
het seizoen, de totale radarweerkaatsing grotendeels bepaald werd door het water in de
laag met de grootste bladeren, op 50-100 cm boven de grond, die in het late seizoen ook
de kolven bevatte. De uitdoving van de golven door de vegetatielaag zorgden er volgens
de simulaties voor dat de onderste 50 cm een kleinere bijdrage heeft aan de totale radar-
weerkaatsing, terwijl de bovenste 100 cm semi-transparant is. Deze resultaten laten zien
waarom het van belang is om de verticale vochtverdeling van een vegetatielaag mee te
nemen wanneer de bijdrage van deze vegetatie op radarweerkaatsing wordt bestudeerd.

Uiteindelijk zal het begrip van radarweerkaatsing van een begroeid gebied een uitda-
ging blijven vanwege de complexe interacties tussen microgolven, vegetatie en bodem.
Deze scriptie bouwt verder aan een beter begrip van radarweerkaatsingtijdreeksen door
gebruik te maken van unieke veldwaarnemingen met ongekende details. Voor het eerst
werden veranderingen in radarweerkaatsing gelinkt aan continue, aparte metingen van
intern VWG, VOW en bodemvocht. Inzichten van de veldcampagnes en modelstudies
vormen een basis voor verder onderzoek naar de kansen voor sub-dagelijkse en multi-
frequentie radar. Het staat buiten kijf dat sub-dagelijkse radar de potentie heeft om een
belangrijke bron van data te zijn voor studies naar processen gerelateerd aan vegetatie-
waterdynamiek.
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List of abbreviations
ASCAT Advanced Scatterometer
BBCH Biologische Bundesanstalt, Bundessortenamt und CHemische In-

dustrie
CDF Cumulative Distribution Function
ESA European Space Agency
FAO Food and Agriculture Organization of the United Nations
FAWN Florida Automated Weather Network
GEO Geosynchronous Equatorial Orbit
Globe-LFMC Global database of Live Fuel Moisture Content
GNSS Global Navigation Satellite System
HH Horizontal transmit and Horizontal receive
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IEM Integral Equation Method
IFAS Institute of Food and Agricultural Sciences
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LAI Leaf Area Index
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MEO Medium Earth Orbit
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NISAR NASA-ISRO Synthetic Aperture Radar
PolSAR Polarimetric Synthetic Aperture Radar
RCM RADARSAT Constellation Mission
ROSE-L Radar Observing System for Europe - L-Band
SAR Synthetic Aperture Radar
SMAP Soil Moisture Active Passive
SSM Surface Soil Moisture
TVM Tor Vergata discrete backscatter and emission Model
UF-LARS University of Florida L-band Automated Radar System
VH Vertical transmit and Horizontal receive
VOD Vegetation Optical Depth
VV Vertical transmit and Vertical receive
WCM Water Cloud Model
XP Cross-Polarized - averaged VH and HV
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List of symbols
Ψsoi l Soil water potential [kPa]
ρpl ant Plant density [m−2]
σ0 Backscatter coefficient [dB]
σ0

H H Horizontally polarized backscatter [dB]
σ0

obs Observed backscatter coefficient [dB]

σ0
si m Simulated backscatter coefficient [dB]

σ0
soi l Soil contribution to backscatter [dB]

σ0
veg Vegetation contribution to backscatter [dB]

σ0
V V Vertically polarized backscatter [dB]

σ0
X P Cross-polarized backscatter [dB]

τ Transmissivity [-]
τ2 Two-way transmission through the vegetation layer [-]
θ Volumetric soil moisture content [m3m−3]
θI Incidence angle [◦]
As Sensor area [m2]
Al ea f Leaf area [m2]
C Water Cloud Model parameter [-]
CW Canopy Water [kg m−2]
D Water Cloud Model parameter [-]
ET0 Reference evapotranspiration [mm 15min−1]
F Sap flow [mm 15min−1]
H Height of the vegetation [m]
I Irrigation [mm 15min−1]
l Leaf length [m]
md Dry biomass [kg]
m f Fresh biomass [kg]
Mg Gravimetric moisture content [-]
Mw Mass of surface water on sensor or leaf [kg]
P Precipitation [mm 15min−1]
Rs Solar radiation [W m−2]
SCW Surface Canopy Water [kg m−2]
T Temperature [◦C ]
T Transpiration [mm 15min−1]
V W C Vegetation Water Content [kg m−2]
W Volumetric water content of the vegetation layer in the WCM [m3m−3]
w Leaf width [m]
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2 1. INTRODUCTION

1.1. THE IMPORTANCE OF MONITORING VEGETATION WATER DY-
NAMICS FROM SPACE

Vegetation water dynamics refers to the presence and motion of water in a vegetation
layer. This involves processes related to water inside vegetation tissue and water on top
of vegetation surfaces, such as dew and rainfall interception. Monitoring these dynamics
is crucial for applications related to (1) the health and performance of the vegetation
itself, and (2) large-scale processes which are affected by vegetation-water interactions.

Dynamics in internal vegetation water content (VWC) reflect the balance of transpi-
ration and root water uptake. Progressive dehydration occurs when transpiration ex-
ceeds root water uptake for multiple days in a row. Anomalies in the shape of the diurnal
cycle of VWC can be an early warning signal for drought-induced water stress, which
affects the physiological functions and growth of the vegetation (Konings et al., 2021;
Nelson et al., 2018; Porporato et al., 2001; Rahman and Hasegawa, 2012; Reddy et al.,
2004; Shao et al., 2008; van Emmerik et al., 2015). Consequently, VWC as a measure of
plant water status has important implications for assessing the health of both natural
vegetation and agricultural crops (Yebra et al., 2019).

In addition to being of direct relevance for ecosystem health, vegetation water dy-
namics play a crucial role in the regulation of water movement between land and atmo-
sphere, and with that, the coupled energy and carbon cycles. Spatiotemporal observa-
tions of vegetation water dynamics are therefore essential for the parameterization of
ecohydrological and land-surface models (Cosh et al., 2009; Konings et al., 2019; Nelson
et al., 2018; Tian et al., 2018). There is particular need for an improved understanding
of rapid (<hour), fine-scale (10-20 km) hydrological processes (Hobbs et al., 2019; Tren-
berth and Asrar, 2014). Remote sensing offers the possibility to cover large areas and
provide spatiotemporal model inputs. A remote sensing technique of particular interest
is radar (RAdio Detection And Ranging), because of its sensitivity to VWC and its ability
to ensure timely data.

1.2. DEVELOPMENTS IN RADAR REMOTE SENSING OF VEGETA-
TION

Radar instruments operate in the microwave region of the electromagnetic spectrum,
with wavelengths of 0.5-100 cm, or 0.3-300 GHz in terms of frequency. Low-frequency
microwaves (up to ∼10 GHz) are able to penetrate cloud cover, and are therefore most
suitable to ensure timely observations of the Earth’s surface (Steele-Dunne et al., 2017).
A radar antenna transmits a radio wave in the direction of a target, and measures the
part of the echo that reflects back towards the antenna, which is called backscatter. The
strength (amplitude) of the backscatter depends on the properties of a target, i.e. geom-
etry and dielectric constant. The dielectric constant is the main property of a material
describing the interaction with an electromagnetic field. A higher dielectric constant
is associated with stronger scattering. Hence, the large contrast between the dielectric
constants of water and soil particles is the fundamental basis for the development of
radar as an earth observation tool to measure surface soil moisture content (Wang and
Qu, 2009). The geometry of a target determines the direction of the scattering and thus
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the portion of the scattering that returns to the antenna as backscatter.
From early field experiments with truck-mounted radar instruments in the 1970s, it

was found that the correlation between backscatter and soil moisture reduced with vege-
tation cover, particularly for the higher frequencies (Dickey et al., 1974; Ulaby et al., 1975;
Ulaby, 1974, 1975). Since then, small-scale experiments and large-scale field campaigns
have been set up, and empirical, semi-empirical and physical models have been devel-
oped, aiming to (1) understand the complex interactions between microwaves, vegeta-
tion and soil and (2) extract information from the acquired radar imagery, often primar-
ily for isolating soil moisture from other signals (Attema and Ulaby, 1978; Bracaglia et al.,
1995; El-rayes and Ulaby, 1987; Joseph et al., 2010; Y. Kim and van Zyl, 2009; Kurum et
al., 2009; Ulaby and El-rayes, 1987; Ulaby et al., 1990). In general, it was found that total
backscatter from a vegetated surface is the sum of backscatter from the soil, which is de-
creased by the two-way attenuation of the vegetation layer, backscatter from the vegeta-
tion, governed by its water content and geometry, and backscatter from soil-vegetation
interactions (Steele-Dunne et al., 2017; Wang and Qu, 2009). Whether backscatter is
dominated by contributions from soil or vegetation depends on the configurations of
the radar instrument, i.e. frequency, incidence angle, and polarization.

The increased understanding of microwave interactions with vegetation aided the
development of several other applications. The launch of the first synthetic aperture
radar (SAR) systems since 1978 (Woodhouse, 2017) led to the availability of higher res-
olution backscatter data (meters instead of kilometers with scatterometers), which ad-
vanced the development of applications such as land cover classification (Cloude and
Pottier, 1997; Qi et al., 2012), monitoring biomass accumulation (Santoro et al., 2015; Yu
and Saatchi, 2016), monitoring crop phenological stage (Khabbazan et al., 2019; Vreug-
denhil et al., 2018) and detection of deforestation (Reiche et al., 2018; Thiel et al., 2006).
Moreover, the sensitivity to vegetation water content (VWC) has been used in studies on
plant water response to drought (Frolking et al., 2011; Saatchi et al., 2013) and forest fire
susceptibility (Leblon et al., 2002; Saatchi et al., 2007).

The applications are constrained by satellite revisit times of multiple days, and single-
frequency acquisitions. However, current developments in satellite radar mission design
suggest that sub-daily radar becomes available in the next decades (Hobbs et al., 2019;
Hu et al., 2016). In fact, commercial X-band (9.65 GHz) SAR system constellations are
already being populated in Low Earth Orbit, and should be capable of delivering hourly
data within a couple of years (Farquharson et al., 2021; Ignatenko et al., 2020). These de-
velopments suggest that the potential applications of spaceborne radar are now expand-
ing to the measurement of rapid processes, such as diurnal vegetation water dynamics.

1.3. RESEARCH GAPS AND OBJECTIVES
The future availability of sub-daily spaceborne radar data offers a unique opportunity
to study vegetation water dynamics from local to global scale with unprecedented de-
tail. However, there are a lot of open questions to be answered to understand the full
potential of these developments. Most importantly, the extent to which vegetation wa-
ter dynamics affect variations in radar backscatter, particularly at sub-daily scale, is still
poorly understood. This thesis aims to extend our physical understanding of this rela-
tionship.
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It is often assumed that the influence of sub-daily variations in internal VWC and
surface canopy water (SCW), i.e. dew and rainfall interception, on backscatter is negli-
gible. However, there are clear indications that this assumption is invalid. Some studies
found structural differences between morning and evening overpass backscatter from
scatterometers in sun-synchronous orbits with Ku-band (13.4 GHz; Frolking et al., 2011)
and C-band (5.3 GHz; Friesen et al., 2012; Schroeder et al., 2016; Steele-Dunne et al.,
2019; Wood et al., 2002) frequencies. Other studies found diurnal cycles in aggregated
backscatter data from a Ku-band (13.5 GHz) scatterometer in a non-sun-synchronous
orbit (Konings et al., 2017; Paget et al., 2016; van Emmerik et al., 2017). Given that pen-
etration depths for these frequencies are low, backscatter should have been mainly sen-
sitive to the vegetation layer (Dickey et al., 1974; Z.-L. Li et al., 2021; Ulaby et al., 1984).
Because changes in vegetation structure should be low on a sub-daily timescale, these
results suggest that sub-daily variations in VWC and/or SCW are sufficiently detectable
with spaceborne radar.

To support this hypothesis, reference can be made to ground-based experiments, in
which tower-based backscatter observations are related to in situ field measurements.
Brisco et al., 1990 for example related two full days of destructively sampled gravimet-
ric moisture content of wheat plants and soil to variations in backscatter observations
from a Ku-, C- and L-band truck-mounted scatterometer. It was shown that C- and L-
band sub-daily variability was comparable to the diurnal cycle of plant moisture con-
tent when plant moisture content was high, and comparable to soil moisture variations
when plant moisture content was low. Gillespie et al., 1990 used the same instrument to
conclude that the presence of dew, assessed by visual inspection, indeed had an effect
on backscatter by comparing backscatter patterns between one night with and one night
without dew. Other experiments found relations between the amount of rainfall inter-
ception from trees to variations in X-band (8.9 -10.4 GHz) backscatter and attenuation
(Bouten et al., 1991; De Jong et al., 2002).

These ground-based experiments are crucial for a fundamental understanding of
backscatter sensitivity to sub-daily vegetation water dynamics. However, the experi-
ments are sparse and the data sets too limited to quantify the relative importance of
VWC, SCW and soil moisture on sub-daily backscatter variations. Moreover, the extent
to which water storage in an aboveground vegetation layer varies on a sub-daily level is
poorly described in literature, due to the difficulty and labor intensity of the measure-
ments. Hence, the first objective of this dissertation is to quantify the sub-daily varia-
tion of water storage in the aboveground vegetation layer, both internal VWC and ex-
ternal SCW, and to understand how these, together with surface soil moisture, control
sub-daily variations in backscatter.

To better understand the effect of vegetation water dynamics on backscatter, we
should not only focus on the total aboveground VWC or SCW. We also need to know
which parts of the vegetation layer control that backscatter. This is first and foremost im-
portant for a good interpretation of the radar observations. In addition, it offers possibil-
ities for the development of multi-frequency radars, with different penetration depths,
to retrieve information from the vertical profile of the vegetation layer. From studies
on backscatter sensitivity to soil moisture, it is known that, in general, lower frequen-
cies penetrate deeper into the vegetation layer than higher frequencies (Dickey et al.,
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1974; Z.-L. Li et al., 2021; Ulaby et al., 1984). However, backscatter sensitivity to different
depths or layers in the canopy is poorly understood.

Some studies have incorporated two vertical vegetation layers into physical models
(Link et al., 2022; Ulaby et al., 1990) and the semi-empirical Water Cloud Model (WCM;
Hoekman, 1987; L. Liu et al., 2012; Ulaby et al., 1984). Although these studies provide
useful insights in the importance of vertical inhomogeneity of moisture on backscatter,
the differences between the layers were not based on a realistic vertical distribution of
moisture in the vegetation layer. A lack of observational data to describe the vertical
moisture distribution limits the research on this issue. Hence, the second objective of
the work presented in this dissertation is to measure the vertical distribution of mois-
ture in the vegetation layer, and to incorporate a realistic distribution in a multi-layer
WCM to better understand which parts of the vegetation layer control the backscatter
dynamics.

The measurements were conducted in two ground-based experiments. Corn was
chosen as our main crop of interest for a couple of reasons. First, an agricultural crop
such as corn is relatively simple and homogeneous, which makes it accessible to sample
and model. There are already electromagnetic model versions for corn (e.g. Bracaglia
et al., 1995), which makes calibration and validation using field observations easier. Sec-
ond, peak corn water content can reach to around 5 kg m−2, which is higher than most
other crops and offers the opportunity to measure dominant control on backscatter from
vegetation for the commonly used frequencies (X, C and L-band). Ultimately, if we can
understand the relation between backscatter and vegetation water dynamics from a ho-
mogeneous agricultural field, that could be the start of a better understanding of more
complex ecosystems.

1.4. THESIS OUTLINE
The contents presented in this dissertation are based on a description of the experimen-
tal set-up and three self-contained journal articles. Some overlap between these chap-
ters may be present.

Chapter 2 presents an overview of the experimental set-ups and essential details
about the instrumentation from the campaigns in Citra (FL,USA) and Reusel (NL). Chap-
ter 3 presents the results from the campaign in Florida. For different stages in the sea-
son, we quantify fluctuations of internal and surface canopy water and soil moisture,
and illustrate their effect on sub-daily patterns of L-band backscatter. A key limitation
of this study, the absence of high resolution sub-daily VWC, is addressed in Chapter 4.
In this chapter, we extrapolate a continuous record of internal VWC using sparse de-
structive vegetation sampling and hydrometeorological data. The resulting time series
is used to quantify the separate effects of VWC, SCW and soil moisture on backscatter
through multiple linear regression. Chapter 5 shifts focus from temporal variability to
the influence of the vertical distribution of canopy water on backscatter. In particular,
multi-layer model simulations were performed to understand which parts of the vegeta-
tion layer control the backscatter dynamics. Finally, Chapter 6 gives an overview of the
main findings, along with implications and recommendations for further research.





2
FIELD CAMPAIGNS AND

INSTRUMENTATION

The research presented in this dissertation is based on intensive experimental work. This
chapter gives a concise overview of the experimental set-up for two campaigns: in Florida
(2018), and in the Netherlands (2019). In addition, specifications about the instrument
and measuring approaches, which were largely similar for both campaigns, are given.
Specific information about the sensor installation, measurement frequency and data pro-
cessing is further discussed in the related Chapters 3-5.

Parts of this chapter have been published in:

Vermunt, P. C., Khabbazan, S., Steele-Dunne, S. C., Judge, J., Monsivais-Huertero, A., Guerriero, L., and Liu, P.
W. (2020). Response of Subdaily L-Band Backscatter to Internal and Surface Canopy Water Dynamics., IEEE
Transactions on Geoscience and Remote Sensing 59, (9), 7322 - 7337.

Vermunt, P. C., Steele-Dunne, S. C., Khabbazan, S., Judge, J., and Van de Giesen, N. C. (2022). Extrapolating
Continuous Vegetation Water Content To Understand Sub-daily Backscatter Variations, Hydrology and Earth
System Sciences 26, 1223-1241 .
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2.1. CAMPAIGNS

The purpose of the campaigns was to acquire data which helps us to understand the re-
lation between water dynamics in the field and variations in radar backscatter. Water
storage and movement was measured using a combination of hydrometeorological sen-
sors and destructive sampling. Time series of the backscatter coefficients were acquired
from ground-based scatterometer observations.

There are substantial similarities between the experimental campaigns. However,
major differences include the availability of backscatter observations, the frequency of
the destructive sampling and the type of corn. These will be discussed in sections 2.1.1
and 2.1.2. In both campaigns, the field set-up was organized around the observations
from a multi-frequency (X-,C-, and L-band) scatterometer. Unfortunately, the data from
this instrument could not be used due to system failure. Hence, the measurements from
this system are not further discussed in this dissertation. However, because of its im-
portance for the experimental set-up, the footprint of this system is included in the
schematic overviews of the campaigns (Fig. 2.1 and 2.2).

2.1.1. CITRA 2018

The field experiments conducted for the research presented in this dissertation were part
of the larger MicroWEX-12 (Microwave Water and Energy Balance Experiment, no. 12)
project. MicroWEX-12 was conducted at the UF/IFAS Extension Plant Science Research
and Education Unit (PSREU), Citra, Florida (29.410◦ N, 82.179◦ W), in Spring 2018. Figure
2.1 shows a schematization of the experimental set-up. The sensors and areas which
were related to other studies were not included in this map.

On a sandy soil (>90% sand), sweet corn (Zea mays L. var. rugosa) was grown in an
east-west direction. The field was irrigated with a center-pivot irrigation system. On the
north side of the field, two radar systems (UF-LARS and TUD-scat) acquired measure-
ments adjacent to each other and perpendicular to the row direction. To avoid any radio
frequency interference, the acquisitions from the microwave sensors were coordinated.
Because TUD-scat failed, details of its measurements are excluded in this dissertation.
However, the footprint of this scatterometer is included due to its importance for the
field set-up. Figure 2.1 shows that the conservative footprints of UF-LARS (42m x 21m)
and TUD-scat (70m x 35m) partly overlap. These conservative footprints are areas that
are larger than the actual radar footprints. All sensors and hardware (section 3.2.3) were
installed outside these footprints to avoid metal materials affecting the backscatter ob-
servations. In addition, all foot traffic within the radar footprints was avoided, to pre-
vent any changes in soil roughness. Measurements of soil roughness, crop development
(height, LAI, BBCH, geometry), and crop density (section 2.2.3) were conducted at nu-
merous random locations outside the footprints. Destructive sampling (section 2.2.3)
was performed in the designated areas, leaving no impact on sensor measurements.
Cutting, weighing and drying of the samples was performed on the terrain of PSREU,
close to the weather station. Soil moisture sensors were calibrated at Frazier-Rogers Hall
at the University of Florida in Gainesville.
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Legend            
            Areas                                                             Sensors 
            UF-LARS conservative footprint              UF-LARS (L-band)      
            TUD-scat conservative footprint              TUD scatterometer (XCL-band)   
            Destructive sampling areas                        Soil moisture  
            Other                                                             Leaf wetness
            Center-line pivot system                            Sap flow
            Crane                                Soil water potential  
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weather station 600 m 

0                 25                50                75             100 m

corn rows

Figure 2.1: Schematization of the experimental set-up during the MicroWEX-12 campaign at Citra, Florida
(29.410◦ N, 82.179◦ W), in 2018.

2.1.2. REUSEL 2019
A subsequent campaign was set up in Reusel, the Netherlands (51.319◦ N, 5.173◦ E), on
the terrain of Van den Borne Aardappelen in the growing season of 2019. An important
goal for this campaign was to capture the diurnal cycles of VWC. Figure 2.2 shows a
schematization of the experimental set-up. The experimental design has many simi-
larities with the MicroWEX-12 campaign.

Field corn was grown for silage on a sandy soil, and irrigated with a gun sprinkler
irrigation system. A weather station was installed at the edge of the field, in between
the corn field and a field with sugar beets. Cutting and weighing the fresh samples was
performed in a shed on the terrain. Oven-drying and weighing the dry samples was
performed in the WaterLab at Delft University of Technology. Because data from the
TUD-scat system could not be used, no ground-based radar observations were available
for this campaign.

2.2. INSTRUMENTATION AND SAMPLING

2.2.1. UF-LARS
Observations of radar backscatter coefficients (σ0) were acquired from the University of
Florida L-band Automated Radar System (UF-LARS), a tower-based scatterometer (Fig-
ure 2.3). This system operates at a center frequency of 1.25 GHz, and is designed to col-
lect data at four polarization combinations (HH, VV, HV and VH) with a dual polarization
horn antenna. It was mounted on a Genie aerial work platform at a height of 14 m above
the ground. From there, the field was scanned with a fixed incidence angle of 40◦.
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Legend            
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Figure 2.2: Schematization of the experimental set-up for the campaign at Reusel, the Netherlands (51.319◦ N,
5.173◦ E), in 2019.

The backscatter coefficients are computed using the Single Target Calibration Tech-
nique (STCT) (P.-W. Liu, 2013; Sarabandi and Ulaby, 1990). To suppress fading, 27 in-
dependent samples are averaged (P.-W. Liu et al., 2016); nine samples were taken at 30
MHz increments from 1130-1370 MHz, for each of the three azimuthal scans at -9◦, 0◦,
and +9◦. The total error was estimated by P.-W. Liu et al., 2016 to be 1.71 dB, and includes
a systematic error of 1.49 dB and a random error of 0.85 dB (fading). The systematic
error was estimated, via error propagation, by combining the measurement errors of
calibration target geometry (1.4 dB), ranges between antenna to terrain (0.17 dB) and
calibration target (0.35 dB), and incidence angle (0.32 dB; Nagarajan et al., 2014).

Ground range and azimuth resolutions were calculated based on the 3 dB beamwidth
of 14.7◦ in the E-plane and 19.7◦ in the H-plane (Nagarajan et al., 2014). The resulting
single-scan footprints in HH, VV, and cross-pol were 40.0, 39.7, and 29.1 m2, respectively.
An overview of the system specifications in given in Table 2.1. A full description of the
system specifications can be found in Nagarajan et al., 2014 and P.-W. Liu et al., 2016.

2.2.2. HYDROMETEOROLOGICAL SENSORS
Hydrometeorological sensors were installed to acquire continuous (15 minute resolu-
tion) data on water storage and movement in the soil and vegetation layer.

LEAF WETNESS

Dielectric leaf wetness sensors, produced by METER Group (München, Germany), were
installed to measure the surface water on the vegetation (see Fig. 2.4(a)). These sensors
are designed to approximate thermodynamic and surface properties of actual leaves,
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Table 2.1: UF-LARS system specifications

Parameter UF-LARS
Frequency (GHz) 1.25

3dB Beamwidth (deg) E-plane 14.7
H-plane 19.7

Bandwidth (MHz) 300
Antenna type Dual-polarization horn

Range resolution (m) HH/VV/XP 8.5/6.2/6.2
Azimuth resolution (m) HH/VV/XP 4.7/6.4/4.7

NEσ0 (dB) HH/VV/XP -23.43/-25.58/-48.12
Error in σ0 (dB) Systematic 1.49

Random 0.85
Incidence angle (deg) 40
Platform height (m) 14

Figure 2.3: Scatterometers in Florida 2018 before sowing. The UF-LARS system is mounted to the blue crane
(right).

which means that the presence of liquid water films and droplets on the sensors and
leaves closely match (METER Group Inc., 2019). The sensors measure the dielectric con-
stant of the sensor’s upper surface, which is altered by the presence of water. The output
signal [mV] is automatically converted to a universal scale called counts, to ensure that
sensor outputs are universal regardless of the excitation voltage of the used data logger.
For the EM50 data logger used here, counts = voltage [mV]/0.733 (METER Group Inc.,
2019).

SAP FLOW

Sap flow sensors, produced by Dynamax Inc. (Houston, TX, USA), were installed from
the moment the corn stems reached a 15 mm diameter. Flexible collar straps with built-
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Figure 2.4: Hydrometeorological sensors, with (a) leaf wetness sensors, (b) sap flow sensor, (c) sap flow sensor
after insulation, (d) weather station.

in heater strip and thermocouples are wrapped around the stems about 20 cm above the
ground (see Fig. 2.4(b), and then insulated and protected from environmental condi-
tions such as rain and radiation (see Fig. 2.4(c)). The measurement is based on the stem
heat balance theory (Sakuratani, 1981). The entire circumference of the stem receives a
constant heat input from the heater strip. As sap movement carries heat, thermal dissi-
pation corresponds to the sap flow rate. The change in temperature is used as a tracer for
sap flow [g h−1], thereby taking into account the heat transfer to the stem tissue and the
ambient air. The sensors were connected to a CR1000 Measurement and Control Data-
logger produced by Campbell Scientific Inc. (Logan, UT, USA). This logger was powered
by a 12V battery, which was charged by a solar panel (2018), or exchanged every few days
with a fully charged battery (2019).

SOIL MOISTURE

To estimate volumetric soil moisture, EC-5 sensors (METER Group) were used. These
sensors produce an output voltage that is dependent on the dielectric constant of the
soil around the sensor. Factory calibration translates the output voltage into volumetric
soil moisture (m3m−3). For the campaign in Citra, 2018 (section 2.1.1), the sensors were
calibrated in the laboratory using soil samples from the field, in five stages of dry down
after saturating the soil. For the campaign in Reusel, 2019 (section 2.1.2), we used the
factory calibration. Data was stored in EM50 loggers.

SOIL WATER POTENTIAL

Soil water potential was measured using T4e pressure transducer tensiometers (UMS
GmbH, 2011). The measurement principle of these sensors is based on the difference be-
tween soil water tension, measured by a piezoelectric pressure sensor, and atmospheric
pressure. A ceramic cup at the bottom of the tensiometer is water-permeable and gas im-
permeable, and is used to transfer the soil water tension as a negative pressure into the
tensiometer. This ceramic cup was regularly refilled externally through capillary tubes
while it remained installed in the ground. The drier the soil, the more often a refill was
required. The tensiometers were also connected to the CR1000 Datalogger.
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METEOROLOGICAL DATA

During the campaign in Citra, 2018 (section 2.1.1), open access data from the Florida
Automated Weather Network (FAWN)1 were used to obtain meteorological data. This
weather station was located <600 m east from the experimental site. Data from precip-
itation, air temperature, solar radiation, relative humidity and wind speed with 15-min
frequency were downloaded.

For Reusel, 2019 (section 2.1.2), a weather station was installed within 100 meters
from the other sensors and sampling areas (Fig. 2.4(d)), next to the corn field. This sta-
tion collected precipitation with a ECH2O rain model ECRN-100 rain gauge, solar radia-
tion with an Apogee SP-212 pyranometer, wind and gust speed and wind direction with
a Davis Cup anemometer, and temperature and relative humidity with a HOBO Temper-
ature/RH Smart Sensor model S-THB-M008.

2.2.3. MANUAL MEASUREMENTS
In addition to sensor observations, manual measurements were conducted to acquire
data on vegetation water content, crop growth and soil roughness, which could not be
measured with our in situ sensors.

Figure 2.5: Manual measurements, with (a) destructive sampling, (b) walk-in oven for sampling drying, and (c)
mesh board for roughness measurements.

DESTRUCTIVE SAMPLING

Destructive sampling was conducted to acquire data on VWC and dry biomass. Samples
were taken from designated sampling areas (Fig. 2.1 and 2.2). Each sampling time, a ran-
dom meter was chosen along a random row, from which the two plants with an average
height were taken. This was repeated three (Reusel, 2019) to four (Citra, 2018) times. To
reduce water loss from the samples, they were cut and weighed as soon as possible in a
cool shed or office. Stems, leaves, tillers, tassel and ears were separated (Fig. 2.5(a)) and
labelled. Stems were cut in sections of 10 cm, and numerically labelled from the base (0-
10 cm) to the top (e.g. 170-180 cm). Similarly, leaves were labelled from the base (leaf 1)
to the top (e.g. leaf 15). Any surface water present on the plant tissue was removed with

1https://fawn.ifas.ufl.edu/data/
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paper towel before weighing. Constituents with the same labels were collected in paper
bags and weighed to determine fresh biomass. Then, they were placed in a walk-in oven
(Fig. 2.5(b)) and dried at 60 ◦C for 4-7 days, depending on the growth stage, i.e. the water
content in the samples. Finally, the bags were weighed again to determine dry biomass.

GROWTH MONITORING

Corn development was manually monitored. Height above the ground (m) was mea-
sured for each of the destructive samples. Phenological stages were determined using
the Biologische Bundesanstalt, Bundessortenamt and Chemical industry (BBCH) scale
for corn (Meier et al., 2009). Both row spacing and plants per meter were measured at 40
random locations in the field, from which plant density [m−2] was calculated. Regular
measurements of leaf height, length and width were conducted, from which leaf areas
were estimated assuming that corn leaves have an elliptical shape. Leaf area index (LAI)
was derived from leaf areas and plant density.

SOIL ROUGHNESS

Soil roughness measurements were conducted manually between sowing and emergence
using a 1 m long meshboard (Fig. 2.5(c)), based on the approach described by Jang et
al., 2005. On random locations outside the radar footprints, the meshboard was placed
parallel, and perpendicular to the row direction. At each location, the meshboard was
moved twice, and photographed, to collect a 3 m long image of the soil. The pictures
from the soil surface disturbing the grid on the board were used to digitally estimate the
soil root mean square height and correlation length.
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RESPONSE OF SUB-DAILY L-BAND

BACKSCATTER TO INTERNAL AND

SURFACE CANOPY WATER

DYNAMICS

The previous chapter gave an overview of the field experiments conducted for this thesis.
Sensors and sampling strategies were carefully described. The results of this chapter are
based on the intensive, sub-daily data collected in Citra, Florida, 2018. The motivation
for this study is that the latest developments in radar mission concepts indicate that sub-
daily SAR data will become available in the next decades. This chapter aims to quantify
variations in water storage inside a corn canopy, and understand their effect on L-band
backscatter observations.

This chapter is based on:

Vermunt, P. C., Khabbazan, S., Steele-Dunne, S. C., Judge, J., Monsivais-Huertero, A., Guerriero, L., and
Liu, P. W. (2020). Response of Subdaily L-Band Backscatter to Internal and Surface Canopy Water Dynamics.,
IEEE Transactions on Geoscience and Remote Sensing 59, (9), 7322 - 7337.
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3. RESPONSE OF SUB-DAILY L-BAND BACKSCATTER TO INTERNAL AND SURFACE CANOPY

WATER DYNAMICS

3.1. INTRODUCTION

Global, daily to sub-daily monitoring of vegetation water dynamics is essential to ad-
dress fundamental questions surrounding the role of vegetation in the climate system,
and to provide information for a range of applications from agriculture and water man-
agement to weather prediction (Fisher et al., 2017). Vegetation temporally stores water
inside its tissue and on its surface, and this water is transferred back to the climate sys-
tem through transpiration and evaporation. Global evapotranspiration (ET) amounts
from reanalysis data, land surface model and diagnostic products disagree by up to 50%
(Jiménez et al., 2011; Mueller et al., 2013), and trends are uncertain (Mao et al., 2015).
Uncertainty in ET partitioning is even more severe than uncertainty in estimating ET it-
self (S. T. Allen et al., 2020; Blyth and Harding, 2011). Lack of understanding of rainfall
interception by vegetation and its loss through evaporation is a key limitation of current
methods to estimate and partition ET, and is essential for land surface modelling and
understanding the role of vegetation in land-atmosphere interactions (de Jong and Jet-
ten, 2007; van Dijk et al., 2015). Robust modelling of interception is hindered by holes in
our basic process understanding (S. T. Allen et al., 2020), and a lack of information about
surface canopy water (SCW), i.e. water storage on vegetation surfaces as a result of dew
formation or intercepted precipitation (Klamerus-Iwan et al., 2020). Furthermore, there
is a fundamental need for leaf wetness monitoring to understand how projected changes
in climate will influence the timing, frequency, duration and intensity of leaf wetting
events and their effects on plant function in terms of water relations, gas exchange, en-
ergy balance, pathogens and pests, and reproduction (Dawson and Goldsmith, 2018).

A new perspective on ET and leaf wetness may be provided by sub-daily synthetic
aperture radar (SAR), which gives direct insight into the mass balance of the vegetation.
Active microwave remote sensing has been found to be sensitive to canopy water stor-
age, depending on frequency, polarization, incidence angle, and vegetation cover (C.
Allen and Ulaby, 1984; Brisco et al., 1990; El-rayes and Ulaby, 1987; Gillespie et al., 1990;
Ulaby et al., 1975; Ulaby, 1975; Ulaby and El-rayes, 1987). This sensitivity has mainly
been studied to account for the confounding effect of vegetation on soil moisture re-
trieval (e.g. Joseph et al., 2008; O’Neill et al., 1996; Ulaby, 1982). However, radar is also a
valuable tool for vegetation monitoring, and well-suited to many applications including
forest biomass and height (Quegan et al., 2019), change detection (Reiche et al., 2018),
ecology and plant physiology (Konings et al., 2019), and agricultural crop classification
and monitoring (Steele-Dunne et al., 2017). The launch of ESA’s Sentinel-1 mission (Tor-
res et al., 2012) in 2014 has accelerated the development of new applications for SAR
in vegetation monitoring. By providing freely-available data at an unprecedented high
temporal resolution, Sentinel-1 has stimulated rapid development of products for mon-
itoring natural and agricultural landscapes. However, the repeat time of 6-12 days still
limits the current state of the art to products related to biomass, leaf area index (LAI),
phenological stage, change (e.g. harvest, tillage) and anomaly detection (El Hajj et al.,
2019; Khabbazan et al., 2019; Mercier et al., 2020; Satalino et al., 2018; Veloso et al., 2017;
Vreugdenhil et al., 2018). The RADARSAT Constellation Mission (RCM) was launched
in 2019, and consists of three identical SAR satellites. The resulting denser temporal
sampling of RCM (4-day revisit time) compared to RADARSAT-2 (12-day revisit time),
is also expected to improve the potential of real-time agricultural monitoring with the



3.1. INTRODUCTION

3

17

RADARSAT series (Mahdianpari et al., 2019).
The motivation for the current study is that the latest developments in radar mission

concepts indicate that sub-daily SAR data will become available in the next decades.
CapellaSpace 1 and Iceye 2 are currently populating constellations of X-band (∼10 GHz)
SAR systems in Low Earth Orbit (LEO), capable of delivering hourly data with resolutions
of 10 m or less (e.g. Stringham et al., 2019). An alternative is to place a SAR instrument
in a geostationary orbit. A mission of particular interest is HydroTerra, one of the can-
didates bidding to become the European Space Agency’s 10th Pathfinder mission. Hy-
droTerra, is a C-band (∼5 GHz) geostationary (GEO) SAR mission which will deliver data
at various spatial and temporal resolutions to meet the science needs of users (Hobbs
et al., 2019). L-band (∼1 GHz) geostationary SAR missions are also under development
(Hu et al., 2016). With Medium Earth Orbit (MEO) SAR, at altitudes between those of
LEO and GEO, trade-offs in system and orbit parameters allow a range of possibilities in
terms of spatial and temporal resolution (Matar et al., 2020). The goal of this chapter is to
demonstrate the potential value of sub-daily SAR to monitor internal and surface canopy
water, and exploit this emerging technology as a tool to address fundamental challenges
in our understanding of the role of vegetation in the climate system.

Several studies have demonstrated that spaceborne radar is capable of detecting
plant water variations during the day. Konings et al., 2017, Paget et al., 2016, and van Em-
merik et al., 2017, used aggregated data from the non-sun-synchronous RapidScat scat-
terometer (2014-2016) to demonstrate that the diurnal cycles in Ku-band radar backscat-
ter were discernible over vegetated areas. Konings et al., 2017, and van Emmerik et al.,
2017, related variations in the daily cycle of Ku-band backscatter to vegetation water
stress in the humid tropical forests of Central Africa and the Amazon respectively. Other
studies used aggregated data from scatterometers in sun-synchronous orbits to study
diurnal variations in canopy water (Friesen et al., 2012; Frolking et al., 2011; Schroeder
et al., 2016; Steele-Dunne et al., 2019). Frolking et al., 2011, found Ku-band backscat-
ter over the Amazonia to be up to 1.0 dB lower at 6:00 compared to 18:00. This differ-
ence decreased when a major regional drought continued. Schroeder et al., 2016, and
Friesen et al., 2012, observed diurnal differences in C-band backscatter in the United
States (∼10:00 and 22:30) and on a global scale (∼9:30 and 21:30), respectively. In a study
on North-American grasslands, Steele-Dunne et al., 2019, found mean differences be-
tween evening (21:30) and morning (9:30) observations of C-band backscatter between
-0.6 and 0.6 dB, depending on region and season. The limitation of radar data from cur-
rent satellites is that they are in sun-synchronous orbits, and data only available at fixed
times (e.g. ASCAT at 10 am/10 pm). These times may not coincide with the ideal times to
observe plant water variations, do not provide enough detail to capture and study daily
cycles, and their data generally needs to be aggregated to draw meaningful conclusions.
The future availability of spaceborne sub-daily SAR data therefore offers a unique possi-
bility to study vegetation water dynamics at an unprecedented temporal resolution.

Ground-based radar experiments on sub-daily variations in backscatter have a longer
heritage, and have shown that radar backscatter is sensitive to vegetation water changes
during the day. Using a truck-mounted dual-pol radar spectrometer scanning densely

1https://www.capellaspace.com/
2https://www.iceye.com/
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vegetated sorghum fields, Ulaby and Batlivala, 1976, combined 13 data acquisitions within
ten days, where each acquisition was conducted at a different time of day. Aggregat-
ing these data, they found clear diurnal variations which they attributed to vegetation.
Brisco et al., 1990, used a truck-mounted Ku-, C-, and L-band quad-pol scatterometer
to study sub-daily fluctuations in backscatter measurements of a wheat canopy. They
measured three full days, spread over two years. The results showed that, for C- and L-
band, the diurnal backscatter variation correlated well with measured vegetation water
content in the vegetative stage of the crop, while the correlation with soil moisture was
higher when the plants were senescing. In addition, they showed that bulk vegetation
water content (including surface and internal water content) and HH-polarized C-band
backscatter with 20◦ incidence angle in the vegetative stage of wheat following a diur-
nal cycle with maxima just after sunrise and minima between solar noon and sundown.
Using results from the same experiment, Gillespie et al., 1990, evaluated the effect of
dew. The presence of dew was assessed by visual inspection, and backscatter patterns
between two nights with and without dew were compared. They concluded that dew has
an effect on C-band signals in particular, and that dew and internal canopy water effects
can be differentiated according to timing and strength of response.

Other ground-based experiments focused on trees (Bouten et al., 1991; De Jong et
al., 2002). Bouten et al., 1991, measured the vertical attenuation profile of a Douglas fir
stand before and after rain events. The X-band microwave generator and receiver were
mounted on two towers, 12.5 m apart, and the beam of the transmitter was pointed in the
direction of the receiver. They found a clear increase in attenuation after canopy wetting.
Moreover, they estimated canopy surface water storage from precipitation and through-
fall measurements, and found high correlations with increments of the vertically inte-
grated attenuation profiles. De Jong et al., 2002, analyzed the relation between vertically
polarized X-band backscatter and rainfall interception for a single ash tree. Backscat-
ter observations during 14 rain storms were averaged, and compared to dry situations.
The results showed a logarithmic increase of backscatter with cumulative precipitation,
supported by physical model simulations. In addition, several studies have observed a
diurnal cycle in trunk dielectric constant, which has been related to tree water status and
sap flow (McDonald et al., 1990; McDonald et al., 2002; McDonald et al., 1992; Salas et al.,
1994; Weber and Ustin, 1991; Zimmermann et al., 1995).

These ground-based experiments successfully demonstrated that radar backscatter
is sensitive to variations in total vegetation water content. However, the limited datasets
leave many open questions in terms of the sensitivity of radar backscatter to surface
versus internal water content, the influence of phenological stage and providing a quan-
titative link to water transport processes in the vegetation.

The aim of this chapter was to quantify fluctuations of internal and surface canopy
water and their effect on sub-daily patterns of L-band backscatter with a view to demon-
strating the potential value of sub-daily spaceborne radar backscatter for monitoring
vegetation water dynamics. An intensive field campaign was conducted over an en-
tire growing season of corn, combining temporally dense radar backscatter observations
with continuous observations of leaf surface wetness, surface and root zone soil mois-
ture, sap flow and meteorological variables, and frequent destructive vegetation sam-
pling. These data were analyzed during the early-, mid- and late-season to study how
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backscatter in each polarization is affected by variations of internal and surface water
content, and how this sensitivity varies as the crop develops. Data from the fully grown
canopy were also combined to obtain an average daily cycle, and insight into the influ-
ence of surface canopy water on the amplitude and timing of the daily cycle of backscat-
ter.

3.2. MATERIALS AND METHODS

3.2.1. STUDY SITE

The experiments were conducted in the spring of 2018 at the Plant Science Research and
Education Unit (PSREU) of the University of Florida and the Institute of Food and Agri-
cultural Sciences (UF|IFAS) at Citra, Florida (29.410N, 82.179W). Sweet corn (Zea mays
L. var. rugosa) was sown in rows on April 13 and harvested on June 18. The average plant
density was 7.9 plants m-2. The soil at the field site consists of >90% sand (Bongiovanni
et al., 2015; Bongiovanni et al., 2018), which allows for high infiltration rates. Early in the
growing season, the corn field was irrigated several times with a center-pivot irrigation
system. Irrigation was applied in the evening to minimize evaporative losses.

3.2.2. RADAR BACKSCATTER

Observations of radar backscatter were made with the University of Florida L-band Au-
tomated Radar System (UF-LARS), which was mounted to a Genie manlift, lifted to 14
m height, and set to scan the field with an incidence angle of 40 ◦. This system operates
at a center frequency of 1.25 GHz, and collects four polarization combinations (HH, VV,
HV and VH) simultaneously. The backscatter coefficients (σ0) are computed using the
Single Target Calibration Technique (STCT) (P.-W. Liu, 2013; Sarabandi and Ulaby, 1990).
Further specifications of this system, including accuracy and resolution, can be found in
section 2.2.1.

For most of the season, 32 averaged σ0 observations were obtained per day. For the
last eight days of the season, the number of acquisitions was reduced to 16 to avoid radio
frequency interference with other microwave sensors in the field. HV and VH polariza-
tions were averaged, and further shown as average cross-pol. Averaged cross-polarized
backscatter is expressed as σ0

X P . Sampling areas (section 3.2.4) and in situ sensors (sec-
tion 3.2.3) were located outside the arc swept by the radar, to avoid disturbing the scene.

3.2.3. HYDROMETEOROLOGY

Meteorological data were obtained from the Florida Automated Weather Network (FAWN)3.
The 18-meter tall FAWN weather station was located <600 m east from the experimen-
tal site. Observations of rainfall, air temperature on 2 m height, solar radiation, relative
humidity and wind speed are available every 15 minutes. Reference evapotranspiration
(ETo) was calculated from these data using an hourly version of the Penman-Monteith
approach (Zotarelli et al., 2010).

Sap flow is the flux of water through the plant, as water extracted by the roots is trans-
ported to the leaves to replenish water lost through transpiration. In large trees, the time

3https://fawn.ifas.ufl.edu/data/
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lag between transpiration and sap flow measured at the base of a stem can be on the or-
der of several hours, while the time lag between transpiration and sap flow at the crown
is much smaller (Čermák et al., 2007; Meinzer et al., 2004; Phillips et al., 2008). For corn,
we observed that the time lag between calculated reference evapotranspiration and sap
flow on the stem was on the order of minutes. Therefore sap flow is a useful indicator
of the timing and strength of the daily transpiration cycle which drives internal canopy
water dynamics during the day.

Sap flow rates of four representative plants were measured with SGEX-19 Dynagage
sap flow sensors (Dynamax Inc., Houston, TX, USA), which were installed close to other
sensors, just outside the radar footprint. See Chapter 2, section , for details about the
measurement principle of these sensors. The built-in sap flow calculator of the Dyna-
gage Flow32-1K system was used to estimate the sap flow rate [g h−1] for each plant
every 15 minutes. Sap flow [mm 15min−1] was calculated by averaging over the four
sensors, converting the average weight of water to volume using the density of liquid
water at 25◦C (0.997 g cm−3), and multiplying the results for an ‘average’ plant with the
plant density. Because installation of a SGEX-19 sensor requires a stem diameter of at
least 15 mm, the sensors were first installed on May 18.

Data gaps, e.g. due to battery failure or poor contact, were filled using a linear re-
lationship between sap flow and the transpiration component of FAO crop evapotran-
spiration (KcbETo) (R. G. Allen et al., 1998). Here, ETo is the reference evapotranspira-
tion, i.e. the evapotranspiration from a hypothetical, well-watered grass reference sur-
face, calculated using meteorological data from FAWN and the FAO Penman-Monteith
method. Kcb is the basal crop coefficient for transpiration of a sweet corn canopy at po-
tential rate. The multiplication with Kcb converts hypothetical evapotranspiration of a
grass surface into transpiration of a sweet corn canopy, assuming no limitation of wa-
ter (R. G. Allen et al., 1998). Linear regression between sap flow (F) and KcbETo was
described by

F = 0.7222×KcbETo −0.001 (3.1)

with R2 = 0.871, based on n = 2389 observations.
Leaf wetness due to dew and interception was monitored using three PHYTOS31 di-

electric leaf wetness sensors (see section 3.2.3).
The sensors were attached to a wooden pole in between two rows in the early season.

They were reattached to the corn plants once the stems were strong enough. The sensors
were installed at different heights to capture the vertical distribution of water droplets
in the canopy. The empirical model of Cobos, 2013, was used to estimate the mass of
water (Mw ) deposited on the sensor surface [g m−2] from the sensor output (counts, see
section 3.2.3):

Mw = 1.54×exp(5.8×10−3 × count s) (3.2)

Estimation of the mass of water on the canopy, Surface Canopy Water (SCW), was
performed in two steps. First, regular measurements of leaf height, length and width
were conducted, and leaf areas were estimated by assuming that corn leaves have an
elliptical shape:

Alea f =π× l × w

4
(3.3)
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where Alea f is the leaf area [m−2], l is leaf length [m] and w is leaf width [m]. Second, it
was assumed that the wetness of a leaf at any height could be approximated as that of
the nearest sensor.

SCW = ρpl ant ×
n∑

i=1
Alea f i ×Mwi (3.4)

where SCW is surface canopy water per square meter of ground [kg m−2], ρpl ant is the
average number of plants per m−2, Mwi is the water mass on the sensor closest to leaf i
[kg m−2], and n is the number of leaves per plant.

Figure 3.1: Time series of (a) rainfall, irrigation and reference evapotranspiration (ETo), (b) presence of surface
canopy water resulted from dew, irrigation or rain, (c) volumetric root zone soil moisture content, (d) surface
soil moisture content only, (e) soil water potential at 20 cm depth.

Root zone soil moisture was measured with ten Decagon EC-5 sensors (see Chap-
ter 2), which were installed in two pits at five different depths: 5, 10, 20, 40 and 80 cm.
The pits were located 40 meters apart, but centered between the same two rows. Site-
specific calibration was performed yielding a linear regression R2 of 0.993. Soil moisture
was similar in both pits. Hence, the presented results are the averages over the two pits.
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Linear interpolation between the measurements was applied to visualize root zone soil
moisture.

Soil water potential was monitored using two T4e pressure transducer tensiometers
(UMS GmbH, 2011). These were installed 40 meters apart, close to the soil moisture pits.
The centers of the ceramic cups were located at a depth of 20 cm. The presented results
are the averaged signals of both tensiometers.

3.2.4. VEGETATION SAMPLING AND MONITORING
Vegetation water content (VWC) and dry biomass (md ) were measured using destructive
sampling (see Chapter 2, section 2.2.3). Field-representative VWC [kg m-2] was derived
from equation 5.1:

V W C = (m f −md )ρpl ant (3.5)

where m f is the average fresh weight or fresh biomass of the eight samples [kg], md is the
average dry weight or dry biomass of the eight samples [kg], and ρpl ant is the number of
plants per square meter of ground. Gravimetric water content, Mg , is the mass of water
per unit mass of fresh biomass (equation 5.2):

Mg = m f –md

m f
(3.6)

Equations 5.1 and 5.2 were applied for each of the plant constituents (i.e. leaves, stems,
tillers, ears) separately.

Sampling was conducted before sunrise (6am) to minimize the effect of transpira-
tion on the measurements that represent seasonal variability of VWC and Mg . These
predawn measurements were scheduled three times per week. On one of these three
days, one extra sampling was performed during the day in order to capture diurnal vari-
ations. This second sampling was at 6pm, which would be the time of the corresponding
evening pass for a sun-synchronous satellite such as SMAP (Entekhabi et al., 2010).

Plant growth stages were visually identified three times per week, using the Biolo-
gische Bundesanstalt, Bundessortenamt and Chemical industry (BBCH) scale for corn
(Meier et al., 2009). The cut samples were used to measure plant heights. Leaf area index
(LAI) was calculated by multiplying the averaged, estimated leaf areas by plant density.

3.3. RESULTS

3.3.1. HYDROMETEOROLOGY
Fig. 3.1 shows the hydrometeorological and soil moisture conditions during the growing
season. The first three weeks of the season were characterized by high levels of reference
evapotranspiration (ETo) and an absence of precipitation (Fig. 3.1a). On several days,
midnight irrigation was applied to control soil moisture content (Fig 3.1a-d), leading to
a soil water potential which is favorable for root water extraction as soon as the roots
reach deep enough (Fig 3.1e). These conditions allowed for high rates of transpiration.
Water films on leaf surfaces were detected every morning (Fig 3.1b) as a result of dew for-
mation, interception of sprinkler irrigation or a combination of both, and disappeared
at around 10:00 every morning.
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The mid-season weather conditions featured frequent, tropical rainfall and thunder-
storms (Fig. 3.1a). This resulted in water droplets on the canopy for long periods during
the day (Fig. 3.1b), and several sharp increases in root zone soil moisture content (Fig.
3.1c). Limited rain between May 22 and May 27 led to a temporary reduction in root
zone soil moisture content and potential (Fig. 3.1d-e).

A dry period with high temperatures and solar radiation, started on June 1. This pro-
duced high evaporative demand (ETo in Fig. 3.1a), which resulted in a rapid decrease of
soil moisture in the root zone. Despite the limited root zone soil moisture, leaf surfaces
were wet every morning, mainly because of dew formation (Fig. 3.1b). A substantial rain
event on June 10 ended the dry period.

3.3.2. VEGETATION DEVELOPMENT AND WATER CONTENT

The sweet corn crop development is illustrated in Fig. 3.2. Corresponding explanations
of the BBCH phenology codes can be seen in Table 3.1. Fig. 3.2(a) shows the plant
height and dry biomass accumulation [kg m-2] of the total plant and individual plant
constituents during the life cycle, based on destructive vegetation sampling data. Fig. 2
(b) and (c) show how the water content of the plant and its constituents vary during the
growing cycle. Fig. 3.2(b) shows the mass of water stored in [kg m-2], a measure com-
monly used in microwave remote sensing. Fig. 3.2(c) shows this water storage in terms
of gravimetric moisture content, which is the mass of water per total mass of the plant.
This is more closely related to the relative water content used by plant physiologists.

First plant emergence was observed on April 19, six days after sowing. Although leaf
and stem dry biomass (md ) increased at similar rates until plants reached half their final
height (Fig. 3.2a), stems held substantially more water (Fig. 3.2b-c). At the end of the
vegetative stage, 65% of all VWC was stored in the stems.

In the reproductive stage, ear formation coincided with VWC decreases in all other
constituents, especially in the stems. From May 30 to June 6, water storage in the stems
decreased by almost 30%: -0.8 kg m-2, as the ears formed and seperated from the main
stem (Fig. 3.2b). Leaf senescence of the lowest leaves occurred from June 2 onward. The
reproductive stage largely coincided with the dry period shown in Fig. 3.1. The corn was
harvested five days after the last sampling.

The results of the seven days of twice-daily destructive vegetation sampling are shown
in Fig. 3.3. The figure shows the internal canopy water differences between 6:00 and
18:00 for the total plant and the most important constituents (by biomass). The smallest
∆ Mg was observed on May 16, when cloud and rain limited transpiration. Significant
decreases in internal water content were observed in the early season, as a result of high
atmospheric demand for evapotranspiration (Fig. 3.1(a)), a shallow root zone, and a rel-
atively dry upper soil (Fig. 3.1(c)). These differences in Mg translate to small ∆VWC (Fig.
3.3b) due to the limited fresh biomass in the early vegetative stages. In the reproductive
stage, diurnal moisture losses in stems increased, while such losses decreased for ears.
At this stage, ears grow and store water, while the internal water content of the stems
starts to decrease. These sub-daily variations were substantial compared to the seasonal
predawn Mg variations (Fig. 3.2c). It should be noted that maximum sub-daily moisture
variations may be higher than the difference between 6:00 and 18:00.
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Figure 3.2: Seasonal patterns of (a) dry biomass and maximum canopy height, (b) predawn vegetation water
content and leaf area index, and (c) predawn gravimetric water content, including the contributions of dom-
inant plant constituents to total. Important phenological stages are represented by BBCH codes, which are
explained in Table 3.1.

3.3.3. BACKSCATTER

SEASONAL VARIATIONS IN BACKSCATTER

Backscatter coefficients (VV, HH, average cross-pol) are shown in Fig. 4.9. Backscatter
increased in all polarizations with the growth of the crop. Co-polarized backscatter in-
creased from <-14 dB after planting to about -5 dB when plants reached half of their total
biomass, while cross-polarized backscatter increased from <-32 dB to about -16 dB.

The influence of early season irrigation events (Fig. 3.1) is apparent in all polariza-
tions (Fig. 4.9). Sensitivity to wetting events (irrigation and rainfall) decreased as the
canopy grew and σ0 became increasingly sensitive to wet biomass (Appendix).

The increasing trend in σ0 due to vegetation growth tapers off around May 20. These
high values, 3-4 days prior to plant VWC and LAI maxima can be explained by the heavy
rainstorms around May 20. Precipitation from these storms increased both canopy sur-
face wetness and soil moisture, which produced highσ0 values in all polarizations. Nonethe-
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Table 3.1: Crop development stages

BBCH Stage of development Dates

13 Leaf development – 3 leaves (V) Apr 25

21 Start of tiller formation (V) May 7

30 Start of stem elongation (V) May 18

51 Start of tassel emergence (V) May 23

63 Male: start pollen shedding. Jun 1

Female: stigmata tips visible (R)

71 Start of grain development: Jun 11

kernels at blister stage (R)

V=vegetative stage. R= reproductive stage.
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Figure 3.3: Change (6:00 minus 18:00) in internal canopy water content of total plant and dominant con-
stituents, represented as (a) gravimetric moisture loss and (b) equivalent weight of moisture loss [kg m -2].
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Figure 3.4: Time series of observed L-band co- and cross-polarized backscatter.

less, responses to some events after this date were observed. The decrease in σ0 from
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June 1 corresponds with the drop in soil moisture (Fig. 3.1) and the sharp reduction in
stem water content (Fig. 3.2b). Backscatter increased again following small rain events
and the formation and separation of ears.

EARLY SEASON

Two three-day periods in the early season are highlighted in Fig. 3.5. Fig. 3.5 (a-c) shows
a period 11-13 days after emergence when bare soil exposure was still considerable and
plant height was just 15-20 cm. Fig. 3.5 (a) shows co- and cross-polarized backscatter.
Fig. 3.5 (b) shows raw data counts from two leaf wetness sensors positioned 7cm above
the ground, as well as the sap flow. Fig. 3.5 (c) shows the precipitation at the nearby
weather station and the soil moisture observed at 5cm depth. The irrigation event on
April 30 lead to an increase in soil moisture at 5cm depth, and a sharp increase in σ0 of
up to 5dB. Clear cyclic variations of 2-3 dB are observed inσ0, particularly inσ0

V V . These
cannot be explained by the 5cm soil moisture, but seem to follow the accumulation and
dissipation of dew on the vegetation and soil surface as indicated by leaf wetness sensor
(LWS) data in Fig. 3.5 (b). The LWS counts increase during the night as dew accumulates
on the sensor. The LWS counts decrease rapidly after sunrise as the increase in solar
radiation allows the dew to evaporate. On each of the days shown in Fig. 5, and also in
Fig. 3.1 (b), the dew has generally dissipated by 10:00 am. It is important to note that,
in addition to forming on the leaves and the LWS, dew also forms as a film of water on
the soil surface. It is clear from Fig. 3.5 (c) that it is insufficient to infiltrate the soil and
reach the sensor at 5cm. However, L-band backscatter is dominated by surface scattering
from the soil at this stage (Joerg, 2018; McNairn et al., 2009; Monsivais-Huertero et al.,
2018; Stamenković et al., 2015, and Fig. 3.10), and the difference between a wet (e.g.
0.3 cm3cm−3) and dry (e.g. 0.1 3cm−3) soil can produce differences of up to 3.5 (HH)
and 6 (VV) dB (Dubois et al., 1995). We postulate, therefore, that the accumulation and
dissipation of this film of water on the soil surface is the most important reason behind
the cyclic σ0 variations in Fig. 3.5 (a). The effect of dew on the topsoil is also clear in
VV where the irrigation event on April 30 increases σ0

V V from -18 dB to -13 dB, a value at
which it stays due to the presence of dew until sunrise the following morning. Moreover,
σ0

V V ramps up as dew accumulates in the early hours of May 2, before decreasing again
at sunrise.

Fig. 3.5 (d-f) shows the measurements of one week later when the maximum plant
height has increased to 37 cm (May 7) and 43 cm (May 9), LAI is around 0.57 and VWC
is increasing from 0.16 kg m -2 (May 7) to 0.23 kg m -2 (May 9). While soil moisture val-
ues are comparable to those observed the week before, the σ0 values in Fig. 3.5 (d) are
around 4 dB higher than those in Fig. 3.5 (a) in all polarizations. From Fig. 3.10, this can
be attributed to the increase in vegetation scattering in all polarizations, an increase in
double-bounce in VV, and an increase in vegetation ground scattering in HH and cross-
pol. In other words, the backscatter is increasing due to plant growth , and microwave
interactions with the vegetation are becoming increasingly important. Sap flow values
are higher than in Fig. 3.5 (b) due to increase in plant area and transpiration. The LWS
have been repositioned at 10cm and 20cm to accommodate the growing plant, and a
sensor was added at 30cm on May 7.

Irrigation events on May 6 and 9 lead to sharp increases in soil moisture and σ0.
Increases of 8 dB (VV), 4 dB (HH) and 5-6 dB (cross-pol) were observed in response to
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Early season: 3-4 unfolded leaves (left) and 7-8 unfolded leaves (right)

Figure 3.5: Early season patterns of co- and cross-polarization backscatter (upper row), raw data counts from
the leaf wetness sensors and sap flow (middle row), and surface soil moisture and precipitation (lower row).
The left figures show a 3-day period when plants reach 15-20 cm, while the right figures show a 3-day period
when plants reach 43-65 cm. Note that the vertical axes of the left and right backscatter plots are different.

the event on May 9. On the May 7 and 9, initial rapid increases in LWS counts due to
interception of irrigation were followed by more gradual increases as dew accumulated
during the night. Steady dew accumulation is also observed during the night of May 7-8.
On all three days, the accumulated moisture dissipated quickly after sunrise. The cyclic
variations in σ0 are clearer than they were in Fig. 3.5, and their correspondence with
the LWS data is even more striking. The σ0

V V is particularly responsive to the presence
of water on the soil and vegetation. This may be due to the important role of double-
bounce in σ0

V V at this time.

MID-SEASON

Fig. 3.6 shows two periods in the mid-season. Note that average σ0 increased signifi-
cantly since early season, as a result of plant growth. In the time period shown in Fig. 3.6
(a-c), the corn had started to tassel, and leaves had almost reached final sizes (Fig. 3.2).

Fig. 3.10 shows that, for this growth stage, σ0 is dominated by vegetation scattering.
There are limited contributions from double-bounce in VV and HH, and the vegetation-
ground term in HH. This is consistent with earlier research (Joerg, 2018; McNairn et al.,
2009; Monsivais-Huertero et al., 2018; Stamenković et al., 2015).

Low intensity rain events on May 23, 24 and 25 were intercepted by the almost fully
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Mid-season: tassel emergence (left) and start of reproductive stage (right)

Figure 3.6: Mid-season patterns of co- and cross-polarization backscatter (upper row), surface canopy water
and sap flow (middle row), and surface soil moisture and precipitation (lower row). The left column shows a
3-day period when plants reach 125-140 cm, while the right column shows a 3-day period when plants reach
180-189 cm. Note that the vertical axes of backscatter and surface canopy water are different from Fig. 3.5.

grown leaves and had a negligible impact on soil moisture. This suggests that σ0 varia-
tions in Fig. 3.6a can be attributed to variations in SCW and internal VWC (Fig. 3.6a-b).
Cross-pol backscatter, which is sensitive to leaf moisture content, increased rapidly in
response to interception in the evenings of May 24 and May 25. The presence of dew in
the early hours of May 23 and 25, and interception on May 24 and 25 resulted in elevated
values ofσ0

X P . Rapid dissipation of dew in the early morning on May 23 and 25 produced
a ∼2dB drop in σ0

X P . The difference in response of the three polarizations to SCW is par-
ticularly noticeable during the interception and dew events early on May 25, and could
be explained by their relative sensitivities to different canopy constituents. Note that es-
timated interception sometimes exceeds measured rainfall. This could be due to (1) the
simplistic model used to convert sensor output to full canopy interception (see section
3.2.3), (2) spatial rainfall variability (rainfall was collected 600 meters from studied field),
(3) accuracy of rainfall data (∼0.25 mm) or (4) spatial heterogeneity of interception itself
due to e.g. variations in plant architecture.

Backscatter in all polarizations reflects variations in internal water content. Recall
from Fig. 3.3 that internal water losses were high in this period (∼0.5 kg m-2) because
of a relatively high atmospheric water demand (Fig. 3.1). The rise in sap flow and tran-
spiration resulted in a decrease in σ0, and water uptake in the evening resulted in an
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increase.
Fig. 3.6(d-f) illustrates the observations of one week later, after a four-day period of

heavy rainfall (Fig. 3.1). The last rain event on May 30 was followed by two dry and hot
days, resulting in a decrease in surface soil moisture. The limited variation in σ0

V V and
σ0

H H in response to the sharp increases in SCW and soil moisture suggests that co-pol
backscatter saturated at ∼-4 dB. Despite high rates of sap flow on May 31, diurnal cycles
of σ0

V V and σ0
H H were not observed. This saturation was probably caused by a combi-

nation of a wet field (Fig. 3.1) and a peak in VWC (Fig. 3.2). May 31 was characterized by
high evapotranspiration rates, causing canopy surface water to disappear, and soil mois-
ture to decrease. Meanwhile, stem water content started to drop significantly (Fig. 3.2).
These losses of water led to a decrease in co-pol backscatter, which resulted in observed
diurnal cycles of σ0 again (Fig. 3.6d). Dips in cross-polarized backscatter (May 31) and
all polarizations (June 1) coincide with the dissipation of dew and peaks of sap flow.

LATE SEASON

Fig. 3.7 shows observations from two periods in the late season during which the corn
plants experienced the lowest root zone water availability of the season (Fig. 3.1(c and
e)). Recall from Fig. 3.3 that diurnal water fluctuations in response to transpiration dur-
ing these days were considerable. Nonetheless, the plants were able to recover from wa-
ter losses after solar noon; predawn Mg did not decrease with higher rates than in the wet
period before (Fig. 3.2). Simulations in Fig. 3.10 suggest that σ0

X P and σ0
V V were domi-

nated by vegetation scattering, while σ0
H H still had limited sensitivity to ground-related

terms.
The diurnal VWC cycles were discernible in σ0 in all polarizations, particularly on

the days without rainfall. On June 5, there is a noteworthy decrease of almost 4dB in all
polarizations. This coincides with a significant loss of internal water content (Fig. 3.3)
due to transpiration (sap flow in Fig. 3.7 (b)). The minimal change in soil moisture at this
time, and the fact that the decrease is consistent across polarizations suggests that this
is a decrease in vegetation scattering due to the observed drop in internal water content.
From midnight on June 9 to noon on June 10, soil moisture barely changes. Backscatter
on the other hand, especially VV and cross-pol, increases with dew accumulation dur-
ing the night and decreases as dew dissipates and transpiration leads to internal water
content losses during the day. A similar response is observed in the response to dew and
transpiration in the early hours of June 11. Again, the minimal variation in soil moisture
and the consistency across polarizations suggest that this is a response to internal and
surface canopy water dynamics rather than sensitivity to soil moisture.

Precipitation events on June 4, 6 and 10 (Fig. 3.7 (c) and (f)) resulted in spikes in
interception (SCW in Fig. 3.7(b) and (e)). The precipitation event of June 10 led to a
substantial and prolonged increase of soil moisture. The limited effect this prolonged
increase had on backscatter (particularlyσ0

V V andσ0
X P ) confirms the strong reduction to

soil moisture sensitivity at this stage. Given the lack of sensitivity to surface soil moisture
in VV and cross-pol, it is likely that these backscatter increases are primarily in response
to interception rather than moisture on the soil surface.
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Figure 3.7: Late season patterns of co- and cross-polarization backscatter (upper row), surface canopy water
and sap flow (middle row), and surface soil moisture and precipitation (lower row). Maximum canopy height
was stabilized at 205 cm during this period. Note that the temporal density of backscatter is less than in previ-
ous figures.

MEAN DAILY CYCLES

Fig. 3.5-3.7 show that sub-daily variations in σ0 included rapid variations due to the
interception of intermittent precipitation events, and slower variations due to dew for-
mation and dissipation and internal water content variations. To minimize the influence
of random individual precipitation events and gain some insight into the average daily
cycle, data were averaged over a 21-day period between May 23 and the last day of the
experiment, June 13. This is the period in which σ0 did not increase anymore as a result
of crop growth (Fig. 4.9). Previous studies and model simulations suggest that the effect
of soil moisture on σ0 in all polarizations is limited in this period (Fig. 3.10, McNairn
et al., 2009; Monsivais-Huertero et al., 2018; Stamenković et al., 2015).

Fig. 3.8 shows the mean diurnal cycle of σ0, SCW and sap flow, soil moisture and
precipitation over this period. Clear daily cycles can be observed in σ0, sap flow and
SCW. Peaks of VV and cross-pol coincide with the peak in SCW, and the start of the sap
flow/transpiration cycle. After sunrise, the increase in net radiation drove transpiration
and led to dissipation of dew from the canopy. Backscatter dropped on average with 0.7
dB (VV), 0.6 dB (HH), and 1.0 dB (cross-pol) between sunrise and 15:00. After 15:00, there
is a downward trend in sap flow and an upward trend inσ0. Most rainfall events occurred
during daytime and they explain the fluctuations in averaged SCW during the afternoon.
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The peak values in rainfall at 09:45 and 12:15 were due to two major convective rainfall
events, each of which resulted in a significant increase in average soil moisture but only
a modest and transient effect on average SCW and σ0.

To exclude the effect of rainfall completely, the four days without any rainfall within
this period were plotted separately in Fig. 3.9. Note that there was a decreasing trend in
σ0 during this period due to the loss of internal water content of the stems in this growth
stage, and the limited root zone soil moisture availability between June 5 and 9. Also
note that sap flow was high in this period, so high sub-daily variations of internal water
content are expected. Temporal patterns were similar to those in Fig. 3.8, although the
timing of the σ0 minima are slightly different. Cross-polarized backscatter changed in-
flection again after the peak hours of evapotranspiration, while VV-polarized backscatter
changed inflection with the start of dew formation. In both Fig. 3.8 and Fig. 3.9, noc-
turnal increase is only observed in σ0

V V and σ0
X P . In the absence of precipitation, the

average diurnal difference in σ0 on these four days was 2.4 dB (VV), 1.6 dB (HH) and 2.0
dB (cross-pol).

3.4. DISCUSSION
Consistent with previous studies (e.g. Paloscia et al., 1999), L-band sensitivity to scat-
tering from vegetation correlated with the buildup of VWC during the season (Fig. 3.2).
With low vegetation, early season σ0 patterns in all polarizations were consistent with
soil moisture responses to wetting events (irrigation, precipitation), and even showed
strong similarities with dew deposition on the topsoil (Fig. 3.5). Similar wetting events,
with similar soil moisture responses, showed a much smaller effect on σ0 in all polar-
izations in mid and late season (Fig. 4.9 and Fig. 3.7). In mid and late season, and
particularly beyond May 18, differences between σ0

V V and σ0
H H were minimal. This can

only be explained by the predominance of volume scattering, i.e. direct vegetation scat-
tering, since stem attenuation and scattering, as well as double bounce are polarization
dependent Liao et al., 2016. This predominance of vegetation scattering is confirmed by
the physical model simulations in the Appendix and Fig. 3.10. Although it is not a persis-
tent contribution, double bounce can still cause some sensitivity to soil moisture at HH
polarization until the end of the season. The seasonal increased sensitivity to vegetation
and reduced sensitivity to soil confirms previous work on L-band (e.g. Joseph et al., 2008;
Monsivais-Huertero et al., 2018; Paloscia et al., 1999).

Sub-daily backscatter variability has been attributed to variations in VWC in sev-
eral studies (e.g. Konings et al., 2017; Steele-Dunne et al., 2012; van Emmerik et al.,
2017). However, these satellite-based studies lacked ground validation data. The un-
precedented destructive sampling data presented in this study confirm that sub-daily
variations in VWC are substantial (>0.5 kg m-2, Fig. 3.3) even though corn is an isohydric
species (i.e. water content is regulated through active stomatal control). This motivates
further research to include other species.

The deepest drops inσ0 were observed after the acquisition at 9:30, when dew almost
dissipated completely (Fig. 3.9). This is also observed on dry days in Fig. 3.6 and Fig. 3.7.
Since transpiration rates become substantial after this time, this suggests that diurnal
VWC fluctuations govern the most substantial part of the sub-daily σ0 cyles in mid- and
late season.
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Figure 3.8: Mean daily cycles of (a) co- and cross-polarized backscatter, (b) surface canopy water and transpi-
ration, and (c) soil moisture and rainfall, for the last 21-days of the season. Timing of sunrise and sunset are
depicted with triangles in (b).

Several studies have attributed differences in diurnal backscatter to the presence of
dew, but did not account for variations in internal VWC (e.g. Herold et al., 2001; Horn-
buckle et al., 2010; Wood et al., 2002). The combination of intensive destructive vegeta-
tion sampling, continuous leaf wetness monitoring and high-revisit backscatter provides
unique insight into their combined influence on the dynamics of sub-daily backscatter
and how that varies throughout the season. Gillespie et al., 1990 provide one of the few
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Figure 3.9: Mean daily cycles of (a) co- and cross-polarized backscatter, (b) surface canopy water and transpi-
ration, and (c) soil moisture and rainfall, for only the 4 dry days within the last 21-days of the season. Timing
of sunrise and sunset are depicted with triangles in (b).

studies in which both internal and surface water are considered in the context of dew
detection. They found that the C-band HH-pol backscatter on a night without dew had
a peak 1.5 hours after sunrise, corresponding to the peak in their observations of in-
ternal VWC Gillespie et al., 1990. On the other hand, the backscatter peak on a night
with dew was at sunrise, which is the moment beyond dew starts to disappear. Simi-
larly, our L-band observations show a sub-daily backscatter maximum around sunrise,
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particularly in VV and cross-pol (Fig. 3.8 and Fig. 3.9). This is consistent with the peaks
of dew accumulation and suggests that dew can have a significant effect on the timing
and magnitude of the maximum of the sub-daily backscatter cycle. While Gillespie et
al., 1990 provided the first indication that dew formation and dissipation determines the
peak of (C-band, HH-pol) backscatter, the dataset was limited to two nights and the use
of visual inspection to confirm the presence of dew. Our inclusion of continuous leaf
wetness sensors allowed us to capture the accumulation, peak and dissipation of dew
every night for the entire growing season, ensuring that our conclusions are based on a
diverse range of events.

The inclusion of continuous leaf wetness measurements also provides unique, new
insight into L-band backscatter sensitivity to rainfall interception. Light rain events, in-
tercepted by the vegetation, caused strong fluctuations in σ0 (3dB in cross-pol and 2dB
in co-pol), even though soil moisture was constant (see Fig. 3.6a-c). The presence of sur-
face canopy water is not considered in current electromagnetic models (e.g. Bracaglia
et al., 1995; Monsivais-Huertero et al., 2018; Ulaby et al., 1990) or retrieval algorithms
(e.g. Dubois et al., 1995; Hosseini et al., 2015; Joseph et al., 2008). The results presented
here demonstrate that SCW can have a significant effect on σ0. Accounting for SCW in
models and retrieval algorithms can therefore be expected to lead to improved retrievals
of soil and vegetation variables.

The significant effect of both dew and interception on σ0 illustrates the value of in-
cluding continuous leaf wetness sensors in microwave field campaigns and experiments.
In this study, SCW was estimated from leaf Wetness Sensor data using a simple weight-
ing based on LAI. While this was sufficient to demonstrate the important influence that
SCW has on the canopy, rigorous validation of SCW is essential in future experiments
that seek to establish quantitative relationships between SCW and σ0. Given that mi-
crowaves penetrate the vegetation, future research should also examine how the vertical
distribution of surface canopy water influences its effect on σ0.

3.5. CONCLUSIONS
Results from an intensive experimental campaign combining sub-daily radar and vege-
tation water dynamics observations were used to explore the sensitivity of L-band radar
backscatter to variations in surface and internal canopy water content of corn. The daily
cycle in radar backscatter was found to vary in amplitude depending on the growth
stage of the vegetation. Though the strongest diurnal variations were observed dur-
ing the early vegetative stages, the limited vegetation scattering and attenuation during
this time suggests that these variations are attributed to surface soil moisture fluctua-
tions and heavy dew on the uppermost skin of the soil. As the canopy approached full
biomass, the sensitivity to the underlying soil was strongly reduced, and the diurnal cy-
cle in radar backscatter was found to reflect temporal patterns in surface and internal
water content.

Radar backscatter, especially in cross-pol, was found to be sensitive to surface canopy
water, with temporal variations in radar backscatter closely following the slow accumu-
lation and rapid dissipation of dew, and exhibiting transient but significant increases in
response to interception. In addition to being a variable of interest in its own right, the
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prevalence of dew during the night and early morning and its influence on the radar
backscatter highlights the potential influence of overpass time on the interpretation of
radar observations from sun-synchronous satellites for vegetation monitoring. It also
highlights the potential benefit of being able to choose sub-daily SAR data at specific
overpass times to avoid the confounding influence of dew on the retrieval of biomass
and internal water content. Both the effects of surface and internal canopy water on
backscatter underscore the importance of including canopy water dynamics in physical
models, particularly those used to simulate sub-daily radar observations.

One of the key challenges of exploiting sub-daily spaceborne SAR will be to disen-
tangle surface and internal water content. Continuous monitoring of surface canopy
water significantly improved the interpretation of sub-daily radar. During daytime, in-
terception events are often transient and easily identifiable, and dew dissipation is often
rapid. However, the slower dynamics of dew accumulation and internal water content
variations are more difficult to separate. Developing a reliable approach to monitor VWC
continuously would ease this separation of signals, and would improve the interpreta-
tion of sub-daily radar significantly. The sensitivity to surface and internal water content
variations was found to be polarization dependent. This suggests that sub-daily polari-
metric SAR (PolSAR) could be particularly useful to disentangle surface from internal
canopy water variations.

The results demonstrate a potentially valuable application for sub-daily spaceborne
SAR missions. However, the dataset is limited to a single crop type and a single radar
configuration. There are many open questions to be addressed. Planned and candi-
date missions have been proposed that could yield data at different frequencies. Addi-
tional experimental research is essential to explore the sensitivity of backscatter from
L-, to Ku-band to canopy water dynamics given the influence that frequency will have
on both the penetration depth in the canopy and the sensitivity to the various vegeta-
tion constituents. The influence of viewing geometry also warrants investigation. The
incidence angle of radar backscatter observations from geostationary satellites varies by
latitude. Hence, the suitability of sub-daily SAR data may be limited to certain latitu-
dinal bands. For constellations, a time series of data for a given location on the ground
will combine acquisitions that may vary by incidence and azimuth angle. Both influence
backscatter, particularly in agricultural areas, so their impact on the relative sensitivity
to surface and internal water content and soil moisture and roughness should be charac-
terized. Moreover, given the importance of rainfall interception on the radar signals and
its complexity, more research should be conducted on better estimating interception,
under different conditions, for different types and stages of vegetation, and the effect of
the distribution of intercepted water in the canopy on backscatter.

The future availability of sub-daily fine resolution data on surface and internal water
content offers an extraordinary opportunity to study plant water dynamics from a new
perspective, and at the landscape scales most relevant for understanding water and car-
bon exchanges in the climate system. By providing information on rapid surface and
internal plant water dynamics, sub-daily spaceborne SAR has the potential to become a
valuable source of data in the fields of hydrology, land surface modelling, climate mod-
elling, numerical weather prediction and plant physiology.
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APPENDIX: ELECTROMAGNETIC MODEL SIMULATIONS
A physical model for corn, developed at the Tor Vergata University of Rome (Bracaglia et
al., 1995; Della Vecchia et al., 2006), was used to illustrate contributions of soil and vege-
tation components to total backscatter, and the changes during the season. This model
is based on radiative transfer theory and provides polarimetric backscatter of agricul-
tural fields. It is able to simulate both scattering and extinction properties of vegetation
elements and of the underlying soil applying the most suitable electromagnetic approx-
imation, depending on the scatterer size and shape. Furthermore, it is able to take into
account multiple scattering of any order and it can separate contributions of different
scatterers in the vegetation canopy.

The inputs for the model are listed in Table 3.2. Soil root mean square (RMS) height
was estimated using the meshboard approach described in Jang et al., 2005, and was
measured in the period between sowing and crop emergence. Correlation length is very
difficult to measure accurately, because it is extremely variable (Álvarez-Mozos et al.,
2008). Therefore, we chose the correlation length which gave the best fit between sim-
ulated and observed σ0 during the bare soil period. Plant density was averaged over 40
randomly chosen samples. The model was run with a daily time step. Because the model
does not account for surface canopy water, soil moisture values at 10:00 were used to en-
sure that dew had dissipated from the canopy at the observation time. Since water on
leaves suppresses transpiration (Dawson and Goldsmith, 2018), the internal water con-
tent at 10:00 should be close to 6:00 observations. Time series of vegetation parameters
were linearly interpolated. Similar to the observed σ0, cross-polarized backscatter rep-
resents the average of VH and HV polarizations.

The model simulations (RMSE=3.91 dB) are presented in Fig. 3.10. Note that the
observed co-polarized backscatter is underestimated by the model, while the cross-pol
increase due to vegetation growth is very well reproduced. Vegetation scattering refers to
the volume scattering by the vegetation layer. Ground scattering refers to direct scatter-
ing solely from the ground. Vegetation-ground scattering represents multiple scattering
effects due to interactions between the vegetation and ground. Double-bounce scatter-
ing represents the contribution coming from specular reflection from the soil followed
by specular reflection by stems, and viceversa.

Co-polarized backscatter was dominated by the direct ground contribution in the
early season. Increasing VWC during the vegetative stages (Fig. 3.2) results in attenu-
ation of the ground contribution, and an increase in the vegetation, vegetation-ground
and double-bounce terms. Double-bounce scattering increases with stem growth and is
most significant in VV during the early vegetative stages.

Both co-polarized σ0 simulations are dominated by direct vegetation scattering after
May 16, when LAI>1, and VWC>1.5 kg m-2. After May 23, when LAI>3.5 and VWC>3.5 kg
m-2, σ0

V V simulations can be almost completely explained by direct scattering from veg-
etation in mid- and late season, and other scattering mechanisms are negligible. How-
ever, indirect and direct scattering from the ground still contribute to σ0

H H to some de-
gree in this period. These results are comparable to those of Stamenković et al., 2015,
where a larger double bounce effect at HH polarization is observed, due to a much
smoother soil surface. Cross-polarized backscatter (σ0

X P ) was dominated by direct scat-
tering from vegetation, even when the plants were still small.
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Table 3.2: Input parameters for model simulation

Parameter Single value or time series

Frequency 1.25 GHz

Incidence angle 40◦

Soil rms height 2.5 cm

Soil correlation length 33 cm

Surface soil moisture (10:00) Time series

Crop height Time series

Mg cylinders (stems) Time series

Mg discs (leaves) Time series

No. of leaves Time series

LAI Time series

Stem height Time series

Stem radius Time series

Leaf area Time series

Plant density 8 plants m-2
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EXTRAPOLATING CONTINUOUS

VEGETATION WATER CONTENT TO

UNDERSTAND SUB-DAILY

BACKSCATTER VARIATIONS

Chapter 3 showed that sub-daily L-band backscatter was sensitive to both transient rain-
fall interception, and slower daily cycles of internal canopy water and dew. These re-
sults demonstrate a potentially valuable application for the next generation of spaceborne
radar missions. The results also show that an in-depth analysis of the role of vegetation
water content (VWC) is challenging, because it requires sub-daily measurements of VWC
changes which are notoriously hard to obtain. Future studies that aim to relate microwave
observables to VWC would benefit from a more efficient method to detect sub-daily VWC.
This chapter presents a methodology adopted from the tree physiology community to re-
construct continuous VWC from sap flow measurements and estimates of evapotranspira-
tion. The results are used to demonstrate that sub-daily changes in backscatter are consis-
tent with diurnal variability in VWC, in addition to surface canopy water and soil mois-
ture.

This chapter is based on:

Vermunt, P. C., Steele-Dunne, S. C., Khabbazan, S., Judge, J., and Van de Giesen, N. C. (2022). Extrapo-
lating Continuous Vegetation Water Content to Understand Sub-daily Backscatter Variations, Hydrology and
Earth System Sciences 26, 1223-1241 .
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doi: 10.5194/hess-26-1223-2022
doi: 10.5194/hess-26-1223-2022
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4.1. INTRODUCTION
The long heritage of research on remote soil moisture and biophysical parameter re-
trieval has shown that backscatter is sensitive to dielectric properties of vegetation, which
is strongly related to its water content (Konings et al., 2019; Steele-Dunne et al., 2017).
For a long time, this sensitivity to vegetation water content (VWC), here defined as the
weight of water captured inside the plant material above a square metre of ground (kg m−2),
was considered a barrier to soil moisture retrieval. In the last decade however, backscat-
ter sensitivity to VWC has been used for studies on plant hydraulics and water stress in
agriculture and ecosystems (e.g. El Hajj et al., 2019; Frolking et al., 2011; Konings et al.,
2017; Schroeder et al., 2016; Steele-Dunne et al., 2012; Steele-Dunne et al., 2019; van
Emmerik et al., 2017).

The increasing temporal and spatial resolution of spaceborne radar observations
creates opportunities for more detailed and extensive (eco)hydrological studies. In addi-
tion to the frequent C-band Synthetic Aperture Radar (SAR) observations from Sentinel-1
(Torres et al., 2012) and the RADARSAT Constellation Mission (Thompson, 2015), other
frequencies such as the L- and S-band mission NISAR (launch planned in 2023), the L-
band mission ROSE-L (2028), and the P-band mission BIOMASS (2023) will be available
within the next decade (Pierdicca et al., 2019; Quegan et al., 2019; Rosen et al., 2017).
Moreover, commercial providers such as Capella Space and ICEYE are building satel-
lite constellations with X-band instruments (Farquharson et al., 2021; Ignatenko et al.,
2020). These constellations will ensure multiple observations per day. As a result, the
availability of spaceborne backscatter observations in the near future will offer a unique
possibility to study vegetation water dynamics on different spatiotemporal scales.

However, we currently lack crucial knowledge on backscatter sensitivity to vegetation
water dynamics. Soil moisture retrieval algorithms, for example, generally consider the
confounding effects of vegetation water as time invariant or seasonally variant only (S.-B.
Kim et al., 2017). Well-established electromagnetic models have been developed and
calibrated based on seasonally variant VWC only (e.g. Bracaglia et al., 1995). Moreover,
the effect of surface canopy water (SCW), i.e. dew or rainfall interception, is also usually
ignored (Vermunt et al., 2020; Xu et al., 2021). The omission of sub-daily vegetation water
dynamics causes potential retrieval errors Brancato et al., 2017 and, more importantly,
hinders our understanding of the extent to which radar backscatter could be used to
monitor vegetation water dynamics. Without this knowledge, the upcoming spaceborne
observations cannot be used to their full potential.

Several studies have related observed diurnal backscatter cycles to vegetation wa-
ter dynamics. Clear diurnal cycles were found in tower-based observations from for-
est stands (e.g. Hamadi et al., 2014; Monteith and Ulander, 2021) and agricultural crop-
land (e.g. Vermunt et al., 2020), as well as in aggregated satellite observations from larger
forested areas (Konings et al., 2017; Paget et al., 2016; van Emmerik et al., 2017). These
studies have made important contributions to the understanding of sub-daily backscat-
ter behaviour. However, a persistent challenge is the lack of in situ data for ground truth
validation. In situ soil moisture can be routinely measured using a variety of sensors
(Cosh et al., 2016; Dobriyal et al., 2012). Surface canopy water can be measured continu-
ously using leaf wetness sensors (Cosh et al., 2009; Vermunt et al., 2020). However, inter-
nal VWC is still generally measured using laborious destructive sampling, particularly in
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agricultural fields (e.g. van Emmerik et al., 2015; Vreugdenhil et al., 2018; Ye et al., 2021).
This is acceptable for monitoring seasonal changes, but is prohibitively time-consuming
and labour-intensive for sub-daily variations. Hence, it is crucial to find a more efficient
way to obtain continuous, quantitative estimates of sub-daily VWC variations.

For woody constituents in trees, dendrometers have been used to infer water content
non-destructively after detrending, and similarly, time- and frequency-domain reflec-
tometry (TDR and FDR) and capacitance-style sensors have been used to derive water
content indirectly by measuring dielectric permittivity (Konings et al., 2021). Moreover,
a water balance-style approach using sap flow sensors have been used by the tree physi-
ology community to estimate diurnal changes in tree stem water storage (Čermák et al.,
2007; Goldstein et al., 1998; Köcher et al., 2013; Meinzer et al., 2004; Phillips et al., 2008).

The objectives of this chapter were to test the potential of this non-destructive sap
flow approach for estimating sub-daily VWC variations in herbaceous plants and to use
these estimates to better understand what controls sub-daily variations in L-band backscat-
ter. Specifically, we adapted this sap flow methodology, described in Sect. 4.2, to esti-
mate 15 min changes in corn VWC using sap flow sensors and a weather station. An
extensive data set from a field campaign in the Netherlands in 2019 was used to evaluate
the adapted method against diurnal cycles of VWC obtained by destructive sampling.
Finally, the technique was applied to reconstruct sub-daily VWC variability of multiple
consecutive days from another field campaign in Florida in 2018. In this campaign, high
temporal resolution tower-based polarimetric L-band backscatter was collected. The
reconstructed VWC was used, together with simultaneously collected soil moisture and
surface canopy water (SCW), to gain a better understanding of what controls sub-daily
backscatter behaviour.

4.2. ESTIMATING DIURNAL VARIATIONS IN TREE WATER CON-
TENT USING SAP FLOW PROBES

Diurnal variations in internal VWC have been estimated in trees before, mainly in studies
focused on understanding the functional role of stem water reserves on daily tree water
use. A well-established in situ method uses sap flow probes at the base of the stem and
in the crown (e.g. Čermák et al., 2007; Goldstein et al., 1998; Köcher et al., 2013; Meinzer
et al., 2004; Phillips et al., 2008). This method is based on the time lag between transpira-
tion and basal sap flow, as a result of a tree’s hydraulic capacitance, which is the change
in water content per unit change in water potential (e.g. kg MPa−1; Goldstein et al., 1998;
Oguntunde et al., 2004). Morning transpiration, driven by the atmospheric evaporative
demand, causes the depletion of internal VWC in the crown and, depending on the hy-
draulic capacitance, a drop in water potential. In response to the resulting potential
gradient, sap flow rates increase to replenish the depleted VWC. As long as transpiration
rates exceed basal sap flow rates, water is withdrawn from internal VWC, and when basal
sap flow exceeds transpiration, internal VWC is refilled. Consequently, the diurnal varia-
tion in tree VWC could be calculated from the cumulative differences between basal sap
flow and whole-crown transpiration (see the second term of Eq. 4.1).

VWC(t ) = VWC(t0)+
t∑

i=t0

(Fi −Ti )∆t , (4.1)
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where VWC(t ) is the estimated VWC at time t , VWC(t0) is a reference VWC at t = 0, F is
basal sap flow, T is whole-crown transpiration, both in mass per unit of time, and ∆t is
the duration of a time step.

In these studies on trees, whole-crown transpiration was estimated from branch and
basal sap flow based on two assumptions. First, time lags between branch sap flow in
the crown and transpiration were assumed to be negligible compared to time lags be-
tween branch and basal sap flow. Hence, the averaged daily cycles of sap flow in the
monitored branches were assumed to approximate the cycles of whole-crown transpi-
ration. Second, most studies assumed that the 24 h sums of whole-crown transpiration
and basal sap flow were equal (Čermák et al., 2007; Goldstein et al., 1998; Köcher et al.,
2013; Phillips et al., 2008). This assumption made it possible to estimate whole-crown
transpiration rates by first dividing averaged branch sap flow by its daily sum and then
multiplying by the daily sum of basal sap flow. The corresponding assumption is that all
water that is withdrawn from internal VWC is replaced within 24 h.

4.3. DATA AND METHODS
Section 4.3.1 relates to the adjustments and data required to make the sap flow approach
(Sect. 4.2) applicable to corn. Data from a field campaign in the Netherlands in 2019 were
used to evaluate the adjusted method. Section 4.3.2 relates to the methodology and data
used from our field campaign in Florida in 2018 for interpreting sub-daily backscatter
behaviour.

4.3.1. APPLYING THE SAP FLOW APPROACH TO ESTIMATE DIURNAL VARIA-
TIONS IN CORN VWC

ADJUSTMENTS AND EVALUATION OF THE SAP FLOW APPROACH

We investigated the potential of the sap flow method (Sect. 4.2) for estimating diurnal
VWC variations in corn plants. The largest differences between corn plants and trees are
related to hydraulic capacitance and structure. Corn plants have much lower hydraulic
capacitance than most trees (Langensiepen et al., 2009) and, hence, shorter time lags be-
tween transpiration and basal sap flow. As a consequence, installing a sap flow sensor as
a surrogate for transpiration would be problematic, since the assumption of a negligible
time lag between transpiration and upper sap flow, compared to the lag with basal sap
flow, is invalid. Moreover, transpiring corn leaves are somehow evenly distributed across
the stem, in contrast to trees with a crown, which makes the placement of a second sen-
sor to represent transpiration nearly impossible. For these reasons, we estimated tran-
spiration using indirect estimates of reference evapotranspiration (ET0) instead. Details
from sap flow measurements and ET0 estimates are given in Sect. 4.3.1.

A widely used approach to derive transpiration from ET0 is a linear conversion using
crop factors, e.g. the FAO 56 dual-crop coefficient model (R. G. Allen et al., 1998). How-
ever, in many cases, these estimations systematically over- or underestimate direct ob-
servations of transpiration (Ding et al., 2013; Rafi et al., 2019) or sap flow (Langensiepen
et al., 2009), while basal sap flow and transpiration at the leaves must equal over a suffi-
ciently long time period (Swanson, 1994). For our data sets, Penman–Monteith-derived
transpiration (R. G. Allen et al., 1998) is systematically lower than measured sap flow.
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Table 4.1: The three tested approaches to estimate transpiration (T) using Penman-Monteith derived ETo esti-
mates and sap flow measurements.

Approach assumptions equations

Linear-24h withdrawn water is replaced within 24-hours. T (t ) = ETo(t ) F24h/ETo24h?

(4.2)
T is linearly related to ETo

Linear- multiple days withdrawn water is replaced within n days.
T (t ) = ETo(t ) Fnd /ETond? (4.3)

T is linearly related to ETo

Nonlinear - CDF-matching withdrawn water is replaced within n days. T (t ) = a† ETo(t )+b† ETo(t )2

(4.4)
CDF of T equals CDF of F

?subscripts 24h and nd relate to the 24-hour sum and n-days sum, respectively.

† a and b are found by a 2nd order polynomial fit through ranked F and ETo data, illustrated in

Fig. 4.4(c) .

Because sap flow is our most direct measurement, we chose to estimate transpiration by
rescaling ET0 estimates using sap flow measurements. This means that information on
the diurnal shape of ET0 is derived from the Penman–Monteith equation and that these
ET0 estimates are then scaled so that the resulting transpiration estimates are consistent
with sap flow over a given period of time.

We tested three different approaches to rescale ET0 estimates using sap flow mea-
surements. The first approach was similar to the rescaling of branch sap flow to whole-
crown transpiration in trees, described in Sect. 4.2. Transpiration was assumed to equal
basal sap flow during a 24 h period, and 15 min ET0 estimates were divided by their 24 h
sum and then multiplied by the 24 h sum of basal sap flow (see Eq. 2 in Table 4.1).

However, the assumption of complete replacement of withdrawn water within 24 h
may not always hold. This is, for example, the case when water accumulates as a re-
sult of growth or when a plant is unable to replace the transpired water within a day
as a result of stress. Therefore, we also tested the effect of either relaxing this assump-
tion or using multiple days instead, i.e. 3, 5, or 7 consecutive days surrounding the day
of interest or all measured days in the data set. Both approaches assume a simple, lin-
ear relation between ET0 and transpiration. It will be shown that this assumption can
cause an offset between the timing of the diurnal cycles of sampled and reconstructed
VWC. This issue was addressed by adopting the cumulative distribution function (CDF)
matching method, previously used to rescale satellite-derived surface soil moisture to
observations (Brocca et al., 2011; Drusch et al., 2005; Reichle and Koster, 2004). This
nonlinear approach removes systematic differences between two data sets by matching
the CDFs of both data sets (Brocca et al., 2011). Here, we matched the CDFs of the ET0

and sap flow data. This was achieved by first ranking all 15 min data from both data sets
from low to high values and then fitting a second-order polynomial function through the
scatterplot of both ranked data sets. Subsequently, this function was used to convert the
15 min ET0 data to transpiration estimates. CDF matching was also performed for 1, 3,
5, and 7 consecutive days and all available days. Figure 4.4 illustrates CDF matching and
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Figure 4.1: Availability of the data required to evaluate the adjusted methodology for estimating 15 min VWC
variations. The availability of the sap flow, ET0, and sampling data matched on 25 July and 23 and 28 August.

its results for 3 d of our data.
VWC samples obtained by destructive sampling during the 2019 campaign (Sect. 4.3.1)

were used to validate the method. For the selected days (Fig. 4.1), we used one of the five
sampling times to constrain the daily cycle (VWC(t0) in Eq. 4.1). The other four indepen-
dent samples were compared against the estimated diurnal cycle of VWC variations. For
each day, we calculated the root mean square error (RMSE) between the four indepen-
dent samples and reconstructed VWC on these four times. All five samples were used
as (VWC(t0)) once to determine the best time to constrain the reconstruction.

In summary, we adapted and evaluated the sap flow methodology to estimate diurnal
cycles of corn VWC through the following three steps.

1. The diurnal cycle of transpiration was estimated from ET0 and sap flow data, using
three different approaches (Table 4.1).

2. Sub-daily variations in VWC were estimated by calculating the cumulative differ-
ence between 15 min basal sap flow and transpiration estimates (Eq. 4.1).

3. The resulting estimates of diurnal VWC variations were compared against destruc-
tive measurements of VWC.

EXPERIMENTAL SITE AND DATA COLLECTION

Experimental site 2019
The field campaign in The Netherlands was conducted in Reusel (51.319◦ N, 5.173◦ E),

at Van Den Borne Aardappelen. There, field corn was planted on a sandy soil with a den-
sity of eight plants per square metre (hereafter m−2), and harvested, for silage after the
required senescence, 148 d after planting. The Netherlands has a temperate maritime
climate. However, maximum national temperature records were broken close to the field
site during the growing season of 2019, and it was the second anomalously dry summer
in a row (Bartholomeus et al., 2020).

Sap flow
Sap flow was monitored near the base of the stem using stem flow gauges produced

by Dynamax Inc. (Houston, TX, USA). See Chapter 2 for details about these sensors. Sen-
sor output (g h−1) is converted to millimetres per 15 min (mm 15 min−1) using the den-
sity of liquid water and the planting density. Because the sensors are designed to fit a
certain range of stem diameters, we collected data in the mid- and late season.

In 2019, a maximum of two sensors were installed due to power limitations. Because
one sensor failed, the used data are from a single sensor. Gaps in the time series were
caused by disturbances in the connection with the battery.
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Reference evapotranspiration
A weather station was installed at the edge of the experimental site, with a ECH2O

rain model ECRN-100 rain gauge, Apogee SP-212 pyranometer (solar radiation), a Davis
Cup anemometer (wind and gust speed and wind direction), and a HOBO Tempera-
ture/RH Smart Sensor model S-THB-M008 (temperature and relative humidity). Ref-
erence evapotranspiration (ET0) was estimated using the Penman–Monteith approach
described by Zotarelli et al., 2010.

Sampling
Plant fresh (mf) and dry (md) biomass were measured by destructive sampling (see

Chapter 2, section 2.2.3). Field-representative VWC (kg m−2) was estimated by multi-
plying the difference between fresh and dry biomass per plant (kg) with the number of
plants per m2 (ρplant; see Eq. 5.1).

VWC = (mf −md)ρplant. (4.8)

In 2019, we aimed to capture full diurnal cycles of VWC. Hence, we sampled at five
equally distributed times, between sunrise and sunset, on 12 d spread throughout the
season. Seasonal VWC variations were monitored by predawn sampling only.

Figure 4.1 shows the availability of the data required to evaluate the adjusted method-
ology for estimating 15 min VWC variations. The availability of sap flow, ET0, and VWC
sampling data matched on 25 July and 23 and 28 August.

Surface canopy water and soil moisture
Measurements of surface canopy water (dew and interception) and root zone soil

moisture were used as ancillary data sets to support the evaluation of the reconstructed
VWC estimations. Surface canopy water (SCW) was monitored using PHYTOS 31 leaf
dielectric wetness sensors. A total of, three sensors were installed on different heights in
the vegetation layer, and one sensor failed during the season. Measured leaf areas were
used to convert sensor output to full-canopy SCW (kg m−2). Details of this conversion
and sensor properties are described in sections 3.2.3 and 3.2.3, respectively.

Soil moisture (θ) was observed in two pits with 15 min resolution, using EC-5 sensors
at 5, 10, 20, 40, and 80 cm depth. These measurements were averaged based on depth.
Root zone soil moisture was estimated by integrating the measurements from all depth
over a soil column of 100 cm, based on the thickness of the soil layer associated with the
depth of the sensor.

4.3.2. INTERPRETING THE BEHAVIOUR OF SUB-DAILY L-BAND BACKSCAT-
TER

APPROACH AND DATA REQUIREMENT

To gain a better understanding of what controls sub-daily L-band backscatter behaviour,
we analysed tower-based observations using continuous time series of the three mois-
ture stores in the corn field, namely (1) VWC, (2) SCW, and (3) surface soil moisture (θ).
Details of the collection of these time series are given in Sect. 4.3.2. The longest period
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for which we had all data available was from 4 June 00:00 LT to 13 June 10:15 LT. During
this period, the corn is at maximum height and leaf area index (LAI) and is 1–2 weeks
before harvest on 18 June. All analyses were conducted for this period.

Insights in the separate effects of the three different moisture stores on sub-daily
backscatter (σ0) variations were gained by quantifying their relations through multiple
linear regression. The relation between sub-daily backscatter variations and changes in
these dynamic moisture stores was described as follows:

σ0(t ) =σ0
t0
+a

(
θt −θt0

)+b
(
VWCt −VWCt0

)
+ c

(
SCWt −SCWt0

)
,

(4.9)

where t0 is the first radar acquisition time of the day (01:00 LT) and assumes linear rela-
tions betweenσ0 and the individual moisture stores. The regression coefficients a (dB m−3

m−3), b (dB kg−1 m−2), and c (dB kg−1 m−2) were used to quantify the change in backscat-
ter within a day as a result of change in moisture and were derived for each polarization
separately.

EXPERIMENTAL SITE AND DATA COLLECTION

Experimental site 2018
The field campaign in Florida, USA, was conducted in Citra (29.410◦ N, 82.179◦ W),

at the Plant Science Research and Education Unit (PSREU) of the University of Florida
and the Institute of Food and Agricultural Sciences (UF/IFAS). Sweetcorn was planted in
a sandy soil, with a density of 7.9 plants per m−2, and harvested after 66 d, in mid-June,
for human consumption. The climate of this area in Florida is humid subtropical, and
the 2018 spring growing season was characterized by high temperatures, high-intensity
rainfall, and thunderstorms.

Backscatter
High temporal resolution L-band backscatter data were collected with the polari-

metric University of Florida L-band Automated Radar System (UF-LARS) throughout the
growing season of 2018. This system was mounted on a Genie aerial work platform at a
height of 14 m above the ground. The scatterometer scanned the cornfield, with an in-
cidence angle of 40◦, and acquired 16 observations spread throughout the day in the
late season. The installation of sensors and vegetation sampling was performed outside
the arc swept by the radar. A comprehensive description of the observations and the UF-
LARS system can be found in section 2.2.1 and Nagarajan et al., 2014, respectively. Cross-
polarization (cross-pol) is used to refer to the average of the HV- (horizontal transmit and
vertical receive) and VH-polarized (vertical transmit and horizontal receive) backscatter.
The symbols used for VV-, HH-, and cross-pol backscatter are σ0

VV, σ0
HH and σ0

XP, respec-
tively.

Reconstruction of diurnal VWC variations for multiple consecutive days
To support the analysis of variations in the L-band backscatter, a 10 d time series of

diurnal VWC variations was reconstructed for the 2018 data. The methodology used for
the reconstruction was based on adjustments and evaluation of the sap flow approach
presented in Sect. 4.3.1. The required sap flow and ET0 data sets were similar but slightly
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Figure 4.2: Vegetation water content (VWC), crop height, and leaf area index (LAI) from the field experiments
in Citra (2018) and Reusel (2019). Filled red markers indicate predawn measurements, while open markers
indicate non-predawn measurements at 18:00 LT (2018) and morning to sunset (2019).

different. In 2018, four sap flow sensors were installed simultaneously on four different
plants, and the data were averaged. Gaps in the time series were caused by disturbances
in the connection with the battery or solar panel.

Meteorological data with 15 min resolution were obtained from the nearby Florida
Automated Weather Network (FAWN) weather station, located within 600 m from the
experimental field. Observations of rainfall, air temperature (2 m), solar radiation, rel-
ative humidity, and wind speed were downloaded from the Report Generator (https:
//fawn.ifas.ufl.edu/data/reports/, last access: 10 October 2018). ET0 was estimated us-
ing the same Penman–Monteith approach described by Zotarelli et al., 2010.

In contrast to the 2019 data set, VWC samples were not collected to capture the full
diurnal cycle. Instead, these samples were obtained 4 times per week, i.e. 3 d at 06:00 LT,
and also at 18:00 LT on one of these days, originally to capture differences between morn-
ing and evening passes for a sun-synchronous satellite such as SMAP (Entekhabi et al.,
2010). Moreover, the presented VWC data for 2018 are averages of eight plants instead of
six. The samples were used to constrain the reconstructed VWC variations.

The period of consecutive days for the analysis was limited by the availability of sap
flow data. A 10 d time series was found in mid- to late season which contained contin-
uous sap flow and weather data, L-band backscatter, and 5 sampling days. On these
days, samples were used to constrain the VWC record. On the 5 d without sampling, the
VWC records were constrained either at the end of previous sampling day (forward re-
construction) or at the start of next sampling day (backward). In case there was a gap
between the forward and backward reconstructions, the average of both was considered
the best estimate of VWC.

Soil moisture and surface canopy water
For the analysis of sub-daily variations in the L-band backscatter, we also collected

15 min variations in surface soil moisture, at 5 cm depth, and SCW. Together with VWC,
they form the moisture stores of a cornfield which are considered to affect sub-daily
backscatter. Details of the sensors and measurements are described in Sect. 4.3.1 and
extensively in Vermunt et al., 2020.

https://fawn.ifas.ufl.edu/data/reports/
https://fawn.ifas.ufl.edu/data/reports/
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Figure 4.3: Sampled vegetation water content (VWC) in the mid-season, 2019 (a), and a picture of rolled
leaves (b), taken around the third measurement on 23 July, as a sign of drought stress.

4.4. RESULTS

4.4.1. SEASONAL AND DIURNAL VARIATION OF VEGETATION WATER CON-
TENT

Figure 4.2 illustrates the seasonal and diurnal variations of VWC (kg m−2) from destruc-
tive sampling in the 2018 and 2019 campaigns. From the early to mid-season, VWC in-
creased as a result of biomass accumulation. The field corn from 2019 was allowed to
senesce before harvest, resulting in a significant reduction in water storage in the plants
from 23 August onward. The sweetcorn from 2018 was harvested before considerable
senescence.

The open markers are the non-predawn measurements, which were at 18:00 LT (2018),
and at four evenly distributed times between sunrise and sunset (2019). The range of
these latter diurnal measurements gives an indication of the amplitude of the daily cy-
cle of VWC. On most days, the diurnal minimum was 10 %–20 % lower than the predawn
water storage. An exception was 23 July, when predawn water storage was depleted by
35.4 % during the day. Figure 4.3 magnifies the mid-season measurements and illustrates
the difference between water depletion in the non-stressed conditions compared to the
stressed date. The photograph was taken around the third measurement on 23 July. This
picture shows leaf rolling, which is a mechanism to reduce the leaf area exposed for tran-
spiration and a sign of drought stress. Normal-shaped leaves were observed again as a
result of irrigation, which was applied right after the last sampling on 23 July, in order to
ensure the crop’s survival.

4.4.2. RECONSTRUCTIONS OF CONTINUOUS, SUB-DAILY VARIATIONS IN VEG-
ETATION WATER CONTENT

As described in Sect. 4.3.1, we tested three approaches to estimate transpiration from ET0

and sap flow. As an alternative to the straightforward linear conversions, we proposed to
test the nonlinear CDF matching principle (Table 4.1). Figure 4.4 illustrates the proce-
dure of estimating transpiration using this principle, using 3 d of sap flow and ET0 data.
We take 25 July 2019 as an example and use the data from 24 and 26 July as well (Fig. 4.4a).
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Figure 4.4: Example of ET0 rescaling to approximate transpiration (2019 campaign), using the CDF matching
approach. (a) Sap flow (F ) and reference evapotranspiration (ET0) data from 24–26 July 2019. (b) Cumulative
distribution function (CDF) of both data sets in this period. (c) Second-order polynomial fit through ranked F
and ET0 data, used to derive the CDF-matched transpiration estimate (T-cdf), which was added to the CDF
plot in panel (d). Panel (e) shows the final result of the CDF matching.

On 25 July, which was particularly warm and sunny, we measured a maximum temper-
ature of 39.0 ◦C in the field. Figure 4.4b illustrates the difference between the CDFs of
sap flow and ET0, which is particularly evident at the 35 % highest rates. At lower rates
(< 0.07 mm 15 min−1), ET0 rates were slightly higher than sap flow rates. As these system-
atic differences between both rates may be unrealistic, a second-order polynomial was
fitted through the scatterplot with ranked ET0 and sap flow data (Fig. 4.4c) and was used
to match the CDFs (Fig. 4.4d). The resulting CDF-matched transpiration estimate (T-cdf;
Fig. 4.4e) was used to estimate ∆VWC at any point in time using the approach described
in Fig. 4.5.

The procedure to reconstruct 15 min changes in VWC is depicted in Fig. 4.5, again
with 25 July as an example. Figure 4.5a illustrates the effects of the three approaches on
estimate transpiration from ET0 and sap flow (Table 4.1). T-cdf and T-3 d represent the
CDF-matched and linear estimates of transpiration, for which 3 d of data were used, i.e.
24–26 July. What stands out is that the CDF-matched rescaling (T-cdf) provides a sig-
nificantly higher peak compared to the linear rescaling (T-24 h and T-3 d). On the other
hand, when ET0 rates are 0.09 mm 15 min−1 or lower, T-cdf was lower than the linear
estimates. Both linear transpiration estimates were close in this particular case, which
means that the ratio of the 24 h sum of sap flow over ET0 was close to the ratio of the 3 d
sum of sap flow over ET0. Figure 4.5b shows the diurnal cycles of basal sap flow (F ) and
transpiration. Here, the simplest linear transpiration estimate (T-24 h) was depicted as
an example. The difference between sap flow and transpiration gave the estimated de-
pletion and refilling of internal water storage (Fig. 4.5c). If transpiration rates exceeded
sap flow rates at some point in time, the line is below zero, which indicates a deple-
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Figure 4.5: A four-step procedure to reconstruct the diurnal variation in VWC. An example for 25 July 2019.
Panel (a) shows the diurnal cycles of reference evapotranspiration (ET0) and the three transpiration estimates
(see Table 4.1). Panel (b) shows the diurnal cycles of sap flow (F ) and one of the transpiration estimates (T-
24 h). Panel (c) is the difference between sap flow and transpiration, where negative values indicate depletion
of water storage, and positive values indicate refill. Panel (d) illustrates the resulting cumulative change in
stored water (∆VWC) during the day.

tion of water storage. Positive values indicate refilling. Finally, the cumulative difference
between sap flow and transpiration represents the diurnal change in plant water storage
or∆VWC (Fig. 4.5d). The minimum VWC was reached around 12:45 LT, when 0.87 kg m−2

of the predawn water storage was depleted. This is close to the maximum diurnal differ-
ence of 0.82 kg m−2 observed on that day from destructive sampling (Fig. 4.3).

Diurnal cycles of VWC were reconstructed for both linear and nonlinear transpira-
tion estimates, using ∆VWC (Fig. 4.5d) and one destructive sample (Figs. 4.2 and 4.3)
per day as a constraint. Results were compared against the other destructive samples.
The effect of both the time of the constraint and the number of days considered for
the transpiration estimation on the VWC reconstructions were evaluated. The RMSEs
of the 2019 data are presented in Tables 4.2–4.3. A general optimal combination of the
time of the constraint and the number of days to consider could not be found. Using
CDF-matched transpiration estimates resulted in a better agreement with the destruc-
tive sampling data than using linear correction in 80 % of the cases. The best reconstruc-
tions from 2019 (Tables 4.2 and 4.3) are presented in Fig. 4.6 and differentiated by the
approach to estimate transpiration. Differences between environmental conditions are
shown in Fig. 4.7. Figure 4.6 illustrates the improvement of the reconstruction when us-
ing more than 1 d of data for the estimation of transpiration (second and third rows).
The upper row clearly shows that the linear 24 h approach does not allow for a differ-
ence between the start- and end-of-day VWC, while the inclusion of multiple days does.
In addition, the reconstruction on 25 July illustrates the possible improvement that CDF
matching can have. On 25 July and 28 August, the RMSEs of the lowest plots were 8 % and
12 % of the amplitude of the diurnal cycles, respectively. On 23 August, the agreement is
poor, especially later in the day, and this percentage is 36.9 %. On this day, reconstruc-
tions and samples disagree for all three approaches to estimating transpiration but less
so for the CDF matching procedure.

For the 2018 campaign, we had a maximum of two VWC samples per day. Table 4.4
shows the offset between one of the samples and the reconstructed VWC, which was
constrained by the other sample for 4, 8, and 11 June. The lowest offsets were found
when transpiration was estimated using all data (12 d), and when CDF matching was
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Table 4.2: Root mean squared error (RMSE) between reconstructed and sampled VWC. The rows represent
time of constraining the reconstruction, while the columns represent the considered period for linear ETo
correction

July 25 August 23 August 28

1 day 3 days all data 1 day 3 days 5 days 7 days all data 1 day 3 days 5 days 7 days all data

predawn 0.212 0.272 1.107 0.369 0.310 0.256 0.282 0.547 0.178 0.097 0.095 0.063 0.352
morning 0.314 0.369 1.082 0.500 0.444 0.389 0.416 0.655 0.176 0.110 0.108 0.078 0.315
afternoon 0.187 0.220 0.704 0.375 0.346 0.318 0.331 0.468 0.129 0.090 0.089 0.075 0.227
evening 0.266 0.321 1.036 0.446 0.392 0.337 0.364 0.601 0.206 0.138 0.136 0.106 0.351
sunset 0.247 0.311 1.131 0.516 0.448 0.379 0.413 0.706 0.150 0.074 0.072 0.047 0.317

Table 4.3: Root mean squared error (RMSE) between reconstructed and sampled VWC. The rows represent time
of constraining the reconstruction, while the columns represent the considered period for CDF-matching

July 25 August 23 August 28

1 day 3 days all data 1 day 3 days 5 days 7 days all data 1 day 3 days 5 days 7 days all data

predawn 0.155 0.140 0.070 0.303 0.380 0.295 0.310 0.458 0.135 0.112 0.153 0.149 0.379
morning 0.114 0.104 0.124 0.296 0.390 0.313 0.331 0.508 0.121 0.078 0.100 0.088 0.286
afternoon 0.140 0.136 0.125 0.309 0.351 0.311 0.319 0.402 0.091 0.060 0.075 0.067 0.212
evening 0.094 0.081 0.113 0.244 0.333 0.259 0.276 0.451 0.142 0.084 0.103 0.083 0.306
sunset 0.177 0.162 0.083 0.471 0.548 0.460 0.474 0.623 0.102 0.070 0.106 0.097 0.325

applied. Consequently, we used the transpiration calculated based on this combination
for further use of reconstructed VWC.

Table 4.4: Offset between reconstructed and sampled VWC. The rows represent the method used for transpi-
ration estimation, while the columns represent the considered period.

June 4 June 8 June 11

1 day 3 days 5 days all data 1 day 3 days 5 days 7 days all data 1 day 3 days 5 days all data

linear 0.202 0.250 0.149 0.055 0.412 0.071 0.241 0.022 0.022 0.556 0.790 0.739 0.543
cdf 0.134 0.180 0.185 0.063 0.292 0.106 0.209 0.147 0.128 0.456 0.476 0.521 0.267

4.4.3. RECONSTRUCTING A RECORD OF MULTIPLE DAYS

Figure 4.8 shows the procedure for reconstructing the 10 d VWC record from 2018 data.
On 4, 8, and 11 June, evening samples (18:00 LT) were used as constraints rather than
predawn samples (06:00 LT), which resulted in smaller gaps between consecutive days
(Fig. 4.8c). On days without sampling, VWC records were the averages of forward or
backward reconstructions. On 9 and 10 June, the weighted average based on the distance
to the sampling date was considered as the best estimate of VWC.

The diurnal VWC pattern on 5 and 6 June seems physically implausible because one
would not expect an enormous increase in VWC on the warmest and driest day (5 June)
and a drop on the most rainy/cloudy day (6 June). Despite the advantage of CDF match-
ing, as opposed to linear conversion to better reflect diurnal extremes, the anomalous
dynamics of 5 and 6 June are not captured sufficiently.
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Figure 4.6: Best diurnal VWC reconstructions for 25 July and 23 and August 28 (2019) for three different meth-
ods of estimating transpiration. The upper row shows the results for using the simplest, linear estimate of
transpiration. The middle row shows the reconstructions using linear estimates of transpiration but now con-
sidering 3, 5, and 7 d rather than 24 h. The lower row shows the results after CDF matching, considering all
data, and 5 and 3 d for the CDF matching, respectively. The dashed green lines represent one RMSE above and
one RMSE below the reconstructed VWC. The measurement which is used to constrain the reconstructed line
is accentuated with an open marker.

4.4.4. THE EFFECT ON SUB-DAILY L-BAND BACKSCATTER

Figure 4.9 illustrates the potential value of reconstructing VWC records for interpret-
ing the time series of microwave remote sensing data, in this case L-band backscatter.
The upper three panels show the VV- (vertically), HH- (horizontally) and cross-polarized
backscatter coefficients, respectively. Figure 4.9d shows the sampled and reconstructed
VWC, together with the total canopy water (CW), which is the sum of the reconstructed
VWC and SCW (kg m−2). The latter is either rainfall interception, which is characterized
by rapid increases and is often transient because of daytime evaporation, or dew forma-
tion, which accumulates gradually during the night and dissipates quickly after sunrise.
Figure 4.9e shows the volumetric soil moisture at −5 cm depth.

Sub-daily variability of > 2 dB was found in all three polarizations. A sharp backscat-
ter increase after rainfall was observed in all polarizations. Slow downward trends were
also found, corresponding with the drydown in soil moisture. However, on a sub-daily
timescale, the backscatter variability shows strong similarities with diurnal patterns of
canopy water (Fig. 4.9d). These diurnal cycles are most clearly visible in VV-pol. Fig-
ure 4.10 magnifies the diurnal variations for 3 d without rainfall, i.e. 7, 9, and 11 June.
These days demonstrate clear similarities between the diurnal behaviour of the backscat-
ter, mainly VV- and cross-pol, and canopy water. These similarities are particularly present
in the period between midnight and mid-afternoon, when surface soil moisture is rela-
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Figure 4.7: Environmental conditions on the sampling days of 25 July and 23 and 28 August (2019). The upper
row shows air temperature (T ) and solar radiation (Rs), and the lower row shows root zone soil moisture (θ)
and surface canopy water (SCW).

Table 4.5: Estimated regression coefficients per polarization for the period June 7-13, 2018 (equation 4.9).

VV-pol HH-pol Cross-pol

a[dB/m3m−3] 24.06 39.47 38.83
b[dB/kg m−2] 2.93 2.29 2.45
c[dB/kg m−2] 0.62 0.38 0.73

tively stable. In fact, when randomly occurring rain events are excluded, the sub-daily
backscatter behaviour can be analysed using the following three distinct sub-daily pe-
riods: (1) from midnight to early morning, (2) from early morning to afternoon, and
(3) from afternoon to midnight. The aggregated data in Fig. 4.11 help to visualize the
dynamics in these periods. Because rain fell more often in the afternoon and evening,
the exclusion of periods with rainfall led to data aggregation across 9, 6, and 4 d in these
three periods, respectively. Around midnight, dew started to form until its peak between
07:00 and 07:30 LT, which is within 1 h after sunrise around 06:30 LT. In this same period,
VWC was stable and surface soil moisture decreased slightly. VV- and cross-polarized
backscatter increased, following dew formation, while HH-polarized stayed relatively
stable. From early morning (07:30 LT) to afternoon (14:00 LT), dew dissipated and VWC
dropped significantly. The same holds for backscatter in all polarizations, while surface
soil moisture was still relatively stable. Finally, the last period of the day is characterized
by the refilling of the plant’s internal water storage and a decrease in soil moisture. The
fact that backscatter in all polarizations remains relatively constant between 15:00 and
19:30 LT suggests the counterbalancing effects of soil moisture and VWC on backscatter
in this period. During the last four aggregated acquisitions between 19:00 and 21:30 LT,
VV- and cross-polarized backscatter show a slightly increasing trend similar to VWC.

The separate effects of the different moisture stores on backscatter (σ0) were quanti-
fied through multiple linear regression. Because we considered the VWC reconstructions
from 5 and 6 June as being less reliable, the period between 7 and 13 June was used for
the regression. Table 4.5 presents the estimated regression coefficients found for this
period (see Eq. 4.9). A summary of the multiple linear regression statistics is given in
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Figure 4.8: A 10 d reconstruction of VWC, with (a) sap flow (F ) and estimated transpiration (T-cdf). (b) The dif-
ference between sap flow and transpiration and (c) the sampled and reconstructed VWC is shown. In between
sampling days, VWC estimates are the weighted average between forward and backward reconstructions from
the consecutive sampling days (based on the time to the closest sampling day). The measurements which are
used to constrain the reconstructed line are accentuated with open markers.

Table 4.6. The regression coefficients suggest that, from all polarizations, VV-pol was
most sensitive to internal vegetation water storage and least sensitive to soil moisture.
Compared to other polarizations, HH-pol was least sensitive to VWC and SCW and most
sensitive to soil moisture. Cross-pol was more sensitive to SCW than the other polariza-
tions. Note that the coefficients from soil and vegetation water stores (Table 4.5) have
non-homogeneous physical units. Nonetheless, these coefficients indicate that, for a
typical dry day during the campaign of 2018, e.g. 9 June, the soil moisture reduction
of 0.015 m3m−3 translates to a −0.4, −0.6, and −0.6 dB change in VV-, HH-, and cross-
polarized backscatter, respectively. During the same day, VWC changed by 0.5 kg m−2,
which would translate to a change of 1.5 dB (VV), 1.2 dB (HH) and 1.2 dB (cross). This in-
dicates that, on this typical dry day, a diurnal variation in VWC leads to an almost 4 times
higher change in VV-polarized backscatter (dB) than a diurnal change in soil moisture
does. On the same day, the changes in HH- and cross-polarized backscatter (dB) were
2 times higher for the diurnal VWC variations than for the soil moisture drydown. The
0.4 kg m−2 dew formation and dissipation caused σ0 to vary by 0.2 dB (VV), 0.2 dB (HH),
and 0.3 dB (cross).

Figure 4.12 presents the results of using the regression coefficients (Table 4.5) and the
time series of VWC, SCW, and soil moisture to describe diurnal variations in backscatter.
Each day is constrained by the first radar observation of the day at 01:00 LT. Note, from
the R2 values in Table 4.6, that 68 %–71 % of the variance in backscatter is explained
by the three predictors. The P values for SCW are always higher than those for VWC
and soil moisture. Nonetheless, with the exception of the SCW coefficient in the case
of HH backscatter (P > |t | = 0.286), all P values are < 0.05, indicating statistical signif-
icance. However, note from Fig. 4.12a and c that the observed nocturnal backscatter
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Figure 4.9: Full polarimetric L-band backscatter and separated effects for a 10 d period near the end of the
growing season in 2018, with (a) VV-polarized scattering coefficient, (b) HH-polarized scattering coefficient,
and (c) averaged VH- and HV-polarized scattering coefficients, (d) sampled and reconstructed VWC, total
canopy water, which is the sum of reconstructed VWC and SCW, and (e) soil moisture at 5 cm depth. The
measurements which are used to constrain the reconstructed line are accentuated with open markers.

increase as a result of dew formation is barely visible in the calculated backscatter. This
suggests that the regression underestimates the effect of dew on backscatter.

4.5. DISCUSSION

4.5.1. SUB-DAILY VEGETATION WATER CONTENT ESTIMATES: OBSERVATIONS

AND RECONSTRUCTIONS
Our results showed that, in non-stressed conditions, VWC depleted by 10 %–20 % dur-
ing the day. This internal VWC withdrawal is approximately 10 %–20 % of the total daily
transpiration, which is similar to findings from tropical and temperate broadleaved trees
(Köcher et al., 2013; Meinzer et al., 2004). In stressed conditions, we found a 35 % drop
of VWC during the day.
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Figure 4.10: Diurnal behaviour of backscatter (VV-, HH-, and cross-pol) and moisture (soil moisture, VWC, and
SCW) for 3 individual days without rainfall. These days were selected from the period presented in Fig. 4.9.

Table 4.6: Summary of multiple linear regression results.

VV-pol HH-pol cross-pol

VWC SCW VWC SCW VWC SCW

coeff. 24.0643 2.9340 0.6190 39.4680 2.2879 0.3759 38.8273 2.4463 0.7293
std. err 2.600 0.262 0.302 3.019 0.304 0.350 2.906 0.293 0.337
t 9.254 11.203 2.051 13.075 7.526 1.073 13.363 8.360 2.163
P >

∣∣ t
∣∣ 0.000 0.000 0.043 0.000 0.000 0.286 0.000 0.000 0.033

[0.025 18.900 2.414 0.020 33.474 1.684 -0.320 33.058 1.865 0.060
0.975] 29.228 3.454 1.218 45.462 2.892 1.072 44.597 3.027 1.399

R2 0.686 0.690 0.715
Adj. R2 0.675 0.680 0.706

We tested the potential of a non-destructive sap flow approach to estimate sub-daily
VWC variations in corn with data from our 2019 campaign. The results confirm the
possibility to estimate 15 min variations in corn VWC with only sap flow sensors and
a weather station. While the indirect estimation of transpiration could be considered a
drawback of the method, Fig. 4.6 has shown that the diurnal VWC cycle was represented
generally well. In general, we found the best agreement between reconstructed and sam-
pled VWC when the daily cycle of transpiration was estimated from multi-day sap flow
observations and ET0 estimates. Moreover, the application of CDF matching improved
the reconstruction substantially on 25 July, while, on 28 August, a good agreement was
already found after linear correction (Fig. 4.6). This difference could partly be explained
by the suppressing effect that dew, observed on 25 July (Fig. 4.7), has on transpiration
(Dawson and Goldsmith, 2018), which is not captured by ET0 (Langensiepen et al., 2009).
When ET0 rates are low, estimated transpiration is lower after CDF matching than after
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Figure 4.11: Backscatter (VV-, HH-, and cross-pol) and moisture (VWC, CW, and θ) data aggregated across
multiple days and separated by part of the day, i.e. midnight–morning, morning–afternoon, and afternoon–
midnight. Periods with disturbing rain events are excluded, which means that data in panels (a, d), (b, e),
and (c, f ) are aggregated across 9, 6, and 4 d, respectively. Canopy water (CW) is SCW displayed on top of VWC.

linear correction (see Fig. 4.4d). Consequently, CDF matching mimicked the suppressing
effect of dew due to the reduction in transpiration rates in the morning. When we look at
the period between the peak of dew (06:00 LT) and full dissipation (08:15 LT) on 25 July
in Fig. 4.6, we see that ∆VWC is 0.17 kg m−2 in the second row, while ∆VWC is 0.1 kg m−2

in the third row. This means that CDF matching in this case led to reduction in transpira-
tion of 0.07 kg m−2. This is comparable to the estimated dew evaporation in this period,
which was 0.09 kg m−2 (Fig. 4.7). The same holds for 23 August, when we found a tran-
spiration reduction of about 0.18 kg m−2 between 06:45 and 09:45 LT after CDF matching
and an estimated dew evaporation of 0.20 kg m−2 in the same period. On 28 August, all
dew had already dissipated before sunrise and did, thus, not affect transpiration. There-
fore, a reduction in transpiration rates did not improve the reconstruction of VWC. These
results illustrate that the suppressing effect of dew on transpiration should be taken into
account when one estimates transpiration with a weather station or flux tower.

Another effect of CDF matching was that the highest ET0 rates resulted in higher esti-
mates of transpiration compared to those obtained using linear corrections (see Fig. 4.4d).
This was particularly apparent under sunny conditions such as those on 25 July and
23 August. This means that transpiration rates exceeded sap flow rates for a longer pe-
riod. Together with the gradual depletion of internal VWC in the morning, this led to a
much better agreement and a shift in a diurnal minimum towards the afternoon. How-
ever, the poor agreement between the sampled and reconstructed VWC in the evening
of 23 August could not be explained by the extreme hydrometeorological conditions,
growth stage, or drought stress. Other potential contributors to the poor agreement
could be unaccounted for errors in the sap flow, weather data, or samples. The cloudier
conditions on 28 August (Fig. 4.7) could explain the small difference between linear cor-
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linear regression (Table 4.5), and the time series of VWC, SCW, and soil moisture.

rections and CDF matching.

When the methodology with CDF matching was applied to the 10 d period from our
2018 campaign, the diurnal minima of reconstructed VWC matched excellently with the
diurnal minima in the backscatter in most cases (Fig. 4.9). This could be explained by
the daily dew formation and high temperatures in this period. However, discontinu-
ities were observed between consecutive days (Fig. 4.8), which might be related to the
temporal resolution of the observations and the estimation of transpiration fluxes. The
temporal resolution of the sensor observations was 15 min. At the same time, we found
phase differences between ET0 and sap flow of the order of 15–45 min, which was con-
sistent with previous studies on corn (e.g. Langensiepen et al., 2009). Increasing the ratio
between phase difference and observation resolution would increase the robustness of
the method. A potential solution would therefore be to increase the temporal resolu-
tion of the sensor observations. Another potential solution is related to the estimation
of transpiration fluxes. Ideally, a flux tower would be used for ET estimates through the
eddy covariance method, as it is a more direct measurement and widely considered as
the most accurate technique for ET measurements at field scale (Maltese et al., 2018;
Oguntunde et al., 2004; Zhang et al., 2014). Improved ET estimates may also reduce or
eliminate the need to include CDF matching. As direct ET measurements also include
evaporation from SCW and soil, it is advised to include leaf wetness sensors and micro-
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lysimeters (Ding et al., 2013) to provide quantitative estimates of evaporation and deter-
mine transpiration from ET measurements. Including several in situ sensors of each type
(leaf wetness, sap flow, etc.) ensures that the quantities capture field-scale dynamics.

4.5.2. INTERPRETING SUB-DAILY BACKSCATTER

In Vermunt et al., 2020, sub-daily L-band backscatter variations were attributed to VWC,
SCW, and soil moisture. However, the lack of sub-daily VWC data points complicated
quantifying the relation between backscatter and the individual moisture stores. The
VWC records generated in the current study allowed us to understand sub-daily backscat-
ter variations with unprecedented detail and to describe the relative backscatter sensi-
tivity to the different moisture stores.

The results presented here indicate that the effects of sub-daily variations in VWC
on backscatter are considerable. Our regression analysis suggested that, on a typical
dry day, the diurnal cycle of VWC led to a 2 (HH- and cross-pol) to almost 4 (VV-pol)
times higher change in backscatter than the soil moisture drydown did. Note that these
ratios can be different when either VWC or soil moisture content substantially change
(Brisco et al., 1990) or when the crop structure changes during the day (Kimes and Kirch-
ner, 1983). Backscatter sensitivity to VWC dynamics was most clearly observed in the
period between sunrise and mid-afternoon, when both dropped significantly. During
mid-afternoon to sunset, we observed a constant to slightly increasing VV- and cross-
polarized backscatter, which illustrated the opposite effects of VWC refilling and soil
moisture drop on backscatter. Nocturnal backscatter dynamics demonstrated the sensi-
tivity of VV- and cross-pol to SCW.

In general, our results showed that VV-pol was more sensitive to variations in VWC
than HH-pol and less sensitive to variations in soil moisture. This is in agreement with
Joseph et al., 2010, who described a larger attenuation of the soil return by vegetation
for VV-pol compared to HH-pol in a study on the L-band backscattering of corn. An
explanation for this difference was given by Stamenković et al., 2015, who described that,
at VV and HV polarizations, vertical corn stems attenuate the double-bounce scattering
at L-band, which results in lower contribution from the soil. As a consequence, volume
scattering and the corresponding contribution from vegetation becomes dominant. At
HH-pol, there is less attenuation of the double bounce effect, which explains a higher
sensitivity to soil moisture (Table 4.5).

Moreover, the nocturnal VV- and cross-polarized backscatter increase in Figs. 4.9
and 4.11 could be attributed to dew formation only because VWC was stable during the
night, and soil moisture was constant or decreased slightly. Stable nocturnal VWC can be
expected for crops with a hydraulic capacitance similar to or lower than corn and suffi-
cient soil moisture availability. For vegetation with a larger hydraulic capacitance or low
soil moisture availability, nocturnal refilling of VWC could be expected (Maltese et al.,
2018), which could complicate the separation of signals from VWC and SCW.

Figures 4.9–4.11 and Table 4.5 showed that, compared to HH-pol, VV- and cross-
polarized backscatter were not only more sensitive to changes in VWC but also to chang-
ing SCW. This is in agreement with previous findings from Brancato et al., 2017, who
found a stronger effect of SCW on S- and C-band differential interferometric observables
in VV polarization compared to other polarizations, particularly for vertically oriented



4

60
4. EXTRAPOLATING CONTINUOUS VEGETATION WATER CONTENT TO UNDERSTAND

SUB-DAILY BACKSCATTER VARIATIONS

crops as corn. This could be related to increased scattering from wet leaves in combina-
tion with the dominance of volume scattering in VV and cross-polarizations. However,
it seems that the SCW coefficients (c) for VV- and cross-pol in Table 4.5 underestimate
the effect of dew on backscatter, as the nocturnal increases in calculated σ0

VV and σ0
XP

in Fig. 4.12 are lower than observed. This could partly be addressed by improved SCW
estimates, for example, through the inclusion of more leaf wetness sensors distributed
in the canopy (Vermunt et al., 2020). Moreover, additional research is needed to provide
more insight into the scattering mechanisms under the presence of SCW, for example,
by considering SCW in physical backscattering models.

4.6. CONCLUSIONS
The potential of using radar for (eco)hydrological studies is limited by the challenge to
separate signals from soil and vegetation on a sub-daily timescale. To gain a better un-
derstanding of what controls sub-daily backscatter behaviour, we analysed tower-based
polarimetric L-band observations from a cornfield using unique estimates of moisture
fluctuations in vegetation and soil.

A method developed by the tree physiology community was adapted to estimate con-
tinuous variations in corn plant water content with unprecedented detail. The adapta-
tions were related to the estimation of transpiration. The best agreement between sam-
pled and estimated VWC was found when transpiration estimates were obtained after
the removal of systematic differences between ET0 and sap flow. In non-stressed condi-
tions, predawn VWC decreased by 10 %–20 % during the day.

Complementing the resulting record of VWC with records of soil moisture and pre-
viously estimated surface canopy water allowed us to interpret the sub-daily behaviour
of polarimetric L-band observations. The results showed a significant effect of diurnal
VWC cycles on L-band backscatter when the plants reached their maximum size. The
highest and lowest sensitivity to VWC was found in VV- and HH-polarized backscatter,
respectively. The regression results suggested that the backscatter behaviour on a typical
dry day was 2 (HH- and cross-pol) to 4 (VV) times more determined by the VWC cycle
than by soil moisture. Nighttime increases in VV- and cross-polarized backscatter were
a result of dew formation only.

The results presented here provide unique insight into the potentially confounding
influence of surface and internal vegetation water content variations on backscatter,
particularly in the interpretation of sub-daily radar observations. These findings are di-
rectly relevant for current and upcoming L-band missions, but also for the design of fu-
ture spaceborne SAR missions for land applications. In particular, this chapter highlights
the potential difference in relative importance of VWC, SCW, or soil moisture dynamics,
depending on the overpass time. This is particularly relevant given the imminent avail-
ability of sub-daily observations from, e.g., the ICEYE and Capella Space constellations.

As radar observations are increasingly used to study plant water status, the presented
sap flow method is a promising way to validate sub-daily satellite observations with just
meteorological data and sap flow sensors, without laborious sub-daily destructive sam-
pling. The method is expected to be most robust when the temporal resolution of the
sap flow and ET observations are significantly smaller than the phase difference between
the two, which depends on the species. The number of sensors required to capture VWC
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variations at footprint scale is expected to depend on the footprint size, the spatial het-
erogeneity of vegetation type, and factors influencing moisture supply and demand. Po-
tentially, global database networks for sap flow measurements, i.e. SAPFLUXNET (http:
//sapfluxnet.creaf.cat, last access: 2 June 2021), and flux tower measurements, e.g. FLUX-
NET (https://fluxnet.org/, last access: 2 June 2021) and AmeriFlux (https://ameriflux.lbl.
gov/, last access: 2 June 2021), can play an important role here.

Moreover, the utility of the tested sap flow method goes well beyond radar remote
sensing. It also has huge potential for validating and interpreting a wide range of other
remote sensing techniques that are sensitive to vegetation water, such as passive mi-
crowave remote sensing, global navigation satellite systems (GNSSs), and cosmic ray
neutron sensors.

http://sapfluxnet.creaf.cat
http://sapfluxnet.creaf.cat
https://fluxnet.org/
https://ameriflux.lbl.gov/
https://ameriflux.lbl.gov/
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TOWARDS UNDERSTANDING THE

ROLE OF VERTICAL CANOPY

MOISTURE DISTRIBUTION ON

RADAR BACKSCATTER DYNAMICS

Chapters 3 and 4 described how continuous estimates of vegetation water content, surface
canopy water, and soil moisture from a corn field were used to quantify the effect of their
individual variations on L-band backscatter. The analyses improved the interpretation
of sub-daily backscatter time series in particular. Another potentially important factor
which is poorly understood is the effect of vertical moisture distribution in a canopy on
backscatter. This gap in knowledge can cause interpretation errors, and can be a missed
opportunity for multi-frequency radars. In this chapter, we present a first step towards
understanding the role of time-varying vertical canopy moisture distribution on radar
backscatter dynamics. Detailed field measurements were used to establish the vertical dis-
tribution of moisture in the canopy layer and its variations during the season, during the
day, and under dew and rainfall conditions. Then, these findings were used to define dif-
ferent layers for a multi-layer Water Cloud Model. The model simulations showed the
individual layer-contributions to total backscatter.

This chapter is based on:

Vermunt, P. C., S. Khabbazan, S. C. Steele-Dunne, V. Kumar, and J. Judge. Towards Understanding the
Role of Dynamic Vertical Canopy Moisture Distribution on Radar Backscatter Dynamics. Remote Sensing,
under revision.
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DISTRIBUTION ON RADAR BACKSCATTER DYNAMICS

5.1. INTRODUCTION
Multiple experimental studies have demonstrated that radars operating at different fre-
quencies show substantial temporal differences in their backscatter from vegetated land,
both on seasonal timescales (Inoue et al., 2002; Y. Kim et al., 2012; Monteith and Ulander,
2018) and sub-daily timescales (Brisco et al., 1990; Monteith and Ulander, 2018). Higher
frequencies generally show lower sensitivity to soil moisture under the foliage, because
of higher attenuation by the vegetation layer (Bouman and Hoekman, 1993; Ferrazzoli
et al., 1992; Narayan et al., 2004). This depends to a great extent on the presence of
moisture in the vegetation layer. It has been shown that these frequency-dependent dif-
ferences in penetration depth could potentially be used to disentangle soil and vegeta-
tion contributions to the backscatter signal with multi-frequency radars (Mengen et al.,
2021). Moreover, recent studies argue that multi-frequency radars have the potential to
be used for determining water content across different heights in the canopy (Konings
et al., 2021). However, the link between variations in backscatter and water dynamics in
vegetation is still poorly understood.

Much of what we know about scattering from vegetation and how it varies with fre-
quency, polarization and viewing geometry has been obtained by physical forward model
simulations. These models are developed to understand the signal received by a sensor,
and predict this signal based on a particular set of input parameters. However, widely-
used electromagnetic models have not been able to account for a realistic vertical distri-
bution of moisture in vegetation yet. For example, both the Tor Vergata model (Bracaglia
et al., 1995) and the MIMICS model (Ulaby et al., 1990) are able to distinguish between
leaf and stem water content. Also, some versions of these models divide the vegetation
into two layers (Link et al., 2022; Ulaby et al., 1990) to account for different types and
densities of scatterers in the sub-layers, e.g. trunk and crown layer. However, a (realistic)
vertical distribution of moisture in vegetation has not been introduced. This also holds
for the semi-empirical Water Cloud Model (WCM) (Attema and Ulaby, 1978), which as-
sumes that the vegetation layer can be represented as a single cloud with uniform vol-
ume scattering and attenuation properties.

Some studies aimed to account for the vertical heterogeneity of moisture in the WCM.
A study by Ulaby et al. (Ulaby et al., 1984) for example divided the cloud of a corn canopy
into a top layer, containing all the leaves, and a bottom layer, containing the stalks. From
their simulations, they concluded that most of the seasonal variations in backscatter
from 8.6 - 35.6 GHz frequencies could be explained by variations in leaf area index (LAI)
alone. Hoekman (Hoekman, 1987) proposed a multi-layer WCM after he analyzed the
effect of height deviations on the pulse returned from a poplar stand. He found substan-
tial differences in backscatter originating from different heights in the canopy. (L. Liu
et al., 2012) modified the WCM and included a parameter that describes the moisture
distribution between the top-half and bottom-half of a soybean canopy. Their results
showed that backscatter simulations were significantly affected by building-in vertical
inhomogeneous layers. Although these studies provided useful insights in the impor-
tance of vertical inhomogeneity of moisture on scattering, their analyses were limited by
the availability of observational data to describe the vertical moisture distribution in a
canopy.

Previous studies have demonstrated that the moisture distribution in a corn canopy
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is non-uniform and changes during the season (Casanova et al., 2007; Steele-Dunne et
al., 2017). Inspired by these findings, the objective of this Chapter was to better under-
stand which parts of the vegetation layer are controlling the backscatter dynamics by
accounting for a realistic vertical moisture distribution. We focused on a corn canopy
from emergence to harvest, and L-band frequency. Using detailed destructive sampling,
we quantified the vertical distribution of moisture in the vegetation and its variations
during the season, during the day, and under dew and rainfall conditions. These data
were used to define different layers for a multi-layer WCM. The WCM was calibrated us-
ing hyper-temporal tower-based polarimetric L-band scatterometer data, and used to
quantify the contribution of the individual layers to total backscatter.

5.2. MATERIALS AND METHODS

5.2.1. EXPERIMENTAL SITES

The measurements for this chapter were mainly conducted as part of our field campaign
in Florida, USA, in 2018. The experiments were conducted in Citra (29.410N, 82.179W),
at the Plant Science Research and Education Unit (PSREU) of the University of Florida
and the Institute of Food and Agricultural Sciences (UF|IFAS). Sweet corn was planted on
April 13, and harvested on June 18 for human consumption. We measured vertical pro-
files of internal VWC throughout the season by destructive sampling (section 5.2.2), and
surface canopy water using leaf wetness sensors (section 5.2.2). Moreover, we collected
L-band backscatter observations from this field (section 5.2.3).

To determine the extent to which the vertical distribution of VWC changes during the
day, we sampled multiple times per day during a follow-up campaign in Reusel (51.319N
, 5.173E), the Netherlands in 2019. See Vermunt et al., 2022. In Reusel, the field corn is
allowed to ripen in the field, so the growing season extends into September. Details of
both experimental sites are given in Table 5.1.

Table 5.1: Details experimental sites

Citra (2018) Reusel (2019)

Type of corn sweet corn field corn

Length of season 66 days 148 days

Plant density 7.9 plants m−2 8 plants m−2

Peak dry biomass 0.85 kg m−2 2.0 kg m−2

Peak VWC 4.5 kg m−2 6.4 kg m−2

Max. height 210 cm 275 cm

Type of soil > 90% sand sandy soil

Climate humid subtropical temperate maritime

5.2.2. VERTICAL DISTRIBUTION OF MOISTURE
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INTERNAL VEGETATION WATER CONTENT

Samples were taken from designated sampling areas, just beyond the radar footprint,
and fresh (m f ) and dry (md ) biomass were determined for each 10cm stem section and
each leaf from the same height (see Chapter 2, section 2.2.3). Plant density (ρpl ant ) was
used to estimate the field-average VWC per stem section (eq. 5.1).

V W C = (m f −md )ρpl ant (5.1)

Gravimetric water content (Mg ), which is the mass of water per unit mass of fresh biomass,
was calculated by eq. 5.2:

Mg = m f −md

m f
(5.2)

The same procedure was followed for leaves, tillers, tassels and ears. Because the bottom
leaves die and fall off from the stem elongation stage onward, monitored leaf heights
were used to ensure a leaf was assigned to the correct label and to ensure consistency
through the season. Ears were labelled based on the leaf they were attached to. Tassels
and any existing tillers were measured as whole organs.

SURFACE CANOPY WATER

Dielectric leaf wetness sensors (PHYTOS 31, METER Group) were used to estimate sur-
face water on the canopy (see section 3.2.3 for specifications). Three sensors were in-
stalled after plant emergence, mounted to a wooden pole in early season, and attached
to plants once the stems were strong enough. Sensor heights were regularly adjusted as
the canopy grew to ensure that there was one sensor representing each 1/3 of the plant,
and that no sensor was touched by a leaf. We adjusted the angles of the sensors to corre-
spond with the angles of neighbouring leaves. Data from the middle sensor were omitted
from this chapter because its performance deteriorated as the season progressed.

It was assumed that the water droplets on other constituents were negligible com-
pared to the water droplets on the leaves. Consequently, quantitative estimations of sur-
face water on the plants were made using the estimated mass of water on the sensor
surface [g], calculations of leaf areas (Alea f ), and distance between leaves and sensors.
Leaf areas were estimated by regularly measuring the leaf lengths (l ) and leaf widths (w)
of multiple plants, averaging them, and assuming an elliptical shape (eq. 5.3).

The distance between leaf height (Hlea f ) and sensor height (Hs ) was used to cal-
culate a weighting factor ( fw ) between 0 and 1 for the lower sensor (s1) and the upper
sensor (s2), see eq. 5.4. This factor is used to determine how much each sensor should
contribute to the estimation of leaf surface water (eq. 5.5). The ratio between leaf area
and sensor area (As ) was used to convert the mass of water on the sensor (Mw ) to the
mass of water on a leaf. Finally, the resulting mass of water on a leaf [g ] was multiplied
by the plant density (ρpl ant ) to estimate SCWlea f in [kg m−2] (eq. 5.5).

Alea f =πl
w

4
(5.3)
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fw (s1) =


1, if Hlea f ≤ Hs1

0, if Hlea f ≥ Hs2

1− Hlea f −Hs1

Hs2−Hs1
, if Hs1 < Hl ea f < Hs2

fw (s2) = 1− fw (s1) (5.4)

SCWlea f = ( fw Mw (s1)
Al ea f

As
+ fw Mw (s2)

Alea f

As
) ρpl ant (5.5)

5.2.3. BACKSCATTER DATA

Radar backscatter observations (σ0) were made with the University of Florida L-band
Automated Radar System (UF-LARS). UF-LARS is a tower-based scatterometer which
operates at a centre frequency of 1.25 GHz, and acquires data at four polarization com-
binations (VV, HH, VH and HV) with a dual polarization horn antenna. The system was
mounted on a Genie manlift and lifted to a height of 14m above the ground. From there,
the corn field was scanned with a fixed incidence angle of 40◦. Further specifications of
the UF-LARS system are described in section 2.2.1.

Since VH and HV observations were similar, these were averaged and are referred to
here as cross-polarized backscatter (σ0

X P ). There are, on average, 32 acquisitions per day
for most of the season. The last eight days of the season, the daily observation frequency
was lowered to 16 in order to avoid radio frequency interference with other microwave
sensors. The radar footprint was free of human- and material disturbance.

5.2.4. WATER CLOUD MODEL

ORIGINAL MODEL

The Water Cloud Model (WCM), developed by Attema and Ulaby, 1978, simulates the
power backscattered from a vegetated area (σ0) as the incoherent sum of the contribu-
tions from the vegetation layer and the underlying soil (see equation 5.6). The backscat-
ter contribution from the vegetation layer (σ0

veg ) is simulated using equation 5.7, where
W represents the volumetric water content of the vegetation layer, H the height of the
vegetation layer, θI the incidence angle, and C and D are empirically-determined model
parameters. In the derivation of this equation, it is assumed that the water in the vege-
tation layer can be represented as a cloud with identical water droplets, uniformly dis-
tributed over the vegetation layer (Attema and Ulaby, 1978).

σ0 =σ0
veg +τ2σ0

soi l (5.6)

σ0
veg =C cos(θI )(1−exp(−2D W H/cos(θI ))) (5.7)

τ2 = exp(−2D W H/cos(θI )) (5.8)

Parameter C is a function of the radar cross section and the total attenuation cross
section for one single water particle. Parameter D relates to the total attenuation cross
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section for a unit of mass of water. Because all particles are assumed to be identical, pa-
rameters C and D are assumed to be frequency-dependent constants. W H equals VWC
[kg m−2]. Since VWC is laborious or difficult to measure, other vegetation descriptors are
often used as a substitute, such as vegetation indices from the optical and microwave
domain (e.g. El Hajj et al., 2016; J. Li and Wang, 2018).

The potential backscatter from the underlying soil (σ0
soi l in equation 5.6), is typi-

cally simulated using a simple linear relation between volumetric soil moisture (SSM)
backscatter, and empirically found parameters (Khabbazan et al., 2015; Steele-Dunne
et al., 2017). Alternatively, a physical model such as the Integral Equation Method (IEM)
(Fung, 1994) is used. The extent to which σ0

soi l is attenuated by the vegetation is mod-
elled by a factor representing the two-way transmission through the vegetation layer
(τ2), and depends on the VWC (equation 5.8).

A MULTI-LAYER WCM
The original single-layer WCM does not allow us to consider the sensitivity of total backscat-
ter to contributions from different levels in the canopy. Based on Hoekman (Hoekman,
1987), we built in n discrete vertical layers in the water cloud and estimated the con-
tribution from each layer to total σ0

veg (see equation 5.9, where index n refers to the top
layer and index 1 refers to the bottom layer). The vegetation scattering from the top layer
n, σ0

n , can be estimated using equation 5.7, and replacing W H by VWC of layer n only.
Each layer below is affected by the attenuation from the layer(s) above, which is esti-
mated by equation 5.10. The number of layers and height of each layer were specified
based on the vertical moisture profiles found by destructive sampling (section 5.3.1).

σ0
veg =σ0

n +τn σ
0
n−1 +τn τn−1σ

0
n−2 + ...+τn τn−1 ...τ2σ

0
1 (5.9)

τi = exp(−2D V W Ci /cos(θI )) (5.10)

CALIBRATION AND VALIDATION

The WCM was calibrated for each polarization in order to find parameters C and D. We
assumed that the type of scatterers in the various layers are the same, i.e. C and D are
identical for each layer. Data inputs for the calibration were the measurements of total
plant VWC, backscatter observations (σ0

obs ), and surface soil moisture (SSM). In order
to increase the robustness of the calibration, VWC was estimated for the days between
sampling days using linear interpolation between the measurements, and included in
the data set. To exclude the effect of SCW, we only considered the observation times
with negligible SCW. However, the presence of dew was generally at its maximum around
predawn sampling times (06:00), which would exclude a lot of data points. From a pre-
vious study (Vermunt et al., 2022), we know that predawn VWC (around 6:00) should
be more or less stable between 21:00 and 06:00. Therefore, we used the SCW and radar
observations between 21:00 and the predawn sampling time with minimal SCW. If the
plants were wet the night before due to rainfall, we used the first acquisitions for which
dew was (almost) dissipated, around 09:00. This time should be closest to the 6am VWC
sample without dew. If both were not an option and the vegetation was wet all the time,
we removed the day from the data set. This was the case for five days in May and one
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day in June. To reduce the random variability of backscatter observations, backscatter
was averaged over 2-4 acquisitions within 1-1.5 hour, depending of the observation fre-
quency. What remained was three time series with 49 observations of σ0

obs , VWC and
SSM, from crop emergence until harvest.

For each polarization, two-thirds of each time series was used to calibrate the WCM,
and the remaining third was reserved for validation. σ0

soi l was found by the Integral
Equation Method (IEM) proposed by Fung, 1994. The IEM is a physically based radiative
transfer backscattering model which provides site-independent relationships between
backscatter and soil moisture. Moreover, it covers the range of surface roughness val-
ues encountered with agricultural soils. The input parameters for the IEM were the
frequency, incidence angle and polarization (section 5.2.3), surface roughness param-
eters defined as the standard deviation of the surface heights and the surface correla-
tion length (Vermunt et al., 2020), the exponential autocorrelation function, and the di-
electric constant of the soil media, which is calculated using SSM measurements and
Mironov’s soil dielectric model (Mironov et al., 2004). Footprint-averaged SSM was es-
timated using two calibrated EC-5 sensors installed at 5 cm depth and 40 m apart (see
Chapter 2).

Finally, the time series of σ0
obs , σ0

soi l and VWC were used to calibrate parameters C
and D using equations 5.6-5.8. C and D were optimized by maximizing the Kling-Gupta
Efficiency (KGE; Gupta et al., 2009), see equation 5.11 .

KGE = 1−
√

(r −1)2 + (α−1)2 + (β−1)2 (5.11)

where r is the linear correlation coefficient (Pearson R) between simulated and ob-
served σ0, α is the ratio between the standard deviations of simulated and observed σ0,
i.e. a measure of the relative variability in the simulated and observed values, and β

is the ratio between the mean simulated and mean observed σ0, i.e. the bias (Gupta
et al., 2009). KGE is a measure for the goodness-of-fit, with KGE=1 indicating perfect
agreement between simulations and observations, and is used in previous studies for
calibrating the WCM as well (Modanesi et al., 2021).

For cross-pol, a two-step optimization was necessary to avoid unrealistic values of
D due to the limited sensitivity of total backscatter to D. A sensitivity analysis showed
that when VWC is at its seasonal maximum (∼ 4 kg m−2), σ0

si m is mainly determined by
parameter C once D > 0.1. For that reason, the first step was to optimize parameter C
for the period between May 25 and June 13, assuming D=0.2. Then, this fixed value for C
was used to optimize parameter D for the entire data set.

The performance of the calibration was evaluated by first simulating σ0
si m for the

validation data using the calibrated C and D parameters, and then calculating the Root
Mean Squared Error (RMSE) between σ0

si m and σ0
obs .

5.3. RESULTS AND DISCUSSION

5.3.1. SEASONAL CHANGES OF INTERNAL VEGETATION WATER DISTRIBU-
TION

Figure 5.1 shows the vertical distribution of VWC (a,c,e,g) and Mg (b,d,f,h) for the dif-
ferent plant constituents, and their development during the season. The distribution of
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Figure 5.1: Vertical VWC (left) and Mg (right) profiles and their seasonal changes for sweet corn, with leaves
(a,b), stems (c,d), ears (e,f), tillers (g), and tassels (g,h). Each marker is the average of 8 plants. Note that the
VWC-axes are different among the constituents. The horizontal dashed lines represent the separation of layers
for the Water Cloud Model.

VWC is first of all determined by the plant’s structure. Stem water content is for example
concentrated in the lowest and thickest part of the stem. The first 50 cm of the stems
contained 100% (early season) to 60% (late season) of total stem VWC. The four biggest
leaves, located between 50 and 100 cm, contained 60% of total leaf VWC in mid- to late
season. Attached to these big leaves are the ears, which stored up to 25% of total plant
VWC in the late season.

Also the aging of the plants has an important effect on the distribution of moisture.
The Mg in most of the plant tissue slowly decreases after the first emergence of tassels



5.3. RESULTS AND DISCUSSION

5

71

(May 25), and this drop accelerates after the emergence of ears (June 1; Fig. 5.1(b,d,f,h)).
Leaf senescence starts when the ears separate from the stem (June 4). It starts from the
ground up with the lowest leaves, followed by the top leaves from which it progresses
down. The largest leaves in the middle of the plant dry out last. Simultaneously, the
upper stem dries out. Because this senescence does not occur simultaneously across
the vertical profile, variation in moisture across the profile increases from mid- to late
season.

Finally, a plant’s moisture content is determined by external factors, such as avail-
ability of root zone soil moisture and evaporative demand of the atmosphere, in combi-
nation with the hydraulic strategy of the plant . For our corn plants, the effect of these
external factors was mainly visible on a sub-daily timescale (see section 5.3.2).

Roughly, we can divide the canopy into three vertical layers, marked with horizontal
dashed lines in Fig. 5.1, and further visualized in Fig. 5.2. The lowest layer, hereafter
referred to as layer 1, contains the entire plant in the early season. During the mid and
late season, 60 to 90% of the VWC in the lower layer is stem water, respectively. The
amount of water the tillers contained is significant in the mid-season, with 20-25% of
total plant VWC in this layer. Compared to the other two layers, layer 1 contains most
water until June 4 (Fig. 5.2(b)).

Layer 2 contains the 4 biggest leaves, the ears, and 50 cm of stem in mid- to late
season (Fig. 5.2). The leaf water content in this layer is relatively stable between May 21
and June 13 and is about 0.5 kg m−2. The relative contributions to total VWC in layer 2
change from 70% leaf and 30% stem on May 18 to 40% leaf and 60% stem on May 28,
just before ear formation, to 25% leaf, 25% stem, and 50% ear on June 13. From June 4
onward, layer 2 contains most water (Fig. 5.2(b)).

The upper layer, layer 3, is up to twice as thick as the lower layers and has the lowest
water content (Fig. 5.2. It contains the tassels, four leaves and the thinnest part of the
stem. Once the layer water content reaches its peak on May 30, it stays relatively constant
(Fig. 5.2(b)). Despite the decrease of their Mg , leaf and stem VWC remains 0.2 and 0.3
kg m−2, respectively. This can be explained by the growth of the leaves and stems in this
layer, and the distribution of water over increasing biomass. Tassel VWC decreased from
0.15 kg m−2 on May 25 to 0.06 kg m−2 on June 13.

May 23 June 6

Layer 3
Layer 2
Layer 1

Total

Figure 5.2: Canopy height divided into three layers including LAI (a), total plant VWC divided into three layers
(b), and visualisations of the layer division in two different growth stages (c).
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5.3.2. SUB-DAILY CHANGES OF INTERNAL VEGETATION WATER DISTRIBU-
TION
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Figure 5.3: Five days of diurnal leaf, stem and ear Mg variations in field corn, and the difference between the
three vertical layers in the canopy. The sampling was performed five times between sunrise and sunset in the
2019 campaign.

The architecture of a plant also plays a role when it comes to diurnal variations in
moisture distribution. It determines which leaves are more or less exposed to solar ra-
diation and wind, the temperature gradient within the canopy, and consequently the
extent to which the leaves participate in photosynthesis and transpire water (Banerjee
and Linn, 2018). The diurnal patterns in Figures 5.3 and 5.4 are the results of sub-daily
destructive sampling from field corn in our 2019-campaign in the Netherlands. Figure
5.3 shows a slightly larger diurnal variability in leaf (a-e) and stem Mg (f-j) in layer 3 on
most days, which confirms the role of architecture. However, differences between the
layers are minor. Moreover, Fig. 5.4(p-t) shows that the diurnal variations in layer 3 are
limited, and that most of the diurnal variation is in the lower two layers.

External factors, such as soil moisture availability and evaporative demand also affect
the diurnal variability of VWC. On July 23, we observed leaf ’rolling’, a mechanism for
drought stressed corn plants to reduce the leaf area exposed for transpiration (Vermunt
et al., 2022). In Fig. 5.3(a,f,k) we see that for this day, per constituent, the diurnal Mg

pattern of all layers is similar in response to the water deficit. However, leaves, stems
and ears respond differently. Where leaves recharge in the evening (a), the water content
in the stems stays more or less constant (f), and ear water content still drops (k). From
the VWC cycles of July 23 (Fig. 5.4(a,f,k)), we see that stem VWC dominated layer 1 , and,
to a lesser extent, also layer 2. The diurnal VWC patterns of layer 1 and 2 are therefore
similar (Fig. 5.4(p)).
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Also in these field corn plants, we observed a shift in the contribution of the lower
two layers to total plant VWC. In July, the diurnal cycles in layer 2 were still dominated by
stems and leaves (Fig. 5.4). VWC in layer 2 was lower than (July 23) or equal to (July 25)
VWC in layer 1. Layer 2 became the dominant VWC-layer with further ear development
in August. Then, the ears determined the shape of the diurnal VWC cycle in layer 2 to a
great extent.
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Figure 5.4: Five days of diurnal leaf, stem, ear and layer VWC variations in field corn [kg m−2], and the differ-
ence between the three vertical layers in the canopy. Layer VWC is the sum of the moisture in all constituents
within a certain layer. The sampling was performed five times between sunrise and sunset in the 2019 cam-
paign.

5.3.3. DISTRIBUTION OF SURFACE WATER: DEW AND RAINFALL INTERCEP-
TION

Figure 5.5(a) shows the difference between the mass of dew detected by the upper and
lower sensor. The peak from the upper sensor is 4 times higher than the peak from
the lower sensor. This suggests that the most dominant origin of the condensed water
vapour was the atmosphere, i.e. dewfall. Using the vertical distribution of leaf area (Fig.
5.5(b)), dew profiles were estimated (Fig. 5.5(c)). These profiles show considerable simi-
larities with dew profiles in corn plants found by previous experimental studies (Atzema
et al., 1990; Jacobs et al., 1990). In their 16-nights study on the origin of dew in a corn
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canopy, Atzema et al., 1990 found that 95% of the measured dew could be attributed to
dewfall and only 5% to dewrise, which is the upward soil water vapour flux into the atmo-
sphere during the night. This difference was explained by the fact that a tall and dense
crop reduces the amplitude of the daily temperature wave in the non-saturated soil, and
therefore reduces the dewrise. However, in case of a well-watered soil and a stable at-
mosphere above the canopy, dewrise will increase as a result of the unstable air between
the cooling upper canopy and the heat supply from the soil (Atzema et al., 1990; Jacobs
et al., 1990; Kabela et al., 2009).
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Figure 5.5: Vertical distribution of dew, with (a) water detected on upper and lower sensor [g m−2] during dew
accumulation and dissipation, averaged over 14 dew events, (b) averaged vertical profiles of leaf area for mid-
to-late season, with leaf area relative to maximum leaf area and height relative to maximum plant height, and
(c) resulting vertical dew profiles changing during the night, including relative heights of sensors.

Unlike dew, both sensors detected similar amounts of water during rainfall (Fig. 5.6).
This suggests that raindrops penetrated the entire canopy, even during light rain events.
The distribution of raindrops through the cascade system of the foliage is a complex
process, depending on form, texture and angle of the surface, canopy architecture and
density, and number of layers in the cascade (Frasson and Krajewski, 2013; Parker, 1995).
However, given the minor differences between the sensor outputs, our estimated inter-
ception profiles (Fig. 5.6(c)) strongly reflect the vertical distribution of leaf area (Fig.
5.5(b)).

5.3.4. MULTI-LAYER WCM: SEASONAL VARIATIONS
Table 5.2 shows the WCM calibration results, including the RMSEs between observations
and simulations.

Table 5.2: WCM calibration results

C D RMSE [dB]
VV HH XP VV HH XP VV HH XP

0.51 0.39 0.026 0.14 0.20 0.13 1.22 1.28 1.24

Figure 5.7 shows the results from the 3-layer WCM, and the observed L-band backscat-
ter (σ0

obs ) for VV (a), HH (b), and cross-pol (c). The contribution from the different layers

to total σ0
veg changes during the season. In early season, σ0

veg equals the contribution
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Figure 5.6: Vertical distribution of rainfall interception, with the averaged mass of water detected on upper and
lower sensor [g m−2] during (a) 6 light rain events (P<2mm), and (b) 4 heavy rain events (P>2mm), in the period
between June 1 and June 13, and (c) the resulting vertical interception profiles changing during light (green)
and heavy (red) rain events, including relative heights of sensors. Note that the data is aggregated. Nocturnal
rain events tend to lead to longer periods of canopy wetness, while rainfall interception during the day tends
to evaporate rapidly.

from the lowest layer,σ0
veg ,L1. σ0

veg ,L1 decreases with increasing vegetation growth above
this layer. Rapid accumulation of VWC in layer 2 (Fig. 5.2) resulted in a dominant contri-
bution from layer 2 when VWC > 1 kg m−2 (from May 23 onward; Fig. 5.2(b) and Fig. 5.7),
in all polarizations. The simulations showed similar sensitivity ofσ0

veg to layers 1 (lowest
50 cm) and 3 (upper 100 cm) for VV-pol and cross-pol in the last two weeks of the season.
In HH-pol, layer 3 is more dominant in this phase than layer 1. Finally, the simulations
showed negligible sensitivity to the attenuated soil moisture signal (σ0

soi lτ
2) for co-pols

(from VWC > 1 kg m−2 onward) and cross-pol (from VWC > 0.5 kg m−2 onward).

Fig. 5.8 shows the simulated transmissivity (τ) decreasing over time and depth in the
vegetation layer. The transmissivity in VV-pol (a) and cross-pol (c) is largely similar. For
HH-pol, the model found lower transmissivity (and thus higher attenuation). Transmis-
sivity is directly related to Vegetation Optical Depth (VOD; Frappart et al., 2020). Conse-
quently, Fig. 5.8 shows that dynamics in a VOD estimate would largely be due to dynam-
ics in layer 1 in the early season and in layer 2 in the late season. This demonstrates the
potential value for a multi-layer WCM to interpret VOD estimates.

So far, little research has been conducted on the relative importance of different ver-
tical layers on the backscatter signal. However, we could compare the findings of our
modelling study with the results from a recent tomography study by Joerg et al., 2018
on field corn. They estimated 3-D backscatter profiles from field corn for VV, HH and
HV at different frequencies, including L-band, for two growth stages: (1) just before fruit
development and (2) just after fruit development. In our modelling study, we found that
the VV and XP scattering contributions from layers 1 and 2 are equally dominant just
before fruit development (around May 29), and more dominant than scattering from
layer 3 (Figure 5.7). In HH-pol, scattering from layer 2 was already most dominant. At
this stage, model simulations showed negligible scattering from the ground. Joerg et al.,
2018 found that, at this stage, the maximum scattering in all polarizations is centred at
ground-level, despite a plant height of 1.9 m. This means scattering from the lowest
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vegetation layer and the ground. After fruit development (around June 13), we found
dominant scattering from layer 2 in all polarizations. Joerg et al., 2018 found that, at this
stage, the maximum return in L-band VV-pol came from scattering at 1/2 to 1/3 of the
crop height, which would also be equivalent to layer 2. In addition, they found that the
maximum return in HH-pol and HV-pol came from scattering at about 1/4 of the crop
height, which would be equivalent to the boundary between layers 1 and 2. This is lower
than at VV-pol, and also slightly lower than our modelling results.

Compared to previous findings (Vermunt et al., 2022), simulations from the WCM
used here underestimate the sensitivity to surface soil moisture in the mid- and late sea-
son. An important explanation could be that vegetation-ground interactions are not in-
cluded in the WCM. Previous studies have shown that this term could be considered an
important scattering mechanism in corn (e.g. Chauhan et al., 1994; Monsivais-Huertero
and Judge, 2011). It is expected that considering a vegetation-ground scattering term
would increase the sensitivity to surface soil moisture, and also might influence the at-
tenuation from the vegetation layer simulated by the WCM.
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Figure 5.7: Seasonal variations in the contributions of the three different vegetation layers to total vegetation
scattering (σ0

veg ), simulated by the 3-layer Water Cloud Model. The different polarizations are separated in (a)
VV, (b) HH, and (c) XP.

5.3.5. MULTI-LAYER WCM: SUB-DAILY VARIATIONS

The effect of free SCW on variations in layer contributions to σ0 was estimated by treat-
ing SCW as part of the water cloud. In other words, the SCW in a given layer, shown in
Fig. 5.9(a) and 5.10(a), is added to the internal VWC of this layer. The VWC is assumed to
be constant in each layer for the model simulations, to isolate the effect of SCW. For sim-
plicity, we assumed that parameters C and D, which were calibrated for dry situations,
are also valid in these wet situations, and that any geometry-related effect accounted for
in C and D remains the same regardless of whether the water is VWC or SCW.

Fig. 5.9 and 5.10 show the effects of dew and rainfall interception on the variations
in layer contributions to σ0, respectively. Observed σ0 from dew events could be aggre-
gated and was added to the figure. This was not possible for σ0 from interception events
due to the difference in backscatter acquisition timing since the start of the events. From
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the 3-layer Water Cloud Model. The different polarizations are separated in (a) VV, (b) HH, and (c) XP.

Fig. 5.9(a), it can be seen that nocturnal dew accumulation mainly occurs in layers 2 and
3. When using these estimates as inputs for the WCM, a significant increase in backscat-
ter from layer 3 was found. However, scattering from layer 2 was almost constant, or even
had a counterbalancing effect (HH) onσ0. The latter also holds for layer 1 in all polariza-
tions. The effect of all layers combined was a simulatedσ0 variation of 0.15 dB (VV), 0.10
dB (HH) and 0.16 dB (cross-pol). The fact that dew affects cross-pol and VV-pol more
than HH-pol σ0 is consistent with the observations and previous findings (Vermunt et
al., 2022). Both VV- (b) and cross-pol (d) σ0

obs show a gradual increase corresponding to
dew accumulation, and a sharp drop corresponding to dew dissipation. This behaviour
was not observed in HH-pol (c). However, the amplitude of the simulated nocturnal
‘cycle’ is much smaller than what is observed in VV-pol and cross-pol. For rainfall in-
terception, we found similar dynamics, except that there was simply more surface water
from interception, particularly in layer 2. As a consequence, backscattering from layer 2
had a stronger effect on variation in σ0

si m , which was 0.3 dB (VV), 0.2 dB (HH), and 0.3
dB (XP).

Fig. 5.11(a) shows the layer contribution to diurnal VWC variation for July 25, 2019. It
can be seen from (b) and (c) that, σ0 is dominated by scattering from layer 2 in all polar-
izations, with also significant contributions from layers 1 and 3. Simulatedσ0 varied with
0.38 dB (VV), 0.25 dB (HH) and 0.40 dB (XP). However results from Vermunt et al., 2022
suggest that diurnal variations in σ0 should be in the order of 2 dB, as a result of these
changes in VWC. Together with differences between observed and simulated σ0 during
dew events (Fig. 5.9), this suggests that sub-daily variations in the WCM simulations are
highly underestimated. This is further illustrated in Figure 5.12. This figure shows the
observed and simulated backscatter variations in the last six days of the season. Sub-
daily VWC is based on Vermunt et al., 2022. The sum of SCW and VWC was considered
the moisture input for the WCM. Since the difference between simulated σ0 and σ0

veg

was negligible at this stage, only σ0
veg is depicted. From the analysis in three previous

studies (Khabbazan et al., 2022; Vermunt et al., 2020; Vermunt et al., 2022), we found
that variations in VWC, SCW and soil moisture affected σ0 significantly at this stage of
the season.
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Here, ignoring the vegetation-ground scattering term in the WCM could also play
a role. Moreover, high attenuation prevents sub-daily backscattering variations to be
captured, which becomes for example apparent from the difference in backscatter con-
tributions from layers 2 and 3 in Fig. 5.9. Comparable amounts of dew were added to
layers 2 and 3, but because of much higher attenuation in layer 2 (see Fig. 5.8), we found
no nocturnal cycle of σ0

veg ,L2 compared to a strong nocturnal cycle of σ0
veg ,L3. It could

be that the WCM simulations overestimated attenuation by the vegetation layer.
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5.4. CONCLUSIONS
The aim of this chapter was to better understand which parts of the vegetation layer
control the L-band backscatter dynamics from a corn canopy. Destructive sampling and
sensor-based measurements were conducted to illustrate the dynamic vertical distribu-
tion of both internal and surface canopy water, respectively, throughout the season. This
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Figure 5.12: Six-day time series with observed backscatter (σ0
obs ), simulated σ0

veg from the WCM, and sim-

ulated σ0
soi l from the IEM, for VV (a), HH (b), and cross-pol (c). Moisture variations which served as inputs

for the models are shown in (d), with surface soil moisture (SSM) as input for the IEM, VWC and CW, which is
the VWC supplemented with dew or rainfall interception, and is used as input for the WCM. Sub-daily VWC
variations are based on Vermunt et al., 2022

information was used to define three layers for a multi-layer WCM, and simulate the in-
dividual layer-contributions to total backscatter.

We found that the vertical moisture distribution of VWC is highly dynamic in time.
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Seasonal changes were mainly affected by the plant’s architecture and age, diurnal changes
were mainly affected by moisture demand and availability. Diurnal dynamics in gravi-
metric water content were similar across different heights in the canopy. However, the
lower parts of the stem and the biggest leaves governed the diurnal VWC cycle, together
with the ears from mid-season onward. Dew was mainly found in the upper and middle
part of the canopy, while rainfall penetrated the entire canopy.

This heterogeneity in moisture distribution means that the contribution of the differ-
ent vertical layers to total σ0

veg varies during the season. Water Cloud Model simulations
showed maximum scattering from the layer with the biggest leaves and the ears in mid-
to-late season. The contribution toσ0 from the lowest 50 cm, which contains most water
and mainly from stems, was comparable to the contribution from the top 100 cm for VV-
and cross-pol in this phase of the season. HH-pol simulations found more sensitivity to
the top 100 cm than to the lowest 50 cm due to slightly higher attenuation. On a sub-
daily timescale, variations in σ0 are sensitive to different parts of the canopy, depending
on whether they are caused by dew, interception or fluctuations in VWC. However, vari-
ations simulated σ0 are highly underestimated. This may be explained by overestimated
attenuation of the vegetation layers by the WCM, or by the importance of the missing
vegetation-ground scattering term. It is essential for subsequent studies to understand
this issue, because of the implications this has on the simulated contributions from the
different layers on total backscatter.

This study provides new and unique insights into the contribution of different ’depths’
in a canopy on radar backscatter. Modelling studies, together with other techniques such
as tomography, can provide useful insights into the sensitivity of σ0 to scattering from
distinct vertical levels. Our results demonstrate the potential importance of accounting
for the vertical moisture distribution when understanding and interpreting backscatter
dynamics or products such as vegetation optical depth (VOD).

An important task for future research is to modify the WCM, or other electromagnetic
models, in such a way that they are able to capture sub-daily backscatter dynamics. It is
expected that this will improve the estimates of layer contributions to total backscatter.
Also considering ground-vegetation scattering should improve the simulated contribu-
tions from the different layers. Moreover, future research should focus on the scattering
mechanisms related to surface canopy water. The interactions between microwaves with
free water on the canopy surfaces (dew, rainfall interception) are still poorly understood.

To properly understand the potential of using multiple frequencies to determine
water content across different heights, it is advised to repeat this experiment with a
multi-frequency radar. Also shifting the type of vegetation to trees could be interesting.
Backscattering from different levels in the canopy may be even more relevant in complex
forest systems. A challenge for future research is to understand the backscatter depen-
dence on moisture distribution in forests. The methodology and results presented in this
chapter contribute to increased interpretation capability of the scattering mechanisms
in canopies.
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CONCLUSIONS

In the previous chapters, we extended our physical understanding of the relationship be-
tween vegetation water dynamics and radar backscatter. In the context of the previous
chapters, this final chapter discusses to what extent the research objectives presented in the
Introduction have been achieved. It also discusses the implications for the use of current
satellite-based radar data and the design of future missions. Finally, recommendations
and an outlook for future research are presented.
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6.1. MAIN FINDINGS

This dissertation aimed to better understand the physical relationship between vege-
tation water dynamics and radar backscatter. Extensive field experiments have been
conducted to quantify the water movement and storage in a corn field. Estimates of
vegetation water content (VWC), surface canopy water (SCW) and surface soil moisture
(SSM) were used to interpret temporal dynamics in ground-based, VV-, HH-, and cross-
polarized L-band backscatter (σ0) using both statistical analyses and electromagnetic
models.

It was shown that, contrary to what is often assumed, the diurnal VWC cycle plays
an important role in sub-daily σ0 variations. The VWC of the studied corn plants varied
by 35% on a drought-stressed day, compared to 10-20% in non-stressed conditions. In
the second half of the season, these percentages translate to substantial masses of water
in the order of 0.5 - 1.5 kg m−2. It turned out that these variations in VWC were large
enough to significantly affect σ0, particularly on days without rainfall. Multiple linear
regression showed that, on a typical dry day in mid-to-late growing season, backscatter
behaviour was 2 (HH- and cross-pol) to 4 (VV-pol) times more determined by variations
in VWC than by the drydown of soil moisture. In early season, sub-daily fluctuations in
σ0 were mainly governed by changes in surface soil moisture and dew deposition on the
topsoil.

Furthermore, it has been shown that surface canopy water (SCW), i.e. dew or rain-
fall intercepted by the foliage, does have a non-negligible effect on sub-daily variations
of σ0. This effect was largely ignored in previous research. The free SCW added an es-
timated maximum of 10% (dew) to 20% (interception) to the mass of moisture in the
vegetation layer during an event. Although smaller than the effect of the diurnal VWC
cycle, we observed clear nocturnal increase of σ0 in VV- and cross-pol, closely follow-
ing the slow accumulation of dew, and reaching a maximum just before dew dissipation
started. These observations suggest that also rainfall interception plays an important
role in increased scattering and attenuation. However, isolating effects of rainfall in-
terception was difficult due to the simultaneous increase in soil moisture during most
events.

Finally, it has been demonstrated that certain parts of the vertical vegetation column
control the backscatter dynamics, depending on stage in the season. Field observations
showed that the vertical moisture distribution of VWC is non-uniform and highly dy-
namic in time. When incorporating this vertical moisture distribution in the Water Cloud
Model, simulations suggest a shift in the relative importance of different vertical layers
on the backscatter signal over the season. Dominant vegetation scattering in all polar-
izations changes from the lowest 50cm to 50-100cm once the latter contains ≥1 kg m−2

of moisture, and the former ≤2.3 kg m−2. Ear formation in 50-100cm further increases
scattering from this layer, and also increases the attenuating effect on the lowest layer.
Although the lowest layer, dominated by stem water content, contains >2 times more
water than the top half of the canopy, VV- and cross-pol scattering from both were com-
parable in the late season. HH-pol simulations showed more sensitivity to the top half
than to the lowest quarter of the plants at this stage.
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6.2. IMPLICATIONS
We have shown, within the scope of our research (i.e. ground-based, L-band frequency,
and corn), which information about vegetation water dynamics is captured within the
time series of the different polarizations. Here, it will be argued that our findings indi-
rectly demonstrate the potential to use radar to measure vegetation water dynamics on
larger scales from space with future instruments. They also show implications for the
use of the current generation of spaceborne instruments.

For example, the sensitivity to sub-daily variations in VWC and SCW means that the
overpass time of current satellites may have important consequences for the retrieval of
biophysical variables (e.g. LAI or dry biomass) or soil moisture. Most satellites carrying
radar instruments are in near-polar, sun-synchronous orbits with morning/evening lo-
cal overpass times between 4:00 AM/PM and 10:00 AM/PM. Future SAR missions such
as ROSE-L and NISAR are expected to be in similar orbits (Pierdicca et al., 2019; Rosen
et al., 2017). During morning overpasses, dew will be frequently present on vegetation,
particularly in temperate regions (Hornbuckle et al., 2010; Kabela et al., 2009; Khabbazan
et al., 2021; Vermunt et al., 2020). In a recent study, it was shown that the presence of dew
significantly affects the retrieval of biophysical variables (Khabbazan et al., 2022). Simi-
larly, it is expected that the evening refill of internal VWC, which depends on the specific
hydrometeorological conditions during a day, affects retrievals of biophysical variables
or soil moisture from the evening overpasses. This is particularly relevant since many of
the current retrieval algorithms consider that VWC is constant during the day (Bindlish et
al., 2009; S.-B. Kim et al., 2017; Panciera et al., 2014). It will have to be examined to what
extent this causes errors in studies using these retrievals. In any case, these sub-daily ef-
fects should be considered when combining overpass times or selecting an observation
time for future missions.

In addition, backscatter sensitivity to sub-daily VWC and SCW also offers unique op-
portunities. Particularly the availability of multiple satellite observations per day offers
a range of possibilities. In Chapters 3 and 4, we demonstrated that we can largely dif-
ferentiate between the timing and shapes of nocturnal dew accumulation, the diurnal
VWC cycle, transient interception events and soil moisture variations. Consequently,
having sub-daily spaceborne backscatter time series will make it much easier to disen-
tangle these signals and isolate the signal of interest. This is certainly the case if different
polarizations are available as well. For example, we showed that sub-daily variations of
VV-polarized backscatter were highly sensitive to the nocturnal cycle of SCW and the di-
urnal cycle of VWC. HH-polarized backscatter was much less sensitive to these cycles,
and showed higher sensitivity to soil moisture instead. These two polarizations could
thus be used to separate soil moisture from vegetation water dynamics.

This also means, and that was the point of departure for this dissertation (see Section
1.1), that rapid vegetation water dynamics (i.e. VWC, SCW) could be monitored from
space, when sub-daily observations become available. This provides opportunities for
assessing vegetation health and studying the diurnal water cycle from a new perspective.
Studies on drought-induced water stress, drought propagation, the role of dew uptake
as a source of water, and ecosystem sensitivity to global change could benefit from sub-
daily measurements of VWC and SCW (Gerlein-Safdi, 2021; Konings et al., 2021; Xu et al.,
2021; Yebra et al., 2019).



6

84 6. CONCLUSIONS

The availability of sub-daily radar observations does not only pertain to the distant
future. Commercial providers CapellaSpace and ICEYE are currently populating constel-
lations of X-band SAR systems in Low Earth Orbit (Farquharson et al., 2021; Ignatenko
et al., 2020). These constellations will ensure multiple observations per day. In Febru-
ary 2021, HydroTerra, one of the candidate missions bidding to become the ESA’s 10th
Pathfinder mission, was not selected for further design consolidation and feasibility as-
sessment. This concept mission was a C-band geostationary SAR which was specifi-
cally designed to study the diurnal water cycle by delivering sub-daily data (Hobbs et al.,
2019). Research as presented in this dissertation can support further development of
concept missions like HydroTerra.

The results from studying the effect of vertical moisture distribution on backscatter
(Chapter 5) is currently primarily of academic value. They provide unique insights into
the contribution of different depths in a vegetation layer on radar backscatter. These
insights serve as starting point for further exploring this issue with more sophisticated
electromagnetic models (see Section 6.3.2). Although understanding what controls the
signal is valuable in itself, future research may reveal which parts of the vegetation layer
control backscatter from different frequencies. Ultimately, this will contribute to bet-
ter understanding the potential for multi-frequency radars. It is expected that at least,
multi-frequency backscatter would benefit the disentangling of signals from soil and
vegetation (Mengen et al., 2021). Moreover, in theory, multi-frequency backscatter could
provide us with a detailed picture of the water dynamics in a field or forest, from soil
moisture to water content across different heights in the canopy, including dew deposi-
tion at the leaf surfaces (Gerlein-Safdi, 2021; Konings et al., 2021). This would shed new
light on plant hydraulics across scales, and the role of vegetation in the climate system.
Finally, insights into the influence of vertical moisture distribution on attenuation, and
thus VOD, will also be interesting for passive multi-frequency microwave instruments,
such as the planned Copernicus Imaging Microwave Radiometer (CIMR).

6.3. DIRECTIONS FOR FURTHER RESEARCH

6.3.1. CALIBRATION/VALIDATION CAMPAIGNS FOR MICROWAVE REMOTE SENS-
ING OF VEGETATION

In our extensive experimental campaigns (Chapter 2), we collected a wide range of quan-
titative information on hydrodynamic activity in the fields with unprecedented temporal
resolution. It was the first time that variations in radar backscatter were linked to con-
tinuous and simultaneous estimates of soil moisture, surface canopy water and inter-
nal vegetation water content. It was demonstrated that particularly the use of sap flow
and leaf wetness sensors to estimate VWC and SCW, respectively, have a huge value for
future calibration/validation campaigns, given the importance of these estimates, and
the laboriousness to measure them. The utility of insights from these campaigns goes
well beyond active microwave remote sensing of vegetation, and is useful for passive mi-
crowave remote sensing and exploring the potential for techniques as GNSS and cosmic
ray neutron.

It is strongly recommended to repeat the analyses of Chapter 5 with observations
from a multi-frequency radar. With these observations, the potential of using multiple
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frequencies for determining water content across different heights and disentangling
VWC, SCW and SSM could be properly understood. Moreover, it could be investigated
which frequency would be most suitable to monitor sub-daily vegetation water dynam-
ics.

Another recommendation for future campaigns is to install a denser network of leaf
wetness sensors. We observed that the variations in the raw data from the leaf wetness
sensors were consistent with the accumulation of dew during humid periods, intercep-
tion during rain and irrigation events and the dissipation of both in response to net ra-
diation. These suggest that the sensors reflect field scale phenomena. However, the cer-
tainty of the SCW estimates was limited by the number of sensors available for the cam-
paigns. In addition, a denser network of sensors could provide better insight into spatial
and vertical heterogeneity. Given the value of these sensors, the user-friendliness, and
the relatively low costs, it is recommended to use multiple leaf wetness sensors for future
calibration and validation campaigns.

In Chapter 4, we used sap flow sensors and reference ET to extrapolate VWC. This
methodology gave us the opportunity to link sub-daily backscatter to diurnal VWC vari-
ations. However, the resulting time series was limited to mid-to-late-season due to the
large diameters of the sap flow gauges we had available. Moreover, it was demonstrated
that the extrapolations and observations did not always match. Poor estimates of diurnal
VWC cycles risk an underestimation of the effect of VWC on backscatter. Given the value
of continuous VWC estimates for calibration or validation of microwave observables, it
is important to further develop this method and reduce the uncertainty. Potential im-
provements could be the use of eddy covariance systems to estimate ET, and the use of
multiple sap flow sensors. It is also recommended to increase the temporal resolution of
the sensor observations to increase the robustness of the method.

For the field campaigns in this dissertation, we used corn as vegetation type. How-
ever, our measurements can also be applied to campaigns focused on forests, such as
TropiScat (Albinet et al., 2012) and BorealScat (Monteith et al., 2016). In fact, it is ex-
pected that estimates of continuous VWC variations using sap flow sensors are more
accurate for trees than for agricultural crops, because of the longer phase lags between
transpiration and basal sap flow, and thus higher robustness. Other types of sensors have
also proven their utility for relating vegetation water changes to microwave observables,
such as automated psychrometers to measure plant water potential (Guo et al., 2020;
Holtzman et al., 2021; Momen et al., 2017) and dendrometers to estimate variations in
stem diameter as an indication of variations in stem water storage (van Emmerik et al.,
2017). It is important to note that dielectric constant is directly related to water con-
tent, and not to water potential. It is therefore essential to further develop methods to
measure water content continuously.

Much of the necessary data is also collected in scientific measurement networks,
some of which have been set up recently. These networks could make a major contribu-
tion to the validation of (sub-daily) satellite observations. Examples of these networks
are FLUXNET (Baldocchi et al., 2001) and AMERIFLUX (Novick et al., 2018), from which
ET could be derived, SAPFLUXNET (Poyatos et al., 2021), with sap flow data, sometimes
corresponding to FLUXNET observations, and Globe-LFMC (Yebra et al., 2019), which is
a data set containing VWC data from all over the world.
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6.3.2. ELECTROMAGNETIC MODELLING

The regression analysis in Chapter 4 gave us valuable insights into the dependence of
sub-daily backscatter variations on changes in the different moisture stores in the field.
However, the calibration and fitted relationships are site- and crop-specific. Electromag-
netic models on a physical basis, such as the Michigan Microwave Canopy Scattering
Model (MIMICS) (Ulaby et al., 1990) and the Tor Vergata Model (TVM) (Bracaglia et al.,
1995), have a broader validity and can be used to extrapolate insights to other situations.
These models are broadly used to explain variations in backscatter time series related to
changing properties on the ground.

The models we used for forward modelling in this dissertation were not able to cap-
ture the sub-daily dynamics in observed σ0. This could have several reasons. It could be
that the backscatter observations from the UF-LARS system were more sensitive to sub-
daily variations in the field than the observations from instruments on which the mod-
els were initially developed. To investigate whether this could be a reason, it is recom-
mended to repeat the experiments described in this dissertation with other instruments,
ground-based or airborne, with different configurations, and compare the observations
with model simulations.

The more likely explanation is related to the fact that the models were initially de-
veloped for capturing seasonal variations of vegetation growth. Both the Water Cloud
Model and the Tor Vergata Model simulated seasonal variations of σ0 reasonably well.
However, sub-daily dynamics were structurally underestimated. This is a problem be-
cause in their current form, the models cannot be used for explaining sub-daily vari-
ability in σ0. Moreover, this suggests that some processes in the model are not well
described, which also has implications for the validity of seasonal scale modelling (see
Chapter 5).

For these reasons, it is of utmost importance to update these models in such a way
that they are able to simulate sub-daily dynamics of σ0 properly. First attempts were
already made within the time of writing this dissertation. We for example found that a
WCM which incorporates an extra vegetation descriptor showed stronger sub-daily dy-
namics of σ0 than the original WCM. However, this modified WCM performance was
worse in the period of strong seasonal backscatter increase. Choices in the TVM can
improve the representation of sub-daily variations as well; for example through chang-
ing the linear vegetation mixing model from Mätzler (Matzler, 1994) for the exponential
dual-dispersion model described in Ulaby and El-Rayes (Ulaby and El-rayes, 1987).

However, the modifications mentioned above were not sufficient to capture sub-
daily variability. Both the WCM and the TVM do not include scattering from surface
canopy water. When we added estimates of SCW to the water cloud of the vegetation
layers, WCM simulations underestimated their effect on σ0 (Chapter 5). We should bear
in mind that scattering from free water on the canopy could be different than the scatter-
ing from water captured in vegetation tissue. Given the importance of SCW on sub-daily
backscatter shown in this dissertation, it is recommended to work on the incorporation
of surface water on vegetation in electromagnetic models.

It is also recommended to repeat the analysis in Chapter 5 by building-in multiple
layers in the TVM. The simplicity of the WCM does not allow vegetation-ground scat-
tering and scattering between vegetation layers. Our simulations from the WCM sug-
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gest that the vegetation-ground scattering plays an important role. The TVM does allow
vegetation-ground scattering and scattering between layers because of the built-in ma-
trix doubling algorithm (Eom and Fung, 1984). In addition, there is an option to use
elementary sublayers, i.e. sublayers within layers, using "additive" doubling. These op-
tions are potentially interesting for further studying scattering from different vertical lay-
ers with a more sophisticated model. A modified version of the TVM should be able to
account for these scattering mechanisms, and is expected to better represent scattering
from the different vertical layers.

While we work on extending our physical understanding, we should also, above all,
continue working on inferring information of vegetation water dynamics from variations
in backscatter. In the end, we want to use radar to study processes on the Earth surface.
Improvements in inverse modelling would bring the potential for using radar a step fur-
ther.

6.4. CONCLUDING REMARKS
The use of radar remote sensing for environmental studies remains challenging due to
the complexity of the data. At the same time, the variety of hidden information in the
data makes it interesting to explore the potential of this technique. This dissertation
provides important observational evidence for the potential of using radar to monitor
rapid vegetation water dynamics from different layers in a canopy. This means that sub-
daily and multi-frequency satellite-based radar could become a crucial data source for
applications in the fields of hydrology, land surface modelling, earth system modelling
and plant physiology, once these instruments are in orbit.

It is essential to continue efforts to improve our understanding of complex radar ob-
servations. A lot of what we know about radar remote sensing of vegetation is based on
field experiments from decades ago, and electromagnetic models which were developed
to capture seasonal growth. However, understanding the potential of monitoring de-
tailed vegetation water dynamics using radar requires continued field research and mod-
elling. Experimental campaigns are expensive but crucial if we want to exploit the po-
tential of radar remote sensing. Moreover, the possibilities of today’s sensors are greater
than ever before. An update of forward models is needed to better capture the effect
of vegetation water dynamics. Finally, it is essential to master inferring information on
rapid vegetation water dynamics from a backscatter time series using inverse modelling.
The findings in this dissertation open a new avenue for these developments.
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