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Abstract

This paper focuses on the derivation of analytical formulae to estimate the effective capacity
at freeway merges. It extends previous works by proposing a generic framework able to
account for (i) heterogeneous vehicle characteristics and (ii) refined description of the
physical interactions between upstream waves and downstream voids created by inserting
vehicles within the merge area. The provided analytical formulae permit to directly compute
the capacity values when the merge is self-active, i.e. when both upstream roads are
congested while downstream traffic conditions are free-flow. They show that accounting for
vehicle heterogeneity is not necessary when only the mean capacity is targeted. Calculations
with the proper mean value for all parameters provide accurate estimates. This result is
appealing because the shape of the parameter distributions does not need to be calibrated.
However, this paper also shows that vehicle heterogeneity plays a major role in the flow
dynamics just upstream of the merge.

Keywords:
Active bottleneck, Capacity Drop, Freeway Merge, Kinemactic Wave, Heterogeneous
Vehicles.
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1. Introduction

Determing the effective merge capacity, i.e. the maximum flow that can be observed just downstream
of freeway merges, is crucial for traffic operations. This is not only important for simulation purpose
but also to develop better control strategies. Effective capacity is referred in some papers as the queue
discharge rate. Experimental findings show that capacity drops are often observed at merges even if
downstream traffic conditions are in free-flow, e.g. (Cassidy and Bertini, 1999; Kerner, 2002; Chung
etal., 2007; Sarvi et al., 2007; Zheng et al., 2011). The magnitude of the capacity drops is mentioned
to be between 10 to 30% of the maximal observed flow. The main physical explanations for such a
phenomenon are lower speeds for merging vehicles combined with bounded acceleration, e.g.
(Cassidy and Rudjanakanoknad, 2005; Laval et al., 2005; Treiber et al., 2006; Laval and Daganzo,
2006), and the impacts of driver behaviors, e.g. (Cassidy and Ahn, 2005; Coifman and Kim, 2011,
Chen et al., 2014). In a nutshell, slower vehicles create voids in front of them that locally reduce the
available capacity and lead to temporal flow restrictions.

Except for direct experimental observations, the most common way to determine the effective merge
capacity is to use a traffic model able to reproduce the underlying physical mechanisms, e.g. (Laval
and Daganzo, 2006; Srivastava and Geroliminis, 2013). This requires running a simulation for every
new set of parameters and is not really convenient when looking for a first and quick approximation of
how a merge behaves or to determine which parameters are the most influential, e.g. for sensitivity
analysis. To the authors’ knowledge, (Leclercq et al., 2011) is the only attempt to derive an analytical
expression that explicitly relates the effective capacity to the different parameters. This expression is
derived by considering that inserting vehicles act as moving bottlenecks (Newell, 1998; Leclercq et
al., 2004) with bounded acceleration while mainstream vehicles behave according to the kinematic
wave model (Lighthill and Whitham, 1955; Richards, 1956) with a triangular fundamental diagram.
The central point of this contribution is to handle the interactions between moving bottlenecks when
vehicles insert at different location along the on-ramp.

This first attempt has two main shortcomings. First, vehicle characteristics are supposed
homogeneous, i.e. same acceleration, same jam spacing... Second, interactions of upstream
propagating traffic waves with downstream propagating voids created downstream of moving
bottlenecks are neglected. This paper proposes new analytical investigations that tackle these two
shortcomings. Notably heterogeneous vehicle characteristics will be introduced to account for traffic
composition (trucks and cars) but also for driver behaviors (random maximal acceleration). As a major
result an updated expression for the effective capacity defined by eq. (5) in (Leclercq et al., 2011) will
be established. In this paper, we will assume that both the on-ramp and the freeway are congested
upstream of the merge. (Leclercq et al., 2011) provides all the materials to extend the results to
situations when the on-ramp is in free-flow. Furthermore, we will consider that the inserting flow g is
given when calculating the merge effective capacity C. One more time, the major challenge is to
derive an update version of eq. (5) in (Leclercq ef al., 2011). Then, all methodology already presented
in (Leclercq et al., 2011) can be directly applied. Notably, when the merge ratio a is given (Daganzo,
1995), go can be derived by solving (1+1/a)qi=C(go). This provides both equilibrium traffic states
upstream of a self-active merge, i.e. when the congestion is not coming from downstream. Finally,
note that we will restrict our investigations here to a one-lane freeway. Extensions to multi-lane
freeways have already been discussed in (Leclercq et al, 2011). The corresponding methods are
directly applicable to the extended expression of the effective capacity.

This paper is organized as follow: the first section proposes a generic expression for the effective
capacity. Section 2 deals with proper consideration of voids downstream of moving bottlenecks while
section 3 addresses the question of heterogeneous vehicle characteristics. The main work in these two
sections is to derive the characteristics of the statistical distributions that appear in the generic
expression. The main challenge is to maintain analytical tractability from end-to-end. Analytical
expressions will be compared to numerical simulations to test the relevance of the required
approximations. The last section presents a brief discussion.
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2. Generic expression for the effective capacity

Consider a merge with two one-lane roads. Vehicle i inserts from the on-ramp at time #; and location x;
(0=x;<L), where L is the length of the insertion lane, see Figure 1a. The time headway h=t;.1-t; between
two successive insertions follows an unknown distribution H(%y,sy) with mean /y=1/q, and standard
deviation sy. Inserting vehicles are considered as moving bottlenecks (Newell, 1998; Leclercq et al.,
2004) on the freeway with initial speed vy;and bounded acceleration a;. The distributions of these
parameters are respectively described by Vo(vo,s10) and A(a,s4). Note that capital letters will be used
for defining the distributions associated to random variables labeled with lower case letters. Platoons
of vehicles upstream of each moving bottleneck on the main road are described by the kinematic wave
model (Lighthill and Whitham, 1955; Richards, 1956) and a triangular fundamental diagram with
wave speed w and jam density ;. Free-flow speed has no influence here and it seems reasonable for
freeway traffic to assume same wave speeds for all platoons (Chiabaut et al., 2010). A different jam
density value is assigned to each inserting vehicles following K(x,sk). In this paper, we will assume
that this value also characterize the mean jam density of the platoons leaded by the inserting vehicle.

(b)

[ void

(a)

x=0 x=L

S

&
A

»
>

Figure 1: (a) Sketch of the merge (b) Inserting process when L=0 (c) Inserting process when L>0, no interaction
between waves and voids (d) Accounting for interactions between waves and voids.

To establish the generic expression for the effective capacity C, vehicles are first assumed to all insert
at x=0, i.e. L=0, see Figure 1b. Let J; be the cumulative number of vehicles that have crossed x=0
between time ¢ and ¢,+;. Variational theory (Daganzo, 2005) states that J; can be equally calculated on
the paths A—B or A—C—B, see Fig. 1b. No vehicle can pass the bottleneck between A and C, so J; is
equal to wki(h-7;), where 7; is the time duration between points A and C. The effective capacity C
corresponds to the ratio between the sum of J; and the total duration of the process, i.e. the sum of #;,,
when the number of insertion tends to infinity. It is then given by:

n—-oo n—-oo n—oo n—oo
C = Z 61/2 hi =w Z K; (hl —T(hi,Uo,i,ai))/z hi
i=1 i=1 i=1 i=1

1
T= a_ (—w —vg; + v); v(hi,vo,i, al-) = \/(W + vo,i)z + 2wa;h;
i

(1)

Note that the unit of v is consistent with a speed but this expression is not related to any physical
definition. The law of large numbers tells us that (1/n)Zd;and (1/n)Zh; respectively converge to A and
ho, i.e. the mean of the corresponding distributions. A can be approximated using the multivariate
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generalization of the Delta method (Oehlert, 1992). This method consists in performing a second-order
Taylor expansion of J; around the mean values 4, v, a and x before applying the sum operator. First
order terms disappear because the sum of each parameters divided by n converges to the mean. Only
second order terms remain and are weighted by either the standard deviation sy of each distribution X
or the covariance Oy y between all X and Y. Thus, A is given by:
1 ) 0%6; 0%6;
;— S(ho,vo,a,K) +E Sy > + Hx'ym (2)

X€{H,Vo,AK} (X,Y)E{H Vo,AK}LX#Y

We first assume that H and V), are respectively independent from 4 and K because they depend on the
on-ramp traffic conditions and not on the vehicle characteristics. The covariance between these
distributions is then zero. It can easily be verified that the second derivative of J; with respect to K is
zero. Interestingly, this means that the K-distribution has no influence on C, only the correlation
between K and 4 does. Finally, all the derivatives of J; can be expressed using the derivatives of 7. We
then obtain the following generic expression for C:

WK 1 ,0% 1, 0% 1 ,0% 9%t
C = h—0<h0 —T(ho,vo, a) - ESHW_ ESVO aVOZ _ESAW_ BH'VOW
Ok 0T )
_Tﬁ>

The derivatives of 7 are provided in eq. (4). We will show in section 3 and 4 that introducing more
relevant physical hypothesis like L>0, interactions between voids and waves or random vehicle
characteristics is “just” a question of properly calculating the moments of all distributions.

0°t  —aw? 0%t 2why 0°t  —w(w +v,)
v3(ho,vo,a)’ OHOV, B v3(ho, vo, @)

aHZ B U3(h0,170,a); 6V02 B

ot T(ho, vy, a wh
o ( 0rv0 )+ 0 (4)
aA a v(hOIUOI a)

0%t 2 h ) why aw?h?

942 gz \‘Morved v(hg,vo,a) 2v3(hg, vy, a)

3. Considering interactions between waves and voids

In this section, we now consider that insertions can happen anywhere between 0 and L (L>0). Vehicle
characteristics are still homogeneous (s,=0 and sx=0). We first show that the physical process with
random inserting position can still be described with the generic expression. Second, we look for the
analytical expression for the relevant moments in eq. (3). Finally, we will derive the full analytical
expression.

3.1. Applying the generic expression

The general principle for considering insertions at different locations between x=0 and x=L has already
been presented in (Leclercq et al., 2011). When vehicle i is inserting at time ¢ and location x;, it
generates a wave whose speed is w and which carries the speed vy;. This wave reaches x=0 at time ¢,
see Figure 1c. (Leclercq et al., 2011) explains in details what clearly appears in Figure 1c: the process
for determining the effective capacity at x=0 is the same when considering L>0 or L=0. Indeed, the
cumulative number of vehicles can be calculated on either on paths A-C—D—B or A>D’—B.
Calculation on path A—D’—B is exactly the same for the path A—>C—B when L=0, see Figure 1b&c.
To determine C, we only have to replace the distribution H by the distribution H” where h’=t -t ;
and ¢ is the ordered series gained from the realizations of #’, see Figure lc. This result resorts to a
restrictive assumption: waves coming for moving bottlenecks are not influenced by voids created
upstream by other bottlenecks, e.g. wave coming from vehicle 1 propagates until x=0 without
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considering the void created downstream of vehicle 2, see Figure lc. (Leclercq et al., 2011) mentioned
that this assumption helps to keep the analytical calculation simple but they do not investigate how it
influences the effective capacity values. This will now be done. Note that (Leclercq et al., 2011)
provides the analytical expression for s, when the time between two insertions is set to Ay, i.e. s5=0,
and when the distribution of inserting positions in congestion is uniform as suggested by experimental
evidence (Daamen et al., 2010):

B {L/\/Ew if L < why 5
H 7 ke (L — who/N8)/(L + (V6 — 2)why) if L > why )

Figure 1d shows what happens when considering the interactions between voids and waves. The wave
coming from vehicle / meets the void created downstream of vehicle i. The void progressively
vanishes and the wave can only propagate further downstream when the void has disappeared, i.e. at
time 7" in Figure 1d. This changes the time #’; when the wave reaches x=0 and potentially influences
the H’ distribution that is now simply relabeled H. This also modifies the ¥} distribution. In fact, the
initial speed when calculating the cumulative vehicle number between ¢#’; and the time when the next
wave arrives at x=0 is no longer equal to v,,; but is now equal to v, see Figure 1d. v;,;corresponds to
the speed carried by the wave coming from vehicle / and that goes through the point C where the void
created by i disappears. The position of this point depends on the initial speed v;; of the void
downstream boundary. This last speed can be determined by identifying the vehicle k that determines
the speed profile when i is inserting, see Figure 1d.

All the challenge is to maintain analytical tractability when calculating the new moments of the 4 and
Vy distributions considering the extended physical process with voids. In order to validate the
analytical simplifications that we will made, we have developed a numerical code that, for a given
ho=1/q0, (i) randomly draws the inserting positions for a set of 5000 vehicles, (ii) matches each vehicle
| with the corresponding vehicles i and £, (iii) makes the proper calculation for the vehicle i void
boundaries, (iv) determines the modified values for ¢’; and vy, Note that the wave coming from / not
necessarily meets a void and is then unaffected. Such numerical simulations provide samples for H
and V) distributions and also allow us to directly estimate C. We perform extensive simulation runs
but for illustration purposes, most figures of this article are drawn with the following parameters:
w=19.4 km/h, =130 veh/km, a=1.8 m/s’, ¢=0.174 veh/s.

3.2. Determining the moments of the different distributions

We further assume that all vehicles have the same speed vy when inserting. This speed is associated to
qo through the fundamental diagram. This assumption is reasonable because the on-ramp is congested.
Section 5 will explain how this can be relaxed. Note that mathematical expectation (mean) of a
distribution X is further labeled E(X).

H-distribution. Considering interactions between voids and waves does not change the number of
waves created. Thus E(H) remains unchanged and is equal to /4. The ordering processing when
switching from ¢’ to ¢* makes inaccessible the analytical derivation of the H-distribution from the
distributions of the inserting position and time. In (Leclercq et al., 2011), the analytical expression of
st eq. (5) has been obtained by considering extreme case when L is very small and very high and by
fitting the global expression using extensive numerical simulations. Notably, it appeared that H’
follow an exponential distribution when L tends to infinity. Here, we apply the same approach. Figure
2 shows an example for the evolution of sy with respect to L when interactions between voids and
wave are considered or not. This figure highlights that the standard deviation of H is unaffected by the
modification of #’; when waves encounter interactions with upstream voids. The analytical expression
eq. (5) remains fully accurate. This has been confirmed by multiple simulation runs using a wide range
of parameter values.

Probability for interacting piy. Not all waves meet voids before reaching x=0. Before going further
in the calculation of the moments, we need to establish an analytical formulation for the probability piy
that a wave starting from a moving bottleneck experiments interactions. Consider a vehicle i that is
inserting at time # and location x;. The wave starting from i can interact with a void created by a
vehicle that inserted in the close past or that will insert in the near future, see diamond dots in Figure
2c. To maintain the analytical tractability, we will only consider the closest neighbors, i.e. vehicle i-1
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and i+1, see the shaded area in Figure 2c. There will be no interactions if the starting point of vehicle i-
1 makes it arrive above x; at time ¢ and if vehicle i+1 is created above the wave coming from i at time
t;+1. These two conditions should jointly be true and correspond to initial inserting positions for vehicle
i-1 and i+1 along the two green lines in Figure 2¢c. This means that x;.;>x;-0.5ah’-voho and x;.>x-why.
Let denote b, and b, respectively the min and the max between x-0.5ak*-voho and x-who. As the
inserting position for all vehicles obeys to a uniform distribution, it comes that the conditional
probability P(nolx;) of no interaction given x; is:
1 if xX; < b1

P(nolx;) =4 (L —x; — by)/L ifby <x; < b, (6)

(L—xl'—bl)(L—xi—bz)/Lz iin >b2

The law of total probability makes it possible to determine p;,, with respect to P(nolx;) noticing that the

probability for vehicle 7 to insert at position x; is 1/L:
L

1
Pint = 1— Zf P(nolx;) dx; (7)
0
The black curve in Figure 2b compares the numerical and analytical results for p;, and different L
values in our example case. It appears that the analytical expression is close to the numerical results
even if we only consider the two closest neighbors. pi, is underestimated because our approximation
neglects interactions with farer neighbors. This result has also been confirmed by extensive simulation
runs.

s, [s] (a) (b)

6" 5r

5t . TS o © 4l

4+ 5, (m/s)
3t

3 L
2 L

2 L

o Without void interactions
1| ° With void interactions 1r
Analytical approximation

: . L [m]
Qe-e-o : : : :
0 50 100 150 200 250 300 0 50 100 150 200 250 300

‘A .t Lt t.

0 -

Figure 2: Analytical approximations for (a) the standard deviation of H with and without considering void
interactions (b) the mean and the standard deviation of V, and the probability p;, for waves to interact with voids (c)
Process for approximating the probability p;,.

Vo-distribution. The initial speed when wave i arrives at x=0 may either be equal to v;; or v
depending on whether an interaction happens or not. We first only consider cases with an interaction.
Let denote A(#,x;) the point where the void is created, B(7,xr) the point where the wave meet the
downstream void boundary and C(7",x7) the point where the void disappears, see Figure 1d. C is the
intersection point of two parabolas corresponding to bounded acceleration trajectories (curves BC and
AC). Solving the associated equations leads to 7""=7+(v; -vo)/a. Equation of curve BC also tell us that
vi=a(T’-T)+v,. It comes then a very simple result when vy is constant: v; =v,. Finally, v, ; is given by:
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vl,l = aT(hki Vo, a) + Vo (8)

Eq. (8) means that the V)-distribution of only depends on the distribution of @H). Its two first
moments are then given by:

{E(VO = aE(t(H)) + v, .
E(WVR) = v + 2aE(t(H)) + a?E(t2(H)) 9)

The mean and standard deviation of the Vy-distribution can then be derived by applying the law of
total expectation with condition probability depending on whether an interaction appears or not:

{E(VO) = (1 - pint)vo + pintE(Vl)

550 = E(Voz) - E(Vo)z; E(Voz) =(1- pint)vg + PintE(V12)
E(Vo) = vy + apincE (z(H)) (10)
{550 = apinc(2E (1(H)) + aE(1%(H)))

The last thing we need to finalize is the calculation of the mathematical expectation of 7 and 7°. This
can be achieved by again applying the Delta method (Oehlert, 1992):

) 0%t 9%t
E(r) = t(hg, v, a) +ESHW; W_) 4) 1)
1 262‘52_ 0%t?  2w?(w + v,)

2y — 42
E@) = w(ho,vo, a) + 2°H 9z’ 9H? ~ v3(hy, vo, @)

Figure 2b shows the comparison between the analytical and the numerical calculations for E(V;) and
syo and the example case. The results are quite good except for some discrepancies for low L values
(between 60 and 150 m). The reason is that v, /=v; ; and eq. (8) hold only if vehicle / inserts outside the
void created by vehicle i. Otherwise, the void disappears more quickly and v, <v; ;. Such situations are
properly handled in the numerical code but can hardly be introduced in the analytical derivation. Of
course, they happen more frequently if the insertion length is small. This explains why the analytical
formulas overestimate E£(V)) and sy when L is quite small. As usual, extensive simulation runs have
been performed to verify that the errors remain in the same level of magnitude. Furthermore, we will
see later that such discrepancies have few impacts when calculating C.

Covariance between H and V. To apply eq. (3) with homogeneous vehicle characteristics, the last
missing term is Oy 0. The analytical derivation of this term is almost impossible because multiple
interactions occur. Indeed, when a wave is delayed due to a void this change the time headways of
both neighboring waves and the initial speed for one of them, see Figure 1d. This speed depends on the
time headway of another wave associated to vehicle k. Because of the ordering process from ¢’ to ¢*, it
is very difficult to analytically determine the headway index associated to an initial speed
modification. Fortunately, when performing the extensive numerical tests it appears that the value of
0.0 remains very low compared to the variances of other distributions whatever the parameters, g
and L are. H and V) are clearly not independent but their covariance can be neglected. 6y is then
assumed equal to O for further analytical calculations.

3.3. Calculating the effective capacity for different inserting flows

Figure 3 presents the analytical and numerical results for the effective capacity C. Three values for the
inserting flow are tested. The blue curve and dots correspond to the case when interactions are
neglected and so to the results already stated in (Leclercq et al., 2011). The red curve and dots clearly
show the importance of considering the interactions between voids and waves. The estimation of the
effective capacity increases up to 15% when this phenomenon is taken into account. This is explained
by the fact that voids created by upstream inserting vehicles reduce the impacts of other vehicles that
insert downstream. This tends to increase the capacity.

The effect of interactions starts being noticeable when L>50 m except for the lowest g, value. This is
because when all vehicles insert on a short distance, waves quickly reaches x=0 and do not interact
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with voids. Another interesting result is that the effective capacity stops significantly increasing when
L becomes higher than 150 m. However, the influence of L is important for the lowest values. For
example, the effective capacity increases about 15 to 20% when L increases from 20 to 160 m. This
may be interesting for road design.

The most important insight in Figure 3 is that the extended analytical formula performed well whatever
the go and L values are. The discrepancies with the numerical results are always below 3%. This
means that eq. (3) provides a very good estimate for the effective capacity even if we resort to
restrictive assumptions when determining the moment of some distributions. This is really appealing
because this formula provides a direct estimate for the effective capacity without requiring any
complex simulation runs. It will now be further extended to account for heterogeneous vehicle
characteristics.

0.45 C Lvebss] (@) 0.45 C [vehss] (b)
4 04 ’M
0351 0351
0.3t 0.3}
0251 ° Numerical (with void interactions) 0.25¢ o Numerical (without void interactions)
Analytical (with void interactions) Analytical (without void interactions)
0.2 : : : : : Flml g5 : : : : : [en]
0 50 100 150 200 250 300 0 50 100 150 200 250 300
0.45 C [veh/s] (©
04f}
0.35¢
0.3}
025+
0.2 : : : : : £ Lm]
0 50 100 150 200 250 300

Figure 3: Comparison between analytical and numerical results when considering or not the interactions between
waves and voids. (a) regular inserting flow: ¢y=0.174 veh/s (b) low inserting flow: ¢y=0.08 veh/s (c¢) high inserting flow:
40=0.26 veh/s.

4. Considering heterogeneous vehicle characteristics

In this section, vehicle characteristics are no longer homogeneous, i.e. 54 and sx # 0. We still consider
that the inserting speed is the same for all vehicles, i.e. vy.

4.1. Applying the generic expression

To mimic realistic traffic conditions, we consider that inserting vehicles can be categorized into trucks
and cars. The truck ratio is denoted p". Accelerations and jam densities are assumed to follow normal
distributions for each vehicle class. Remember that the jam density formally describes in this
framework the characteristics of the platoon upstream of an inserting vehicle. Because platoons are
small, we distribute the jam density depending on the leader class, i.e. the inserting vehicle.
Parameters related to trucks are identified using an asterisk (*) while those related to cars are
identified using an apostrophe (*). For numerical examples, the following values will be applied:
p =02, a=1m/s’, s=02m/s’, a’=2m/s’, s,=0.5m/s’, K=67veh/km, sg=10 veh/km,
K’=145 veh/km, sx=30 veh/km.

Considering random accelerations and jam densities does not modify the global physical process

described in section 2 and 3 when vehicles are inserting as far as the wave speed is constant, see Figure
1d. Thus, eq. (3) can be directly applied as soon as the different moments are properly determined.
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4.2. Determining the different moments

K and A-distributions. Those distributions are defined given the vehicle class. Applying the law of
total expectation to the two first moments makes it possible to determine their means and standard
deviations for the total population:

{ a=pa*+(1—-pa; k=pk*+ (1 —-p K’
sz = E(A%) —a?% E(A?) =pE(A**) + (1 —-p")E(4"?) (12)
E(A?) =p*(@? +s4.); E(A'Y) = (a?+52)

Recall that there is no need to calculate sx because it has no influence on the effective capacity.

Probability for interacting pi,.. The only modification when calculating piy is that the acceleration of
the upstream closest neighbor is random. However, we can use at first glance the mean acceleration
for this calculation. Eq. (6) and (7) remain unchanged, see Figure 4b.

s, [s] (a) (b)
5 -

N w B (&)} (o]
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w
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° Homogeneous (Numerical) 1t
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. . . [m]
0 50 100 150 200 250 300 0

(c) . (d)
0.45 C [veh/s] 05 C [veh/s]
—— Heterogeneous (Analytical)
With voids 04l
041 ©c 0o 9 ° '
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0-25 1 1 1 1 1 il‘[m] 0 1 | 1 1 1 1 1 1 1 p
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Figure 4: Integrating heterogeneous vehicle characteristics. (a) Standard deviation of H (b) Mean and standard
deviation of V), probability for interacting (c¢) Effective capacity C with respect to L (d) Effective capacity C with
respect to the truck ratio.

H-distribution. A new phenomenon occurs when looking at the H-distribution with heterogeneous
vehicle characteristics: some voids never disappear. It is clear in Figure 1d that if a>>qa; the upstream
void boundary will join the downstream void boundary because initial speed at points A and B are the
same. In the reverse situation, some cases may happen where the curve BC has no intersection point
with the curve AC. In that case, if a wave coming from vehicle / interacts with this void, it will never
reach x=0 and should be disregarded. The effective occurrence of such a situation when a;<a; depends
on the relative position between B and A and thus depends on v, and the relative inserting positions
of vehicle i and /. Using geometrical considerations, it can be derived that the condition for the void
created by vehicle 7 not to disappear is:

a? + (a; — al)(ak +a; + 2a; T(hk,vo,ak)/r(hi,vllk,ai)) <0 (13a)

By noticing that v, =axt(hi,vo,ar)tve and using a first order Taylor expansion, it is possible to
approximate the mean value for the ratio of r-functions in Eq.(13a) by 2. Eq. (13a) can then be
further simplified:

(2\/5 — 1)(al —a;)ag > a;q (13b)
Deriving analytically the probability for eq. (13b) to be true with respect to the 4-distribution is too
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difficult. However, eq. (13b) provides an interesting insight. It appears that eq. (13b) will never be true
if a; is not considerably higher than ;. Thus and at first glance, we can consider that a condition for
eq. (13b) to be true is that i is a truck while / is a car. Thus, the probability p, for a void not to
disappear can roughly be estimated by:
py=p(1—p") (14)

Finally, to determine the H-distribution, we assume that its behavior remains similar after disregarding
the fraction of waves that are not reaching x=0. Such fraction is equal to the product of pi, and p, (a
wave should interact with a void that does not disappear). The new mean of H is then equal to
E(H)=ho/(1-pinpy). We verify that sy can still be estimated by eq. (5) when 4 is replaced by E(H).
Figure 4a shows the numerical results for sy with and without considering heterogeneous vehicle
characteristics. Wave disappearances lead to increased sy values compared to the homogeneous case. It
appears that the updated analytical eq. (5) provides an accurate fit for s in the heterogeneous case.
This result has been confirmed for multiple simulation runs with different parameters.

Vo-distribution. Random accelerations and the appearance of persistent voids strongly complicate the
calculation of these moments. We need then to resort to strong assumptions. First, we consider that the
distributions of v;, can still be described by the distribution of v, ;in order eq. (8) still holds with a=a;.
Thus, the initial speed carried by the wave coming from vehicle / only depends on the characteristics
of vehicle k. Eq. (9) remains unchanged. For eq. (10), we have to consider in case of interactions that
some waves never reach x=0. For n inserting vehicles, only (1-pinp,)n waves crosses x=0. The fraction
of waves carrying vy is then r=(1-pin)/(1-pinpy) While the fraction of waves carrying a random speed
given by V' is 1-r=pin(1-p,)/(1-pip,). Thus, eq. (10) should be updated into eq. (15).

E(WVy) = vy + arE(t(H)) s
sg, = ar(2E(t(H)) + aE(t*(H))) (15)
Eq. (11) should also be updated because now two variables (H and A4) are random in the z-function.

We should then use the multivariate expression for the Delta method. We assume that H and A4 are not
correlated. Thus, the new expression for the mathematical expectations of 7and 7 are:

1, 0% 1 , 0%T
E(T) - T(hOIUOIa) + = SH aHZ 2 A aAZ
62 2 1 62 2
2y _ -2
E(7?) = t%(hy,vp,a) + = SH@HZ +E EYE
%t 9%t A 9212 "
— —— > (4); -
opzaaz "W Zpz > (b
0%t ) 7(hg, vo, @) N why 2 (16)
0A2 a av(hg, vy, a)
27(hg, vy, @) 2why

+ ZT(ho, UOI a) ( 2

a "~ a?v(hg, vg, @)

Zho
av3(hy, vy, @)

What is important when calculating the moments of V from eq. (15) and eq. (16) is to use the initial %,
value (ho=1/go) and not the updated value E(H). When calculating the V;-distribution, we have to
consider time intervals between waves coming from inserting vehicles whatever they are able to reach
the boundary x=0 or not.

Figure 4b shows the analytical calculations for E(¥,) and sy, compared to the simulation results. The
analytical expression provides very accurate estimates for low and large L values. In between, the
discrepancies already observed for the homogeneous cases are amplified. They are also observed for a
wider range of L values. The reasons are twofold: (i) stronger assumptions have been made and (ii) in
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the heterogeneous case some voids can expand more and the probability that vehicle / inserts within
the void created by vehicle i increases. The second reason is the main explanation for lower simulated
values compared to the analytical predictions. However, a proof of consistency here is that the
analytical expression provides close results when L is large (L>250 m), i.e. when (ii) is very less
frequent. Furthermore, we will see that the discrepancies observed for the Vy-distribution have a
limited influence when calculating the effective capacity.

Covariance between 4 and K. 0, can be easily derived from the conditional behaviors of 4 and K
with respect to the vehicle class. We simply further assume that 4 and K are not correlated within each
specific class. Otherwise, we would have to calibrate such correlations.

Osx = E(AK) —ax; E(AK) =p*a’k* + (1 —p")a'k’ (17)

Covariance between H and V). As for the homogeneous case, extensive numerical simulations show
that 0y 9 is very low and can be neglected, i.e. 0,0=0.

4.3. Influence of vehicle heterogeneities on the effective capacity

The final calculation for the effective capacity can be made using eq. (3) and the formulas eq. (12) to
eq. (17). An important point is that #;=1/g, should be used in eq. (15) and eq. (16) when determining
the moments of the Vy-distribution but everywhere else where /4 is mentioned, one should read the
mean value of H and then used the updated expression E(H)=ho/(1-pimp,). This is particularly true in
eq. (3).

Figure 4c shows the results for the effective capacity and the reference scenario. Four numerical cases
are presented whether void effect and heterogeneities are considered or not. Homogeneous cases use
the proper means for the parameter distributions. Numerical results show that considering
heterogeneity has no impact when voids are not considered. Introducing heterogeneous vehicle
characteristics reduces the effective capacity when voids are considered but the magnitude is low. The
maximum difference between heterogeneous and homogeneous cases appear for larger L values and is
never higher than 3%. This has to be compared with the influence of voids that is in the order of 15%.
A very important insight here is that there is no need to complicate the calculation of the effective
density by considering the distributions associated to heterogeneous behaviors. We only need to
properly determine their mean values and applied the formulae for homogeneous case and voids.
Figure 4c also provides the results for the analytical calculation. They are not as close as for the
homogeneous case but the discrepancies are always below 3% and can be considered fully acceptable.
Furthermore, it appears that the difference with the analytical curve for the homogeneous case is
hardly noticeable. This is because added terms in eq. (3) have finally very low values compared to
those that already appear in the homogeneous case. Furthermore, those terms have opposite signs and
nearly compensate. We can also note here that the discrepancies that appear when calculating the
moments of Vy-distributions have very limited impacts even if they explain why the analytical
calculations do not perfectly fit with the simulation when L is between 50 and 250 m. All these
conclusions have been reinforced by large simulation tests.

Finally, Figure 4d presents a direct application of the analytical approach: the effective capacity has
been determined with respect to the truck ratio. Determining this curve is straightforward with the
analytical formulae when it would have required extensive and painful simulation runs with classical
modeling approaches.

5. Conclusion and discussion

This paper provides new analytical formulations for the effective capacity at active freeway merges.
These formulations are able to account for interactions between voids that appear downstream of
inserting vehicles and for heterogeneous vehicle characteristics. The main conclusion is that it is not
necessary after all to introduce a detailed description of vehicle characteristics. A proper estimation of
their mean characteristics is sufficient to derive an accurate analytical estimation of the effective
capacity. This result is really appealing because it means that formulas presented in section III are
sufficient. Such formulas are much more simple and can easily be implemented for practical
applications. One important point is to consider the effect of voids interacting with waves. Recall that
(Leclercq et al., 2011) provides all the methodological background to implement such updated
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analytical formulations into a full merge model that also account for situations where the on-ramp is
not congested.

In this paper, three parameters have not been considered as random: the wave speed, the initial speed
for inserting vehicles and the time interval between two insertions. Constant wave speed is required
because it makes the physical process tractable, see Figure 1. Random time intervals between two
insertions are straightforward to implement if we assume no modification in the calculations of piy, p,
and ¥, moments. In that case, only the standard deviation of H has to be updated, see (Leclercq et al.,
2011) for details. Otherwise, the problem becomes analytically intractable. Random speeds for
inserting vehicles can be accounted in the framework of this paper but at the cost of much more
complex analytical derivations. Here is some guidance about how to do it. First, the standard deviation
of 7y in eq. (3) should be updated to account for the distribution 7, of the initial inserting speed. This
distribution can be considered independent from the distribution of the initial speed at x=0 due to
interactions between waves and voids. Thus, the variance of ¥} can be simply calculated as the sum of
the variances of these two contributions. Second, every time we use v, for calculating the moments of
Vs, it should be replaced by the mean value v’y of V. v,” should be replaced by v’y*+sy. Third a new
term should be added when applying the multivariate Delta method in eq. (11) and eq. (16). This term
corresponds to the second derivative of 7and 7° with respect to /5. The main challenge is to properly
estimate p, because it influences the calculations of the moments of H and V,. As for random
accelerations, analytical tractability is hard to maintain and strong assumptions would surely be
necessary.
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C= 1270 veh/h - - j§j E: j§j ?
C= 1398 veh/h without voids - S
with voids
50 50 r
0 WWM 0
-50 =50 [ C= 1270 veh/h
) ) ) t [min] C= 1349 veh/h , | t [min]
0 100 200 300 400 0 100 200 300 400

Figure 5: Numerical simulations for the flow dynamics at x=0. (a) Homogeneous vehicle characteristics (b)
Heterogeneous vehicle characteristics.

We would like to provide a final comment about how important it is to consider heterogeneous vehicle
characteristics. We have shown that this has no influence on the effective mean flow at an active
merges. However, this may be crucial to represent other traffic phenomena. For example, Figure 5
provides the oblique cumulative count curves corresponding to our numerical simulations whether
voids effect and heterogeneities are considered or not. Figure 5a shows that when heterogeneities are
not considered the flow dynamics at x=0 is very flat and close to the mean. When heterogeneous
vehicle characteristics are implemented, the flow dynamics at x=0 is completely different even if the
mean is nearly similar, see Figure 5b. Time periods with lower and higher flow values are alternately
observed. The difference in the mean local flow between such periods is in the magnitude of 20 to
30% depending on the simulation runs for our reference scenario. This observation is very important
because such flow variations can trigger stop-and-go wave appearance upstream of the merge. Figure
5b shows that time periods with lowest flow values last between 10 and 20 min which is consistent
with the duration of a stop-and-go waves. Accounting for heterogeneous vehicle behaviors appears
then essential to catch such phenomena.

Further research directions investigated by the authors are (i) analytical derivations of other indicators
than the mean flow for the same physical process and (ii) a refined multilane extension to this
framework compared to what is included in (Leclercq et al., 2011). This refined framework will
account for the effect discretionary lane-changings that occur on freeway lanes.
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