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 Fingerprinting the ship propulsion system: low hanging fruit or mission impossible? 
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Synopsis 

In this paper the concept of ship propulsion system “fingerprinting” is explored as an alternative for data 
driven models that require extensive measured datasets collected over long periods of ship operation. As a 
first exploratory step a model of a ship in bollard pull conditions is linearised and its transfer functions are 
determined. Subsequently limited experimental data, involving sinusoidal excitation of the system input at a 
wide range of frequencies, is used to determine the system parameters. The resulting parameter estimates 
compare well against previously determined values. Although the developed ideas are far from ready to be 
used on full scale, the authors believe that the approach is promising enough to be developed further towards 
full scale application.     

Keywords: marine propulsion system; system identification; parameter identification; linear ship 
propulsion system model; data driven ship propulsion model 

1 Introduction 

Simulation models of the ship propulsion system play an increasing role, for instance in controller design and 
in condition monitoring. The drawback of using simulation models however is that one has to create them. 
Building a simulation model and determination or estimation of its parameters can be a time-consuming task, 
which often requires significant experience (see for recent examples Mizythras et al. (2018), Martelli and Figari 
(2017) and Geertsma et al. (2017)). After building, verifying and calibrating the model (Vrijdag et al. 2009) its 
validity can sometimes be quantified, at least for a certain domain of application. Periodic re-validation is not 
commonly reported, while it is known that many of the physical parameters that play a role in the performance 
of the ship propulsion plant are time-variant. Examples of time-variant factors are fouling of the hull and 
propeller, turbocharger contamination, and so on. 

Data driven modelling approaches such as for instance reported by Coraddu et al. (2016) and by Cipollini et 
al. (2018) might offer benefit in the sense that by making use of large amounts of historical data in combination 
with advanced algorithms, a “superfit” model can be generated. Drawbacks of such an approach are the amount 
of required data, the time over which the data are to be collected and the complexity of the analysis methods 
themselves. 

Although the data-driven approaches based on huge datasets will without doubt play an important role in the 
future, in this paper a propulsion system parameter identification technique based on a short (but information-
rich) controlled performance test is proposed and tested on model scale, albeit in a very simplified form. The 
potential benefit of such a dedicated test-cycle, carried out under controlled conditions, is that it can be used to, 
in a relatively short time span, quantify system performance during sea acceptance trials, after periodic 
maintenance or following system modifications. Comparison of this fingerprint with sister ships or with previous 
fingerprints could potentially be used to understand the state of decay of components. 

To demonstrate the idea it is chosen to focus on a model scale ship available at Delft University of 
Technology (DUT). To simplify the experimental setup, the focus is on bollard pull conditions, although the 
ideas can be extended to free sailing conditions as well.  

First the non-linear system model of a ship propulsion plant including the electric DC-motor is linearized. 
This linearized system model is written in the form of two second order Laplace transfer functions, of which the 
DC-gains, poles and zeros are derived analytically. The controllable input to the system is the supply voltage and
the outputs are the motor current and the motor speed.

Subsequently a correlation based method to experimentally determine the frequency domain characteristics 
of the model scale ship by making use of a sinusoidal input voltage of varying frequency is applied. As a final 
step, the unknown parameters of the transfer functions are determined based on the combination of 
experimentally observed poles, zeros and DC-gains and their analytical expressions. 

INEC/iSCSS 2018 Conference Proceedings 2 – 4 October 2018

1



At the end of the paper a possible path is given for the development of full scale ship propulsion 
“fingerprinting” techniques by means of system performance tests. Such a path includes simulation based 
research, model scale experimental research and full scale experimental research. 

2 Description of the model scale ship and its simulation model in bollard pull conditions 

The ship propulsion simulation model is based on a model scale ship called “Tito Neri” which is available at 
DUT. It is shown in Figure 1 and a detailed picture of its azimuthing thrusters is shown in Figure 2. Its main 
particulars are given in Table 1.  

 

 
Figure 1: Tito Neri overview 

 
Figure 2: Tito Neri azimuthing thrusters from astern 

 
Table 1: Main particulars Tito Neri 

Loa 0.97m Upper bevel gear teeth ratio 13:39 

B 0.32m Total gear reduction ratio igb,13 3 

Draft TFPP,APP 0.10m, 0.13m, Propeller diameter D 0.065m 

∆ (with and without battery) 15.4kg, 13.5kg Number of propeller blades Z 4 

 
A schematic representation of one of its two drivetrains is given in Figure 3. It consists out of a DC motor 

that drives an azimuthing thruster with ducted fixed pitch propeller. The upper bevel gear has a reduction ratio of 

,12 3gbi =  and the lower bevel gear has a reduction ratio of ,23 1=gbi .  

 

DC motor
gb,12i

gb,23i

emωb,emM

pM pω

gb,13i

p,1I

p,3I

p,2I
f ,1M

f ,2M

f ,3M

 
Figure 3: Schematic representation of drivetrain, including nomenclature. 

Although not shown in the figure, the upper shaft is supported by a shaft bearing. The differential equation of 
the electric motor circuit is modelled by: 
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a a e em a a

diL U K R i
dt

 (1) 

The reduction ratio between motor shaft and intermediate vertical shaft ,12gbi  and between intermediate 

vertical shaft and propeller shaft ,23gbi  and the resulting total reduction ratio ,13gbi  are defined by:  

 int
,12 ,23 ,13 ,12 ,23

int

,    ,    ω ω ω
ω ω ω

= = = = ⋅em em
gb gb gb gb gb

p p

i i i i i  (2) 

The differential equation for electric motor speed, assuming constant friction torque on all three shafts is 
given by:  

 , ,
,13

ω
= − − pem

p tot b em f
gb

MdI M M
dt i

 (3) 

in which ,2 ,3
, ,1 2 2
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i i
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i i
, and in which brake electric 

motor torque is given by: 
 , = ⋅b em e aM K i  (4) 
The propeller torque and thrust are modelled following Carlton (2007) making use of the torque and thrust 

coefficients at advance ratio 0=J : 

 
2 5

, 0
2 2

,134
ρω

η π η
= ⋅

= =
⋅ ⋅

Q J e
π

R R gb

K DQM
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 (5) 
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, 0
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π
= ⋅

=
⋅

T J e

gb

K D
T

i
 (6) 

The total bollard pull force is modelled by: 
 (1 )= ⋅ −BP pF k T t  (7) 

where pk  is the number of propellers and the term ( )1 t− is used to correct for thrust deduction. Based on 

Eqs. (1) to (7) the unknown parameters of the electric motor model are: inductance aL , resistance aR  and 

motor coefficient eK . The unknown parameters of the shaft system are: inertia ,p totI  and friction fM . The 

unknown parameters of the propeller model are: torque and thrust coefficients QK  and TK . The relative 

rotative efficiency ηR  is assumed to be 1. The final unknown parameter is the thrust deduction factor t . This 
gives a total of 8 unknown parameters. 

2.1 Linearised propulsion system model during bollard pull operation  

In this section the linearised model of the ship propulsion system in Bollard Pull conditions is derived. Later 
on this model will be used to determine system parameters based on experiments. The linearisation process of 
the ship propulsion plant in free sailing mode is described in detail by Stapersma and Vrijdag (2017) and Vrijdag 
and Stapersma (2017), although in both papers no electric circuit including DC-motor was included. In 
Appendix A of this paper the linearization and normalisation approach is applied to the DC-motor driven 
propulsion system with ducted FPP in bollard pull condition, which results in the following two coupled 
normalised linear differential equations: 

 

 
*

,0 ,0* * *

,0 ,0 ,0 ,0

ω
τ δ δω δ

ω ω
= − −

− −
a e ema

em a a
a e em a e em

U Kδi U i
δτ U K U K

 (8) 

 
*

* *2ω
ωτ δ η δω= −em

a τrm em
δ i

δτ
 (9) 

in which the 2 integration constants are defined as: 
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and the delta-asterisk indicates normalised difference as follows: 

 ,0 ,* * * *
,

,0 ,0 0 , ,0 ,0

,     ,     ,     
δδ δδωδ δω δ δ

ω
−

= = = = =a a b ema a
a b em a
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i i Mi Ui M U
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such that for example a value of * 0.05aUδ = means a +5% perturbation from the nominal value ,0aU .  
When Eqs. (8) and (9) are put in state space notation, this results in the following system: 

 

* ,0
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1 1
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 (12) 

The benefit of this notation is that it can easily be programmed and analysed in programs like MATLAB©. 
Alternatively the Laplace transfer function can be used. As derived in Appendix B, the two transfer functions 
from the voltage input *δ aU  to the two state variables current *δ ai  and shaft speed *δω are: 
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and 
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in which , 2
ω

ω
ττ
η

≡e
τrm

. The approximated two poles and DC-gains and the single zero of the two transfer 

functions are given in Table 2. These expressions will later on be used to estimate system parameter values 
based on measurements. The derivation of both the exact poles and their approximations is given in Appendix C. 

 
Table 2: Poles, zero and DC-gains of the linearised system 
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3 Tito Neri system parameter estimation based on earlier work 

Earlier work by Sang (2018) gave estimates of the unknown system parameters of the Tito Neri propulsion 
system. These estimates were based on a combination of steady state tests at various operating points and 
transients between the various operating points. Initial tests focused on the isolated subsystem of DC-motor and 
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shaft 1. In later tests shaft 2 and 3 plus the propeller were included and experiments in both dry and wet 
condition were carried out.  

Although various simplifications and assumptions had to be made by Sang (2018), the resulting parameter 
estimates as given in Table 3 are used as a reference to compare system parameters and behaviour as will be 
obtained via other methods. Striking is the relatively high total friction of the drivetrain, leading to a very low 
transmission efficiency of around 40%. This might seem to be a mistake, but qualitatively aligns with manual 
rotation of the shaft during which high friction can be observed. Possible reasons could be the quality of the toy-
thruster and its gear wheels and the far from optimal alignment of the shafts in combination with the bearings. 
As far as can be judged, other values do at least seem of the correct order of magnitude. 

Sang (2018) implemented the estimated parameters in a non-linear simulation model based on Eqs. (1) and 
(3) and compared results with experimentally obtained time domain validation data. Overall the validation was 
successful, with good agreement of both steady state values and transients of current and motor speed. Some 
discrepancies in bollard pull force behaviour during transients could be explained by undesired pitching of the 
ship due to the (too high) connection of the towing line to the ship. Some unexplained phenomena occurred 
during fast transients of the current. Whether they were physical or caused by undesired sensor behaviour could 
not be determined. Importantly, they are not expected to have influence on the behaviour of the motor speed. 

 
Table 3: Parameter estimates taken from Sang (2018)  plus updated parameter estimates. 

  (Sang, 2018) 
portside 

(Sang, 2018)  
starboard side 

Updated starboard 
estimates (this paper) 

aL [H] 7.39e-4 5.57e-4 7.59e-4 (+36%) 

eK [NmA-1] 0.018 0.018 0.0156 (-14%) 

aR [Ω] 1.04 0.90 1.21 (+34%) 

,p totI [kgm-2] 2.01e-5 2.00e-5 2.53e-5 (+26%) 

fM [Nm] 1.89e-2 2.29e-2 2.60e-2 (+14%) 

, 0=Q JK [-] 0.19 0.17 0.11 (-36%) 

, 0=T JK [-] 0.55 0.53 Not considered 

( )1− t  [-] Effect included in 

TK  
Effect included in 

TK  
Not considered 

ηtrm [-](derived) 0.42 0.36 0.27 (-25%) 

ηem [-](derived) 0.71 0.73 0.63 (-14%) 

η η⋅trm em [-] 
(derived) 

0.30 0.26 0.17 (-35%) 

τ em [s] (derived) 7.1e-4 6.2e-4 6.3e-4 (-2%) 

ωτ [s] (derived) 0.16 0.15 0.21 (+40%) 

,ωτ e [s] (derived) 0.19 0.21 0.4 (+90%) 

 
The “starboard” parameters as determined by Sang (2018)  as shown in Table 3 are implemented in Eqs. (13) 

and (14). The resulting predicted behaviour in the frequency domain is visualised in Figure 4 (absolute gain) and 
Figure 5 (dB gain). At low frequencies the response of shaft speed to voltage is constant, with a DC-gain as 
described in Table 2, and a phase lag of 0 degrees. Around 25 rad/s (the location of the first pole) the shaft speed 
response starts to drop with a slope of -20 dB/decade, indicating that the inertia of the drivetrain becomes a 
dominant factor. The second pole, located around 1600 rad/s and related to the electrical inertia of the system, 
causes the slope to drop to -40 dB/decade. The phase lag approaches -180 degrees at high frequencies. 

The response of current to voltage is shown in the same figure. At low frequencies the response is constant, 
with a value according to the DC-gain in Table 2. The zero of the transfer function lies around 5 rad/s and pushes 
the gain upwards with a slope of +20 dB/decade and towards 90 degrees phase lead although it doesn’t reach that 
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phase. Around 25 rad/s the first pole results in a steady gain around 3.5 (or ~10 dB). Around 1600 rad/s the 
second pole pushes the response downwards with a slope of -20 dB/decade and a phase lag of 90 degrees.  

 

 

Figure 4: Frequency domain results (starboard drivetrain) 

 
Figure 5: Frequency domain results in dB scale (starboard drivetrain) 
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4 Experimental determination of the frequency domain behaviour 

In the previous section the behaviour of the Tito Neri propulsion system in the frequency domain was 
predicted based on parameters found by Sang (2018) and shown in Figure 4 and Figure 5. In this section the 
approach that was taken to validate this behaviour is described. The idea of the applied method is to generate a 
sinusoidal voltage of a specific frequency ωU  and amplitude amplU , to superimpose it on a constant voltage 

value ,0aU , and to apply the resulting signal as a voltage input aU  to the system, while recording the response 

of current ai and electric motor speed ωem . Based on the input and output signals at each frequency, the gain 
and phase of the transfer function of the system is estimated with a correlation based single frequency approach 
(Balmer 1997), in line with Figure 6.  

 

Model 
scale ship

Signal generator
and amplifier

M,0

Mmpl

U

U ,
U ,

ω

Auto-correlator 
and cross-
correlator

Eqs. (11), (15), 
(16), (17), (18) 

and (19)

( )

( )

Ĝ ,

Ĝ

ω

ω∠
( )

MM  ,0 Mmpl UU (t) U U tsin ω= +

( )
M ,0 Mmpl

'
M UU (t) U U tcos ω= +

ia

ωem

 
Figure 6: Single frequency testing with the correlation method 

The idea of the method is to generate two signals ( )aU t  and ' ( )aU t of which the first signal is used to excite 
the system. Subsequently, both signals, in combination with the measurements are used to determine the cross 
correlations and autocorrelation according to: 

 
0

1 sin( ) sin( ) cos
2

ω ω ϕ ϕ= ⋅ + + = +∫
T

xy xn xn
XYR X t Y t dt R R

T
 (15) 

 ' ' '
0

1 cos( ) sin( ) sin
2

ω ω ϕ ϕ= ⋅ + + = +∫
T

x y x n x n
XYR X t Y t dt R R

T
 (16) 

 
2

0

1 sin( ) sin( )
2

ω ω= ⋅ =∫
T

xx
XR X t X t dt

T
 (17) 

where X is the amplitude of the input signal (in this case the amplitude voltage *δ aU ) and Y is the amplitude 

of the output signal under consideration (in this case the amplitudes of motor current *δ ai  or motor speed *δωem

). xnR  is the cross-correlation between input and noise, which reduces to zero with increasing measurement 
time.  

Division of Eq. (15) by Eq. (17) delivers the in phase (real) component of the frequency response while 
division of  Eq. (16) by Eq. (17) gives the out of phase (imaginary) part of the response: 

 'cos  and sinϕ ϕ= =xy x y

xx xx

R RY Y
R X R X

 (18) 

Based on the real and imaginary components the gain and the phase of the transfer function are calculated by: 

 
2 2

' 'ˆ ˆ  and  arctan2 ,
     

= = + ∠ =     
     

xy x y x y xy

xx xx xx xx

R R R RYG G
X R R R R

 (19) 

By using this approach, the gain and phase can be determined experimentally for a number of frequencies, 
which results in an estimate of the transfer function G .  

Advantages of the method are: 
• It is easy to understand and program; 

INEC/iSCSS 2018 Conference Proceedings 2 – 4 October 2018

7



• All the power in the input signal is concentrated in a single frequency, which results in good noise 
immunity; 

• Noise immunity increases with measurement time. 
Disadvantages of the single frequency method are: 
• Because all power is concentrated at a single input frequency, resonances might be excited in the 

system. When resonances occur this might result in non-linear behaviour or may cause excessive wear 
or even physical damage. It is however not expected that this will be a problem for the model scale ship 
under consideration, but should be considered for full scale application. 

• Especially for the lower frequencies the required measurement time can be long. This is caused by the 
required number of cycles per frequency and by the required settling time after each frequency change. 
Drawback of a long measurement time is that the system operating point can drift. Compared to other 
approaches the requires time is however still very limited. 

To further reduce the measurement time required by the single frequency testing method, multi-frequency 
testing methods have been developed (Balmer 1997). Such methods require much less total measurement time, 
but come at the cost of additional processing complexity. 

4.1 Results of single harmonic frequency testing 

The correlation based single frequency approach as described in the previous section was applied to the 
model scale ship in bollard pull condition. Besides input voltage, only current and motor speed were measured. 
The nominal operating point was chosen as ,0 6.5=aU V  on top of which the sinusoidal voltage variation was 
superimposed.  

In Figure 4 and Figure 5 the experimental estimates of the transfer functions are compared against the linear 
model, based on parameters obtained by Sang (2018). The steady state gains and phase angles of both transfer 
functions at frequencies up to 1 rad/s align reasonably well, although differences do exist.  

A difference is the value of the maximum gain of the current response between 50-500 rad/s. The linearised 
model predicts a gain of 3.5, while the experiments give a gain of 2.9. On a dB scale the difference is less 
obvious.  

Another difference is the frequency at which the shaft speed response starts to drop. According to the linear 
model and the Sang (2018) parameter-set, the pole lies around 25 rad/s, but the experimentally determined gain 
and phase seem to suggest that this pole should lie slightly to the left. 

A possible explanation of the differences could be the 1 year time difference between the measurements by 
Sang (2018) and the measurements that were made particularly for this paper. During this year the parameters of 
the system (especially the friction/ transmission efficiency) might easily have changed. Another reason might lie 
in the calibration of the current sensor, which was not carried out according to the same procedure each time.  

Nevertheless, despite the differences, the overall shape of the transfer functions aligns well. Due to 
limitations of the amplifier and the current sensor, measurements at frequencies higher than shown in the graphs 
were not meaningful and are not presented.  

Note that all data points are corrected for (measured) reduced gain and phase lag introduced by the amplifier 
that have been experimentally determined as well. This correction improved the results slightly, especially at the 
data points at 1000 and 500 rad/s, where the effect of the undesired dynamics of the amplifier started to play a 
role. 

4.2 Parameter estimation based on experimentally obtained frequency domain behaviour 

As an alternative for the parameter estimation method as described by Sang (2018), it is possible to estimate 
the unknown (or at least uncertain) system parameters based on the data points in the frequency domain as 
obtained with the correlation based single frequency approach. 

The least advanced method to carry out such estimation is to read the experimentally observed DC-gains, the 
estimated pole locations and the zero location from Figure 4 and Figure 5. In combination with the 
(approximate) analytical solutions as given in Table 2, this leads to 5 equations with 5 unknowns.  

The transmission efficiency (and therewith indirectly the friction Mf) can for instance be estimated by taking 
the ratio between the experimentally observed DC gains from the Bode plot. Subsequently the observed location 
of the first pole can be used to estimate eK . With estimated values of ηtrm and eK  the resistance aR  can be 

estimated via the DC-gains. Finally inductance aL  can be estimated given aR  and the experimentally identified 
location of the second pole. Although very simple, this approach leads to a set of estimated parameters that, once 
applied in system (12) fits the measured frequency domain data points very well, as shown in Figure 4 and 
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Figure 5. For reference the updated estimated parameter values are shown in the right column of Table 3. 
Although the values differ from the results found by Sang (2018), they are still in the same range, which gives 
confidence in the approach. 

The main advantage of the fitting approach via the frequency domain compared to the approach by Sang 
(2018) is that, through the use of the correlation method, the effect of noise is mitigated. A requirement however 
is that the poles and zero(s) are clearly recognisable from the experimental results, which requires both sufficient 
frequency resolution and sufficient separation between poles and zeros. In the example the second pole 
(expected around 1600rad/s) is not recognisable from experiments, which affects the estimate of inductance aL . 
In cases where these requirements are not met, fitting methods that take into account more (preferably all) 
experimental data points are required. Such methods are readily available in for instance the System 
Identification Toolbox of MATLAB ©.  

Finally note that it is not a requirement that the frequency domain behaviour was obtained with the single 
frequency correlation method as described before: another method could be to apply multi-frequency testing in 
order to decrease testing time (Balmer, 1997). Yet another approach could be to use random input signal testing, 
which is a topic of further study. 

5 Future work 

The application of parameter identification techniques on the propulsion plant of an educational model scale 
boat in itself is instructive. It shows how (linear) system and control theory can be applied in a maritime setting, 
both in a theoretical and in an experimental way.  

Although linear models have their limitations, and although the demonstrated methods have thus far only 
been applied on model scale, the authors believe that a similar approach could be worthwhile to develop further 
and  test on full scale. Typically modelling of a ship (propulsion) plant is a laborious task, not in the least 
because parameters are not always “known” or easy to determine. In such a case the introduced identification 
techniques could offer benefit, especially considering that the required testing time is limited and can for 
instance be combined with required sea acceptance trials such as the bollard pull test or endurance test. If such 
an approach works, a periodic repeat of the test can be considered, which potentially could reveal change of 
parameters which subsequently might point at component degradation. This could be seen as taking a periodic 
“fingerprint” of the system. 

It is important to realise that on full scale a number of differences have to be taken into consideration. First of 
all, assuming a diesel driven full scale ship, the dynamic model and thus the transfer functions are different from 
what is reported in this paper, but instead follow the derivations given by Stapersma and Vrijdag (2017) and 
Vrijdag and Stapersma (2017), of which the latter includes the dynamics of the diesel engine governor. Due to 
the high full scale ship mass and polar moment of inertia compared to model scale, and the additional dynamics 
of the governor, the lowest frequencies of interest shift to lower values, meaning that testing at full scale takes 
longer compared to model scale. 

A second difference is that on model scale, the input is supply voltage, while on full scale the most 
convenient inputs are the “engine speed setpoint”, which is an input into the governor, and in case of a CPP the 
“propeller pitch setpoint”, which is an input into the (local) propeller pitch controller. Possible ways to excite the 
system could include additional “fingerprinting” software in the engine governor and/or pitch controller, which 
would require cooperation of the supplier. Another approach could be to use the external inputs of the controllers 
(ie. a 4-20mA engine speed setpoint input, but other options exist dependent on the manufacturer) to feed in a 
sinusoidal signal including DC offset generated by a (handheld) signal generator. 

Thirdly there are dynamic effects, some of which non-linear, which are not modelled in the linear model by 
Vrijdag and Stapersma (2017), but which should be taken into consideration. Dependent on the goals of the 
identification test, the curvature in the open water diagram and in the resistance curve, might for instance force 
the user to “fingerprint” at various nominal operating points. Another type of non-linearity is introduced by the 
discrete nature of the diesel engine combustion and air exchange process, which puts an ignition frequency 
related upper limit to a meaningful excitation frequency. The discrete nature of the local controller behaviour 
also has an effect on the highest meaningful excitation frequency. Yet another effect, briefly mentioned earlier, 
that should be taken into account when planning full scale experiments, is the possibility that an introduced 
excitation frequency might cause (rotational) resonance in the drive system, thereby possibly causing excessive 
wear and even damage of for instance the gears or the flexible coupling.  Whether this is a real risk needs to be 
determined on a case by case basis, and if so, such excitation frequencies should be avoided or only be used with 
small amplitude. 
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Main limitation of the approach demonstrated in this paper is that it cannot deal with strong non-linear 
behaviour such as for example introduced by (rate) limiting features implemented in the diesel engine speed 
governor and introduced by for instance the CPP mechanism. The result of the governor-engine-limit example is 
that a nominal operating point that lies too close to the engine operating envelope should not be selected for 
application of linear identification techniques. 

6 Conclusions and recommendations 

In this paper a parameter identification technique is applied on a model scale ship in bollard pull conditions 
and results are compared with earlier work by Sang (2018). Results are very similar, and the differences are most 
likely caused by changes of system friction over the course of more than one year and/or differences in 
calibration procedure of the current sensor.  

As part of the identification procedure a linear model of the propulsion system has been derived, which could 
be validated with experiments. This can be seen as the first (partial) experimental validation of the linearised 
model as was set up by Stapersma and Vrijdag (2017) and Vrijdag and Stapersma (2017), although 
modifications had to be made to the linearised model to make it applicable for the DC-motor driven model scale 
ship. 

There are various possible directions in which this work can be extended in the future. First of all the current 
model scale setup can be improved. Improvements can be made to the connection of the towing line to the ship, 
which in this case turned out to be positioned too high leading to a pitching moment. Another recommended 
improvement is to use a current sensor that is less sensitive to temperature and that gives less noisy 
measurements. 

Another possible direction is to extend the application of identification techniques towards free sailing ship 
models, thereby including the resistance curve and the open water diagram into the system. One of the practical 
difficulties in that case is to wirelessly operate the ship, while logging measurement data and keeping the ship 
within the boundaries of the towing tank or flume tank. 

Considering the application on full scale there is more work to be done. The authors however believe that 
such experiments could be a valuable stepping stone for ship system integrators towards having full 
understanding of (and control over) dynamic ship propulsion system behaviour.  

Summarising: it is concluded that the parameter identification by making use of a short “rich” test cycle was 
low hanging fruit for the model scale ship in bollard pull conditions. Further work is required to see whether the 
ideas can be extended to full scale application.  

Regardless whether model scale or full scale, bollard pull condition or free sailing condition is considered, 
the availability of both the non-linear and linearised model opens up the possibility to make use of a wealth of 
existing tools and methods coming from the field of systems and control, which have found limited application 
in a ship propulsion related setting before. 
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Nomenclature 
 

B  beam 
xxR  autocorrelation 

D  propeller diameter 
xyR  cross correlation 

BPF
 

bollard pull force s  Laplace operator 

pI  polar moment of inertia T  draft 

ai  current T  period 

gbi  gearbox ratio t  time 

eK
 

motor constant t  thrust deduction factor 

QK
 

propeller torque coefficient 
aU  supply voltage 

TK
 

propeller thrust coefficient X  input signal amplitude 

pk  number of propellers Y  output signal amplitude 

oaL
 

length overall   

aL  inductance   

,b eM
 

brake motor torque ∆ displacement 

fM
 

friction torque η efficiency 

pM
 

propeller torque ρ Water density 
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pn  propeller speed τ  Integration constant, time constant 

n  noise ϕ  Phase angle 

Q  open water propeller torque ω  Angular speed 

aR
 

resistance   

 

Appendix A Linearised and normalised differential equations 

Appendix A.1 Electrical circuit dynamics 
 
The electric circuit dynamics of the DC motor are modelled by: 

 ω= − −a
a a e em a a

diL U K R i
dt

  (A-1) 

All three right hand side terms vary around equilibrium: 

 ( ) ( ),0 ,0 ,0,      ,       δ ω ω δω δ= + = + = +a a a e em e em em a a a a aU U U K K R i R i i  (A-2) 

In static conditions the right hand side of Eq. (A-1) equals zero: 
 ,0 ,0 ,00 ω= − −a e em a aU K R i  (A-3) 
Substitution of Eq. (A-2) into Eq. (A-1) and then subtracting Eq. (A-3) shows that only the small increments 

are of importance: 

 δ δω δ= − −a
a a e em a a

δiL U K R i
δt

 (A-4) 

Division of all terms by nominal supply voltage minus the nominal emf ( ),0 ,0ω−a e emU K  or by its 

equivalent ,0a aR i  gives: 

 ,0 ,0

,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

1 ω
δ δω δ

ω ω ω
⋅ = ⋅ − ⋅ −

− −
a ema a e a

a em a
a a a e em a a e em em a a

UL δi K RU i
R i δt U K U U K R i

 (A-5) 

With some simplifications this equals: 

 
*

,0 ,0* * *

,0 ,0 ,0 ,0

ω
τ δ δω δ

ω ω
= − −

− −
a e ema

em a a
a e em a e em

U Kδi U i
δτ U K U K

 (A-6) 

in which the subscript em is intentionally dropped from *δωem because * *δω δω=em p  and where: 

 τ ≡ a
em

a

L
R

 (A-7) 

Note that the electric motor efficiency is defined as: 

 
ω ωη = = =out e a e e e

em
in a a a

P K i K
P U i U

 (A-8) 

Appendix A.2 Shaft dynamics 
 
The shaft dynamics, including constant friction term, are described by: 

 , ,
,13

ω
= − − pem

p tot b em f
gb

MdI M M
dt i

  (A-9) 

in which shaft inertia is assumed constant implying that change of mass of water, entrained by the propeller, 
is neglected. The brake motor torque is related to current by: 

 , = ⋅b em e aM K i  (A-10) 
The non-constant torque-terms vary around equilibrium: 
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 ( ), , ,0 , ,0δ δ= + = +b em b em b em e a aM M M K i i  (A-11) 

and 
 ,0 δ= +p p pM M M  (A-12) 
such that: 

 ( ) ,0
, ,0

,13 ,13

δω δ= + − − −p pem
p tot e a a f

gb gb

M MδI K i i M
δt i i

 (A-13) 

In steady nominal condition the driving torque and the load-torque are equal: 

 ,0
,0

,13

0 = − − p
e a f

gb

M
K i M

i
 (A-14) 

Subtracting Eq. (A-14) from Eq. (A-13) shows that only the small increments are of importance: 

 ,
,13

δω δ= − pem
p tot e a

gb

MδI K i
δt i

 (A-15) 

Normalising all terms with nominal motor torque gives: 

 
*

, ,0 ,0* *

,0 , ,0 ,13

ω ω δ δ= −p tot em p
a p

e a b em gb

I Mδ i M
K i δt M i

 (A-16) 

in which the subscript em is intentionally dropped from *δωem because * *δω δω=em p . The integration constant 
is defined as: 

 , ,0 , ,0

, ,0 ,0
ω

ω ω
τ ≡ ≡

⋅
p τoτ em p τoτ em

b em e a

I I
M K i

 (A-17) 

After noting that the multiplier in the second term of the right hand side of (A-16) can be written as: 

 ,0

,13 , ,0

η=p
trm

gb b em

M
i M

 (A-18) 

and implementing  
 * *2δ δω=pM  (A-19) 
the normalised linearised differential equation for shaft speed is given by: 

 
*

* *2ω
ωτ δ η δω= −a τrm

δ i
δτ

 (A-20) 

Appendix B Laplace transfer functions  
 
Starting with the differential Eq. (A-20) for shaft rotation the Laplace operator is introduced which gives: 
 * * *2ωτ δω δ η δω= −a τrms i  (B-1) 
Introducing the equation for DC-motor torque, and re-arranging gives: 

 * *11
2 2

ωτ δω δ
η η

 
+ = 

 
a

τrm τrm

s i  (B-2) 

which can be shortened by introduction of the effective time-constant , 2
ω

ω
ττ
η

≡e
τrm

: 

 ( ) * *
,

11
2ωτ δω δ
η

+ =e a
τrm

s i  (B-3) 

 
Similarly, introduction of the Laplace operator in the differential equation for current Eq. (A-6) gives: 

 ( ) ,0 ,0* * *

,0 ,0 ,0 ,0

1
ω

τ δ δ δω
ω ω

+ = −
− −

a e em
em a a

a e em a e em

U K
s i U

U K U K
 (B-4) 
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Appendix B.1 Transfer function from supply voltage to rotation speed 
 
Reordering of Eq. (B-4) gives: 

 
( ) ( )

,0 ,0

,0 ,0 ,0 ,0* * *

1 1

ω
ω ω

δ δ δω
τ τ

   
      − −   = −

+ +

a e em

a e em a e em
a a

em em

U K
U K U K

i U
s s

 (B-5) 

Substitution of Eq. (B-5)  into Eq. (B-3) gives: 

 ( ) ( ) ( )

,0 ,0

,0 ,0 ,0 ,0* * *
,

11
2 1 1ω

ω
ω ω

τ δω δ δω
η τ τ

    
       − −    + = − + + 
 
 

a e em

a e em a e em
e a

τrm em em

U K
U K U K

s U
s s

 (B-6) 

Reordering gives the transfer function: 

 

( )

,0
*

,0 ,0
*

,02
, ,

,0 ,0

1
2

11
2ω ω

η ωδω
ωδ τ τ τ τ

η ω

⋅
−

=
+ + + + ⋅

−

a

τrm a e em

e ema
em e em e

τrm a e em

U
U K

KU s s
U K

 (B-7) 

Appendix B.2 Transfer function from supply voltage to current 
 
In a similar way substitution of Eq.(B-3) into Eq. (B-4) and reordering gives: 

 

( )

( )

,0
,*

,0 ,0
*

,02
, ,

,0 ,0

1

11
2

ω

ω ω

τ
ωδ

ωδ
τ τ τ τ

η ω

+ ⋅
−

=
+ + + + ⋅

−

a
e

a e ema

e ema
em e em e

τrm a e em

U
s

U Ki
KU

s s
U K

 (B-8) 

Appendix C Derivation of exact system poles and their approximations 
 
The characteristic equation of the two transfer functions (B-7) and (B-8) is given by: 

 ( ) ,02
, ,

,0 ,0

11
2ω ω

ω
τ τ τ τ

η ω
+ + + + ⋅

−
e em

em e em e
τrm a e em

K
s s

U K
 (C-1) 

If we define: 

 ,0

,0 ,0

11
2

ω
η ω

≡ + ⋅
−
e em

trm a e em

K
C

U K
 (C-2) 

and  

 
,ω

τζ
τ

≡ em

e

 (C-3) 

then Eq. (C-1) can be written as: 

 ( )2
,

,

1ω
ω

ζτ ζ
τ

+ + +e
e

Cs s  (C-4) 

The two exact roots of Eq. (C-4) can be determined by the ABC formula: 

 
( ) ( )2

,

1 1 4
2 ω

ζ ζ ζ
ζτ

− + ± + −
=

e

C
s  (C-5) 

which can be written as: 
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( ) ( )
( )2

,

41 1 1
1

2 ω

ζζ ζ
ζ

ζτ

− + ± + −
+

=
e

C

s  (C-6) 

The electrical time constant is much smaller than the effective time constant for the shaft, therefore 1ζ  . 
Application of Taylor expansion for the square root operation and leaving out second order terms gives: 

 

( ) ( )
( )2

,

11 1 1 2
1

2 ω

ζ ζ ζ
ζ

ζτ

 
− + ± + ⋅ − ⋅  + ≅



e

C

s  (C-7) 

Another Taylor expansion for the inverse square operation gives: 

 
( ) ( ) ( )( )

,

1 1 1 2 1 2
2 ω

ζ ζ ζ ζ
ζτ

− + ± + ⋅ − ⋅ −
≅

 

e

C
s  (C-8) 

Further simplification gives the two approximate poles as: 

 1
,ωτ

−
≅

e

Cs  (C-9) 

and  

 2
,

1 1

ωζτ τ
− −

≅ =
e em

s  (C-10) 
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