From GIS to 3D flow simulations in urban environments

Christina Fratzeskou

Supervisors: Clara García-Sánchez Hugo Ledoux

Co-reader: Ivan Pađen Delegate: Jorge Mejía Hernández

Plan overview

Introduction CFD

- CFD is mainly implemented for processes in _ the microscale
- **Predictive scenarios** _
- Time and cost efficient _

Transport processes in the UBL[Pardyjak and Stoll, 2017]

Horizontal spatial scales of the UBL [Blocken, 2015]

3

Introduction CFD

- Values of the flow parameters are computed inside the _ defined boundaries of a computational domain, at discrete point locations.
- Use of explicit representation of urban morphology -

Computational domain areas from [Blocken et al., 2007]

TUDelft

Introduction CFD - GIS

- Mesh generation
- Spatial databases for CFD
- 3D models
- Semantic 3D models

Introduction **Roughness length**

The height above the surface of the Earth at which the mean logarithmic wind profile becomes zero [Oke, 1978]

Implicit representation _

Computational domain areas from [Blocken et al., 2007]

Introduction **Research Questions**

Main research question:

How can non-uniform roughness length be integrated in a CFD software like OpenFOAM through the use of 3D model semantics?

Sub-questions:

- To what extent can the integration be automated? -
- How does the modified assignment process of roughness length at the bottom of the domain influences the process and results of the simulation?
- How does the modified assignment process for non-uniform roughness length at the inlet of the domain influences the process and results of the simulation?
- Which other relevant to CFD parameters could be used as 3D model semantics with the built application?

Related work Suggested parameters

Geometric:

- LAD/LAI: Leaf area per unit volume of space/ Integration of LAD over height

Radiative:

- Albedo: Determines the absorptivity of a surface
- Emissivity: Ratio of radiation emitted by a material to that emitted by a blackbody at the same temperature [Oke, 1978].

Thermal:

- Thermal conductivity: Measure the ability of a material to conduct heat [Oke, 1978].
- Thermal admittance: quantifies the ability of a surface to absorb and release heat from/to space over time [Oke, 1978].

Other:

- Colour: Darker coloured surface materials can contribute to the absorption of radiation.

Related work

Implementations of non-uniform z0 in OpenFOAM

OpenFOAM implementation:

- Separate geometries
- Need for specification of multiple entries

Segersson (2017):

- Specification through fvOptions utility
- Roughness length is stored in a raster file
- Requires structured grid

Azevedo (2013):

 Specified z0 entry as a non-uniform scalar field

Computational domain areas from [Blocken et al., 2007]

Methodology Workflow

Methodology Workflow – Pre-processing

Methodology Geometry preparation – Ideal cases input models

Case	Faces	Vertices	Patch name	Landcovers
	2	4	terrain	1
	2	4	green1	1
S_0	2	4	water	1
	2	4	green2	1
s_1	8	10	terrain	3
s_2	11	12	terrain	3

Geometry and patch details

Methodology Geometry preparation – TU Delft cases input models

__I area extent OpenStreetMap base map

Area of interest at TU Delft campus

Methodology Geometry preparation – TU Delft cases input models

Case	Faces	Vertices	Patch name	Landcovers
• •	24,468	20,050	Green	1
د_0	9,495	6,127	Water	1
c_1	33,963	26,049	WaterGreen	3
c_1_1	33,963	26,049	WaterGreen	2
• •	14	6	Terrain	2
٢_٢	33,963	26,049	WaterGreen	2

Geometry and patch details

c_2 model

Methodology Geometry preparation – TU Delft cases input model detected overlaps

- Blue : water surfaces
- Red : water surfaces that are overlap with vegetations

Methodology

Case configuration

Patch name	Landcovers	z ₀
terrain	1	0.05
green1	1	0.03
water	1	0.0002
green2	1	0.03
inlet	-	0.05
terrain	3	[0.05, 0.03, 0.0002]
inlet	-	0.05
terrain	3	[0.05, 0.03, 0.0002]
inlet	-	[0.05, 0.03]
terrain	3	[0.05, 0.03, 0.0002]
inlet	-	0.05
Green	1	0.03
Water	1	0.0002
Terrain	1	0.5
y0	-	0.5
WaterGreen	2	[0.03, 0.0002]
Terrain	1	0.5
y0	-	0.5
WaterGreen	2	[0.03, 0.0002]
Terrain	1	0.5
y0	-	0.5
WaterGreen	2	[0.03, 0.0002]
Terrain	3	[0.5, 0.03, 0.0002]
y0	-	[0.03, 0.0002]
WaterGreen	2	[0.03, 0.0002]
Terrain	3	[0.5, 0.03, 0.0002]
y0	-	0.03
	Patch name terrain green1 water green2 inlet terrain terrain terrain terrain foreen terrain terrain foreen terrain foreen Water y0 Water y0	Patch nameLandcoversterrain1green11water1green21inlet-terrain3inlet-terrain3inlet-terrain3inlet-terrain3inlet-terrain3inlet-Green1Water1Terrain1Y0-WaterGreen2Terrain1y0-WaterGreen2Terrain3y0-WaterGreen2Terrain3y0-WaterGreen2Terrain3y0-WaterGreen2Terrain3y0-WaterGreen2Terrain3y0-WaterGreen2Terrain3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y0-WaterGreen3y1-y2 <td< td=""></td<>

- Steady Reynolds averaged Navier-Stokes (RANS)
- Standard k ϵ
- Modified epsilon wall function to accommodate the non-uniform roughness based on Parente et al. (2011)

Methodology Workflow – Mesh generation

Methodology Mesh generation – utilities

Screenshots based on tutorial case 'windAroundBuildings'

× ×

Triangulated model

Methodology Workflow – Options

Methodology **Application - options**

FoamFile version 2.0; entry ascii; format dictionary; class "constant"; location setZ0Ground <patch name> object setZ0; -* * * setZOInlet <patch name> -"constant/triSurface/terrain4nonUniformInlet_translated.obj"; inputFile "constant/triSurface/terrain.mtl"; inputMt1 flowDir $(1 \ 0 \ 0);$ writeZ0 nearDist 0.8; z0_values writeCoords _ Terrain 0.05; Water 0.0002; exportToVtk -Green 0.03; } setZ0NoGeom <z0 value> _ Params_Inlet Uref 10; setParams _ Zref 20; Cmu 0.09; 0.41; kappa

}

Methodology Application – options - Input

Methodology Workflow – option -setZ0Ground

Methodology Option – setZ0Ground – Input geometry requirements

Geometry requirement:

- No duplicate vertices
- Compact content
- No self-intersections
- Watertight

Methodology **Option**—setZOGround — Octree specifications

Ocree of depth 2 visualisation and graph illustration [Su et al., 2016]

Requirements:

- Maximum 10 triangles per leaf -
- Every triangle maximum 3 -

references

Methodology Option -- setZOGround -- Octree search

Transform user-defined nearDist to the distance that will be used in the find nearest search as follows:

$nearDistSqr = 0.25 * (nearDist^2 + nearDist^2 + nearDist^2)$

Methodology Option – setZ0Ground – Seed distance used in octree search

nearDist 0.1 m

nearDist 1,000,000 m

Methodology Option -- setZOGround -- z0 assignment and option setZONoGeom

Option -setZ0NoGeom:

A z0 value needs to be specified for the face _ centers that are not within the boundaries of the input geometry

Methodology Workflow – option -setZ0Inlet

Methodology Option -- setZOInlet -- Input

First row faces

Roughness length should already be assigned to the ground

Methodology Option -- setZOInlet -- Index sorting

case0m.foam Block: 1: inlet ld: 0 Type: Quad

> Indexing of faces does not follow spatial proximity

case0m.foam Block: 1: inlet ld: 4109 Type: Quad

Methodology Option –setZ0Inlet – Check points and check points coordinates

Methodology Option –setZ0Inlet – z0 assignment and ground geometry requirement

Screenshot from inlet with misassigned cells

Geometries shared edges located at the _ separation between different z0 values should be specified explicitly

Methodology Workflow – Quality control

Methodology Quality control

Cases	-setZ0Ground	-setZ0Inlet	-setZONoGeom
s_1	x		
s_2	x	x	
s_2_1	x		
c_1	x		
c_1_1	x		
c_2	x	x	x
c_2_1	x		x

Testing set up

-setZ0Ground:

Comparison $s_0 - s_1$ and $c_0 - c_1$ cases:

- Mesh similarity -
- z0% assigned per landcover -
- Visual inspection of assigned values
- Convergence at selected point locations -
- Difference maps and Contour maps _

-setZ0Inlet:

- Visual inspection of z0 assigned values
- Comparison $s_2 s_2_1$ and $c_2 c_2_1$ cases:
 - Convergence at selected point locations

Results Option – setZ0Ground – Mesh similarity

Characteristic	Simple cases		Complex cases		
Characteristic	s_0	s_1	c_0	c_1	Diff _{c_0-c_1}
Max skewness	≈ 0.33	≈ 0.33	≈ 13.66	≈ 13.66	0
Skew nfaces	0	0	301	306	-5
nCells(type:hexahedra)	3,507,378	3,507,378	15,031,780	15,031,775	5
nCells(type:prisms)	0	0	87,745	87,767	-22
nCells(type:tet wedges)	0	0	251	254	-3
nCells(type:polyhedra)	284,382	284,382	681,315	681,263	52

Mesh characteristics

nFaces	Simple cases Complex cases		es		
Patch	s_0	s_1	c_0	c_1	Diff _{c_0-c_1}
Green1	216,672		-	-	-
Green2	216,672	966 699	-	-	-
Terrain	216,672	000,000	995,944	995,942	2
Water	216,672		20,926		10
Green	-	-	69,473	90,380	19
Buildings	-	-	481,005	480,986	19
Тор	13,542	13,542	4,212	4,212	0
Inlet	9,102	9,102	6,480	6,480	0
Outlet	9,102	9,102	6,480	6,480	0
Sides(symmetric)	20,008	20,008	18,720	18,720	0
Total	918,442	918,442	1,603,240	1,603,200	40

nCells	Simple cases		Complex cases		s
Ref level	s_0	s_1	c_0	c_1	Diff _{c_0-c_1}
0	270,840	270,840	23,628	23,628	0
1	704,184	704,184	186,624	186,624	0
2	1,083,360	1,083,360	1,539,577	1,539,577	0
3	1,733,376	1,733,376	8,280,903	8,280,904	-1
4	-	-	4,543,981	4,543,976	5
5	-	-	1,226,378	1,226,350	28
Total	3,791,760	3,791,760	15,801,091	15,801,059	32

Cells per refinement level

Cells per patch

Results Option – setZOGround – Ideal case assigned z0

Results Option – setZOGround – Ideal case probe locations

Results Option – setZOGround – Ideal case convergence values for Ux and Uz

″ T∪Delft

Results Option – setZOGround – TU Delft case assigned z0

400

Results Option – setZ0Ground – TU Delft case (c_0 – c_1) z0 difference maps

Results Option – setZOGround – TU Delft case assigned z0

c_1_1

x[m]

Results Option – setZOGround – TU Delft case probe locations

Results Option – setZOGround – TU Delft case convergence values for Uy

Convergence for Uy

Results Option – setZOGround – TU Delft case convergence values for Uz

Results Option – setZOGround – TU Delft case convergence values for Uy and Uz at locations with overlaps

Convergence for Uy

Results Option – setZOGround – TU Delft case Umagnitude differences

Umag diff ranges	c_0-c_1	c_0-c_1_1
[0, 0.05]	1,070,253	1,071,993
(0.05, 0.1]	892	31
(0.1, 0.15]	428	7
(0.15, 0.2]	226	5
(0.2, 0.25]	129	1
(0.25, 0.3]	80	2
(0.3, 0.45]	35	4
(0.45, 0.59]	2	2

x[m]

Results Option – setZ0Ground – TU Delft case Umagnitude differences

Umag diff ranges	c_0-c_1	c_0-c_1_1
[0, 0.05]	1,070,253	1,071,993
(0.05, 0.1]	892	31
(0.1, 0.15]	428	7
(0.15, 0.2]	226	5
(0.2, 0.25]	129	1
(0.25, 0.3]	80	2
(0.3, 0.45]	35	4
(0.45, 0.59]	2	2

 $c_0 - c_1$ umag diffs 0.59 2.0 2.0 0.45 1.5 1.5 y[m] (x10^3) y[m] (x10^3) 1.0 1.0 0.30 0.5 0.5 0.15 0.0 0.0 0.00 $-800 \ -600 \ -400 \ -200 \ \ 0 \ \ 200 \ \ 400 \ \ 600 \ \ 800$

$c_0 - c_1_1$

x[m]

47

Results Option – setZOGround – TU Delft case contour maps

Results Option – setZOInlet – Assigned z0 values

s_2 ground

TUDelft

Results Option – setZOInlet – Ideal case s_2 – s_2_1 convergence for Ux and Uz

Results Option – setZOInlet – TU Delft case c_2 – c_2_1 convergence for Ux and Uz

Conclusions

Q1: To what extent can the integration be automated?

It is semi-automated

- Need for user-specified parameters
- Option -setZ0Ground, might need testing for 'nearDist' until all values are assigned
- Option –setZ0Inlet, ground geometry requires explicit specification to fit the needs of the application

Q2: How does the modified assignment process of roughness length at the bottom of the domain influences the process and results of the simulation?

- Facilitates the specification of the z0 in the dictionary files
- Specifying the required search distance can pose a hurdle
- No significant deviations were observed in the simulation results

Q3: How does the modified assignment process for non-uniform roughness length at the inlet of the domain influences the process and results of the simulation?

- Need for tailored ground geometries
- Differences for uniform non uniform z0 at the inlet, however further testing Is required

Q4: Which other relevant to CFD parameters could be used as 3D model semantics with the built application?

LAD/LAI, albedo, emissivity, thermal conductivity, thermal admittance and colour

Conclusions Discussion

- Testing is limited to flat surface models, however, the proposed methodology can accommodate 3D surface _ models.
- Specifying the search distance can pose a hurdle in the use of the application. -
- Self-intersections between landcovers did not produce different results with OpenFoam implementation. -
- Although assigning non-uniform roughness at the inlet is possible, further testing of the influence on the simulation results is required.

Future Work

- Further testing of option –setZ0Ground with 3D models.
- The search method included in the proposed methodology could be improved with the use of a different data _ structure.
- Further testing with non-uniform inlet using different geometry configurations, to assess the impact of _ misassigned values around the separation points.
- Option –setZ0Inlet could be improved by including a method that accounts for cases where the upstream area outside the computational domain has a different roughness than the neighbouring area inside the domain.
- Explore possibilities of different data formats to retrieve the semantics (e.g. raster).
- Investigate further the requirements for including the suggested parameters in the proposed methodology.

References

- Azevedo, J. (2013). Development of procedures for the simulation of atmospheric flows over complex terrain, using OpenFOAM.Back, Y., Bach, P. M., Jasper-Tonnies, A., Rauch, W., and Kleidorfer, M. rapid fine-scale approach to modelling urban bioclimatic conditions. Science of The Total Environment, 756:143732.
- Blocken, B. (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. *Building and Environment*,91:219–245.
- Blocken, B., Stathopoulos, T., and Carmeliet, J. (2007). Cfd simulation of the atmospheric boundary layer: wall function problems. *Atmospheric Environment*, 41(2):238–252.
- Oke, T. R. (1978). *Boundary layer climates*. OCLC: 51200739.
- Parente, A., Gorle, C., Beeck, J., and Benocci, C. (2011). Improved k– ϵ model and wall function formulation for the RANS simulation of ABL flows. Journal of Wind Engineering and Industrial Aerodynamics, 99:267–278.
- Pardyjak, E. and Stoll, R. (2017). Improving measurement technology for the design of sustainable cities. Measurement Science and Technology, 28.
- Segersson, D. (2017). A tutorial to urban wind flow using OpenFOAM. In Proceedings of CFD with OpenSource Software.
- Su, Y.-T., Bethel, J., and Hu, S. (2016). Octree-based segmentation for terrestrial lidar point cloud data in industrial applications. *ISPRS Journal of Photogrammetry and Remote Sensing*, 113:59–74.

(2021). A