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Introduction
CFD

01

- CFD is mainly implemented for processes in 

the microscale

- Predictive scenarios

- Time and cost efficient 

Horizontal spatial scales of the UBL [Blocken, 2015]

Transport processes in the UBL[Pardyjak and Stoll, 2017]
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Computational domain areas from [Blocken et al., 2007]

- Values of the flow parameters are computed inside the 

defined boundaries of a computational domain, at 

discrete point locations.

- Use of explicit representation of urban morphology 

Introduction
CFD

01
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Introduction
CFD - GIS

01

- Mesh generation

- Spatial databases for CFD

- 3D models

- Semantic 3D models 
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Computational domain areas from [Blocken et al., 2007]

The height above the surface of the Earth at which the 

mean logarithmic wind profile becomes zero [Oke, 1978]

- Implicit representation

Introduction
Roughness length

01



Main research question:

How can non-uniform roughness length be integrated in a CFD software like OpenFOAM through

the use of 3D model semantics?
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Introduction 
Research Questions

01

- To what extent can the integration be automated?

- How does the modified assignment process of roughness length at the bottom of the domain
influences the process and results of the simulation?

- How does the modified assignment process for non-uniform roughness length at the inlet of the 
domain influences the process and results of the simulation?

- Which other relevant to CFD parameters could be used as 3D model semantics with the built   
application?

Sub-questions:
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Related work
Suggested parameters

01 02

- LAD/LAI: Leaf area per unit volume of space/ Integration of LAD over height 

Geometric:

Radiative: 

- Albedo: Determines the absorptivity of a surface

- Emissivity: Ratio of radiation emitted by a material to that emitted by  a 
blackbody at the same temperature [Oke, 1978].

Other:

- Colour: Darker coloured surface materials can contribute to the 
absorption of radiation.

Thermal: 

- Thermal conductivity: Measure the ability of a material to conduct heat [Oke, 1978].

- Thermal admittance: quantifies the ability of a surface to absorb and release heat 
from/to  space over time [Oke, 1978]. 
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Computational domain areas from [Blocken et al., 2007]

OpenFOAM implementation:

- Separate geometries

- Need for specification of multiple entries

Segersson (2017):

- Specification through fvOptions utility

- Roughness length is stored in a raster file

- Requires structured grid

Azevedo (2013):

- Specified z0 entry as a non-uniform 

scalar field  

Related work
Implementations of non-uniform z0 in OpenFOAM

01
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Workflow
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Methodology
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Workflow – Pre-processing



Geometry preparation – Ideal cases input models

Methodology
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01 02 03

s_0 model s_1 model

Geometry and patch details

Case Faces Vertices Patch name Landcovers

s_0

2 4 terrain 1

2 4 green1 1

2 4 water 1

2 4 green2 1

s_1 8 10 terrain 3

s_2 11 12 terrain 3

s_2 model
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Geometry preparation – TU Delft cases input models

Area of interest at TU Delft campusc_0 model
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01 02 03

Geometry preparation – TU Delft cases input models

Case Faces Vertices Patch name Landcovers

c_0
24,468 20,050 Green 1

9,495 6,127 Water 1

c_1 33,963 26,049 WaterGreen 3

c_1_1 33,963 26,049 WaterGreen 2

c_2
14 6 Terrain 2

33,963 26,049 WaterGreen 2

Geometry and patch details

c_1 and c_1_1 model c_2 model
c_0 model
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Geometry preparation – TU Delft cases input model detected overlaps

- Blue : water surfaces

- Red  : water surfaces that are overlap with 
vegetations
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Case configuration

- Steady Reynolds –averaged Navier-Stokes (RANS)

- Standard k - 𝜖

- Modified epsilon wall function to accommodate 
the non-uniform roughness based on Parente et 
al. (2011)
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Workflow – Mesh generation
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Mesh generation – utilities 

BlockMesh 3D model

snappyHexMesh

Final mesh

Background mesh

Refined mesh

Triangulated model

Screenshots based on tutorial case ‘windAroundBuildings’ 
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Workflow – Options
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- entry

- setZ0Ground <patch name>

- setZ0Inlet <patch name>

- writeZ0

- writeCoords

- exportToVtk

- setZ0NoGeom <z0 value>

- setParams

Application - options

App name Destination 
dictionary  

Entry in dict
name

Option name

User-specified dictionary
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Application – options - Input

User – specified parameters

-setZ0Ground

-setZ0Inlet

User – specified parameters
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Methodology
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Workflow – option -setZ0Ground
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Geometry requirement:

- No duplicate vertices

- Compact content

- No self-intersections

- Watertight

Option –setZ0Ground – Input geometry requirements
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- Maximum 10 triangles per leaf

- Every triangle maximum 3 

references

Option –setZ0Ground – Octree specifications

Ocree of depth 2 visualisation and graph 
illustration [Su et al., 2016]

Requirements:



Transform user-defined nearDist to the distance that will   

be used in the find nearest search as follows:

Methodology
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Option –setZ0Ground – Octree search
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nearDist 0.1 m nearDist 1,000,000 m

Option –setZ0Ground – Seed distance used in octree search
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Option –setZ0Ground – z0 assignment and option setZ0NoGeom

Option –setZ0NoGeom:

- A z0 value needs to be specified for the face   

centers that are not within the boundaries of 

the input geometry
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Workflow – option -setZ0Inlet
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Option –setZ0Inlet – Input 

- Roughness length should already 
be assigned to the ground 

First row faces
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- Indexing of faces does not follow 
spatial proximity

Option –setZ0Inlet – Index sorting 
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Check point

Check coord

Option –setZ0Inlet – Check points and check points coordinates 
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Screenshot from inlet with misassigned cells

- Geometries shared edges located at the 

separation between different z0 values 

should be specified explicitly 

Option –setZ0Inlet – z0 assignment and ground geometry requirement 
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WorkflowWorkflow – Quality control
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- Convergence at selected point locations

Quality control 

-setZ0Ground: -setZ0Inlet:

Comparison s_0 – s_1 and c_0 – c_1 cases:

- z0% assigned per landcover

- Visual inspection of assigned values

- Difference maps and Contour maps

- Convergence at selected point locations

- Visual inspection of  z0 assigned values

- Mesh similarity

Testing set up

Comparison s_2 – s_2_1 and c_2 – c_2_1 cases:



Option – setZ0Ground – Mesh similarity
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Results
01 02 03

04

Cells per refinement level 

Mesh characteristics

Cells per patch



Option – setZ0Ground – Ideal case assigned z0 
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Option – setZ0Ground – Ideal case probe locations



Option – setZ0Ground – Ideal case convergence values for Ux and Uz
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Results
01 02 03

04
Option – setZ0Ground – TU Delft case assigned z0 
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Option – setZ0Ground – TU Delft case (c_0 – c_1) z0 difference maps
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c_0

Option – setZ0Ground – TU Delft case assigned z0 

c_1 c_1_1



Option – setZ0Ground – TU Delft case probe locations
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Option – setZ0Ground – TU Delft case convergence values for Uy
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Option – setZ0Ground – TU Delft case convergence values for Uz



45

Results
01 02 03

04

Option – setZ0Ground – TU Delft case convergence values for Uy and Uz
at locations with overlaps
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c_0 – c_1_1

Option – setZ0Ground – TU Delft case Umagnitude differences

c_0 – c_1
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Option – setZ0Ground – TU Delft case Umagnitude differences

c_0 – c_1 c_0 – c_1_1
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Option – setZ0Ground – TU Delft case contour maps

c_0 c_1 c_1_1
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Option – setZ0Inlet – Assigned z0 values

s_2 ground

s_2 inlet

c_2  ground

c_2 inlet
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Option – setZ0Inlet – Ideal case s_2 – s_2_1 convergence for Ux and Uz
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Option – setZ0Inlet – TU Delft case c_2 – c_2_1 convergence for Ux and Uz
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Conclusions 0301 02
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Q1: To what extent can the integration be automated?
It is semi-automated
- Need for user-specified parameters
- Option –setZ0Ground, might need testing for ‘nearDist’ until all values are assigned
- Option –setZ0Inlet, ground geometry requires explicit specification to fit the needs of the application

Q2: How does the modified assignment process of roughness length at the bottom of the domain
influences the process and results of the simulation?

- Facilitates the specification of the z0 in the dictionary files
- Specifying the required search distance can pose a hurdle
- No significant deviations were observed in the simulation results

Q3: How does the modified assignment process for non-uniform roughness length at the inlet of the 
domain influences the process and results of the simulation?
- Need for tailored ground geometries
- Differences for uniform – non uniform z0 at the inlet, however further testing Is required

Q4: Which other relevant to CFD parameters could be used as 3D model semantics with the built   
application?
LAD/LAI, albedo, emissivity, thermal conductivity, thermal admittance and colour
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Discussion
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- Testing is limited to flat surface models, however, the proposed methodology can accommodate 3D surface 
models.

- Specifying the search distance can pose a hurdle in the use of the application.

- Self-intersections between landcovers did not produce different results with OpenFoam implementation.

- Although assigning non-uniform roughness at the inlet is possible, further testing of the influence on the 
simulation results is required.



01 02 03

04 05 06

54

Future Work

- Further testing of option –setZ0Ground with 3D models.

- The  search method included in the proposed methodology could be improved with the use of a different data 
structure.

- Further testing with non-uniform inlet using different geometry configurations, to assess the impact of 
misassigned values around the separation points.

- Option –setZ0Inlet could be improved by including a method that accounts for cases where  the upstream area 
outside the computational domain has a different roughness than the neighbouring area inside the domain. 

- Explore possibilities of different data formats to retrieve the semantics (e.g. raster).

- Investigate further the requirements for including the suggested parameters in the proposed methodology.



THANK YOU!
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