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Generation of a Pareto front for a bi‐objective water flooding 
 optimization problem using approximate ensemble gradients 

R.M. Fonsecaa, A.C. Reynoldsb and J.D. Jansena 
Delft University of Technology, Department of Geoscience and Engineering 

The University of Tulsa, McDougall School of Petroleum Engineering 

Abstract 

Conflicting objectives are frequently encountered in most real-world problems. When dealing with conflicting 

objectives, decision makers prefer to obtain a range of possible optimal solutions from which to choose. In 

theory, methods exists that can produce a range of possible solutions, some of which are “Pareto Optimal”. The 

application of these methods to solve bi-objective production optimization problems is increasing. A recent 

paper introduced a method to find points on the boundary of the objective function space by solving a 

constrained optimization problem using adjoint gradients. In this work, we investigate the applicability of using 

ensemble optimization (EnOpt) (which relies on approximate ensemble gradients instead of exact adjoint-based 

gradients) to generate points along a “Pareto” front with acceptable computational effort. . Moreover, we 

investigate the applicability of this approximate gradient technique to solve constrained optimization problems 

using the augmented Lagrangian method. Finally, we compare the performance of this bi-objective optimization 

method to a traditional weighted sum method for bi-objective water flooding optimization of two different 

synthetic reservoir models. The two objectives used in this work are, undiscounted (0%) net present value 

(NPV), representing long-term targets and highly discounted (25%) NPV, representing short-term operational 

targets. The controls are inflow control valve (ICV) settings over time for one model and water injection rate 

controls for the other. The effect of different starting points and the computational efficiency of the constrained 

optimization method are also investigated. 

Key words 

Water flooding; Bi-objective optimization; Pareto front; Ensemble optimization; Approximate gradient; 
Augmented Lagrangian 

 

Introduction 

A majority of studies and applications of life-cycle water flooding optimization using a model-based approach 

have focused on a single objective optimization with emphasis being placed on the theoretical understanding and 

practical application of the optimization methodology. Life-cycle optimization essentially aims to find a strategy 

which optimizes long-term reservoir management targets, but life-cycle optimization is often at the expense of 

operationally significant short-term targets. Thus, there is a need to solve a bi-objective problem to obtain a 

strategy that accounts for the two objectives because the long-term perspective is usually in conflict with the 

short-term targets which are decided by operational constraints, contractual obligations etc. Van Essen et al. 

(2011) introduced a hierarchical optimization framework to solve such a multi-objective optimization problem. 

This was motivated by the observation in, e.g., Jansen et al. (2009) that the objective function space consists of 

many redundant degrees of freedom which can be exploited to optimize a secondary objective. This hierarchical 

structure provides a single optimal strategy which incorporates multiple objectives. However, decision makers 

usually prefer to have multiple strategies to choose from, especially when dealing with conflicting objectives. 

Isebor and Durlofsky (2014) applied an evolutionary algorithm to generate points along a “Pareto” front for a bi-

objective water flooding problem. The main pitfall of this approach was the computational effort required to 

obtain the points on a Pareto front. Also they did not compare the front generated with any other method used to 

generate Pareto fronts to check if the front obtained was Pareto optimal. Liu and Reynolds (2014) applied the 

normal boundary intersection method (NBI) first introduced in Das and Dennis (1998) to a bi-objective water 

flooding problem with and without geological uncertainty. Liu and Reynolds (2014) showed that the NBI 

method is computationally more efficient than the method of Isebor and Durlofsky (2014) and produces better 

solutions than the traditional weighted sum method. The NBI method involves solving a series of constrained 
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optimization sub-problems. In Liu and Reynolds (2014), these constrained optimization problems were solved 

using an augmented Lagrangian method using an adjoint formulation to compute the gradients. The adjoint 

formulation, an overview of which can be found in Jansen (2011) and references therein, is a computationally 

efficient method which requires access to the simulator source code to implement. Most commercial simulators 

either do not have a fully developed adjoint code or access to the source code is not permissible. This has led to 

an increase in the application of various approximate gradient based techniques which are computationally less 

efficient but use the simulator as a black-box, and are more flexible. Do and Reynolds (2013) provided 

theoretical connections between various existing approximate gradient techniques which use an ensemble of 

perturbed controls to estimate a gradient. One such approximate gradient technique introduced in Lorentzen et al. 

(2006) and thereafter in its current form by Chen et al. (2009) is the ensemble optimization (EnOpt) method. 

Recently many studies have used EnOpt for life-cycle production optimization problems. Fonseca et al. (2014) 

applied EnOpt to solve a bi-objective optimization problem using the hierarchical structure proposed by Van 

Essen et al. (2011). Additionally there has been an increase in the number of applications of different 

evolutionary algorithms to solve either a bi-objective optimization problem, Isebor and Durlofsky (2014) etc., or 

for history matching applications, as detailed in Liu and Reynolds (2014). In this work we investigate the 

applicability of the EnOpt technique to generate points along a “Pareto” front with acceptable computational 

effort. A secondary aim is the application of EnOpt to solve constrained optimization problems using the 

augmented Lagrangian method. Note that Fonseca et al. (2014) consider hierarchical optimization (using 

EnOpt), in which case an a-priory choice is made which of the two objectives is most important. Here we 

consider bi-objective optimization (using EnOpt) based on the Pareto front approach which provides freedom to 

the decision maker to choose the relative importance of each of the two objectives, as will be explained in more 

detail below. 

Theory  

This section investigates the applicability of the use of approximate ensemble gradients to calculate points on a 

Pareto front for bi-objective production optimization problems.  

Objective Functions 

We first define the objective functions followed by an overview of EnOpt. We apply the usual expression for Net 

Present Value (NPV) as objective function J: 
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where ,o kq  is the average oil production rate in m3/day for time step k, ,wp kq is the water production rate in 

m3/day for time step k, ,wi kq  is the water injection rate in m3/day for time step k, ro is the sale price of oil in $/ 

m3, wpr  is the cost of water produced in $/ m3, wir  is the cost of water injected in $/ m3,  kt is the length of the kth 

time step in days, b is the discount factor, tk is the cumulative time in days corresponding to time step k, and  t  

is the reference time period for discounting, typically one year (i.e. 365 days). In this work the two objective 

functions are: 

 Undiscounted NPV, b = 0.0 (0%) in equation (1), representing the long-term objective (“recovery 

optimization”). 

 Highly discounted NPV, b= 0.25 (25%) in equation (1), representing the short-term objective (“day-to-

day production optimization”). 

Ensemble Optimization (EnOpt) 

In this section, we outline the standard formulation of the EnOpt algorithm as proposed by Chen et al. (2009). 

We take u to be a single control vector containing all the control variables to be optimized. This vector has N 

components where N is equal to the product of the controllable well parameters (number of well settings like 
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bottom hole pressures, rates or valve settings) and the number of control time steps. Chen et al. (2009) sample 

the initial mean control vector from a Gaussian distribution while, at later iteration steps, the final control vector 

of the previous iteration is taken as the mean control. However, the initial controls can also be chosen by the 

user, as will be done in our experiments. The vector of controls is given by, 

 1 2[ ]T
i Nu u uu   (2) 

where the counter i preempts the use of multiple control vectors, and where ui is assumed to be a random vector 

which has a mean u and covariance matrix C , i.e. ui ~ N(u, C ). Then an ensemble of M independent samples of 

N(u, C ) are generated as, 

 1 2 ,i i u u C z   (3) 

with i = 1, 2, …, M, where zi ~N(0,I), i.e., each zi is a vector of independent standard random normal deviates, 

and 1 2C is any square root of C . In our examples 1 2 C L , where L is the lower triangular matrix in the 

Cholesky decomposition of C . We truncate any element of the ensemble of controls outside of the set of bounds 

to the bound value. Then, the sample mean is computed as 

 
1

1 M

i
iM 

 u u . (4) 

To estimate the gradient, a mean-shifted ensemble matrix is defined as 

 1 2[ ].M    U u u u u u u  (5) 

Similarly, a mean-shifted objective function vector is defined as  

 1 2[ ( ) ( ) ( ) ] ,T
MJ J J J J J    j u u u  (6) 

where the average of the objective function is given by  

 
1

1
( ).

M

i
i

J J
M 

  u  (7) 

In the present paper, we use as the search direction in a steepest ascent algorithm an approximation to the 

gradient, rather than the approximation of the smoothed gradient that is used in standard EnOpt. The 

approximate gradient is 

 † †( ) ( ) ,        g U U U j U j  (8) 

where the superscript † indicates the Moore-Penrose pseudo inverse, which is conveniently computed using a 

singular value decomposition (SVD); see, e.g., Strang (2006). Do and Reynolds (2013) demonstrated that it is 

akin to what is known as a ‘simplex gradient’, Conn et al. (2009). They also provided theoretical connections 

between various ensemble methods such as simultaneous perturbation stochastic approximation (SPSA), simplex 

gradient and EnOpt. Moreover, they proposed a modification to the gradient formulation which uses the current 

control vector u and the corresponding objective function value J  to calculate the control and objective 

function anomalies U and j: 

 1 2[ ],M    U u u u u u u    (9) 

 1 2[ ( ) ( ) ( ) ] ,T
MJ J J J J J    j u u u    (10) 

where the superscript ℓ is the optimization iteration index. In this work, we have used equations (9) and (10) in 

combination with equation (8). We note that many authors also use single and double smoothed versions of 

equation (8) which can be obtained by pre-multiplication (either once or twice) of the gradient estimate by the 

covariance matrix used to generate the ensemble of controls. For the original derivation of EnOpt, including an 

extension to use the method under geological uncertainty (as represented by an ensemble of geologically 

different reservoir models), we refer to Chen et al. (2009). Here we restrict our application to “deterministic 

EnOpt”, i.e. to optimization under the assumption that the geology is known.  
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Update Rules 

The approximate gradient g from equation (8) can be used in any gradient-based optimization algorithm. In our 

study we use the simple steepest ascent scheme given by 

 1 ,



 
g

u u
g


  


 (11) 

where the superscript ℓ is the iteration index, and αℓ is a step length in the direction of the approximate gradient. 

Note that we scaled the gradient by its infinity norm and choose a step length to be 10% of the difference 

between the maximum and minimum values of the controls. We allowed for a maximum of five back-tracking 

steps, each time reducing the step size with a factor of one half if the objective function J decreases from one 

iteration to the next. If after the five back-tracking steps we still do not find an increase in J we accept the current 

control strategy and continue with the optimization until a convergence criteria is satisfied. Optimal update 

schemes and their corresponding parameters are typically case-dependent and more sophisticated line search 

algorithms are sometimes beneficial. However, we chose to use a relatively simple update strategy to facilitate 

the comparison of the various multi-objective optimization schemes which form the key subject of our paper.  

Multi‐Objective Optimization 

Most real world problems have multiple objectives that need to be satisfied. Usually these objectives are in 

conflict with each other, i.e. one must accept decreases in one objective to achieve increases in another objective. 

The process of optimizing systematically and simultaneously a collection of objective functions is called multi-

objective optimization. In theory, there exist many methods to solve a multi-objective problem and recently there 

has been an increased focus on finding methods to solve multi-objective problems in the reservoir simulation 

community. These objectives are usually defined as long-term (life-cycle) objectives from a reservoir 

engineering viewpoint and short-term objectives from a production engineering/operational constraints 

viewpoint. Van Essen et al. (2011) showed that these two objectives may be in conflict with each other and 

suggested the use of a hierarchical framework for multi-objective optimization. An alternative to hierarchical bi-

objective optimization (in which the primary objective is considered more important than the secondary 

objective), is regular bi-objective optimization in which there is no predefined preference for one of the 

objectives. Isebor and Durlofsky (2014), and Liu and Reynolds (2014) have introduced methodologies to 

generate the ‘Pareto front’ i.e. a range of possible solutions for a decision maker for a regular bi-objective 

reservoir optimization problem. Isebor and Durlofsky (2014) presented their methodology using a hybrid 

evolutionary algorithm, PSO-MADS, and reported results which were obtained with a significant computational 

effort. Liu and Reynolds (2014) presented a method using adjoint gradients which was shown to be 

computationally much more efficient. We use, in this work, the methods introduced in Liu and Reynolds (2014) 

and investigate their applicability in combination with the EnOpt method. 

A point is defined as “Pareto optimal” if at that point the value of one objective function cannot be increased 

unless the value of a second objective function is decreased or, in other words, a control set is Pareto optimal if 

there does not exists any other control set which achieves better objective function solutions. Liu and Reynolds 

(2014) provide details of the commonly used theoretical definitions to determine whether points are non-

dominated, i.e. Pareto optimal, and lie on a Pareto front.  

Weighted Sum Method 

The life-cycle waterflooding problem is inherently a long-term optimization problem as shown in Van Essen et 

al. (2011) and short-term goals are sacrificed to achieve the optimal long-term targets. A traditional technique to 

balance two conflicting objectives is the weighted sum method, see Marler and Arora (2004), which aims to 

optimize a weighted objective function that combines both objectives in a single function according to 

 1 1 2 2wsJ w J w J    , (12) 

where Jws is the weighted sum objective function constructed from the long-term and short-term objective 

functions J1 and J2 with w1 and w2 as weighting factors. Liu and Reynolds (2014), among others, showed that the 
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biggest drawback of this method in finding solutions on a Pareto curve is that the solutions tend to be 

concentrated on one part of the curve, i.e., the solutions generated are not evenly distributed along the Pareto 

front. Another disadvantage is that the weighted sum method cannot obtain points on the concave part of the 

Pareto front, see, for example, Figure 1 of Liu and Reynolds (2014).  

Adjusted Weighted Sum Method 

To overcome the difficulties of the weighted sum method, Liu and Reynolds (2014) proposed an adjusted 

weighted sum formulation where the weights w1 and w2 are now replaced by 

 

1
* *

1 1 1 2
1

1 2
* * * *

1 1 1 2 2 2 2 1

( ) ( )
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( ) ( ) ( ) ( )
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J J
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w w
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  (13) 

and 
 

 2 11 ,w w    (14) 

while equation (12) is replaced by 

 1 1 2 2.wsJ w J w J       (15) 

Note that w1 = 1 implies 1 1w  and 1wsJ J  so maximizing wsJ with 1 1w  corresponds to maximizing J1. 

Similarly, w1 = 0 implies 1 0w  and in this case maximizing wsJ  corresponds to maximizing J2 . Liu and 

Reynolds (2014) found that choosing decreasing w1 from 1 to 0.1 in increments of 0.1, computing the 

corresponding values of 1w and 2w , and maximizing wsJ for each of these 1w , 2w values tended to result in points 

that were well distributed along the Pareto front when maximizing wsJ , whereas equation (12) with the same set 

of w1 values did not generate a well-distributed Pareto front.  

Normal Boundary Intersection (NBI) Method  

In order to overcome the disadvantages of the weighted sum method, Das and Dennis (1998) proposed a 

technique, the Normal Boundary Intersection (NBI) method, to find points on the boundary of a feasible set 

starting from points along the “utopia line” which is defined as the line in the objective function space that 

connects the optimum solutions for the individual objective functions. The boundary points are then found by 

optimizing the magnitude of a unit normal to the utopia line in the objective function space. A detailed 

description of the NBI method can be found in Das and Dennis (1998) and, for petroleum engineering 

applications, in Liu and Reynolds (2014). The NBI method is motivated by the fact that the Pareto front must 

coincide with a part of the boundary of the feasible region. The disadvantage of NBI is that boundary points may 

or may not be Pareto optimal, i.e., may or may not lie on the Pareto front. However once optimal design vectors 
*
1u , …., *

nu  are generated it is easy to check if each point is non-dominated by any other, which must be the case 

if (J1(
*
nu ),J2(

*
nu )) is a point on the Pareto front; see definitions in Liu and Reynolds (2014, 2016). The following 

is a brief description of the method as described in Liu and Reynolds (2014) for bi-objective water flooding 

optimization problems. For the two objective functions denoted by J1 and J2 the NBI procedure is repeated for 

different points along the utopia line. The general formulation for NBI is given by  
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 
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1 2 1 2 1 2
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where 
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1 1 1 2
1 2* *

2 1 2 2

( ) ( )
and ( ) [ ( ), ( )] ,

( ) ( )
TJ J

J J
J J

 
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u u
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and where *
1u and *

2u are the optimal control strategies obtained for the individual optimizations of J1 and J2. The 

line segment that connects *
1( )j u and *

2( )j u in the objective space as * *
1 2 1 2[ ( )  ( )][   ]T  j u j u Φβ  is defined as 
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the utopia line. To solve the equality constrained optimization problem as described in equation (16), Liu and 

Reynolds (2014) used the augmented Lagrangian method. While there exist several techniques to solve 

constrained optimization problems, we too have applied the augmented Lagrangian method because the main 

purpose of this work is to investigate the ability of approximate gradient techniques like EnOpt to generate 

solutions along a Pareto front. A by-product of this work is the demonstration of the applicability of an 

approximate gradient technique to solve constrained optimization problems. The augmented Lagrangian method 

(Nocedal and Wright, 2006), used to solve the different NBI sub-problems, is based on the augmented 

Lagrangian function which is defined by 

   1
, , , ,

2
T T

nbiJ t t


  u λ λ e e e  (18) 

where e is defined in equation (16), λ is a vector of Lagrange multipliers and   is a penalty parameter. The 

constraint violation is given by / 2.T
cv  e e  Liu and Reynolds (2014), because they were using adjoint 

gradients, calculated the gradient of the Lagrangian function with respect to u in terms of the gradients of 

objective functions J1 and J2 with respect to u. In this work, because we use approximate ensemble gradients, we 

calculate the gradient of the Lagrangian function directly using equation (8). The following is a brief algorithmic 

description of the NBI method as implemented in our case.  

 Calculate the initial optimization parameters: β , n, u, t, e(u), λ ,  where u = β1*
*
1u + β2*

*
2u , and 

where t, following Liu and Reynolds (2014), is initialized as  

 
( ( ) )

.
T

T
t




n j u Φβ

n n
  

The initial penalty parameter is then given by (0.1 )T t  e e  and the Lagrange multipliers by .λ e

. 
 While cv> 0.01 (outer loop) 

 Until stopping criteria is satisfied (inner loop) 

Maximize the Lagrangian function given by equation (18) until convergence is achieved. Note: λ ,  are 

constant within the inner loop and can only change in the outer loop. Gradients are approximated using 

equation (8) in conjunction with equations (9) and (10) 

End Inner Loop 

 Check criteria to update λ and  using formulas given in Liu and Reynolds (2014) 

 Repeat until convergence of outer loop.  

Tracking the Pareto front using NBI  

The NBI method as implemented by Liu and Reynolds (2014) choses as a starting point a combination of the 

optimal control sets *
1u and *

2u depending on the weight factors chosen. Due to the non-linearity of the problem 

these initial points usually have objective function values that do not lie exactly on the utopia line. The NBI 

problem does not necessarily require the starting points to be on or close to the utopia line, so we propose to 

generate points on the Pareto front by starting from a point on the front which has already been obtained with 

different values of β1 and β2. This is akin to “tracking” a front. In the results section, we discuss the 

advantages/disadvantages of using this method of generating solutions on a front.  

Hierarchical Switching Method 

Van Essen et al. (2011) introduced a hierarchical optimization scheme to achieve multi-objective production 

optimization, which prioritizes the objective functions. The optimization of the secondary objective function J2 is 

constrained by a maximum allowable change in the primary objective function. Thus the primary objective 

function J1 will remain close to its optimal value. The ordering of the different objective functions is the 

prerogative of the user, thus secondary objectives can be implemented as primary objectives and vice versa. This 

hierarchical scheme is especially attractive in the presence of redundant degrees of freedom in the primary 

objective function. Van Essen (2011) proposed two different varieties of the hierarchical scheme: one requiring 
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the computation of the Hessian matrix of the objective function with respect to the controls, and one which, in a 

more pragmatic fashion, alternatingly optimizes the short and long-term objectives while maintaining the first 

objective function value close to its initial maximum. Based on the results in Fonseca et al. (2014), we use the 

hierarchical switching method with EnOpt for the optimization where details of the implementation are provided. 

This method optimizes the objectives alternatingly with the use of a switching function according to 

 1 1 2 2 ,switchJ J J    (19) 

where 1  and 2  are switching functions for J1 and J2
 that take on values of 1 and 0 or vice versa: 
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1 1
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1   if .

J J
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    
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 (20) 

Here   is the threshold value and J1
* is the value of the primary objective at the optimal solution achieved 

during life cycle optimization. We will compare the results obtained from hierarchical switching optimization to 

the other methods presented above. The advantage of using a hierarchical switching method is that a user can 

decide the maximum allowable decrease in the primary objective value which is practically impossible to know 

when using the weighted sum method. However, with this hierarchical method, only a single control set is 

generated which may or may not be Pareto optimal since no other information is available for comparison. 

Fig. 1 depicts an overview of various optimization methods available to solve multi-objective reservoir 

optimization problems. In the current paper we compare the methods indicated with numbers 1 to 5 with the aid 

of two numerical examples. 

 
Fig. 1: Overview of various methods available to solve multi-objective reservoir optimization problems. 

Example 1: Faulted Five‐Spot 

Reservoir Model  

Advances in technology have led to an increase in the application of inflow control valves (ICVs) to regulate 

flow rates and maintain pressure in the reservoir. We consider a control problem where ICV settings of injection 

and production wells in a 3D synthetic reservoir model, from JOA (2007), are manipulated to optimize 

waterflooding over the producing life of the reservoir. The model, illustrated in Fig. 2(a), consists of 
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25 × 32 × 5 = 4000 grid blocks. The approximate size of each grid block is 110 × 90 × 20 m, so that the reservoir 

volume is 2.5 × 3.5 × 0.1 km3. The geological structure consists of uplifted blocks, separated by faults. The 

reservoir is produced using an inverted five-spot well pattern, i.e. four producers at the corners of the grid with 

an injector in the center. The reservoir is divided into five layers with different horizontal permeabilities. Fig. 

2(b) is the top view of the transmissibility multipliers used for this model and the white cells are grid blocks that 

are inactive. There is a sealing fault on the North-Western side of the block, close to producer 1. Table 1 lists the 

reservoir and fluid properties of the model. A Corey model with exponents equal to 2 for both oil and water is 

used for the relative permeabilities where the connate water saturation is 0.2, the residual oil saturation is 0.3 and 

the end point relative permeabilities to oil and water are 0.8 and 0.4 respectively. Capillary pressure effects are 

not included. The wells penetrate all five layers with one ICV in each layer. The producing life of the reservoir is 

divided into 15 optimization control steps, each of which is one year (365 days) in duration, and there are 25 

controls per control step which results in a total of 15 × 25 = 375 controls to be optimized. Water is injected at a 

constant pressure of 300 bars and the production wells are operated at a minimum pressure of 15 bars. We used 

an oil price ro = 130 $/m3, water production costs rwp = 25 $/ m3, and water injection costs rwi = 6 $/ m3. Well 

index multipliers were used to model the ICVs in the simulator with bounds of 1×10-4 and 1, where the finite 

lower bound was chosen to avoid numerical problems in the simulator associated with a zero lower bound. For 

the simulation of the model we used a commercial fully implicit finite difference black oil simulator (Eclipse, 

2011). 

TABLE 1: RESERVOIR AND FLUID PROPERTIES. 

Property Values Units 

Porosity 0.2 -- 

Permeability (layer 1 – layer 5) 100-300-50-600-100 mD 

Reservoir pressure @ 1950 m 200 bar 

Density of oil 800 kg/m3 

Density of water 1000 kg/m3 

Temperature 77 °C 

Oil compressibility @ 200 bar 4e-5 1/bar 

Water compressibility @ 200 bar 4e-5 1/bar 

Rock compressibility 0 1/bar 

Viscosity of oil @ 1 bar 2 cP 

Viscosity of water @ 1 bar 0.5 cP 

 

                  
Fig.2: (a) Five-spot reservoir model. The colors indicate the initial oil saturation. (b) Transmissibility multiplier values 
for the model. One fault has a zero transmissibility (blue) thus is sealing. 
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Results for NBI 

In this section we compare the use of the NBI method without tracking (method 3 in Fig. 1) and with tracking 

(method 4 in Fig. 1). Following Liu and Reynolds (2014), we obtain the normal vector n by setting the second 

component of n to 1 and solving the following equation 

 * *
1 2[ ( ) ( )] 0T  n j u j u  (21) 

In equation (21), *
1( )j u = [9.1060×109 , 3.3522×109]T and *

2( )j u = [8.7086×109 , 4.4759×109]T. The optimization 

is not dependent on the choice of n. The solution of this equation gives n = [2.822 , 1]T, which is the same for all 

the different starting points used in this work. Solving multiple NBI sub-problems for different choices of weight 

combinations, we obtain the solutions shown in Fig. 3. The black circles are obtained for starting points based on 

the first step of the NBI algorithm presented previously. The objective of this initialization is to obtain a starting 

point on or close to the utopia line. Due to the non-linearity of the problem the objective function values 

achieved for this initial guess are never on the utopia line, but always slightly above the line. Using the solutions 

already obtained we also test the applicability of finding solutions which satisfy the constraints starting from 

points (control sets) that have previously satisfied the constraints. This is akin to “tracking” points along a front. 

The red circles in Fig. 3 are the points achieved when the tracking process begins from β1 = 0.1 (point A in Fig. 

3). We observe that for most of the weight combinations, the tracking procedure achieve solutions that dominate 

the solutions represented by the black circles. Since there is no preference to choose from which end the tracking 

begins, we also began the tracking from β1 = 0.9 (point B in Fig. 3), to obtain the solutions shown by blue circles 

in Fig. 3. We observe that in this case the tracking procedure achieves solutions that dominate the solutions from 

the other two initialization procedures for all the points. Additionally this tracking procedure is computationally 

more efficient as is discussed later. Thus, different initial guesses for a given value of β1 can have a significant 

impact on the solutions achieved with the bi-objective optimization algorithm. Besides the different starting 

points, all other algorithmic details are exactly the same for the three different sets of points generated. The 

gradients are estimated with an ensemble size equal to 30 with a perturbation size equal to 0.001. 

 
Fig. 3: Boundary points achieved using the NBI method starting from different initial guesses.. 

Table 2 provides the objective function values for 11 different optimum points (black circles) along a boundary 

front. We observe that for the β1 = 0.4 case, we obtain a 0.8% decrease in the primary, long-term objective 

function from its optimal value (9.1060×109 $) and an approximately 22% increase in the secondary, short-term 

objective function. For the solution obtained with initial guesses based on the front tracking procedure for β1 = 

0.1 we observe a 0.8% decrease in the primary objective to achieve a 33% increase in the secondary objective. 

There is only a 5% difference in the primary objective function values between the optimal strategies for the two 

objective functions J1 and J2, i.e. the first and last points in Table 2. Thus, for the objective functions chosen in 

this study, we do not expect to observe major increases in primary (long-term) objective for minor decreases in 
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the secondary (short-term) objective, indicating that there may exist fewer redundant degrees of freedom in the 

short-term objective function.  

TABLE 2: OBJECTIVE FUNCTION VALUES OF THE BLACK CIRCLES IN FIG. 3. 

β1 β 2 Long-Term Objective (x109) $ Short-Term Objective(x109) $ 

1 0 9.1060 3.3522 

0.9 0.1 9.0952 3.4757 

0.8 0.2 9.0749 3.5938 

0.7 0.3 9.0619 3.7161 

0.6 0.4 9.0472 3.8363 

0.5 0.5 9.0414 3.9645 

0.4 0.6 9.0266 4.0854 

0.3 0.7 9.0174 4.2075 

0.2 0.8 9.0123 4.3293 

0.1 0.9 8.9750 4.4430 

0.08 0.92 8.8760 4.4336 

0.02 0.98 8.7609 4.4692 

0 1 8.7086 4.4759 

Independent of the method used to generate the initial guess of a given β1, the approximate Pareto front 

generated with NBI (Fig. 3) shows that one can obtain a sharp increase in the secondary objective function for a 

very minimal decrease in the primary objective. Moreover, it seems that for this case that the Pareto front 

consists of two branches; a near-horizontal one near the optimal secondary objective and a near-vertical one near 

the optimal primary objective. Fig. 4(a) is an illustration of the evolution of the Lagrangian function through the 

iteration process. The sharp drop in the value of the Lagrangian function corresponds to an update (decrease) of 

the penalty parameter  in the augmented Lagrangian method. In most of the cases we observe that we generally 

perform 5 outer loop iterations in which we update the penalty parameter for 3 iterations and the vector of 

Lagrange multipliers  for the remaining two iterations. Fig. 4(b), right-side plot, shows the constraint violation 

throughout the optimization process. Note that the constraint violation must be less than the given tolerance 

specified in the optimization algorithm to obtain convergence for the outer loop of the augmented Lagrangian 

algorithm. When the inner loop converges and the constraint violation is sufficiently small the algorithm 

converges. Thus it is possible that there are multiple points at which the constraint violation is satisfied, however 

there is only one point at which both the inner and outer loop’s stopping criteria are satisfied.  

 
Fig. 4: Illustration of the evolution of the Lagrangian function and constraint violation at all the iterations. 
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Fig. 5: Comparison of the controls (ICV settings) for layer 4 (highest permeability) for producer 2 over time for the 
optimal life-cycle strategy (blue) and the optimal NBI strategy (red) for β1 = 0.1 using the front tracking procedure. 

Fig. 5 depicts a comparison of the optimal control settings for two different strategies for the highest 

permeability layer in producer 2. The blue line is the life-cycle strategy, i.e. one end point of the utopia line, 

while the red line is the NBI strategy (blue circles in Fig. 3) obtained for weight combinations of β1 = 0.1 and β2 

= 0.9, i.e. the strategy that achieved a 33% increase in the short-term objective for a 0.8% decrease in the long-

term objective. From Fig. 5 we observe that significantly different strategies can be achieved by performing bi-

objective optimization. For the red curve, the ICV setting is almost fully open for the first 10 years with lower 

setting values towards the end of the producing time period, which is in line with the emphasis on increasing the 

short-term increase in NPV. For the optimal life-cycle strategy, the same ICV is almost closed for four or the 

first five years and then is fully open through most of the remaining producing life, in order to virtually maintain 

the goal of life-cycle optimization. The optimized control settings for other valves are similar to the trend shown 

in Fig.5. Fig. 6 shows the saturation distribution in layer 4 after 4 years of production for the different optimal 

strategies whose controls are compared in Fig. 5. We see that the optimal life-cycle strategy, being less 

aggressive, sweeps a much smaller area with less water being injected, while the optimal NBI strategy, i.e. the 

one for β1 = 0.1 using the front tracking procedure, is more aggressive, i.e more is water injected and more oil is 

displaced and produced.  

       
Fig. 6: Saturation distribution in layer 4 after 4 years of production for a) (left) , optimal life-cycle strategy and b) (right) 
optimal NBI strategy for the controls shown in Fig. 5. 
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4 provide the solutions for the various weight combinations used where we observe, as reported in Liu and 

Reynolds (2014), that the adjusted weighted sum technique provides a better spread of solutions, and in 

particular gives a better representation of the front near the optimal long-term NPV which is the most important 

part of the front.  

TABLE 3 : SOLUTIONS FOR DIFFERENT WEIGHT COMBINATION USING THE WEIGHTED SUM METHOD. 

w1 w2 Long-Term Objective (x109) $ Short-Term Objective(x109) $ 

1 0 9.1060 3.3522 

0.9 0.1 9.0851 3.6872 

0.8 0.2 9.0419 3.9719 

0.7 0.3 8.9720 4.1763 

0.6 0.4 8.9156 4.3591 

0.5 0.5 8.8696 4.4106 

0.4 0.6 8.7873 4.4313 

0.3 0.7 8.7538 4.4476 

0.2 0.8 8.7403 4.4448 

0.1 0.9 8.7243 4.4492 

0 1 8.7086 4.4759 

Fig. 7 provides a visual comparison of the solutions obtained with the two different methods. Note: The stopping 

criterion used to achieve this set of points is exactly the same as the stopping criterion used for the inner loop in 

the augmented Lagrangian-based NBI method albeit the objective functions are different.  

 
Fig. 7: Comparison of the spread in points along the Pareto front for the two variants of the weighted sum method. 
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TABLE 4: SOLUTIONS FOR DIFFERENT WEIGHT COMBINATION USING THE ADJUSTED WEIGHTED SUM 
METHOD. 

w1 w2 Long-Term Objective (x109) $ Short-Term Objective(x109) $ 

1 0 9.1060 3.3522 

0.9 0.1 9.1020 3.4502 

0.8 0.2 9.0918 3.5996 

0.7 0.3 9.0758 3.7522 

0.6 0.4 9.0433 3.9326 

0.5 0.5 8.9927 4.1400 

0.4 0.6 8.9515 4.2268 

0.3 0.7 8.8956 4.3905 

0.2 0.8 8.8040 4.4384 

0.1 0.9 8.7454 4.4423 

0 1 8.7086 4.4759 

Comparison of Weighted Sum and NBI 

Fig. 8 is a comparison of the solutions achieved from the adjusted weighted sum method and the best results 

achieved with the NBI method. The results here are very interesting: for w1= 0.9 the solutions obtained with 

either method do not dominate each other while for w1= 0.8 and w1= 0.7 we observe that the adjusted weighted 

sum method achieves solutions which slightly dominate the solutions obtained with NBI. However, for the other 

weight combinations the solutions obtained with NBI dominate. It is difficult to know why this behavior is 

observed and it could be either case dependent or gradient quality dependent. However, Liu and Reynolds (2016) 

also find that the NBI method generally gives a better representation of the front than is obtained with the 

weighted sum method. Fig. 9 is a comparison of the optimization path for the different methods with the weight 

combination w1 = 0.7 and w2 = 0.3. The original NBI and the weighted sum have the same starting point, 

however they have very different paths. The adjusting of the weights in the adjusted weighted sum method leads 

to a significantly different starting point for the optimization. All the optimization results shown here are 

influenced not only by the gradient quality, but for the NBI method, also by the choices of the initial penalty 

parameter  and Lagrange multipliers . Using a larger ensemble size for the gradient estimate (Fonseca et al. 

2015) could lead to smoother optimization paths to solve the individual sub-problems and possibly better 

solution points, however for computational reasons this has not been investigated.  

 
Fig. 8: Comparison of the points achieved from the adjusted weighted sum method and the NBI-based tracking 
method. 
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Fig. 9: Comparison of the optimization paths for the different methods described above. The green diamonds are the 
end points, i.e. the optimum solutions obtained by each of the methods.  

Fig. 10 is an illustration of the total number of simulations performed for each of the methods including the two 

initial optimization runs to obtain the utopia line. The original NBI method was computationally the most 

expensive one with approximately 28000 total simulations, while for the NBI tracking method about half the 

number of simulations required for the original NBI method were needed to achieve better solutions. Both the 

weighted sum variants were computationally much more efficient, similar to the results obtained in Liu and 

Reynolds (2014). We note that ensemble methods to generate approximate gradients, such as EnOpt, are well 

suited for embarrassingly parallel processing. Moreover, when introducing geological uncertainty, in the form of 

different geological realizations, the computational load of ensemble methods becomes relatively less 

disadvantageous as compared to adjoint-methods; see Fonseca et al. (2015). We also note that the use of 

ensemble methods to compute approximate gradients involves various user-defined choices such as the ensemble 

size and the definition of the co-variance matrix (which may be used to enforce temporal correlations between 

the controls). Moreover a wide variety of ensemble gradient formulations is available; see, e.g., Fonseca et al. 

(2015) for an overview. In the present study we did not address these aspects, and we refer to Fonseca et al. 

(2015) for further information on the effects of the various formulations and user-defined parameters. 

 
Fig. 10: Comparison of the total number of simulations taken to generate the Pareto curve for the different methods. 
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Hierarchical Switching Optimization Method 

In this section we compare the results of the NBI and weighted sum methods with those obtained with 

hierarchical switching (method 5 in Fig. 1). The switching method optimizes the objectives alternatingly, while 

staying within a maximum allowable decrease  in the primary objective. The choice of is user dependent. 

Thus, the user has to a-priori decide the maximum allowable acceptable decrease in the optimal primary 

objective function value. Fig. 11 plots the optimization path where a maximum decrease of 0.3% in the primary 

objective is allowed (red curve). We see that we achieve approximately a 10% increase in the secondary 

objective. The values obtained are similar to using a weight combination of w1 = 0.7 and w2 = 0.3 for either the 

NBI method or the adjusted weighted sum method. However the solution is a non-dominated point when 

compared to all solutions obtained with the NBI and adjusted weighted sum methods. If the optimization is 

repeated for a 1% allowable decrease in the primary objective we observe that we achieve a 20 % increase in the 

secondary objective function (black dotted curve). This solution however is dominated by the solutions from the 

other two methods. The hierarchical method only provides a single strategy which may or may not be Pareto 

optimal. A tracking procedure like the one implemented for the NBI method could be used with this method to 

generate a front. Alternatively we can use the primary objective function as a constraint while optimizing a 

secondary objective, i.e., a lexicographic approach; for details see Liu and Reynolds (2016).  

 
Fig. 11: Paths obtained from hierarchical switching optimization for different maximum allowable decreases in the 
primary objective function compared to the optimal solutions achieved by the other methods.  

Example 2: The Egg Model 

Reservoir model 

The model, illustrated in Fig. 12, which was introduced in Van Essen (2009), represents a channelized 

depositional system in the form of a discrete permeability field modeled with 60 × 60 × 7 = 25,200 grid cells of 

which 18,553 cells are active. A detailed description along with fluid and geological properties of the 

standardized version of this “egg model” is given in Jansen et al. (2014). The model is produced using eight 

peripheral water injection wells (blue) and four production wells (red) which are completed in all seven layers. 

No capillary pressures are included, the reservoir rock is assumed to be incompressible, and the liquids slightly 

compressible. The controls to be optimized are the water injection rates with a maximum allowable injection rate 

per well fixed at 79.5 m3/day and a minimum rate of 0 m3/day. The producers are operated at a minimum bottom 

hole pressure of 395 bars without rate constraints. The producing life of the reservoir is divided into 40 control 

steps of 90 days each, and therefore the control vector u has N = 8 × 40 = 320 elements. The NPV parameters 

used are ro = 126 $/m3, rwp = 19 $/m3, and rwi = 5 $/m3. The two objectives used are the same as in the previous 

example. We use a commercial fully implicit black oil simulator (Eclipse, 2011) for the reservoir simulations.  
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Fig. 13: : Boundary points achieved using the NBI method starting from different initial guesses. Note that the points 
indicated with the red circle and ellipse are not Pareto dominant. 

With only a 0.7% decrease in the primary (long-term) objective function, we have found a solution that achieves 

an approximately 19% increase in the secondary (short-term) objective function for the black open circles, i.e. 

the original NBI method for β1=0.7. For the same weight combination, the NBI tracking method finds a solution 

for which a 0.3% decrease in the long-term objective leads to a 20% increase in short-term gains. Additionally, 

for the blue circles, i.e., NBI with tracking, we observe that for a 1.3% decrease in the primary objective, we can 

achieve an even more significant increase of 38% in the secondary objective. This last result corresponds to the 

β1=0.4 solution.  

 
Fig. 14: Comparison of solutions achieved by the adjusted weighted sum method (blue stars) and the NBI tracking 
method (red circles). 

The results from the previous example illustrated that the adjusted weighted sum method produced a much better 

spread in solution points compared to the weighted sum method. Thus for this example we compare the NBI 

solutions with solutions from the adjusted weighted sum technique. We observe, as shown in Fig. 14, that the 

solutions achieved by the NBI tracking method dominate the solutions from the adjusted weighted sum method. 

The solutions from the original NBI method also dominate the solutions from the adjusted weighted sum 

method. A comparison of the plot of remaining oil saturation for the top layer after 3 years of production 

illustrates the difference in the strategies; see Fig. 15. The optimal long-term strategy is less aggressive, as 

significantly less area is swept by injected water, while the NBI tracking solution for β1 = 0.4, i.e. a 38% increase 
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in short-term gains for a 1.3% decrease in long-term gains, is a more aggressive strategy as larger areas of the 

reservoir have been swept.  

 
Fig. 15: Comparison of oil saturation distributions for the top layer after 3 years of production for a) optimal long-term 
solution (left side) and b) NBI tracking solution for β1 = 0.4 (right side). 

The control strategies that resulted in the saturation plots shown in Fig. 15 are illustrated in Fig. 16. The control 

settings have only been displayed for the first 3 years to highlight the differences between the strategies. We 

observe that the optimal NBI strategy injects much more water compared to the optimal long-term strategy. A 

similar trend in the control strategies is seen in the other wells.  

 
Fig. 16: Comparison of injection rate controls for injector 7 (top) and injector 8 (bottom) for the first 3 years of 

production resulting from the different strategies, life-cycle strategy (red line) and NBI strategy (blue line). 

Fig. 17 is a comparison of the computational efficiency of the different methods. The original NBI method 

requires the highest computational effort similar to the results reported for the previous example. We needed 

about 21,000 simulations to achieve the 11 points for the original NBI method while we needed approximately 

14,000 simulations when using the NBI to track the boundary front. The adjusted weighted sum method required 

less than 8,000 simulations to find the 11 points, and is thus  the computationally most efficient one, though the 

solutions achieved are far from Pareto optimal compared to the solutions achieved by the NBI method.  
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Discussion 

The differences between the results of the adjusted weighted sum and the traditional weighted sum methods for 

this example are far from significant because the adjustment of the weights does not lead to very different weight 

combinations, i.e., scaling of the problem is not as important for this problem as it was for the 5 spot ICV 

problem and the problems investigated in Liu and Reynolds (2014). For this example, the difference between the 

optimal primary long-term objective function values is 14%, which is much higher than in the previous example, 

while the difference between the short-term objective function values is 48%. 

 
Figure 17: Comparison of the computational effort required to achieve solutions using the different methods.  

Conclusions 

 Approximate gradient techniques like EnOpt can be used to generate solutions for a bi-objective 

optimization problem which may lie on a Pareto front although the computational costs are significant. 

 Tracking the Pareto front using NBI is a computationally more efficient method and produces better 

solutions for the decision maker to choose from compared to the original NBI method. Different 

starting point have a significant impact on the optimal solutions achieved. This is observed for the two 

different example problems investigated.  

 The adjusted weighted sum produces a more even distribution of solutions and is marginally 

computationally more efficient compared to the traditional weighted sum technique for the ICV control 

problem.  

 For some weight combinations, the NBI method produces solutions which dominate solutions obtained 

by the weighted sum variants and vice versa for the ICV control problem.  

 A hierarchical switching method provides a single solution which satisfies the maximum allowable 

decrease in the objective function value. For the ICV problem, the single solution point was non-

dominated when compared to all the points obtained from the NBI and weighted sum method.  
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