
Sign Hyperledger Fabric Smart Contracts using the
TPM

Z. N. Starke∗

Supervisor: Kaitai Liang†

EEMCS, Delft University of Technology, The Netherlands

January 24, 2022

Abstract

Block-chain technology is gaining momentum in both industry and academics. With
this momentum there are a lot of potential gains, but also potential risk involved. This
papers proposes a solution for security risks, like a man-in-the-middle-attack, of the
permissioned block-chain distributed ledger software Hyperledger Fabric. A prototype
is introduces that uses the Trusted Hardware Module for attestation. By combining
the key hierarchy present in the TPM, to sign assets before storing them on the ledger.

1 Introduction
Block-chain technology is getting significant attention in both industry and academics. In
the industry, we see various applications of block-chain technology like cryptocurrency and
Non-fungible tokens (NFT’s). Furthermore, in 2021 the market cap of the 11 biggest cryp-
tocurrencies totaled one trillion dollars [16]. Apart from the popular applications, there
are various practical applications for block-chain technology. With the advent of smart con-
tracts, which are programs stored on a blockchain, the practical applications in supply chain
management[13], healthcare [14] and the oil and gas industry[15] become more evident. Ac-
cording to a recent study [1] there are 159 papers and 12 surveys related to the construction
and execution of smart contracts. These papers discussed topics like the impact, research
challenges and opportunities of block-chain.

Although block-chain technology seems promising, based on the high market cap and
research activity, there are a couple of issues that hinder widespread adoption. One of
these issues is security. Security vulnerabilities can lead to huge economic losses in certain
situations like the hacker attack on the crowdfunding project Decentralized Autonomous
Organization in 2016 [6].

This project uses smart contracts on the Ethereum network where developers and in-
vestors are brought together to make the development of block-chain based applications
possible. One vulnerability in the contract code caused an economic loss of 60 million dol-
lars [6]. Therefore enhancing the security of smart contracts can bring a future where the
world can make secure, fast, and decentralized transactions one step closer.

∗{z.n.starke}@student.tudelft.nl
†{Kaitai Liang}@tudelft.nl

1

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering



This research aims to answer the question: "How to use trusted hardware to make
the execution of smart contracts more secure?". There are a variety of trusted hardware
components with various algorithms to secure smart contracts. Take for example the Trusted
Platform Module (TPM) [2], Intel SGX [3] and (PUF)-based security solutions for IoT [4].
These hardware components enable trusted computing which in turn creates a foundation
of trust for software processes.

There is various literature on the security of smart contracts. As Kongmanee, J., Ki-
jsanayothin, P., & Hewett, R. [18] state "correctness of execution alone is not sufficient to
guarantee security of smart contracts". In their paper, they propose a formal verification
technique to make the development of smart contracts more secure. With this technique,
they can specify many possible executions that lead to security breaches. Cecchetti et al.
[19] look at the security of smart contracts from the perspective of information flow. An-
other paper [20] discusses the issues regarding the proof-of-stake consensus algorithm. In
this paper, they propose a hybrid consensus algorithm that can be used in systems for smart
contract management. However, Practical research into the integration of trusted hardware
and smart contracts is still lacking.

The goal of this research project is to develop a simple smart contract that uses the
digital signature algorithm to secure the execution of the smart contract within a block-
chain network. Consequently, the main research question can be broken up into the following
sub-questions:

1. How does the digital signature algorithm work?

2. How does the execution of a smart contract within a block-chain network work?

3. How to integrate the digital signature algorithm into the execution of a simple asset
transfer smart contract?

4. What effect does the digital signature algorithm have on the performance of the smart
contract execution?

This paper follows the same structure as the sub-questions. First, there is a theoretical
consideration chapter, where important technical concepts used in the paper are explained
like sub-questions one and two. After the theoretical considerations comes the experimental
setup. In the experimental setup chapter practical information about the development
environment, block-chain network topology and smart contract implementation are given.
Thereby answering the third sub-question. Thereafter, there will be a discussion about
the performance implications that the digital signature algorithm has on the execution of
the smart contract. This answers sub-question 4 and as usual this paper ends with some
concluding sentences.

2 Theoretical consideration

2.1 Block-chain technology
The core ideas behind block-chain were first introduced in 1991 and 1998. In 1991 a paper
[9] was issued which introduced the concept of a digital ledger and a technique to show
that digitally signed documents were not tampered with. Moreover, in 1998 Leslie Lamport
[7] introduced a consensus model for reaching an agreement on a result in an unreliable
network of computers. Later the famous paper about an electronic cash system [8] combined

2



the before mentioned articles to develop the first of many block-chain applications. In the
remaining part of this subsection, there will be brief explanations of the different components
that make up a block-chain network.

The first component is the distributed ledger. A ledger is an append-only list that records
the whole transactional history of the block-chain. The distributed part comes from the fact
that the ledger is recorded on every peer in the network.

The second component is the collection of nodes. Nodes are individual systems within a
block-chain that work together to handle and record transactions. Every block-chain context
has different roles, but one of the most fundamental roles inside the network is that of the
peer. A peer is responsible for hosting the ledger and validating transactions [10].

A block-chain is a distributed network of computers, therefore there must be a way for
the network to come to a joint agreement on results. An example of this challenge is deciding
the order of transactions, in other words deciding which user publishes the next block. This
is handled by the consensus mechanism. The consensus mechanism is the reason there is no
need for a trusted third party because each node in the network handles the validation of
transactions and comes to a consensus on the order of these transactions.

Smart contracts that are used in block-chains like Ethereum are quite different from the
ones used in the Bitcoin block-chain. The big difference is that the former is Turing Com-
plete, which means that smart contracts can implement complex business logic in languages
like Golang, Java, etc [11].

2.2 Hyperledger fabric
According to Shrivas, M. K., & Yeboah, D. T. [17] there are 2 types of block-chain cate-
gorized by the level of authorization needed within the network. On the one hand, there
are permissionless block-chains where everyone can join using their own resources. On the
other hand, there are permissioned block-chains where prior to joining the network there
should be a degree of authorization. Hyperledger Fabric is an example of a permissioned
block-chain. Each block-chain has its own terminology for describing the functionalities and
components of its technology. In the next subparagraph, there will be a brief introduction
of the terminology and structure used by Hyperledger Fabric.

Assets are at the heart of Hyperledger Fabric. They define anything that can have
monetary value which can be exchanged over the network. The mechanism that defines
the business logic that governs the assets is called chaincode, this is a smart contract in
block-chain terms. The identities that create, update and transfer assets using the smart
contracts are called organizations. Organizations are members of the network that are
allowed to interact with the network. Each organization comes with its own set of peers,
orderers, admins and clients. These identities are issued by certificate authorities who also
belong to an organization. First, the participant must be registered and upon enrolling
receive their own MSP folder. An MSP is also known as a membership service provider is a
set of certificates that reside on the network. The MSP is used to identify if the component
is authorized to do what it tries to do.

2.3 Trusted Platform Module
The Trusted Platform Module, TPM, is a security module that is a building block for trusted
computing. The Trusted Computing Group has developed standards to describe the meaning
of trusted computing. The Trusted Computing Group (TCG) defines the trusted platform

3



module as follows: "TPM (Trusted Platform Module) is a computer chip (microcontroller)
that can securely store artifacts used to authenticate the platform (your PC or laptop)."
[5]. The basic security features that the TPM provides are protected capabilities, integrity
measurements, storage and reporting [2]. The basic idea behind the TPM is to move security
from software to hardware. This idea is based on the fact that if the infrastructure where
the software runs is compromised the security of the software can be bypassed by a malicious
actor. This is one of the biggest flaws in modern security systems.

The main functionality of the TPM is to provide tools for secure authentication of the
system itself. One of those tools is key encryption. Normally keys would be stored on the
system in the form of a file, however, on systems with a TPM these keys are stored inside
the trusted hardware [2]. This measure ensures that even if the system is compromised the
keys cannot leave the TPM, so the keys cannot be stolen. Other cryptographic tools that
the TPM provides are secure storage, random number generation, various key engines and
registers for processing from within the TPM [2].

Figure 1: High-level overview of digital signature algorithm

2.4 Digital signature
Figure 1 shows a high-level overview of the digital signature process. The flow of the algo-
rithm is as follows: First, the sender generates the public-private key pair. Then the sender
signs the message using his private key to generate a signature. The public key, signature
and message are then sent to the receiver. The receiver in turn uses the sender’s public
key together with the signature to derive the message of the sender. This process ensures
that the message was sent by the sender and was not tampered with during transmission.
Otherwise the signature and public key would not produce the original message.

3 Experimental Setup
In the following sections, there will be a more detailed discussion of the different tools that
were used in the development of the signed smart contract. After the discussion of the tools,
there will be a detailed explanation about the experimental procedure that produced the
result which can be found in chapter 4.

4



3.1 Tools
To be able to answer the main research question different tools were explored to benefit the
design and implementation of a prototype. This prototype uses the cryptographic function-
alities of the TPM to digitally sign assets to secure the execution of a smart contract. In
the remainder of this section, this prototype will be defined as a signed smart contract.

The first two tools were used to set up a development environment. Linux Ubuntu 20.04
was chosen as the development environment because of its support and strong community
that proposes and shares solutions. To run Linux on Windows, Hyper-V was used to run a
virtual machine that emulates Linux Ubuntu 20.04.

The third and fourth tools used were Hyperledger Fabric and Hyperledger Caliper de-
veloped by the Hyperledger Foundation. Hyperledger Fabric is an open-source project to
enable the development of modular software architecture. It is a distributed software package
that has specifically been designed for use in the development of enterprise-level block-chain
applications. Hyperledger Caliper is a benchmark tool to measure the performance of a
block-chain implementation.

The fifth tool used was the programming language Golang for the development of smart
contracts. This language was best suited, because of the ease of learning and it is one of the
few languages supported by the Hyperledger Fabric software. This naturally led to the final
tool used which is the Go-TPM library to communicate directly with the TPM installed on
a system.

3.2 Experimental protocol
3.2.1 The technical roadmap

Figure 8 in the appendix shows the technical road map of this project. First, the virtual
machine and Linux were configured and set up. Then a test network using the predefined
network Hyperledger Fabric provides was set up. During the setup of the test network,
the framework and development language were studied. In the next two weeks, the TPM
was configured and a hello world example was built using the Go-TPM library. In the fifth
and sixth week, the business logic that governs the block-chain implementation was devel-
oped. After the implementation of the asset transfer smart contract, the cryptographical
functionalities of the TPM were leveraged to implement the digital signature algorithm into
the asset transfer smart contract. During the merging of the smart contract with the TPM
functionalities, a technical hurdle was encountered. Hyperledger Fabric uses a container-
ized approach, which means that every component of the network was launched as a docker
container. However, the TPM device file is not accessible to the docker container where
the chaincode runs. Therefore, a new test network without the use of docker was built to
resolve this issue. After that, a chaincode as a service approach was taken to enable the
functionalities of the TPM in the chaincode. For this, a chaincode server was run locally
and only a package containing the address of the chaincode server was installed on the peer.
The last week was used for the writing of the report and finishing up the smart contract.

3.2.2 The network topology

A visual representation of the network topology can be found in figure 3 in the appendix. The
network consists of two organizations that both run one peer and one orderer organization.
All three organization have their own CA running within their network. In figure 3 it is also
shown where the different MSP folders to identify nodes in the network reside.

5



The colored arrows in figure 3 represent the different communication channels between
the components of the network. The black arrows indicate communication between the
components belonging to the same organization. The CLI tools, also known as a client, are
used to propose transactions to the peers. The peers simulate and validate the proposals.
After the simulation, an endorsement response is sent back to the client. If the endorsement
response is successful, the client will sent the endorsed transaction proposal to the orderer
service (the orange arrows), which will order the proposals into blocks. The size of the block
is decided upon by the organizations participating in the network. The blue arrows indicate
the communication between the peers and the chaincode server. Instead of the chaincode
being installed on every peer, the peers communicate with the chaincode server which is
responsible for the smart contract execution. After the execution of the smart contract, the
chaincode server sends back a response and payload back to the peer.

Algorithm 1 SignAsset
pubKey, privKey ← TPMGenKeyPair()
hash← sha256(asset)
sig ← TPMSign(hash, privKey)
storeOnChain(sig, pubKey, asset)

Algorithm 2 VerifyAsset
sig, pubKey, asset← queryLedger(assetID)
hash← sha256(asset)
if TPMVerify(hash, pubKey, sig) then

return true
else

return false
end if

3.2.3 The smart contract

There were 3 distinct smart contracts developed. The sequence diagrams of these smart
contracts can be viewed in the appendix. In figures 4, 5 and 6 the flow of the messages be-
tween the different actors of the network for the create, update and transfer smart contracts
are described. The first layer of communication between the client and peer is represented
in figure 3 with the black arrows. These messages consist of transaction proposals and en-
dorsement responses. Except for figure 6 there the first layer is the price agreement phase
of the smart contract this happens out-of-band between the organizations.

The layer of communication between the peers and the chaincode server is indicated by
the blue arrows in figure 3. The peer sends an API call to the chaincode server with as
the first parameter the function name of the chaincode it wants to invoke. The rest of the
parameters are the input arguments for the function. In both figures 4 and 6 the chaincode
connects to the TPM to sign an asset, this process is visually shown in figure 7.

First, the server opens a channel to the TPM, through which a key hierarchy can be
instantiated. The TPM contains 3 types of keys, namely endorsement, storage and platform
keys. The endorsement keys are used to identify the TPM, storage keys that can be used
by local applications and platform keys are used by the TPM itself. The key hierarchy

6



that is used for the prototype, first creates a storage root key which will act as a parent
for the application key. The storage root key will enable the application key to attest
that it originated from the TPM. The application key has the ability to sign assets and
the signatures provide the authentication, non-repudiation of the signer and integrity of
the asset. In other words, it enforces the facts that the sender is real, the sender cannot
deny having signed the asset and that the asset has not been altered. The SignAsset and
VerifyAsset algorithms describe the process of signing and verifying the asset.

The SignAsset algorithm first generates a public and private key pair. Before the asset
can be signed the asset is hashed using the sha256 algorithm. The signing algorithm is
generally slower than the hashing algorithm, so this is used to save time and reduce the
length of the produced signature. After the asset has been hashed, this hash is signed using
the application key of the TPM. At the end the signature, public key and asset are stored
on the ledger.

The verifyAsset algorithm reads an asset from the ledger and computes its signature.
Then the TPM verifies that hash, public key and signature if the asset has not been tampered
with since the time of signing this function returns true, otherwise it returns false.

Figure 2: Average latency of the create asset smart contract

4 Result and discussion
Using Hyperledger Caliper the performance of the created asset smart contract was mea-
sured, the result is shown in figure 2. As shown in the figure the latency increases as the
number of transactions increases. This is as expected because the load on the network in-
creases. In other words, the higher the workload on the network the longer it takes for an
asset to get created. This indicates that there could be a potential bottleneck when the
smart contract gets used in a work-intensive network. However, the network used to test
this smart contract was static, so this can be handled by dynamically adjusting the number
of peers in the network, based on the load on the network.

Efforts have been made to benchmark the other smart contracts, but due to the char-
acteristics of the block-chain network, this effort was not successful. For the update and
transfer function, there already should have been assets on the block-chain to reference, but
between populating the network with test data and querying that data there is not enough
time. Some of the early created assets are already committed on the chain, so when reading

7



the asset to update or transfer it. There is a multi-version concurrency control read conflict
error, which indicates that there has been a dirty read. In other words, the smart contracts
are not developed to test their performance using the techniques of Hyperledger Caliper.
Sadly, there was not enough time to come up with a workaround.

The development of this prototype introduces a lot of complexity to the block-chain
implementation. To be able to run an chaincode as a service advanced knowledge of Hy-
perledger is needed. This could could hinder the adoption of this method of securing smart
contract execution. However, the security guarantees achieved by this prototype is worth the
effort. Also, as soon as the chaincode server is built there is no need to update chaincodes on
every peer where the chaincode would be installed which is also introduces complexity. As
long as the server address doesn’t change the peers can invoke methods and the chaincode
can be invoked.

5 Conclusions and Future Work
This research aimed to see how trusted hardware could be used to secure the execution of
smart contracts. Through this paper, the different research questions stated in the introduc-
tion were answered. By first investigating the knowledge needed to understand the question
and come up with a design for a prototype. Then give a detailed explanation about how to
implement such a design. In the end, it is shown how to use the TPM to implement a digital
signature algorithm to secure the execution of an asset transfer smart contract. During the
development of the secured smart contract, the potential of the TPM was not fully used, for
example, encryption. Encryption could be used to make the execution of smart contracts
even more secure by encrypting the asset before storing it on the chain. In this way, there
could be added privacy and security to the block-chain implementation. To conclude, it is
possible to use hardware-based attestation to enhance the security of smart contracts.

6 Responsible Research
All the code is available online at: gitlab.com/HeyZedd/tpm-smart-contract, so the whole
project can be rebuilt based on the gitlab repository. There is also an read me which explains
how to setup the network and interact with the network. For the curious readers who want
to conduct similar research, all the literature used is available through academic databases.
So as long as the reader has access to those, it is possible to reproduce the results found in
this paper.

Although, the digital signature algorithm used claims to give certain security guarantees,
this research did not do any form of formal security validation or testing of the proposed
security guarantees. This could be a topic for future research, to test and validate the
security guarantees this prototype claims to give.

8



References
[1] Hu, B., Zhang, Z., Liu, J., Liu, Y., Yin, J., Lu, R., & Lin, X. (2021). A comprehensive

survey on smart contract construction and execution: paradigms, tools, and systems.
Patterns, 2(2), 100179.

[2] Ezirim, K., Khoo, W., Koumantaris, G., Law, R., & Perera, I. M. (2012). Trusted
Platform Module-A Survey. The Graduate Center of The City University of New York,
11.

[3] Zheng, W., Wu, Y., Wu, X., Feng, C., Sui, Y., Luo, X., & Zhou, Y. (2021). A survey of
Intel SGX and its applications. Frontiers of Computer Science, 15(3), 1-15.

[4] Shamsoshoara, A., Korenda, A., Afghah, F., & Zeadally, S. (2020). A survey on physical
unclonable function (PUF)-based security solutions for Internet of Things. Computer
Networks, 183, 107593.

[5] Trusted Computing Group. "Trusted platform module (TPM) summary," March 2018.
[Online]. Available: https://trustedcomputinggroup.org/resource/trusted-platform-
module-tpm-summary/.

[6] Atzei, N., Bartoletti, M., & Cimoli, T. (2017, April). A survey of attacks on ethereum
smart contracts (sok). In International conference on principles of security and trust (pp.
164-186). Springer, Berlin, Heidelberg.

[7] Lamport, L. (1998, May) The Part-Time Parliament. in ACM Trans. Comput. Syst. (pp.
1331-69). ACM, New York.

[8] Nakamoto, S., ”Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
https://bitcoin.org/bitcoin.pdf

[9] Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfede, S., Bitcoin and Cryp-
tocurrency Technologies: A Comprehensive Introduction, Princeton University Press,
2016.

[10] Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain technology overview.
arXiv preprint arXiv:1906.11078.

[11] Zhang, C. (2019). Truxen: A Trusted Computing Enhanced Blockchain. arXiv preprint
arXiv:1904.08335.

[12] Fang, W., Chen, W., Zhang, W., Pei, J., Gao, W., & Wang, G. (2020). Digital sig-
nature scheme for information non-repudiation in blockchain: a state of the art review.
EURASIP Journal on Wireless Communications and Networking, 2020(1), 1-15.

[13] Song, J. M., Sung, J., & Park, T. (2019). Applications of blockchain to improve supply
chain traceability. Procedia Computer Science, 162, 119-122.

[14] McGhin, T., Choo, K. K. R., Liu, C. Z., & He, D. (2019). Blockchain in healthcare
applications: Research challenges and opportunities. Journal of Network and Computer
Applications, 135, 62-75.

9



[15] Lu, H., Huang, K., Azimi, M., & Guo, L. (2019). Blockchain technology in the oil and
gas industry: A review of applications, opportunities, challenges, and risks. Ieee Access,
7, 41426-41444.

[16] Christopher, E., & Jumma, M. A. A. M. S. Role of Blockchain and Cryptocurrency to
Redefine the Future Economy.

[17] Shrivas, M. K., & Yeboah, D. T. (2018, December). The disruptive blockchain: Types,
platforms and applications. In Fifth Texila World Conference for Scholars (TWCS) on
Transformation: The Creative Potential of Interdisciplinary.

[18] Kongmanee, J., Kijsanayothin, P., & Hewett, R. (2019, November). Securing smart con-
tracts in blockchain. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering Workshop (ASEW) (pp. 69-76). IEEE.

[19] Cecchetti, E., Yao, S., Ni, H., & Myers, A. C. (2020, May). Securing smart contracts
with information flow. In International Symposium on Foundations and Applications of
Blockchain.

[20] H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu and J. Kishigami,
"Blockchain contract: Securing a blockchain applied to smart contracts," 2016 IEEE
International Conference on Consumer Electronics (ICCE), 2016, pp. 467-468, doi:
10.1109/ICCE.2016.7430693.

10



7 Appendix A

Figure 3: Network topology

11



Figure 4: Sequence diagram describing create asset smart contract

Figure 5: Sequence diagram describing update asset smart contract

Figure 6: Sequence diagram describing the transfer smart contract

12



Figure 7: Sequence diagram describes the creation of the signing key

Figure 8: A technical roadmap

13



Name Send Rate (TPs) Max Latency (s) Min latency (s) Avg Latency (s) Throughput (TPS)
10 transactions 128.2 1.29 1.21 1.25 7.8
20 transactions 281.7 2.19 2.05 2.13 9.1
50 transactions 320.5 5.18 4.84 5.00 9.6
80 transactions 318.7 8.30 7.71 8.04 9.5

Table 1: Create asset smart contract data

14


