
The use of Reinforcement Learning in Algorithmic Trading
The Impact of Function Approximation Methods on Model Performance

Robert Mertens1

Supervisor(s): Neil Yorke-Smith1, Amin Sharifi Kolarijani2, Antonis Papapantoleon1

1EEMCS, Delft University of Technology, The Netherlands
2Mechanical Engineering, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Robert Mertens
Final project course: CSE3000 Research Project
Thesis committee: Neil Yorke-Smith, Amin Sharifi Kolarijani, Antonis Papapantoleon, Julia Olkhovskaya

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
The application of Reinforcement Learning (RL)
to algorithmic trading offers the potential for de-
veloping adaptive, profitable strategies, yet its suc-
cess is highly dependent on the methods used for
function approximation. This thesis systematically
investigates how different function approximation
methods impact the performance and generaliza-
tion of an RL-based agent trading in the volatile
EUR/USD Forex market. The study evaluates a
range of architectural choices, including network
size and shape, the division of parameters between
actor and critic networks, various activation func-
tions, and different feature extraction techniques.
While no tested configuration achieved consistent
profitability on unseen data, the findings highlight
a critical trade-off between a model’s learning ca-
pacity and its ability to generalize. Notably, the
bounded Sigmoid activation function showed su-
perior performance on evaluation data compared
to the unbounded ReLU, suggesting it provides a
form of implicit regularization that promotes ro-
bustness. In contrast, variations in network shape
and the actor-critic parameter division did not sig-
nificantly affect on out-of-sample performance, in-
dicating that other experimental factors may have
been a bottleneck.

1 Introduction
Artificial Intelligence (AI) has become increasingly prevalent
in financial markets, with its ability to analyze vast datasets
and identify complex patterns exceeding traditional models
[1, 2]. Reinforcement Learning (RL), a subfield of AI, is par-
ticularly well-suited for trading, as it allows an agent to learn
optimal decision-making strategies through direct interaction
with the market environment [3, 4]. Despite this potential,
the widespread adoption of RL in the volatile Forex market
remains limited. Key challenges include the noisy nature of
financial data, the risk of overfitting, and the difficulty of gen-
eralizing learned strategies to new market conditions. The
performance of RL agents is critically dependent on the func-
tion approximators used to represent value and policy func-
tions, yet there is a gap in understanding how specific choices
in their design impact trading effectiveness.

1.1 Motivation
While existing research demonstrates that RL models can out-
perform traditional methods [5, 3], many studies do not iso-
late the comparative impact of different function approxima-
tion techniques. The effects of model complexity on conver-
gence and stability have been studied in broader RL contexts,
but their specific implications within the dynamic Forex en-
vironment remain underexplored [3, 6]. This paper addresses
this gap by investigating the central research question: ”How
do different function approximation methods impact the
performance of a Reinforcement Learning model trading
in the Forex Market?” We explore this through the follow-
ing sub-questions:

• How do network architecture choices, specifically the
size, shape, and division of parameters between actor
and critic, affect model performance and learning stabil-
ity?

• What is the impact of different activation functions on
training speed and the ability to generalize to unseen
data?

• How does the method of feature extrac-
tion—handcrafted technical indicators versus auto-
mated extraction via a Convolutional Neural Network
(CNN)—influence trading performance?

• How does L2 regularization (weight decay) affect the
model’s ability to learn and avoid overfitting?

1.2 Structure of the paper
We begin by providing background on Reinforcement Learn-
ing and the Forex market. We then detail our methodology,
custom trading environment, and experimental setup. Finally,
we present and discuss the results, concluding with a sum-
mary of our findings and directions for future research.

1.3 Existing work
The exploration of Reinforcement Learning (RL) in financial
markets, particularly in the Forex domain, has garnered sig-
nificant attention in recent literature. Several studies have
contributed to our understanding of RL applications, yet spe-
cific unanswered questions remain, particularly concerning
the choice of function approximators and their effects on trad-
ing performance.

Regarding network architecture, Liu et al. highlight the
challenges that RL models face in adapting to the volatile
nature of financial markets. They note that the architecture
of neural networks involved in RL critically influences the
model’s ability to stabilize and converge during learning pro-
cesses [3]. They emphasize that while tailored architectures
could yield better performance, the intricate balance between
flexibility and overfitting remains a contentious point, sug-
gesting that more systematic approaches are needed to ex-
plore architectural variations in depth. Furthermore, Ashish’s
work illustrates this complexity by comparing algorithms like
Proximal Policy Optimization (PPO) and Advantage Actor-
Critic (A2C), yet it stops short of offering definitive con-
clusions on the ideal architectural configurations tailored for
Forex trading [5].

Secondly, in relation to the impact of activation functions
on training speed and generalization, Meng and Khushi pro-
vide a comprehensive review of the varying activation func-
tions employed within RL frameworks. They acknowledge
their critical role in convergence behavior and training effi-
ciency but note that empirical comparisons in financial con-
texts remain sparse [2]. The existing literature often fails to
align theoretical insights with practical applications in trading
environments, indicating a pressing need for targeted stud-
ies that explicitly link activation function choices with per-
formance metrics in Forex trading.

When examining the method of feature extrac-
tion—handcrafted technical indicators versus automated ap-
proaches like Convolutional Neural Networks (CNNs)—the

contrasting efficacy of these methods is underscored in the
literature. The work by Sun et al. emphasizes the ongoing
discussion regarding the predictive capabilities of classical
technical indicators versus those learned through deep
learning techniques [4]. Despite the enthusiasm for CNNs’
promise in capturing complex market signals, comprehensive
evaluations directly juxtaposing these methods’ effectiveness
in Forex-specific contexts remain limited, calling for research
that bridges this gap.

Lastly, the effect of L2 regularization on learning and over-
fitting is critically assessed across studies. Both Ashish and
Liu et al. acknowledge the risk of overfitting in RL mod-
els applied to the noisy financial data characteristic of Forex
markets [3, 5]. However, while these studies advocate for
regularization techniques as solutions, they often lack robust
empirical backing that illustrates how these methods alter the
learning trajectories and performance metrics in real trading
scenarios. The debate on the optimal application of L2 reg-
ularization in preventing overfitting without compromising
learning opportunity persists, indicating a need for deeper in-
vestigation focused on Forex modeling.

2 Background
2.1 Reinforcement Learning
Reinforcement learning (RL) is a machine learning paradigm
where an agent learns to make optimal decisions through
trial-and-error, guided by reward signals from an interactive
environment. The underlying mathematical framework for
RL is often based on Markov decision processes (MDPs),
which provide a structured way to formalize decision-making
scenarios where outcomes are partly random and partly under
the control of a decision-maker [7, 8]. In an MDP, the process
is defined by states, actions, and transition probabilities, en-
abling the description of the environment’s dynamics and the
modeling of decision-making problems [9]. These compo-
nents work together to facilitate the agent’s learning process
where, through numerous interactions, the agent aims to dis-
cover an optimal policy that maximizes a discounted sum of
rewards.

Algorithmic trading can be effectively formulated as a Re-
inforcement Learning problem. In trading, for example, an
RL agent can learn to adjust its strategies based on the perfor-
mance in previous trades while considering the temporal as-
pect of market movements, which aligns well with the learn-
explore-decision cycle of RL [8, 10]. Moreover, the capabil-
ity of RL to incorporate and handle delayed rewards makes it
well-suited for such applications. [11].

2.2 Forex
The foreign exchange (Forex) market is a decentralized
global marketplace where currencies are traded. It operates
24 hours a day, 5 days a week, facilitating the exchange of
currencies among participants, including banks, financial in-
stitutions, corporations, and individual traders. This mar-
ket is essential for international trade, enabling businesses
to convert currencies for transactions and investments abroad
[12, 13, 6]. The Forex market is considered the largest and
most liquid financial market globally, with an average daily

trading volume exceeding $6 trillion, which demonstrates its
significance in facilitating global economic activities [14].

Trades in the Forex market occur directly between par-
ties through electronic trading platforms and over-the-counter
(OTC) markets [14]. This decentralized nature allows for
continuous operations and flexibility in trading. Trading in-
volves the exchange of one currency for another, denoted as
currency pairs (e.g., EUR/USD, GBP/JPY). Every transac-
tion involves buying one currency while simultaneously sell-
ing another, reflecting the relative value of the currencies in-
volved [12].

Trading volume in Forex refers to the total quantity of a
currency being traded over a specific period, impacting price
stability and indicating market activity levels. Higher volume
can signal strength in market movements, while lower vol-
ume could indicate potential for volatility and slippage [14].
However, due to the decentralized nature of Forex, volume is
notoriously difficult to measure [15, 16].

The ask price is the price at which a trader can buy a cur-
rency, while the bid price is the price at which a trader can
sell. The difference between these prices is known as the
spread [17]. These prices are typically grouped into time
frames, which can be visualized as candlesticks that show the
open, high, low, and close values for both ask and bid prices.
Time frames may range from minutes to days, allowing for a
variety of trading strategies [18].

Traders can adopt buy (long) strategies, expecting currency
appreciation, or sell (short) strategies to take advantage of ex-
pected depreciation. Holding a currency involves maintaining
positions for potential future gains or to mitigate risks [17].

2.3 Function Approximation
Function approximation refers to the process of estimat-
ing complex input-output relationships, especially in high-
dimensional spaces where exact computation is infeasible. In
RL, it is mainly used to approximate value functions, which
guide decision-making by estimating expected rewards for
different states and actions [19, 20]. Several methods have
emerged for function approximation, each with distinct theo-
retical strengths and weaknesses.

Tabular Methods directly associate each state or state-
action pair with a single value. They are particularly effective
in small state spaces where the number of possible states al-
lows for a complete enumeration. However, their scalability
is severely limited, rendering them inefficient and impractical
as the dimensionality increases [19].

Linear Function Approximation solves the scalability
problem with tabular methods by predicting values using a
linear combination of features extracted from the state space.
However, it struggles with capturing complex relationships
in non-linear datasets, which limits its applicability in many
real-world scenarios [19].

Non-linear Function Approximation can model more in-
tricate relationships in the data. However, their increased
flexibility can lead to issues such as overfitting, especially in
contexts where the amount of training data is limited relative
to the complexity of the model [19].

Deep Reinforcement Learning Subset of non-linear func-
tion approximation methods, using neural networks to ap-
proximate value functions or policies. Deep reinforcement
learning excels in handling high-dimensional inputs, and has
achieved remarkable success in various applications [20].
However, the complexity of training deep networks poses sig-
nificant challenges, including the need for substantial compu-
tational resources and the risk of instability and poor general-
ization [20, 21].

3 Methodology
3.1 Data Sourcing
Historical tick data for the EUR/USD pair was sourced from
Dukascopy, a provider known for high-resolution data in aca-
demic research [22]. Initial downloads of minute-interval
data showed significant gaps (20% missing rows) [23].

This prompted us to consider other data sources including
Yahoo Finance, Capital.com, and the European Central Bank
(ECB). However, these sources were either lacking the option
for finer granularity data, only providing time frames at the
resolution of hours or days, or were not deemed as reliable
[24]. Since the performance of predictive models in Forex
trading is strongly tied to data resolution and accuracy [22],
we decided to reconsider Dukascopy.

Finally, we developed a custom pipeline to request raw tick
data via the Dukascopy API and downsample it into one-hour
OHLCV candles. This process reduced missing data to ap-
proximately 2%, which we left unfilled to avoid introducing
imputation-related artifacts [25, 26].

3.2 Feature Engineering
The raw forex OHLCV data is difficult for the reinforcement
learning agent to interpret. To enhance the agent’s ability to
perceive market conditions and the state of its portfolio, both
static, pre-calculated market indicators and dynamic, step-
dependent agent features are generated. Two distinct classes,
FeatureEngineer and StepwiseFeatureEngineer, are
employed for this purpose [27]. The overall data flow and
the roles of these components are illustrated in fig. 1.

Static Market Features (FeatureEngineer)
The FeatureEngineer class batch-processes the entire his-
torical dataset before the simulation begins. It applies a series
of transformation functions sequentially to the raw OHLCV
data to generate a static market features table. This table
includes pre-calculated technical indicators, such as the Rel-
ative Strength Index (RSI), which do not change during the
agent’s interaction with the environment. This entire process
is completed once during initialization.

Dynamic State Features (StepwiseFeatureEngineer)
In contrast, the StepwiseFeatureEngineer generates fea-
tures dynamically at each step of the simulation. This is nec-
essary for features that depend on the agent’s actions, which
cannot be pre-calculated. For instance, it calculates the per-
centage of the agent’s portfolio held in cash at the current mo-
ment. This function is executed at every time step within the
environment, providing the agent with up-to-date information
reflecting its most recent decisions.

Figure 1: Graph showing the the 4 main tables used by the sim-
ulated Forex Environment. The FeatureEngineer generates the
market features all at once during environment initialization. The
StepwiseFeatureEngineer generates each row of agent features
separately, during the trading simulation.

3.3 Forex Environment
To train and evaluate the reinforcement learning agent, a cus-
tom Gymnasium environment was developed [27]. It is de-
signed to model the core mechanics of trading in a leveraged
foreign exchange market, including transaction costs, bid-ask
spreads, and portfolio dynamics.

State and Observation Space
The complete state of the environment includes the entire his-
tory of market data (OHLCV prices) and the agent’s corre-
sponding data (cash and shares held). However, current mar-
ket and agent state is insufficient for the agent to make a
proper decision. In an attempt to adhere to the Markov prop-
erty, the observation provided to the agent may include mul-
tiple features that contain information about past timesteps.
The feature vector fed to the agent at each step t is a concate-
nation of two components:

1. Market Features: The static, pre-calculated market fea-
tures for time t (e.g., RSI, historical lookbacks), gener-
ated by the FeatureEngineer.

2. Agent Features: The dynamic, state-dependent features
for time t (e.g., cash-to-equity ratio), generated by the
StepwiseFeatureEngineer.

Action Space
A significant design decision was to define the agent’s action
not as a discrete buy or sell order, but as a desired target ex-
posure. The action space can be configured as either:

• Continuous: A single float value in the range
[−1.0, 1.0], where −1.0 represents a 100% short posi-
tion, 1.0 a 100% long position, and 0.0 a neutral (all
cash) position.

• Discrete: A set of integers that are mapped to evenly
spaced exposure levels (e.g., [−1.0,−0.5, 0.0, 0.5, 1.0],
for n actions = 5)

The range of possible actions is set to be [−1.0, 1.0] by
default, but can be any subset thereof. For example one could
disallow going short by setting an action range of [0.0, 1.0].
For this paper the action range is kept as the default, as any
modifications would be out of scope.

Episode Life-cycle
An episode is defined as a single simulation run. An episode
begins when the environment is initialized or reset and pro-
ceeds step-by-step through the historical dataset. The episode
concludes under one of two conditions:

1. Termination: The agent’s total equity falls to or below
zero. This represents bankruptcy and ends the episode
prematurely.

2. Truncation: The agent successfully navigates the entire
dataset, reaching the final time step.

Upon conclusion, the environment logs the complete his-
tory of the episode—including all market data, features,
agent actions, and resulting portfolio values—into a pandas
DataFrame.

Market Assumptions
At each step, the environment receives the agent’s target ex-
posure. It then calculates the required trade volume to shift
the current portfolio allocation to this new target. The simula-
tion executes this trade based on the following rules to model
a realistic market:

1. Transaction Costs: A percentage-based fee is applied
to every trade, reducing the cash proceeds from a sale or
increasing the cost of a purchase.

2. Leverage Constraint: The environment enforces a hard
leverage limit of 100%. The agent cannot buy assets
worth more than its available cash, nor can it take on a
short position that it cannot back with its current equity,
preventing it from incurring debt or facing a margin call
within the simulation’s rules.

3. Bid-Ask Spread: Buy orders are executed at the higher
ask price, and sell orders at the lower bid price, accu-
rately reflecting the cost of crossing the spread.

4. Zero Market Impact: Market prices evolve indepen-
dently of agent actions. This is a common simplification
in algorithmic trading simulations and reflects a ”price-
taking” agent [28].

3.4 Trading Logic
This section describes the trading logic used in the simula-
tion. We use commonly accepted symbols for the following
formulae, but in case there is any doubt a list of symbols and
exact descriptions are provided in appendix B.1.

Setup
The entire trading process starts upon environment reset.
Starting capital is cash-only, so E0 = C0, and S0 = 0. Since
we assume Zero Market Impact, this initial capital does not

have any impact on the simulation. Everything onward is just
relative. The agent makes a trade at the start of each time pe-
riod. For simplicity we assume that no slippage occurs and
trades are executed ”instantly”. Each trade updates the cash
and shares, which will then remain constant until the next
trade. The components of trade execution logic are depicted
in fig. 2.

For the determination of position value we uphold Mark-
to-Market (MTM), this means valuing open positions based
on current market prices rather than historical purchase costs.
If the number of shares St is positive, the market price is the
bid price (what others are willing to pay). If St is negative,
the ask price is used (the price to buy back the asset).

For each timeframe there are 5 key points: Open, High,
Low, Close, and Pre-action (in that order). Pre-action occurs
at the open of the next timeframe, but before the trade is ex-
ecuted, using the cash and shares from the previous timestep.
For calculating the exposure, equity and position value, we
focus on their value right before a trade is executed. This
way, the impact of the trade on their respective values can be
most accurately observed.

Action at ∈ A→ Target Exposure xt ∈ X
First, each raw action at provided by the agent is mapped to
a target exposure xt. We abbreviate n actions as Na.

xt = at at ∈ [−1, 1] Na = 0

xt = −1 +
2 · at
Na − 1

at ∈ {0, 1, . . . , Na − 1} Na > 0

Determining Trade Size

Based on the target exposure xt a number of shares to trade
∆St is determined.

V ⋆
t = xt · Et Target Position Value

S⋆
t =

V ⋆
t

P ask
t

xt > 0 (long)

V ⋆
t

P bid
t

xt ≤ 0 (short)
Target Shares

∆St = S⋆
t − St−1 Shares to Trade

Executing buy order

If ∆St > 0 we buy shares. We limit the amount of shares
bought to a maximum, to avoid going more than 100% long.

Smax
t =

Ct−1

(1 + κ) · P ask,open
t

(B.2)

Sb = min(∆St, S
max
t)

Ct = Ct−1 − Sb · (1 + κ) · P ask,open
t

St = St−1 + Sb

Executing sell order

If ∆St < 0 we sell shares. We limit the amount of shares
sold to a maximum, to avoid going more than 100% short.

Figure 2: Graph showing the trade execution process. Trades happen at the start of each timestep, starting from the second (first is reset).
Each trade updates the cash and shares. The change in equity of a trade is calculated as the difference between the equity right before the
trade, and the equity right before the next.

Smax,−
t =

Ct−1 + 2 · St−1 · P ask,open
t

2P ask,open
t − (1− κ) · P bid,open

t

(B.3)

Ss = min(−∆St, S
max,−
t)

Ct = Ct−1 + Ss · (1− κ) · P bid
t

St = St−1 − Ss.

3.5 Rewards
Standard Rewards
The primary objective of a trading agent for this paper is to
maximize its capital. Following the zero market impact as-
sumption, the size of the agent’s starting equity has no im-
pact on the simulation of the environment. This implies the
agent’s objective is to maximize the annualized profit ratio.

To align with this goal, the default reward function is de-
fined as the change in the agent’s total equity from the previ-
ous time step to the current one.

rt = Et − Et−1

This simple, dense reward structure directly incentivizes
profitable actions at every step. Common variants are the dif-
ference in log equities, the ratio in equity between timesteps,
or adding some heuristic for risk to incentivize the agent to
be more cautious in their trade execution (risk-adjusted re-
wards). A significant downside to most of these simple re-
ward functions however, is their short-sightedness. An ac-
tion that yields a large short-term reward might lead to worse
long-term outcomes.

Dynamic Programming Rewards
To overcome this short-sightedness, a future-aware reward
signal was developed. Using dynamic programming, we
pre-compute an approximation of the optimal value function
V ∗
t (ϵ) over a discretized state space of time and portfolio ex-

posure ϵ. The reward given to the agent is then based on
the optimality of its action relative to the computed optimal
policy. Specifically, the reward is the difference between the
agent’s actual one-step return and the return predicted by the
optimal value function, rt = log(Et+1/Et)+V ∗

t+1−V ∗
t (ϵt).

This incentivizes the agent not just to seek immediate profit,

but to take actions that lead to states with higher future poten-
tial. A full derivation is laid out in appendix C.

4 Experimental Setup
4.1 Baseline
For each of the following experiments. We start from a base-
line, and modify parts of function approximation to determine
their impact on model performance. This baseline was devel-
oped through combining aspects from different papers, sys-
tematic testing with hyperparameters, discussion with peers,
and original thought.

Environment setup
Following section 3, we made the following decisions for the
baseline with regard to the environment setup:

• Currency Pair: EUR/USD only.

• Data source: tick data sourced from Dukascopy down-
sampled to 1 hour candles, as described in section 3.1.

• Data split: 5 years of data (2020-2025), split 70% train-
ing, 30% evaluation.

• Continuous action space spanning [−1, 1].

• A 0.005% commission (called transaction cost in formu-
lae) on top of the cost of crossing the spread [29].

• Dynamic Programming optimal informed reward func-
tion as described in section 3.5.

• Observation space consisting of 16 carefully selected
features to capture price momentum, trend, reversals,
volatility, agent exposure, and time of day/week [30].

• Trading logic as described in section 3.4.

Model Algorithm
We primarily considered actor-critic methods due to their
potential to combine the strengths of both policy-based and
value-based reinforcement learning. Two prominent algo-
rithms in this category are Advantage Actor-Critic (A2C) and
Soft Actor-Critic (SAC). A2C has been shown to provide
more stable and efficient training with lower variance, and

has been successfully applied in financial tasks such as stock
and portfolio trading [31, 32, 33, 34].

SAC, on the other hand, is an off-policy method that opti-
mizes both expected return and policy entropy, allowing for
more exploratory and robust behavior. It has demonstrated
state-of-the-art performance in various continuous control
tasks, though it has seen less application in trading contexts
so far [35, 36, 37]. Ultimately, we selected SAC for our
experiments due to its enhanced stability, sample efficiency,
strong performance in continuous action spaces, and entropy-
regularized objective [36, 37]. The specific hyperparameters
used are laid out in appendix A.1.

4.2 Experiments

During training, models are saved every episode. Then we
evaluate each of the models deterministically, repeatedly tak-
ing the highest probability actions for a single episode on both
the training data and the evaluation data. This gives a gen-
eral idea of model performance across training episodes. For
each experiment, models were trained for 50 episodes across
5 seeds in an attempt to provide robust results.

Before evaluating the reinforcement learning agents, we
first establish performance benchmarks using several sim-
ple, non-learning models. These baselines implement basic,
heuristic-based trading strategies, to provide a crucial refer-
ence point. We have six experiments.

(1) Network Size This experiment aims to determine the
effect of model capacity on performance. We systematically
vary both the depth (number of hidden layers) and the width
(number of neurons per layer) of the networks. We test depths
of 1, 2, 3, and 4 layers, which we term ”shallow,” ”moderate,”
”deep,” and ”very deep,” respectively. For each depth, we
test widths of 8, 16, 32, and 64 neurons, termed ”narrow,”
”moderate,” ”wide,” and ”very wide.” This creates a grid of
16 different network sizes, allowing us to observe the trade-
offs between underfitting with small networks and potential
overfitting or increased training difficulty with larger ones.

(2) Network Shape While network size determines the to-
tal number of parameters, the shape—how those parameters
are arranged across layers—can also influence the learning
dynamics. In this experiment, we test five different network
shapes while keeping the total number of learnable param-
eters Np approximately constant. The exact shapes are laid
out in table 1, Reasoning for these parameters is described in
appendix A.2.

Name Architecture Np Nn Nflop
shallow 36, 36 2557 73 5041
inv funnel 19, 29, 44 2572 93 5051
funnel 37, 24, 16 2550 78 5022
flat 28, 28, 28 2577 85 5069
diamond 22, 40, 22 2571 85 5057

Table 1: Model comparison with architecture, parameter count Np,
neurons Nn, and Floating Point Operations Nflop

(3) Actor-Critic Parameter Division In the SAC algo-
rithm, the actor and critic have separate networks. This exper-
iment investigates whether performance is sensitive to how
the total computational budget (number of parameters) is di-
vided between them. We test five configurations laid out in
table 2. All networks have a depth of 2. Calculation of these
network widths is described in appendix A.3.

Experiment Name Wactor Wcritic Np Nflop
No Bias 32 32 4290 8450
Moderate Actor Bias 36 27 4232 8336
Moderate Critic Bias 27 36 4232 8336
Large Actor Bias 41 19 4144 8166
Large Critic Bias 19 41 4144 8166

Table 2: Network division configurations. Each experiment varies
the layer widths of the actor Wactor and critic Wcritic to bias parameter
allocation, while keeping the total parameter count (Np) and FLOPs
(Nflop) roughly constant.

(4) Activation Functions The choice of activation function
introduces non-linearity into the network, enabling it to learn
complex relationships. While ReLU is a common default,
other functions may offer advantages. This experiment com-
pares the performance of the baseline network architecture
when using six different activation functions: ReLU, Leaky
ReLU, Sigmoid, SiLU (Swish), Tanh, and ELU.

(5) Feature Extraction: Technical Indicators vs. CNN
The baseline model using handcrafted technical analysis fea-
tures is compared against another using a Convolutional Neu-
ral Network (CNN) for feature extraction. The CNN alterna-
tive uses two convolutional layers to extract cross-feature and
temporal patterns from a sliding window of 48 time steps of
minimally processed OHLC and volume data. Details on the
structure of the CNN are laid out in appendix A.4.

(6) Regularization: Weight Decay To mitigate overfit-
ting, a common regularization technique is weight decay
(L2 regularization), which adds a penalty to the loss func-
tion proportional to the squared magnitude of the network
weights. This experiment investigates the impact of the
strength of this regularization on model performance. Five
different values for the weight decay coefficient are tested:
10−6, 10−5, 10−4, 10−3, 10−2. Note that the baseline does
not have weight decay.

5 Results
For each of the models, we focus on two aspects: overall per-
formance as the profit ratio, and trade performance as the to-
tal number of trades. A trade is defined as the period during
which the agent maintains a position, either long or short, be-
ginning from the moment the position is assumed and ending
when the agent transitions to the opposite position. All of
the graphs that will be discussed in the following sections are
shown in their entirety in appendix E.

(1) Network Size We observe the following aspects: wider
networks get the highest profit ratios on the training data, but
lose their edge when trading on evaluation data, see fig. 3.

Figure 3: Profit factor across network widths for very deep networks
on the evaluation and training environment.

Figure 4: Profit factor across activation functions on the evaluation
and training environment.

None of the network sizes was able to get profit on the unseen
data. The networks with the highest profit ratio are those that
collapse into a single action, which happens most frequently
to smaller (shallow or narrow) networks.
(2) Network Shape Network shape did not seem to have
a significantly impact either the profit ratio or the number of
trades executed, given a fixed number of parameters. All net-
works performed approximately the same.
(3) Actor-Critic Parameter Division A moderate or large
critic bias improves performance on training data, this effect
is lost on unseen data. We notice dividing parameters over
networks has no significant effect on out of sample perfor-
mance. We also notice that the stronger the bias the less ac-
tions agents take, with some collapsing into single actions.
(4) Activation Functions As shown in fig. 4: (Leaky)ReLU
learned the fastest and had the highest profit ratio on training
data, whereas models using Sigmoid activation functions had
the best performance on evaluation (unseen) data across acti-
vation functions, and one of the highest profit factors across
all models evaluated.
(5) Feature Extraction: Technical Indicators vs. CNN
The agent informed using CNN extracted features collapsed

into a single action. This suggests the features extracted were
not informative enough for the agent to overcome the hurdle
of transaction costs. The model using technical indicators had
a lower profit ratio, but was consistently trading.
(6) Regularization: Weight Decay Increasing the decay
factor has no significant effect on the baseline model up until
about 0.001, from which onward the agent becomes unable
to learn and collapses into a single action.

6 Discussion
6.1 Interpretation
In this section we discuss the factors contributing to some of
the observed results.
(3) Parameter division The higher profit ratio on training
data of critic-biased networks can be attributed to the critic’s
role as the Q-value function in the SAC algorithm. A network
with more parameters has a higher capacity to model the com-
plex, non-linear relationships between the market state and its
potential value. This allows the critic to provide a more pre-
cise and detailed learning signal to the actor, enabling it to
better exploit the specific patterns and nuances present in the
training dataset, resulting in a higher profit ratio. This ad-
vantage is likely lost on the unseen data due to overfitting on
noise.
(4) Activation Functions The differing performance be-
tween (Leaky)ReLU and Sigmoid activation functions high-
lights a classic trade-off between model flexibility and reg-
ularization. ReLU is an unbounded function, which grants
the network higher representational power to fit the training
data very closely, including its noise, leading to better perfor-
mance on that data but risking overfitting. In contrast, Sig-
moid is a bounded function that squashes activations into a
fixed range, acting as a form of implicit regularization. This
constraint prevents the network from reacting excessively to
outliers or noise, forcing it to learn more general and robust
patterns that are more likely to persist in the unseen evalua-
tion data.
(5) Feature Extraction The failure of the agent using
CNN-extracted features to learn the information necessary
to trade likely stems from the specific network architec-
ture. While handcrafted technical indicators represent strong,
expert-driven priors designed to isolate market phenomena
like trend and momentum, the CNN must learn useful rep-
resentations from scratch. This, combined with the highly
specific design and noisy input, likely produced uninforma-
tive features.
(6) Weight decay The observation that weight decay pro-
vided no benefit and was detrimental at higher values sug-
gests that the baseline model was not significantly overfitting.
Regularization techniques are effective only when there is ex-
cess model capacity to constrain. The baseline network, with
its relatively small architecture ([32, 32]) and curated set of
16 features, is likely already capacity-limited and does not
have enough parameters to excessively memorize the training
data. Larger decay factors consequently induced underfitting
by excessively penalizing all network weights, causing the
policy to collapse.

6.2 Generalizability

There are a few reasons why the generalizability of the results
can be called into question. The first reason is the high vari-
ance and low seed count; the second is the lack of variety in
evaluation environments; and the third is the possibility of a
performance bottleneck. These reasons may contribute to an
inability to derive clear conclusions from the data.

First observation is the high variance in all of the results.
This, combined with the low seed count of 5 suggests that
a significant portion of the difference in mean performance
across methods may be attributed to variance. The low seed
count could also be a contributing factor for the high variance
in the variance itself, rather than one method being truly more
”stable” than another.

Furthermore, there is a lack of variety in the evaluation en-
vironment. The evaluation was conducted on a single, fixed
out-of-sample dataset, meaning the results may be specific
to that particular market period. While techniques such as
k-fold cross-validation are common for establishing more ro-
bust results, they were not used for this paper. This was pri-
marily due to the temporal dependency of the Reinforcement
Learning problem; using a ”middle fold” for validation would
disrupt the chronological order of data, violating the Markov
property essential for the agent’s learning process. Addition-
ally, the computational cost of training multiple models for
each experiment was infeasible given the available resources.

In cases where no significant performance difference was
observed, such as the network shape experiments (Experi-
ment 2), the outcome may be explained by the bottleneck
principle. This principle suggests that an unvaried, limiting
factor in the experimental setup may be constraining over-
all performance, thereby masking the potential impact of the
variable being tested. For the network shape experiments, it is
plausible that the baseline’s relatively small network size and
limited 16-feature space acted as this bottleneck, causing the
network shape to have no meaningful influence on the final
trading performance.

6.3 Problem complexity

The main difficulties of developing a reinforcement learning
agent that reliably gets positive returns on unseen data can be
reduced to the following.

Changing position (Trading) comes with the penalty of
commission, and spread costs. Therefore agents are incen-
tivized to just hold a single position. To overcome this local
optimum, the agent must develop enough of a predicting ca-
pability to justify actual consistent trading. However, since
the signal to noise ratio is quite low in Forex Trading, the mo-
ment the agent ”catches on” and has enough insight to trade,
it is already close to overfitting, causing poor performance on
unseen data. This balance is one of the main difficulties in
getting generalized model performance.

One method of decreasing noise is to decrease the granu-
larity of the data. This aggregates values across timeframes,
decreasing fluctuations in price and volume. However, this
also eliminates the possibility to exploit these fluctuations in
price, exponentially reducing the maximum possible return.

6.4 Usage of Future-Aware rewards
Finally, the usage of future-aware rewards can be taken into
doubt. After all, a reinforcement learning agent is already try-
ing to optimize the discounted sum of rewards (also called the
return). Wouldn’t future-aware rewards cause the agent to op-
timize the ”return of the return”? Wouldn’t pulling some es-
timation of future reward into the present reward signal, lead
the agent to focus on optimizing the wrong thing?

Given that the goal is to maximize the equity ratio, the fol-
lowing property should hold: ”If the return for one policy is
higher than that for another, then the equity ratio should also
be higher.”. Following the mathematical reasoning described
in appendix C.3, this property holds for both standard (short-
sighted) and the optimal value function based (future-aware)
rewards. This means optimizing the future aware reward is
equivalent to optimizing the equity ratio, alleviating the con-
cern of misaligned goals.

7 Conclusion
This research sought to determine how different function
approximation methods impact a Reinforcement Learning
agent’s trading performance in the EUR/USD Forex market.
Our investigation, which systematically evaluated the effects
of network architecture, activation functions, and feature ex-
traction, found that while no configuration achieved reliable
profitability on unseen data, the choice of specific compo-
nents has a significant and discernible impact on model be-
havior.

The primary contribution of this work is the empirical
demonstration of a critical trade-off between a model’s ca-
pacity to learn and its ability to generalize. Key findings in-
dicate that the unbounded ReLU activation function led to
faster learning on the training set, whereas the bounded Sig-
moid function demonstrated superior performance on evalu-
ation data, suggesting it provides a form of implicit regular-
ization that promotes robustness. Conversely, other architec-
tural choices, such as network shape and parameter division
between the actor and critic, had no significant impact on out-
of-sample performance.

Future work should address the reliability concerns noted
in this study by repeating experiments with more random
seeds and across different out-of-sample time periods. A
promising direction involves combining the most successful
elements identified, such as a more sophisticated Convolu-
tional Neural Network (CNN) for feature extraction paired
with a larger, appropriately regularized network. An alterna-
tive research avenue is to reframe the problem as a supervised
learning task, using the optimal policy derived from dynamic
programming as ground truth. This could offer a more stable
and computationally efficient path to developing a profitable
trading agent by leveraging techniques such as data shuffling
unavailable in a strict RL context.

8 Responsible Research
This research was conducted in adherence to the principles
of responsible research, emphasizing ethical considerations
and the reproducibility of our findings. Our methodology is
designed to be transparent and verifiable.

8.1 Ethical Considerations
The primary goal of this research is to contribute to the sci-
entific understanding of Reinforcement Learning models in
financial markets. All data used in this study is publicly avail-
able historical Forex data sourced from Dukascopy, which
mitigates concerns regarding privacy and sensitive informa-
tion. We acknowledge that research in algorithmic trading
carries societal implications; our focus remains on the aca-
demic exploration of model performance rather than the de-
velopment of a commercial trading system.

We are acutely aware of the potential for scientific miscon-
duct, such as data fabrication or manipulation. To prevent
such issues, our data processing pipeline, from raw tick data
aggregation to feature engineering, is explicitly documented
in Section 3.1 and 3.2. Furthermore, the study’s conclusions
are based solely on the results obtained through the described
methodologies.

8.2 Reproducibility
A central tenet of credible computational science is repro-
ducibility, which requires that sufficient details of the re-
search are available for independent verification. We have
taken several steps to ensure our work is reproducible.

• Data and Code Sharing: The complete source code for
the trading environment, the RL agent, and the analy-
sis scripts are publicly available in a GitHub repository
[27]. We provide links to the data source, Dukascopy, al-
lowing for independent acquisition of the raw data [23].

• Methodological Transparency: Our paper provides a
detailed description of the experimental setup, including
the environment, the baseline model, specific hyperpa-
rameter configurations, and the exact algorithms used.

9 Acknowledgements
The overarching project ”The use of Reinforcement Learn-
ing in Algorithmic Trading” was conducted as part of the
CSE3000 Research Project course in collaboration between
a group of five members. I would like to acknowledge
and thank my fellow group members—Finn van Ooster-
hout, Mihai Radu Serban, Justas Bertašius, and Yavuz
Hançer—for their valuable contributions, teamwork, and ded-
ication throughout the project.

References
[1] Ganesh Marimuthu. Algorithmic trading in forex mar-

kets: The impact of ai-driven strategies on liquidity and
market efficiency. International Journal of Scientific
Research in Computer Science Engineering and Infor-
mation Technology, 2025.

[2] Terry Lingze Meng and Matloob Khushi. Reinforce-
ment learning in financial markets. Data, 2019.

[3] Yang Liu, Qi Liu, Hongke Zhao, Pan Zhen, and Chuan-
ren Liu. Adaptive quantitative trading: An imitative
deep reinforcement learning approach. Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.

[4] Shuo Sun, Rundong Wang, and Bo An. Reinforce-
ment learning for quantitative trading. arXiv preprint
arXiv:2109.13851, 2021.

[5] Malla Venkata Sai Ashish. Algorithmic trading using
machine learning. International Journal of Scientific
Research in Engineering and Management, 2025.

[6] Hana Jamali, Younes Chihab, Ivan Garcia-Magarino,
and Omar Bencharef. Hybrid forex prediction model us-
ing multiple regression, simulated annealing, reinforce-
ment learning and technical analysis. IAES Interna-
tional Journal of Artificial Intelligence (IJ-AI), 2023.

[7] F. Garçia and E. Rachelson. Markov decision processes.
Markov Decision Processes in Artificial Intelligence,
pages 1–38, 2013.

[8] B. Gasperov, S. Begusic, P. Posedel, and Z. Kostanjcar.
Reinforcement learning approaches to optimal market
making. Mathematics, 9:2689, 2021.

[9] N. Bäuerle and U. Rieder. Markov decision pro-
cesses. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 112:217–243, 2010.

[10] H. Wang and X. Zhou. Continuous-time mean-variance
portfolio selection: a reinforcement learning frame-
work. SSRN Electronic Journal, 2019.

[11] H. Wang, T. Zariphopoulou, and X. Zhou. Exploration
versus exploitation in reinforcement learning: a stochas-
tic control approach. SSRN Electronic Journal, 2019.

[12] C. Peng and Z. Zhao. Exploring new trends in the global
foreign exchange derivatives market based on the euro-
pean and american financial markets. Advances in Eco-
nomics, Management and Political Sciences, 53:188–
194, 2023.

[13] S. Ogbeide. Empirical assessment of foreign exchange
market effect on the nigerian emerging economy. Man-
agement and Economics Review, 3:102–109, 2018.

[14] Y. Yong, D. Ngo, and Y. Lee. Technical indicators for
forex forecasting: a preliminary study. Computational
Intelligence in Information Systems, pages 87–97, 2015.

[15] H. Wang, Y. Yuan, Y. Li, and X. Wang. Financial conta-
gion and contagion channels in the forex market: a new
approach via the dynamic mixture copula-extreme value
theory. Economic Modelling, 94:401–414, 2021.

[16] A. Geromichalos and K. Jung. An over-the-counter ap-
proach to the forex market. International Economic Re-
view, 59:859–905, 2018.

[17] K. Pakhrudin, K. Kamaruddin, and F. Ahmad. Trader
hub system development using van k tharp expectancy
theory to analyse retail forex trading system perfor-
mance. Malaysian Journal of Computing, 5:523, 2020.

[18] M. Öztürk, İ. Toroslu, and G. Fidan. Heuristic based
trading system on forex data using technical indicator
rules. Applied Soft Computing, 43:170–186, 2016.

[19] Z. Yang, C. Jin, Z. Wang, M. Wang, and M. Jordan.
On function approximation in reinforcement learning:

optimism in the face of large state spaces. arXiv preprint
arXiv:2011.04622, 2020.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, Y. Chen, T. Lillicrap, H. Fan, L. Sifre,
G. Driessche, T. Graepel, and D. Hassabis. Master-
ing the game of go without human knowledge. Nature,
550:354–359, 2017.

[21] A. Fickinger, H. Hu, B. Amos, S. Russell, and
N. Brown. Scalable online planning via reinforcement
learning fine-tuning. arXiv preprint arXiv:2109.15316,
2021.

[22] L. Abednego and C. Nugraheni. Forex data analysis us-
ing weka. Computer Science & Information Technol-
ogy, 2020.

[23] Dukascopy Bank SA. Forex historical data feed, 2025.
Accessed: 2025-06-01.

[24] K. Bednarz. Portfel markowitza w transakcjach na
rynku forex. Przeglad Organizacji, Vol. 55:603–622,
2024.

[25] Fabiola Santore, Eduardo Cunha de Almeida, Wag-
ner Hugo Bonat, Eduardo H. M. Pena, and Luiz S.
Oliveira. A framework for analyzing the impact of miss-
ing data in predictive models. Proceedings of the 35th
Annual ACM Symposium on Applied Computing, 2020.

[26] T. Kim, W. Ko, and J. Kim. Analysis and impact eval-
uation of missing data imputation in day-ahead pv gen-
eration forecasting. Applied Sciences, 9:204, 2019.

[27] Robert Mertens. Tud-cse-rp-rlinfinance. https://github.
com/Fo3nix/TUD-CSE-RP-RLinFinance, 2025. Ac-
cessed: 2025-06-22.

[28] John Moody and Matthew Saffell. Learning to trade
via direct reinforcement. IEEE Transactions on Neural
Networks, 12:875–89, 07 2001.

[29] FOREX.com. When does forex.com charge commis-
sions? https://www.forex.com/en/help-and-support/
raw-spread-account/, 2025. Accessed: 2025-06-19.

[30] Zihao Zhang, Stefan Zohren, and Stephen Roberts.
Deep reinforcement learning for trading. arXiv preprint
arXiv:1911.10107, November 2019.

[31] H. Trinh, S. Bae, and Q. Tran. Improving traffic ef-
ficiency in a road network by adopting decentralised
multi-agent reinforcement learning and smart naviga-
tion. Promet - Traffic&Transportation, 35:755–771,
2023.

[32] Y. Han, J. Liu, D. Tian, and Q. Zhang. A novel anti-risk
method for portfolio trading using deep reinforcement
learning. Electronics, 11:1506, 2022.

[33] S. Singh, V. Goyal, S. Goel, and H. Taneja. Deep rein-
forcement learning models for automated stock trading.
Applied Technology and Data Science, 2022.

[34] N. Yousefi. Deep reinforcement learning for tehran
stock trading. Journal of Novel Engineering Science
and Technology, 1:37–42, 2022.

[35] C. Wang and K. Ross. Boosting soft actor-critic: em-
phasizing recent experience without forgetting the past.
arXiv preprint arXiv:1906.04009, 2019.

[36] Z. Shi and S. Singh. Soft actor-critic with cross-entropy
policy optimization. arXiv preprint arXiv:2112.11115,
2021.

[37] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,
J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and
S. Levine. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905, 2018.

A Experiment details
A.1 Baseline Hyperparameters
The baseline SAC hyperparameters are described in table 3

Hyperparameter Value
policy MlpPolicy
activation fn ReLU
net arch vf,qf=[32,32]
learning rate 3× 10−4

buffer size 200,000
learning starts 1,000
batch size 256
tau 0.005
gamma 1.0
ent coef auto
gradient steps 2
train freq 48

Table 3: SAC hyperparameters used in training

A.2 Shape parameter calculation
The network shapes used in the experiments (e.g., flat, dia-
mond, funnel) were determined by solving a constraint satis-
faction problem with a precise objective function. The goal
was to find a set of network architectures, one for each shape
type, where the total number of trainable parameters is as
close as possible across all types. This ensures that any ob-
served performance difference is due to the network’s archi-
tectural shape, not its capacity.

The process begins by defining constraints to generate a
large pool of valid candidate architectures for each shape
type. The primary constraints are:

1. Layer sizes are not extreme: The number of neurons
in any hidden layer must be within a reasonable range,
set between 16 and 64 neurons.

2. The shapes are distinct: For non-uniform shapes like
‘funnel‘ or ‘diamond‘, a scaling factor determines how
the layer width changes. This factor is constrained to be
between 1.5 and 2.0 to ensure the shape is distinct and
meaningful.

From the pools of valid candidates, a search algorithm is
employed to find the optimal combination. For each shape
type, its list of candidate architectures is sorted by the to-
tal parameter count. The algorithm then uses a multi-pointer

https://github.com/Fo3nix/TUD-CSE-RP-RLinFinance
https://github.com/Fo3nix/TUD-CSE-RP-RLinFinance
https://www.forex.com/en/help-and-support/raw-spread-account/
https://www.forex.com/en/help-and-support/raw-spread-account/

search strategy, iterating through the sorted lists to find a set
of architectures (one for each shape type) that minimizes the
absolute difference between the maximum and minimum pa-
rameter counts in the set. This optimization yields the specific
hidden layer dimensions for each shape that are subsequently
used in the experiments, attempting to ensure a fair compari-
son.

A.3 Division sizes
The experiment on actor-critic parameter division required
calculating network widths that would result in a specific pa-
rameter count. The goal was to allocate a fixed total param-
eter budget between the actor and critic networks according
to a predetermined ratio (e.g., 60%/40%), while keeping the
network depth constant.

This was achieved by first establishing the relationship be-
tween a network’s width and its total number of parameters.
For a feed-forward network with an input layer of size din, an
output layer of size dout, and N hidden layers of a uniform
width w, the number of parameters P can be expressed as a
function of w. Based on the implementation used to solve for
the width, this relationship is formulated as:

P = (N − 1)w2 + (din + dout +N)w + (1− bias term)

Rearranging this gives a quadratic equation in terms of the
width w:

(N − 1)w2 + (din + dout +N)w + (C − P) = 0

where C is a constant related to the bias terms. This equa-
tion can be solved for w using the standard quadratic formula,
yielding the required network width to achieve a specific pa-
rameter count P .

For the experiment, the process is as follows:

1. A total parameter budget, Ptotal, is defined based on the
baseline model’s architecture.

2. For a given division ratio δ (e.g., 0.75 for a large bias),
the individual parameter budgets for the actor (Pactor)
and critic (Pcritic) are calculated:

Pactor = δ · Ptotal

Pcritic = (1− δ) · Ptotal

3. The quadratic equation is then solved independently for
the actor and critic, using their respective parameter bud-
gets (Pactor and Pcritic), to find the necessary uniform
layer widths, wactor and wcritic.

This method ensures that the total model capacity remains
constant while precisely controlling the distribution of param-
eters between the two key components of the SAC algorithm.

A.4 CNN Architecture
The goal of the CNN is to automate the process of feature
extraction from raw, windowed time-series data, serving as
an alternative to handcrafted technical indicators. The net-
work is designed to process a sliding window of market data
and produce a compact feature vector for the policy and value
networks.

Input Data Preprocessing
The CNN does not operate on raw price data directly. Instead,
it takes a window of 48 time steps, where each step contains
a set of minimally processed features derived from the orig-
inal OHLC (Open, High, Low, Close) and volume data. The
transformations are:

• Stationarity Transformation: Absolute price levels are
non-stationary. To address this, all OHLC columns are
converted into percentage returns relative to the previous
time step.

• Volume Normalization: Trading volume can vary dras-
tically. To prevent outliers from disproportionately in-
fluencing the network, the volume is normalized using a
robust scaler (based on interquartile range) over a 100-
step lookback window.

• Basic Shape Features: Simple, unscaled ratios such
as the high-low range (hl ratio), open-close range
(oc ratio), and bid-ask spread (spread), all relative to the
closing price, are included.

These provide the network with raw, fundamental informa-
tion about the shape and liquidity of each candlestick.

Architecture Design and Rationale
The CNN architecture, is specifically tailored for financial
time-series data. It consists of two convolutional layers fol-
lowed by a pooling layer and a final linear projection.

Layer 1 The first layer is the most critical. Unlike typical
image CNNs that use small, square kernels, this layer uses a
kernel with a height equal to the total number of input features
and a temporal width of 3. This design forces the convolution
to capture patterns by looking at all input features simultane-
ously across a very short time window (the current step and
its immediate neighbors). It effectively collapses the feature
dimension, learning 32 unique filters that represent complex
cross-feature relationships (e.g., ”what is the relationship be-
tween high returns, low volume, and a widening spread at this
moment?”).

Layer 2 After identifying instantaneous cross-feature pat-
terns, the second convolutional layer is designed to find tem-
poral relationships within those learned patterns. It operates
on each of the 32 feature maps from the previous layer inde-
pendently, looking for patterns across a 5-step time window.
This allows the model to learn sequential information, such
as trends or momentum, from the abstract features generated
by the first layer.

Layer 3 A max-pooling layer is applied to the temporal di-
mension. This serves two purposes: first, it reduces the se-
quence length by half, which decreases the number of param-
eters in the subsequent fully-connected layer and helps con-
trol overfitting. Second, it provides a degree of local time-
invariance, making the learned features more robust to slight
shifts in the timing of patterns.

Layer 4 After the convolutional and pooling blocks, the re-
sulting feature maps are flattened into a 1D vector. A final
linear layer projects this vector onto a fixed-size embedding
of dimension 27. This acts as a final aggregator, producing

the compact feature representation that is ultimately passed
to the actor and critic networks. The output dimension of 27
was chosen to be comparable to the number of features in the
handcrafted ”technical analysis” experiment, ensuring a fair
comparison of feature extraction methods.

Finally, the 27-dimensional feature vector from the CNN
is concatenated with a separate vector of non-windowed data
(e.g., current exposure, time-of-day features). Adding up to
32 features in total. This hybrid approach allows the model
to leverage both automatically learned patterns from the price
and volume history via the CNN and explicit, ”necessary”
engineered features representing the agent’s current state and
temporal context.

B Trading Logic Clarifications
B.1 Notation

• t ∈ {0, 1, . . . , T − 1} the current timestep.

• P bid,open
t , P bid,high

t , P bid,low
t , P bid,close

t : the bid prices mea-
sured at open, high, low, close of period t.

• P ask,open
t , P ask,high

t , P ask,low
t , P ask,close

t : the ask prices mea-
sured at open, high, low, close of period t.

• κ: transaction cost percentage (e.g. κ = 0.001 for 0.1%)
• at ∈ A: action taken by agent at start of period t.
• xt ∈ X : target exposure corresponding to action at.
• Ct, St: cash and number of shares held during period t.

From the moment action at has been executed until just
before action at+1 is executed.

• ϵt ∈ E : exposure of the portfolio at the start of timestep
t before at is executed. ϵt = pt/Et

• pt: position value at the start of timestep t before at is
executed.

pt = Ct−1 · P ∗
t P ∗

t =

{
P bid,open
t , St−1 ≥ 0,

P ask,open
t , St−1 < 0.

• Et: equity at the start of timestep t before at is executed.
Et = Ct−1 + pt

• Na, Nx, Nϵ number of elements in A,X , E respectively.
Only defined when the space is discrete.

B.2 Derivation for max shares to buy in
buy shares

Our goal is to find the maximum number of shares we can
buy Sbuy such that

Position Value
Equity

≤ 1,

is always satisfied. We solve for the limit case where expo-
sure is exactly 1.

The Limit Condition:
Position Value

Equity
= 1

Position Value = Equity
Equity = Updated Cash + Position Value

Position Value = Updated Cash + Position Value
Updated Cash = 0.

Define Final State Variables in terms of Sbuy:
Let:

• Scurr = Current Shares
• Ccurr = Current Cash
• Pask = Ask Price
• Pask eff = Pask ·

(
1 + transaction cost pct

)
Then:
• Updated Shares = Scurr + Sbuy

• Updated Cash = Ccurr − Sbuy · Pask eff

Substitute into the Limit Condition and Solve for Sbuy:
Ccurr − Sbuy · Pask eff = 0

Sbuy · Pask eff = Ccurr

Sbuy =
Ccurr

Pask ·
(
1 + transaction cost pct

) .
This formula gives us the precise number of shares to buy

to hit 100% leverage.

B.3 Derivation for max shares to sell in
sell shares

Our goal is to find the maximum number of shares we can sell
Ssell such that

Position Value
Equity

≥ −1,

is always satisfied. We solve for the limit case where expo-
sure is exactly −1.

1. The Limit Condition:
Position Value

Equity
= −1

Position Value = −Equity
Equity = Updated Cash + Position Value

Position Value = −
(
Updated Cash + Position Value

)
2 · Position Value = −Updated Cash.

2. Define Final State Variables in terms of Ssell:
Let:

• Scurr = Current Shares
• Ccurr = Current Cash
• Pask = Ask Price
• Pbid eff = Pbid ·

(
1− transaction cost pct

)
Then:
• Updated Shares = Scurr − Ssell

• Updated Cash = Ccurr + Ssell · Pbid eff

• Position Value =
(
Scurr − Ssell

)
· Pask

3. Substitute into the Limit Condition and Solve for Ssell:
2 ·

(
Scurr − Ssell

)
· Pask = −

(
Ccurr + Ssell · Pbid eff

)
2Scurr Pask − 2Ssell Pask = −Ccurr − Ssell Pbid eff

Ssell
(
Pbid eff − 2Pask

)
= −

(
Ccurr + 2Scurr Pask

)
Ssell =

−(Ccurr + 2Scurr Pask)

Pbid eff − 2Pask
=

Ccurr + 2Scurr Pask

2Pask − Pbid eff
.

This formula gives us the precise number of shares to sell
to hit −100% leverage.

C Dynamic Programming Rewards
C.1 Derivation of Optimality
State Space Discretization The continuous exposure space
[−1, 1] is discretized into Nϵ equally spaced exposure levels
for state representation, and the target exposure space is dis-
cretized into Nx equally spaced levels for action selection:

E =

{
−1,−1 +

2

Nϵ − 1
, . . . , 1− 2

Nϵ − 1
, 1

}
(1)

X =

{
−1,−1 +

2

Nx − 1
, . . . , 1− 2

Nx − 1
, 1

}
(2)

For a given exposure value ϵ ∈ [−1, 1], the corresponding
discrete index is computed as: idx(ϵ) = ⌊(ϵ+ 1) · (Nϵ − 1) ·
0.5 + 0.5⌋
Dynamic Programming Formulation The optimal trading
problem is formulated as a finite-horizon Markov Decision
Process. At each timestep t and current exposure level ϵ, we
define:

• Value function Vt(ϵ): the maximum expected cumula-
tive log-equity from a state with exposure ϵ at time t to
the terminal time T .

• Policy function πt(ϵ): the optimal target exposure x∗
t

for a state with exposure ϵ at time t.

• Worst-case function Qmin
t (ϵ): the minimum one-step

continuation value among all possible target exposures
for a state with exposure ϵ at time t.

• Immediate equity ratio rt(ϵ, x): the ratio between next
equity and current equity (Et+1/Et) for state-action pair
(ϵ, x) at time t

Backward Induction Algorithm The optimal value and
policy tables are computed using backward induction, start-
ing from the terminal timestep T − 1 and working backwards
to t = 0:

1. Terminal condition: VT−1(ϵ) = 0 ∀ϵ ∈ E
2. Recursive relation: For t = T − 2, T − 3, . . . , 0 and

each exposure level ϵ ∈ E :

Vt(ϵ) = max
x∈X

{log(rt(ϵ, x)) + Vt+1(ϵ
′)}

where:

• ϵ′ is the exposure after taking action x from exposure ϵ
at timestep t and following market movements until just
before action xt+1 is executed.

• Transaction cost are taken accounted of.

Associated Formulae Following the dynamic program-
ming formulation and the backward induction algorithm, we
can directly define the optimal policy πt and worst-case one-
step continuation value function Qmin

t .

πt(ϵ) = argmax
x∈X

{log(rt(ϵ, x)) + Vt+1(ϵ
′)}

Qmin
t (ϵ) = min

x∈X
{log(rt(ϵ, x)) + Vt+1(ϵ

′)}

Equity Transition Model For each state-action pair (ϵ, x)
at timestep t, the next exposure ϵ′ is computed as follows:

1. Reverse equity calculation: First, we decompose the
current equity and exposure into cash and shares. We
use current equity Et = 1 such that the resulting equity
is directly the equity ratio Et+1/Et = Et+1.

(Ct−1, St−1) = reverse equity(P bid,open
t , P ask,open

t , 1, ϵ)

2. Trade execution: Then we use the cash and shares to
execute the trade to achieve target exposure x.

(Ct, St) = trade(x, P bid,open
t , P ask,open

t , Ct−1, St−1, κ)

3. Market evolution: Using the resulting cash and shares
we compute the equity after market movements.

Et+1 = calculate equity(P bid,open
t+1 , P ask,open

t+1 , Ct, St)

4. Next exposure: Finally, we compute the resulting expo-
sure:

ϵ′ =
Et+1 − Ct

Et+1

Interpolation for Continuous States Since the agent op-
erates in continuous exposure space while the DP tables are
discrete, bilinear interpolation is used to estimate values for
arbitrary current exposure levels:

Vt(ϵ) = (1− α) · Vt(ϵlow) + α · Vt(ϵhigh)

where ϵlow and ϵhigh are the nearest discrete exposure levels,
and α is the interpolation weight determined using relative
closeness to each discrete exposure level.

C.2 Future Aware Reward formulations
The DP-based reward is not a single function but a family
of related functions designed to provide robust, future-aware
feedback by comparing the agent’s performance against the
optimal and worst-case scenarios pre-computed by dynamic
programming. We distinguish between three primary formu-
lations.
A. Bottom-up Reward This reward function quantifies
how much better the agent’s action was compared to the worst
possible action at the current state. It provides a reward based
on the advantage over the minimum performance baseline.

rAt =
(
log rtrue

t + Vt+1(ϵt+1)−Qmin
t (ϵt)

)
· norm

where rtrue
t = Et+1/Et is the true equity ratio, Vt+1(ϵt+1) is

the interpolated optimal future value, Qmin
t (ϵt) is the interpo-

lated worst-case value from the current state, and ”norm” is a
global normalization factor.
B. Top-down Reward This reward function measures how
much worse the agent’s action was compared to the optimal
action, effectively quantifying the sub-optimality loss.

rBt =
(
log(rtrue

t) + Vt+1(ϵt+1)− Vt(ϵt)
)
· norm

The value is always less than or equal to zero (before normal-
ization and clipping), with a reward of zero indicating that the
optimal action was taken. This ”top-down” approach penal-
izes any deviation from the optimal policy π∗.

Motivation for a Third Reward Function The raw values
of these future-aware rewards are often highly skewed, with
a distribution resembling an exponential decay where most
rewards are very close to zero and a few are exceptionally
large. Normalizing these values using a single global factor
can cause the vast majority of reward signals to become nu-
merically insignificant. This may lead to slow or ineffective
learning, as the agent receives meaningful feedback only in
rare, high-stakes situations. To address this, a third formula-
tion is introduced that intends to fix this issue.
C. Percentile-normalized Reward This reward function
decouples the quality of an action from the inherent impor-
tance of the state. First, we define the “state importance”
It(ϵt) as the range between the best and worst possible one-
step outcomes:

It(ϵt) = Vt(ϵt)−Qmin
t (ϵt)

This value is then used to construct a two-part reward. A
“goodness” score is calculated by normalizing the agent’s
performance within this range, and it is then scaled by the
pre-computed percentile rank of the state’s importance.

Goodnesst = 2 · Q
π
t (ϵt, xt)−Qmin

t (ϵt)

It(ϵt)
− 1

rCt = Goodnesst · Percentile(It(ϵt))

This formulation ensures a consistent reward range for deci-
sion quality at every state, while still emphasizing the impor-
tance of making good decisions in critical situations.

C.3 Proof of Order-Equivalence
Objective We aim to prove that for two policies, πA and
πB , the total return under the DP-based reward functions for
πA is greater than for πB if and only if the final equity for
πA is greater than for πB , given the same starting equity. We
assume an undiscounted setting (γ = 1).
Preliminaries An episode runs for T − 1 timesteps from
t = 0, . . . , T − 2. The value function at the terminal timestep
T − 1 is defined to be zero: VT−1(ϵ) = 0 for all ϵ ∈ E .

Baseline: Simple Log-Equity Rewards
First, we establish the property for a simple reward function
equal to the one-step log-equity ratio.

1. Simple Reward Definition: The reward at timestep t is
defined as:

rt = log

(
Et+1

Et

)
2. Total Return Calculation: The total return for a policy

π is the sum of these rewards:

G(π) =

T−2∑
t=0

rt =

T−2∑
t=0

log

(
Et+1

Et

)
3. Telescoping Sum: This sum forms a telescoping series

which simplifies to the total log-equity ratio over the
episode:

G(π) = log

(
ET−1

E0

)

4. Equivalence Proof: Comparing two policies, πA and
πB , starting from the same initial equity E0:

G(πA) > G(πB) ⇐⇒ log
EA

T−1

E0
> log

EB
T−1

E0

As the logarithm function is strictly monotonic, this is
equivalent to:

G(πA) > G(πB) ⇐⇒
EA

T−1

E0
>

EB
T−1

E0

Thus, maximizing the simple log-equity return is per-
fectly equivalent to maximizing the final equity.

Bellman Decomposition and Sub-Optimality Loss
To analyze the DP rewards, we introduce a key identity de-
rived from the Bellman equations.

Sub-Optimality Loss Definition: For any state ϵt and an
action xt from policy π, the Bellman inequality is Vt(ϵt) ≥
Qπ

t (ϵt, xt), where Qπ
t (ϵt, xt) = log(Et+1/Et)+Vt+1(ϵt+1).

We define the single-step sub-optimality loss δt ≥ 0 as:

δt(π) ≡ Vt(ϵt)−Qπ
t (ϵt, xt)

δt(π) = Vt(ϵt)−
(
log

(
Et+1

Et

)
+ Vt+1(ϵt+1)

)
Log-Equity Identity Derivation: Rearranging the defini-
tion of δt and summing over the trajectory:

T−2∑
t=0

log

(
Et+1

Et

)
=

T−2∑
t=0

(Vt(ϵt)− Vt+1(ϵt+1))−
T−2∑
t=0

δt(π)

The left side is log(ET−1/E0). The first term on the right
is a telescoping sum that simplifies to V0(ϵ0)− VT−1(ϵT−1).
Given the terminal condition VT−1 = 0, we arrive at the iden-
tity:

log

(
ET−1

E0

)
= V0(ϵ0)−

T−2∑
t=0

δt(π)

Since ϵ0 is the same regardless of policy, the factor V0(ϵ0) is
constant. This shows that maximizing final equity is equiva-
lent to minimizing the cumulative sub-optimality loss.

Proof for Top-Down Reward (DPRewardFunctionB)
This reward function measures the sub-optimality of an action
relative to the best possible action.

Reward Definition and Total Return: The core of the
”Top-down” reward is the advantage relative to the optimal
value function, which is precisely the negative sub-optimality
loss:

rBt = log

(
Et+1

Et

)
+ Vt+1(ϵt+1)− Vt(ϵt) = −δt(π)

The total return is therefore:

GB(π) =

T−2∑
t=0

rBt = −
T−2∑
t=0

δt(π)

Equivalence Proof: To maximize the total return GB(π) is
to maximize −

∑
δt(π), which is equivalent to minimizing

the total sub-optimality loss
∑

δt(π). From our identity in
the previous section, this is equivalent to maximizing the final
log-equity log(ET−1/E0). The order-equivalence property
therefore holds exactly.

Extension to Other Rewards
The order-equivalence property can also be shown to hold for
the other reward formulations under reasonable assumptions.
The proofs follow a similar structure but are less direct than
the one presented for the ”Top-down” reward. For the sake of
brevity, these detailed derivations are not included here.

D Relevant Terminology
D.1 Reinforcement Learning

• Reinforcement Learning: machine learning paradigm
where an agent learns to make sequential decisions by
interacting with an environment.

• Agent: decision making entity

• Environment: everything the agent interacts with.

• The interaction proceeds in discrete time steps t =
0, 1, 2, At each timestep:

1. The Agent observes the current state.
2. The Agent selects an action according to a policy.
3. The Agent executes the action.
4. The environment transitions to a new state, and pro-

vides a reward to the agent.
5. The Agent uses the reward and new state to update

internal knowledge.

• The goal for the agent is to determine a policy, that max-
imizes the total reward.

D.2 Reinforcement Learning (Formally)
• State s: representation of the environment at a given

step.

• States S: the set of all possible states.

• Actions A(s): the set of all possible actions a in state s

• Reward function R(s, a, s′): (expected) immediate re-
ward received after taking action a in state s, and transi-
tioning to state s′.

• Transition function P (s′|s, a): probability of transi-
tioning to state s′ when taking action a in state s.

• Policy function π(a|s): (probabilistic) mapping of
states s ∈ S to actions a ∈ A(s)

• Return Gt: The cumulative discounted reward starting
from timestep t:

Gt =

∞∑
k=0

γkrt+k

• Discount factor γ ∈ [0, 1]: Determines how much the
agent values future rewards.

• State-Value Function V π(s): Expected return from
state s under policy π:

V π(s) = Eπ [Gt | st = s]

• Action-Value Function Qπ(s, a): Expected return from
state s, taking action a, and then following policy π:

Qπ(s, a) = Eπ [Gt | st = s, at = a]

• Optimal State-Value Function V ∗(s): Maximum ex-
pected return achievable from state s:

V ∗(s) = max
π

V π(s) = max
a∈A(s)

Q∗(s, a)

• Optimal Action-Value Function Q∗(s, a): Maximum
expected return achievable from state s and action a:

Q∗(s, a) = max
π

Qπ(s, a)

• Optimal Policy π∗: Policy that maximizes expected re-
turn from all states:

π∗(s) = argmax
π

V π(s) = arg max
a∈A(s)

Q∗(s, a)

• Advantage Function A(s, a): Measures how much bet-
ter or worse an action is compared to the average:

A(s, a) = Q(s, a)− V (s)

D.3 Function approximation
• Function approximation method: refers to how the

agent represents and estimates complex functions like
the state-value function V π(s), action-value function
Qπ(s, a), policy function π(a|s), transition function
P (s′|s, a), or reward function R(s, a, s′).

• Tabular methods: Each state, or state-action pair is
mapped to a value. This mapping can be represented
using a table. Only works for discrete, and small state-
action spaces.

• Linear function approximation: the function is esti-
mated as a weighted sum of features. Allows for con-
tinuous, and larger state-action spaces, but are limited in
their ability to capture complex patterns or interactions.

• Non-linear function approximation: the function is es-
timated using non-linear models (e.g., neural networks,
decision trees, kernel methods) . Captures more com-
plex relationships but can be harder to train.

D.4 Deep Reinforcement Learning
• Deep learning: subfield of machine learning using mul-

tilayered neural networks.

• Deep Reinforcement Learning (Deep RL): Applies
deep learning to RL algorithms. Can be utilized in
function approximation, feature extraction, and joint-
learning.

D.5 Reinforcement Learning Model Categories
• Policy vs Value-based methods: Value-based methods

try to learn a value function, and then derive the optimal
policy using it. Policy-based methods try to learn the
optimal policy directly.

• Policy-gradient methods: subset of policy-based meth-
ods that use gradient descent on the expected return to
approximate the optimal policy.

• Actor-critic methods: combines value and policy based
methods. It uses two separate components: the actor,
that is responsible for selecting actions (representing the
policy), and the critic, evaluating the actions taken by
the actor (using a value function).

• Model-free vs. model-based: Model-free methods
learn directly from interactions without understanding
the environment’s dynamics, while model-based meth-
ods build a model of the environment in order to plan
ahead.

• On-policy vs. off-policy: On-policy methods learn
from the actions taken by the current policy, while off-
policy methods learn from actions taken by a different
policy (e.g., a past or exploratory one).

• Algorithm: the overall procedure used to learn how to
behave optimally. It defines how the agent updates its
policy or value estimates based on experience.

D.6 Trading
• Foreign Exchange Market (Forex): also called cur-

rency market, is a globalized decentralized market for
the trading of currencies.

• Forex currency pair: a combination of currencies
that are traded against each other. First currency be-
ing the base currency, second being the quote currency
(BASE/QUOTE). The pair shows how much quote cur-
rency you need to buy one unit of the base currency. Ex.
EUR/USD, GBP/USD, USD/JPY, etc.

• Candlestick: a visual representation of price movement
over a specific timeframe. It provides four key pieces of
information. Open: Price at the beginning of the time-
frame. High: Highest price during the timeframe. Low:
Lowest price during the timeframe. Close: Price at the
end of the timeframe. Volume: Total transaction amount
during the timeframe (sometimes included in the data,
imperfect accuracy for Forex due to decentralization).

• Timeframe: the duration that each data point (or candle-
stick) represents on a chart. It determines the granularity
of the data the RL agent learns from.

• Ask, Bid, Spread: Ask is the price for which you can
buy shares, bid price is the price for which you can sell
shares, and the spread is the difference between ask and
bid.

• Buy, Sell, Hold: Buy is the trading quote currency for
the base currency. Selling is trading the base currency
for the quote currency. Hold is keeping the same amount
of each.

• Long, Short, Cash: Long is holding the base currency,
having a positive positional value, expecting it to ap-
preciate relative to the quote currency. Short is bor-
rowing the base currency and immediately trading it for
the quote currency, having a negative positional value
(debt), expecting the base to depreciate. Cash refers to
a neutral position, holding only the quote currency and
having no exposure to the base currency.

• Equity: difference between total assets and liabilities.
• Mark-to-market: method of valuing assets and liabili-

ties at their current market price rather than their original
purchase price.

E Graphs

Table 4: Baseline Train Results

Model Profit Factor Total Trades
long 0.9983245 1
short 1.0013813 1
cash 1.0 0
random 0.76632106 10893
ideal 45.37837 8090

Table 5: Baseline Eval Results

Model Profit Factor Total Trades
long 0.98054975 1
short 1.0195684 1
cash 1.0 0
random 0.7544354 4595
ideal 32.65881 3193

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across activation functions.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across feature extraction
methods.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across decay factors.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across network shapes.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across network divisions.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across very deep networks.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across deep networks.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across moderate depth
networks.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across shallow networks.

Profit factor (left) and total number of trades (right) for evaluation environments eval (top) and train (bottom) across reward functions.

	Introduction
	Motivation
	Structure of the paper
	Existing work

	Background
	Reinforcement Learning
	Forex
	Function Approximation

	Methodology
	Data Sourcing
	Feature Engineering
	Static Market Features (FeatureEngineer)
	Dynamic State Features (StepwiseFeatureEngineer)

	Forex Environment
	State and Observation Space
	Action Space
	Episode Life-cycle
	Market Assumptions

	Trading Logic
	Setup
	Action at in A to Target Exposure xt
	Determining Trade Size
	Executing buy order
	Executing sell order

	Rewards
	Standard Rewards
	Dynamic Programming Rewards

	Experimental Setup
	Baseline
	Environment setup
	Model Algorithm

	Experiments

	Results
	Discussion
	Interpretation
	Generalizability
	Problem complexity
	Usage of Future-Aware rewards

	Conclusion
	Responsible Research
	Ethical Considerations
	Reproducibility

	Acknowledgements
	Experiment details
	Baseline Hyperparameters
	Shape parameter calculation
	Division sizes
	CNN Architecture
	Input Data Preprocessing
	Architecture Design and Rationale

	Trading Logic Clarifications
	Notation
	Derivation for max_shares_to_buy in buy_shares
	The Limit Condition:
	Define Final State Variables in terms of Sbuy:
	Substitute into the Limit Condition and Solve for Sbuy:

	Derivation for max_shares_to_sell in sell_shares
	1. The Limit Condition:
	2. Define Final State Variables in terms of Ssell:
	3. Substitute into the Limit Condition and Solve for Ssell:

	Dynamic Programming Rewards
	Derivation of Optimality
	Future Aware Reward formulations
	Proof of Order-Equivalence
	Baseline: Simple Log-Equity Rewards
	Bellman Decomposition and Sub-Optimality Loss
	Proof for Top-Down Reward (DPRewardFunctionB)
	Extension to Other Rewards

	Relevant Terminology
	Reinforcement Learning
	Reinforcement Learning (Formally)
	Function approximation
	Deep Reinforcement Learning
	Reinforcement Learning Model Categories
	Trading

	Graphs

