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Integrator Delay Zero Model for Design of
Upstream Water-Level Controllers

A. J. Clemmens, M.ASCE1; X. Tian2; P.-J. van Overloop3; and X. Litrico4

Abstract: A variety of methods are in use for the design of controllers for adjusting canal gate positions to maintain a constant water level
immediately upstream from check gates. These methods generally rely on a series of tests on the water level’s response to changes in canal
gate position or flow, either by simulation or on the canal itself. This paper presents a method for tuning these controllers based on wave
celerity through use of the integrator delay zero (IDZ) model. These equations can be used to determine the resonance peak height and
resonance frequency. Unsteady-flow canal simulation models are used to show the response of controller design using these theoretical
equations with a test case for ASCE Test Canal 1. A novel method is presented for avoiding disturbance amplification by considering
the delay times in all canal pools downstream. DOI: 10.1061/(ASCE)IR.1943-4774.0000997. © 2015 American Society of Civil Engineers.

Author keywords: Irrigation districts; Canals; Automation; Control systems.

Introduction

The control of water levels upstream from canal gates is the most
common method of canal automation in practice. If the correct flow
(i.e., sum of downstream demand) enters the canal at the canal head
gate, this method will distribute the flow correctly to all gates
downstream. Errors in canal inflow will result in errors in the flow
available within the last pool, either resulting in canal spills or pro-
viding insufficient flow to farm turnouts there. Operators are then
expected to alter the canal inflow to correct such flow errors. In
most cases, this control is done manually, although automatic con-
trol is becoming more common. With automatic control, if control-
lers on individual gates are not properly tuned, it is possible to get
disturbance amplification, where the gates’ positions and water lev-
els oscillate with increasing amplitude in the downstream direction.
This problem can be avoided if the controllers for all canal pools are
tuned simultaneously. For example, Overloop et al. (2005) suggest
that centralized control will avoid this disturbance amplification.
Optimization procedures require a response model of the canal.

The usual practice for implementing automatic upstream control
is to develop a simulation model of the canal, determine the re-
sponse of the canal from simulation tests, use optimization to
develop control parameters, and then to test the suitability of the
controller through simulation. When adapted to the real canal, the
parameters are further tuned through testing. This can be a time-
consuming and thus expensive process (Overloop et al. 2005).

The intent of this paper is to present a simple method for tuning
proportional-integral (PI) controllers for the automatic control of
water levels upstream from canal gates. For many cases, this can
be done with the equation presented here based on canal geometry,
rather than extensive simulation testing. In other cases, some re-
sponse testing on the canal may be required.

Basic Theory

Response Model

Schuurmans et al. (1999b) proposed a simple model for canal pool
response; the integrator delay (ID) model. This model relates
changes in the water level at the downstream end of the pool to
flow changes through gates at the upstream and downstream end
of the pool. The model has two parameters: a delay time, τ , and a
backwater surface area, As. The upstream part of the pool is con-
sidered to be at normal depth, while the downstream part of the
pool is considered to be a reservoir. Pools that are entirely under
backwater have no delay time. This model has been successfully
used to design canal controllers that have subsequently been field
tested (Litrico et al. 2007; Clemmens and Strand 2010). The ID
model is

ΔhðkÞ ¼ Ts

As
½Quðk − τRÞ −QdðkÞ� ð1Þ

whereΔhðkÞ = change in water level; k = integer time step number;
Ts = duration of the time step; Qu = upstream flow rate; Qd =
downstream flow rate; and τR = closest integer representing the
delay time = τ=Ts. The only difference between the response of the
upstream and downstream gates results from the delay time, which
does not apply to the downstream gate since the water level is
immediately next to the gate. For canal pools under backwater, the
backwater surface area can be approximated by the top width, B,
times the pool length, L

As ¼ BL ð2Þ

The top width can vary with length, and culverts and other
obstructions can alter the effective area. But this provides a
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reasonable approximation. For pools that are not under backwater
for their entire length, the backwater area can be much smaller. In
this case, Eq. (2) should not be used and the canal pool response
should be evaluated to determine As.

Litrico and Fromion (2004) show that the ID model is an over-
simplification of a real canal’s response. It does not consider oscil-
lations that occur in the canal pool as a result of the flow changes.
They propose to add a zero to the ID model (IDZ) to account for the
water level response at frequencies that are sufficiently high that
significant oscillations occur. If the controller is designed to con-
sider the lowest frequency at which oscillations occur, higher-
frequency oscillations should be sufficiently damped. A change in
flow through the gate at the upstream end of a pool will cause a
wave to travel the length of the pool. The zero in the IDZ model
represents the height of this wave when it arrives at the downstream
end. For long canal pools under normal depth, this wave is damped
and essentially insignificant. For pools under backwater, the wave
height can be substantial. A flow change in the gate at the down-
stream end of a pool will create a step change in water level
immediately upstream from the gate, regardless of whether or not
the water level is at normal depth. This suggests that the IDZ model
could be used for the design of upstream water-level controllers
(i.e., gate controller based on the water level immediately upstream
from gate).

Resonance Peak Height

Litrico and Fromion (2004) developed a series of relationships to
determine the resonance peak height based on the IDZ model. The
equations determine the average magnitude of all resonances
(water-level change for unit flow rate change at selected fre-
quency). For upstream control, this study is interested only in the
step change in water level at the downstream end of the pool for a
step flow change at the downstream end of the pool. In the notation
of Litrico and Fromion (2004) this response function is denoted
p22, which simply means the response of the water level at the
downstream end of the pool to the flow change at the downstream
end of the pool. Modifying their equation for p22 for a pool of
infinite length gives the average resonance peak height

Rp ¼ 1

Bðc − vÞ ð3Þ

where v = average flow velocity; and c = wave celerity =
p
gD,

where g is the acceleration of gravity and D is hydraulic depth
(cross-sectional area divided by top width). If the water depth at the
downstream end of the canal pool is at (or close to) normal depth,
Eq. (2) is a conservative estimate of the maximum resonance peak
height. However, many canal pools are under backwater such that
the depth is well above normal depth, particularly at low discharges
relative to canal capacity. The resonance peak at low discharges can
be significantly higher than that predicted by Eq. (3). Detailed
equations for the maximum resonance peak height are provided in
the Appendix. These account for reflection waves for pools entirely
under backwater.

Filtered Proportional-Integral Controller (PIF)

Schuurmans (1997, 1999a) developed equations for proportional-
integral (PI) controller coefficients based on the integrator delay
model, such that robust stability would be assured (based on
45° phase margin criteria). These equations are applicable to either
upstream or downstream water-level control, with the main differ-
ence related to the delay time. Equations were developed for both
PI and filtered PI (PIF) controllers. Here, only the PIF controllers

for upstream water-level control are considered because the wave
created by gate movements can cause the controller to be unstable
if not filtered. Further explanations of canal control theory can
be found in Wahlin and Zimbelman (2015). The PIF controller
equation is

ΔQðkÞ ¼ KPΔefðkÞ þ KIefðk − 1Þ ð4Þ
where Kp and KI = PIF controller coefficients; ef is the filtered
water level error; k = time step number; and ΔQ = control action
(change in flow from k − 1 to k); in this case a change in flow rate.
A linear filter is used, namely

efðkÞ ¼ Fcefðk − 1Þ þ ð1 − FcÞeðkÞ ð5Þ
where

Fc ¼ e−ðTs=TfÞ ð6Þ
and where eðkÞ = water level error; Fc = filter constant where
0 < Fc < 1; and Tf = period of waves above which damping is re-
quired. Use of the filter causes a delay in the ID model since, for
example, for a gradually increasing water level, the filtered level
lags behind since it considerers past (lower) water levels. The added
delay, on average, is

tdelay ¼
Fc

1 − Fc
Ts ð7Þ

Since the ID model relates flow changes to water level changes,
the flow changes have to be converted to gate position changes.
This is essentially the universal factor proposed by Burt et al.
(1996). This conversion can be made by inverting the gate dis-
charge equation or can be approximated by determining the slope
of the relationship between gate position change and discharge
change (dW=dQ), where W is the gate opening. So for practical
application to local gate controllers, Eq. (4) can be modified to

ΔWðkÞ ¼ dW
dQ

½KPΔefðkÞ þ KIefðk − 1Þ� ð8Þ

The PIF controller coefficients from Schuurmans (1997) are

KP ¼ As

2Tf
ð9Þ

KI ¼ KP
TS

TI
ð10Þ

TI ¼ 6Tf ð11Þ

Tf ¼
ffiffiffiffiffiffiffiffiffiffiffi
AsRp

ωr

s
ð12Þ

ωc ¼
1

2Tf
ð13Þ

Provided that

Ts ≤ 0.15=ωc ð14Þ
where Kp and KI = proportional and integral control constants;
As = average backwater area (over different flow rates, assuming
backwater area is a function of flow rate); Tf = filter time constant;
TI = integration time; Ts = control time step; Rp = resonance peak

© ASCE B4015001-2 J. Irrig. Drain Eng.
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height; ωr = resonance frequency; and ωc = cross-over frequency.
These equations ensure that the resonance frequency will be greater
than the cross-over frequency, which is a requirement for control
stability.

Solution of these equations for Kp and KI requires selection of a
control time step, Ts; an estimate for the backwater surface area,
As; an estimate for the resonance peak height, Rp; and a suitable
value of the resonance frequency, ωr, such that Eq. (14) is still sat-
isfied. For distant downstream control, the general approach is to
determine the resonance frequency based on the travel time of a
celerity wave

ωr ¼
2π

Tcycle
¼ 2π

Lð 1
cþv þ 1

c−vÞ
ð15Þ

where Tcycle = travel time for a wave to travel from one end of the
canal to the other and back. For upstream control, this resonance
frequency can be taken as a conservative estimate, although the
cycle of two control time steps, ωr ¼ ð2πÞ=ð2TsÞ, has more influ-
ence on fluctuations in water levels and gate positions.

Combining Eqs. (13) and (14) yields

ωc ¼
1

2Tf
≤ 0.15

Ts
ð16Þ

This results in

Tf ≥ Ts

0.3
ð17Þ

If taken as an equality, this leads to Fc ¼ 0.741 from Eq. (6).
This value of the filter constant is often used to overcome oscilla-
tions caused by a fixed sampling interval, so called antialiasing. For
example, if the input signal is a sign wave around a constant value,
sampling at an interval that is different from the frequency of the
sine wave can result in water levels that trend in one direction for
an interval and then trend in the opposite direction for an interval,
when the signal is essentially constant. Wahlin and Zimbelman
(2015, p 174) suggest a value of Fc greater than 0.667 to avoid
antialiasing. Here, a value greater than 11=16≈ 0.688 is used since
this is a common way filters are used in control software.

Alternative Proportional-Integral Controller

Litrico and Fromion (2006) developed alternative expressions for
TI and Kp based on both gain and phase margins, with KI deter-
mined from Eq. (4)

TI ¼
Td

ωc
tan

�
π
180

ΔΦþ ωc

�
ð18Þ

Kp ¼ As
ωc

Td
sin

�
π
180

ΔΦþ ωc

�
ð19Þ

ωc ¼
π
2
10−ΔG=20 ð20Þ

ΔΦmax ¼ 90ð1–10−ΔG=20Þ ð21Þ
whereΔG = desired gain margin; Td ¼ ðTf þ TsÞ=2 = delay time;
and ΔΦ = phase margin. They suggest that stable performance can
be obtained forΔG ¼ 10, which gives a cross-over frequency ωc ≈
0.5 from Eq. (20), and with ΔΦ ¼ 0.7ΔΦmax, which will allow
stable control (for downstream control) if the actual time delay
is up to 150% of the expected delay. By considering both the phase

and gain margins, it is expected that this control will be slightly
more aggressive than those of Schuurmans (1997) while still re-
maining stable. This simply gives an alternative method for deter-
mining controller gains for individual gates. The resonance
frequency is determined from Eq. (15).

Multiple Pools

When upstream controllers are tuned individually, there is concern
that the overall control will exhibit disturbance amplification be-
cause of interactions among pools. Overloop et al. (2005) and
Clemmens and Schuurmans (2004) suggest the use of optimization
to tune PI controller constants. The procedures used in these studies
considered the ID model and did not consider wave action (zero
in IDZ). Thus, in order to use these models, constraints need to be
placed on values of Kp and KI , as suggested by Eq. (14). The
authors’ experience with this optimization (Overloop 2005)
suggests it is sufficient to constrain the value of Kp as computed
previously [a value less than that computed from Eq. (9) or
Eq. (19)], while the value of KI has to be progressively decreased
in the upstream direction to account for additional pools
downstream.

Based on these observations, it is hypothesized that Kp from
Eq. (9) can be used directly and KI can be adjusted by considering
the additional downstream resonance. The integral constant is a
function of the resonance frequency. This relationship can be de-
veloped from Eq. (10) by substituting Eq. (9) for Kp and Eq. (11)
for KI, then substituting Eq. (13) for Tf, which gives

KI i ¼
AS i

2Tf i

Ts

6Tf i
¼ AS iTs

12

ωr i

ASRP i
¼ Ts

12

ωr i

RP i
ð22Þ

where subscript i = pool being considered.
To avoid disturbance amplification downstream, it is assumed

that the ωr value for any pool includes the travel time for all down-
stream pools. Then for any pool i, the resonance frequency can be
estimated from

ωr i ¼
2πP

N
j¼i Tcycle j

¼ 2πP
N
j¼i

2π
ωr j

ð23Þ

where N = number of pools in the canal.
Eq. (23) is heuristic in nature, while the prior equations are all

based on physics and well-established control-theory principals.
An example application is presented in this paper where a sim-
ulation model of a real canal is used to test the various equations
presented in preceding sections for developing upstream control
coefficients. The range of conditions under which they are useful
would require a more-thorough investigation.

Materials and Methods

A test canal was examined to test the various methods for upstream
control described previously through unsteady-flow simulation.
Simulation tests were run with Sobek version 2.12 (Deltares 2015).
Water-level responses to determine pool properties were developed
using step changes in gate discharge and observing water-level
responses. Upstream controller parameters (i.e., proportional and
integral constants) were tuned with the previously described meth-
ods. These controllers were tested using the custom-built control
routines in Sobek version 2.12.

The ASCE Task Committee on Canal Automation Algorithms
developed a series of test cases for evaluating the response of
downstream water-level controllers (Clemmens et al. 1998).

© ASCE B4015001-3 J. Irrig. Drain Eng.
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Test Canal 1 was used here for evaluating upstream controllers. It is
relatively long and steep, roughly 9.5 km long with an elevation
drop of 27 m. The canal has a bottom slope of 0.002 m=m and
1.0-m drops after each check gate. Canal side slopes are 1.5–
1.0, horizontal to vertical. Additional details of Test Canal 1 are
given in Table 1. There is no check gate at the end of the canal.
Backwater from a check gate generally does not progress upstream
to the next upstream gate, except for the first pool, since it is very
short. Pools in this canal do not experience oscillations, except in
the first pool. Check gates are all under free flow.

Response Example

The Sobek model of Test Canal 1 was used to demonstrate the IDZ
response. The initial flow was set to 1.0 m3=s, or 50% of capacity.
The gate at the upstream end of Pool 1 was opened to increase the
flow by 0.2 m3=s. The initial water depth for this test was 0.9 m,
with a top width of 3.7 m, speed of celerity of 2.37 m=s, and a
backwater area of 443 m2. This canal pool has a bottom width
of 1.0 m, side slopes of 1.5:1 (Horizontal to vertical), and a length
of 100 m.

Control Example: No Reflection Waves

For Test Canal 1, parameters for the ID model were tuned with step
tests as described in Clemmens and Wahlin (2004). Those tuned
parameters are shown Table 2. The resonance-peak heights were
determined at maximum discharge (capacity) from Eq. (3) and from
Eq. (31), as shown in Table 3. Computing resonance peak at maxi-
mum discharge generally results in the largest value of resonance
peak height, and is thus conservative. The values from the two
approaches are identical to three significant digits, except Pool 1
(pool 1 is short and does experience oscillations). Thus the reso-
nance peak height can be estimated sufficiently accurately from
Eq. (3) for pools that are not under backwater for their entire length
and do not experience oscillations from reflection waves (i.e., water
flows at normal depth over a portion of the pool length).

Different sets of proportional-integral filtered (PIF) controllers
for Test Canal 1 were tuned with the procedures presented here
(Schuurmans 1997). Initial conditions for the simulations were the
starting conditions for Test Case 1-1, which is shown in column 2
of Table 2. The different tuning methods include
1. PIF controller (Schuurmans’ Method) for each pool determined

independently with the resonance peak height and the resonance
frequency based on the canal pool celerity [Eqs. (3), (6), and
(8)–(15)];

2. PIF controller (Schuurmans’ Method) with the resonance peak
height and the resonance frequency based on the canal pool
celerity, but integral constants adjusted based on downstream
resonance [Eqs. (3), (6), (8), (9), (11)–(15), (22), and (23)];

3. PIF controller (Litrico and Fromion’s Method) for each pool
determined independently with the resonance peak height deter-
mined from the canal pool celerity and the resonance frequency
determined based on the maximum cross-over frequency
[Eqs. (3), (6), and (18)–(21)]; and

4. PIF controller (Litrico and Fromion’s Method) with the reso-
nance peak height determined from the canal pool celerity and
the resonance frequency determined based on the maximum
cross-over frequency, but integral constants adjusted based on
downstream resonance [Eqs. (3), (6), (10), and (18)–(23)].
Proportional and integral gains for these controllers are shown

in Table 4. The Sobek unsteady-flow simulation model (Deltares
2015) was used to test the effectiveness of these controllers. A step
change of 0.2 m3=s was initiated at 4 h at the canal headgate. In
separate tests, each of these controllers was used to bring the water
levels back to their set points. Controller time step was 10 min, and
simulation time step was 1 min. The length of simulation was 24 h.
The size of calculation grid is 25 m.

Results

Response Example

Fig. 1 shows the response in water level in Pool 1 for Test
Canal 1 for a step increase in discharge at the gate immediately
downstream. These clearly show the step change (z-term in IDZ
model) at the time of the change, and gradual change (I-term in

Table 1. Test Canal 1 Physical Properties

Pool

Pool
length
(m)

Bottom
width
(m)

Canal
depth
(m)

Gate
width
(m)

Gate
height
(m)

Target
level
(m)

Test 1-1
initial
flows
(m3=s)

(Headgate) — — — — — — 0.8
1 100 1.0 1.1 1.5 1.0 0.9 0.7
2 1,200 1.0 1.1 1.5 1.0 0.9 0.6
3 400 1.0 1.0 1.5 0.9 0.8 0.5
4 800 0.8 1.1 1.2 1.0 0.9 0.4
5 2,000 0.8 1.1 1.2 1.0 0.9 0.3
6 1,700 0.8 1.0 1.2 0.9 0.8 0.2
7 1,600 0.6 1.0 1.0 0.9 0.8 0.1
8 1,700 0.6 1.0 — — 0.8 0.0

Table 2. Tuned Parameters for Test Canal 1 (Taken from Clemmens and
Wahlin 2004)

Pool

Inflow rate
during tuning

(m3=s)
Delay time

(min)

Backwater
surface
area (m2)

(1) (2) (3) (4)
1 0.8 0.0 443
2 0.7 7.9 964
3 0.6 2.0 634
4 0.5 4.9 877
5 0.4 17.2 948
6 0.3 15.2 785
7 0.2 16.4 711
8 0.1 20.2 724

Table 3. Resonance Peak Heights for Test Canal 1 Based on Flow at
Capacity

Pool

Inflow rate
during tuning

(capacity) (m3=s)

Resonance
peak height

[Eq. (31)] (s=m2)

Resonance
peak height

[Eq. (A8)] (m2)

(1) (2) (3) (4)
1 2.0 0.190 0.224
2 2.0 0.190 0.190
3 2.0 0.264 0.264
4 1.6 0.190 0.190
5 1.6 0.190 0.190
6 1.6 0.257 0.257
7 1.3 0.263 0.263
8 1.1 0.237 0.237

© ASCE B4015001-4 J. Irrig. Drain Eng.
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IDZ model). The step drop shown in Fig. 1(a) is plotted at the res-
onance peak height given by Eq. (3) (Δh ¼ RpΔtΔQ). The step
drop in Fig. 1(b) is plotted at the resonance peak height given by
Eq. (31) in the Appendix. The sloped part is plotted at a rate
Δh=Δt ¼ ΔQ=As, which represents the integrator in the IDZ
model. The resonance in this pool is clearly seen by the water-level
drop at roughly 22 min in Fig. 1(b). The step change from Eq. (3)
should match the initial water surface’s drop. The step change from
Eq. (31) is intended to contain the reflection waves. Here Eq. (31)’s
step is a bit larger than the initial water-level drop, which is on the
conservative side. The water level drops below the IDZ line by a
small amount. This difference could result from the linear
assumption in the IDZ model. In numerous tests (not shown), this
model has been shown to be a reasonable representation of canal
response to a change in gate flow.

Control Example: No Reflection Waves

Fig. 2 shows the simulation results for Method 1 (PIF controller
with resonance frequency based on celerity). The changes in flow
rate are shown in Fig. 2(a). All flow rates changed by 0.2 m3=s.
Since the sudden flow change was not anticipated by the upstream
controllers, the water levels deviated by up to 5 cm. The flow rates
reacted strongly to remove the excess water that accumulated
behind the gates. This is actually how the controller should re-
spond. After this initial response, the controllers returned to nearly
the final steady-state flow, with only a small amount of overshoot

(overcorrection). The flows rates are overcorrected more and more
by each pool successively downstream. This is shown more clearly
in Fig. 2(b), which shows the resulting water levels. This is typical
of what is known as disturbance amplification. In this case, the am-
plification is not great, so this control might be considered accept-
able. But errors in pool property estimates (which are minimized in
simulation studies) or changes over time might result in poor per-
formance in actual operations.

Fig. 3 shows the results for Method 2, where downstream re-
sponse is included in the calculations for the integral constant.
The integral constants in Column 7 are much smaller than the in-
tegral constants in Column 6, except for the last pool downstream.
This greatly reduces the disturbance amplification, as shown by
the water level response in Fig. 3(b). The flow rates also do not
overcorrect as much, as shown in Fig. 3(a). Only the last pool in
Fig. 3(b) shows some water-level oscillation. The rest of the pools
show little to none. So considering downstream response reduces
disturbance amplification, but makes the controller respond more
slowly, as shown by the greater deviations in water level for up-
stream pools in Fig. 3(b) compared to those in Fig. 2(b).

Figs. 4 and 5 (Methods 3 and 4) show the same results as Figs. 2
and 3 (Methods 1 and 2), except Methods 3 and 4 design the con-
troller based on the alternative method of Litrico and Fromion
(2006). Smaller proportional gains result in greater water level de-
viations, as shown by comparing the maximum water level devia-
tions for pools in Figs. 2 and 4 compared to the proportional gains
shown in Table 4 columns 2 and 3. This is because the controller is

Table 4. Control Constants for Test Canal 1

Pool

Kp (m2=s) Kp (m2=s) Fc (–) KI (m2=s) KI (m2=s) KI (m2=s) KI (m2=s)

Methods 1 and 2 Methods 3 and 4 Methods 1–4 Method 1 Method 2 Method 3 Method 4

(1) (2) (3) (4) (6) (7) (8) (9)
1 6.032 4.32 0.688 1.6429 0.0165 0.888 0.046
2 2.569 3.67 0.688 0.1369 0.0166 0.295 0.050
3 2.816 3.46 0.688 0.2502 0.0136 0.399 0.040
4 3.033 4.04 0.688 0.2098 0.0200 0.393 0.059
5 1.994 3.00 0.713 0.0839 0.0221 0.201 0.065
6 1.575 2.39 0.702 0.0632 0.0222 0.154 0.064
7 1.542 2.31 0.688 0.0669 0.0334 0.158 0.089
8 1.637 2.43 0.688 0.0740 0.0740 0.172 0.172

Fig. 1. Response of water level upstream from test canal Gate 1 to a gate flow change of 0.5 m3=s
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Fig. 2. Simulation results for step change of 0.2 m3=s in Test Canal 1; Method 1

Fig. 3. Simulation results for step change of 0.2 m3=s in Test Canal 1; Method 2

Fig. 4. Simulation results for step change of 0.2 m3=s in Test Canal 1; Method 3
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not reacting strongly enough. Comparing Figs. 4 and 5, Method 4,
which considers the downstream delay times, removes most of the
disturbance amplification. Method 4 was also run with the reso-
nance peak for the first pool computed based on Eq. (31), rather
than Eq. (3). Results were essentially the same as for Method 4,
so are not shown here.

Discussion

First, it is clear that the IDZ model is an effective method for de-
termining the resonance peak height needed for designing upstream
controllers. The resonance peak-height values for the canal that did
not exhibit oscillations (Test Canal 1) are shown in Table 3. Since
there is little or no resonance from reflection waves (oscillations),
the values from Eqs. (3) and (31) are nearly the same. Eq. (31) es-
sentially considers the influence of these reflection waves on the
resonance peak height. Thus the influence of reflection waves on
resonance does not need to be considered for this canal.

Results from the alternative method (Litrico and Fromion 2006)
for determining PIF controller constants provided better overall re-
sults that the original method (Schuurmans 1997) and should be the
recommended approach. These tests did not evaluate canal pools
with significant oscillations.

Conclusion

This research has shown that the IDZ model can be used directly
to determine the resonance peak height for canal pools where
upstream control is planned. For canal pools that do not exhibit
oscillations from reflection waves, a controller design based on
wave celerity [i.e., Eq. (3)] provides adequate upstream control
response.

The use of controllers tuned for individual canal pools will result
in disturbance amplification, where fluctuations in water levels get
progressively worse in the downstream direction. This can be
avoided by reducing the integral gain. A method was developed
to reduce the integral gain by including the response time of all
downstream pools in the controller design. This research demon-
strates that for pools with limited backwater, the IDZ model param-
eters, and thus upstream controller parameters, can be determined
with only knowledge of the pool geometry.

Appendix. Calculation of Resonance Peak Height

Uniform Flow

Litrico and Fromion (2009) developed equations for the resonance
of canal pools. For uniform flow conditions, they developed the
average resonance magnitude for water levels at either end of the
pool, based on flow changes at either end of the pool. For upstream
control, this study is only concerned with the water-level response
at the downstream end of the pool based on a flow change through
the downstream gate. The resulting equation is

Rp ≈ 1

Bðc − vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

α2 e−2rL

1þ e−2rL

s
ð24Þ

where B = top width; c = speed of celerity; v = average velocity;
L = pool length; and α ¼ cþ v, β ¼ c − v, and r ¼ r1 þ r2,
where

r1 ¼
αδ − γ

αðαþ βÞ ð25Þ

r2 ¼
βδ þ γ

βðαþ βÞ ð26Þ

γ ¼ gð1þ kÞSb ð27Þ

δ ¼ 2 gSb
v

ð28Þ

k ¼ 7

3
− 4A
3BP

dP
dy

ð29Þ

and g = acceleration of gravity; Sb = bottom slope; A = cross-
sectional area; P = wetted perimeter; and y = flow depth. When L
approaches infinity, the term under the radical in Eq. (24)
approaches 1, and thus Eq. (3) is the limit of Eq. (24) when the
pool length approaches infinity.

The response described by Eq. (24) represents the average
resonance. The actual response is cyclic about this average.
Eq. (24) was developed from solution of the frequency response of
the Saint Venant equations, expressed as transfer functions. The
more-complete form of Eq. (24) from these relationships is

Fig. 5. Simulation results for step change of 0.2 m3=s in Test Canal 1; Method 4
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Rp ≈ 1

Bðc − vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

α2 e−2rL þ 2β
α e−rL cosωτ

1þ e−2rL − 2e−rL cosωτ

s
ð30Þ

where ω = frequency; and τ = wave travel time [Eq. (15)]. The
resonance determined from Eq. (30) is a maximum when
cosðωτÞ ¼ 1, and a minimum when cosðωτÞ ¼ −1. Thus the maxi-
mum resonance peak height is

Rp−max ≈ 1

Bðc − vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

α2 e−2rL þ 2β
α e−rL

1þ e−2rL − 2e−rL

s
ð31Þ

References

Burt, C. M., Mills, R. S., Khalsa, R. D., and Ruiz, C. V. (1996). “Improved
proportional-integral (PI) logic for canal automation.” J. Irrig. Drain.
Eng., 10.1061/(ASCE)0733-9437(1998)124:1(53), 53–57.

Clemmens, A. J., Kacerek, T. F., Grawitz, B., and Schuurmans, W. (1998).
“Test cases for canal control algorithms.” J. Irrig. Drain. Eng., 10.1061/
(ASCE)0733-9437(1998)124:1(23), 23–30.

Clemmens, A. J., and Schuurmans, J. (2004). “Simple optimal downstream
feedback canal controllers: Theory.” J. Irrig. Drain. Eng., 10.1061/
(ASCE)0733-9437(2004)130:1(26), 26–34.

Clemmens, A. J., and Strand, R. J. (2010). “Downstream-water-level con-
trol test results on the WM lateral canal.” J. Irrig. Drain. Eng., 10.1061/
(ASCE)IR.1943-4774.0000079, 460–469.

Clemmens, A. J., and Wahlin, B. T. (2004). “Simple optimal downstream
feedback canal controllers: ASCE test case results.” J. Irrig. Drain.
Eng., 10.1061/(ASCE)0733-9437(2004)130:1(35), 35–46.

Deltares. (2015). “Sobek user’s manual.” Delft, Netherlands.

Litrico, X., and Fromion, V. (2004). “Simplified modeling of irrigation
canals for controller design.” J. Irrig. Drain. Eng., 10.1061/(ASCE)
0733-9437(2004)130:5(373), 373–383.

Litrico, X., and Fromion, V. (2006). “Tuning of robust distant down-
stream PI controllers for an irrigation canal pool. I: Theory.”
J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2006)132:4(359),
359–368.

Litrico, X., and Fromion, V. (2009). “Modal decomposition of
linearized open channel flow.” Networks Heterogen. Media, 4(2),
325–357.

Litrico, X., Malaterre, P.-O., Baume, J.-P., Vion, P.-Y., and Ribot-Bruno, J.
(2007). “Automatic tuning of PI controllers for an irrigation canal pool.”
J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2007)133:1(27),
27–37.

Schuurmans, J. (1997). “Control of water levels in open channels.” Ph.D.
dissertation, Delft Univ. of Technology, Delft, Netherlands.

Schuurmans, J., Clemmens, A. J., Dijkstra, S., Ahmed, R. H., Bosgra,
O. H., and Brouwer, R. (1999a). “Modeling of irrigation and drainage
canals for controller design.” J. Irrig. Drain. Eng., 10.1061/(ASCE)
0733-9437(1999)125:6(338), 338–344.

Schuurmans, J., Hof, A., Dijkstra, S., Bosgra, O. H., and Brower, R.
(1999b). “Simple water level controller for irrigation and drainage
canals.” J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(1999)125:
4(189), 189–195.

van Overloop, P. J., Schuurmans, J., Brouwer, R., and Burt, C. M. (2005).
“Multiple-model optimization of proportional integral controllers on
canals.” J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2005)131:
2(190), 190–196.

Wahlin, B., and Zimbelman, D., eds. (2015). “Canal automation for irriga-
tion systems.” Manuals and Rep. on Engineering Practice No. 131,
ASCE, Reston, VA, 261.

© ASCE B4015001-8 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 2017, 143(3): B4015001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
02

/1
6/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)0733-9437(1998)124:1(53)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1998)124:1(53)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1998)124:1(23)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1998)124:1(23)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1998)124:1(23)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:1(26)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:1(26)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:1(26)
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000079
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000079
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000079
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000079
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000079
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:1(35)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:1(35)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:5(373)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:5(373)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:5(373)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:4(359)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:4(359)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:4(359)
http://dx.doi.org/10.3934/nhm.2009.4.325
http://dx.doi.org/10.3934/nhm.2009.4.325
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:1(27)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:1(27)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:1(27)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:6(338)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:6(338)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:6(338)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:4(189)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:4(189)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:4(189)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(190)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(190)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(190)

