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Summary 

RE C E N T advances in computing and communicadon technology have ex

panded the boundaries of communication systems to include a rich visual 

dimension. Standards-based video compression has played a significant role in 

the realizadon of these technologies by bridging the gap between demand for 

quaUty and performance, and limitations of cuiTcnt storage and transmission 

capabilities. Advanced video codecs, however, consume a significant amount 

of time and energy/power due to their adaptive processing nature in order to 

provide better compression. Moreover, the requirement for computing plat

forms to flexibly adapt to standard evolutions along with market and/or tech

nology induced changes has added a new dimension to the processor archi

tecture design. Consequently, power consumpdon and flexibility beside high-

throughput have emerged as important design constraints in today's embedded 

multimedia systems. 

Design methodologies have to take the power consumption into account at 

different levels of abstraction such as systems, architectures, algorithm/logic 

designs, basic cells as well as layouts. Efforts to reduce power consumption 

at higher abstraction levels are relatively more effective. However, these ef

forts may resuk in a system with less funcdonality or less programmability. 

Moreover, for embedded multimedia systems, the existing low-power design 

approaches generally tradeoff throughput and/or quality level. 

In this dissertation, we target high-performance in terms of low-power, high-

throughput, area-efficient, and flexible digital signal processing for battery-

powered multimedia embedded systems, with a case study of H.264/AVC 

video codec. The goal of high-performance is achieved by exploiting the po

tential of area, power reduction and throughput enhancement at the algorithm 

design as well as at the processor architecture levels without compromising the 

video quality. From the algorithm design level perspective, we propose opti

mized video processing algorithms in H.264/AVC video codec for embedded 
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multimedia systems. The opdmizahons are essendally about algorithmic com

plexity reduction by removing redundancy in number of operations, extracting 

more parallelism, identifying mutually exclusive processing blocks within the 

algorithms, simplifying complex operations, re-using the intermediate results 

effectively, adapting for the statistical nature of video signal in algorithm de

sign, etc. Efficient hardware designs for these optimized algorithms are then 

proposed by using standard low-power hardware design techniques such as 

clock-gating and/or data-enabhng etc. 

Traditional Von Neumann architecture based approach provides flexibility 

through software programming. This approach was based on the assumptions 

of hardware being expensive and the power consumption being non-critical. 

Therefore, time multiplexing approach was used to provide maximum sharing 

of the hardware resources. The situation, however, has fundamentally changed 

now. With potentially large number of cores possible on a chip, hardware has 

rather become a cheap commodity. Meanwhile, Reconfigurable Computing 

(RC) has emerged as a new paradigm for satisfying the simultaneous demand 

for apphcation performance and flexibility. The dynamically reconfigurable 

processors have further boosted the dramatic nature of reconfigurable com

puting systems by combining programmability with adaptivity. This approach 

allows applications to be developed at high-level while at the same time, the 

processor organization can be adapted to apphcation-specific requirements at 

design as well as at run-time. We beheve that reconfigurable processors along 

with the application-specific data-paths can provide the needed flexibihty and 

performance in energy-constrained embedded systems. In this dissertation, we 

identify various H.264/AVC video codec specific custom operations, propose 

their designs and implement them in the data-path of a dynamically reconfig

urable, extensible, soft-core V L I W processor (p -VEX) . 
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Samenvatting 

RE C E N T E ontwikkeüngen in de informatica-en communicatietechnologie 

hebben de grenzen van communicatiesystemen verlegd om een rijke v i 

suele dimensie toe te voegen. Standaard gebaseerde video compressie heeft 

een belangrijke rol gespeeld in de reahsatie van deze technologieën door 

de kloof tussen de vraag naar kwaliteit en prestaties te verkleinen, en door 

beperkingen van de huidige opslag en het transport mogehjkheden boven te 

komen. Geavanceerde video codecs verbruiken echter een significante t i jd-

shoeveelheid en energie / vermogen door hun adaptieve bewerkingsaard om 

betere compressie te leveren. Bovendien heeft de eis voor computerplatforms 

om flexibel te kunnen aanpassen aan standaard evoluties naast markt en / of 

technologie geïnduceerde veranderingen een nieuwe dimensie toegevoegd aan 

het processor architectuur ontwerp. Zodoende zi jn energieverbruik en flex-

ibihteit naast high throughput naar voren gekomen als belangrijke ontwei-p 

randvoorwaarden in huidige embedded multimediasystemen. 

Ontwerpmethoden moeten rekening houden met het stroomverbruik op ver

schülende abstractieniveaus zoals systemen, architecturen, algoritme / logis

che ontwerpen, basiscellen en layouts. Inspanningen om het energieverbruik 

te verlagen op hogere abstractieniveaus zi jn relatief effectiever. Daarentegen 

kunnen deze inspanningen resulteren in een systeem met minder functionaliteit 

of minder programmeerbaarheid. Bovendien maken de bestaande low-power 

ontwerpbenaderingen voor embedded multimedia-systemen in het algemeen 

een afweging voor throughput en / of kwaliteit. 

In dit proefschrift richten we op high-performance in het gebied van low-

power, high throughput, oppervlakte efficiënte en flexibele digitale signaalver

werking voor batterij gevoede multimedia embedded systemen, met een cases

tudy van H.264/AVC video codec. De high-performance target wordt bereikt 

door het exploiteren van het potentieel van de oppervlakte, vermogensver

mindering en throughput verbetering van het algoritme ontwerp als op de 
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processorarchitectuur niveaus zonder afbreuk te doen aan de beeldkwahteit. 

Vanuit het algoritme ontwerpniveau perspectief, stellen w i j geopdmaliseerde 

video processing algoritmes voor in H.264/AVC video codec voor embedded 

muhimedia systemen. De opdmalisades gaan in essentie over algoritmische 

complexiteit vermindering door het verwijderen van redundantie in vele oper

ades, het verkrijgen van meer parallelhsme, het identificeren van elkaar uit

sluitende verwerkingsblokken binnen de algoritmen, het vereenvoudigen van 

complexe operaties, tussentijdse resultaten effectief hergebruiken, aanpassing 

voor de statistische aard van videosignaal in algoritmeontwerp, enz. Efficiënte 

hardware ontwerpen voor deze geoptimaliseerde algoritmes worden vervol

gens voorgesteld door gebruik te maken van standaard low-power hardware 

ontwerptechnieken zoals clock-gating en / of data-enabling enz. . 

De traditionele Von Neumann architectuur gebaseerde methode biedt flexi-

biUteit aan door middel van het programmeren van software. Deze methode is 

gebaseerd op de aannames dat hardware duur is en dat het stroomverbruik 

niet kritisch is. Daarom werd tijd-multiplexing gebruikt om het maximaal 

delen van hardware resources mogelijk te maken. De situatie is nu echter 

fundamenteel veranderd. Met potentieel grote aantallen cores op een chip, 

is hardware uitgegroeid tot een goedkope grondstof. Ondertussen heeft Her-

configureerbaar Computing (RC) zich ontpopt als een nieuw paradigma voor 

het voldoen aan de gelijktijdige vraag naar apphcatie performance en flexi-

biUteit. De dynamisch herconfigureerbare processoren hebben de dramatische 

aard van herconfigureerbare computersystemen verder versterkt door het com

bineren van programmeerbaarheid met adaptiviteit. Deze aanpak maakt het 

mogelijk om applicaties te ontwikkelen op hoog niveau, terwij l tegelijkertijd 

de processor organisatie kan worden aangepast aan de applicatie-specifieke 

eisen in de ontwerpfase en tijdens de uitvoering. W i j geloven dat hercon

figureerbare processoren samen met applicatie-specifieke datapaden de ben

odigde flexibiliteit en prestaties in energie-gehmiteerde embedded systemen 

kunnen leveren. In dit proefschrift identificeren we verschillende H.264/AVC 

video codec specifieke aangepaste activiteiten, stellen we hun ontweipen voor 

en implementeren hun in de datapad van een dynamisch herconfigureerbare, 

uitbreidbare, soft-core V L I W processor (p -VEX) . 
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Introduction 

DI G I T A L video coding is one of the primidve apphcations of multimedia 

embedded systems. With the evoludon of context-aware processing in 

advanced video coding standards, the exploitadon of parallehsm is becoming 

increasingly challenging [3] [4]. Advanced video codecs may consume a sig

nificant amount of processing time and energy/power, due to their adaptive 

nature of processing, to provide better compression. Beside performance and 

power consumpdon, other parameters like cost, short-dme-to-market, mass 

volume production, flexibihty and re-useability have created a multidimen

sional pressure on industry, as well as on research to come up with innovative 

architectures for embedded multimedia systems. The realization of advanced 

video coding with high-resolution videos on battery-powered mobile devices 

demands high complexity reduction in video coding algorithms for their real

time and low-power implementation. Consequently, the main objectives of this 

dissertation are to investigate how to achieve high-performance for real-time 

video processing applications in terms of throughput, while utihzing less on-

chip resources. Similarly, this dissertation also proposes adaptive, low-power 

hardware design for multimedia video compression apphcations on battery-

powered electronic devices without compromising the video quality. 

This introductory chapter starts with providing a brief overview on cuiTent 

trends in digital video processing apphcations/services and state-of-the-art in 

video compression technologies (Section 1.1). The hardware design options 

and trends in state-of-the-art for implementation of multimedia embedded sys

tems along with the associated issues and challenges are summarized in Sec

tion 1.2. The summary of research challenges and goals is provided in Sec

tion 1.3. Similarly, Sections 1.4 and 1.5 describe the methodology and thesis 

contributions respectively. Finally, Section 1.6 presents organization of this 

dissertation. 

1 
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1.1 Digital Video Coding Technology: Trends and Re
quirements 

Why Video Compression? A video CODEC (enCOder / DECoder pair) is 

a software component or hardware device that enables compression and de

compression of digital video signal. Typically, videos must be encoded before 

their storage or transmission, and decoded before their display. The amount 

of uncompressed video data is too large for limited transmission bandwidth or 

storage capacities. For example, to store a 2 - hours uncompressed video of 

fuh High Definidon (HD) resoludon frames (1920 x 1080 pixels), a capacity 

of 2 (hours) x60 (minutes per hour) x 6 0 (seconds per minute) x25(frame 

rate, frames per second) x 1920 x 1080 (frame size in pixels) x 3 / 2 (number 

of bytes per pixel) = 559, 872 GB is required, which far exceeds the capacity 

of current opdcal disc storage (50 GB for dual layer Blue-ray Disc). With 

efficient compression techniques, a significant reduction in amount of video 

data can be achieved with httle or no adverse effect on the visual quahty. 

Digital Video Services/Trends: Digital video coding is an enabhng technol

ogy and generating ever new applications with a broadening range of require

ments regarding basic video characteristics, such as spatio-temporal resolu

tion, chroma format, and sample accuracy. Digital video-based services have 

become an integral part of wide range of industries-from telecommunications 

to broadcasting and entertainment to consumer electronics. Today, the appli

cation areas for digital video coding technology range f rom videoconferenc

ing over mobile T V and broadcasting of standard-/ high-definition T V con

tent, up to very high-quality applications such as professional digital video 

recording or digital cinema/large-screen digital imagery as illustrated in Fig

ure 1.1a. Recently, the demands for more realistic multimedia contents have 

been increased dramatically. The ultimate objective of future video process

ing technology is to offer reahstic 3D visual experiences. Full high-definition 

television technology has been adopted in consumer electronics, but it cannot 

offer sufficient realism yet. Therefore, attempts are being made to not only 

provide even higher-resolution images in spatial dimension (HD to Ultra HD) , 

but also higher frame-rates up to 200 Hz (temporal dimension) and realistic 

3D perception with more views (Figure L i b ) [5], 

Similarly, recent advances in computing and the communication technology 

have led to a significantly increased use of a large number of multimedia com

puting devices hke mobile phones, personal navigation devices (PND), per

sonal multimedia players (PMP), mobile internet devices (MID) , tablets and 
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(a) Digital video services evolution over time [5] 

(b) Digital video technology: past, present and future [5] 

Figure 1.1: Digital video technology trends 
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notebooks. The average smart-phone usage grew 81% in 2012, whereas the 

mobile video traffic was more than 51°/. of the total global mobile data traf

fic by the end of same year [6]. The convergence of mobile phone, internet, 

mapping, gaming, and office automadon tools with high-quality video and sdll 

imaging capture capability are becoming a strong market trend for portable 

devices. High-density video encode and decode, 3D graphics for gaming, 

increased apphcadon-software complexity, and uhra-high-bandwidth 4G mo

dem technologies are driving the CPU performance and memory bandwidth 

requirements close to the PC segment. Consequently, on the one hand, the next 

generation multimedia apphcations being executed on these portable multime

dia devices are becoming increasingly complex and consume more power to 

f u l f i l l the end-user requirements. On the other hand, the growth in recharge

able battery-capacity has shown modest increases. Thus, the larger demand 

for increased functionahty and speed has increased the severity of the power 

constraint in the world of hand-held and mobile multimedia systems. Even in 

the case of applications that have an unhmited energy source, we have moved 

into an era of power-constrained performance since heat removal requires the 

processor to operate at lower clock rates than dictated by the logic delays. 

Standard Based Video Coding: Different compression technologies, both 

proprietary and industry standards, are available. Video codec standards are 

important in ensuring compatibility and interoperability. Over the last two 

decades, standard based digital video coding/compression technologies have 

evolved f r o m MPEG-1 to MPEG-2/H.262 to H.264/AVC. The H.264/AVC [7] 

is the latest video coding standard joint iy developed by ISO-IEC and ITU-T. 

I t provides 2 x compression compared to previous coding standards (such as 

H.262/MPEG-2, H.263) for the same subjective video quality at the cost of 

additional computational complexity and energy consumption (approx. 10 x 

relative to MPEG-4 advance simple profile [8]). Beside higher resolutions, 

the key reason of increasing video coding complexity is the complex tool-set 

for advance video encoders. The authors in [1] state an expected increase 

in the video complexity by 2x every two years (Figurei.2). Although, high 

resolutions are mainly targeted for high-end multimedia devices, multiview 

video conferencing or personal recording at much higher resolutions Quad-

H D , 3840 X 2160 or 4096 x 2304) is foreseen within next few years on mobile 

devices. Industrial prototypes like [9] have akeady demonstrated the feasibility 

of 3D-videos and multiview video coding on mobile devices using two views. 

In short, as mentioned before, with the evolution of context-aware processing 

in advanced video coding standards, exploitation of parallehsm is becoming 

extensively challenging [3], [4]. Moreover, besides high performance in terms 
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Figure 1.2: Codec, Resolution complexity relative to QCIF 30fps [1] 

of throughput, the realization of advanced video coding with high resolution 

videos on battery-powered mobile devices demands high complexity reduction 

in video coding algorithms for their low-power implementation. 

1.2 Multimedia Embedded Systems: Options and 
Challenges 

Traditionally, standard-cell A S I C s are considered as the best implementa

tion choice for high-volume, piice-sensitive applications-especially in the con

sumer electronics market. ASICs offer the highest performance possible for 

most of the applications. Since the ASICs target a specific applicadon, there

fore, they provide smaher form-factor and can be specificahy opdmized for 

performance per unit area and performance per unit power consumption for 

the target apphcation. Although, structured ASICs have some limited de

sign flexibility, however, ASICs lack flexibihty and adaptability in general and 

therefore, hard to adapt to standard evolutions and market/technology induced 

changes. Video codec H.264/AVC, for instance, provide a large set of tools 

to support a range of applications (e.g., low bit-rate video conferencing, high-

quality personal video recording, HDTV, etc.). A generic ASIC for all tools is 

impractical and w i l l be huge in size. In contrast, multiple ASICs for different 

apphcations have a longer design time and thus an increased Non-Recuning 

Engineering (NRE) cost. 

Digital Signal Processors (DSPs), on the other hand, are programmable and 
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offer high flexibihty over ASICs. DSPs include support for frequently used 

signal processing operadons and addressing modes. These operations include 

multiple parallel muldply-accumulate operations used to implement efficiendy 

computation kernels, such as FIR/IIR filters and linear transformation opera

tions. The speciahzed ISA and specialized functional units, therefore, enable 

DSPs to provide better performance per unit area and performance per unit 

power consumption over General Puipose Processor (GPPs) for a software-

based muldmedia system. However, DSPs alone may not satisfy the power 

and/or performance challenges when considering the combination of tight 

power budgets on battery-powered mobile devices and intricate processing na

ture of next-generation multimedia algorithms. Moreover, DSP petformance is 

limited by the avaflable data bandwidth f rom the external memory [10], [11]. 

Although stream architecture [10] provides an efficient memory hierarchy to 

exploit the concurrency and data locality, i t exploits a hmited amount of par

allehsm (e.g., only data level paraUelism) [12]. DSP based software solutions 

alone do offer flexibility but can not provide the required performance and, 

therefore, dedicated hardware accelerators are often inevitable. 

ASIPs can be tailored for a specific application and, therefore, provides a 

tradeoff between flexibility and performance of some degree. They overcome 

the shortcomings of DSPs and ASICs and provide better performance per unit 

area and peiformance per unit power, when compared with GPP and DSPs. 

A number of IPs for embedded customizable processor along with tool suites 

are available from vendors like Tensilica and ARC. Application specific in

struction set processors (ASIPs) offers a compromise between flexibility and 

performance, however, the customization of ASIP for larger apphcations with 

many kernels may end up with considerably larger core size and, therefore, 

requires larger silicon footprint. 

MPSoCs, on the other hand, deliver high performance and programmability 

by integrating applicadon-specific hardware accelerators with programmable 

processors hke GPPs and DSPs. Commercially available O M A P f rom Texas 

Instruments, Trimedia/Nexperia f rom Philips/NXP and Nomadik by STMi-

croelectronics are some prominent examples of MPSoCs. Since the pro

grammable cores and apphcation-specific hardware accelerators are selected 

at design time targeting certain type of applications. Therefore, MPSoC may 

not provide sufficient performance for applications f rom different domains. 

Moreover, the currently-used MPSoC may becomes obsolete because of need 

to support a new standard or evolutions in the current standard.. 

Reconfigurable Computing (RC) is emerging as the new paradigm for sat-



1.3. R E S E A R C H C H A L L E N G E S 7 

isfying the simultaneous demand for application performance and flexibility. 

Reconfigurable computing udlizes hardware that can be adapted at run-dme to 

facilitate greater flexibihty without compromising performance. It combines 

the flexibility of software with the high performance of hardware by process

ing with very flexible high speed computing fabrics like FPGAs. The principal 

difference when compared to using ordinary microprocessors is the abihty to 

make substandal changes to the data-path itself in addition to the control flow. 

On the other hand, the main difference with custom hardware (ASICs) is the 

possibihty to adapt the hardware during run-dme by loading a new circuit 

on the reconfigurable fabric. Reconfigurable architectures can exploit fine-

grain and coarse-grain parallelism available in the application because of the 

adaptability. Exploiting this paraflehsm provides significant performance ad

vantages compared to conventional microprocessors. The re-configurability 

permits adaptation of the hardware for specific computadons in each apphca-

don to achieve higher performance compared to software. Complex funcdons 

can be mapped onto the architecture achieving higher silicon utilization and 

reducing the instruction fetch and execute bottleneck. 

1.3 Research Challenges 

In previous secdons, we argued that even though processor speeds and net

work bandwidth continue to increase, efficient video processing for muldme

dia consumer electronics devices is still a very important requirement for a 

successful/competidve product. Consequently, in this dissertadon we shall in-

vesdgate: 

• How to achieve high-performance and flexible processing in video pro

cessing/compression applications 7 

Since H.264/AVC is state-of-the-art in video compression standards and has 

already been widely accepted by the industry. Consequently, we shall fo

cus on how to improve the performance of compute-intensive modules in 

H.264/AVC video codec in terms of throughput, resources/area-cost and 

power-consumpdon. Our first problem statement is: 

• How to reduce the coding complexity and improve the real-time perfor

mance without compromising the video quality ? 

Like previous video coding standards (H.261, H.262/MPEG-2, H.263 etc.), 

H.264/AVC also does not exphcitly define a CODEC (enCOder / DECoder 
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pair). Rather, it defines the syntax of an encoded video bitstream together with 

methods for the decoding process of these syntax elements. There are a couple 

of syntax elements, where a set of constraints is imposed by the video coding 

standard and the actual method/algorithm to compute these syntax elements is 

out of scope of the standard. Whereas, for couple of other compute-intensive 

syntax elements, an algorithm/method along with constraints is specified in 

the H.264/AVC video coding standard. This dissertation shall focus on the 

complexity reduction of standardized video coding algorithms/methods. 

The tradeoff of various types of architectures to implement DSP algorithms 

has been a topic of research since the initial development of the theory. Re

cently, the application of these DSP algorithms to systems those require low 

cost and the lowest possible energy consumption has placed a new emphasis 

on defining the most appropriate solutions. Moreover, the flexibility require

ment to adapt to standard evolutions and market/technology induced changes 

has become a new dimension in the algorithm/architecture design. Traditional 

Von Neumann architecture-based approach, provides flexibility through soft

ware programming. This approach was based on technology assumptions that 

hardware was expensive and the power consumption was not critical. There

fore, time multiplexing approach was used to provide maximum sharing of the 

hardware resources. The situation, however, is fundamentally different now. 

The energy/power consumption is a critical design constraint beside through

put in battery-powered portable devices. Whereas, wi th potentially thousands 

of multipliers and adders available on a chip, hardware is rather a cheap com

modity. Similarly, even in the case of applications with an unlimited energy 

source, we have moved into an era of power-constrained performance since 

heat removal requires the processor to operate at lower clock rates than dic

tated by the logic delays. Consequently, in reladon with above mentioned first 

problem statement, this dissertation shall: 

• Propose new algorithms or optimizations for existing algorithms within 

the scope of standardized video coding blocks/components (H.264/AVC) 

to achieve complexity reduction without compromising the video qualit}'. 

• Design, implementation, and evaluation of high-throughput, area-

efficient and low-power video signal processing architecture for various 

video processing components/tools in H.264/AVC. 

As mentioned before, the flexibility requireinent to adapt to video coding stan

dard evolutions and market/technology induced changes has become a new di 

mension in the algorithm/architecture design. We believe that reconfigurable 
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computing could possibly be the solution to provide the needed flexibility be

side performance. Our second problem statement is: 

• How can reconfigurable computing be utilized to improve the flexibility 

and peiformance for video coding signal processing applications? 

Reconfigurable computing has proven itself to be able to speed-up many ap

plications despite its lack in achieving high frequencies. However, frequency 

is not the sole factor that determines performance. Field-programmable Gate 

Arrays (FPGAs) - as the most udhzed reconfigurable fabric nowadays - pro

vide a large amount of parallel structures that when exploited efficiently can 

greatly contribute to the speedup of applications. 

Digital video coding/signal processing applicadons have been identified to 

have significant fine- and coarse-grained parallelism [13] Therefore, Very 

Long Instrucdon Word ( V L I W ) processors can be utilized to increase the per

formance beyond normal Reduced Instrucdon Set Computer (RISC) architec

tures [14]. While RISC architectures only take advantage of temporal paral

lelism (by utihzing pipelining), V L I W architectures can addidonally take ad

vantage of the spadal paraflehsm by udlizing muldple fimctional units (FUs) 

to execute several operations simultaneously. V L I W processor improves the 

perfonnance by exploiting Instracdon Level Parallehsm (ILP) in a program. 

Similarly, the customization of processors for an application is another way of 

improving the peiformance for a moderate cost. Consequently, in relation with 

our second problem statement, this dissertation shall: 

• Propose customization of reconfigurable VLIW processor for compute-

intensive H.264/AVC video codec tools to improve the performance. 

1.4 Methodology 

From digital video coding perspective, with a wide range of target apphcations 

f rom low-end to high-end under various constraints, such as throughput, power 

consumpdon and resources/area cost, an application-specific implementadon 

for digital video coding algorithms, may be pure software, pure hardwired, or 

something in between. The video coding algorithm defines a detailed imple

mentation outhne of a required original function and, therefore, determines 

how to solve the problem and how to reduce the original complexity. In order 

to do an optimal implementation, it is essendal to fu l ly understand the princi

ples behind and algorithms employed in video coding as it is a key to reduce 
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power consumption and improve efficiency. In this secdon, we propose differ

ent steps to achieve high-performance video processing systems as proposed 

in the previous section. These steps are hsted in the following: 

• Identify the compute-intensive video compression tools within the scope 

of video coding standard H.264/AVC. 

• Propose algorithmic optimization to reduce complexity ofthe video com

pression algorithms. 

• Exploit video signal statistics and data correlations for further complex

ity reduction. 

• Propose efficient design in terms of high-throughput, low-area and 

low-power consumption, for compute-intensive processing units in 

H.264/AVC. 

• Investigate the processing chain for video compression engine in 

H.264/AVC for possible complexity reduction by reusing the interme

diate results and propose an efficient algorithm. 

• While titiUzing the reduced-complexity optimized algorithms, design, 

implement and evaluate the high-throughput, area-efficient and low-

power solution for compute-intensive processing units in H.264/AVC. 

• Validate the proposed design using variety of video test sequences from 

Joint Video Team (JVT), responsible for development of video coding 

standard H.264/AVC, and ffirther comparing the results against that of 

reference video coding standard implementation provided by JVT. 

In order to support processor level adaptivity and customization, dynamically 

reconfigurable processor (/?-VEX) shall be used as a target computing plat

form. /9-VEX is an open source, extensible and reconfigurable soft-core V L f W 

processor. The processor architecture is based on the V E X ( V L f W Example) 

Instrucdon Set Architecture (ISA), as introduced in [15], and is implemented 

on an FPGA. The ISA of p - V E X shall be extended with custom operations. 

From the prospective of our second problem statement, we propose to combine 

multiple-issue architectures (p -VEX) and customization techniques to further 

improve the performance of the processor. 

• Design, implement, and evaluate custom operations for compute-

intensive processing tools/units within scope of video coding standard 

H.264/AVC. 
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1.5 Research Contributions 

The research earned out in the course of this PhD project is published in several 

scientific publicadons. This secdon highlights the main contribudons of the 

research work described in this dissertation, as follows: 

1. Indoop deblocking filter. 

• The complexity of indoop deblocking filter algorithm is reduced 

by novel decomposition of filter kernels and intra-module opti

mizations. The complexity of the deblocking filter algorithm is 

reduced by more than 51°/, when compared with that of algorithm 

described in the video coding standard H . 2 6 4 / A V C [ 1 6 ] . 

• A low-power hardware design for deblocking fiher unit is pro

posed. Experimental results suggest that the dynamic power con

sumption is reduced up to 50°/ , when compared with state-of-the-

art designs in hterature. [ 1 7 ] . 

• For real-time video processing applications, a high-throughput, 

area-efficient hardware design, based on the low-power filter unit, 

is proposed. . This design utihzes 2 filter units and, therefore, 

can process input pixels on-the-fly in both horizontal and verti

cal directions. The proposed design provides significandy higher 

throughput (more than 63° / when compared with state-of-the-art 

in literature having similar area-cost) and require less on-chip area 

(around 35° / when compared with state-of-the-art in hterature hav

ing similar throughput) [ 1 6 ] . 

2 . Intra-prediction 

• The complexity of intra-prediction algorithm for various intra-

prediction modes is reduced by 27° / - 60° / in comparison with intra-

prediction algorithm proposed in H . 2 6 4 / A V C video coding stan

dard. A configurable, high-throughput, and area-efficient hardware 

design for intra-prediction unit, based on the reduced complexity 

intra-prediction algorithm, is proposed in this dissertation. The 

comparison with other state-of-the-art suggests that our proposed 

hardware design provides 50° / -75° / performance improvement and 

requires only 2 I K gates for its implementation, when synthesized 

under 0 . 1 8 / im C M O S standard cell technology [ 1 8 ] . 
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3. Forward integer transform 

• A transformation, to compute integer-transformed residual block 

f rom Hadamard-transformed residual block in the processing chain 

of H.264/AVC video codec, is proposed in this dissertadon. This 

approach reduces the number of addition operations by more than 

507, for realization of integer transform in the video codec. The 

comparison with the existing single 4 x 4 forward integer transform 

solutions f rom the literature suggest that the proposed solution pro

vides the minimum latency penalty (4.82ns) among all solutions 

and also requires significantly less area (2 . 6K gates) in terms of 

equivalent gate count for its hardware implementation. Therefore, 

it provides up to 5 times better performance in terms of through

put/area rado for the same process technology. [19]. 

• Similarly, a low-latency and area-efficient solution for reahzation 

of forward integer transform unit in the intra-frame processing 

chain is proposed. With this proposed soludon, the effective la

tency penalty for the forward integer transform unit is reduced to 

zero. In additions to zero latency penalty in the intra-frame pro

cessing chain, the proposed soludon provides up to 30 dmes better 

performance in terms of throughput/area ratio. [19]. 

4. Inverse integer transform 

• For inverse integer transform unit, a configurable, low-power hard

ware design is presented in this dissertadon. The proposed design 

is based on a data-driven computation algoiithm for the inverse in 

teger transform. I t efficiently exploits the zero-valued coefficients 

in the input blocks to reduce dynamic power consumption. The ex

perimental results show that the proposed design consumes signif

icantly less dynamic power (up to 80°/, reduction), when compared 

with existing conventional designs for the inverse integer trans

form, with a small area-overhead (approximately 2 K gates) [20] 

[21]. 

5. Custom instructions/processing units for extensible, reconfigurable, 

soft-core V L I W processor (p -VEX) . 

• In this dissertadon, we also proposed custom operadons for de

blocking filter, intra-prediction and forward/inverse integer trans

fo rm units in H.264/AVC foe a reconfigurable V L I W processor. 
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The datapath is based on the optimized algorithms presented in 

this dissertadon. The proposed custom operations significandy re

duce the compute time (approximately 40% - 59°/. ) for the corre

sponding compute-intensive functions in fI .264/AVC on a recon

figurable, soft-core V L I W processor (p -VEX) . [8.9, 8.11, 8.13]. 

1.6 Thesis Organization 

The remainder of the thesis is organized as follows. 

Chapter 2 provides the background for digital video coding, with a focus on 

advanced video codec H.264/AVC. Next, the prominent related work on high-

throughput, area-efficient and low-power codec design and implementations is 

presented. The background for dynamically reconfigurable V L I W processor 

(p -VEX) is also is presented towards end of the chapter. 

Chapter 3 covers the deblocking filter in H.264/AVC. Low-power and high-

throughput hardware designs based on single and double filter units are pre

sented for image and real-time video processing apphcations, respectively. 

Chapter 4 deals with the intra-prediction module in H.264/AVC. This chapter 

introduces an optimized algorithm to compute all intra-prediction mode for 

4x4 pixel block along with the hardware design. 

Chapter 5 introduces two designs for the reahzation of forward integer trans

form. A novel transform is also presented in this chapter to derive the forward 

integer transform coefficients directly f rom that of Hadamard transfoim coef

ficients. 

Chapter 6 deals with inverse integer transfoim module in H.264/AVC. Two 

hardware designs for the inverse integer transform are presented in this chap

ter. The first design is intended for intra-frame encoder with reduced latency. 

The proposed design process the input data on-the-fly to produce the inverse 

transformed data block. A data-driven algorithm with variable number of oper

ations is also introduced in this chapter. The second hardware design, based on 

the data-driven algorithm, provides high-throughput and consume significantly 

less dynamic power for its implementation. 

Chapter 7, proposes to incorporate a customized functional unit in the data 

path of reconfigurable, soft-core, V L I W processor (p -VEX) . This customized 

functional unit implements several application specific custom instructions for 

the compute intensive processing blocks in video codec H.264/AVC. 



14 C H A P T E R 1 . I N T R O D U C T I O N 

Chapter 8 provides experimental results for the proposed designs, in terms of 

throughput, area and dynamic power consumption. A comparison with the 

designs already presented in the hterature is also done in the same chapter 

Finahy, Chapter 9 concludes our work and also provides outlook of the poten

tial future works. 



Background and Related Work 

IDEO compression or video encoding is a process of reducing the amount 
V of data required to represent a digital video signal, prior to transmission 

or storage. Similarly, video decoding recovers the digital video signal f rom 

the compressed representation, prior to display. In order to provide solutions 

of high quality (high frame resolution, high frame rate, and low distortion) or 

low cost (low bit rate for storage or transmission) or both, video compression is 

indispensable when storage capacity or transmission bandwidth is constrained. 

Advancement in semiconductor technology makes possible the efficient imple

mentation of effective but computationahy comphcated compression methods. 

This chapter provides the background information for the H.264/AVC video 

coding standard and introduces the funcdonal blocks of video codec in Sec

tion 2.1. This section also identifies the compute-intensive functional units in 

H.264/AVC video codec. Section 2.2 introduces the p - V E X Reconfigurable 

V L f W processor. Einally, Section 2.3 presents the related work for the identi

fied compute-intensive video coding functional units in H.264/AVC and Sec

tion 2.4 summarizes this chapter. 

2.1 H.264/AVC Video Coding Standard Overview^ 

The H.264/AVC (also known as MPEG4 Part 10) is state-of-the-art video cod

ing standard joint ly developed by ITU-T and ISO/IEC. In common with earlier 

video coding standards f rom ITU-T (such as H.261 and H.263) and ISO/IEC 

(such as MPEG-1, MPEG-2, and MPEG-4), the H.264/AVC standard does not 

exphcitly define a CODEC (enCOder / DECoder pair). Rather, the standard 

defines the syntax of an encoded video bit-stream together with the method of 

'The overview of the H.264/AVC video coding standard is extracted from [2] and [7]. 
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Figure 2.1: Scope of video coding standardization [2] 

decoding process of the syntax elements. This is how the standard ensures that 

every decoder conforming to the standard w i h produce similar output when 

given an encoded bit stream that conforms to the constraints of the standard. 

The scope of the standardization is illustrated in Figure 2 . 1 , which shows the 

typical video coding/decoding chain (excluding the transport or storage of the 

video signal). This hmitadon of the scope of the standard permits maximum 

freedom to optimize implementadons in a manner appropriate to specific appli

cations (balancing compression quality, implementation cost, dme to market, 

etc.). However, it provides no guarantees of end-to-end reproduction quahty, 

as it allows even crude encoding techniques to be considered conforming. 

The H . 2 6 4 / A V C is a block-based hybrid video coding standard. The func

donal units in H . 2 6 4 / A V C codec are depicted in Figure 2 .2 . The main process

ing units in a video codec are. Prediction (intra-frame/inter-frame predicdon), 

special Integer Transform, Quandzation, Deblocking filter and Entropy Encod

ing. There is no single coding unit in the this video coding layer ( V C L ) that 

provides the majority of the significant improvement in compression efficiency 

in relation to prior video coding standards. It is rather a plurality of smaller 

improvements that add up to the significant gain. 

Pictures, Frames, and Fields. A coded video sequence in H . 2 6 4 / A V C con

sists of a sequence of coded pictures. A coded picture in [ 7 ] can represent 

either an endre frame or a single field. Generally, a frame of video can be 

considered to contain two interleaved fields, a top and a bottom field. The 

top field contains even-numbered rows, whereas the bottom field contains the 

odd-nuinbered rows. I f the two fields of a frame were captured at different 

time instants, the frame is referred to as an interiaced frame, and otherwise i t 

is refeiTed to as a progressive frame as depicted in Figure 2 .3 . The coding rep

resentadon in H . 2 6 4 / A V C is primarily agnosdc with respect to this video char

acteristic, i.e., the underlying interlaced or progressive timing of the original 

captured pictures. Instead, its coding specifies a representation based primarily 

on geometric concepts rather than being based on timing. 

Y C b C r Color Space and 4:2:0 Sampling. The human visual system seems to 
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Slice #0 

''SI ''SI ce#1 

Slice #2 

Figure 2.4: Subdivision of a picture into slices 

perceive scene content in terms of brightness and color information separately, 

and with greater sensitivity to the details of brightness than color. The video 

color space used by H.264/AVC separates a color representation into three 

components called Y, Cb, and Cr. Component Y is cahed luma, and represents 

brightness. The two chroma components Cb and Cr represent the extent to 

which the color deviates f rom gray toward blue and red, respectively. Because 

the human visual system is more sensidve to luma than chroma, H.264/AVC 

uses a sampling structure in which the chroma component has one fourth of 

the number of samples than the luma component. This is called 4:2:0 sampling 

with 8 bits of precision per sample. 

Slices and Macroblocks. A picture is partitioned into fixed-size macroblocks 

that each cover a rectangular picture area of 16 x 16 samples of the luma com

ponent and 8 x 8 samples of each of the two chroma components. Macroblocks 

are the basic building blocks of the standard for which the decoding process 

is specified. Slices are a sequence of macroblocks which are processed in the 

order of a raster scan. A picture maybe split into one or several shoes as de

picted in Figure 2.4. A picture is, therefore, a collecdon of one or more slices 

in H.264/AVC. Slices are self-contained in the sense that given the active se

quence and picture parameter sets, their syntax elements can be parsed f rom 

the bit-stream and the values of the samples in the area of the picture that the 

shce represents can be correcdy decoded without use of data f rom other slices. 

Some infonnation f rom other shoes luaybe needed to apply the deblocking fil

ter across slice boundaries. Each slice can be coded using different coding 

types as follows: 
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Figure 2.5: Illustration of nine 4x4 luminance prediction modes 

• I-Slice: A slice where ah macroblocks are encoded using predictions 

f rom neighboring macroblock within the same shce. (Intra-prediction). 

• P-Shce: In addition to the coding types of the I-shce, some macroblocks 

of the P-shce can also be coded with at most one motion-compensated 

prediction signal per prediction block f rom external to the current slice 

in past video frame. (Inter-prediction). 

• B-Slice: In addition to the coding types available in a P-shce, some mac

roblocks of the B-shce can also be coded with two motion-compensated 

prediction signals per prediction block f rom extemal to the current slice 

in past as well as future video frame. (Bi-directional inter-prediction). 

Encoding and Decoding Process for Macroblocks. A l l luma and chroma 

samples of a macroblock are either spatially or temporally predicted, and the 

resuldng prediction residual is encoded using transform coding (Integer trans

form -t- Hadamard transform). For transform coding purposes, each color com

ponent of the predicdon residual signal is subdivided into smaller 4 x 4 blocks. 

Each block is transformed using an integer transform, and the transform coef

ficients are quantized and encoded using entropy coding methods. 

Intra-Frame Prediction. The H.264/AVC supports multiple directional intra-

predicdon modes to reduce the spadal redundancy in the video signal. These 

multiple intra-prediction modes help to significantly improve the encoding per

formance of an H.264 intra-frame encoder The Intra 4 x 4 mode is based on 
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predicting eacii 4 x 4 luma block separately and is well suited for coding of 

parts of a picture with significant detail. The Intra 1 6 x 1 6 mode, on the other 

hand, performs prediction of the whole 1 6 x 1 6 luma block and is more suited 

for coding very smooth areas of a picture. In addition to these two types of 

luma prediction, a separate chroma prediction is conducted. As an alternative 

to Intra 4 x 4 and Intra 16 x 16, the standard also provides an option to bypass 

the prediction and transform coding process and directly send the values of the 

encoded samples using Intra PCM coding type. 

When using the Intra 4 x 4 mode, each 4 x 4 block is predicted f rom spadahy 

neighboring samples as illustrated in Figure 2.5. The 16 samples of the 4 x 

4 block are predicted using prior decoded samples in adjacent blocks labeled 

as xO - x7 and yO - y7. For each 4 x 4 block, one of nine prediction modes 

can be utilized. In addition to "DC" prediction (where one value is used to 

predict the entire 4 x 4 block), eight directional prediction modes are specified 

as ihustrated in Figure 2.5. Those modes are suitable to predict directional 

structures in a picture such as edges at various angles. 

When utilizing the Intra 1 6 x 1 6 mode, the whole luma component of a mac

roblock is predicted. Four prediction modes are supported. Prediction mode 

0 (vertical prediction), mode 1 (horizontal prediction), and mode 2 (DC pre

diction) are specified similar to the modes in Intra 4 x 4 prediction except that 

instead of 4 neighbors on each side to predict a 4 x 4 block, 16 neighbors on 

each side to predict a 16 x 16 block are used. For the specification of predic

tion mode 4 (plane prediction), please refer to [7]. The chroma samples of a 

macroblock are predicted using a similar prediction technique as for the luma 

component in Intra 1 6 x 1 6 macroblocks, since chroma is usually smooth over 

large areas. Intra prediction across shce boundaries is not used, in order to 

keep all slices independent of each other 

Inter-Frame Prediction. In addition to the intra macroblock coding types, 

various predictive or motion-compensated coding types are specified as P mac

roblock types. Each P macroblock type corresponds to a specific partition of 

the macroblock into the block shapes used for motion-compensated predic

tion. Partitions with luma block sizes of 16 x 16, 16 x 8, 8 x 16, and 8 x 8 

samples are supported by the syntax. In case partitions with 8 x 8 samples 

are chosen, one additional syntax element for each 8 x 8 partition is transmit

ted. This syntax element specifies whether the corresponding 8 x 8 paitition 

is further partitioned into partitions of 8 x 4, 4 x 8, or 4 x 4 luma samples and 

corresponding chroma samples. Figure 2.6 illustrates the partitioning. 

Transform, Scaling, and Quantization. Similar to previous video coding 
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Figure 2.6: Variable block sizes inter-predicted MBs 

Standards, H.264/AVC utilizes transform coding of the prediction residual. 
However, in H.264/AVC, the transformation is applied to 4 x 4 blocks, and 
instead of a 4 x 4 discrete cosine transform (DCT), a separable integer trans
form with similar propeilies as a 4 x 4 DCT is used. The transform matrix is 
given as: 

/ 1 1 1 1 \ 

2 1 - 1 - 2 

1 - 1 - 1 1 

V 1 - 2 2 - 1 / 

Since the inverse transform is defined by exact integer operations, inverse-
transform mismatches are avoided. The basic transfonn coding process in
cludes a forward transform, zig-zag scanning, seahng, and rounding as the 
quandzation process followed by entropy coding. A t the decoder, the inverse 
of the encoding process is performed except for the rounding. More details on 
the specific aspects of the transform in H.264/AVC can be found in [22]. 

A quantization parameter is used for determining the quantization of transform 
coefficients in H.264/AVC. The parameter can take 52 values. These values are 
arranged so that an increase of 1 in quantization parameter means an increase 
of quantization step size by approxiinately 12% (an increase of 6 means an 
increase of quantization step size by exactly a factor of 2). The quantized 
transform coefficients of a block generahy are scanned in a zig-zag fashion 
and transmitted using entropy coding methods. 

Entropy Coding. In H.264/AVC, two methods of entropy coding are sup
ported. The simpler entropy coding method uses a single infinite-extent code
word table for all syntax elements except the quantized transform coefficients. 
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Thus, instead of designing a different V L C table for each syntax element, only 

the mapping to the single codeword table is custoiTiized according to the data 

statistics. The single codeword table chosen is an exp-Goloinb code with very 

simple and regular decoding properdes. 

For transmitdng the quantized transform coefficients, a more efficient method 

called Context-Adaptive Variable Length Coding (CAVLC) is employed. In 

this scheme, V L C tables for various syntax elements are switched depending 

on already transmitted syntax elements. Since the V L C tables are designed 

to match the corresponding conditioned statistics, the entropy coding perfor

mance is improved in comparison to schemes using a single V L C table. The 

efficiency of entropy coding can be improved further i f the Context-Adaptive 

Binary Arithmetic Coding (CABAC) is used. Compared to CAVLC, CABAC 

typically provides a reduction in bit rate between 5%-15% [23]. 

In-Loop Deblocking Filter. One particular characteristic of block-based cod

ing is the accidental production of visible block structures. Block edges are 

typically reconstructed with less accuracy than interior pixels and "blocking" 

is generally considered to be one of the most visible artifacts wi th the present 

compression methods. For this reason, H.264/AVC defines an adaptive in-loop 

deblocking filter, where the strength of filtering is controlled by the values of 

several syntax elements. 

The basic idea of deblocking filter is that i f a relatively large absolute dif

ference between samples near a block edge is measured, it is quite hkely a 

blocking artifact and should therefore be reduced. However, i f the magnitude 

of that difference is so large that it cannot be explained by the coarseness of the 

quantization used in the encoding, the edge is more likely to reflect the actual 

behavior of the source picture and should not be smoothed over. The deblock

ing filter in H.264/AVC reduces the blockiness while keeping the sharpness 

of the content unchanged. Consequently, the subjective quahty is significantly 

improved. The filter reduces the bit rate typically by 5%-10% while producing 

the same objective quahty as the non-filtered video. A detailed description of 

the adaptive deblocking filter can be found in [24]. 

2.2 Overview of the p-YEX VLIW Processor ^ 

p-YEX is an open source, extensible, and reconfigurable, soft-core V L I W pro

cessor. The processor architecture is based on the V E X ( V L I W Example) 

^The overview of the r-VEX V L I W is extracted from [25] 
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Figure 2.7: p - V E X instruction layout 

Instruction Set Architecture (ISA), as introduced in [4], and is implemented 

on an FPGA. Parameters of the V L I W processor such as the number and type 

of funcdonal units (FUs), supported instructions, memory bandwidth, and reg

ister file size can be chosen based on the applicadon requirements and the 

available resources on the FPGA. A software development tool-chain includ

ing a highly optimizing C compiler and a simulator for V E X is made freely 

available by Hewlett-Packard (HP) [5]. Any apphcation written in C can be 

executed on the processor implemented on the FPGA. The ISA can be ex

tended with custom operations and the compiler is able to generate code for 

the custom hardware units, further enhancing the performance. The fol lowing 

parameters of our current design can be changed: 

1. Issue-width of the processors pipeline 

2. Type and the location of functional units 

3. Size of the GP and BR register files 

4. Size of the data and instruction memory 

5. Presence of forwarding logic 

The architecture and organization of the processor is provided in Sections 2.2.1 

and 2.2.2 respectively. 

2.2.1 p - V E X : Processor Architecture 

The V E X ISA calls a encoded operation a syllable, and it defines an instruc

tion as a set of syllables [3]. In V E X operations are equivalent to 32 bit RISC 

instructions. The 4-issue processor instance utihzes the instruction layout de

picted in Figure 2.7. This figure illustrates how syhables are mapped to sets of 

FUs. 

The p-YEX processor has a Load/Store Harvard architecture with multiple 

issue-slots. Its micro-architecture is pipehned with 5 stages. The proces

sor has 4 types of FUs, namely: A L U , Multiplier, Load/Store, and Branch. 
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Figure 2.8: p - V E X pipeline organization 

More specifically, there are four 32-bit ALUs, two 16 x 32 bit Multiphers, 

one Load/Store Unit, and one Branch Unit (BU). In addidon, the architecture 

defines a 64 x 32- bit general-purpose register file, and a branch register file 

(BR) with 8 X 1-bit branch registers that store branch conditions, predicate 

values and the canies f rom arithmetic operations. The number of each type of 

FU, except for the BU's issue slot, is adjustable. This allows to customize the 

processor based on the the target applicadon(s) requirements. 

There are 70 native V E X operations divided over 5 classes: 39 A L U opera-

dons, 11 multiphcadon operadons, 9 memory operadons, 9 control operadons, 

and 2 inter-cluster operations. A L U operations are partitioned into arithmetic 

and logical operations. 

2.2.2 / 9 -VEX : Processor Organization 

The pipeline of all /3-VEX processor instances consists of five stages: Fetch, 

Decode, Execute 1, Execute 2, and WriteBack. The organization of a 32-bit, 

four-issue p -VEX V L f W processor is depicted in Figure 2.8. The Fetch stage 

reads V L I W instructions f rom instruction memory, sphts them into syllables, 

and passes them to the Decode stage, which decodes the syhables and fetches 

register operands with the decoded register identifiers. In essence, this stage 

decodes each syhable to an operation, access registers and performs control 

transfers (in the Branch Unit). The accessed registers are send as operands to 

the Execute 1 stage. This stage performs arithmetic and logic operations (in 
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the A L U and M U L units) on hs operands. The Execute 2 stage performs a 

pre-selection of functional results for the commit stage and does the store or 

load phase of data memory operations in the load/store unit. The WriteBack 

stage performs all write activides and avoids read-after-write data hazards that 

are created by the decode stage. The register file write targets can be in the 

General Purpose Register file (GR) and/or in the Branch Register file (BR). 

The data memory of the processor is implemented by udhzing the Block R A M 

(BRAMs) that are provided by the FPGA. 

2.3 Related Work 

This section presents the prominent related work for design of low-power, 

area-efficient and high-throughput video processing units in H.264/AVC. It 

covers both the ASIC as weh as FPGA based soludons. In-loop deblock

ing filter designs are presented in Secdon 2.3.1. The related work for intra-

predicdon unit in H.264/AVC is hsted in Secdon 2.3.2, fohowed by the state-

of-the-art presented in the hterature for forward (inverse) integer transform 

units i n H.264/AVC in Secdon 2.3.3. 

2.3.1 In-loop Deblocking Filter 

From a low-power deblocking filter hardware design point of view, a num

ber of architectures and their hardware implementations have been presented 

in hterature for last few years [24, 26-56]. For instance, in [44, 45], the au

thors presented two different low-power hardware implementations for the de

blocking filter Their design consists of a 2-stage pipeline datapath. The first 

pipehne stage includes a 12-bit adder and two shifters. The second stage in

cludes a 12-bit comparator, several two's complement units and multiplexers 

for conditional branching. The dynamic power consumption of the deblocking 

filter is significantly reduced with such a simplified datapath. However, be

cause of lack of sufficient storage registers, the intermediate results are to be 

stored and fetched f rom the memory several times during filtering processing. 

This results in a large number of cycles to process a single M B (5248 cycles 

/ M B ) . Therefore, the throughput of the proposed design is reduced quite sig

nificantly. Moreover, no attempts were made, or at least reported to remove 

the redundancy in the deblocking filter algorithm. The hardware implemen

tation of proposed design works at 72 M H z in a Xi l inx Virtex E FPGA and 

can process up to Common Intermediate Format (CIF, 352 x 288) video frame 
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resolution only. 

Similarly, Byung-Joo, et al., also proposed a low-power deblocking filter in 

[36]. They attempt to reduce the dynamic power consumption by skipping fil

tering process completely or partially by exploidng the reladonship between 

block level encoding parameters and filtering conditions. The proposed design, 

however, requires 2272 cycles to process one M B and, therefore, can only pro

cess up to CCIR601 video frame format (704x576) in real-dme. The proposed 

design though provides better throughput, but still do not meet the real-time 

processing requirement of a wide range of portable multimedia devices where 

standard-definidon (SD, 720x480) , high-definidon (HD, 1280x720) or even 

higher resoludons are to be supported. 

Recently, Nam Thang, et al., [43] also proposed a low-power, high-throughput 

4-stage pipelined architecture, implemented using 0 .18 p m CMOS standard 

cell technology, for deblocking filter in H.264/AVC. Four stages pipehne im

plementadon of deblocking filter and hybrid processing order enable them to 

process a single macroblock in 192 cycles. Whde working at 220 MHz , it can 

provide a throughput up to 1146 K MB/s. The filter core consumes 34. 8 p W 

for QCIF frame resolution at an operating frequency of 220 MHz . The pro

posed design uses five 4 x 4 block buffers for intermediate result storage dur

ing M B processing to achieve high throughput and attempts to reduce power 

consumption by adopdng clock gadng for these blocks. However, no such 

attempts are made for 2"'' and 3'̂ '' pipeline stages where most of the filter pro

cessing take place. Moreover, no pardal or f u l l filtering process skipping sce

narios are taken care o f f in the proposed architecture to reduce the dynamic 

power 

From real-time video processing applications point of view, a large number 

of deblock filter accelerators using single filter unit have been presented in 

the literature. For instance, in [46], Shih, et al., propose a 5-stage pipelined 

hardware architecture for deblocking filter They employ a novel filtering order 

and data reuse strategy to reduce the number of cycles, memory traffic and 

required area for their implementation. The authors of [32] re-an-ange the data 

flow to significantly reduce the memory size requirement and propose in-place 

architecture which re-uses the intermediate data as soon as it is available and 

thus are able to reduce the intermediate data storage to four 4 x 4 blocks instead 

of a complete 16x16 macroblock . Sintiilarly Chang in [31] also re-orders the 

computing flow to efficiently use the intermediate data between the adjacent 

edges in their proposed architecture. 

The hardware architecture in [52] implements a parallel-in parallel-out recon-
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figurable FIR filter to carry out the filtering operations and uses a dual port 

SRAM for intermediate data storage. L i , et al., [38] adopt a 2 dimensional 

parallel memory scheme for parallel access in both the horizontal and vertical 

directions to speed up the fihering process and also eliminate the need of a 

transpose circuitry by using this memory scheme efficiently. 

A hybrid filter scheduling described in [40] reduces required number of clock 

cycles for filtering and thus improves the system throughput while using 

the column-of-pixel data anangement to facilitate the memory accesses and 

reusing the pixel value. A 5-stage pipehned architecture proposed in [29] for 

simultaneous processing of strong and weak filtering modes uses a novel trans

pose design to reduce the hardware cost and an alternate processing order of 

verdcal and horizontal edges to reduce the on-chip memory requirement. 

The area requirement for some of these hardware accelerators [38] [31] [56], 

is significandy low. This reduction in area requirement is because of their re

duced funcdonality as these architectures do not implement boundary strength 

(BS) computation module. 

Some of the hardware soludons based on multiple filter units are also intro

duced in the literature quite recendy. These solutions provide higher through

put at the cost of additional on-chip area, but stih most of these soludons do 

not meet the throughput requirements of all the levels (level 1-5.2) offered 

by the video Ccodec H.264/AVC. For instance, F. Tobajas based on a double-

filter strategy, and using a raster scan filtering order, proposes a hardware ar

chitecture in [48]. Cheng in [27] [28]proposes a configurable window based 

architecture to simultaneously filter in both the directions. The main idea is 

to reduce the number of memory references through simultaneous processing 

architecture (SPA) using the vertical processing order instead of the raster scan 

order. A similar architecture is proposed in [53] by Venkatraman, et al. 

Some efforts are also made to optimize the filter kernels by removing redun

dant operations, however the strong filter mode is the main focus in most of 

these attempts. For instance, in [49], the author suggest 3 different decom

positions of the filter kernels in Strong filter mode to reduce the number of 

addition operations. The author however, do not consider similar decomposi

tions for Weak Filter mode. 

In shoit, single filter unit based solutions require less area in terms of equiv

alent gate count fort their implementation but fa i l to meet the processing re

quirements of high definidon video in real-time. In some of the cases area 

reduction is achieved through reduced functionality offered by these hardware 

designs. The soludons based on multiple filtering units, on the other hand, 
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though provide better throughput at the cost of additional area but still do not 

meet the real-dme processing requirement of ah the levels offered by the video 

coding standard H.264/AVC. 

2.3.2 Intra Prediction 

Many different variants of intra-predicdon algorithm has been presented in 

literature for last few years [47, 57-73]. The recent research on H.264/AVC 

intra predicdon has focused on efficient hardware designs. The work pre

sented in [71] proposes a hardware design with 5-stage registers and three 

configurable data paths for intra prediction unit. It uses reconfigurable pre

dictor generators that exploit inherent parallehsm within one predicdon mode. 

The proposed design can process approximately 100 V G A frames in real-dme. 

The proposed design, process each predicdon mode individuahy and therefore, 

does not exploit the f u h space of opdmizadon and parallehsm between the dif

ferent intra prediction modes. Since the proposal made in this work processes 

the intra prediction modes sequentially. Consequently, i t requires a relatively 

higher frequency to achieve a throughput of 100 V G A frames in real-time. 

Moreover, it also suffers f rom overhead of configuring the hardware for differ

ent predicdon modes. 

In [68], an efficient intra-frame codec is proposed. The proposed solution can 

process 720p @ 30 fps in real-time and can be used for both the encoder and 

decoder implementations. This soludon, however, excludes the plane mode for 

16x16 luma and 8 x 8 chroma blocks. The proposed solution, therefore, can 

be used in a matched encoder-decoder scenarios only where it is guaranteed 

that plane mode is not used for intra-predicdon. 

High-throughput hardware designs for a H.264/AVC decoder are proposed 

i n [47] and [65]. The proposed designs can process high-definidon (HD) 

video in real-time. Since no attempts were made to optimize the intra pre

diction algorithm to reduce the arithmetic operations, therefore, the hardware 

implementation of these designs cost significant amount of hardware resources 

(approximately 29K gates). 

Similarly, in [72], an efficient hardware implementation for intra-prediction 

unit is proposed. The design targets the H.264/AVC encoder and uses a so-

called combined module approach to generate a subset of intra-prediction 

modes in parallel. Furthermore, the intra-prediction algorithm is opdmized to 

significantly reduce the number of arithmetic operadon for the computation of 

predicdon samples. The proposed soludon, however, does not fu l ly eliminate 
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the redundancy in the algorithm and also primarily targets the H.264 encoder. 

2.3.3 Integer Transform 

A number of efficient algorithms and hardware designs for forward and 

inverse-integer transform in H.264/AVC, are presented in literature in recent 

past [22,64,74-94] .From the perspective of hardware designs for integer trans

form in H.264/AVC, the main focus of research has been to develop fast algo

rithms with reduced on-chip area for its hardware implementation. In [82], L i u 

et a l , used a parallel register array to realize the transpose operation for the 2D 

4 x 4 forward integer transform. In [89], Cheng proposed high-throughput 4 x 4 

integer transform architecture with no transpose memory requirement. Fan, et 

al., proposed a fast 2D transform algorithm in [79]. Similarly in [88,93,95], a 

number of fast algorithms for the integer transform have been proposed. 

The H.264/AVC encoder utilizes multiple transforms (Forward/Inverse) in

teger transform and (Forward/Inverse) Hadamard Transform. Therefore, re

cently, the research focus has been shifted to design a unified transform unit to 

support multiple transforms in H.264/AVC [80], [94], [90], [92]. The motiva

tion for such efforts is to reduce the on-chip area for the hardware implemen

tadon of these transforms units by sharing area between them. The proposed 

architectures although support multiple transforms in H.264/AVC, but most of 

them provide only one type of transform at a time. A l l of these architectures 

take residual data as an input and provide the transformed coefficients for the 

selected type of transform at the output. 

2.4 Summary 

In this chapter, we have presented an overview of the latest and state-of-the-

art video coding standard H.264/AVC. Different functional units of the video 

codec are briefly described and the compute-intensive units are idendfied. A f 

terward, /9-VEX Reconfigurable V L I W processor is introduced. The proces

sor's architecture and design is also explained. Finally, the related work for 

the idendfied compute-intensive video coding funcdonal units in H.264/AVC 

is presented in this chapter. 





3 
Deblocking Filter 

THE adaptive deblocking filter in H.264/AVC not only provides perceptu

ally improved video quality by removing blocking artifacts in the recon-

stmcted video frames, but also helps to reduce bit-rate typically between 5% 

-10% [2]. However, this improvement in video quality and reduction in video 

bit-rate is achieved at the cost of increased complexity of deblocking filter al

gorithm. 

The complexity of deblocking filter algorithm in H.264/AVC is mainly based 

on high adaptivity of the filter, which requires conditional processing on block 

edge and sample levels. Another reason for high complexity is small block 

size employed for residual coding in H.264/AVC coding algorithms. With 4 x 4 

blocks and a typical filter length of 2-samples in each direction, almost every 

sample in a video frame must be loaded f rom memory, either to be modified 

or to determine i f neighboring samples w i l l be modified. 

According to analysis of run-time profile of H.264/AVC decoder sub-

functions, deblocking filter consumes about one-third of the total computa

tional resources required for video decoder [96], This is true even though 

the deblocking filter can be implemented without any muUiphcation or divi

sion operations. These demanding characteristics suggest a high-throughput 

implementation for such a filter, especially for High Definition (HD) video ap

plications such as Digital T V (DTV) , where even larger frame-size at higher 

frame-rate is to be processed in real-time. Similarly a low-power solution is 

required for portable battery-powered multimedia electronic devices, such as 

mobile phones, digital cameras, and Personal Dighal Assistant (PDA). 

The main contributions of this chapter are: 

1. For image processing apphcations, a single-filter-unit based low-power 

hardware design for deblocking filter in H.264/AVC. 

31 
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4x4 block edge 
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Figure 3.1: Convention for describing pixels across vertical and horizontal edges in a 

macroblock. 

2. For real-time video processing apphcations, a high-throughput, area-

efficient hardware design for deblocking filter in H.264/AVC using dual 

filter units. 

This chapter is organized as follows: Section 3.1 briefly describes the algo

rithm for deblocking filter in H.264/AVC. The design considerations for de

blocking filter-core are presented in Secdon 3.2. In Sections 3.3 and 3.4, we 

propose two hardware designs for deblocking filter, targeting image processing 

applications on batteiy-powered electronic devices and real-time video pro

cessing applications respectively. Finally, Section 3.5 summarizes the chapter. 

3.1 Deblocking Filter Algorithm 

The convention to describe pixels across veilical and horizontal edges in a 

macroblock is depicted in Figure 3.1. The bold hne between pixels pO and qO 

is either a vertical or horizontal edge between two adjacent 4 x 4 blocks. Pixels 

qO-q3 represent pixels in the current 4 x 4 block whereas pixels pO-p3 are f rom 

corresponding left or top neighbor 4 x 4 block across vertical or horizontal edge 

respectively. 

The filtering operation is peiformed on macroblock (MB) basis after recon

struction of the video frame, with all MBs in a video frame processed in order 

of increasing M B address. The filtering is applied to all 4 x 4 block edges ex

cept edges at the boundary of a picture or for which the filtering is disabled 

explicitly. The filtering process is invoked for luma and chroma components 

of a M B separately. For each M B and for each component, vertical edges are 

filtered first starting with the left most edge and proceeding through the edges 

in their geometrical order. The horizontal edges are filtered afterward in a sim

ilar fashion, starting with the top most edge and proceeding through the edges 

in their geometrical order [7] as depicted in Figure 3.2. The filtering process 
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Figure 3.2: Vertical and horizontal 4x4 block edges in a macroblock. (a) Luminance 
(Y) component of a macroblock. (b) Chrominance (Cb) component of a macroblock 
and (c) Chrominance (Cr) component of a macroblock. 

also requires pixels f rom left and top neighbor macroblocks in order to filter 

the left most edges ( V I , V5 and V7) and the top most edges ( H I , H5 and H7) 

respectively. A macroblock at 4 x 4 block level is shown in Figure 3.2. Blocks 

B l through B16 belong to luma (Y) component of the current M B . Similarly, 

B17-B20 and B21-B24 are f rom chroma (Cb, Cr) components of the same 

M B respectively. Blocks (T1-T8) are top neighbor 4 x 4 blocks and (L1-L8) 

represent left neighbor 4 x 4 blocks of a M B in Figure 3.2. 

The H.264/AVC deblocking filter is a highly adaptive filter. It adapts at slice 

level, 4 x 4 block-edge level, and set of pixels level within a 4 x 4 block. A t slice 

level, a set of threshold parameters control filter operation, while at block-edge 

level, filter strength is computed on the basis of parameters such as, encoding 

mode and modon vector difference. The boundary strength (Bs) parameter 

controls filter strength at 4 x 4 block level and varies between 4 (strong filter 

case) and 0 (no filter case). For Bs values 1, 2 and 3, a weak filtering process 

is invoked on pixels across 4 x 4 block edge. The decision process to compute 

Bs value is described in [7]. The selected filter mode is turned O N or OFF de

pending upon the value of Filter Sample Flag (FSF). The FSF value is derived 

f rom equadon on hne 2 in Algorithm 3.1. 

In strong filter mode (Bs = 4), at most 3 pixels are modified on either side of the 

edge. New values for pixels on left or top of the edge (p-pixels) are computed 

using equations on hnes 10-12, Algorithm 3.1, provided strong filter flag for 

p-pixels (SFF_P) is set. I f SFF_P is not set, only one pixel (pO) is filtered 

and the new value for this pixel is deiived by equadon provided on hne 14, 

Algori thm 3.1. Similarly, pixels in the cuiTcnt block (q-pixels) are computed 

using equations on hnes 17-19, Algorithm 3.1, provided the corresponding 



34 C H A P T E R 3. D E B L O C K I N G F I L T E R 

Algorithm 3.1 : Deblocking filter algorithm for single block edge. 

Require: Pixels po - ps and qo- qa, aiQp), /S(Qp), Bs,ChromaEdge,Co 

begin 

FSF := (Bs=|=0)& (|po - qo| < Q ' ) & ( | p i - p o | < ( | q i - p o | < P) 

SFF_P := Not(ChromaEdge)ki\p2-po\ < / 3 ) & ( | p o - q o | < ( a ' / 4+2) ) 

SFF_Q := Not iChromaEdge)k(\q2-qo\ < / 3 )&( |po -qo | < ( Q ' / 4 + 2 ) ) 

WFF_P — Not (ChromaEdge) & ( |p2 - Po| < /3) 

WFF_Q := Not (ChromaEdge) & (jqs - qoj < /3) 

i f F S F 7^0 then 

if Bs == 4 then 

if SFF_P T'O then 

Po : = (P2 + 2 * Pl + 2 * Po + 2 * qo + qi + 4) > 3 

p'l : = ( p 2 + P i + P o + qo + 2) > 2 

p'2 : = (2p3 + 3 * p2 + Pl + Po + go + 4) » 3 

else 

Po := (2 * p i +po + qi + 2) » 2 

end if 

if SFF_Q i 0 then 

qó := ( q 2 + 2 * q i + 2 * qo + 2 *po + p i + 4 ) » 3 

q'l := ( q 2 + q i + qo +Po + 2) > 2 

q2 : = (2q3 + 3 * q2 + q i + qo + po + 4) » 3 

else 

qó := (2 * qi + qo + p i + 2 ) » 2 

end if 

else 

A := c l i p ( c i , - c i , ( ( (qo - p o ) <C 2 + ( p i - q i ) + 4 ) » 3 ) ) 

Po := c l i p (0, 255, po + A ) 

qó := c l i p (0, 255, qo - A ) 

'\ÏWF_P yOthen 

p ' l : = p i + c I i p ( c o , - c o , (p2+( (po + qo + l ) » l ) - 2 * p i ) » 1) 

end if 

\iWF_Q 7^Othen 

q'l := q i + c I i p ( c o , - C Q , ( q 2 + ( ( p o + qo + D » l ) - 2 * q i ) » 1) 

end if 

end if 

end if 

end 
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strong filter flag (SFF_Q) is set. In case SFF_Q is not set, only one pixel (qO) 

is filtered using equation provided on line 21 Algorithm 3.1 and rest of the 

pixels remain unchanged. The values for SFF_F and SFF_Q flags are derived 

f rom equations described on lines 2 and 3, in Algorithm 3.1 respectively. 

In weak filter mode (Bs = 1, 2 or 3), at most 2 pixels on either side of the edge 

are filtered. The new values for pixels pO and qO across the edge are derived 

f rom equations on hnes 25 and 26 in Algori thm 3.1 respectively. Similarly, 

equadons on lines 28 and 31 in Algori thm 3.1 are used to compute filtered val

ues for pixels p l and q l , provided the corresponding weak filter flag (WFF_P, 

WFF_Q) is set. In case weak filter flag is not set, filtering operation for these 

pixels is turned off.. The values for WFF_P and WFF_Q are derived f rom 

equadons on lines 5 and 6, Algorithm 3.1. No filtering is apphed for Bs = 0. 

3.2 Design Consideration for Deblocking Filter Core 

In this section, we elaborate on the opdmizations carried out at deblocking 

filter algorithm level. Other design-level considerations along with their justi

fication and/or motivadon are also described, for low-power and area-efficient 

hardware design for core filtering unit in deblocking filter. 

3.2.1 Processing Units for Luma and Chroma Components 

The H.264/AVC supports Y U V 4:2:0, Y U V 4:2:2, and Y U V 4:4:4 video frame 

formats. In case of Y U V 4:2:0, 33% of pixels belong to chroma component 

of a macroblock. This number increases to 50%, and 66% for Y U V 4:2:2 

and Y U V 4:4:4 video frame formats respectively. Since the chroma filtering 

is much cheaper than the luma filtering in terms of required arithmetic opera

tions (13 vs. 45), i t is potendally beneficial to design separate processing units 

for luma and chroma components of a macroblock. These separate luma-, 

chroma-processing units, depending upon the status of ChromaEdge flag ( A l 

gorithm 3.1), can be enabled or disabled independent of each other to reduce 

the dynamic power consumpdon. 

3.2.2 Processing Units for Strong and Weak Filter Modes 

For both luma and chroma components of a M B , the filter mode for pixels 

across any edge is determined on the basis of Bs value for that edge. Since 
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Figure 3.3: Full filtering process skip (Bs = 0 case). 

only one mode is active at any given time during filtering process, therefore, 

the arithmetic operations for both filter modes are implemented in separate 

processing units employing clock gating. Depending on the filter mode, either 

of these processing units (strong or weak filtering units) is deactivated dynam

ically to potentiahy reduce the power consumption. 

3.2.3 Ful l or Partial Filtering Process 

The filtering process, for an edge with Bs = 0, is skipped. Moreover, the FSF is 

computed using pixel values across horizontal or verdcal edge, and the C O I T C -

sponding 4 x 4 block level filter control threshold values. I f FSF is not set, the 

filtering process for current pixels-row or pixels-column (vertical or horizontal 

filtering cases) within the 4 x 4 block can also be skipped. 

For a variety of video test sequences encoded at different bit-rates (100 - 700 

Kbps), Figure 3.3 illustrates the percentage cases when complete filtering pro

cess can be skipped because of Bs being zero. There is no need to even com

pute FSF and other conditional flags for such a 4 x 4 block case. Similarly, 

Figure 3.4 suggests that even when Bs is non-zero, there are significant num

ber of cases when FSF is false and, therefore, filtering process can be skipped 

pardally for current pixels-row or pixels-column within the 4 x 4 block. 



3.2. D E S I G N C O N S I D E R A T I O N FOR D E B L O C K I N G F I L T E R C O R E 37 

Figure 3.4: Partial fil tering process skip ( Bs = 1, 2, 3 or 4). 

We propose to compute FSF along with other conditional filter flags in first 

pipeline stage as independent processing umt with gated clock. This unit is 

activated only i f Bs is non-zero. With this proposal, the filtering process for 

the whole 4 x 4 block is skipped for a scenario when boundary strength is zero. 

In case Bs is not zero, the FSF along with other conditional flags are used to 

generate appropriate control signals for rest of the processing units in the 2"'' 

and 3'"'' pipehne stage of deblocking filter, to paitially skip fikering process 

and, therefore, reduce dynamic power. 

3.2.4 Processing Units for Conditional Filtering 

For condidonal filtering scenario, we computed percentage of cases when any 

of the conditional filter flags (WFF_P, WFF_Q, SFF_P, SFF_Q) for all fiher 

modes (strong and weak filter modes) is false. The data is generated for various 

video test sequences encoded at 100 - 700 Kbps video bh-rate. As depicted in 

Figures 3.5 and 3.6, there are quite a significant number of cases during pro

cessing of any video frame when the conditional filtering is off. Therefore, we 

propose to split the processing for these cases and implement them in separate 

units supported by clock gating. This helps to deactivate these processing units 

independently and, therefore, reduce dynamic power consumpdon when any 
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Figure 3.5: Conditional filtering process skip (Bs = 4). 
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Figure 3.6: Conditional filtering process skip (Bs = 1, 2, or 3). 
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of the conditional filtering flags is not set. 

3.2.5 Algorithm-level Optimizations for Deblocking Filter 

In strong filter mode, filtered pixel values are derived f rom filter equations on 

provided lines 10-21 as provided in Algorithm3.1. Similarly, filtered pixel val

ues for weak filter mode are derived f rom equadons provided on lines 24-31 

in Algorithm3.1. It is clear f rom these equations that strong filter mode re

quires 36 additions; whereas, 13 additions and 5 chp operations are required 

for weak filter mode. This resuhs in 49 additions and 5 chp operations in 

total, while excluding the operations needed to compute the pixel level filter 

flags. As mentioned in the related work, the author in [49] proposed 3 differ

ent decompositions of the deblocking filter equations in strong filter mode to 

reduce the number of operations. However, no such attempt is made to reduce 

the number of operations for weak filter mode. The proposed decomposition 

in [49], with least number of operations, requires 22 addition operations for 

strong filter mode. Another 13 additions and 5 clip operations are, therefore, 

required for weak filter mode. This results in 35 additions and 5 clips opera

tions to perform complete deblocking filtering process for an edge, in all filter 

modes. Similarly, a deblock filter design with 23 additions for strong filter 

mode is presented in [97] . The proposed design, therefore, requires 36 addi

tions and 5 clip operations for its hardware implementation for both deblock 

filter modes in H.264/AVC. 

3.2.5.1 Decomposition of Filter Kernels 

One of the important contributions of this work, is an attempt to remove the 

redundant operations in filter equations for both filtering modes (Algorithm 

3.1) through novel decomposition of filter equations as depicted in Algorithm 

3.2 . Note that the rounding constants in original filter equations on lines 10-21 

in Algori thm 3.1 are efficiently distributed among several intermediate results 

in the form of x H- y -H I . This operation, however, requires only one adder for its 

hardware implementation. The term 4 * uO - I - 3 on line 25 in Algorithm 3.2 can 

be reahzed by appending bits ' 11 ' as least significant bits in uO. , and therefore, 

do not require any additional adder. Similarly, reuse of intermediate results in 

optimized algorithm helps to significandy reduces addition operations. Our 

proposed decomposition requires only 31 additions. 
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Algorithm 3.2 : Optimized deblocking filter algorithm for single block edge. 

Require: Pixels po - ps and qo- qa, a(Qp), jiiQp), Bs,ChromaEdge,Co 

1: begin 

2: U l : = (2 * p 2 +Po + 1) + (qo - 4 * P l ) when Bs y^A 

3: U l : = ( p 2 +po + 1) + (qo + P i + 1) when Bs = 4 

4: U2 := (2 * q2 + qo + 1) + (po - 4 * q i ) when Bs 7^4 

5: U2 : = ( q 2 + qo + 1) + (po + q i + 1) when Bs = 4 

6: U3 := ( p i - q i ) when Bs =/ A 

7: 0 3 : = ( p i + q i + 1) when Bs = 4 

8: U4 : = Po + qo + 1 

9: U5 : = U3 + U4 

10: t l : = p 3 + p 2 + l 

11: t 2 : = q3 + q2 + 1 

12: t 3 : = p i +po + 1 

13: U : = q i + qo + 1 

14: if S t r o n g - F i l t e r (Case : Bs = 4) then 

15: Po : = ( u i + u g ) » 3 

16: P l := ( u i ) » 2 

17: P2 : = ( u i + t l ) > 3 

18: p'o^ : = ( u 3 + t 3 ) » 2 

19: qó := ( u 2 + Ug) » 3 

20: q i : = ( U 2 ) > 2 

21: q2 : = ( U 2 + t 2 ) > 3 

22: qóc := ( U 3 + t 4 ) > 2 

23: endif 

24: if P/eaJcFilter (Case : Bs = l , 2 o r 3 ) then 

25: A : = clipici, - C i , ( ( 4 * uo + 3) + U3 + 1) » 3) 

26: Pq : = c l i p (0, 255, po + A ) 

27: qó := c l i p (0, 255, qo - A ) 

28: P l : = p i + c l i p ( c o , - c o , ( u i ) » 2) 

29: q { := q i + c l i p ( c o , - C o , ( U 2 ) > 2) 

30: endif 

31: end 
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Figure 3.7: Overlapped data paths for u l , u2 and u3 in strong and weak fiher modes. 

3.2.5.2 Inter Filter Mode Optimizations 

Since both deblocking filter modes are mutually exclusive, and therefore, only 

one of them is used to filter pixels data across the 4 x 4 block edge at any 

given time. Therefore, inter-filter-mode redundancy can be removed by de

signing datapath (for u l , u2, and u3) in such a way that they overlap as much 

as possible in terms of arguments for processing units (adders in this case). 

The proposed reahzadon of fiher equadons for u l , u2 and u3, using over

lapped datapath, is illustrated in Figure 3.7(a), 3.7(b), and 3.7(c) respectively. 

The inter-filter-mode optimization reduces another 7 adders at the cost of 4 

multiplexers. The proposed decomposition of filter equadons along with inter-

filter-mode optimizadon requires only 24 additions and 5 clip operations for 

its hardware implementation. The number of additions are, therefore, reduced 

by 5 1 % when compared with that of original deblocking filter equadons in [7], 

by 3 1 % , when compared with decomposition proposed in [49], and by 33%, 

when compared with [97]. A comparison of number of operations required 

to carry out deblocking filter process, proposed by [7], [49], and [97] and our 

proposal, is depicted in Figure 3.8. 
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Figure 3.8: Comparison: Addition operations in strong and weak filter modes. 

3.3 Low-power Deblocking Filter Design 

In this section, we first introduce the top-level hardware design for deblock

ing filter in H.264/AVC. Subsequently, the internal design of the deblocking 

fiher core unit is presented in this section. The independent processing blocks 

proposed in Secdon 3.2 for low-power hardware design are also idendfied and 

explained in the design of deblocking filter core unit. 

3.3.1 High Level Organization 

The block diagram of the hardware deblocking filter is depicted in Figure 3.9. 

The design is based on a single filter unit (filter core), and two R A M units 

(filter control data R A M , and neighbor 4 x 4 block data R A M ) . Since the fil

ter process is identical in both horizontal and vertical directions, therefore, a 

single filter unit is used in the hardware design. During fihering process for 

vertical or horizontal block edge, pixel data f rom left or top 4 x 4 neighbor 

block, across the block edge, is also required. This left or top neighbor 4 x 4 

block pixels data is stored in neighbor 4 x 4 block data R A M . Similarly, filter-

control-threshold parameters (a, (3, TCQ, and Bs) at 4 x 4 block level are stored 

in filter control data R A M unit. The neighbor 4 x 4 block data R A M unit is 

composed of 32 x 32-bit dual port SRAM. Similarly, filter control data R A M 

is composed of 16 x 32-bit SRAM. A l l the datapaths in Figure 3.9 are 32-bit 

wide. 

During deblocking filter process, the 4 x 4 block level filter control and neigh

bor pixel data is first transferred and stored in the corresponding R A M units. 

Later, the filtering process stalls as soon as first pixel-row of 4 x 4 block B1 
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Figure 3.9: High level organization of the deblocking filter hardware implementation. 

is received f rom the extemal memory at Q input (Figure. 3.9) of deblock fil

ter core via input bus. The corresponding neighbor pixel data across the edge 

(P data input in Figure 3.9), is provided to the filter core f rom neighbor 4 x 4 

block data R A M unit. Pardally filtered macroblock data (QO of cuiTent 4 x 4 

block is temporarily stored in the neighbor 4 x 4 block data R A M unit. This 

partially filtered stored data is used as neighbor pixel data for the next 4 x 4 

block. Whereas, the filtered pixel data at the output P' is transferred to the 

extemal frame memory via output bus. 

3.3.2 Deblocking Filter Core Unit 

The deblock filter core is the main processing block where all fiher related 

condidonal flags are computed and the appropriate filter kemels are used to 

filter the input pixel data. The design choices made for this unit plays an 

important role in determining the throughput, power consumption and on-chip 

area for its implementation. 

Pipehne processing is an effective implementation choice to achieve high 

throughput. In order to meet the real-time processing requirement of up to 

fuU-HD (1920x1088) resolution video frame format, while keeping the op

erating frequency as low as possible with low-power design point of view, 

we implement the deblock fiher core in pipeline fashion. The straightforward 

pipeline implementadon of deblocking filter, however, potentially consumes 
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high dynamic power because of parallel processing and unnecessary activity 

in different pipehne stages. We, therefore, propose to implement deblocking 

filter core using optimized algorithm and recommended design options in Sec

tions 3.2. 

The 1**' pipeline stage of deblock filter core implements processing for evalua

tion of ah the filter control flags (FSF, WFF_P, WFF_Q, SFF_P, and SFF_Q). 

These flags are used in filter control block pipehne stage 1, to generate appro

priate control signals for filter processing blocks in subsequent pipeline stages 

of deblock filter core. 

The 2"'' and 3"̂  pipeline stages of filter core consist of processing blocks wi th 

gated clock, as identified in Section 3.2. ChromaBs4Block in Figure 3.10, as 

the name suggests, implements filter processing for chroma component of the 

macroblock for Strong Filter Mode ( hnes 14 and 21 in Algori thm 3.1). The 

deblocking fiker process for pixels pO and qO in weak filter mode, is identi

cal for chroma-, luma-components of a M B . Therefore, for this case, Chro-

maLumaBsl23Block implements ah the arithmetic processing for pixels pO 

and qO as described on lines 24-26 in Algorithm 3.1. Similarly, the over

lapped datapath for conditional filtering in strong and weak filter modes is 

implemented in LumaCommonPBlock and LumaCommonQBlock, whereas, 

the LumaBs4_PBlock, LumaBs4_QBlock implement rest of the processing 

for strong filter mode case [16]. 

In case of strong or weak filter modes for chroma component of a M B , one can 

see f rom Figure 3.10, either ChromaBs4Block or ChromaLumaBsl23Block 

is to be enabled respectively. While, all the processing blocks in 2"*̂  and 3'''' 

pipehne stages are deactivated, in this case, for 33% of the processing time in 

a M B . Similarly, for other filtering scenarios, filter control block in 1**' pipeline 

stage generates appropriate control signals to activate only the respective pro

cessing block(s) in the 2"'' and 3''' pipeline stages. I f Bs is zero, afl processing 

blocks are deactivated and the unfiltered pixels are transferred at the output of 

deblock filter core via by-pass stage (not depicted in Figure 3.10). The experi

mental results suggest that our hardware design for deblocking filter consumes 

significantly less dynamic power, when compared with state-of-the-art low-

power deblocking filter designs presented in the literamre. 

3.4 High-throughput Debloclting Filter Design 

In this section, for real-time video processing apphcations, we propose a high-

throughput and area-efficient hardware design for deblocking filter. The pro-
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Figure 3.10: Block diagram of the DBF core. 
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posed design is based on dual identical filter cores and, therefore, process hor

izontal and vertical edges simultaneously. To achieve area-efficiency and re

duce dynamic power consumption, the fiher core is implemented using opti

mized decomposed filter kernels , already discussed in the previous sections. In 

this section, different building blocks that constitute top-level design of hard

ware deblocking filter accelerator are first introduced with a brief rationale 

for each of them. Subsequently, the pixel data flow, at 4 x 4 block level, is 

explained to provide an insight in the functioning of the proposed hardware 

accelerator. 

3.4.1 High Level Organization 

The block diagram of deblocking filter hardware accelerator is depicted in Fig

ure 3.11. A l l solid line datapaths are 32-bit wide (4 pixels) and the dotted 

lines represent control signals. This accelerator is based on two identical fil

ter units vertical edge filter (VEF), horizontal edge filter (HEF), two transpose 

units (Trans 1 and Trans2), boundary strength computation unit (BS), and two 

left/top 4 x 4 neighbor blocks R A M units (LENB R A M , TPNB R A M ) . VEF 

unit processes pixel-rows across vertical block edge in horizontal direction. 

Similarly, HEF unit processes pixel-columns across horizontal block edge in 

vertical direction so as to remove the blocking artifacts in a M B . The LENB 

R A M stores pixel-rows of left neighbor 4 x 4 blocks (L1-L8) for vertical edge 

filtering process in VEF. Similarly, TPNB R A M stores pixel-columns of top 

neighbor 4 x 4 blocks (T1-T8) for horizontal edge filtering process in HER 

During the filtering process of the intemal block edges, partially filtered pix

els f rom current 4 x 4 block are used as left and top neighbor pixels for the 

next 4 x 4 block along horizontal and vertical direction respectively. Therefore, 

LFNB/TPNB R A M units also serve as a temporary storage to hold partially fil

tered intermediate pixel results. 

The BS unit computes boundary strength for all 4 x 4 block edges in a M B in 

both horizontal and vertical directions. The required configuration data, e.g., 

encoding type, motion vectors and quantization parameters of 4 x 4 blocks, 

for computation of boundary strengths, are stored in R A M unit as depicted 

in Figure 3.11. The R A M umt is composed of two 8 x (4x 8-bit) dual-port 

SRAMs and each one of these is used to store either top or left neighbor block 

configuration data during boundary strength computation process. The BS unit 

provides these computed boundary strength values along with filter control 

thresholds (a, /3, and TCQ), stored in the R O M table, to VEF and HEF filter 

units during filtering process. 
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Figure 3.11: High level organization of the proposed deblock filter accelerator 

The Trans 1 unit, at the input of HEF unit, transposes incoming pixel-rows of 

4 x 4 block into pixel-columns. The other transpose umt i.e. Trans2, at the 

output of the HEF unit, converts the filtered pixel-columns back to pixel-rows 

before transferring them to external picture buffer via output bus. 

3.4.2 Data Flow in Deblocking Filter Hardware Accelerator 

Before stardng filtering process for any M B , the configuradon data and the 

top neighbor 4 x 4 blocks (T1-T8) are transferred f rom external memory to 

deblocking filter hardware accelerator. During this phase, BS unit computes 

boundary strength for all block edges in current M B . The pixel data for luma 

component in cuiTcnt M B follows configuration data and is transferred in raster 

scan order on 4x4 block level ( B l , B2, B16). Deblock filter phase starts as 

soon as first pixel-row of block B l arrives at the input of VEF filter unit. The 

input pixel data is first filtered for vertical block edges in VEF unit and later 

by HEF unit for block edges in horizontal direcdon. The chroma 4 x 4 blocks 

(B17, BIS , B24) fol low luma blocks and are filtered in the same fashion. 

Once the filtering operation is completed in both directions by VEF and HEF 

units for the luma and chroma blocks, these filtered blocks are transferred to 

external picture buffer via output bus. The data-flow at block level is depicted 

in Figure 3.12. The VEF(Q-input) is always provided with input blocks ( B l , 

B2, B24) f r o m external unfiltered picture buffer. The corresponding left 

neighbors ( L l , B l , B2, B3, L2 , . . . ) are fed f rom LFNB R A M unit into VEF(P-
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input) filter unit. 

The partially filtered blocks (B1, B 2 , B 2 4 ) f rom V E F (Q-output) are always 

stored in LFNB R A M and are used as left neighbor blocks in next filter block 

cycle. The filtered blocks ( B l , B2, B23), after completion of vertical edge 

filtering operation f rom VEF unit, are transfeiTcd to next filtering unit HEF 

for horizontal edge filtering operation. The last 4 x 4 block in each block row 

of current M B (B4, B8, B12) are temporarily stored in the LFNB R A M , and 

are also sent to HEF umt via the same data path before start of next block 

row. HEF unk also receives 4 x 4 blocks of current M B , after being filtered 

in horizontal direction by VEF unit, in the same sequence as that of V E F unit 

(Q-input), as shown in Figure 3.12. 

The last column of 4 x 4 blocks (B4, B8, B12, B16, B18, B20, B22 and B24) 

in current M B are stored in LFNB R A M as (L1-L8) for next macroblock after 

compledon of filter operadon in both directions. The blocks in the last luma, 

chroma block rows (B13, B14, B15, B17, B19, B21 and B23), temporarily 

stored in the TPNB R A M module are sent to the external picUire buffer. These 

blocks are transposed f rom pixel-columns to pixel-rows orientadon during the 

transfer process by Trans2 unit. The left neighbor blocks of the previous M B 

are directly sent f rom LFNB R A M . 

When vertical filtering process for current M B is completed, transfer of config

uradon data and top neighbor blocks (T1-T8) in next M B is inidated, in parallel 

wi th the processing of HEF unit for cuiTent M B , to maximize the throughput 

of the deblock filter 

3.4.3 Transpose Unit in Deblocking Filter Hardware Accelerator 

Our deblocking fiher hardware accelerator utihzes two identical filter units to 

achieve high throughput. However, because of identical filter units, two trans

pose unks are required in the design as depicted in Figure 3.11. These trans

pose units are an overhead of such an arrangement and cost significant amount 

of area for their implementation. Different techniques have been presented in 

the literature to reduce area cost of transpose units. A l l of these techniques, in 

one way or another, require a separate temporal register file for its realization. 

We, however, fol low a different approach in our design to minimize this over

head. We identify that the transpose process and the boundary strength compu

tation process are two mutually exclusive set of operations in time. The storage 

used for BS parameters is a free resource during the transpose phase. There

fore, in our design we re-use R A M units s as a storage during the transpose 
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Figure 3.13: Functional block diagram of Transpose unit. 

phase. This saves us precious area when compared to the use of dedicated 

register files, during the transpose phase. The transpose units in our design 

do not require any separate temporal buffer for their implementation. How

ever, it do requires some pre- and post-storage pixel data re-aiTangements for 

implementation of transpose units. The design and implementation details of 

transpose units using configuration R A M units are explained in the remainder 

of this section. 

3.4.3.1 Transpose Unit Implementation 

The transpose unit consists of 2 sets of 4 multiplexers connected to R A M units 

as depicted in Figure 3.13. R A M units are shared between transpose and B S 

units to serve as temporary storage location. The cost of a register file consist

ing of 14, 32-bit registers [48] is about 3. 3k gates whereas the multiplexers 

depicted in Figure 3.13 cost only 500 gates (implemented on 0 .18pm C M O S 

standard cell technology). This optimization delivers area saving. The trans

pose mechanism is explained in the following: 

The transpose unit takes 8 cycles to complete transpose process of a 4 x 4 

block. In first 4 cycles, block "n" is stored at "set 1" address locations ( 0, 

1, 2 and 3). While wridng into the R A M unit, the pixel-rows of block " n " are 

arranged in such a way that no two pixels of any pixel-column of transposed 
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Figure 3.14: Transpose mechanism for 4x4 block. 

4 x 4 block occupy same storage R A M unit. This is achieved through multi

plexers M u x l - M u x 4 at the input of RAMs as shown in Figure 3.13. The con

trol signals for these multiplexers and data stored in R A M units are depicted 

in Figure 3.14(a). In next 4 cycles, block "n-i-1" is stored after same pixel re

arrangement process at "set 2" address locations (4, 5, 6 and 7). Meanwhile, 

pixels f rom previously stored block "n" at "set I " address locations are read 

out f rom RAMs using appropriate addresses, as depicted in Figure 3.14(b). 

These pixels are subsequently re-positioned to form pixel-columns of 4 x 4 -

transposed block using multiplexers Mux5-Mux8 at the output of R A M units. 

Similarly, in the next 4 cycles, block "n+2" is stored at "set 1" address lo

cations while block " n + 1 " is read out f rom "set 2" address locations and so 

on. Figure 3.14(a) depicts the control signal for M u x l - M u x 4 during cycles 

c l to c4 along with re-arranged data stored in the R A M unks. Read addresses 

and the corresponding data read f rom R A M units is depicted in Figure 3.14(b). 

Similarly, the control signals for multiplexers Mux5-Mux8 with and the output 

of transpose umt are also depicted in Figure 3.14(b). During BS computation 

phase, multiplexers M u x l - M u x 8 controls are set such that no re-positioning of 

the pixel data is done at both ends of the R A M units. 
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Figure 3.15: Functional blocks for vertical and horizontal edge filter units. 

3.4.4 Vertical and Horizontal Filter Units 

This section describes the design of VEF and HEF units and related opdmiza

tions employed at this level. The block diagram of this unit is depicted in 

Figure 3.15. Since all filtering operadons are carried out in these units, there

fore, more than two third of the total area of the deblocking filter hardware 

accelerator is occupied by these units. The design of this unit plays an impor

tant role in determining the throughput and overall area cost for the deblocking 

filter hardware accelerator. 

3.4.4.1 Efficient Pipeline Design 

The intermediate results storage registers between pipeline stages cost a sig

nificant amount of area. To minimize this overhead, we implement common 

datapath between two deblocking filter modes ( u l , u2 and u3 in Algorithm 

3.2) in the first pipeline stage. This results in only 6 intermediate results ( u l , 

u2 and u3) for both filter modes. This number is further reduced to 3 intermedi

ate results due to the fact that both filter modes (strong and weak filter modes) 

are mutuahy exclusive as depicted in Figure 3.7(a), 3.7(b), and 3.7(c). From 

pixel level filter control flags perspecdve, we designed the pipeline stages such 

that all processing to compute pixel level filter controls is also in first pipehne 

stage. This design choice requires only 5 one-bit flags to be passed on to the 

subsequent filter pipehne stages. This design choice, however, results in a 

longer processing chain for computation of filter control flags and is on the 

critical path in our design. Therefore, the maximum operating frequency for 
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our hardware accelerator is determined by the choice of implementation of 

pixel level filter control block. Implementadon level opdmizadon for critical 

path, explained below, enabled us to achieve 166 MHz operating frequency. 

3.4.4.2 Critical Path Optimization 

The computadon of filter control flags is on the cridcal path for our deblock 

filter hardware design. The equations to derive the values for filter control 

flags are provided in Algorithm 3 . 1 . The common operadons in computation 

of these flags can be written as follows: 

Flag A = Abs(x - y) < Threshold ? 1 : 0. 

where x and y represent the pixel values. 

The straightforward implementadon is depicted in Figure 3.16(a) and consists 

of following operations: Compute difference (x - y). I f the computed dif

ference is negative, take 2's complement to produce absolute difference and 

finally determine the flag A by comparing the absolute difference with thresh

old value. This choice of implementation is composed of three sequential op

eradons. One of the possible modificadon is to compute two difference results 

(x-y) and (y-x) in parallel, as depicted in (Figure 3.16(b)), and then select the 

positive difference as an absolute difference using a muldplexer, for the sub

sequent comparison operation. This implementadon shad help to achieve a 

higher clock frequency in comparison to the previous implementation choice, 

as the multiplex operation is more cost effective than sign change operation in 

terms of speed, but at the cost of additional subtraction operations. 

In our implementation, we removed the absolute difference computation stage 

and merged it into the comparison stage as depicted in Figure 3.16(c). The 

sign bit of difference result determines the Add/Sub control. Subsequentiy, 

the sign bit of the result of Add/Sub component determines the status of the 

flag. This results in a further reduction in the sequential operations without 

any additional operation in parallel with the first stage and, therefore, helps to 

achieve even higher clock frequency (166 MHz) . One requirement for such an 

implementation is that now we need to provide threshold value that is one less 

than the actual value. Since these threshold values are loaded f rom the R O M 

table and are only used for the computation of filter control flags, therefore, 

we can either store these modified threshold values in the R O M table or this 

operation of modification can be implemented in BS unit. In either case, the 

threshold modification is not on the critical path anymore, resulting in less 

sequential operations and, therefore, a higher clock frequency. 
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Figure 3.16: Implementation of basic building block in pixel level filter control block. 

3.5 Summary 

In this chapter, we have presented a low-power hardware design for deblocking 

fiher in H.264/AVC. we also proposed a novel decomposidon of deblocking fil

ter kernels to reduce number of operadons by more than 5 1 % . The algorithmic 

optimizadons significantly reduces the area cost for its hardware implementa

tion. A number of independent processing units are idendfied in the optimized 

deblocking filter algorithm. These independent processing units, when imple

mented using clock gadng, helps to reduce dynamic power consumpdon of 

deblocking filter. 

For real-time video processing apphcations, a high-throughput and area-

efficient hardware deblocking filter is also presented in this chapter.. The pro

posed design for deblocking filter in H.264/AVC provides real-time filtering 

operadon for H D T V video format (4096x2304, 16:9) at 30 fps and also meet 

throughput requirements of all levels (levels 1-5.1) in H.264/AVC video cod

ing standard. 

Note. 

The content of this chapter is based on the the fol lowing papers: 
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4 
Intra Prediction 

THE H.264/AVC video coding standard supports multiple directional intra 

prediction modes to reduce the spatial redundancy in the video signal. 

There 4 intra prediction modes for luma 16x 16 block type, 4 intra predicdon 

modes for chroma 8 x 8 block type, and 9 intra predicdon modes for 4 x 4 block 

type in H.264/AVC. These muldple intra predicdon modes help to significandy 

improve the encoding performance of intra-frame encoder. Studies have shown 

that H.264/AVC outperforms JPEG2000, a state-of-the-art stdl-image coding 

standard, in terms of subjective as well as objective image quahty [66]. This 

makes H.264/AVC intra-frame codec an attractive choice to be utihzed as an 

image compression engine. Applicadons like Digkal Sdh Camera (DSC) em

ploy intra-frame encoding technique to compress high-resoludon images. 

In a video frame encoded in intra mode, the current macroblock is predicted 

f rom previously encoded neighboring macroblocks f rom the same video frame. 

A video frame with all MBs encoded in intra mode does not depend on any 

other video frame(s) and, therefore, can be decoded independently. Con

sequently, a video encoded with intra-frames only, is easier to edit than a 

video encoded with inter-frames (frames predicted f rom past or future video 

frames). Similarly, in many surveihance systems, video is compressed using 

intra-frames encoding mode due to legal reasons. Courts in many countries 

do not accept predicted frames as legal evidence [98]. As a resuk, a typical 

video surveillance system compresses videos using intra-encoded frames only. 

Consequently, intra-only video coding is widely used coding technique in tele

vision studio broadcast, digital cinema and surveihance video apphcadons. 

The H.264/AVC comphant baseline decoder is approximately 2 .5 dmes more 

time-complex than H.263 compliant basehne-decoder [66]. According to anal

ysis of run-time profiling data of H.264/AVC baseline decoder sub-funcdons, 

intra-predicdon is one of the top 3 compute-intensive functions [66]. A high-

57 
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throughput intra-frame processing chain is, therefore, an important require

ment for H.264/AVC intra-frame codec for real-time video processing appli

cations. The demanding characteristics of intra-prediction algorithm suggest 

its hardware implementation for high-definition video applications, where even 

larger frame size at higher frame rates are to be processed in real-time. 

In this chapter, we describe a high-throughput and area-efficient design for 

intra-prediction umt in H.264/AVC compliant video codecs. The main contri

butions are as follows: 

1. A proposal to optimize the intra-prediction algorithm for 4 x 4 luma 

blocks by decomposing the filter kernels. The proposed decomposition 

significantly reduces additions operations for its hardware implementa

tion (27% - 60% reduction). 

2. A n efficient hardware design of intra-prediction unit to reduce on-chip 

area by using hardware sharing approach for mutually exclusive pro

cessing scenarios (approximately 21K gates). 

Furthermore, we also optimize the common equations in intra-prediction al

gorithm, to efficiently compute intra-predicted samples for 16x16 luma and 

8 x 8 chroma blocks. 

The chapter is organized as follows. Section 4.1 provides an overview of intra 

prediction algorithm and also describes proposed optimizadons in the algo

rithm. The proposed configurable hardware design is presented in Section 4.2, 

whereas, Secdon 4.3 summarizes this chapter. 

4.1 Intra Prediction Algorithm 

In this section, we briefly introduce intra-frame processing chain in 

H.264/AVC video decoder Subsequently, an overview of intra prediction al

gorithm for 4 x 4 luma blocks, 16x16 luma blocks, and 8 x 8 chroma blocks is 

provided in separate subsections. The optimizadons to reduce number of oper

ations in intra prediction algorithm are also explained along with the algorithm 

overview. 

The functional block diagram for an H.264/AVC intra-frame decoder is de

picted in Figure 4.1. The entropy decoder unit parses input bitstream and de

codes intra-predicdon mode used for cuiTcnt M B . This intra-prediction mode 

information is then passed on to intra prediction unit to generate the intra-

predicted pixels block as per given intra-prediction mode. 
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Figure 4.1: Functional block diagram of H.264/AVC decoder 

The residual block can be computed in a parallel datapath using inverse quanti

zation (Q'^) and the inverse integer transfonn (T"^) processing units as depicted 

in Figure 4.1. Once intra predicdon block is made available by intra prediction 

processing unit, the cunent pixel block is reconstructed by adding the residual 

block to the predicted block. The unfiltered reconstructed pixels f rom cuiTcnt 

block are used as neighbor or boundary pixels for computation of predicted 

samples for the next block in the video frame. 

The H.264/AVC video coding standard supports multiple intra-prediction 

modes for 4 x 4 and 16x16 luma pixels block , and 8 x 8 chroma pixels block, 

as explained in the following subsections. 

4.1.1 Intra Prediction for 4 x 4 Luma Blocks 

There are 9 intra-prediction modes supported for 4 x 4 luma-pixels block in 

H.264/AVC. Each of these predicdon modes generates a 4 x 4 predicted pixel 

block using some or all of the neighboring pixels as depicted in Figure 4.2. 

Since the intra predicted samples for Vertical (VT) and Horizontal (HZ) predic

tion modes are same as the boundary pixels, therefore, these intra-prediction 

modes do not require any processing and are easy to implement. Similarly, 

DC-prediction mode computes an average value using vahd boundary pixels 

as predicted pixels block. The remaining 6 intra-prediction modes (modes 3 to 

8), however, compute predicted samples using 2- or 3-taps filter kernels. The 

filter equations for these modes in H.264/AVC video coding standard require 

59 addition operations [7] for the computation of prediction samples. Efforts 

have been made to reduce these addition operations by efficient reuse of inter

mediate results. The optimized datapath proposed in [72] requires 33 addition 
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Figure 4.2: Illustration of nine 4x4 luminance prediction modes. 

operations and is the lowest number reported in literature. 

We propose to decompose filter kernels for luma intra 4 x 4 modes 3 to 8. The 

optimized intra prediction filter equations after decomposition are depicted in 

Algori thm 4.1. With the proposed decomposition, the number of additions 

to compute intra predicted samples for these modes are reduced to 24. Our 

approach provides 60% reduction in addition operadons when compared with 

unique intra-predicdon equadons in H.264/AVC video coding standard and 

27% reduction when compared with a proposal in state-of-the-ait [72]. 

4.1.2 Intra Prediction for 16 x 16 Luma, and 8 x 8 Chroma Blocks 

The H.264/AVC video coding standard supports 4 intra-predicdon modes for 

16x 16 luma and 8 x 8 chroma blocks. The horizontal, verdcal, and DC modes 

are similar to those for 4 x 4 luma blocks and are easy to implement. The 

fourth intra prediction mode, also known as plane intra-predicdon mode, ut i 

lizes bi-linear function to compute intra-predicted samples. Since 8 x 8 chroma 

and 16x 16 luma plane intra-prediction modes are similar, therefore, we only 

discuss that for 8 x 8 chroma blocks in this secdon. The algorithm for 8 x 8 

chroma intra-plane mode is described in Figure 4.3. 

The algorithm computes three variables a, b and c (Figure 4.3: lines 8, 9, and 

10) using inteiiTiediate results H and V (Figure 4.3: lines 13, and 14). We 

optimize the computation of H and V, and propose another set of equations as 

described on lines 8 and 11 in Figure 4.4. The proposed equadon to compute H 
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Algorithm 4.1 : Proposed decomposed filter kernels for intra-prediction 

modes. 
Require: Pixels x_i - xj and yo- 73 

1: Sl = X_ i + X o + 1 

2: S2 = Xo + + 1 

3: S3 = Xl + X 2 + 1 

4: S 4 = X2 + X3 + 1 

5: S5 = X 3 + X 4 + 1 

6: S6 = X 4 + X 5 + 1 

7: S7 = X 5 + X 6 + 1 

8: S s = X e + X 7 + 1 

9: sg = x_i +70 + 1 

10: SlO = = 70 + 71 + 1 

I I : S n = = 71+72 + 1 
12: Sl2 = = 72 + 73 + 1 

13: t l = Sl + S2 + 1 

14: t 2 = S 2 + S3 + 1 

15: t 3 = S3 + S 4 + 1 

16: t 4 = S 4 + S5 + 1 

17: t 5 = S5 + Se + 1 

18: te = Se + S7 + 1 

19: tl = S7 + S s + 1 

20: ts = S s + 2 * X 7 + 1 

21: tg = = Sg + Sio + 1 
22: tio = Sio + Sn + 1 

23: t i l = S n + S 1 2 + 1 

24: t l 2 = S 1 2 + 2 * 73 + 1 



62 C H A P T E R 4. I N T R A P R E D I C T I O N 

1. Intra Chroma Plane Prediction Mo(Je-3 
2. If {p[x. -1] andpl-1. yJ with x = 0..7 and. y--1 ..7 are available) Then 
3. 
4. The values ofthe prediction samples predjx.y] are denved as follows: 
5. predjx.y] = Clip (a + b ' ix - 3} + C (y - 3) + 16 » 5) 

12. and H and V are specified as 
13. H = I (>:• +1 ) ' (p[4+x', -1] - p[2-x'. -1], where x' = 0 .. 3 
14. V = z (y- +1) ' {p[-i, 4+y'] - p[-1, 2-y'], where y' = 0 .. 3 
15. 
16. End If 

Figure 4.3: Intra-prediction algorithm for 8x8 luminance block. 

is partially overlapped with datapath for computation of 4 x 4 intra-prediction 

block. The intermediate results (t2, t6, s l and s8) are computed using common 

overlapped datapath. Consequently, the datapath for computation of H (and 

also for V ) is shared between plane intra-prediction mode for 16x16 luma, 

8 x 8 chroma blocks and intra-prediction modes for 4 x 4 luma blocks. The 

original equations in the intra-prediction algorithm for computation of H and 

V requires 16 aiithmetic operations (8 additions -i- 8 subtractions). It should 

be noted that we already replaced multiplications by shift and additions to 

come up this numbers. The proposed equadons (Figure 4.4: hne 8 and 11), 

because of shared datapath, require only 9 additional arithmetic operations for 

its implementation in hardware; instead of 16 arithmedc operadons in original 

equadons proposed in H.264/AVC video coding standard for computadon of 

H and V. Similariy, pred[x,y] (Figure 4.3: hne 5) is modified to extract the 

constants involved, and are computed once (Figure 4.4: variable k in line 16). 

Finally, these constants (k, b, and c) are used to derive the predicdon samples 

of plane mode using Equation 4.1. 

6. 
7. 
8. 
9. 
•0 
'1 

a = 16M:p[-l,7] + p[7,-1]) 
l;i = (5 ' H + 32) 6 
C = (5 • V + 32) » 6 

Where 

predc [x ,y] = Clip [(A + B + C) « 5] (4.1) 
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Where 

A = 

B = 

C = 

0 

0 

0 

0 

0 

0 

V 0 

/ 0 

c 

5c 

6c 

\ 7c 

k k k k Ic Jf k \ 
ic k k k k k k k 

k k k k k k k k 

k k k k k k k k 

k k k k k k k k 

k k k k k k k k 

k k k k k k k k 

\ k k k k k k k k / 

b 2b 3b 4b 5b 6b 7b \ 

h 2b 3b 4b 5b 6b 7b 

b 2b 3b 4b 5b 6b 7b 

b 2b 3b 4b 5b 6b 7b 

b 2b 3b 4b 5b 6b 7b 

b 2b 3b 4b 5b 6b 7b 

b 2b 3b 4b 5b 6b 7b 

b 2b 3b 4b 5b 6b 7b / 

0 0 0 0 0 0 0 

c c c c c c c 

2c 2c 2c 2c 2c 2c 2c 

3c 3c 3c 3c 3c 3c 3c 

4c 4c 4c 4c 4c 4c 4c 

5c 5c 5c 5c 5c 5c 5c 

6c 6c 6c 6c 6c 6c 6c 

7c 7c 7c 7c 7c 7c 7c 

(4.2) 

(4.3) 

(4.4) 

4.2 Intra Prediction Unit Hardware Design 

The top4evel hardware design for intra prediction unit is presented in the sec

don. Subsequendy, data-flow in the core processing blocic of intra predicdon 

unit, for generation of various intra-prediction modes, is described. The top-

level hardware organization of the intra-prediction unit is depicted in Figure 

4.5. I t consists of neighbor pixel buffer block, predicdon samples selection 

block, control block, and intra-prediction core processing block. 

The neighbor pixel buffer, as the name suggests, is used to stores boundary 

pixels f r o m the neighbor pixel-blocks. For a 4 x 4 pixels-block, depending 
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I . Optimized Intra Chroma Plane Prediction Mode-3 
2. 
3. H = X2> + 2 ' ( « ; - X l ) + 3 • (Xs - Xo) + 4 ' (X7 - X-i) 

4. => H = (Xj + 2 ' Xf + 3 * XR + 4 ' Xy + 4) - (X2 + 2 ' X, + 3 * Xo + 4 • y . , + 4) 
5. => H = ( iX j ^ 2 « Xs + Xe + 2) + 2 ' {Xs + X7 + 1) + 2 ' X j ) ) -

6. ( (Xj + 2 ' X| + Xo + 2) + 2 " {>:.-i + x., - 1) + 2 ' x.,) 1 
7. => H = (tf + 2 ' S6 + 2 > X-) - (t2 + 2 ' s, + 2 • x.,) 
8. => H = (te -1:) + 2 ' {{s?- S i ) + (Xr - x. i)) 

Cl. 
10. Similarly 
I I . V = ( t 6 - t 2 ) + 2 - ( ( S e - r 3 , ) + { X - - X . i ) ) 

12. 
13. predjx.y] = Clip (fk + b*x + c*y ) » 5), From line 5 
14. Where h = a - S'lb + c) + 16 
15. => k = 16 ' (X7 + y-) - 3'(b + c) + 16, From line 8 
16. => k = <{x, + y: +1) « 4) -({b + c) + ((b + c) •= < 1)) 

Figure 4.4: Optimized intra-prediction algorithm for 8 x 8 luminance block. 
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Figure 4.5: Top-level organization of intra-prediction unit in H.264/AVC Decoder 
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upon the decoding order, block position, and encoding conditions, up to 13 

boundary pixels (8-bit each) are stored in neighbor pixel buffer. Similarly, for 

16x16 block, it provides storage registers to holds 33 boundary pixels at most. 

These boundary pixels are required in core intra prediction processing unit, for 

computation of prediction samples. The same buffer is also used to store partial 

results during computation of DC and plane intra-prediction modes, in case of 

16x16 luma and 8 x 8 , chroma blocks. 

A l l processing to compute any given intra-prediction mode takes place in intra 

predicdon core processing unit as depicted by dotted block in Figure 4.5. The 

detailed intemal design of intra prediction core processing unit is depicted in 

Figure 4.6. The vertical and horizontal intra-predicdon modes for all luma and 

chroma blocks ( 4 x 4 , 8 x 8 and 16x16) do not require any computadon. The 

boundary pixels for these modes bypass the intra-prediction core block (not 

depicted in Figure 4.6). In case of 4 x 4 luma intra-predicdon modes 3 to 8, all 

unique prediction samples are generated in 1 clock cycle. Similarly, in case 

of 4 x 4 luma intra-prediction mode 2 (DC mode), the prediction sample (or 

DC value) is computed in 2 clock cycles. This is a vi'orst-case scenario for 

luma 4 x 4 intra-prediction modes. The core processing unit computes unique 

sample values only. The distribution of these prediction samples to form a 4 x 4 

prediction block is performed in the prediction samples selection block. In 

case of plane-mode, intra prediction core processing unit takes 6 clock cycles 

to computes constants (b, c and k) and the corresponding offset values for b and 

c (nb, nc). Using these constants, while computing 16 intra-predicted pixels in 

each cycle, all 64 intra-predicted pixels in 8 x 8 chroma predicted-pixels block 

are generated in subsequent 4 clock cycles. Therefore, i t takes just 10 clock 

cycles in total to dehver the plane-mode, intra 8 x 8 chroma predicted-pixels 

block. Similarly 22 clock cycles are required to compute the plane-mode, 

intra 16x16 luma predicted-pixels M B . 

In most of the 4 x 4 intra-prediction modes, some of the prediction samples 

are identical in the final intra-predicted pixels block. Figure 4.7 illustrates this 

fact for D D L and V L intra-prediction modes where some of the prediction 

samples (tx and Sx in Figure 4.7; defined in Algorithm 4.1) are re-distributed 

in the predicted block. For such cases, prediction sample selection unit is 

responsible for this re-distribution of unique prediction samples in the final 

4 x 4 predicted block accordingly, and transfer it to the next processing unit in 

the intra-processing chain of H.264/AVC decoder. 
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Figure 4.6: Intia-piediction core processing unit. 
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Figure 4.7: Prediction samples distribution in 4x4 DDL and V L modes. 

4.3 Summary 

In tiiis ciiapter, we have proposed a high-throughput and area-efficient hard

ware design for the intra-prediction unit in the H.264/AVC. The optimization 

of algorithm for 4 x 4 intra prediction modes enabled us to reduce the number 

of additions by 60% when compared with those proposed in H.264/AVC video 

codec standard. Similarly, overlapped datapath for the 4 x 4 , 8 x 8 , and 16x 16 

pixels-block also helps to greatly reduce area-cost for hardware implementa

tion of intra prediction algorithm. With an operating frequency of 150 MHz, 

the proposed intra prediction unit can easily meet the real-time processing re

quirement of H D T V video frame formats. 

Note. 

The contents of this chapter are based on the the fol lowing paper: 

Muhammad Nadeem, Stephan Wong, and Georgi Kuzmanov, An Efficient 

Hardware Design for Intra-prediction in H.264/AVC Decoder, proceedings of 

International Conference on Electronics, Communications and Photonics 2011 

(SIECPC),pp. 1-6, Riyadh, Saudi Arabia, Apr i l 2011. 





Forward Integer Transform 

TH E H.264/AVC, like its predecessors, is a hybrid codec. However, i t is the 

first video coding standard that uses an integer inverse-transform design 

for its main spatial transform. The corresponding forward transform used in 

the encoder is, therefore, also an integer transform. The major advantage of 

this forward, inverse transform-pair being integer is that there is no possibility 

of a mismatch between standard-compliant encoder and decoder. The previous 

video coding standards such as H.261, H.262/MPEG-2, H.263, MPEG-1 and 

MPEG-4 part 2 ad suffers encoder-decoder mismatch problem. 

In a video encoder, forward integer transform is used to de-correlate video data 

at 4 x 4 predicted pixels-block level, preceding the quantizadon process. Be

side integer transform, H.264/AVC standard also apply Hadamard transform to 

a block of DC-values in a macroblock for both luma and chroma components 

of video signal. The forward and inverse integer transform is computed for 

each 4 x 4 predicted block along with Hadamard transform for DC- blocks in 

a H.264/AVC video encoder. Additionahy, the Hadamard transform is com

monly used to compute Sum of Absolute Transformed Difference (SATD), as 

part of intra-mode decision process to choose best prediction block in inter-

frame encoding process. The spadal transform processing in H.264/AVC 

codec is, therefore, one of the top 3 compute-intensive processing units in 

H.264/AVC codec. 

In this chapter, we propose efficient hardware designs for reahzation of for

ward integer transform in H.264/AVC video encoder. The main contributions 

of this chapter are as fohows: 

1. A low-power, area-efficient hardware design to realize forward integer 

transform in H.264/AVC encoder. This design targets image compres

sion applications, running on battery-powered electronic devices, such 

as Digital Sdh Cameras (DSC). 

69 
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2. For real-time video compression applications, a high-throughput, low-

latency, and area-efficient hardware design to realize forward integer 

transform in H.264/AVC encoder. 

The chapter is organized as follows: Sections 5.1 and 5.2 describe the proposed 

solutions for image processing apphcations and real-time video processing ap

phcations respectively. Finally, Section 5.3 summarizes the chapter 

5.1 Forward Integer Transform for Image Processing 
Applications 

In this section, we propose a solution to realize forward integer transform for 

image processing/compression apphcations using H.264/AVC codec. Since 

image processing applications are typically not real-time applications, there

fore, compression-tiine or throughput of image compression engine is of less 

importance. However, as most of these apphcations nm on battery-powered 

electronic devices, dynamic-power-consumption reduction is of prime impor

tance for such applications. 

Image compression applications compress the input image using intra-

encoding technique. H.264/AVC video coding standard suppoits multiple di

rectional intra-predicdon modes to reduce spadal redundancy in the input sig

nal. Putting it more precisely, H.264/AVC supports 4 intra-prediction modes 

at 16x16 pixels-block level and 9 intra-predicdon modes at 4 x 4 pixels-block 

level, to significantly reduce the predictive enor by exploiting spatial correla

tion between block to be encoded and its already encoded neighboring blocks 

in the input image or a frame. When a current pixles-block is to be encoded in 

intra-mode, a conesponding prediction block is formed using previously en

coded and reconstructed pixels-blocks. Intra-prediction-mode-decision unit in 

an encoder, is responsible to determine the best intra-prediction mode for to be 

encoded cunent pixels-block at hand. The reference software for H.264/AVC 

encoder udlizes a Lagrange cost funcdon to make an intra-predicdon mode 

decision and the cost for an intra-prediction mode is computed as follows: 

JMode (MBk ,Ik\Qp, Aftode ) = D (MBk ,Ik\Qp) + A;.,ode * R (MBj, ,Ik\Qp, ><Mode ) 

(5.1) 

Where Ajviode < E) and R represent Lagrange parameter, distortion and rate, re

spectively. The rate (R) is estimated by number of bits to encode the mode. 
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while, distortion (D) is measured using Sum of Absolute Difference (SAD) or 

Sum of Absolute Transformed Differences (SATD) for residual pixels-block 

data. SATD, however, is more precise in estimating the distortion and, there

fore, helps to provide better image quahty. The H.264/AVC reference soft

ware utihzes Hadamard transform to compute frequency domain coefficients 

of a residual block for candidate intra-prediction mode [99]. The distortion 

D in Equation. 5.1 is estimated by using the absolute sum of all Hadamard 

transformed coefficients. 

We follow a different approach f rom related works cited in Section 2.3.3. 

As mentioned earher, Hadamard-transformed residual block is used to esti

mate distortion (D) for the candidate intra-prediction mode iMode in an intra-

predichon-mode-decision unit [99]. We propose to use same Hadamard-

transformed residual block of the selected intra-prediction mode and derive 

the forward-integer-transformed coefficients for residual block in H.264/AVC 

compliant encoder This approach requires less than half the number of ad

ditions (30 vs. 64) when compared with those for state-of-the-art designs in 

literature. 

5.1.1 S-Transform: Hadamard-transformed Coefficients to 
Integer-transformed Coefficients Conversion 

H.264/AVC udhzes an integer transform (C) to convert spacial domain 4 x 4 

residual pixel block (X) into frequency domain (Z) as follows: . 

Z = C-X-C^ (5.2) 

where 

/ 1 
2 

1 

V 1 

1 1 

1 - 1 

- 1 - 1 

- 2 2 

1 \ 

- 2 

1 

- 1 / 

(5.3) 

Similarly, 2-D Hadamard transformed coefficients (Y) for 4 x 4 input pixels-

block (X) s are computed using the Hadamard transform (H) as follows: 

(5.4) 
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where 

/ 1 

H = 

1 1 

1 1 - 1 

1 - 1 - 1 

V 1 - 1 1 

- 1 

1 

- 1 y 

(5.5) 

I f S is such a transform that it can be used to convert the Hadamard transformed 

coefficients (Y) into integer transformed coefficients (Z) Z , then for 1-D case, 

we can write as follows: 

S = C-H' (5.6) 

where S is provided as follows: 

S = 

/ 1 

0 

0 

\ 0 

0 

1.5 

0 

0 0 \ 

0 0 .5 

1 0 

-0.5 0 1.5 / 

/ 1 0 0 

0 1 0 

0 0 1 

V 0 0 0 

0 \ 

0 

0 

/ 0 0 

0 0.5 

0 0 

V 0 - 0 . 5 

0 \ 

0 .5 

0 

0 .5 y 
(5.7) 

5.1.2 Signal-flow for 1-D S-Transform 

The proposed 1-D, S-transform in Equadon 5.7 takes the Hadamard trans

formed coefficients and derive the integer transform coefficients. Only 4 ad

ditions and 2 shift operations are required for the implementation of 1-D, S-

transform. While, on the other hand, a fast 1 -D forward integer transform 

algorithm presented in [22] requires 8 additions along with 2 shift operations 

to compute the same integer-transformed results f rom intra-predicted residual 

block. The signal flow diagram for 1-D, S-transform is depicted in Figure 5.1. 

5.1.3 2-D, S-Transform Algorithm 

For 1-D S-transform computation case, only two Hadamard-transformed co

efficients are required to be processed for any given column or row in Y, as 

depicted in Figure5.1(a). A 2-D integer transform can be reahzed using two 

1-D S-transform, depicted in Figure 5.2. This approach, however, has an over

head as it requires a transpose unit between two successive 1-D transforms. 
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Figure 5.1: (a) Signal flow diagram for 1-D S-transform, (b) Basic processing block 
for 1-D S-transform. 
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Figure 5.2: Row-column processing for 2-D transform. 

Another approach to realize 2-D integer transform, without any transpose unit, 

using row-column processing, is depicted in 5.3. This organization requires a 

total of 32 additions and 16 shift operadons to generate integer-transformed 

coefficients f rom Hadamard-transformed coefficients data. In contrast, i f the 

forward integer transform coefficients are generated f rom the intra prediction 

residual data, the fast algorithm using row-colunm computadon method in [95] 

and [80] requires 64 additions and 16 shifts operations. Therefore, our pro

posal reduces the number of additions by half, when compared with the cur

rent state-of-the-art method in hterature. The hardware implementation for this 

approach costs 32 adders only. The required number of adders are further re

duced by removing redundant operations between cascaded P processing units 

in Figure 5.3 using direct 2-D optimized transform algorithm . 
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Figure 5.3: Functional blocic diagram for 2-D transform. 



5.1 . F O R W A R D I N T E G E R T R A N S F O R M FOR I M A G E P R O C E S S I N G 

A P P L I C A T I O N S 75 

5.1.4 Optimized Algorithm for 2-D S-Transform 

Direct 2-D algorithm for S-transform in Equation 5.7, can be derived as f o l 

lows: 

veciZ) = (Sl^S)-vec(Y) (5.8) 

where 0 is Kronecker product, vec(Y) is a column-vector with Hadamard-

transformed coefficients as input and vec(Z) represents the corresponding col

umn vector with integer-transformed coefficients. We further define permuta

tion matrices Pr and Pc such that 

I l 6 = P r - ( F r ) ^ = (PrV-Pr = Pc-iPc)^ = iPc^-Pc (5.9) 

f rom Equation 5.8, we can write as follows: 

vec ( Z ) = Pl-M-Pl-vec{Y) (5.10) 

where 

W = Pr - (S (g )S) -Pc (5.11) 

and 

/ I4 O4 O4 D4 \ 
O4 Ml D4 O4 
O4 O4 Ml O4 

V O4 O4 O4 M2 / 

Similarly, I4, O4, M i , and M 2 follow: 

14 = 

/ I 0 0 

0 1 0 0 

0 0 1 0 

V 0 0 0 1 / 

( ° 
0 0 0 \ 

0 0 0 0 

0 0 0 0 

\ o 0 0 0 / 
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Figure 5.4: (a) Functional block diagram for 2-D transfonn, (b) Signal flow graph for 
M l , (c) Signal flow graph for M2 
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Functional block diagram for Equation 5.11 is depicted in Figure 5.4(a). Sig

nal flow graphs for M j and M 2 are depicted in Figure 5.4(b) and Figure 5.4(c) 

respectively. The hardware implementation for Equation 5.11 costs 30 adders 

only. The number of adders are reduced to a value less than half (64 vs. 30), 

when compared with existing state-of the art fast 2-D integer transform hard

ware architectures in hterature. The proposed solution not only requires less 

area for its hardware implementation at one hand, it but consumes significantly 

less dynamic power on the other, because of reduced number of adder units. 
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5.2 Forward Integer Transform for Video Processing 
Applications 

The intra prediction process, as explained in Section4.1, requires reconstracted 

pixels f rom neighbor blocks. Therefore, intra prediction process for next block 

is not started until the cuiTcnt block in not reconstructed and its pixels are not 

available for prediction. Video processing applications using intra-frames only, 

therefore, require eflicient processing chain for real-time processing of high-

resolution videos. A low-latency and high-throughput forward integer trans

form unit is very important requirement for an efficient intra frame processing 

chain. The straightforward solution for low-latency is to implement forward 

integer transform unit in parallel with intra-prediction mode decision unit. De

pending on the outcome of intra-prediction mode decision unit, the forward in

teger transformed block for the selected intra-prediction mode is readily avail

able for the next processing unit in the intra-frame processing chain with zero 

latency. This approach provides an efficient soludon for latency issue. The 

area cost for this proposed solution is reduced by reusing intermediate results 

f rom Hadamard transform unit in the intra-frame processing chain. Wi th our 

proposal, not only the number of operations to realize integer transform are sig

nificantly reduced (32 vs. 64) but effective latency penalty diminishes as the 

proposed computation for the integer transform are removed f rom the critical 

path.The remainder of this secdon describes our approach to idendfy common 

intermediate results and the hardware design for its implementadon. 

5.2.1 2-D Forward Integer Transform Algorithm 

From Equations 5.2 and 5.5, the 2-D 4 x 4 integer transform and 2-D Hadamard 

transform can be expressed as follows: 

v e c ( Z ) = ( C ( g ) C ) - v e c ( X ) (5.12) 

v e c ( 7 ) = ( H ( g ) f f ) - v e c ( X ) (5.13) 

where 0 is Kronecker product, vec(X) is a column-vector with residual pixel 

data, vec(Y), and vec(Z) are corresponding column-vectors with Hadamard-

transformed coefficients and integer-transfoiTned coefficients respectively. We 
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can rewrite Equation 5.12 as follows: 

vecCZ) = vec(Y) + (vec(Z) - v e c ( 7 ) ) (5.14) 

.-. = > v e c ( Z ) = veciY) + Ooffset (5.15) 

The above equation suggests that integer-transformed coefhcients can be com

puted by adding an appropriate offset to Hadamard-transformed coefficients. 

Using Equations 5.12, 5.13 and 5.15, this appropiiate Ooffset is computed as 

follows: 

O o f f s e t = Q-vec(X) (5.16) 

where 

Q = ( C ( g ) C ) - ( J f (g )H) (5.17) 

Q is the difference of Kronecker product of integer and Hadamard transform 

matrices and are defined in Equations 5.3 and 5.5, respectively. 
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(5.18) 

We further define permutation matrices Pri, Pr2, and Pr3 such that: 

I l 6 = P r l - ( P r l ) ^ = i P r l V - P r l (5.19) 

I l 6 = P r 2 - ( P r 2 ) ^ = ( P r 2 ) ^ - P r 2 

I l 6 = P r 3 ' ( P r 3 ) ^ = ( P r s V - P r S 

(5.20) 

(5.21) 
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While considering the intennediate results generated in 2-D Hadamard trans

form processing and using permutation matrices defined above, we spht Q in 

Equation 5.18 into 3 matrices Qi, Ö 2 . and Ö 3 such that: 

Ql = PrvQl (5.22) 

O2 = P r 2 - Q 2 

Q3 = P r 3 - Ö 3 

From Equations 5.16 and 5.17, we can write: 

(5.23) 

(5.24) 

0 o f f s e t = (P 
T 

r l ' Ql + Pr2 •Q2 + P 
T 

r3' Q3) 

I 0 0 - 1 1 0 0 — 1 1 0 0 —1 1 0 0 - 1 
2 0 0 - 2 1 0 0 - 1 -1 0 0 1 —2 0 0 2 
1 0 0 - 1 - 1 0 0 1 -1 0 0 1 1 0 0 - 1 
1 0 0 - 1 - 2 0 0 2 2 0 0 - 2 - 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 - 1 0 0 1 — 1 0 0 1 - 1 0 0 1 - 1 0 
0 2 - 2 0 0 1 - 1 0 0 - 1 1 0 0 - 2 2 0 
0 1 - 1 0 0 - 1 1 0 0 - 1 1 0 0 1 - 1 0 
0 1 - 1 0 0 —2 2 0 0 2 —2 0 0 - 1 1 0 
0 0 0 0 0 0 0 n 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(5.25) 

(5.26) 

(5.27) 
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From Equations 5.26 and 5.27, we can observe that Qi and Q 2 compute the 

difference (or difference scaled by a factor of 2) between l * " and 4'^ rows, or 

ï " ' and S"* rows of input block X , respectively. These row-differences are 

also computed in the 2-D Hadamard transform computations. Similarly, in 

Equation 5.28, Q3 essentially computes the difference between rows of i - D 

Hadamard transformed results. Again, these difference values are also com

puted in 2-D Hadamard transform computation. We propose to reuse these in

termediate results f rom 2-D Hadamard transform computation unit and, there

fore, replace input vec(X) by input vec(D) in Equation 5.16. Consequendy, 

f rom Equation 5.25we can derive Ooffset as follows: 

O o f f s e t = ( P r l - I ^ l + P r 2 - l ^ 2 + P r S ' I ^ s ) (5.32) 

where W i , W 2 , and W 3 are given as follows: 

Wi = [ C D4 O4 O4 ] ' (5.33) 

W2 = [ O4 C O4 O4 ] ' (5.34) 

= [ O4 O4 I4 I4 ] ' (5.35) 

and 

veciD) = [ D O Di . . . Di5 ] ^ (5.36) 

Where 

Do = ^ 0 0 - ^30 (5.37) 

Dl = xoi - X 3 1 (5.38) 

D2 = X02 - X 3 2 (5.39) 

O3 = - X33 (5.40) 

D4 = Xio - X20 (5.41) 
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DB = Xn - X21 (5.42) 

De = - X22 (5.43) 

Df = xi3 - X23 (5.44) 

Ds = Xoo - Xo3 (5.45) 

Dg = Xio - Xi3 (5.46) 

Dio = X20 - X23 (5.47) 

Dn = X30 - X33 (5.48) 

D12 = Xoi - X02 (5.49) 

Di3 = Xn - X 1 2 (5.50) 

Du = X21 - X22 (5.51) 

DiB = X31 - X32 (5.52) 

In above set of equations, xy is a data-item f rom 4x4 residual pixels-block, and 

Xi j represents 1-D Hadamard-transformed coefficients for same 4 x 4 residual 

pixels-block. While i , j = 0, 1, 2 and 3; denotes row and column in 4 x 4 input 

block respectively. The signal-flow diagram for Equation 5.32 is depicted in 

Figure 5.5 Consequently, the computation of Ooffset requires 20 adders for its 

hardware implementation. Another 12 adders are required to derive integer-

transformed coefficients by adding these computed-offset values to Hadamard-

transformed coefficients, t The number of adders for our proposed design to 

realize integer transform in intra-frame encoder are, therefore, reduced to half 

(64 vs. 30), when compared with exisdng state-of the art fast 2-D integer 

transform hardware architectures in literature. Moreover, the computation unit 

for Ooffset operates in parallel with the Hadamard transform unit and, therefore, 

does not contribute to the overall latency of the intra-frame processing chain. 
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Figure 5.5: Data flow for computation of Ooftset 
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5.3 Summary 

In this chapter, we have presented two solutions for realization of integer trans

form in the processing chain of intra-frame encoder applications. The first 

solution targets image compression apphcations running on battery-powered 

electronic devices, such as digital still camera. The proposed solution utilizes 

a novel 2-D transform to derive integer-transformed coefficients directly f rom 

that of Hadamard-transformed coefficients with significantly reduced number 

of operations and, therefore, area and power consumption. The second solu

tion targets real-time video compression apphcations using intra-frames only. 

The proposed solution reduces the effective latency penalty of forward integer 

transform to zero. Moreover, it aggressively reuses the intermediate results 

f rom Hadamard transform and, therefore, requires significantly reduced num

ber of operations and, thus, less area for its hardware implementation. 

Note. 

The content of this chapter is based on the the fol lowing paper: 

Muhammad Nadeem, Stephan Wong, and Georgi Kuzmanov, An Efficient 

Realization of Fonvard Integer Transform in H.264/AVC Intra-frame Encoder 

, proceedings of International Conference on Embedded Computer Systems: 

Architectures, Modeling, and Simuladon (SAMOS) 2010, pp. 71-78, Samos, 

Greece, l u ly 2010. 



6 
Inverse Integer Transform 

THE H.264/AVC is a bloclc-based, hybrid video coding standard that utihzes 

a spatial, DCT-based integer inverse-transform design in its compression 

engine to avoid encoder-decoder mismatch. Although, the transformation can 

be carried out by addition operations only, i t is one of the top 3 compute-

intensive processing modules in H.264/AVC decoder. In this chapter, we pro

pose two hardware designs for inverse integer transform unit in H.264/AVC 

compliant video encoder and decoder. 

The main contribudons of this chapter are: 

1. A proposal to compute inverse integer transform on-the-fly and a low-

latency hardware design for inverse integer transform unit in an intra-

frame encoder processing chain. 

2. Derivation of data-driven algorithm for inverse integer transform in 

H.264/AVC with variable number of operations. 

3. Low-power, high-throughput hardware design for inverse integer trans

form unit based on data-driven algorithm. 

The chapter is organized as follows: In Secdon, 6.1, we briefly provide a mo

tivation for low-latency inverse integer transform. Subsequently, a hardware 

design for low-latency inverse integer transform is provided in the same sec

don. In Section 6.2, a data-driven algorithm for inverse integer transform is de

scribed. A low-power, high-throughput hardware design based on data-driven 

algorithm is also presented at the end of this secdon. Finally, Section 6.3 sum

marizes the chapter. 

85 
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6.1 Low-Latency Inverse Integer Transform 

In this section, we first describe our approach for the low-latency and area-

efficient soludon for the inverse integer transform unit. Subsequently, the al

gorithm and the corresponding architecture for the inverse integer transform 

unit are described. 

A typical implementadon of forward and inverse quandzadon units, f rom the 

perspective to reduce multiplier's area-cost, processes the input data either se

rially or four data-items in parallel. Similarly, the hardware unit for inverse in

teger transform, depending upon implemented algorithm, requires one-fourth, 

half, or a complete 4 x 4 input block of data to start its processing. Therefore, 

an additional buffer is required for pipeline its implementation or a delay is to 

be introduced before start of inverse integer transform process. Moreover, most 

of inverse integer transform algorithms assume that all 4 x 4 input block data-

items are non-zero. Consequently, these algorithms perform constant number 

of operations per block in order to compute inverse integer transform for a 

given block of input data. 

However, in digital video coding, it is very common that a substantial number 

of spatial high-frequency transformed-coefficients of residual block are quan

tized to zero. A typical transformed and quantized residual block contains few 

non-zero coefficients in the low-frequency region and mostly zero-valued co

efficients in the high-frequency region. From inverse integer transform unit's 

perspective, while decoding incoming video bitstream in decoder or during (in

verse) quantization process in encoder, i t is already known for that how many 

and at what positions in a 4 x 4 input data-block, the transformed-quantized 

coefficients are non-zero and, therefore, how shall they contribute to the pixel 

values for the reconstructed block. A considerable amount of computations 

can be saved by exploiting this information, while developing an algorithm for 

inverse integer transform. 

In this work, we have followed a different approach and derived a serial al

gorithm for inverse integer transform unit. The hardware unit for inverse in

teger transform, based on serial processing algorithm, directly interfaces with 

the inverse quantization unit, without requiring any additional buffer or delay. 

Inverse integer transform unit processes the incoming inverse-quantized data 

items on-the-fly and accumulates their contribution towards the final value for 

the inverse integer transformed block or residual block. With this approach, 

latency penalty is significantly reduced. In case of zero-valued incoming data-

item, the processing for this particular data-item is skipped in order to avoid 
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unnecessary signal activity in the circuit and to potendahy reduce the dynamic 

power consumpdon. 

6.1.1 Low-latency Inverse Integer Transform Algorithm 

In the H.264/AVC video coding standard, for any 4 x 4 inverse quantized input 

block X, the corresponding residual pixel block Y is computed as follows: 

where 

Ci = 

/ 1 1 1 1/2 \ 

1 1/2 - 1 - 1 

1 - 1 / 2 - 1 1 

V 1 - 1 1 - 1 / 2 / 

(6.1) 

(6.2) 

Direct 2-D inverse integer transform for 1-D inverse integer transfoim in Equa-

don.6.1 can be computed as follows: 

vec(Y) = {Ci(S<)Ci)-vec(X) (6.3) 

In Equation 6.3, is Kronecker product, vec(X) is a column-vector con

sists of inverse-quandzed data-items as input and vec(Y) represents the corre

sponding column-vector with inverse integer transformed coefficients as out

put. Erom Equations. 6.1 and 6.3, we can write: 

V 1 

1 1 1 1/2 1 1 1 1/2 1 1 1 1/2 1/2 1/2 1/2 1/4 ^ 
1 1/2 - 1 - 1 1 1/2 - 1 - 1 1 1/2 - 1 - 1 1/2 1/4 - 1 / 2 - 1 / 2 
1 - 1 / 2 - 1 1 1 - 1 / 2 - 1 1 1 - 1 / 2 - 1 1 1/2 - 1 / 4 - 1 / 2 1/2 
1 - 1 1 - 1 / 2 1 - 1 1 - 1 / 2 1 - 1 1 - 1 / 2 1/2 - 1 / 2 1/2 - 1 / 4 
1 I 1 1/2 1/2 1 /2 1/2 1/4 - 1 - 1 - 1 1/2 - 1 - 1 - 1 - 1 / 2 
1 1/2 - 1 - 1 1/2 1/4 - 1 / 2 - 1 / 2 - 1 - 1 / 2 1 1 — 1 - 1 / 2 1 1 
1 - 1 / 2 - 1 1 1/2 - 1 / 4 - 1 / 2 1/2 - 1 1/2 1 — 1 — 1 1/2 1 - 1 
1 - 1 1 - 1 / 2 1/2 - 1 / 2 1/2 - 1 / 4 - 1 1 - 1 1/2 - 1 1 - 1 1/2 
1 1 1 1/2 - 1 / 2 - 1 / 2 - 1 / 2 - 1 / 4 - 1 - 1 - 1 - 1 / 2 1 1 1 1/2 
1 1/2 — 1 - 1 - 1 / 2 - 1 / 4 1/2 1/2 - 1 - 1 / 2 I 1 1 1/2 - 1 - 1 
1 - 1 / 2 - 1 1 - 1 / 2 1/4 1/2 - 1 / 2 - 1 1/2 1 - 1 1 - 1 / 2 - 1 1 
1 - 1 1 - 1 / 2 - 1 / 2 1 /2 - 1 / 2 1/4 - 1 1 - 1 1/2 1 - 1 1 - 1 / 2 
1 1 1 1/2 — 1 - 1 - 1 - 1 / 2 1 1 1 1 /2 - 1 / 2 - 1 / 2 - 1 / 2 - 1 / 4 
1 1/2 — 1 - 1 - 1 - 1 / 2 1 1 1 1/2 - 1 - 1 - 1 / 2 - 1 / 4 1/2 1/2 
1 - 1 / 2 - 1 1 - 1 1/2 1 - 1 1 - 1 / 2 - 1 1 - 1 / 2 1/4 1/2 - 1 / 2 , 

1/4 J 1 - 1 1 - 1 / 2 - 1 1 - 1 1/2 1 - 1 1 - 1 / 2 - 1 / 2 1/2 - 1 / 2 
- 1 / 2 , 

1/4 J 
(6.4) 

Equation 6.4 suggests that the residual pixels-block Y can be computed by 

simply adding (or subtracdng) current value (or scaled by 1/2 , or 1 / 4 ) of each 
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given input coefficient Xy to tiie accumulated values for the output block data-

items Y i j . Therefore, the serial inverse integer transform algorithm requires 

only one register to hold incoming input data-item and 16 registers to hold 

pardal or accumulated resuks for the output block data-items Yy. Similarly, 

16 add/sub units are required to add the current (or scaled) value to the already 

accumulated pardal results. The accumulator is initialized to zero at the start 

of each input block. As soon as the last data-item of the input block arrives, the 

corresponding residual pixel block Y is available at the output of the inverse 

integer transform unit. With this approach, inverse-quantized data-items Xy 

from the inverse quandzadon unit are processed on-the-fly without introducing 

any delay for the computation of the residual pixel block. Moreover, only 

non-zero input data-items are stored in the input register of inverse integer 

transform unit for processing. This helps to reduce the unnecessary signal 

acdvity in the circuit which can, therefore, contribute to potentially reduce the 

dynamic power consumption especially at coarser quandzadon parameter (Qp) 

value and/or smoother regions of the video frame being processed. 

6.1.2 Low-latency Inverse Integer Transform Hardware Design 

In this section, high-level organization of low-latency inverse integer transform 

unit is introduced. The design is based on inverse integer transform algorithm 

introduced in Secdon 6.1.1. Subsequently, hardware design of basic process

ing unit along with control unit is explained. 

High Level Organization The functional block diagram of inverse integer 

transform unit is depicted in Figure 6.1. The proposed design takes inverse-

quantized coefficient (X_val) and its position in the input-block as inputs to 

the hardware unit. In case this input inverse-quantized coefficient is non-zero, 

it is stored in a register (InReg) as depicted in Figure 6.1. Fx processing blocks 

hold the partial or final computed value of each residual-pixel-bock data-hems 

Yy. There are 16 such processing blocks in order to compute a complete 4 x 4 

residual pixels-block. 

Hardware Design for Basic Processing Unit The internal design of Pxblock 

is depicted in Figure 6.2. This block consists of one muldplexer (Mux) at the 

input, one accumulator register Acc, and one Add/Sub unit. Mux is used to 

select the correct contribudon of input inverse-quantized data-item to compute 

Yy, while Acc register holds pardal results during processing. Reset control 
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Figure 6.1: Functional block diagram for low-latency inverse integer transform unit 
in H.264/AVC. 

signal initializes Acc to zero at the start of each 4 x 4 input block during com

putation of inverse integer transform coefficients.. 

Control Unit The control block in Figure 6.1 generates signals in order to 

control data-flow in the processing umt. Control signals for Mux and Add/Sub 

can be straightforwardly derived f rom Equation 6.4. Enable control signal is 

used to provide gated-clock to InReg. The generation of Enable and Reset 

control signals is depicted in Eigure 6.3 . 

6.2 Low-power, High-throughput Inverse Integer 
Transform 

In this section, we first propose to categorize 4 x 4 input data-block into a set 

of 4 different types along with its justification. Subsequently, based on the 

proposed input data-block types, a data-driven algorithm for inverse integer 

transform is described in detail. 

As mentioned earher, a typical transformed block after quantization process 
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Figure 6.2: Basic processing unit design for low-latency inverse integer transform. 

Xval 
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X Position 
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Figure 6.3: Control unit design for low-latency inverse integer transform. 
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consists few non-zero coefficients. The distribution of these non-zero coeffi

cients , beside various factors hlce video signal itself and encoding type, etc., 

heavily depends on the Quantization parameter (Qp) used for encoding of this 

block. Though ta coarser quantization parameter provides better compression 

ratio because of few non-zero blocks after quantization process, the quality 

of compressed video suffers in terms of PSNR value. This is the reason that 

the primary responsibihty of the rate control in an encoder is to allocate bits 

in a video frame such that the generated compressed video bitstream meets 

available bandwidth constraint while providing the best possible video qual

ity. Consequently, as Qp varies f rom a coarser value to a fine value, number 

of non-zero blocks after the quantization process increases. This is also de

picted in Figure 6.4a for a number of video test sequences (with 352x288, 

CIF resoludon) encoded using typical typical Qp values range. 

A typical distribution of non-zero transformed-quantized block is such that 

it contains few non-zero coefficients in the low-frequency region and mostly 

zero-valued coefficients in the high-frequency region. In our work, we propose 

to categorize these input transformed-quandzed blocks into a set of 4 different 

types, namely All-Zero blocks (AZB), DC-only blocks. Upper Lef t Triangular 

(ULT) blocks and Normal blocks. A n example of such blocks is depicted in 

Figure 6.6. The A Z B type can be easily justified f rom the non-zero block 

distribudon in Figure 6.4a as for test video sequences, profile data suggests 

that the percentage of A Z B blocks varies between 30% to 75% for a typical 

range of Qp values (16 to 32). Similarly, percentage distribudon of DC-only 

blocks, upper left Triangular blocks and normal blocks, within non-zero blocks 

is depicted in Figures 6.4b, 6.5a, and 6.5b respectively, for the same video test 

sequences encoded using same set of Qp values. 

6.2.1 Data-driven Algorithm For Inverse Integer Transform 

Signal-flow diagram for 1-D inverse integer transform, with four input data-

items, is depicted in Figure 6.7(d). For scenarios with only one, two, or three 

non-zero data-items in the input data vector, the signal-flow diagrams for 1-

D inverse integer transform can be derived by removing the corresponding 

signal-flow part in Figure 6.7(d). Signal-flow diagrams for 1-D inverse inte

ger transform with only one, two, or three non-zero coefficients is depicted in 

Figures 6.7(a), 6.7(b), and 6.7(c), respectively. The residted signal-flow dia

grams suggest that the number of addition operations for 1- D inverse integer 

transform is reduced by 100%, 50%, and 25%, respectively. 

We further denote signal-flow for 1-D inverse integer transfonn with one, two. 
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Figure 6.4: Percentage distribution of 4x4input block types for inverse integer trans
form: (a) Non-zero blocks , (b) DC-blocks. 



6.2. L O W - P O W E R I N V E R S E I N T E G E R T R A N S F O R M 93 

Figure 6.5: Percentage distribution of 4x4input block types for inverse integer trans
form: (a) ULT-blocks, (b) Normal-blocks. 
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Figure 6.6: Proposed input block types: (a) All-zero block, (b) DC-block, (c) ULT-
block, (d) Normal block. 

(c) (d) 

Figure 6.7: Signal-flow diagrams for 1-D inverse integer transform cases: (a) Case 
M l : single non-zero input data-item , (b) Case M2: two non-zero input data-items, 
(c) Case M3: three non-zero input data-items and, (d) Case M4: four non-zero input 
data-items. 
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Figure 6.8: Inverse integer transform unit functional block diagram for: (a) D C , (b) 
U L T and, (c) Normal blocks. 

three, or four non-zero data-items in Figure6.7 as processing units M l , M 2 , 

M 3 , and M 4 respectively. Based on these processing units, the functional block 

diagram for the 2-D inverse integer transform for the DC-only, ULT, and the 

normal block is depicted in Figures 6.8(a), 6.8(b), and 6.8(c), respectively. 

Where, Cx in Figure 6.8, is input column-vector and Rx denotes corresponding 

2-D inverse-transformed row-vector for a given input block. Prx represents 

row-column permutations to realize transpose between two 1-D inverse integer 

transform units. 2-D inverse integer transform for a normal 4 x 4 input block 

requires 64 addition operadons (Figure 6.7(d) and Figure 6.8(c)). This number 

is reduced to 34 and 0 for A Z B and DC-only input block types respectively. 

A straightforward hardware design for inverse integer transform is to imple

ment independent units for the idendfied block types (i.e. A Z B , DC-only, 

ULT and normal input blocks). This approach potentially reduces the dynamic 

power consumption, at the cost of additional area/resources for 34 adders in 

ULT processing unit and control circuitry to activate appropriate processing 

units accordingly. We propose to reduce this area-overhead by designing a con

figurable hardware design for inverse integer transform and, therefore, sharing 

hardware resources between identified independent processing units. 
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Figure 6.9: Inverse integer transform unit (a) High-level organization, (b) Functional 
block diagram. 

6,2,2 Configurable, Low-power Inverse Integer Transform Unit 
Hardware Design 

In this section, we present a hardware design for the data-driven inverse integer 

transform unit using configurable processing block. 

High Level Organization High-level organization for data-driven inverse 

integer transform unit is depicted in Figure 6.9a. I f the input block is of cat

egory A Z B or a DC-only, the control unit routes it to the top level processing 

block (Figure 6.9a) which is essendally a bypass stage as no further processing 

is required. The value for all the data-items in the output block is either zero 

or DC value for A Z B or DC-only block types, respectively. 

The proposed design implements computadon for A Z B consists of takes 4 x 4 

input block X , along with input-block type informadon determined during the 

entropy decoding process. I f the input block is an A Z B or a DC-only block, the 

control unit routes it to the top level processing block (Figure 6.9a) which is 

essentially a bypass stage as no further processing is required for such blocks. 

In such cases, the value for all the data items in the output block is either zero 

or the DC value for the A Z B or the DC-only block types, respectively. 

ULT and normal (non-zero) input blocks are routed to the lower processing 

block in Figure 6.9a. The internal organization of this block is depicted in Fig

ure 6.8. Since the processing blocks M1-M3 are deiived f rom M 4 (Figure 6.7) 
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Figure 6.10: Data-flow diagrams for configurable 1-D inverse integer transform units: 
(a) CM 14, (b) CM24 and, (c) CM34. 

and have similar structure, therefore, we can design a configurable process

ing units ( C M 14, CM24, and CM34) with overlapped datapath to reduce the 

hardware resources for its implementadon. The configurable processing units 

(CM14, CM24, and CM34) as the name suggest can be configured to provide 

processing for either ( M l , M4) , (M2, M4) , or (M3, M4) . The intemal design 

for these configurable units is depicted in Figures 6.10(a) - 6.10(c). With these 

configurable processing units, the overhead of 34 adders for ULT is removed 

completely. 

6.3 Summary 

In this chapter, we have presented two hardware designs for inverse integer 

transform in H.264/AVC video codec. The first design is intended for intra-

frame encoder with significantly reduced latency. The proposed design pro

cesses input data on-the-fly in order to compute inverse integer transformed 

data block. 

A data-driven algorithm for inverse integer transform, with variable number 
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of operations, is also introduced in this chapter The proposed hardware de-

sign,based on data-driven algorithm, provides high-throughput and consumes 

significantly less dynamic power for its implementation. The area-overhead of 

inverse integer transform unit is reduced by designing a configurable hardware 

and efficiently sharing hardware resources between independent processing 

units. 

Note. 

The content of this chapter is based on the the fol lowing papers: 

Muhammad Nadeem, Stephan Wong, and Georgi Kuzmanov, Inverse Integer 

Transform in H.264/AVC Intra-frame Encoder, proceedings of Intemational 

Symposium on Electronic Design, Test and Applicadon 2011 (DELTA), pp. 

228-233, Queens town. New Zealand, lanuary 2011. 

Muhammad Nadeem, Stephan Wong, and Georgi Kuzmanov, Configurable, 

Low-power design for Inverse Integer Transform in H.264/AVC, proceedings of 

Intemational Conference on Fronders of Informadon Technology 2010 (FIT), 

pp. 32-37, Islamabad, Pakistan, December 2010. 



7 
Custom Operations 

PPLlCATlON-specific embedded system design lias become more difficult 
i ~ \ than ever due to rapid increase in design complexity. Efficiency and 

flexibihty must be carefully balanced to meet a number of embedded system 

application requirements. Apphcations running on a programmable platform 

can be executed either as a software algorithm or a speciahzed hardware unit. 

The first approach is slowest one but most flexible. Specialized hardware ap

proach, on the other hand, is the fastest approach but least flexible. From video 

processing perspective, flexibility to adapt to video coding standard evoludons 

and market/technology induced changes has become a new dimension in the 

algorithm/architecture design. Newly emerged reconfigurable and extensible 

processors offer a favorable tradeoff between efficiency and flexibility, and 

a promising way to minimize certain important metrics (e.g., execudon-time 

and code-size, etc.) of embedded processors. Reconfigurable computing has 

proven itself to be able to speed-up many apphcations despite its lack in achiev

ing high frequencies. However, frequency is not the sole factor that determines 

performance. Field Programmable Gate Arrays (FPGAs) - as most utihzed re

configurable fabric nowadays - provide a large amount of parallel stmctures 

those when exploited efficiently greatly contribute to the speedup of applica

dons. Therefore, reconfigurable computing could possibly be the soludon to 

provide needed flexibility along with performance. 

With high-performance computing point of view, a custom instraction in a pro

cessor is an assembly operadon that implements functionality of a compute-

intensive kernel of an application for its accelerated performance. Tradition

ally, custom operations have already been used in commercial Complex In

stracdon Set Computers (CISC) and Dighal Signal Processors (DSP) to ac

commodate operadons that consist of more complexity; operadons such as 

floadng point or complex arithmedc operadons. By extending instracdon set 

with a more complex operation, fewer operations are needed to achieve the 

99 
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same result leading to a more compact set of operations in an application with 

potentially faster execution time as a result. From efficient and flexible video 

processing perspective, we propose to incorporate a customized functional unit 

in the datapath of reconfigurable, soft-core, V L I W processor for compute in

tensive functions in H.264/AVC video codec. More specifically, main contri

butions are provided as fohows: 

1. A proposal to extend ISA of p - V E X reconfigurable, soft-core, V L I W 

processor with an apphcation-specific custom-operations. 

2. Designs for various compute-intensive operations in H.264/AVC video 

codec and their implementadon in p - V E X datapath. 

The chapter is organized as follows: In Section 7.1, we provide an overview of 

proposed customized funcdonal unit in p -VEX, soft-core V L I W processor. A 

number of custom-operadons for compute-intensive functions in H.264/AVC 

are presented in Secdon 7.2. Finally, Secdon 7.3 provides summary of this 

chapter 

7.1 p - \ E X : Customized VLIW Soft-core Processor 

Digital video signal processing applicadons are identified to have significant 

fine and coarse-grained parallelism [13] Therefore, Very Long Instmction 

Word ( V L I W ) processors are preferred computing platform for such appli

cations to achieve high performance [14]. V L I W processors exploit existing 

parallehsm in video processing applications in order to provide improved per

formance by utilizing pipehning and multiple funcdonal units (FUs) to execute 

several operations simultaneously. For a moderate cost, the peiformance of 

V L I W processors can be further improved. p - V E X is an open source, extensi

ble, and reconfigurable, soft-core V L I W processor We propose to incorporate 

a customized functional unit in the datapath of p - V E X V L I W processor. This 

customized funcdonal unit implements applicadon-specific custom instmction 

for compute-intensive functions in video codec H.264/AVC. 

The top-level functional blocks in the five-stage pipeline of p -VEX along wi th 

Custom Functional Unit (CFU) is depicted in Figure 7.1. The ISA of V E X 

processor is extendable. CFU implements new applicadon-specific custom-

operations with a latency of 2 cycles. The CFU is part of Execution stages 

(Exec.1 and Exec. 2) in the pipeline of p - V E X processor and interfaces wi th 

Decode and WriteBack stages as depicted in Figure 7.1. The custom funcdonal 
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Figure 7.1: p-VEX Pipeline Organization with Customized Functional Unit 

unit takes operands f rom General-Purpose Register File (GR) and produces 

resuhs in the destination register in GR. The op-code decoded in Decode stage, 

along with the source-register identifiers are passed on to CFU. Similarly, the 

computed results, along with destination-register identifiers are dehvered to 

WriteBack stage after execution. 

7.2 Custom Operations for H.264/AVC Video Codec 

In this section, we presents couple of custom operations for compute-intensive 

functions in H.264/AVC video codec. More specifically, we propose custom 

operations for deblocking filter, intra prediction, forward integer transform, in

verse integer transform and Hadamard transform in H,264/AVC. These custom 

operadons are implemented in CFU and datapath for these custom operations 

is designed using opdmized algorithms with significantly reduced number of 

operations as described in previous chapters of this dissertation. In the remain

der of this secdon, the design of proposed custom operadons is explained in 

detail. 

7.2.1 Custom Operation for Deblocking Filter 

As mentioned in Chapter 3, the deblocking filter operation is identical along 

horizontal and verdcal edges in a macroblock. Therefore, a single custom 

operadon is proposed to compute filtered-pixels across both vertical as weh 

as a horizontal edge, one at a time. The datapath for this custom operation is 
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implemented using optimized algorithm as hsted in Algorithm 3.2. The syntax 

for deblocking filter custom operadon is provided below: 

Syntax: 

CU_DBF_H264: r s r c i , r s r c s , r s r c g ^ r d s t i ^ r d s t j (7.1) 

Function: 

I n p u t s : 

rsrci : pixels pO — p3 

rsrc2 • pixels qO — qS 

rsrc3 : Filter controls (Alpha, Beta, Bs, TcO): 

Outputs : 

rdsti : filtered pixels pO — p3 

r d s t g : f i l t e r e d p i x e l s qO — q3 

Attributes: 

The proposed custom operation for deblocking filter is implemented using 

pipehne fashion and occupy two issue-slots. The other important attributes, 

such as opcode and latency etc., is provided in Table 7.1. 

Table 7.1: Custom Operation: Deblocking Filter 

Functional Unit Custom Unit H264 

Operation Code 110 

Number of Operands 3 

Latency 2 

Issue Slots 2 

Modifier None 

7.2.2 Custom Operation for Intra-prediction 

There are 9 intra-predicdon modes for 4 x 4 luma block-type in H.264/AVC 

with varying complexity. Computation for these intra-prediction modes re

quires up to 13 pixels f rom left, top and top-right neighbor 4 x 4 blocks as 

depicted in Figure 4.2. The intra-predicted pixels-block consists of 16, 8-bits 

pixels. For 32-bit registers in GR, the computed intra-predicted pixels-block 
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can not be transferred out to GR using single custom operation. We, therefore, 

propose two custom operations for intra-prediction in H.264/AVC. The first 

custom operation computes top two pixels-rows, while, the second custom 

operation returns reaming bottom two pixels-rows in a 4 x 4 intra-predicted 

pixels-block. The proposed custom operations do not support intra-prediction 

modes for 16x 16 luma and 8 x 8 chroma block types. The datapath is imple

mented using decomposed filter kernel equations as listed in Algori thm 4.1. 

The syntax for intra-prediction custom operations is provided below: 

Syntax: 

CU_INTRA_PRED_HI_H26A rsrci^rsrc2,rsrc3^rsrcA ^ r d s t l ^ r d s t 2 

(7.2) 

CU_INTRA_PRED_L0_H26A rsrci^rsrc2,rsrc3^rsrcA 

Function: 

r d s t l ^ r d s t 2 

(7.3) 

Inputs : 

rsrci : A — neighbour pixels from top AxA block 

rsrc2 : 4 — ne ighbour pixels from top right 4x4 block 

rsrc3 : 1 - neighbour pixels from top l e f t 4x4 block 

rsrcA : 4 - ne ighbour pixels from l e f t 4x4 blocJc 

Outputs : (CUJNTRA_PRED_HI_H264) 

r d s t i : p r e d i c t e d pixels for f i r s t row 

rdst2 • predicted pixels for second row 

Outputs : (CU_INTRA_PRED_LO_H264) 

r d s t i : predicted pixels for third row 

rdst2 : predicted pixels for fourth row 

Attributes: 

We proposed two custom operations for intra-prediction module. The datapath 

for both custom operadons is same except the final stage of predicted-pixels 

selecdon. The first custom operadon, with opcode 111, returns top two pixels-

rows, while, the second custom operadon with opcode 112 returns reaming 

bottom two pixels-rows in a 4 x 4 intra-predicted pixels-block. The proposed 
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custom operation for intra-prediction is implemented using pipeline fashion 

and occupy two issue-slots. The other important ahributes, such as opcode 

and latency etc., is provided in Table 7.2. 

Attributes: 

Table 7.2: Custom Operation: Intra-Prediction 

Functional Unit Custom Unit H264 

Operation Code 111,112 

Number of Operands 4 

Latency 2 

Issue Slots 2 

Modifier None 

7.2.3 Custom Operation for forward/inverse Integer Transform 
and Hadamard Transform 

H.264/AVC video coding standard utilizes multiple, separable, spatial trans

forms in its video processing chain. . The transformations are applied on 4 x 4 

blocks of data. Forward and inverse integer transforms are defined in Equa

tion 5.3 and Equadon 6.2 respectively, while Hadamard transform is provided 

in Equadon 5.5. We propose two custom operations to compute forward and 

inverse integer transforms, while one custom operadon for 4 x 4 Hadamard 

transform. 4.1. The syntax for intra-predicdon custom operations is provided 

below: 

Syntax: 

CU_FW_INTG_TRANS_H264: rsrc 1 ^ rsrc 2 -> r d s t 1 , r d s t 2 (7.4) 

CU_INV_INTG_TRANS_H26A rsrc 1 , r s r c 2 r d s t 1 , r d s t 2 (7.5) 

CU_HADAMARD_TRANS_H26A rsrc 1 ^ r s r c 2 -> r d s t 1 , r d s t 2 (7.6) 
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Function: 

I n p u t s 

r s r c i : 

rsrc2 : 

[ X Q X I ] elements o f 4 x 1 i n p u t vector 

[ x 2 X 3 ] e lements o f 4 x 1 i n p u t v e c t o r 

Outputs : 

r d s t i : 

r d s t o : 

[yoy i ] ( f o r w a r d / i n v e r s e , H a d a m a r d ) transformed 

elements o f 4 x 1 o u t p u t v e c t o r 

[y2y3] ( f o r w a r d / i n v e r s e , H a d a m a r d ) transformed 

elements o f 4 x 1 o u t p u t v e c t o r 

Attributes: 

The opcode 113 and 114 are assigned to 1 -D forward and inverse integer trans

form custom operations respectively. While, opcode 115 is assigned to 1-D 

Hadamard transform custom operation. The proposed custom operation for 

transform is also implemented using pipeline fashion and occupy two issue-

slots. The other important attributes, such as opcode and latency etc., is pro

vided in Table 7.3. 

Table 7.3: Custom Operation: Transform Unit 

Functional Unit Custom Unit H264 

Operation Code 113,114, 115 

Number of Operands 2 

Latency 2 

Issue Slots 2 

Modifier None 

7.3 Summary 

In this chapter, we have proposed to incorporate a customized functional unit in 

the datapath of reconfigurable, soft-core V L I W (p -VEX) processor. The pro

posed customized functional unit implements custom operations for compute-

intensive processing functions in video codec H.264/AVC. More specifically, 

we propose one custom operation for deblocking filter, two custom operadons 

to compute 9 intra-prediction modes for 4 x 4 luma pixels-block, two custom 

operations for forward, inverse integer transform pair, and one custom opera-

don to compute 4 x 4 Hadamard transform. Datapath for these custom opera-
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tions are implemented using coiTesponding optimized algorithms with signif

icantly reduced complexity as presented in previous chapters of this disserta

tion. 

Note. 

The content of this chapter is based on the the following paper: 

Muhammad Nadeem, Fakliar Anjam, and Stephan Wong, Application Spe

cific Custom Operations for H.264/AVC on p-VEX: A Reconfigurable Soft-core 

VLIW Processor., <To be submitted>. 



8 
Experimental Results 

ADVANCES in video compression standards continue to enable high-end 

video applicadons (for instance video conferencing/video calls, personal 

video recording, digital TV, internet video streaming, etc.) with better video 

quality, higher video resolutions, and lower bit-rates. The reahzation of ad

vanced video coding with high-resoludon videos on battery-powered mobile 

devices demands high complexity reducdon in video coding algorithms for 

their real-dme and low-power implementadon. Consequendy, the main objec

tives of this dissertadon are to investigate how to achieve high-performance 

for real-time video processing apphcations in terms of throughput while utiliz

ing less on-chip resources. Similarly, this dissertation also proposes adaptive, 

low-power hardware design for multimedia video compression apphcations on 

battery-powered electronic devices without compromising the video quality. 

In previous chapters of this dissertation, we have presented several different de

signs for compute-intensive processing functions in H.264/AVC video codec. 

For experimental evaluation , the proposed design are described in V H D L and 

various parameters such as throughput, area-cost, and dynamic power con

sumption are computed using a number of typical test video sequences. . This 

chapter presents the experimental results and also provides a comparison of 

proposed hardware designs with sate-of-the-ait already presented in the litera

ture. The concluding remarks are provided at the end of this chapter. 

8.1 Deblocking Filter 

Deblocking filter is one of the top three compute intensive functions in 

H.264/AVC video codec. In Chapter 3, we have presented two hardware 

designs for deblocking fiher. Both of these hardware designs as based on 

optimized deblokcing filter algorithm with significantly reduced complexity 
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Figure 8.1: Comparison: Addition operations in strong and weak filter modes. 

in terms of number of operations for its implementation. The proposed de

blocking filter designs are described in V H D L and verified by comparing the 

RTL simulation results with those of reference software implementation. Both 

of these deblocking filter hardware designs are evaluated using various video 

test sequences and experimental results are provided in this section along with 

comparison with state-of-the-art presented in the literature. 

8.1.1 Complexity Comparison for Deblocking Filter Algorithm 

Deblocking filter is an adaptive filter and has two filter modes with vary

ing complexity. The filter kernels for both of these modes are specified in 

H.264/AVC video coding standard [7], and are also provided in Algorithm 3.1. 

From deblocking filter algorithm perspective, we reduces the complexity of 

deblocking filter algorithm through novel decomposition of fiher kernels and 

by employing various inter-filter-mode optimizations to remove redundancy 

in the algorithm, as described in Algori thm 3.2. The proposed opdmized de

blocking filter algorithm requires 24 additions and 5 clip operadons for its 

hardware implementation. The number of additions are reduced by 5 1 % when 

compared with that of original deblocking fiker equations in [7], by 3 1 % when 

compared with decomposidon proposed in [49], and by 33% when compared 

with [97]. A comparison of number of operations required to caiTy out filter 

process, proposed by [7], [49], and [97] and our proposal, is depicted in Figure 

8.1. 
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Figure 8.2: Dynamic power consumption for various test video sequences. 

8.1.2 Deblocking Filter Design Using Single Filter Unit 

A single-filter-unit based low-power hardware design for deblocking filter, tar

geting image processing applications running on battery-powered multimedia 

devices, is presented in Chapter 3. The low-power hardware design is de

scribed in V H D L and implementation is verified by comparing RTL simula

tion results for various video test sequences with those of reference software 

implementation [99]. 

The dynamic power consumption for a number of video test sequences on X i l 

inx Virtex I I FPGA device is illustrated in Figure 8.2, while hardware-resource 

cost is provided in Table 8.1. A detailed comparison in terms of throughput 

and dynamic power consumption with other hardware designs presented in the 

literature is provided in Table 8.2. Since the dynamic power consumption re

sults for deblocking filter hardware designs already presented in the literature 

are provided either for FPGA implementation, or for an ASIC implementadon, 

using different video test sequences. For a fair comparison, we implemented 

our hardware design for both scenaiios and a comparison for both implemen

tadons is provided below: 

F P G A Implementation Comparison: Mustafa, et.al., [44] reported dy

namic power consumpdon results for their deblocking filter design us-
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Table 8.1: Hardware resource usage for a single deblock filter unit. 

ITW resource type Available resources Used resources cost [%] 

Slices 1408 552 39 

D F F 2816 604 21 

4-input L U T s 2816 662 24 

Table 8.2: Throughput and dynamic power consumpdon comparison for deblocking 
filter unit. 

Parlak [44] Thang [43] Nadeem [17] 

F i l t er ( cyc /MB) 5248 192 192 

M a x Frequency 

( M H z ) 

F P G A V i r t e x n 72 NA 76 M a x Frequency 

( M H z ) 0.18 AJm C M O S 200 220 200 

Tl iroughput 

( K M B / s e c ) 

F P G A V i r t e x n 14 - 395 Tl iroughput 

( K M B / s e c ) 0.18/j,m C M O S 38 1146 1041 

D y n a m i c Power 

Consumption 

F P G A V i r t e x n 85.76 m W N A 43 m W D y n a m i c Power 

Consumption 0.18 p m C M O S N A 34.8 /J.W 16.36/.tW 

ing Eorman video test sequence with CIE (352x288) resolution, and on 

2V8000FE1157 Xihnx Virtex I I FPGA device with speed grade 5. For a cor

rect comparison, we implemented our design on the same FPGA device and 

computed dynamic power consumpdon using the same video test sequence. 

The test results indicate that our design consumes only 43 m W (vs. 85.76 

mW). Therefore, for same video test sequence and for same FPGA device, our 

deblocking filter design consumes 50% less dynamic power, when compared 

with that of [44]. As far as throughput of hardware deblocking filter unit is 

concerned, with maximum operating frequency of 76 M H z and 192 cycles per 

M B , we can provide a maximuin throughput of 395 KMB/s . Our deblock

ing filter design, therefore, can process f u l l - H D (1920x1080) at 30 fps with 

an operating frequency as low as 59 MHz . In contrast, the deblocking filter 

design implementation by [44] can not provide real-time processing beyond 

CIF(352x288) video frame format. 

A S I C Implementation Comparison: NamThang, et al., [43] reported dy

namic power consumption for their deblocking filter design synthesized for 

0 .18 fim CMOS standard cell hbrary. The deblocking filter core consumes 

34 .8 jiW for processing QCIF video frame at 30 fps. We synthesized our 
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design using Synopsys Design Compiler (ver. v2002, rev05) under U M C 

0 .18pm CMOS standard cell library (v l .5) . The power consumption was 

estimated for gate level simulation using Forman QCIF video test sequence 

at 30 fps. The estimated dynamic power consumption for our deblocking h l 

ter design is 16.36 p W (vs. 34 .8 p W ) . Our design, therefore, consumes 

53% less dynamic power for the same process technology and for the same 

video test sequence . As far as throughput of hardware deblocking filter unit 

is concemed, with maximum operating frequency of 200 M H z and 192 cycles 

per M B , we can easily meet the real-time processing requirements of f u l l - H D 

(1920 X1080) video frame with an operating frequency of 59 MHz. 

The dynamic power consumption of our deblocking filter hardware design is 

mainly reduced because of opdmizadon of filter algorithm (more than 50% 

reducdon of addhion operadons), implementadon at finer granularity of pro

cessing units that can be independently deactivated during filtering process 

and early detecdon of filter-process-skip conditions to deactivate the complete 

processing chain. 

8.1.3 Deblocking filter Design Using Dual Filter Units 

For real-dme video processing apphcadons, we propose a high-throughput and 

area-efficient hardware design for deblocking filter in Chapter 3. The proposed 

design is based on dual, idendcal filter units and, therefore, process horizon

tal and vertical edges simultaneously. To achieve area-efficiency and reduce 

dynamic power consumpdon, the filter core is implemented using opdmized 

decomposed filter kernels , already discussed in Chapter 3 of this dissertation. 

For experimental evaluation purpose, the proposed deblocking filter hardware 

design is described in V H D L and synthesized by Synopsys Design Compiler 

(version v2002, rev 05), for a maximum clock frequency of 166 M H z with 

0 .18 p m CMOS standard ceU technology (v l .5) . 

The maximum throughput comparison with state-of-the-art is provided in Fig

ure 8.3. Similarly, comparison for area-cost in terms of equivalent gate count 

is provided in Figure 8.4. The comparison with respect to some of the other 

important features like S R A M , filtering cycles per M B and maximum clock 

frequency is also provided in Table 8.3. The last two columns in Table 8.3 

provide the percentage throughput improvement and percentage area-cost re

duction in terms of gate count of our proposal compared to other hardware 

deblocking filter designs in hterature.. 

Figures 8.3 and 8.4, and Table 8.3 demonstrate that our deblocking filter design 
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Figure 8.4: Area comparison for deblock filter using dual filter units 
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provides much higher throughput on one hand and requires signihcantly less 

area for its implementation on the other 

The comparisons with [48] and [27] need some clarihcation. The design by 

[48] requires almost the same area as ours, however, we provide 63% higher 

throughput. While on the other hand, reference [27] provides almost the same 

throughput as we do, however, we require 35% less area in terms of equivalent 

gates for its implementation. 

The higher throughput of our design is achieved by merging the processing 

elements on the critical path and making it shorter. The area reduction, on the 

other hand, is mainly achieved because of: 

• Algorithm level optimization - through decomposition of the filter kernels, 

inter-filter-mode optimizations and overlapped datapaths, we are able to reduce 

the number of additions by 5 1 % and, therefore, reduce the combinatorial logic 

for the implementation; 

• Hardware design level optimization - through efficient pipehne stage design 

we reduce the number of registers required for intermediate resuhs for the 

next pipeline stage, reuse the same hardware resource for the realization of 

transpose units by identification of mutual exclusive operations in processing 

chain. 

From the comparison with other designs presented in Table 8.3, we suggest 

that the proposed hardware accelerator requires 17%-44% less area in teims of 

equivalent gate count on one hand and provides up to 271% higher throughput 

on the other The designs by [38], [31], [56], though require less area in terms 

of equivalent gate count. However, this is not a fair comparison as these three 

designs do not include the logic for the boundary strength computation, where 

as, our design includes the boundary strength computadon unit. As far as the 

throughput is concemed, the proposed hardware design is 24% better when 

compared with [38] having highest throughput among [38], [31], [56]. 

8.2 Intra Prediction 

In Chapter 4, we have presented a high-throughput and area-efficient hard

ware design for intra-prediction in H.264/AVC. The proposed design sup

ports 4 intra-prediction modes for luma 16x16 pixels-block type, 4 intra-

prediction modes for chroma 8 x 8 pixels-block type, and 9 intra-prediction 

modes fo r 4 x 4 pixels-block type in H.264/AVC. The hardware design for 

intra-prediction unit is based on optimized algorithm with reduced complexity 



C/5 

ir. 

< 

w Table 8.3: Comparison for deblock filter using dual filter units 

X 

Ref Process Filtering Frequency S R A M Throughput Area Throughput Area 
[/jm] [Cycles/MB] [MHz] [ b i t s ] [K - MB/s] [K g a t e s ] Improvement[%] Reduction [%] 

Cheng [31] 0.18 336 too 8 0 x 3 2 298 9.2" 397 -

Chang [56] 0.18 342 too 9 6 x 3 2 292 11.8" 407 -

L i [38] 0.18 192 230 1 6 0 x 3 2 1198 9.6'' 24 -

Shih [46] 0.18 192 100 (128 + 1 .5XF1 / )X32 521 20.9 184 42 
Zheng [52] 0.18 236 100 (160 + 2 x F W ) x 3 2 424 14.5 250 17 

L i u [40] 0.18 250 100 (96 + 2 X F J / ) X 3 2 400 19.6 271 39 
Chen [27] 0.18 128 200 2 8 X 3 2 1562 18.4 -5 34 
Chen [29] 0.18 222 200 6 4 X 3 2 901 18.7 64 35 

Tobajas [48] 0.18 n o too 64X32 909 12.6 63 4 
X u [50] 0.18 204 200 2 x 9 6 x 3 2 . 2 X F I / X 3 2 980 21.5 51 44 
L i u [41] 0.18 243 100 2 X 9 6 X 3 2 , 2x(Fil + 1 2 ) x 3 2 412 21.1 260 43 

Nadeem [16] 0.18 112 166 6 4 X 3 2 1482 12.1 - -

"Gate count w/o boundary strength computation 
'Gate count w/o boundary strength computation 
' Gate count w/o boundary strength computation 
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Table 8.4: Performance comparison for Intra-prediction unit. 

Intra-pred mode Sahin [71] X u n [65] Wang [73] Nadeem [18] 

V T 17 4 17 1 

H Z 17 4 17 1 

D C 21 4 20 

D D L 24 4 18 1 

L u m a 4x4 [cycles] D D R 24 4 18 1 

V R 23 4 19 1 

H D 23 4 19 1 

V L 22 4 19 1 

H U 20 4 18 1 

V T - 66 17 16 

L u m a 16x16 [cycles] 
H Z - 66 17 16 

L u m a 16x16 [cycles] 
D C - 66 20 22 

Plane 340 66 20 22 

as described in Algorithm 4.1. 

For experimental evaluation , the proposed design is described in V H D L and 

synthesized by Synopsys Design Compiler (v2002, rev. 05) for a maximum 

operating frequency of 150 M H z with 0.18 jim CMOS standard ceh tech

nology (v l .5 ) . The implementadon is verified by comparing the simulation 

results, generated using ModelSim 6.5 for various video test sequences, with 

those of reference software implementation [99]. 

The number of cycles to compute all intra-prediction modes are provided in 

Table 8.4. With maximum operating frequency of 150 MHz, the proposed 

intra prediction unit can easily meet the real-time processing requirement of 

f u l l - H D video frame resoludon. The performance comparison with other state-

of-the-art intra-predicdon hardware designs for H.264/AVC video decoder is 

also provided in the same table. The comparison suggests that our design pro

vides 50% -75% performance improvement for the luma 4 x 4 intra-prediction 

modes, when compared with [65], For luma 16x 16 case, our design provides 

similar peiformance when compared with [73]. 

The proposed hardware design consumes 2 I K gates. The area-cost of our 

design can not be directly compared with [71] and [73] as these designs are 

implemented on FPGA. The hardware design presented in [65] consumes 28 .7 

K gates. Since our proposed design consumes only 21 K gates, therefore, it 

provides 27% area saving when compared with [65]. 

The area-cost is reduced because of implementadon of optimized intra-

prediction algorithm with significantly reduced number of additions opera-
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tions (27-60% reduction). Moreover, overlapped datapath for 4 x 4 ,8x8 , and 

16x16 pixels-block types also helps to greatly reduce area-cost for hardware 

implementation of intra-prediction unit. 

8.3 Forward Integer Transform 

In Chapter 5, we have presented two solutions for realization of integer trans

form in the processing chain of intra-frame encoder applications. The first 

soludon targets image compression apphcations i-unning on battery-powered 

electronic devices, such as digital still camera. The proposed solution utilizes 

a novel 2-D transform to derive integer-transformed coefficients directly f rom 

that of Hadamard-transformed coefficients with significantly reduced number 

of operadons and, therefore, area and power consumpdon. The second solu

don targets real-time video compression apphcations using intra-frames only. 

The proposed solution reduces the effective latency penalty of forward integer 

transform to zero. Moreover, i t aggressively reuses the intermediate results 

f rom Hadamard transform and, therefore, requires significantly reduced num

ber of operations and, thus, less area for its hardware implementation 

Both of the hardware designs for realization of integer transform are evaluated 

experimentally by describing them V H D L and synthesized using Synopsys 

Design Compiler (v2002 rev05) under 0.18 //m CMOS standard cell library 

(v l .5 ) . The implementation for these designs, was verified, as useual, by com

paring the simulation results for a set of video test sequences with those of ref

erence software implementation [99]. The maximum operating frequency for 

synthesized design is 200 MHz. After logic synthesis, the dynamic power con

sumption was estimated using Synopsys Pr imePower™. Experimental evalu

ation of proposed designs is provided as follows: 

8.3.1 Forward Integer Transform for Image Processing Applica
tions 

The comparison of proposed hardware design for single 4 x 4 integer transform 

unit with state-of-the-art is provided in Table 8.5. From the comparison with 

other solutions, we suggest that the proposed solution provides the minimum 

latency penalty (4 .82 ns) among all solutions in Table 8.5. and also requires 

significantly less area (2 . 6K gates) in terms of equivalent gate count for its 

hardware implementation. Therefore, i t provides up to 5 times better perfor

mance in terms of throughput/area ratio for the same process technology. This 
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Table 8.5: Comparison for single forward integer transform unit. 

Implementations Cheng [89] R o m a n [95] L i n [92] Nadeem [19] 

D P R " (pixels/cycle) 8 16 8 16 

Transpose / Permutation Perm. Perm. Perm. Perm. 

Trans form l^pe 4 x 4 4 x 4 4 x 4 4 x 4 

Teclmology [/jm] 0.35 0.18 0.35 0.18 

Latency [ns] 10.93 6.30 30.66 4.82 

Speed [ M H z ] 91 159 33 200 

Throughput [Mpixels/s] 732 2552 261 3200 

A r e a [gates] 2539 11727 15327 2638 

Throughput / Area[KPixe l s / s ] 288 218 17 1213 

Power [ m W ] N A N A N A 3.7''@31.25MHz 

Throughput / Power 

[MPixels / s /mW] 
N A N A N A 135 

a: Data processing rate; 

b: The result computed for same throughput as that of [80]; 

is achieved by significantly reducing number of addition operations (30 vs. 64) 

and higher data processing rate (16 vs. 4) for the realization of the forward in

teger transform. The power consumption for the other single 4 x 4 forward 

integer transform solutions is not available, therefore, we cannot compare the 

dynamic power consumption results. 

8.3.2 Forward Integer Transform for Video Processing Applica
tions 

We have presented a design with low-latency and area-efficient realizadon of 

forward integer transform unit in the intra-frame processing chain. With this 

proposed solution, the effective latency penalty for forward integer transform 

unit is reduced to zero, as the computation for forward integer transform is 

no longer on the critical path. For comparison with multiple transform so

lutions, we merged a 4 x 4 Hadamard transform unit wi th our proposal. The 

comparison results for muldple transform soludon are provided in Table8.6. 

In additions to zero latency penalty in the intra-frame processing chain, the 

proposed solution provides up to 30 times better performance in terms of 

throughput/area ratio. This is achieved by aggressively reusing the interme

diate results f rom Hadamard transform unit to reduce the number of addition 

operations by 50% (32 vs. 64) and higher operating frequency (200 MHz) 
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Table 8.6: Comparison for multiple transform unit. 

Implementations H u a n g [90] F a n [80] Woong [94] Nadeem [19] 

D P R " (pixels/cycle) 8 4 16 16 

Transpose / Permutation Transpose Transpose Permutation Permutation 

Trans form Type Multiple Multiple Multiple Multiple 

Teclmology [/jm] 0.18 0.18 0.18 0.18 

Latency [ns] 20 16 5 4.92 

Speed [ M H z ] 50 125 200 200 

Throughput [Mpixels/s] 400 500 3200 3200 

A r e a [gates] 39800 6458 63618 9926 

Throughput / A r e a 

[Kpixels/s] 
10 77 50 323 

Power [ m W ] 38.7@50MHz 9. l ' '@ 62.5MHz 86.9@200MHz 
78.52 @ 200MHz 

4.08 @ 16MHz 

Throughput / Power 

[MPixels / s /mW] 
10.34 54.9 36.8 40.75 

a: Data processing rate; 

b: Power consumption by transpose register, estimated by PrimePower is 4.102 m W [94]; 

and data processing rate (DPR : 16 pixels/cycle). The comparison of dynamic 

power consumption with [80] needs some clarifications. The solution in [80] 

consumes 9 . 1 mW for a throughput of 250 M pixels / s, our proposed solution 

consumes 78.52 m W for a throughput of 3200 M pixels / s (approximately 

13 X higher throughput). However, the dynamic power consumption for the 

proposed solution for the same throughput as that of [80], is only 4 . 08 mW. 

As [95], [80], [94], and [90] have been synthesized their designs for the same 

technology as that for our proposal, the performance and power efficiency ben

efits can be derived straight f rom Table. 8.5 and Table. 8.6 . Regarding [89] 

and [92] in Table. 8.5, further investigations suggest that our design is more 

performance and power efficient. Compared to [89], which is the more eff i 

cient design of the two, we identify that our proposal provides 2 x higher data 

processing rate yet do not require a set of (8,13-bit) multiplexer units to i m 

plement datapaths with and without shift operations to realize multiplications. 

Therefore, the proposed solution shall not only require less area for its hard

ware implementation for 0.35 /xm process technology, but also potentially 

consumes low dynamic power because of reduced number of processing units. 
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8.4 Inverse Integer Transform 

In Chapter 6, we have presented 2 hardware designs for inverse integer trans

form in H.264/AVC. The first design is intended for intra-frame encoder with 

significandy reduced latency. The proposed design processes input data on-

the-fly in order to compute inverse integer transformed data block. From video 

processing apphcadon perspecdve, the second proposed hardware design for 

inverse integer transform, targets targets high-throughput and significantly less 

dynamic power consumption for its implementadon. Experimental evaluation 

of proposed designs is provided as follows: 

8.4.1 Low-latency Inverse Integer Transform Design Evaluation 

The proposed low-latency inverse integer transform design is described in 

V H D L and synthesized by Synopsys Design Compiler (v2002, rev. 05) for 

a maximum operadng frequency of 375 M H z with 0.18 / im CMOS standard 

cell technology (v l .5) . The implementation is verified by comparing the simu

ladon results for various video test sequences with those of reference software 

implementation [99]. 

The comparison of proposed hardware design for inverse integer transform unit 

with other state-of-the-art designs in hterature is provided in Table 8.7. The 

proposed design requires significantly less area (7512 gates) in terms of equiv

alent gate count for its hardware implementation. The proposed design with 

a maximum operating frequency of 375 MHz, therefore, can easily meet the 

throughput requirement of the real-dme processing of H D T V (1920x1080; 

16 : 9; 30 frame per second) with an operadng frequency as low as 94 MHz . 

It should be noted that all other designs in Table 8.7require one or more ad

ditional buffers to interface with the inverse quantization processing unit in 

the intra-frame processing chain. Therefore, they require additional chip-area 

for interface, whereas our proposed design does not require such buffers be

cause of the fact that it processes the input data-items on-the-fly and therefore, 

requires only a single 16-bit register (it is included in 7512 gates). 

The latency penalty of the proposed design is 2 .67 ns. The latency penalty 

for our design can not be compared direcdy with those of [89], [92], and [93], 

because of different process technology. The scale factors for a set of different 

latest process technologies are provided in [100]. However, i t does not provide 

a scale factor for 0 .18 /xm and 0.35 pm technologies. Since a scale factor of 

2 .2 exist among technologies like (80nm and 40nm), and (70nm and 36nm). 
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Table 8.7: Performance comparison for low-latency inverse integer transform unit 

C h e n g L i n W a n g C h e n Woong Nadeem 

[89] [92] [93] 187] [91] [21] 

D P R " (pixels/cycle) 8 8 4 16 16 1 

Transpose / Permutation Perm Perm Trans Perm Perm Perm 

Technology (lum) 0 . 3 5 0 . 3 5 0 . 3 5 0 . 1 8 0 . 1 8 0 . 1 8 

Latency (ns) 
1 1 . 6 6 1 6 . 0 8 8 . 2 7 6 . 0 2 4 . 9 2 2 . 6 7 

Latency (ns) 
( 5 . 3 0 * ) ( 7 . 3 1 * ) ( 3 . 7 6 * ) - - -

Speed ( M H z ) 8 6 ( 1 8 9 * ) 5 6 ( 1 3 7 * ) 1 2 5 ( 2 6 6 * ) 166 203 375 

Agg. Throughput 5 . 3 8 3 . 5 0 7 .81 1 0 . 3 8 1 2 . 6 9 2 3 . 4 4 

( 4 X 4 blocks / s) ( 1 1 . 8 1 * ) ( 8 . 5 6 * ) ( 1 6 . 6 3 * ) - - -

A r e a (gates) 3377'' 8264'" 4424^'= 7497'' 7512 

a: Data processing rate; 

b: Requires an additional interface buffer (area N O T included); 

c: Requires a transpose buffer (area N O T included); 

*: Values computed with scale factor 2.2 

Therefore, we assume the same scale factor to compare the latency penalty of 

our design with those of [89], [92], and [93]. The comparison shows that the 

proposed design provides the minimum latency penalty (2.67ns) among all 

designs. 

The comparison Table 8.7 also provides the aggregated throughput of all of 

these designs of inverse integer transform unit when interfaced with Inverse 

Quantization (IQ) processing unit. I t is assumed that the inverse quantization 

processing unit operates at the same maximum operating frequency as that 

of the coiTesponding design. From Table 8.7, we suggest that the proposed 

design provides the highest throughput among ah designs. The throughput of 

other designs can be improved by providing 4, 8, or 16 data items in parallel. 

However, this approach cost additional chip-area for quantization and inverse 

quantization processing units with same scale factor (i.e., 4, 8, or 16). 

8.4.2 Configurable, High-throughput Inverse Integer Transform 
Design Evaluation 

A configurable, high-throughput hardware design for inverse integer transform 

is also introduced in Chapter 6. The proposed hardware design is based on an 

optimized data-driven algorithm for the inverse integer transform. For experi

mental evaluation, the proposed inverse integer transform design is described 
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in V H D L and synthesized by Synopsys Design Compiler (v2002, rev. 05) for 

a maximum operating frequency of 166 M H z with 0.18 /xm CMOS standard 

cell technology (vl .5) . The implementation is verified by comparing the simu

lation results for various video test sequences with those of reference software 

implementation [99]. 

Since the dynamic power consumption for the inverse integer transform unit 

using video test sequence data is not provided in the literature, we implemented 

a parahel 2-D inverse integer transform based on architecture proposed in [95] 

as a reference for the same technology and the maximum operating frequency. 

The area-cost of proposed design, in terms of equivalent gate count, is 9.6 K 

gates. The dynamic power consumption estimated for a number of video test 

sequences with fine (Qp = 16) and coarse (Qp = 32) quantization parameter is 

illustrated in Figure 8.5(a) and Figure 8.5(b) respectively. 

The test results suggest that dynamic power consumption is greatly affected by 

the Qp value chosen and a significant reducdon (up to 80%) can be achieved 

by using a data-driven computation algorithm for the inverse integer trans

form. The number of operations to compute the inverse integer transform is 

variable and depends on the input block type in contrast to the conventional 

inverse integer transform algorithm with constant number of operations for all 

types of input blocks. This result in a sigmficantiy reduced signal activity in 

the hardware circuit and, therefore, lower dynamic power consumption. The 

area-overhead for such an algorithm was reduced by designing a configurable 

processing unit to share the hardware resources. 

8.5 Application Specific Custom Operations 

In Chapter 7, custom operations for 3 compute-intensive processing units in 

H.264/AVC, are proposed for reconfigurable, soft-core, V L I W processor (p-

V E X ) . The Customized Functional Unit (CFU) implements these new apph

cation specific custom operations with latency of 2 cycles each as depicted 

in Figure 7.1. The proposed custom operations for deblocking filter, intra-

prediction and transform units are based on the optimized algorithms already 

provided in respective previous chapters in this dissertation. In this section, 

we evaluate the performance gain and also compute related hardware resource 

overhead for these custom operations reconfigurable, soft-core, V L I W proces

sor (p-YEX). 
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Figure 8.5: Dynamic power consumption of inverse integer transform unit (a) Case: 
Qp=16,(b)Case: Qp = 32 . 
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Table 8.8: Resource utilization for deblocking filter custom operation 

p - V E X P- V E X 

Resource (Base) (Deblocking Filter) Overhead 
Type Available Used % Used % A % 

Slices 89088 16152 18% 17100 19% 948 5.9% 
F F 178176 3584 2% 3580 2% -4 -0.1 % 

4-input L U T 178176 31053 17% 32845 18% 1792 5.8% 

Table 8.9: Performance comparison for deblocking filter custom operation 

P - V E X P - V E X 
Filter (Base) (Deblocking Filter) Reduction 
mode 

Cycles 
Exec , time 

(msec) 
Cycles 

Exec , time 

(msec) 
Cycles % 

Strong Filter 30 300 13 135.4 17 54.9% 
Weak Filter 28 280 13 135.4 15 51.6% 

8.5.1 Deblocking Filter Custom Operation 

The (ieblocking filter algoiithm for single edge filtering operation is extracted 

f rom reference software implementation of H.264/AVC video codec [99]. Two 

variants of the algorithm, with and without proposed custom operation, are 

implemented in C. The implementadons are verified by comparing the xSTsim 

[101] generated simulation results with those of reference software JM 13. 2 

[99]. The C-code was compiled/linked using V E X tool-chain version 3.43 for 

4-issue /9-VEX processor instance with default opdmizadon setdngs. 

The hardware resource utilization and overhead for implementadon of de

blocking filter custom operadons is provided in Table 8.8. Similarly, the cor

responding performance gain is provided in Table 8.9.The resuhs f rom Table 

8.9 suggest that the strong filter mode consumes 30 cycles to compute the fib 

tered pixels values, while 28 cycles are required to compute the filtered pixel 

values in the case of weak fiker mode on a 4-issue /9-VEX processor based on 

nadve ISA. With the proposed custom operadon (CU_DBF_H264), the num

ber of cycles is reduced to 13 for both filtering modes. With the incorporadon 

of proposed custom operadon in 4-issue /9-VEX base processor, the maximum 

operating frequency is reduced f rom 99.54 M H z to 95. 99 MHz. This sug

gests a net reduction in compute dme by 55% for Strong Eilter mode and 52% 

for the Weak Filter mode respectively after compensating the reduction in max

imum operating frequency of the p - V E X processor. This significant reducdon 

in compute time is at the cost of only - 6 % increase in the hardware resources 

on X i l i n x Virtex-4 (xc4vlx200-llflF15I3) FPGA device. 
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Table 8.10: Resource utilization for intra prediction custom operation 

Resource 

Type Available 

p - V E X 

(Base) 

Used % 

p - V E X 

(Intra Prediction) 

Used % 

Overhead 

A % 

Slices 89088 16152 18% 18606 20% 2454 15.2% 

F F 178176 3584 2% 3992 2% 408 11.4% 

4-input LUT 178176 31053 17% 35674 20% 4621 14.9% 

8.5.2 Intra-Prediction Custom Operation 

The H.264/AVC video coding standard provides algorithm to compute the intra 

predicted pixel values for a 4 x 4 block. A n optimized version of this algorithm, 

with reduced number of operadons, is implemented in reference software [99]. 

We extracted this implementation of intra-prediction unit for comparison pur

pose. Similar to deblocking filter case, two variants of the algorithm of intra-

predicdon, wi th and without proposed custom operadons, are implemented in 

C. The implementadons are verified by comparing the xSTsim [101] generated 

simuladon results with those of reference software JM 13.2 [99]. The C-code 

was compiled/linked using V E X tool-chain version 3.43 for 4-issue p - V E X 

processor instance with default opdmization setdngs. 

The hardware resource utihzation and overhead for implementadon of intra 

prediction custom operadons is provided in Table 8.10. Similarly, the corre

sponding performance gain is provided in Table 8.11. The compute-cycles for 

different intra-prediction modes vary for reference implementation. However, 

i t remains constant for the implementation using custom operadons for intra-

predicdon computadon. The experimental results f rom Table 8.11 suggests 

that compute-time is reduced f rom -40% to -59% for various intra predicdon 

modes with an exception of vertical intra-prediction mode. This is because of 

the fact that vertical intra-prediction mode do not involve any processing and, 

therefore, consumes similar cycles as that in the case of custom operation. The 

remaining intra-prediction modes, where computations are to generate pre

dicted values clearly benefit f rom the intra-prediction custom operation. This 

significant reduction in compute-time is at the cost of around - 1 5 % increase 

in the hardware resources on Xihnx Virtex-4 (xc4vlx200-l l f f l 5 1 3 ) FPGA de

vice. 
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Table 8.11: Performance comparison for intra prediction custom operation 

P - V E X P - V E X 

Intra (Base) (Intra prediction) Reduction 

Prediction 
Cycles 

Exec , time 
Cycles 

Exec, time 
Cycles % 

mode 
Cycles 

(msec) 
Cycles 

(msec) 
Cycles % 

Vertical 10 too 11 115 -1 -0.2 

Horizontal 19 190 11 115 8 39.5 

D C 19 190 11 115 8 39.5 

Diagonal Down Left 28 280 11 115 17 58.9 

Diagonal Down Right 23 230 11 115 12 50.0 

Vertical Right 21 210 11 115 10 45.2 

Horizontal Down 28 280 11 115 17 58.9 

Vertical Left 23 230 11 115 12 50.0 

Horizontal Up 21 210 11 115 to 45.2 

8.5.3 Integer/Hadamard Transform Custom Operation 

The H.264/AVC comphant video encoder implementation [7] utihzes muld

ple transforms, such as forward and inverse integer transform and Hadamard 

transform operating on a 4 x 4 input pixels-block. A custom operation for for

ward and inverse integer transform along with Hadamard transform for 1-D 

case is proposed in Chapter 7. For peiformance comparison , we extracted the 

corresponding routines f rom reference software [99] and implemented the al

gorithm with and without custom operation for 2 scenarios. In first case, only 

1-D transformation is computed. The puipose of this implementadon is to de

termine the minimum performance gain for the transform custom operation. 

For the second scenario, 2-D (forward/inverse integer, Hadamard) transforms 

with and without udlizing the con-esponding 1-D custom operation are com

puted. The algorithm is implemented in C. The implementations are verified 

by comparing the xSTsim [101] generated simuladon results with those of ref

erence software JM 13.2 [99]. Same as with previous cases, the C-code was 

compiled/linked using V E X tool-chain version 3.43 for 4-issue V L I W pro

cessor instance with default opdmization settings. 

The resource utilizadon for transform custom operadon is provided in Table 

8.12. The number of cycles and compute time for 1-D and 2-D transform 

implementadons is provided in Table 8.13. The experimental results in Table 

8.13 suggest that -40% reduction in compute dme is achieved in the case of 1-

D transform computation. Similarly, for 2-D case, the compute time is reduced 

f r o m - 4 9 % to -53% for various transforms types. The less reduction in case 

of Hadamard transform is observed because of the fact that the complexity of 

Hadamard transform is comparatively lower than that of forward and inverse 

integer transform cases. This significant reducdon in compute dme is at the 
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Table 8.12: Resource utilization for transform custom operation 

Resource 

Type Available 

p - V E X 

(Base) 

Used % 

p - V E X 

(Transform) 

Used % 

Overhead 

A % 

Slices 89088 16152 18% 17586 19% 1434 8.9% 

F F 178176 3584 2% 3476 1% -108 -3.0% 

4-input L U T 178176 31053 17% 33834 18% 2781 9.0% 

Table 8.13: Performance comparison for transform custom operation 

Transform 

Type 

p - V E X 

(Base) 

p - V E X 

(Deblocking Filter) Reduction Transform 

Type 
Cycles 

Exec , time 

(msec) 
Cycles 

Exec , time 

(msec) 
Cycles % 

Integer-ID 13 130 7 72.9 6 43.9 

Inv Integer-ID 12 120 7 72.9 5 39.3 

Hadamard-ID 12 120 7 72.9 5 39.3 

Integer-2D 76 760 34 354.2 42 53.4 

Inv Integer-2D 75 750 34 354.2 41 52.8 

Hadamard-2D 69 690 34 354.2 35 48.7 

cost of around - 9 % increase in the hardware resources on Xihnx Virtex-4 

(xc4vlx200-l l f f l 5 1 3 ) EPGA device. 

8.6 Summary 

In this chapter, we presented experimental results for the proposed designs, 

in terms of throughput, area and dynamic power consumption. A compari

son with the designs state-of-the-art is also provided. Similarly, performance 

gain and the corresponding cost in terms of hardware resource-overhead for 

proposed custom operations is provided at the end of this chapter 



9 
Conclusions and Future Directions 

INHIS this dissertation, we have presented several designs for compute-

intensive processing functions in fI .264/AVC. The proposed hardware de

signs are based on optimized algorithms with significantly less number of op

erations, when compared with those for original algorithms proposed in the 

H.264/AVC video codec standard . Similarly, custom operations for the same 

compute-intensive funcdons are also proposed in this dissertadon. These cus

tom operations are implemented in the datapath of reconfigurable, extensi

ble, soft-core V L I W processor (p-VEX). The performance gain and hardware 

resource-overhead for these custom operations is determined experimentally 

and presented in this dissertation. 

In this chapter, we present concluding remarks along with major achievements 

and possible future directions for this research work. The chapter is organized 

as foUows: Section 9.1 provides summary of main conclusions of this dis

sertadon. Main contribudons of this dissertation are hsted in Secdon 9.2. In 

Secdon 9.3, the problem statements addressed in this dissertation are revisited. 

Einally, Section 9.4 outline some open issues and future direcdons based on 

this research work. 

9.1 Summary and Contributions 

In Chapter 1, the importance of digital video coding, typical hardware plat

forms for video processing along with their merits and shortcomings are pre

sented. The challenges, problem statements and methodology to achieve high-

performance video processing systems are also presented in the same chapter 

A motivation for a high-throughput, area-efficient and low-power solutions is 

described. We argued that even though processor speeds and network band-

widths continue to increase, effective video coding/compression is essential to 

127 
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almost all of the muhimedia consumer apphcations and markets. 

In Chapter 2, we have presented an overview of the latest and state-of-the-

art video coding standard H.264/AVC. Several different functional blocks of 

the video codec are briefly described. The compute-intensive functional units 

within the scope of video coding standard are identified. The state-of-the-art 

high performance designs for these compute-intensive functional units, already 

presented in the literature, are introduced briefly as part of related work. The 

shortcomings of these hardware designs are also highlighted. Subsequently, 

p-VEX reconfigurable, extensible, soft-core V L I W processor as a target hard

ware platform is introduced. The background knowledge for the processor's 

architecture and design is also explained at the end of this chapter in reladon 

with our subsequent proposal for custom operations for video processing. 

In Chapter 3, we a low-power hardware design for deblocking filter core in 

H.264/AVC is presented. As part of opdmization of deblocking fiker algo

rithm, a novel decomposidon of the deblocking filter kernels to reduce the 

number of operadons by more than 5 1 % is proposed. Furthermore, we iden

tified mumally exclusive independent processing units within the optimized 

algorithm and proposed to implement them separately with clock gating. . 

Subsequently, for real-dme video processing apphcadons, we have presented 

a high-throughput, area-efficient, hardware accelerator for the deblocking filter 

in H.264/AVC. The optimizadon techniques employed and proposed hardware 

design provides significantly higher throughput and reduced the on-chip area. 

The proposed design easily provide reakdme filtering operadon for the H D T V 

video format (4096x2304, 16:9) at 30 fps and meet the throughput require

ments of all levels (level 1-5.1) in H.264/AVC video coding standard. 

Similarly, in Chapter 4, a high-performance hardware design for intra-

prediction in H.264/AVC is presented. Again, in order to reduce the complex

ity of the intra-prediction algorithm, optimizations are carried out to lower the 

number of operadons. The opdmization of algorithm for 4 x 4 intra-predicdon 

modes enabled us to reduce the number of addition by 60% when compared 

with that of standard predicdon equadons. Similarly, overlapped data-paths 

for the 4 x 4 ,8x8 , and 16x16 block types also helped to greatly reduce the re

quired on-chip resources for its hardware implementation. With an operating 

frequency of 150 MHz , the proposed intra-predicdon unit can easily meet the 

real-time processing requirement of H D T V video frame formats. 

In Chapter 5, we proposed two soludons for reahzadon of the forward in

teger transform in the processing chain of intra-only frame encoder apphca

tions. The first solution targeted image compression applicadons running on 



9.2. M A I N C O N T R I B U T I O N S 129 

battery-powered electronic devices, such as Digital Stih Camera (DSC). The 

proposed solution utilized a novel 2-D transform to derive the forward integer 

transform coefficients directly f rom that of Hadamard transfonn with signifi

cantly reduced number of operations and, therefore, area and power consump

tion. The second solution targeted video compression apphcations process

ing high-resolution video frames in real-time, such as Digital Video Camera 

(DVC), Television Studio Broadcast and Surveillance video. The proposed 

solution reduced the effective latency penalty of the forward integer trans

form to zero. Moreover, i t aggressively re-used the intermediate results f rom 

Hadamard transform and, therefore, requires significantly reduced number of 

operations and thus less area for its hardware implementation. 

In Chapter 6, we proposed two hardware designs for the inverse integer trans

form in H.264/AVC video codec. The first design is intended for intra-frame 

encoder with reduced latency. The proposed design process the input data 

on-the-fly to produce the inverse transformed data block. A data-driven al

gorithm with variable number of operations is also introduced in this chapter 

The second hardware design, based on the data-driven algorithm, enabled us 

to provide high-throughput and consume significantly less dynamic power for 

its implementation. 

In Chapter 7, we proposed to incorporate a customized functional unit in the 

datapath of reconfigurable, soft-core, V L I W processor. This customized func

tional unit implements apphcation specific custom operadons for the compute 

intensive processing functions in video codec H.264/AVC. More specifically, 

one custom instruction for deblocking filter, two custom operadonss to com

pute the complete predicted 4 x 4 pixel block in intra-predicdon module and 

another three custom operationss for forward/inverse integer transform along 

with Hadamard transform are proposed in this chapter. It is proposed to use 

the optimized algorithms with significantly reduced number of operation for 

the implementadon of these custom operadons in CFU. 

In Chapters, we have presented experimental resuhs for the proposed design 

in previous chapters of this dissertation. A comparison with state-of-the-art is 

also presented in the same chapter. 

9.2 Main Contributions 

The research carried out in the course of this PhD project is published in several 

sciendfic publicadons. This secdon highhghts the main contributions of the 

research work described in this dissertation and are provided as follows: 
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1. In-loop deblocking filter. 

• The complexity of in-loop deblocking filter algorithm is reduced 

by novel decomposition of filter kernels and intra-module opti

mizations. The complexity of the deblocking filter algorithm is 

reduced by more than 51% when compared with that of algorithm 

described in the video coding standard H.264/AVC [Section: 3.2], 

[16]. 

• A low-power hardware design for deblocking filter unit is proposed 

in this dissertation. The proposed design consumes 43 m W dy

namic power on a Xi l inx Virtex I I FPGA and consumes 16.36 / iW, 

when synthesized using 0 .18 /xm CMOS standard cell hbrary. The 

FPGA implementation on Virtex I I can work at 76 MHz, whereas 

the maximum operating frequency for 0.18 fim process technol

ogy is 200 MHz. Experimental results suggest that the dynamic 

power consumption is reduced up to 50%, when compared with 

state-of-the-art designs in literature. [Table:8.2] [17]. 

• For real-time video processing apphcations, a high-throughput, 

area-efficient hardware design, based on the low-power filter unit, 

is proposed. . This design utihzes 2 filter units and, therefore, 

can process input pixels on-the-fly in both horizontal and verti

cal directions. The proposed design provides significantly higher 

throughput (more than 63% when compared with state-of-the-art 

in literature having similar area-cost) and require less on-chip area 

(around 35% when compared with state-of-the-art in literature hav

ing similar throughput) [Table: 8.3] [16]. 

2. Intra-prediction 

• The complexity of intra-prediction algorithm for various intra-

prediction modes is reduced by 27% - 60% in comparison with intra-

prediction algorithm proposed in H.264/AVC video coding stan

dard. A configurable, high-throughput, and area-efficient hardware 

design for intra-prediction unit, based on the reduced complexity 

intra-prediction algorithm, is proposed in this dissertadon. The 

comparison with other state-of-the-art suggests that our proposed 

hardware design provides 50%-75% performance improvement and 

requires only 2 I K gates for its implementation, when synthesized 

under 0.18 / im CMOS standard ceh technology [18]. 
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3. Forward integer transform 

• A transformation, to compute integer-transformed residual block 

f rom Hadamard-transformed residual block in the processing chain 

of H.264/AVC video codec, is proposed in this dissertation. This 

approach reduces the number of addition operations by more than 

507. for reahzation of integer transform in the video codec. The 

comparison with the existing single 4 x 4 forward integer transform 

solutions f rom the literature suggest that the proposed solution pro

vides the minimum latency penalty (4.82ns) among all solutions 

and also requires significantly less area (2 . 6K gates) i n terms of 

equivalent gate count for its hardware implementation. Therefore, 

it provides up to 5 times better performance in terms of through

put/area ratio for the same process technology. [19]. 

• Similarly, a low-latency and area-efficient solution for realization 

of forward integer transform unit in the intra-frame processing 

chain is proposed. With this proposed solution, the effective la

tency penalty for the forward integer transform unit is reduced to 

zero. In additions to zero latency penalty in the intra-frame pro

cessing chain, the proposed solution provides up to 30 times better 

performance in terms of throughput/area ratio. [19]. 

4. Inverse integer transform 

• For inverse integer transform unit, a configurable, low-power hard

ware design is presented in this dissertation. The proposed design 

is based on a data-driven computation algorithm for the inverse in

teger transform. It efficiently exploits the zero-valued coefficients 

in the input blocks to reduce dynamic power consumption. The ex

perimental results show that the proposed design consumes signif

icantly less dynamic power (up to 807, reduction), when compared 

with existing conventional designs for the inverse integer trans

form, with a small area-overhead (approximately 2 K gates) [20] 

[21]. 

5. Custom instructions/processing units for extensible, reconfigurable, 

soft-core V L I W processor (p -VEX) . 

• In this dissertation, we also proposed custom operations for de

blocking filter, intra-prediction and forward/inverse integer trans

fo rm units in H.264/AVC foe a reconfigurable V L f W processor 
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The datapath is based on the optimized algorithms presented in 

this dissertation. The proposed custom operations significantly re

duce the compute time (approximately 407. - 59°/. ) for the corre

sponding compute-intensive functions in H.264/AVC on a recon

figurable, soft-core V L I W processor (p -VEX) . [8.9, 8.11, 8.13]. 

9.3 Problem Statements Revisited 

The answers to the research questions presented in Section 1.3 can, therefore, 

be summarized as follows: 

• How to achieve high-performance and flexible processing in video pro

cessing/compression applications? High-performance in terms of high-

throughput typically comes f rom parallelism in application kernels. 

Similariy, beside high-performance in terms of throughput, the realiza

tion of advanced video coding on battery-powered multimedia electronic 

devices with reduced on-chip area and lower dynamic power, is also 

extremely important. Although parallel processing or high-throughput, 

typically in a module for filtering process of video data, can be achieved 

by duphcating the circuit. However, it doesn't help in other dimensions 

of constraint based design-space of that module. In this dissertation, we 

have demonstrated that an optimized algoiithm with reduced complex

ity is a key to achieve high-performance in terms of throughput, area 

and dynamic power consumption at the same time [Chapters: 3, 4, 5, 

6]. The flexibility to adapt to video coding standard evolutions and mar

ket/technology induced changes can be satisfied by utilizing reconfig

urable fabric. Reconfigurable processors provide the flexibility as wel l 

as performance for the applications that are amenable to acceleration 

with reconfigurable hardware. In this dissertation, we also proposed to 

extend the ISA of extensible, reconfigurable, soft-core V L I W processor 

(p -VEX) with application specific custom operations for various video 

processing units in H.264/AVC video coding standard. This includes 

deblocking filter, intra-prediction and forward/inverse integer transform 

units as weh as Hadamard transform [7]. 

• How to reduce the coding complexity and improve the real-time per

formance without compromising the video cpiality? The video coding 

algorithm defines a detailed implementation outline of a required orig

inal function and, therefore, determines how to solve the problem and 
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how to reduce the original complexity. In order to do an optimal imple

mentation, it is essential to fu l ly understand the principles behind, and 

algorithms employed, in video coding as it is a key to reduce power con

sumption and improve efficiency. In this dissertation, we demonstrated 

that improved throughput and lower dynamic power consumption can 

be achieved at the same time by reducing algorithm complexity, (please 

refer to Section 9.2 for summary of our contributions and supporting 

experimental results). The optimized algorithm with lower number of 

operations not only require less on-chip area for its implementation, the 

target throughput can be achieved at lower clock rate or i n less number 

of cycles. The optimized algorithm with reduced number of operations 

also helps to lower the dynamic power consumption of the processing 

modules. The complexity of the algorithm can be reduced by intra-

module optimization to remove the redundancy in the algorithm itself 

(e.g. deblocking filter and intra-prediction modules), or by inter-module 

optimizations by reusing the previous results (e.g. forward integer trans

form). Similarly, the complexity can also be reduced by considering 

the statisdcal nature of the input signal in the processing module (e.g. 

inverse integer transform module). A n adaptive design to exploit the 

stadsdcal redundancy in the video signal not only helps to carry out 

required processing in reduced number of operations but also helps to 

significantly lower the the dynamic power consumption. 

• How can reconfigurable computing be utilized to improve the flexibil

ity and peiformance for video coding signal processing applications? 

Customizadon of reconfigurable processors is a way forward to improve 

the performance for a moderate cost. In this dissertation, we extended 

the ISA of p -VEX reconfigurable soft-core V L I W processor with appli

cation specific custom operations such as adaptive in-loop deblocking 

filter, intra-predicdon, forward integer transform, inverse integer trans

fo rm and Hadamard transform in H.264/AVC video codec. The cus

tomized modules implemented in the datapath of p - V E X processor, for 

the proposed custom operadons, are based on the optimized algorithms 

for these modules already discussed in the dissertation. Because of the 

reduced number of operations and extensive parallel processing in the 

proposed custom operations for video processing, it not only signifi

cantly reduces the required number of cycles at the cost of slight in

crease in hardware resources but can potentially reduce the dynamic 

power consumption as well (please refer to Secdon 9.2 for summary 

of our contributions and supporting experimental results). 
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9.4 Future Directions 

This section provides future research directions and improvements to the work 

presented in this dissertation: 

This dissertation focused on several compute-intensive processing functions 

in FI.264/AVC video codec and proposed low-power, area-efficient and high-

throughput hardware designs. The algorithms for these compute-intensive 

functions were optimized to reduce algorithm complexity in terms of num

ber of arithmetic operations for their implementation. Similar efforts can be 

made for video pre-, and post-processing chain. Moreover, the proposed con

cepts can be further extended for the image processing algorithms and also for 

the upcoming video coding standard H.265. 

In this dissertadon, we targeted to reduce the power consumpdon at mod

ule/algorithm level. However, there is a need to deal with the power-related 

issues at all abstracdon levels (process technology, module/processor design, 

and application levels). 

Custom operations for reconfigurable soft-core processor were proposed in this 

dissertadon. These custom operations and datapaths were designed manually, 

which is time consuming. This process need to be automated by designing 

new tools similar to that used in ASIP. Similarly, low-power optimizadons, 

intelligent algorithms and transformation techniques need to be investigated 

for automated design of efficient datapaths. 

In Chapter 3, we proposed a hardware design for deblocking filter based on 

double filter units. Two edges (horizontal and vertical edges) are processed 

simultaneously and, the proposed design can meet the throughput requirement 

for H.264/AVC video codec up to level 5.1. For even higher throughput. The 

proposed design can be extended by employing more filter units to process all 

horizontal/vertical edges at 4 x 4 , 8 x 4 or 1 6 x 4 pixels block level to reduce 

the number of filtering cycles per macroblock at the cost of additional on-chip 

area. 

In Chapter 4, a design for intra-prediction module is presented. In video codec, 

the M B is either encoded in intra or inter-encoding mode. Both of these modes 

are mutually exclusive. Moreover, the structure of intra-prediction filter ker

nels and SAD computation are similar Therefore, the same hardware re

sources can be efficiently utilized by reusing them for SAD computation in 

case of inter encoding mode of a M B . 

In this dissertation, we proposed hardware designs for different compute-
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intensive modules in H.264/AVC. We plan to design other modules such as 

CAVLC/CABAC and integrate them all to implement complete video codec. 





Bibliography 

[1] J. Meehan, S. Busch, J. Noel, and F. Noraz. Multimedia IP Architecture 

Trends in the Mobile Multimedia Consumer Device. Image Communi

cation., 25(5):317-324, June 2010. 

[2] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of 

the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits 

and Systems for Video Technology, 13(7):560-576, j u ly 2003. 

[3] Yen-Kuang Chen and S. Y. Kung. Trend and Challenge on System-on-

a-Chip Designs. Journal of Signal Processing and System, 53(1-2):217-

229, November 2008. 

[4] Yen-Kuang Chen, Eric Q. L i , Xiaosong Zhou, and Steven Ge. Im

plementation of H.264 Encoder and Decoder on Personal Computers. 

Journal of Visual Communication and Image Representation, 17(2):509 

- 532, 2006. 

[5] S. Donggyu. High Efficiency Video Coding(HEVC). uri-

http://goo.gl/U29qll. 

[6] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast 

Update,2012-2117. h t t p : / / g o o . g l / 0 4 Z 3 V W , 2013. 

[7] Advanced Video Coding for Generic Audiovisual Services, 2005. 

[8] J. Ostermann, J. Bormans, P. List, D. Marpe, M . Narroschke, F. Pereira, 

T. Stockhammer, and T. Wedi. Video Coding with H.264/AVC:Ttools, 

Performance, and Complexity. IEEE Magazine on Circuits and Systems, 

4(1):7 - 28, quarter 2004. 

[9] K. ; Salmimaa M . ; Hallapuro A.; Lainema J. Willner, K. ; Ugur. Mobile 

3D Video Using M V C and N800 Internet Tablet. In 3DTV Conference: 

The True Vision - Capture, Transmission and Display of 3D Video, pages 

69-72, 2008. 

[10] U.J. Kapasi, S. Rixner, W.J. Dally, B. Khailany, J.H. Ahn, P Matt-

son, and J.D. Owens. Programmable Stream Processors. Computer, 

36(8):54-62, Aug. 2003. 

[11] Shuai Hu, Zhe Zhang, Mengsu Zhang, and Tao Sheng. Optimization of 

Memory Allocation for H.264 Video Decoder on Digital Signal Proces

sors. In Image and Signal Processing, 2008. CISP '08. Congress on, 

volume 2, pages 71-75, May. 

137 



138 B I B L I O G R A P H Y 

[12] G. R. Stewart. Implementing Video Compression Algorithms on Re

configurable Devices, June. 2009. 

[13] K. Diefendorff and RK. Dubey. How multimedia workloads w i l l change 

processor design. Computer. 

[14] R Faraboschi, G. Brown, J. Fisher, G. Desoll, and F. Homewood. Lx: 

A Technology Platform for Customizable V L I W Embedded Processing. 

In International Symposium on Computer Architecture, pages 203-213, 

lune. 

[15] P. Faraboschi J. Fisher and C. Young. Embedded Computing: A V L I W 

Approach to Architecture, Compilers and Tools., 2004. 

[16] M . Nadeem, S. Wong, G. Kuzmanov, and A. Shabbir A High-

throughput, Area-efficient Hardware Accelerator for Adaptive Deblock

ing Filter in H.264/AVC. In lEEE/ACM/IFIP 7th Workshop on Embed

ded Systems for Real-Time Multimedia (ESTIMedia), pages 18-27, Oct. 

2009. 

[17] M . Nadeem, S. Wong, G. Kuzmanov, A . Shabbir, M.F. Nadeem, 

and F. Anjam. Low-power, High-throughput Deblocking Filter for 

H.264/AVC. In International Symposium on System on Chip (SoC), 

pages 93-98, Sept. 2010. 

[18] M . Nadeem, S. Wong, and G. Kuzmanov. A n Efficient Hardware Design 

for Intra-prediction in H.264/AVC Decoder, year=2011, month=Apr, 

pages=l-6,. In Saudi International Electronics, Comnumications and 

Photonics Conference (SIECPC). 

[19] M . Nadeem, S. Wong, and G. Kuzmanov. An Efficient Realization 

of Forward Integer Transform in H.264/AVC Intra-frame Encoder. In 

International Conference on Embedded Computer Systems (SAMOS), 

pages 71-78, ju ly 2010. 

[20] Muhammad Nadeem, Stephan Wong, and Georgi Kuzmanov. Con

figurable, Low-power Design for Inverse Integer Transfonn in 

H.264/AVC. In International Conference on Frontiers of Information 

Technology (IFIT), pages 32:1-32:5. A C M , 2010. 

[21] M . Nadeem, S. Wong, and G. Kuzmanov. Inverse Integer Transform in 

H.264/AVC Intra-frame Encoder. In IEEE International Symposium on 

Electronic Design, Test and Application (DELTA), pages 228-233, Jan. 

2011. 



B I B L I O G R A P H Y 139 

[22] H.S. Malvar, A . Hallapuro, M . Karczewicz, and L . Kerofsky. Low-

complexity Transform and Quantization in H.264/AVC. IEEE Transac

tions on Circuits and Systems for Video Technology, 13(7):598 - 603, 

July 2003. 

[23] D. Marpe, H . Schwarz, and T. Wiegand. Context-based Adaptive B i 

nary Arithmetic Coding in the H.264/AVC Video Compression Stan

dard. IEEE Transactions on Circuits and Systems for Video Technology, 

13(7):620-636, July. 

[24] P. List, A . Joch, J. Lainema, G. Bjontegaard, and M . Karczewicz. Adap

tive deblocking filter. IEEE Transactions on Circuits and Systems for 

Video Technology, 13(7):614-619, July 2003. 

[25] P. Benzie, J. Watson, R Surman, I . Rakkolainen, K. Hopf, H . Urey, 

V. Sainov, and C. von Kopylow. A Survey of 3DTV Displays: Tech

niques and Technologies. IEEE Transactions on Circuits and Systems 

for Video Technology, 17(11): 1647 -1658, nov. 2007. 

[26] Bin Sheng, Wen Gao, and D i Wu. An Implemented Architecture of De

blocking Filter for H.264/AVC. In International Conference on Image 

Processing (ICIP), volume 1, pages 665-668, Oct 2004. 

[27] Chung-Ming Chen and Chung-Ho Chen. A Memory Efficient Architec

ture for Deblocking Filter in H.264 Using Vertical Processing Order. In 

International Conference on Intelligent Sensors, Sensor Networks and 

Information Processing, pages 361-366, Dec. 2005. 

[28] Chung-Ming Chen and Chung-Ho Chen. Configurable V L S I Architec

ture for Deblocking Filter in H.264/AVC. IEEE Transactions on Veiy 

Large Scale Integration (VLSI) Systems, 16(8): 1072-1082, Aug. 2008. 

[29] Qing Chen, Wei Zheng, Jian Fang, Kai Luo, Bing Shi, Ming Zhang, 

and Xianmin Zhang. A Pipehned Hardware Architecture of Deblocking 

Filter in H.264/AVC, booktitle = Intemational Conference on Commu

nications and Networking in China (ChinaCom), year - 2008, pages = 

815—819, months Aug.,. 

[30] C. M . Cheng and C. H . Chen. A Memory Efficient Architecture for 

Deblocking Filter in H.264 Using Vertical Processing Order In IEEE 

International Conference on InteUigent Sensors, Sensor Networks. In

formation Process, pages 361-366, 2005. 



140 B I B L I O G R A P H Y 

[31] Chao-Chung Cheng and Tian-Sheuan Chang. A n Hardware Efficient 

Deblocking Filter for H.264/AVC. In International Conference on Con

sumer Electronics, ICCE. 2005 Digest of Technical Papers, pages 235¬

236,Jan. 2005. 

[32] Chao-Chung Cheng, Tian-Sheuan Chang, and Kun-Bin Lee. A n In-

place Architecture for the Deblocking Filter in H.264/AVC, journal -

IEEE Transactions on Circuits and Systems I I : Express Briefs,, year = 

2006, volume = 53, pages - 530-534, number = 7, month - July, issn 

= 1549-7747. 

[33] Heng-Yao L i n , Jwu-Jin Yang, Bin-Da L iu , and Jar-Ferr Yang. Efficient 

Deblocking Filter ArchitecUire for H.264 Video Coders. In IEEE Inter

national Symposium on Circuits and Systems (ISCAS), page 4 pp. May 

2006. 

[34] G. Khurana, A . A . Kassim, Tien Ping Chua, and M . B . M i . A Pipelined 

Hardware Implementation of In-loop Deblocking Filter in H.264/AVC. 

IEEE Transactions on Consumer Electronics, 52(2):536-540, May 

2006. 

[35] Sung Deuk K i m , Jaeyoun Y i , Hyun Mun K i m , and Jong Beom Ra. 

A Deblocking Filter With Two Separate Modes in Block-based Video 

Coding. IEEE Transactions on Circuits and Systems for Video Teclmol

ogy, 9(1): 156-60, Feb 1999. 

[36] Byung-Joo K i m , Jae-Il Koo, Min-Cheol Hong, and Seongsoo Lee. Low-

Power H.264 Deblocking Fiher Algorithm and hs SoC Implementadon. 

In Long-Wen Chang and Wen-Nung Lie, editors. Advances in Image 

and Video Technology, volume 4319 of Lecture Notes in Computer Sci

ence, pages 771-779. Springer Beriin / Heidelberg, 2006. 

[37] Kyeong-Yuk M i n and Jong-Wha Chong. A Memory and Performance 

Optimized Architecture of Deblocking Filter in H.264/AVC. In Interna

tional Conference on Multimedia and Ubiquitous Engineering (MUE), 

pages 220-225, Apr i l 2007. 

[38] S.Goto L . L i and and T. Ikenaga. A Highly ParaUel Architecture for 

Deblocking Filter in H.264/AVC. lEICE Transactions on Information 

and Systems, E88-D(7):1623 -1629, 2005. 

[39] Lingfeng L i , Satoshi Goto, and Takeshi Ikenaga. A n Efficient De

blocking Filter Architecture with 2-dimensional Parallel Memory for 



B I B L I O G R A P H Y 141 

H.264/AVC. In Proceedings ofthe 2005 Asia and South Pacific Design 

Automation Conference, pages 623-626. A C M , 2005. 

[40] Tsu-Ming Liu , Wen-Ping Lee, Ting-An L in , and Chen-Yi Lee. A 

Memoiy-efficient Deblocking Filter for H.264/AVC Video Coding. In 

IEEE International Symposium on Circuits and Systems, ISCAS 2005, 

volume 3, pages 2140-2143, May 2005. 

[41] Tsu-Ming L iu , Wen-Ping Lee, and Chen-Yi Lee. An In/Post-Loop De

blocking Filter With Hybrid Filtering Schedule. IEEE Transactions on 

Circuits and Systems for Video Technology, 17(7):937-943, July 2007. 

[42] Miao Sima, Yuanhua Zhou, and Wei Zhang. A n Efficient Architecture 

for Adaptive Deblocking Filter of H.264/AVC Video Coding. IEEE 

Transactions on Consumer Electronics, 50(l):292-296, Feb 2004. 

[43] NamThang Ta, JinSeon Youn, HuiGon K i m , JunRim Choi, and Seung-

Soo Han. Low-power High-throughput Deblocking Filter Architecture 

for H.264/AVC. In International Conference on Electronic Computer 

Technology, pages 627-631, Feb. 2009. 

[44] M . Pariak and I . Hamzaoglu. A Low Power Implementadon of H.264 

Adaptive Deblocking Filter Algorithm. In NASA/ESA Conference on 

Adaptive Hardware and Systems, pages 127-133, Aug. 2007. 

[45] M . Pariak and I . Hamzaoglu. Low power H.264 deblocking Filter Hard

ware Implementations. IEEE Transactions on Consumer Electronics, 

54(2):808-816, May 2008. 

[46] Shen-Yu Shih, Cheng-Ru Chang, and Youn-Long L in . A Near Opdmal 

Deblocking Filter for H.264 Advanced Video Coding. In As/a and South 

Pacific Conference on Design Automation, pages 170-175., jan. 2006. 

[47] W.T. Staehler, E.A. Berriel, A . A . Susin, and S. Bampi. Architecture 

of an H D T V Intraframe Predictor for a H.264 Decoder In Interna

tional Conference on Veiy Large Scale Integration (IFIP), pages 228¬

233, Oct. 2006. 

[48] F. Tobajas, G.M. Callico, PA. Perez, V. de Armas, and R. Sarmiento. 

A n Efficient Double-Filter Hardware Architecture for H.264/AVC De

blocking Filtering. IEEE Transactions on Consumer Electronics, 

54(1): 131-139, Feb. 2008. 



142 B I B L I O G R A P H Y 

[49] J. Webb. Video deblocking filter, Feb 2003. 

[50] Ke X u and Chiu-Sing Choy. A Five-Stage Pipeline, 204 Cycles/MB, 

Single-Port SRAM-Based Deblocking Filter for H.264/AVC. IEEE 

Transactions on Circuits and Systems for Video Technology, 18(3):363-

374, Mar 2008. 

[51] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-Chih Wang, Te-Hao 

Chang, and Liang-Gee Chen. Architecture Design for Deblocking Filter 

in H.264/JVT/AVC. In International Conference on Multimedia arid 

Expo (ICME), volume 1, pages 1-693-6, lu ly 2003. 

[52] G. Zheng and L . Yu. A n Efficient Architecture Design for Deblocking 

Loop Filte. In Picture Coding Symposium, 2004. 

[53] S. Krishnan V. Venkatraman and N . Ling. Architecture for De-blocking 

Filter in H.264. In Picture Coding Symposium, 2004. 

[54] K .K . Pang and T.K. Tan. Optimum Loop Filter in Hybrid Coders. IEEE 

Transactions on Circuits and Systems for Video Technology, 4(2): 158¬

167, Apr 1994. 

[55] Yung-Lyul Lee and HyunWook Park. Loop Filtering and 

Post-filtering for Low-bit-rates Moving Picture Coding, jour

nal = Signal Processing: Image Communication, year ~ 

2001, volume = 16, pages = 871-890, number = 9, doi = 

I0.1016/S0923-5965(00)00048-5, issn = 0923-5965, url = 

http://www.sciencedirect.com/science/article/pii/S0923596500000485. 

[56] Shih-Chien Chang, Wen-Hsiao Peng, Shih-Hao Wang, and Tihao Chi

ang. A Platform Based Bbus-interleaved Architecture for De-blocking 

Filter in H.264/MPEG-4 AVC, joumal = IEEE Transactions on Con

sumer Electronics, year = 2005, volume = 51, pages = 249—255, num¬

ber = 1, month = Feb., doi = 10.1109/TCE.2005.1405728, issn = 0098¬

3063. 

[57] Fangwen Fu, Xinggang L in , and Lidong Xu. Fast Intra Prediction Algo

rithm in H.264-AVC, year=2004, month=Aug, volume=2, pages=l 1 9 1 -

1194 volume = 2,. In International Conference on Signal Processing 

(ICSP). 



B I B L I O G R A P H Y 143 

[58] Chao-Chung Cheng and Tian-Sheuan Chang. Fast Three Step Intra Pre

diction Algorithm for 4x4 Blocks in H.264. In IEEE Intemational Sym

posium on Circuits and Systems (ISCAS), volume 2, pages 1509-512, 

May 2005. 

[59] Chao-Hsuing Tseng, Hung-Ming Wang, and lar-Ferr Yang. Enhanced 

Intra-4 x4 Mode Decision for H.264/AVC Coders. IEEE Transactions 

on Circuits and Systems for Video Technology, 16(8): 1027-1032, Aug 

2006. 

[60] Jhing-Fa Wang, lia-Ching Wang, Jang-Ting Chen, An-Chao Tsai, 

and A . Paul. A Novel Fast Algorithm for Intra Mode Decision in 

H.264/AVC Encoders. In IEEE Intemational Symposium on Circuits 

and Systems (ISCAS), page 4 pp.. May 2006. 

[61] Jia-Ching Wang, Jhing-Fa Wang, Jar-Ferr Yang, and Jang-Ting Chen. 

A Fast Mode Decision Algorithm and Its V L S I Design for H.264/AVC 

Intra-Prediction. IEEE Transactions on Circuits and Systems for Video 

Technology, 17(10):1414-1422, Oct 2007. 

[62] Byeongdu La, Minyoung Eom, and Yoonsik Choe. Fast Mode Decision 

for Intra Prediction in H.264/AVC Encoder. In IEEE International Con

ference on Image Processing (ICIP), volume 5, pages 321-324, Sept 

2007. 

[63] An-Chao Tsai, A . Paul, Jia-Ching Wang, and Jhing-Fa Wang. Intensity 

Gradient Technique for Efhcient Intra-Prediction in H.264/AVC. IEEE 

Transactions on Circuits and Systems for Video Teclmology, 18(5):694-

698, May 2008. 

[64] Yan Ye and M . Karczewicz. Improved h.264 intra coding based on b i 

directional intra predicdon, direcdonal transfonn, and adaptive coeffi

cient scanning. In IEEE Intemational Conference on Image Processing 

(ICIP), pages 2116-2119, Oct 2008. 

[65] X u n He, Dajiang Zhou, Jinjia Zhou, and S. Goto. A New Architecture 

for High Performance Intra Prediction in H.264 Decoder In Interna

tional Symposium on InteUigent Signal Processing and Communication 

Systems (ISPACS), pages 41-44, Jan. 2009. 

[66] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee 

Chen. Analysis, Fast Algorithm, and V L S I Architecture Design for 



144 B I B L I O G R A P H Y 

H.264/AVC Intra Frame Coder. IEEE Transactions on Circuits and Sys

tems for Video Technology, 15(3):378 - 401, March 2005. 

[67] Genhua Jin and Hyuk-Jae Lee. A Parallel and Pipelined Execution 

of H.264/AVC Intra Prediction. In IEEE International Conference on 

Computer and Information Technology (CIT), page 246, Sept. 2006. 

[68] Chun-Wei Ku, Chao-Chung Cheng, Guo-Shiuan Yu, Min-Chi Tsai, and 

Tian-Sheuan Chang. A High-Definition H.264/AVC Intra-Frame Codec 

IP for Dighal Video and Sdh Camera Applications. IEEE Transactions 

on Circuits and Systems for Video Technology, 16(8):917-928, Aug. 

2006. 

[69] D. Marpe, V. George, H . L . cycon, and K. U . Barthel. Performance 

Evaluation of Motion-JPEG2000 in Comparison with H.264/AVC Op

erated in Pure Intra Coding Mode, volume 13, pages 129-137, 2003. 

[70] E. Sahin and I . Hamzaoglu. A n Efficient Hardware Architecture for 

H.264 Intra Prediction Algorithm. In Design, Automation Test in Europe 

Conference Exhibition, 2007. DATE '07, pages 1-6, Apr i l 2007. 

[71] E. Sahin and I . Hamzaoglu. A n Efficient Intra Prediction Hardware 

Architecture for H.264 Video Decoding. In Euromicro Conference on 

Digital System Design Architectures, Methods and Tools (DSD), pages 

448-454, Aug. 2007. 

[72] M . Shafique, L . Bauer, and J. Henkel. A Parallel Approach for High 

Performance Hardware Design of Intra Prediction in H.264/AVC Video 

Codec. In Design, Automation Test in Europe Conference Exhibition 

(DATE), pages 1434-1439, A p r i l 2009. 

[73] X i Wang, Xiaoxin Cui, and Dunshan Yu. A parallel Intra prediction 

Architecture for H.264 Video Decoding. In IEEE International Confer

ence on ASIC (ASICON), pages 859-862, Oct. 2009. 

[74] G. Raja, S. Khan, and M.J. Mirza. V L S I Architecture and Implemen

tation of H.264 Integer Transform. In International Conference on Mi

croelectronics (ICM), pages 218-223, Dec 2005. 

[75] Hanh Wang, Sam Kwong, and Chi-Wah Kok. Efficient Prediction Algo

rithm of Integer DCT Coefficients for H.264/AVC Optimization. IEEE 

Transactions on. Circuits and Systems for Video Technology, 16(4):547-

552, Apr i l 2006. 



B I B L I O G R A P H Y 145 

[76] Ji Xiuhua, Zhang Caiining, and Wang Yanling. Fast Algorithm of the 

2-D 4x4 Inverse Integer Transform for H.264/AVC. In International 

Conference on Innovative Computing, Information and Control, pages 

144-144, Sept 2007. 

[77] N . T Ngo, T T T Do, T M . Le, Y. S. Kadam, and A. Beimak. 

ASIP-controUed Inverse Integer Transform for H.264/AVC Compres

sion. In lEEE/IFIP International Symposium on Rapid System Proto

typing, pages 158-164, June 2008. 

[78] T.T.T. Do and T .M. Le. High throughput Area-efficient SoC-based For

ward/Inverse Integer Transforms for H.264/AVC. In IEEE International 

Symposium on Circuits and Systems (ISCAS), pages 4113-4116, May 

2010. 

[79] Chih-Peng Fan. Fast 2-dimensional 4x4 Forward Integer Transform I m 

plementation for H.264/AVC. IEEE Transactions on Circuits and Sys

tems, 53(3): 174-177, March 2006. 

[80] Chih-Peng Fan. Cost-Effective Hardware Sharing Architectures of Fast 

8x8 and 4x4 hiteger Transforms for H.264/AVC. In IEEE Asia Pacific 

Conference on Circuits and Systems (APCCAS), pages 776-779, Dec. 

2006. 

[81] Chih-Peng Fan and Yu-Lian L i n . Implementations of Low-Cost Hard

ware Sharing Architectures for Fast 8x8 and 4x4 Integer Transforms 

in H.264/AVC. lEICE Transactions on Fundam. Electron. Commun. 

Comput. Sci., E90-A(2):511-516, February 2007. 

[82] L i u Ling-zhi, Qiu L i n , Rong Meng-tian, and Jiang L i . A 2-D For

ward/Inverse Integer Transform Processor of H.264 Based on Highly-

parallel Architecture. In IEEE International Workshop on System-on-

Chip for Real-Time Applications, pages 158-161, lu ly 2004. 

[83] Yi-Chih Chao, Hui-Hsien Tsai, Yu-Hsiu L in , lar-Ferr Yang, and Bin-Da 

L i u . A Novel Design for Computation of A l l Transforms in H.264/AVC 

Decoders. In IEEE International Conference on Multimedia and Expo., 

pages 1914-1917,July 2007. 

[84] Bing Shi, Wei Zheng, Dongxiao L i , and Ming Zhang. Fast Algori thm 

and ArchhecUire Design for H.264/AVC Muldple Transforms. In IEEE 

International Conference on Multimedia and Expo, pages 2086-2089, 

July 2007. 



146 B I B L I O G R A P H Y 

[85] Grzegorz Pastuszak. Transforms and Quantization in the High-

Throughput H.264/AVC Encoder Based on Advanced Mode Selection. 

In IEEE Computer Society Anmial Symposium on VLSI (ISVLSI), pages 

203-208, A p r i l 2008. 

[86] Honggang Qi, Qingming Huang, and Wen Gao. A Low-Cost Very 

Large Scale Integration Architecture for Multistandard Inverse Trans

form. IEEE Transactions on Circuits and Systems, 57(7):551-555, July 

2010. 

[87] Kuan-Hung Chen, Jiun-In Guo, Kuo-Chuan Chao, Jinn-Shyan Wang, 

and Yuan-Sun Chu. A High-performance Low Power Direct 2-D Trans

form Coding IP Design for MPEG-4 AVC/H.264 With a SwitchingP-

power Suppression Technique. In IEEE VLSI-TSA International Sym

posium on VLSI Design, Automation and Test (VLSI-TSA-DAT), pages 

291-294, Apr i l 2005. 

[88] Kuan-Hung Chen, Jiun-In Guo, and Jinn-Shyan Wang. A High-

performance Direct 2-D Transform Coding IP Design for MPEG-4 

AVC/H.264. IEEE Transactions on Circuits and Systems for Video Tech

nology, 16(4):472- 483, Apr i l 2006. 

[89] Zhan-Yuan Cheng, Che-Hong Chen, Bin-Da Liu , and Jar-Ferr Yang. 

High throughput 2-D Transform Architectures for H.264 Advanced 

Video Coders. In IEEE Asia-Pacific Conference on Circuits and Sys

tems, volume 2, pages 1141-1144, dec. 2004. 

[90] Chong-Yu Huang, Lien-Fei Chen, and Yeong-Kang Lai. A High-speed 

2-D Transfonn Architecture with Unique Kernel for Multi-standard 

Video Applications. In IEEE International Symposium on Circuits and 

Systems (ISCAS), pages 21-24, May 2008. 

[91] Woong Hwangbo, Jaemoon K i m , and Chong-Min Kyung. A High¬

Performance 2-D Inverse Transform Architecture for the H.264/AVC 

Decoder. In IEEE International Symposium on Circuits and Systems 

(ISCAS), pages 1613 -1616, May 2007. 

[92] Heng-Yao L in , Yi-Chih Chao, Che-Hong Chen, Bin-Da L iu , and Jar-

Fen Yang. Combined 2-D Transform and Quantization Architectures 

for H.264 Video Coders. In IEEE International Symposium on Circints 

and Systems (ISCAS), volume 2, pages 1802-1805, May 2005. 



B I B L I O G R A P H Y 147 

[93] Tu-Chih Wang, Yu-Wen Huang, Hung-Chi Fang, and Liang-Gee Chen. 

Parallel 4x4 2D Transform and Inverse Transform Architecture for 

MPEG-4 AVC/H.264. In International Symposium on Circuits and Sys

tems (ISCAS), volume 2, pages 800-803, may 2003. 

[94] Woong Hwangbo and Chong-Min Kyung. A Multitransform Architec

ture for H.264/AVC High-Profile Coders. IEEE Transactions on Multi

media, 12(3):157-167, Apr i l 2010. 

[95] R.C. Kordasiewicz and S. Shirani. ASIC and FPGA Implementations 

of H.264 DCT and Quantization Blocks. In IEEE International Con

ference on Image Processing (ICIP), volume 3, pages 1020-1023, Sept. 

2005. 

[96] M . Horowhz, A. Joch, F. Kossentini, and A . HaUapuro. H.264/AVC 

Basehne Profile Decoder Complexity Analysis, journal = IEEE Trans

actions on Circuits and Systems for Video Technology , year = 2003, 

volume = 13, pages = 704-716, number = 7, month = ju ly , doi = 

10.1109/TCSVL2003.814967, issn = 1051-8215. 

[97] M . Shafique, L . Bauer, and J. Henkel. A n Optimized Apphcation Ar

chitecture of the H.264 Video Encoder for Application Specific Plat

forms. In lEEE/ACM/IFIP Workshop on Embedded Systems for Real-

Time Multimedia (ESTIMedia), pages 119-124, Oct. 2007. 

[98] G. L . Foresü, P. Mahonen, and C. S. Regazzoni. Multimedia Video-

Based Sun'eillance Systems: Requirements, Issues and Solutions. 

Kluwer Academic, 2000. 

[99] Joint Video Team. H.264/AVC Reference Software JM 13.2, 2003. 

[100] Internadonal Technology Roadmap for Semiconductors, h t t p : / / 

www . i t r s . net/, 2010. 

[101] Hewlett-Packard Laboratories. V E X Toolchain. http://www.hpl. 

hp.com/downloads/vex/. 





List of Publications 

International Conferences/Workshops 

1. M . Nadeem, S. Wong, G. Kuzmanov, A. Shabbir, A High-throughput, 

Area-efficient Hardware Accelerator for Adaptive Deblocking Filter 

in H.264/AVC, In Proceedings of IEEE Worlcshop for Embedded 

Systems for Real-Time Multimedia (ESTIMedia), pp. 18-27, Grenoble, 

France, October 2009. citations^: 7 

2. M . Nadeem, S. Wong, G. Kuzmanov, A . Shabbir, M . F. Nadeem, 

Low-power, High-throughput Deblocking Filter for H.264/AVC, In 

Proceedings of International Symposium on System-on-Chip (SoC), pp. 

93-98, Tampere, Finland, September 2010. citations': 4 

3. M . Nadeem, S. Wong, G. Kuzmanov, An Efficient Realization of 

Forward Integer Transform in H.264/AVC Intra-frame Encoder, In 

Proceedings of International Symposium on Systems, Architectures, 

Modeling, and Simulation (SAMOS X ) , pp. 71-78, Samos, Greece, 

July 2010. citations': I I 

4. M . Nadeem, S. Wong, G. Kuzmanov, Configurable, Low-power 

Design for Inverse Integer Transform in H.264/AVC, In Proceedings 

of International Conference on Frontiers of Information Technology 

(FIT), pp. 32:1-32:5, Islamabad, Pakistan, December 2010. citations': 0 

5. M . Nadeem, S. Wong, G. Kuzmanov, Inverse Integer Transform 

in H.264/AVC Intra-frame Encoder, In Proceedings of International 

Symposium on Electronic Design, Test and Application (DELTA), pp. 

228-233, Queenstown, New Zealand, January 2011. citations': 1 

6. M . Nadeem, S. Wong, G. Kuzmanov, An Efficient Hardware Design 

for Intra-prediction in H.264/AVC Decoder, In Proceedings of Inter

national Conference on Electronics, Communications and Photonics 

(SIECPC), pp. 228-233, Riyadh, Saudi Arabia, Apr i l 2011. citations': 2 

'citation based on 'Google Scholar' as of 2014/05/06 

149 



150 L I S T OF P U B L I C A T I O N S 

International Journals 

1. M . Nadeem, S. Wong, G. Kuzmanov, K . L . M . Bertels, Low-complexity, 

Content-adaptive Design for In-loop Deblocking Filter in H.264/AVC, 

to be submitted. 

2. M . Nadeem, S. Wong, G. Kuzmanov, K . L . M . Bertels, On Realization 

of 2-D Transforms in H.264/AVC Video Codec, to be submitted. 

Patents 

1. S. M . Ziauddin, Imran ul-Haq, M . Nadeem, M . Shafique, Methods and 

Systems for Providing Low Cost Robust Operational Control for Video 

Encoders, Pubhcadon Date: September 6th, 2007; Patent Pubhcadon 

No. US-2007-0206674-A1. 

Non-related Publications 

1. F Anjam, M . Nadeem, S. Wong, Targeting Code Diversity with Run

time Adjustable Issue-slots in a Chip Multiprocessor, In Proceedings 

of the International Conference on Design, Automation & Test in 

Europe Conference & Exhibidon (DATE), pp. 1358-1363, Grenoble, 

France, March 2011 

2. F Anjam, M . Nadeem, S. Wong, A VLIW Softcore Processor with 

Dynamically Adjustable Issue-slots, In Proceedings of the Intemational 

Conference on Field Programmable Technology (FPT), pp. 393-398, 

Beijing, China, December 2010 

3. M . F. Nadeem, M . Nadeem, S. Wong, On Virtualization of Recon

figurable Hardware in Distributed Systems, In Proceedings of the 

Internadonal Conference on Parallel Processing (ICPP), , pp. 348-356, 

Pittsburgh, USA, September 201 I Z 

4. M . R Nadeem, S. A . Ostadzadeh, M . Nadeem, S. Wong, K. L . M . 

Bertels, A Simulation Framework for Reconfigurable Processors in 

Large-scale Distributed Systems, In Proceedings of the Intemational 

Conference on Parallel Processing (ICPP), , pp. 348-356, Taipei City, 

Taiwan, September 2011 



L I S T OF P U B L I C A T I O N S 151 

5. M . F. Nadeem, S. A. Ostadzadeh, M . Nadeem, M . Ahmadi, S. Wong, 

A Novel Dynamic Task Scheduling Algorithm for Grid Networks 

with Reconfigurable Processors, In Proceedings of HiPEAC Workshop 

on Reconfigurable Computing (WRC), Heraklion, Greece, January 2011 

6. M . F. Nadeem, M . Ahmadi, M . Nadeem, S. Wong, Modeling and 

Simulation of Reconfigurable Processors in Grid Networks, In Pro

ceedings of Internadonal Conference on ReConFigurable Computing 

and FPGAs (ReConFig), pp. 226-231, Cancun, Mexico, December 2010 

7. Z. Nawaz, M . Nadeem, J. van Someren, K. L . M . Bertels, A Parallel 

FPGA Design of the Smith-Waterman Traceback, In Proceedings 

of the Internadonal Conference on Field Programmable Technology 

(FPT), Beijing, China, December 2010 



L I S T OF P U B L I C A T I O N S 



P R O P O S I T I O N S 153 

Propositions 
accompanying the PhD dissertation 

Adaptive, Low-power Architectures for Embedded Multimedia Systems 

with focus on H.264/AVC video codec 

by Muhammad Nadeem 

1. Optimized algorithms with reduced complexity is the key to achieve 

high performance in terms of throughput, on-chip area, and power con

sumpdon in embedded systems. [This thesis] 

2. Low-power solutions at the cost of reduced performance or quahty are 

counterproductive. [This thesis] 

3. Reconfigurable processors along with apphcation-specific units provide 

the needed flexibility and performance in energy-constrained embedded 

systems. [This thesis] 

4. Human creativity is nothing but a mapping of a problem-space to a 

solution-space. 

5. Ideas without a thought to implementation are of little use. 

6. Eor a nation to make progress, moral values and posidve attitudes are far 

more important than anything else. 

7. Distress is the difference between two wills: ours and that of God's. 

[Anonymous] 

8. The number of revisions of a PhD draft thesis are directly proportional 

to the number of visits to the supervisor. 

9. Dreams are a pre-requisite for a PhD. I f you do, then all you need is a 

supervisor to wake you up and ask you to make it a reality. 

10. No matter what rehgion you practice, you 'h find a worship place of your 

preference in Netherlands. This is not only because the Dutch people are 

tolerant but mostly because they have a different opinion on everything. 

These propositions are regarded as opposable aud defendable, and Iiave been approved as such by the 
promoter, Prof.dr K.L.M. Bertels. 
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Stellingen 
behorende bij het proefschrift 

Adaptive, Low-power Architectures for Embedded Multimedia Systems 

with focus on H.264/AVC video codec 

door Muhammad Nadeem 

1. Geoptimaliseerde algoritmen door gereduceerde complexiteit is de sleu

tel tot het realiseren van high peiformance in termen van throughput, on-

chip oppervlakte, en het energieverbmik in embedded systemen [Deze 

dissertatie] 

2. Low-power oplossingen die ten koste gaan van prestatie of kwaliteit zi jn 

contraproductief [Deze dissertatie] 

3. Herconfigureerbare processoren leveren samen met applicatie-specifieke 

units de benodigde flexibiliteit en prestaties in energie-begrensde em

bedded systemen. [Deze dissertatie] 

4. Menselijke creativiteit is niets anders dan het afbeelden van een prob

leemruimte naar een oplossingsruimte. 

5. Ideeën zonder gedachte te hebben aan implementatie zijn van weinig 

nut. 

6. Om als volk vooruitgang te boeken zi jn morele waarden en positieve 

opvattingen veel belangrijker dan wat dan ook. 

7. Benardheid is het verschil tussen twee wensen: de onze en die van God. 

[Anoniem] 

8. Het aantal revisies van een doctoraal concept proefschrift zi jn recht 

evenredig met het aantal bezoeken aan de supervisor. 

9. Dromen zijn vereist voor een PhD. Als je dat doet, dan is alles wat je 

nodig hebt een begeleider om je te ontwaken en je te vragen om het een 

reahteit te maken. 

10. Welke rehgie je ook beoefent, je zult een bidplaats vinden van jouw 

voorkeur in Nederland. Di t is niet alleen omdat de Nederlandse mensen 

tolerant zijn, maar vooral omdat ze over alles van mening verschillen. 

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd door de 

promotor, Prof.dr K.L.M. Bertels. 
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