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Optimization of the speedskating technique for the straights

J.A. Ravenhorst (4491319)

Abstract— The Dutch speedskating federation expressed the
need for a feedback system for elite long-track speedskaters that
can aid them in finding the optimal technique for an individual
athlete. To contribute to this goal, this research aims to develop
an optimization workflow that can reproduce realistic steady
state speedskating behaviour. This is done with use of the simple
skater model (SSM) (Van Der Kruk, Veeger, van der Helm, &
Schwab, 2017). The research consists of two phases. The first
to verify if the optimization can produce realistic speedskating
motion, the second optimizes the speedskating technique to
minimize the duration of one stroke. The optimization is solved
with IPOPT. Even though the first phase can reproduce realistic
speedskating motion, the optimal technique found in the second
phase was unrealistic in terms of both trajectory and applied
forces. This is caused by an inconsistency in the heading of the
skate. This research shows the capabilities and limitations of
optimizing the speedskating technique with the SSM.

I. INTRODUCTION

Long-track speedskating is a unique and technical sport.
Elite speedskaters excel because of their their physical con-
dition and mastery of the technique. Still it is interesting
to see how greatly the techniques differ between individual
athletes. It is assumed that differences in body built and
strength influence their personal optimal motion pattern. This
makes it hard for athletes and their coaches to determine the
optimal technique for each individual. On top of that, this is
complicated because of the interconnectivity of the different
variables that influence the speedskating technique such as
leg extension, steering angle, lean angle and push-off force.

To aid the guidance and development of individual speed-
skaters, the Dutch speedskating federation (KNSB) expressed
their need for a real time feedback system. Van der Kruk et
al. (2018) took up this challenge and provided the first steps
toward such a feedback system by developing and validating
a simple biomechanical speedskater model (SSM) for the
straight part of the ice rink (Van Der Kruk et al., 2017).
This model simulates the speedskating technique and could
potentially be used to find the optimal speedskating technique
for individual speedskaters.

Allinger and Van Den Bogert (1997) have done research
on optimizing steady state speedskating behaviour with a
model similar to the SSM. However, the applicability of
their results is limited, because the model is driven by a
predetermined function describing the leg extension. Next to
that both the model and the results of the optimizations have
not been verified by measured kinetic data.

The aim of this study was to develop an optimization
workflow that can reproduce realistic steady state speedskat-
ing behaviour. This can be the foundation of further research
to provide insights into possible different optimal motion
strategies for different body builds and strength.

II. METHOD

In this section first the SSM (Van Der Kruk et al., 2017)
is described. Secondly the optimization problem, consisting
of two phases, is defined. Lastly the optimization algorithm
and the used settings are discussed.

A. Simple Skater Model

The SSM (Van der Kruk et al., 2018) is shown in figure
1. This section will give a short overview of the model
and the equations of motion. The model was verified by
3D kinematic data and force data. It was shown that the
model reproduces measured movement and forces with little
error when the corresponding measured leg extension is
used as input. This is different from the verification of the
optimization done in this study, where it is investigated
whether the optimization, subject to boundary conditions
and constraints, can find optimal input (leg extension) and
outputs (motion pattern of the skater and forces) to the
model that approximate measured data. The kinematic data
was collected by 20 motion capture cameras on 50 meter
of the straight part of the ice rink, tracking 23 passive
markers on the skater. The force data was measured by
two skates instrumented with three-dimensional piezoelectric
force sensors (Van Der Kruk, Den Braver, Schwab, Van der
Helm, & Veeger, 2016).

1) Model description: This section summarizes the work-
ing principles of the SSM, as designed by Van Der Kruk et
al. (2017). The SSM represents a skater as two point masses.
Mass B is positioned at the estimated centre of mass of the
whole body (COM) and mass S is positioned at the COM
of the foot of the active skate on the ice. This way the
model neglects the influence of arm movement, the double
stance phase at which both skates are on the ice and the
repositioning phase of the inactive skate in the air. Both
masses have three degrees of freedom. For mass B these are
three translations in the global x-,y-, and z-directions, and for
mass S these consist of two horizontal translations (x- and
y-directions), because the skate is assumed to be on the ice,
and a steer angle θs. This steer angle describes the direction
of the blade on the ice. It is assumed that the skate can only
glide in this direction, therefore a non-holonomic constraint
is applied to prevent lateral slip. A constant mass distribution
coefficient η distributes the body mass of the skater over the
two point masses. In this research the coefficient was first
chosen to be the same as in the research by Van Der Kruk
et al. (2017): η = 0, meaning the complete body mass is
located at mass B.

The inputs of the model are coordinates us, vs, ws, θs,
which describe the position of the skate relative to the COM
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Fig. 1. Simple skater model as developed by Van Der Kruk et al. (2017). Left side: top view of the skater, right side: rear view of skater. Two point
masses describe the skater: mass B (estimated at the COM of the full body) and mass S (positioned at the COM of the foot segment) describing the active
skate on the ice.

and the steering angle. The distance between masses B and
S will be indicated as the leg extension LL and is calculated
as follows:

LL =
√
u2
s,t + v2s,t + w2

s,t (1)

The outputs of the model are the global trajectory of mass
B and the forces exerted by the skates on the ice.

2) Equations of motion: The equations of motions are
formulated using the TMT method and are described in this
sections.

Vector x contains the coordinates describing the global
position and orientation of upper body B and skate S.

x =
[
xb yb zb xs ys ϕs

]
(2)

Instead of using this global representation, a minimum
set of generalized coordinates q is used. This way the
coordination of the skater can be expressed in terms of the
leg extension and steering angle.

q =
[
ub vb ws us vs θs

]
(3)

In eq. 3 coordinates (ws, us, vs) describe the leg extension
and θs is the steering angle of the skate. (ub, vb) represent
the generalized coordinates of the upper body and stand for
the position in the global horizontal plane and will be a result
of the system dynamics. With equations 2 and 3 and figure 1,
a function T can be formulated which expresses the global
coordinates in terms of the generalized coordinates.

x = T (q) (4)

Which expanded becomes:


xb

yb
zb
xs

ys
ϕs

 =


ub

vb
ws

ub − kk · cos (θs) · vs + kk · sin (θs) · us

vb − sin (θs) · vs − cos (θs) · us

kk · θs


(5)

Here kk is a parameter describing which skate is active on
the ice. (left skate: kk = 1, right skate: kk = −1). Derivation
of T yields Jacobian matrix T .

ẋ =
∂T

∂q
q̇ = T q̇ (6)

Jacobian matrix T maps global velocities onto generalized
velocities and can also be used to transform global mass
and force matrices into generalized mass and force matrices.
Therefore, using the TMT method, the generalized mass
matrix can be described as

M = T TMT (7)

with mass matrix M

M =


mb 0 0 0 0 0
0 mb 0 0 0 0
0 0 mb 0 0 0
0 0 0 ms 0 0
0 0 0 0 ms 0
0 0 0 0 0 Is

 (8)

where mb is the mass of B, ms the mass of S and Is
the mass moment of inertia of S. Now the unconstrained
equations of motion can be described in terms of generalized
coordinates using Newton’s law.
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M · q̈ = F (9)

where q̈ is the second time derivative of q and F the
reduced force matrix, which is defined as

F = T T (f −M · hcon ) +Q (10)

where f are external forces such as gravitational and
friction forces, hcon are the convective acceleration terms
of global coordinates x and Q are forces exerted on the
local frame. The convective acceleration terms hcon are
formulated as

hcon =
∂T

∂q · ∂q
q̇ · q̇ (11)

Lastly, to complete the unconstrained equations of motion,
the external forces are described as

f =


sin(θb) · Fb,f

− cos(θb) · Fb,f

−mb · g
kk · sin(θs) · Fs,f

−cos(θs) · Fs,f

kk ·Ms

 (12)

where g is the gravitational acceleration, Ms is the torque
used to steer the skate, thus exerted on the skate in the hori-
zontal plane. The two friction forces, ice friction (de Koning,
De Groot, & van Ingen Schenau, 1992) and air friction (van
Ingen Schenau, 1982), are described respectively as follows

Fs,f = µFN (13)

Fb,f = k1v
2
air (14)

with ice friction coefficient µ, the normal force of the skate
on the ice FN (which is approximated by FN ≈ mskaterg),
the velocity of the air relative to the skatervair and k1 a
constant defined as

k1 =
1

2
ACdρ (15)

with drag coefficient Cd, frontal projected area of the
skater A and air density ρ.

To finish the equations of motion, a non-holonomic con-
straint is formulated to prevent lateral movement of the skate.

Cs = − sin(θs)ẏs − kk cos(θs)ẋs = 0 (16)

Expressing Cs in generalized coordinates and differentiat-
ing ones, yields the equation

Cq̈ +Ccon = 0 (17)

where C is the Jacobian of the constraints and Ccon

are the convective acceleration terms of the constraints.
This equation together with eq. 9 gives the complete set of
equations of motion expressed in generalized coordinates:

[
M CT

C 0

] [
q̈
λ

]
=

[
F

−Ccon

]
(18)

with λ the Lagrange multiplier representing the constraint
force acting lateral on the skate. F is the reduced force
matrix. The equations of motion (eq. 18) can be reorganized
in terms of known (qo) and unknown (qd) coordinates.

 M
dd

M
do

CdT

M
od

M
oo

CoT

Cd Co 0


 q̈d

q̈o

λ

 =

 F
d

F
o

−Ccon

 (19)

Here F
o

are the forces on the skate as a result of the leg
extension:

F
o
=

[
Fws

Fus
Fvs Mθs

]
(20)

Finally, when the weight of the COM is added to Fws we
get the complete set of forces that the simulated skater exerts
on the skate during the push-off.

F push−off =

 Fws +mbg
Fus

Fvs

 (21)

B. Problem description

This optimization research consisted of two phases. The
first was designed to verify whether the optimization was
able to reproduce realistic speedskating behaviour. The sec-
ond was designed to find the optimal steady state speedskat-
ing technique to go as fast as possible. The general case
that is optimized is one push-off stroke with the left skate
where the COM travels a fixed forward distance. Apart from
the objective functions and initial conditions, the constraints
and state and input boundaries were the same for the two
optimization phases. They will be discussed in the next
sections. A summary is given in table IV in appendix II.

For the initial guess, simulated trajectories were used that
were retrieved from the research by Van der Kruk et al.
(2018). The initial guess functions as a starting point for
the optimization. Simulated trajectories were used instead
of measured data because differences between the optimal
solution and the initial guess were then the result of the
optimization and not partially because the model is unable
to exactly reproduce measured trajectories. Different initial
guesses were used in both optimization phases to evaluate
the sensitivity of the optimization to the initial guess.

1) The general problem: As mentioned, the general prob-
lem is one push-off stroke with the left skate. The COM is
tasked to travel a fixed forward distance while minimizing
a cost function. The state of the system is described by
the global position and velocity of the COM and the local
position and velocity of the skate:

x =
[
xb yb ẋb ẏb us vs ws θs u̇s v̇s ẇs θ̇s

]
(22)
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The input to the optimization is the acceleration of the
skate relative to the COM:

u =
[
üs v̈s ẅs θ̈s

]
(23)

For comparison purposes, the forward distance traveled by
the COM was chosen to equal the simulated covered distance
of one stroke:

yb,tf = ỹb,tf (24)

To make sure that the stroke with the left skate is repeat-
able also with the right skate and over the whole straight
part of the ice rink, the following boundary conditions were
set up: the velocity of the COM at the beginning and end
of the stroke have to be equal in magnitude and direction,
when mirroring the lateral component:

ẏb,tf = ẏb,t0

ẋb,tf = −ẋb,t0

ẇb,tf = ẇb,t0

(25)

Also the height of the COM should be the same at the
beginning and end of the stroke:

wb,tf = wb,t0 (26)

Furthermore the distance between the COM and the skate
is limited. With the leg fully extended this distance is approx-
imated with the skater’s leg length (LL) and in the crouched
speedskating position this is approximated as half the leg
length. Therefore the constraint on leg length becomes:

1

2
LL ≤

√
u2
s,t + v2s,t + w2

s,t ≤ LL (27)

A second constraint is applied to prevent the skater from
pulling laterally on the ice. This constraint appeared to be
necessary during experimental optimizations. It means that
when the left skate is laterally on the left side of the COM
(vs > 0), the lateral force component of the ice on the skate
should be directed to the right (Fv > 0) and the other way
around, with the skate on the right side of the COM (vs < 0),
the lateral force component of the ice on the skate should be
directed to the left (Fv < 0). Therefore their product should
be positive at all times:

vs,t · Fvs,t ≥ 0 (28)

The third constraint limits the maximal push-off force that
can be applied to the skate. The upper bound is based on the
simulated data

0 ≤ ||F push−off ||≤ 1300N (29)

The lower and upper boundaries on states and inputs are
quantified by looking at minimum and maximal values from
simulations rounded upward in magnitude.

2) Phase 1, verification: To verify the ability to produce
realistic speedskating behaviour, the results of this optimiza-
tion were compared with simulated trajectories and force
data. The objective was to find a duration of the stroke (tf )
as close as possible to the simulated duration of the stroke
(t̃f ). So the objective function to be minimized becomes:

JPHASE1 = |t̃f − tf | (30)

Next to that, the initial conditions were equal to the first
time step of the simulated trajectory. Meaning the global
position of the skate and COM and the velocities on that
instant correspond to the simulation.

This optimization was done four times with different initial
guesses. The guesses are based on two simulations by the
SSM based on different skaters, denoted by A and B:
- guess A1: The complete trajectory of simulation A.
- guess A2: The initial and final time steps of simulation A.
- guess A3: The initial and final time steps of a manually
designed straight line trajectory with zero inputs.
- guess B1: The complete trajectory of simulation B.

Constants for leg length, body mass, air friction, and
the covered forward distance differ between simulations A
and B. The values are given in table I and are adopted in
the optimization, meaning that apart from the initial guess,
also these parameters differ between optimizations based on
simulations A and B. This has to be taken into account when
comparing the optimal results.

TABLE I
CONSTANTS USED FOR OPTIMIZATIONS WITH INITIAL GUESSES BASED

ON SIMULATION A AND B.

Parameter Description Value
g gravitational acceleration 9.81 m/s2

α mass distribution coefficient 0
µ ice friction coefficient 0.006
k1 air friction constant (A, B) 0.18, 0.14 m2/s2

m skater’s body mass (A, B) 65, 76 kg
LL leg length (A, B) 1.1, 1.2 m
|yb,f − yb,0| fixed forward distance (A, B) 9.36, 14.5 m
t̃f duration of the simulated stroke (A, B) 0.98, 1.29 s

The results of optimizing phase 1 consist of the minimized
cost and figures describing the optimal solutions compared
to the simulation. By means of these results it is analysed
whether the optimization is able to reproduce realistic speed-
skating behaviour. Also the sensitivity of the optimization to
the initial guess is investigated.

3) Phase 2, performance: Phase 2 was designed to opti-
mize speed skating performance. The objective is to mini-
mize the duration of the stroke tf .

JPHASE2 = tf (31)

Contrary to phase 1, the initial state conditions (t = 0)
are free to be determined by the optimization algorithm
subject to the bounds and constraints presented in table IV
in appendix II. Only the initial position of the COM in
the horizontal plane is predetermined to be the same as the
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TABLE II
OPTIMIZATION SETTINGS, AS REQUESTED IN ICLOCS2

Primary settings Sub settings
transcription method: direct collocation amount of nodes 50

error criteria local absolute error
discretization Hermite-Simpson method
derivative generation numeric

NLP solver: IPOPT convergence tolerance 1e-3
max iterations 500
barrier parameter update strategy monotone
Hessian approximation exact

meshing strategy: no mesh refinements

measurement for comparison purposes. The initial velocity
of the COM is free to be determined by the optimization.

Additionally to the constraints and boundary conditions
of phase 1, one general constraint and one constraint on the
initial conditions are added to the optimization. First, the
constraint on the initial conditions is to make sure the skater
begins in the characteristic crouched pose. Therefore the leg
extension is bounded. The bounds are based on observed
data from Van Der Kruk et al. (2017):

0.65 · LL ≤
√
u2
s,t0 + v2s,t0 + w2

s,t0 ≤ 0.75 · LL (32)

The second constraint is formulated to restrict leg exten-
sion velocity. Which is calculated as the first time derivative
of the leg extension. The bounds are based on the simulated
values:

−0.1 ≤ L̇L ≤ 0.6 (33)

For the optimization of phase 2 initial guesses A.1 and
B.1 are used because they yield good reproduction of the
simulated speedskating technique in phase 1.

The results of optimizing phase 2 consist of the minimized
cost and figures of the trajectory and push-off force. For
further investigation of the feasibility of the results addi-
tional figures will are provided of the leg extension and the
directions of applied forces. By means of these results it is
analysed whether the optimal solution is successful. This is
the case when the duration of the stroke is minimized to a
relevant amount and the optimal technique is plausible.

C. Optimization algorithm

The optimization was done using the ICLOCS2 toolbox
in Matlab (Nie, Faqir, & Kerrigan, 2018). The toolbox
provides guidance for formulating optimal control problems
and includes a variety of transcription methods and non-
linear problem (NLP) solvers.

In general, an optimal control problem seeks to minimize
or maximize a certain performance index which depends
on the state and control of a dynamic system, subject to
constraints and boundary conditions. This results in a set of
non-linear differential equations and integrating functions.
These are often solved in two steps. The first being solving
the differential equations and integrating functions using a
transcription method and the second solving the NLP with
an appropriate solver. (Rao, 2009).

In this research direct collocation was used as transcription
method and IPOPT as an NLP solver. Direct collocation
has been widely used in similar biomechanical optimization
research (Ackermann and Van den Bogert (2010), Kaplan and
Heegaard (2001), Brown and McPhee (2020)) and has been
proven to perform better than other conventional algorithms
such as shooting methods in terms of computation time
(Porsa, Lin, and Pandy (2016), Lee and Umberger (2016)).
Also, the direct collocation method is well suited for prob-
lems with constraints that apply at the end of the simulation,
such as constraints for periodicity (Van Den Bogert, Blana,
& Heinrich, 2011) as will be used in this research. Direct
collocation discretizes the continuous optimization problem.
By approximating the continuous trajectory by multiple
polynomials. This means that the problem is divided into
pieces represented by a small (finite) set of coefficients and
it becomes easier to calculate integrals and derivatives (Kelly,
2017).

IPOPT is an open source interior point NLP solver de-
veloped by the COIN-OR Foundation (Wächter & Biegler,
2006) and has been used successfully in combination with
direct collocation in previous biomechanical optimization
studies (Laschowski, Mehrabi, and McPhee (2018), Van den
Bogert, Hupperets, Schlarb, and Krabbe (2012), Nitschke
et al. (2020)). Also, computation time with IPOPT can be
similar or smaller compared to fmincon, an NLP solver
included in Matlab (Lee & Umberger, 2016). As mentioned,
IPOPT makes use of an interior point algorithm. In short,
the interior point method is a gradient method that approx-
imates inequality constraints by barrier functions (Wächter
& Biegler, 2006).

1) Solver settings: ICLOCS provides an insightful way to
configure the optimization algorithm. The main settings are
presented in table II. These settings were chosen because
they provided the shortest computation time or were recom-
mended by the developers for this application (Nie et al.,
2018). Additionally the error tolerances of all boundary and
constraint violations are set to 0.01.

III. RESULTS

In this section the results of both phases are presented
consecutively.

A. Phase 1
In phase 1 the objective was to minimize the difference be-

tween the duration of the optimized stroke and the durations
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TABLE III
MINIMIZED COSTS FOR OPTIMIZATIONS BASED ON GUESSES A1, A2,

A3 AND B1.

A1 A2 A3 B1
cost [s] 0.0073 0.0096 0.0128 0.0058

of the simulated stroke (eq. 30). This was repeated with four
different initial guesses. The minimized costs are presented in
table III for each optimization. The lowest cost is achieved
in the optimization based on B1. From the three guesses
based on simulation A the guess with the full trajectory
(A1) results in the lowest cost, followed by A2 and then
A3. This order in performance emerges also when looking
at the optimized trajectories (figure 2). With guesses A1 and
B1 the trajectories of the skate and COM in the optimal
solution stay very close to the simulation. The positioning of
the skate relative to the COM is best with guess A1, as can be
seen by the lines connecting the skate and COM at every 5th
time step. The trajectories found from guess A2 are similar in
shape to the simulation, only with larger lateral displacement.
Also the positioning of the skate is more backward compared
to the simulation. The trajectories found from guess A3 are
not similar to the simulation, showing lateral displacement
to the right instead of to the left.

Also the push-off force is best reproduced by optimizing
from guess A1 compared to A2 and A3 (figure 3). The push-
off force found from optimization B1 performs similar to
optimization A1 (appendix I, figure 8).

Initial guesses A1 and B1 also yield faster and more steady
convergence than A2 and A3. This can be seen in figure 10 in
appendix I. With A1 and B1 it takes less function evaluations
to find the optimal solution. The convergence of optimization
A2 shows large fluctuations in evaluated costs.

B. Phase 2

Phase 2 minimizes the duration of one stroke. This opti-
mization was repeated with two initial guesses of complete
simulated trajectories of the skate and COM A1 and B1.
With guess A1 the duration of the stroke was minimized
to 0.1378s and with B1 to 0.2193s, leading to average
forward velocities of respectively 67.9m/s and 66.1m/s. For
comparison, the duration of the corresponding simulations
are 0.98s and 1.29s respectively. The trajectories of both
solutions are shown in figure 4. Here it can be seen that
both initial guesses lead to the same movement strategy:
straight forward trajectories of the skate and the COM.
The lateral distance of the skate relative to the COM is
smaller in the optimal solution from B1 compared to the
optimal solution from A1, but this is also the case when
comparing the simulated trajectories of guesses A1 and B1.
Overall the optimal trajectories do not resemble the simulated
trajectories.

In both optimal solutions A1 and B1 the maximal allowed
push-off force is exerted for the complete duration of the
stroke. The push-off force from solution A1 is shown in
figure 5 and from solution B1 in appendix I figure 9.

Fig. 2. Phase 1. Top views of the optimal and simulated trajectories of the
left skate (dashed line) and the COM (continuous line). Separately for initial
guesses A1, A2, A3 and B1. The lines connecting the COM and the skate
represent the leg extension. x is the lateral and y the forward direction.

Fig. 3. Phase 1. Push-off force of the optimal solutions and the simulation.
Separately for initial guesses A1, A2 and A3.

The convergence of both solutions are presented in ap-
pendix I, figure 11. In both cases the convergence is good.

For further investigation of the optimal solutions of phase
2 a closer look is taken of the forces acting on the skate
and the COM. In figure 6 the forces acting on the skate
and COM are shown at one time instant in optimal solution
A1. Because of the straight line trajectories the direction and
proportion of the forces is similar at each time step. Here
the ice friction Fs is very small relative to the other forces
and therefore hard to see. The vector is perpendicular to λ
and Fpush−off and points in the direction of positive x and
negative y.
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Fig. 4. Phase 2. Top views of the optimal and simulated trajectories of
the left skate (dashed line) and the COM (continuous line). Separately for
initial guesses A1 and B1. The lines connecting the COM and the skate
represent the leg extension. x is the lateral and y the forward direction.

Fig. 5. Phase 2. Push-off force from optimal solution A1 and the
simulation..

Here it can be seen that λ is not perpendicular to the
trajectory of the skate, which it should be due to the non-
holonomic constraint restricting lateral slipping of the skate
(16). Numerical evaluation of this constraint indeed shows
that the outcome is not zero for all time steps. The deviation
between the heading of the skate θs and the trajectory
of the skate ranges between 34.9 and 35.5 degrees. For
the optimization from guess B1 this ranges between 34.8
and 35.7 degrees. Because of this error, the non-holonomic
constraint has also been evaluated for phase 1 and for the
simulations. In phase 1 the deviation ranges were [1.53 2.17]
and [1.56 2.00] degrees for A1 and B1 respectively. For

simulations A and B the deviations were [−0.834 1.64] and
[−0.607 1.70] degrees respectively.

Air friction Fb is opposite to the trajectory of the COM
and is in the y-direction almost equal in magnitude to the
y-component of Fpush−off acting on the COM.

Lastly the leg extension is investigated. Figure 7 shows
the leg extension and leg extension velocity of the optimal
solution with initial guess A1. Here it can be seen that the
optimal solution starts with a larger leg extension compared
to the simulation. Also the optimal leg extension velocity and
the simulated leg extension velocity have roughly the same
steepness in the duration of the optimal stroke. Interestingly
the optimal leg extension velocity begins negative, meaning
the leg extension decreases before increasing. In the leg
extension plot in figure 7 it can be seen that this decrease in
leg length is very small. For optimization from initial guess
B1 the leg extension looks similar (appendix I, figure 12).

Fig. 6. Phase 2. Top view of the forces acting on the skate and the COM,
projected on the horizontal plane. Positive y is the forward direction. The
force vectors are scaled. Ice friction Fs is very small relative to the other
forces and therefore hard to see. The vector is perpendicular to λ and points
in the direction of negative x and negative. ms and mb are the point masses
of the skate and COM respectively.

IV. DISCUSSION

The aim of this study was to develop an optimization
workflow that can reproduce one realistic steady state speed-
skating stroke when minimizing the duration. Optimization
phase 1, minimizing the difference between the optimized
and simulated duration of the stroke, produces realistic
speedskating motion. Optimization phase 2, minimizing the
duration of the optimized stroke, was however unable to
find a solution resembling realistic speedskating motion.
The next two sections discuss the outcomes of intermediate
optimization phase 1 and the final outcomes of the study in
phase 2.

A. Influence initial guess

In phase 1 the importance of a good initial guess becomes
apparent. When a complete trajectory of a simulated speed-
skating stroke is used as initial guess the optimal solution
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Fig. 7. Phase 2. Leg extension characteristics of the optimal solution from
initial guess A1, compared to the simulation. With the top figure showing
the effective leg extension (distance between the skate and the COM). The
bottom figure shows the leg extension velocity

resembles simulated trajectories and push-off force. Also
the convergence is fast and smooth. The increase of the
cost during the first function evaluations appears because
the trajectory that is used as initial guess does not satisfy
the boundary constraints of cyclic motion. Therefore the
guess and the first optimization iterations close to the guess
are infeasible solutions, urging the optimization to find a
different solution.

Also it is clear that when a complete trajectory is used
as initial guess the optimal solution stays close to the guess.
This is especially apparent in phase 1 (fig. 2), but is also
seen in phase 2, where the main difference between the
solutions of A1 and B1 is the same as between the simulated
trajectories A and B: A1 shows a larger lateral distance
between the skate and the COM (fig. 4). However, this could
also be caused by the difference in certain constants used in
the optimization (table I). Therefore more research should
be done to evaluate the sensitivity of the optimization to the
initial guess and the constant parameters.

B. Feasibility of results

Even though optimization phase 1 is able to reproduce
realistic speedskating motion given a complete simulated
trajectory as initial guess, this is not the case for phase
2. In phase 2 the optimal trajectories and push-off force
do not resemble the simulations and the optimized average
forward velocities (67.9 and 66.1m/s) are unrealistically
high. It appears that the optimization can achieve these
velocities because the non-holonomic constraint (eq. 16) is
not satisfied. This way the model is able to follow a straight
forward trajectory with the skate and still generating a push-
off force in the forward direction. If the non-holonomic
constraint would be satisfied, the constraint force λ should
be perpendicular to the skate trajectory and therefore in this
case of the forward straight trajectory directed in the lateral
direction. This way also the push-off force should not be

able to have such a large contribution to the forward motion
and should this trajectory result in a much slower trajectory.

While the unsatisfied non-holonomic constraint causes the
results of phase 2 to be infeasible, the results of phase 1
were satisfactory. Here it has also been noticed that there
existed deviations between the steering angle of the skate
and the direction of the skate’s trajectory, but the range of
the deviations were smaller than found for the simulations.
Possibly these small errors found for phase 1 and the
simulations are caused by the differentiation of the skate’s
position in order to evaluate the constraint. However, the
large errors in phase 2 indicate that there exists a problem
in the working of the non-holonomic constraint. This could
be caused by the coupling of the heading of the skate and
the direction of the skate’s trajectory or the application of
the non-holonomic constraint.

Apart from the direction of the push-off force and the
trajectories being inconsistent with a realistic speedskating
behaviour, also the relation of the push-off force to the
leg extension is not realistic. As was seen in figure 7 in
the results, the optimal leg extension and the simulated
leg extension do not differ much in shape in the duration
of the optimal stroke. The difference is mainly that the
optimal leg extension velocity begins negative and the leg
extension’s initial value is larger. Still the model is able
to exert the maximal allowed push-off force during the
complete stroke (fig. 5). Biomechanically this is unrealistic.
The force is related to the length and velocity of the leg ex-
tension. Existing research on these relations mostly focus on
joint torque, angle and angular velocity of individual joints
((Hahn, Herzog, & Schwirtz, 2014), (Thorstensson, Grimby,
& Karlsson, 1976), (Coyle, Costill, & Lesmes, 1979)). Such
relations would require the addition of individual joints to
the model, increasing the complexity. Also linear force-
velocity and parabolic power-velocity relations have been
found for leg extensions in ballistic push-offs: exercises
like squats and leg-presses ((Morin & Samozino, 2018)).
These relations could provide useful upper boundaries for the
optimization, although the ballistic exercises mainly involve
extension and flexion of the lower limb joints, while in the
skating technique also abduction of the hip is involved. This
influences the applicability of the found relationships. This
is a subject for further research.

V. CONCLUSION

In this section the main conclusions of this speedskating
optimization study are summarized. One speedskating push-
off was optimized subject to two objectives consecutively. In
phase 1 the objective was to minimize the difference between
the duration of the optimal stroke and the duration of a sim-
ulated speedskating stroke. With the goal to verify whether
the optimization is able to reproduce realistic speedskating
behaviour. In phase 2 the duration of the optimized stroke
was minimized.

When given complete simulated trajectories of the skate
and COM as initial guess, the optimization of phase 1
reproduces the simulated speedskating technique closely in
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both trajectories and push-off force. This satisfactory result
was obtained when using two different simulations as initial
guess.

It was noticed that the initial guess influences the optimal
solution. In phase 1, when using only the initial and final
conditions of the simulation as initial guess or using the
initial and final conditions of a straight line trajectory as
initial guess, then the optimal solutions differ greatly from
the simulations. As said, when using complete simulated
trajectories as initial guess, the optimal solution stays very
close to those simulations. This is also noticed in phase 2.
Even though the optimal trajectories do not resemble the
simulations, certain characteristic differences between the
two simulations emerge also in the corresponding optimal
solutions. This could however also be caused by the differ-
ences in used constant parameters such as the body mass and
leg length of the modelled skater. Therefore further research
is needed on the sensitivity of the optimization to the initial
guess and the constant parameters that are used.

The results of phase 2 did not resemble realistic speedskat-
ing behaviour. The skate and COM follow straight forward
trajectories and the maximal allowed peak push-off force is
maintained for the complete duration of the stroke. This
result was similar with both simulations as initial guess.
Interestingly, this result should be infeasible for the model
(Van Der Kruk et al., 2017) because the variable determined
as the heading of the skate did not correspond to the direction
of the trajectory of the skate. This should be prevented by
a non-holonomic constraint inhibiting lateral slipping of the
skate. It has to be investigated whether the coupling of the
heading of the skate and the direction of the skate’s trajec-
tory is correct and whether the non-holonomic constraint is
implemented properly.
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APPENDIX I
ADDITIONAL FIGURES

Fig. 8. Phase 1. Push-off force of the optimal solution from initial guess B1 and the simulation.

Fig. 9. Phase 2. Push-off force of the optimal solution from initial guess B1 and the simulation.
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Fig. 10. Phase 1. Convergence of optimizations based on initial guesses A1, A2, A3 and B1.

Fig. 11. Phase 2. Convergence of optimizations from initial guess A1 and B1.

Fig. 12. Phase 2. Leg extension characteristics of the optimal solution from initial guess B1, compared to the simulation. With the top figure showing
the effective leg extension (distance between the skate and the COM). The bottom figure shows the leg extension velocity.
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APPENDIX II
PROBLEM DEFINITION TABLE, DISPLAYED ON NEXT PAGE
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