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Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect
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We investigate theoretically the Josephson junction of semiconductor nanowire with strong spin-orbit (SO)
interaction in the presence of magnetic field. By using a tight-binding model, the energy levels En of Andreev
bound states are numerically calculated as a function of phase difference ϕ between two superconductors in the
case of short junctions. The dc Josephson current is evaluated from the Andreev levels. In the absence of SO
interaction, a 0-π transition due to the magnetic field is clearly observed. In the presence of SO interaction, the
coexistence of SO interaction and Zeeman effect results in En(−ϕ) �= En(ϕ), where the anomalous Josephson
current flows even at ϕ = 0. In addition, the direction dependence of critical current is observed, in accordance
with experimental results.
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I. INTRODUCTION

The spin-orbit (SO) interaction in narrow-gap semiconduc-
tors, e.g., InAs and InSb [1], has attracted a lot of interest
in recent studies. The SO interaction gives a possibility of
electrical spin manipulation, which is a great advantage for
spintronic devices [2,3]. For conduction electrons in direct-gap
semiconductors, the SO interaction is expressed as

HSO = λ

�
σ · [ p × ∇V (r)], (1)

where V (r) is an external potential and σ indicates the electron
spin s = σ/2. In experiments of quantum well using such
materials, strong SO interaction was reported [4–6]. For an
external electric field E perpendicular to the quantum well, the
substitution of V (r) = eEz into Eq. (1) yields

HSO = α

�
(pyσx − pxσy), (2)

which is called the Rashba interaction. Here, the coupling
constant α = eEλ is tunable by an electric field, or a gate
voltage.

The development of fabrication technique enables us to
construct various quantum systems with SO interaction.
Particularly, semiconductor nanowires of InAs and InSb are
investigated intensively, in which quantum point contacts and
quantum dots can be formed [7–12]. Indeed, the electrical
manipulation of single electron spins was reported for quantum
dots fabricated on the nanowires [10–12]. In recent studies,
the nanowire-superconductor hybrid systems were studied for
searching the Majorana fermions [13–16]. The dc Josephson
effect was also studied when the nanowires are connected to
two superconductors (S/NW/S junctions) [17–19].
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The Josephson effect is one of the most fundamental
phenomena concerning quantum phase. In a Josephson junc-
tion, the supercurrent flows when the phase difference ϕ

between two superconductors is present. For the junction
using normal metals or semiconductors, the electron and
hole in the normal region are coherently coupled to each
other by the Andreev reflections at normal/superconductor
interfaces [20]. The Andreev bound states, which have discrete
energy levels En (Andreev levels), are formed in the normal
region around the Fermi level within the superconducting
energy gap �0 [21,22]. The Cooper pair transports via the
Andreev bound states. For short junctions, where a distance
L between two superconductors is much smaller than the
coherent length ξ in the normal region, the Josephson
current I (ϕ) is determined by the Andreev levels [22–25].
ξ = �vF/(π�0) ≡ ξ0 for ballistic systems and ξ = (ξ0l0)1/2

for diffusive ones, where vF is the Fermi velocity and l0 is
the mean free path. For the transmission probability Tn of
conduction channel n (=1,2, . . . ,N ) in the normal region, the
current is written as

I (ϕ) = e�0

2�

N∑
n=1

Tn sin ϕ

[1 − Tn sin2(ϕ/2)]1/2
. (3)

Here, the current satisfies I (−ϕ) = −I (ϕ). In the limit of low
transparent junction, the current in Eq. (3) becomes I (ϕ) � I0

sin ϕ with I0 ≡ e�0/(2�)
∑

n Tn.
In superconductor/ferromagnet/superconductor junctions,

the oscillation of critical current accompanying a 0-π transi-
tion was observed as a function of the thickness of ferromag-
net [26–29]. The 0 and π states mean that the free energy is
minimal at ϕ = 0 and π , respectively. The 0-π transition is
caused by the interplay between the spin-singlet correlation of
the superconductivity and the exchange interaction in ferro-
magnet. The exchange interaction makes the spin-dependent
phase shift in the propagation through the ferromagnet. Since
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the Andreev bound state consists of a right-going (left-going)
electron with spin σ and a left-going (right-going) hole with
spin −σ , the phase shift modulates the Andreev levels. When
the length of ferromagnet is increased, the 0-π transition takes
place at the cusps of critical current [29]. A similar transition
was observed recently in S/NW/S junctions with fixed length
when the Zeeman splitting was tuned by applying a magnetic
field [30].

The effect of SO interaction in the Josephson junctions
is an interesting subject, where many phenomena were
predicted, e.g., fractional Josephson effect [31] and anomalous
supercurrent [32]. The fractional Josephson effect is a 4π

periodicity of current phase relation, I (ϕ) ∼ sin(ϕ/2), which is
a property of Majorana fermions induced by the SO interaction
in the superconducting region. The anomalous supercurrent is
a finite supercurrent at zero phase difference, I (ϕ = 0) �= 0,
which is induced by the breaking of symmetry of current
phase relation. The symmetry breaking is attributed to the
existence of SO interaction and magnetic field in the normal
region.

In the present study, we focus on the anomalous Josephson
current. The dc Josephson current with SO interaction in
the normal region was investigated theoretically by a lot
of groups, for normal metal with magnetic impurities [32],
two-dimensional electron gas (2DEG) in semiconductor het-
erostructures [33–39], open quantum dots [40], quantum dots
with tunnel barriers [41–47], carbon nanotubes [48], quantum
wires or nanowires [49–52], quantum point contacts [53,54],
topological insulators [55], and others [56]. The SO interaction
breaks the spin degeneracy of Andreev levels when the
time-reversal symmetry is broken by the phase difference
ϕ �= 0 even in the absence of magnetic field [40,56]. The
splitting due to the SO interaction is obtained in the long
junctions, L � ξ (or intermediate-length junctions, L � ξ ).
In the short junctions, however, the spin degeneracy of
Andreev levels holds [40,56]. In both cases, the relation of
I (−ϕ) = −I (ϕ) is not broken, which means no supercurrent
at ϕ = 0.

In the presence of magnetic field, the SO interaction modi-
fies qualitatively the current phase relation. Then, the anoma-
lous Josephson current is obtained [32,35,36,43,47,49,52–55].
The anomalous current flows in the so-called ϕ0 state in which
the free energy has a minimum at ϕ = ϕ0 ( �=0,π ) [57]. The
anomalous Josephson current was predicted when the length of
normal region L is longer than or comparable to the coherent
length ξ . Krive et al. derived the anomalous current for long
junctions with a single conduction channel [49]. Reynoso
et al. found the anomalous current through a quantum point
contact in the 2DEG for L � ξ [53,54]. They discussed an
influence of spin polarization induced around the quantum
point contact with SO interaction [59] on the Josephson
current. They also showed the direction dependence of critical
current when a few conduction channels take part in the
transport. The direction dependence of supercurrent was
observed for samples of L � ξ for InSb nanowire Josephson
junction when a parallel magnetic field is applied to the
nanowire [30]. The current in the nanowire is increased from
negative to positive or decreased from positive to negative.
The critical current corresponds to the transition point from
zero resistance to finite one. The critical current oscillates

as a function of magnetic field. The oscillation amplitude
and the position of minima depend on the current direction.
This should be ascribable to the strong SO interaction in the
nanowires although the anomalous Josephson current was not
examined, which may be found by the direct current-phase
measurement.

In our previous paper, we investigated theoretically the dc
Josephson effect in semiconductor nanowires with strong SO
interaction in the case of short junction [52]. We examined
a simple model with single scatterer to capture the physics
of 0-π transition and anomalous Josephson effect. In our
model, both elastic scatterings by the impurities and SO
interaction in the nanowire were represented by the single
scatterer. The Zeeman effect by a magnetic field shifts the
wave number as k>

± = kF + (E ± EZ)/(�vF) for k > 0 and
k<
± = −kF − (E ± EZ)/(�vF) for k < 0 [60]. E is an energy

measured from the Fermi level. EZ ≡ |gμBB|/2 is the Zeeman
energy. The orbital magnetization is neglected in the nanowire.
The Fermi velocity vF is independent of channels. When
k > 0 (k < 0), the electron and hole move to the right (left)
and left (right), respectively. The propagation of electron
with spin σ = ± and hole with σ = ∓ acquires the phase
±θB = ±|gμBB|L/(�vF). The term of 2EL/(�vF) is safely
disregarded for short junctions. The terms of kF are canceled
out by each other. The simple model showed the oscillation
of critical current with increase of θB . The 0 and π states
are realized when θB ∼ 0 and π , respectively. Around θB =
π/2, the 0-π transition takes place. In the presence of SO
interaction, the anomalous Josephson current was obtained,
which result means a realization of ϕ0 state. Moreover, the
direction dependence of the critical current is found. The
critical current indicates cusps at the local minima. The
position of cusps also depends on the current direction, in
accordance with the experiment [30]. Between the cusps for
positive and negative current direction, the transition from
ϕ0 ≈ 0 to ≈π takes place.

In this paper, we study the anomalous Josephson effect
numerically using a tight-binding model for the nanowire in
the case of short junction [61]. The purposes are to confirm
our previous simple model and to elucidate the key ingredients
of anomalous Josephson effect. First, we consider the case
without SO interaction. The Andreev levels are invariant
against the ϕ inversion, En(−ϕ) = En(ϕ). As a result, the
current satisfies I (−ϕ) = −I (ϕ) and hence no anomalous
current is found. The critical current oscillates as a function
of magnetic field accompanying the 0-π transition, which is
characterized by a single parameter θB even for N > 1. Next,
we investigate the Josephson effect in the presence of SO
interaction and Zeeman effect. The relation of I (−ϕ) = −I (ϕ)
is broken. As a result, the anomalous Josephson current and
the direction dependence of critical current are obtained,
which are qualitatively the same as those of single scatterer
model. We stress that the spin-dependent channel mixing due
to SO interaction plays an important role on the anomalous
Josephson effect.

The organization of this paper is as follows. In Sec. II,
we explain our model for the S/NW/S Josephson junction
and calculation method of the Andreev levels and Josephson
current. Numerical results are given in Sec. III. The last section
(Sec. IV) is devoted to the conclusions and discussion.
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FIG. 1. (Color online) Our model for a quasi-one-dimensional
semiconductor nanowire connected to two superconductors. The
nanowire is along the x axis. (a) Schematic view of the model. The
pair potential is induced in the nanowire by the proximity effect,
�(x) = �0e

iϕL at x < 0 and �0e
iϕR at L < x, whereas �(x) = 0

at 0 < x < L. Several impurities are present in the nanowire. The
spin-orbit interaction and Zeeman effect are taken into account only
in the normal region. (b) The tight-binding model gives the scattering
matrix Ŝe (Ŝh) for electrons (holes), which connects incoming ae (ah)
and outgoing electrons be (holes bh). At x = 0 and L, the electron be

is reflected as the hole ah by the Andreev reflection, whereas bh is
reflected as ae.

II. MODEL AND CALCULATION

In this section, we explain our model depicted in Fig. 1. We
introduce the Bogoliubov–de Gennes (BdG) equation to obtain
the Andreev levels. The formulation of solving BdG equation
is given in terms of scattering matrix [22]. We apply the
tight-binding model to the normal region, where the scattering
matrices of conduction electrons and holes are numerically
calculated [62,63].

A. Formulation

We consider a semiconductor nanowire along the x axis
connected to two superconductors at x < 0 and x > L, as
shown in Fig. 1(a). The superconducting pair potential is
penetrated into the nanowire by the proximity effect, whereas
there is no pair potential in the normal region at 0 < x < L.
The SO interaction and Zeeman effect in a magnetic field are
taken into account only in the normal region. Since InSb has
a large g factor, a large Zeeman energy is obtained for weak
magnetic field, which does not break the superconductivity.

The Andreev bound states are formed in the normal region.
The BdG equation to describe the Andreev bound states is
written as [21,64](

H − EF �̂

�̂† −(H ∗ − EF)

)(
ψe

ψh

)
= E

(
ψe

ψh

)
, (4)

where ψe = (ψe+,ψe−)T and ψh = (ψh+,ψh−)T are the
spinors for electron and hole, respectively. The energy E is
measured from the Fermi level EF. The diagonal element
is the single-electron Hamiltonian H = H0 + HSO + HZ with

H0 = p2/(2m∗) + Vconf(y,z) + Vimp, SO interaction HSO, and
Zeeman effect HZ = gμB B · σ̂/2, using effective mass m∗, g

factor g (<0 for InSb), Bohr magneton μB, and Pauli matrices
σ̂ . HSO and HZ are taken into account only at 0 < x < L.
Vconf describes the confining potential of the nanowire. Vimp

represents the potential due to the impurities. �̂ is the pair
potential in the spinor space,

�̂ = �(x)ĝ = �(x)

( −1

1

)
, (5)

where ĝ = −iσ̂y [65]. For simplicity, we assume that the ab-
solute values of pair potential in left and right superconducting
regions are equal to each other, �(x) = �0e

iϕL at x < 0 and
�0e

iϕR at L < x. In the normal region at 0 < x < L, �(x) = 0.
The phase difference between two superconductors is defined
as ϕ ≡ ϕL − ϕR. We consider a short junction, where L 
 ξ .
No potential barrier is assumed at the boundaries between
the normal and superconducting regions. The Zeeman energy
EZ ≡ |gμBB|/2 and the pair potential �0 are much smaller
than the Fermi energy EF.

The solution of the BdG equation gives the Andreev levels
En (|En| < �0) as a function of phase difference ϕ. When
the BdG equation has an eigenenergy En with eigenvector
(ψe,n,ψh,n)T, −En is also an eigenenergy of the equation with
(ψ∗

h,n,ψ
∗
e,n)T. In short junctions, the number of Andreev levels

is given by 4N ; 2N positive levels and 2N negative ones when
the number of channels is N (2N if the spin degree of freedom
is included). The ground-state energy of the junction is given
by

Egs(ϕ) = −1

2

∑
n

′
En(ϕ), (6)

where the summation is taken over all the positive Andreev
levels, En(ϕ) > 0. The contribution from continuous levels
(|E| > �0) is disregarded in Eq. (6), which are independent
of ϕ in the short junctions [22]. At zero temperature, the
supercurrent is calculated as

I (ϕ) = 2e

�

dEgs

dϕ
= − e

�

∑
n

′ dEn

dϕ
. (7)

The current is a periodic function for −π < ϕ � π . The
maximum (absolute value of minimum) of I (ϕ) yields the
critical current Ic,+ (Ic,−) in the positive (negative) direction.

The symmetry of BdG equation should be noted here. We
denote the matrix on the left side of Eq. (4) by H(ϕ). In
the absence of Zeeman effect, T H(ϕ)T −1 = H(−ϕ) with the
time-reversal operator T = −iσ̂yK for spin-1/2 particles. K

is the operator to form a complex conjugate; Kf = f ∗. IfH(ϕ)
has an eigenenergy En with eigenvector (ψe,n,ψh,n)T, H(−ϕ)
has an eigenenergy En with eigenvector T (ψe,n,ψh,n)T. Thus
the Andreev levels satisfy the relation of En(ϕ) = En(−ϕ). In
the absence of SO interaction, KH(ϕ)K−1 = H(−ϕ). Then
we derive that En(ϕ) = En(−ϕ) in the same way. The relation
does not always hold in the presence of both SO interaction
and magnetic field.
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B. Scattering matrix approach

The BdG equation in Eq. (4) can be written in terms of the
scattering matrix [22]. In the normal region with SO interaction
and Zeeman effect, the quantum transport of electrons (holes)
is described by the scattering matrix Se (Sh). The scattering
matrix Sp (p = e,h) connects the amplitudes of incoming
waves of N conduction channels with spin σ = ±, (apL,apR)T,
and those of outgoing waves, (bpL,bpR)T, as shown in Fig. 1(b),(

bpL

bpR

)
= Ŝp

(
apL

apR

)
. (8)

Ŝe and Ŝh are 4N × 4N matrices and related to each other by
Ŝe(E) = Ŝ∗

h (−E). On the assumption that they are independent
of energy E for |E| < �0, and thus Ŝe = Ŝ∗

h . We denote Ŝe = Ŝ

and Ŝh = Ŝ∗. Ŝ is conventionally written by reflection and
transmission matrices:

Ŝ =
(

r̂L t̂LR

t̂RL r̂R

)
. (9)

The scattering matrix is unitary, Ŝ†Ŝ = 1̂. Moreover, r̂T
L =

ĝ†r̂Lĝ, r̂T
R = ĝ†r̂Rĝ, and t̂T

RL = ĝ† t̂LRĝ are satisfied if the time-
reversal symmetry is kept.

The Andreev reflection at x = 0 and L is also described in
terms of scattering matrix r̂he for the conversion from electron
to hole and r̂eh for that from hole to electron. When an electron
with spin σ is reflected into a hole with −σ , it is written as [22](

ahL

ahR

)
= r̂he

(
beL

beR

)
, (10)

where

r̂he = e−iαA

(
e−iϕL 1̂ ⊗ ĝ

e−iϕR 1̂ ⊗ ĝ

)
(11)

with αA ≡ arccos(E/�0). When a hole is reflected to an
electron, it is (

aeL

aeR

)
= r̂eh

(
bhL

bhR

)
(12)

with

r̂eh = e−iαA

(
eiϕL 1̂ ⊗ ĝ†

eiϕR 1̂ ⊗ ĝ†

)
. (13)

We assume that the channel is conserved at the Andreev
reflection in the case of N � 2. The normal reflection can
be neglected in our case without potential barriers at the
boundaries [20].

The product of scattering matrices gives an equation for
(aeL,aeR)T. The Andreev levels En(ϕ) are calculated from this
product as [22]

det(1̂ − r̂ehŜ
∗r̂heŜ) = 0, (14)

which is equivalent with the BdG equation in Eq. (4). In the
absence of magnetic field, Eq. (14) is simply reduced to [22]

det

[
1 −

(
E

�0

)2

− t̂
†
LR t̂LR sin2

(
ϕ

2

)]
= 0. (15)

In this case, the Andreev levels are represented by the trans-
mission eigenvalues of t̂

†
LR t̂LR. They are twofold degenerate

reflecting the Kramers’ degeneracy at ϕ = 0. The Andreev
levels En(ϕ) are not split by finite ϕ in spite of the broken
time-reversal symmetry.

C. Tight-binding model

To obtain the scattering matrix Ŝ, we describe the normal
region by a tight-binding model of square lattice model in two-
dimensional space (xy plane) [62], as schematically shown
in Fig. 1(b). We consider a quasi-one-dimensional nanowire
along the x axis with width W in the y direction. The length of
normal region is L. We assume hard-wall potentials at y = 0
and W . The Rashba-type SO interaction in Eq. (2) and the
Zeeman effect are considered in the normal region. The Rashba
interaction specifies the direction of spin quantization axis. In
the experiments, the nanowire is not two dimensional or the
SO interaction may not be a Rashba one. However, our model
is general to represent a single or few conduction channels in
the nanowire and to consider the spin mixing among channels
by the SO interaction. In the following, the magnetic field
is applied in the y direction, which is almost parallel to
the spin quantization axis due to the Rashba interaction for the
channels. The channel is split upward and downward by the
Zeeman effect. The orbital magnetization is neglected.

On the tight-binding model, the Hamiltonian H = H0 +
HSO + HZ is written as

H = t
∑
j,l

c†j,l{(4 + vj,l)1̂ + b · σ̂ }cj,l

−t
∑
j,l

(c†j,l T̂j,l;j+1,l cj+1,l + c†j,l T̂j,l;j,l+1cj,l+1 + H.c.),

(16)

where cj,l ≡ (cj,l;+,cj,l;−)T and cj,l;σ is annihilation operator
of an electron at site (j,l) with spin σ . t ≡ �

2/(2m∗a2)
is a transfer integral with a lattice constant a. Here, j

(=0,1, . . . ,Nx,Nx + 1) and l (=1,2, . . . ,Ny) denote site labels
in the x and y directions, respectively. The length is L = Nxa

and the width is W = (Ny + 1)a. At the sites of j = 0,Nx + 1,
the SO interaction and Zeeman effect is absent. vj,l ≡ Vj,l/t

is a dimensionless on-site potential by impurities. 1̂ is the
unit matrix in the spinor space. b ≡ gμB B/(2t) indicates a
magnetic field. The transfer term in the x direction is given by

T̂j,l;j+1,l = 1̂ − ikαaσ̂y, (17)

whereas that in the y direction is

T̂j,l;j,l+1 = 1̂ + ikαaσ̂x. (18)

Here, kα = m∗α/�
2 denotes the strength of Rashba interaction.

In this model, the reflection and transmission matrices are
calculated by using the recursive Green’s-function method
(see Appendix A) [63].

We set the Fermi wavelength λF as a parameter, which
gives the Fermi energy by EF = 2t − 2t cos(kFa) with kF =
2π/λF [66]. In an ideal quantum wire with width W , the
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dispersion relation for channel n is given by

En(k) = 4t − 2t cos(ka) − 2t cos

(
πa

W
n

)
. (19)

The conduction channels satisfy En(k = 0) < EF. Then, the
velocity of channel n at the Fermi energy is

vF,n = 2ta

�

√
1 −

{
2 − cos

(
πa

W
n

)
− EF

2t

}2

. (20)

We consider a nanowire with width W = 60 nm. The dis-
tance between left and right superconductors is L = 1000 nm.
We set Nx = 11 and Ny = 200. The number of conduction
channel is changed by tuning the Fermi wave number λF. In the
following, we calculate for three cases: λF = 90 nm for single
channel (N = 1), 50 nm for N = 2, and 25 nm for N = 4. A
parameter of Rashba interaction is kα/kF = 0.15. The on-site
random potential by impurities is uniformly distributed in
−W0/2 < Vj,l < W0/2. The mean free path l0 is estimated
as [63]

l0 = 6λ3
F

π3a2

(
E′

F

W0

)2

. (21)

Here we use the modified Fermi energy E′
F = EF − E1(0) in

a one-dimensional quantum wire.

III. NUMERICAL RESULTS

In this section, we present calculated results of Andreev
levels and Josephson currents. First, we discuss the case
without SO interaction. The critical current oscillates as a
function of magnetic field and the 0-π transition is clearly
found. Next, we consider the anomalous Josephson effect
induced by the SO interaction.

The magnetic field is applied in the y direction. We in-
troduce a parameter of magnetic field, θB = |g|μBBL/(�v̄F),
where v̄F ≡ {(1/N )

∑N
n=1(1/vF,n)}−1 is the inversion average

of velocity vF,n in Eq. (20). The Zeeman effect splits
the dispersion relation for spin σ = ±. The wave num-
ber becomes kF,n,± � kF,n ± |g|μBB/(2�vF,n) for k > 0 and
kF,n,± � −kF,n ∓ |g|μBB/(2�vF,n) for k < 0. For the propa-
gation of electron with spin σ = ± and hole with σ = ∓ in the
normal region, the shift of phase due to the Zeeman effect is
±|g|μBBL/(�vF,n). Therefore, θB means the channel average
of spin-dependent phase shift of electron and hole forming the
Andreev bound states.

A. Absence of spin-orbit interaction

1. Single conduction channel

First, we consider a sample of nanowire with a single
conduction channel. Figure 2 shows the Andreev levels and
Josephson currents as functions of phase difference ϕ between
two superconductors. The magnetic field gradually increases
from left-upper to right-bottom panels. In the absence of SO
interaction, the spin σ = ± is well defined in the direction
of magnetic field. In the case of single conduction channel,
four Andreev levels are found in |E| � �0. The levels are
denoted as E↑i± and E↓i±, where the subscript ↑ (↓) means
the state of electron spin σ = +1 (σ = −1) and hole spin
σ = −1 (σ = +1). i = 1,2, . . . . The sign ± corresponds to
the positive or negative energy at B = 0. We consider three
regions with increasing θB . When B = 0, the levels are doubly
degenerate for any ϕ. The ground-state energy Egs becomes
minimal at ϕ = 0, which corresponds to the 0 state [Fig. 3(a)].
The levels are split like the Zeeman splitting in the presence of
magnetic field. For a weak magnetic field, Egs is still minimal
at ϕ = 0 [region (I)]. As the magnetic field is increased, the

FIG. 2. Calculated results for a sample when N = 1 and l0/L = 1. The SO interaction is absent. (a) Andreev levels En as a function of
phase difference ϕ between two superconductors. Solid and broken lines indicate E↑i± and E↓i±, respectively. The magnetic field is θB = 0
(left upper), 0.1π (left middle), 0.27π (left bottom), 0.53π (right upper), 0.79π (right middle), and π (right bottom). At B = 0, two lines are
overlapped to each other, reflecting the Kramers’ degeneracy. (b) Josephson current I (ϕ) through the nanowire when θB = 0 (solid), 0.27π

(broken), 0.53π (dotted), and π (dotted broken lines).
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FIG. 3. Calculated results for N = 1 and l0/L = 1. The SO
interaction is absent. (a) Phase difference ϕ0 at the minimum of
ground-state energy as a function of magnetic field, θB . (b) Critical
current Ic,±. The current in the positive direction Ic,+ is identical with
that in the negative direction Ic,−. The sample for (a) and (b) is same as
that in Fig. 2. (c) Average of critical current, 〈Ic,±〉, with the average of
fluctuation,

√〈[�Ic,±]2〉, as error bars, where �Ic,± ≡ Ic,± − 〈Ic,±〉.
The random average is taken for 400 samples.

level crossing at E = 0 is observed, which corresponds to
region (II). The crossing points move from ϕ = ±π to 0 with
increase of θB . When θB ≈ π , no level crossing takes place
in region (III). In this region, Egs is minimal at ϕ = π (π
state). The transition of 0 state to π state takes place suddenly
around θB = π/2, as shown in Fig. 3(a). This is called the 0-π
transition. With increase of magnetic field, some levels go to
|E| > �0. At the same time, nother levels come into |E| � �0.
Therefore, the number of Andreev levels in |E| � �0

is fixed.
The Josephson current is calculated from the sum of positive

Andreev levels in Eq. (7). In Fig. 2(a), the Andreev levels En(ϕ)
are invariant against the inversion of ϕ, En(−ϕ) = En(ϕ).
As a result, the Josephson current satisfies I (−ϕ) = −I (ϕ)
in Fig. 2(b). When θB = 0, the current I (ϕ) is similar to
sin ϕ, which is a feature of the 0 state. When the level
crossing takes place at E = 0, the crossing results in the
discontinuity in the current phase relation. Around θB = π/2,
a sawtooth current phase relation is obtained. The discon-
tinuous points move from ±π to 0. When θB ≈ π , the
current is roughly I (ϕ) ∼ − sin ϕ, which is a feature of the
π state.

Figure 3(b) shows the critical current as a function of θB .
Since I (−ϕ) = −I (ϕ), the maximum of Josephson current,
Ic,+, is identical with the absolute value of minimum of
current, Ic,−. When the magnetic field is stronger, the phase
difference ϕ0 at the minimum of ground-state energy changes
between 0 and π discontinuously at θB ≈ (2m + 1)π/2, where
m = 0,1,2, . . . [Fig. 3(a)]. The critical current oscillates with
cusps around the 0-π transitions. In Fig. 3(c), we plot a random

FIG. 4. Calculated results of random average of critical current
〈Ic,±〉 as a function of magnetic field θB when N = 2 (a) and 4 (b).
Error bars represent the average of fluctuation,

√〈[�Ic,±]2〉, where
�Ic,± ≡ Ic,± − 〈Ic,±〉. The SO interaction is absent. The mean free
path is l0/L = 1 (upper) and 0.5 (lower panels). The random average
is taken for 400 samples.

average 〈Ic,±〉 of the critical current with the fluctuation√〈[�Ic,±]2〉. The fluctuation is defined as
√

〈[�A]2〉 with
�A ≡ A − 〈A〉. 〈Ic,±〉 also exhibits the cusps at θB ≈ (2m +
1)π/2, where its fluctuation is relatively small. When the
Fermi energy is tuned, θB is also modified via the velocity
vF,1. However, the cusp is always found at θB ≈ (2m + 1)π/2
(not shown).

2. A few conduction channels

Next, we consider the case of a few conduction channels in
the nanowire. For N conduction channels, 2N positive and 2N

negative Andreev levels are obtained even if the channels are
mixed with each other by the impurity scattering. The behavior
of Andreev levels in magnetic field is qualitatively the same
as in Fig. 2(a) except for the number of levels. The Andreev
levels keep the relation E(−ϕ) = E(ϕ), which results in the
current I (−ϕ) = −I (ϕ). The critical current is independent
of its current direction. When the magnetic field is applied,
the critical current oscillates accompanying the 0-π transition
around the local minima of Ic,±.

Upper and lower panels in Fig. 4(a) show the random
average of critical current for N = 2 when the mean free path
is l0/L = 1 and 0.5, respectively. The average 〈Ic,±〉 of the
critical current oscillates as a function of magnetic field and
indicates the first and second local minima at θB ≈ π/2 and
3π/2, respectively. The positions of the two local minima are
hardly shifted by the impurity scattering, or the mean free path
l0. 〈Ic,±〉 becomes local minimal also around θB = 5π/2 when
l0/L = 0.5, whereas the position of the third local minimum
is shifted from θB = 5π/2 in the case of l0/L = 1. Figure 4(b)
shows 〈Ic,±〉 in the case of N = 4, where 〈Ic,±〉 is local minimal
at θB ≈ π/2 and 3π/2. For both cases of N = 2 and 4, the local
minima of 〈Ic,±〉 tend to be located at θB ≈ (2m + 1)π/2 when
the impurity scattering is stronger. This period is the same as
that of N = 1.
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FIG. 5. Calculated results for a sample when N = 1 and l0/L = 1. The SO interaction is kα/kF = 0.15. The magnetic field is applied to the
y direction. (a) Andreev levels En as a function of phase difference ϕ between two superconductors. The magnetic field is θB = 0 (left upper),
0.1π (left middle), 0.35π (left bottom), 0.7π (right upper), 1.05π (right middle), and 1.4π (right bottom). At B = 0, two lines are overlapped
with each other, reflecting the Kramers’ degeneracy. (b) Josephson current I (ϕ) through the nanowire when θB = 0 (solid), 0.35π (broken),
0.7π (dotted), and 1.4π (dotted broken lines).

B. Presence of spin-orbit interaction

1. Anomalous Josephson effect

In this section, we consider the SO interaction in the
nanowire. The SO interaction qualitatively modifies the An-
dreev levels in the presence of magnetic field. Figure 5 shows
the Andreev level and the Josephson current for a sample in the
case of N = 1. We assume that the strength of SO interaction is
kα/kF = 0.15. The mean free path is l0/L = 1. In the absence
of magnetic field, the time-reversal symmetry is kept and the
Andreev levels are twofold degenerate even when ϕ �= 0 in the
case of short junction [67]. The levels satisfy E(−ϕ) = E(ϕ)
and the ground-state energy Egs(ϕ) is minimum at ϕ = 0. As
the magnetic field is increased, we find three regions as well as
the case without SO interaction in Sec. III A 1. In region (I), for
a weak magnetic field, some levels are positive for any phase
difference and the others are negative although the levels are
split by the magnetic field. With increase of θB , the splitting
is larger and the level crossing takes place at E = 0 in region
(II). This level crossing disappears when the magnetic field is
θB ≈ π [region (III)].

The finding of the regions is the same as that without
SO interaction, whereas the invariance of levels against the
ϕ inversion is broken when θB �= 0. As a result, the phase
difference ϕ0 at the minimum of ground-state energy is
deviated from 0 or π , as shown in Fig. 6(a), and the ϕ0 state
is realized [32,53–55]. The phase difference ϕ0 is almost liner
to the magnetic field first, and jumps to ϕ0 ≈ π like the 0-π
transition. After the transition, ϕ0 increases gradually with
increase of θB , the slope of which is almost the same as that
in the “0-like” state. At θB ≈ 2π , the “π -like” state transits
back to the 0-like state. This behavior is understood as the 0-π
transition with additional phase shift.

In Fig. 5(b), the Josephson current is calculated from
the Andreev levels in Fig. 5(a). When B = 0, the current

satisfies I (−ϕ) = −I (ϕ), whereas this relation is broken
in the magnetic field. With increasing magnetic field, the
discontinuous points of current corresponding to the level
crossings at E = 0 are found. I (ϕ) indicates a sawtooth
behavior when θB ≈ 0.7π . The discontinuous points vanish
at θB = 1.4π . Compared with those in Fig. 2(b), the current
phase relation is gradually moved to the right in the panel as the
magnetic field is increased. As a result, a finite supercurrent at
ϕ = 0 (anomalous Josephson current) is obtained [Fig. 6(b)].
For a weak magnetic field, the anomalous current is negative
since the shift of current phase relation is positive (ϕ0 > 0).
In the π -like state, the positive anomalous supercurrent is
obtained, where |I (ϕ = 0)| is enlarged up to 0.7e�0/�.

Figure 6(c) indicates the critical current Ic,± as a function
of θB . Although the relation I (−ϕ) = −I (ϕ) does not hold,
the critical currents for positive and negative directions are
identical with each other in the case of N = 1. The critical
current oscillates with cusps at the local minima. The distance
of cusps is longer than that in Fig. 3(b), which is caused by
the modification of Fermi velocity due to the SO interaction.
The random average 〈Ic,±〉 of critical current indicates local
minima at θB ≈ 0.7π and ≈2.1π , as shown in Fig. 6(d). The
fluctuation is also small around the minima of 〈Ic,±〉, where
the order of fluctuation is 0.1e�0/�. These behaviors are
qualitatively the same as those in Fig. 3(c).

2. Direction-dependent critical current

Here, we consider the case of four conduction channels and
demonstrate that the critical current depends on the current
direction.

Figures 7(a) and 7(b) exhibit the Andreev levels and
the Josephson current, respectively, as functions of ϕ when
the magnetic field increases. In each panel of Fig. 7(a),
eight positive and eight negative levels are obtained. In the
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FIG. 6. Calculated results for N = 1 and l0/L = 1. The SO
interaction is kα/kF = 0.15. The magnetic field is applied to the
y direction. (a) Phase difference ϕ0 at the minimum of ground-state
energy as a function of magnetic field θB . (b) Anomalous Josephson
current I (ϕ = 0). (c) Critical current Ic,±.The current in the positive
direction Ic,+ is identical with that in the negative direction Ic,−. The
sample for (a)–(c) is same as that in Fig. 5. (d) Average of critical
current 〈Ic,±〉 with the average of fluctuation,

√〈[�Ic,±]2〉, as error
bars, where �Ic,± ≡ Ic,± − 〈Ic,±〉. The random average is taken for
400 samples.

absence of magnetic field, the levels are doubly degenerate
and invariant against the inversion of ϕ. Four channels are
mixed by the impurity scattering and SO interaction, which
contribute to form the Andreev bound states. In the presence
of magnetic field, the Zeeman effect splits these mixed levels.
Then, the Andreev levels become a complicated function of
ϕ and the symmetry of E(−ϕ) = E(ϕ) is broken. As a result,
the Josephson current indicates I (−ϕ) �= −I (ϕ) in Fig. 7(b),
where not only the anomalous current, I (ϕ = 0) �= 0, but also
the difference between the maximum and absolute value of
minimum currents, Ic,+ �= Ic,−, are obtained.

We mention the three regions corresponding to region (I),
(II), and (III) described in previous sections. The Josephson
current roughly indicates I (ϕ) ∼ sin ϕ at θB = 0. This is the
feature of the 0 state in region (I) at θB ∼ 0. At θB = 1.6π , the
current becomes roughly I (ϕ) ∼ − sin ϕ, which corresponds
to the feature of the π state in region (III) although the crossing
of Andreev levels at E = 0 is found. The phase difference ϕ0

at the minimum of Egs also indicates the feature of these

two regions: ϕ0 ≈ 0 at θB ∼ 0 and ϕ0 ≈ π at θB ∼ 1.5π ,
as shown in Fig. 8(a). As the magnetic field is increased,
ϕ0 monotonically increases until θB � 2.1π . The “0-π -like”
transition occurs at θB ≈ π . The boundaries between these
regions and region (II) are unclear since the SO interaction
tends to avoid the level crossing at E = 0. When θB is
increased up to 3π , another 0-π -like transition is found at
θB ≈ 2.1π

As shown in Fig. 7(b), the finite supercurrent at ϕ = 0 is
induced by the interplay between SO interaction and Zeeman
effect. I (ϕ = 0) is plotted as a function of θB in Fig. 8(b). The
anomalous current decreases first, and sharply increases in the
π -like state region. This behavior is qualitatively the same as
that for N = 1 in Fig. 6(b). However, the maximum of |I (0)|
is smaller.

Besides the anomalous Josephson current, the direction
dependence of critical current is observed in the case of N > 1.
Figure 8(c) shows Ic,± as a function of θB . Both critical currents
oscillate with the cusps at the local minima of Ic,±. The position
of cusps also depends on the current direction. In Fig. 8(c), Ic,+
and Ic,− show the cusps below and above the critical points of
transition in Fig. 8(a), respectively.

In Fig. 9, we examine the random average of current
regarding impurity potentials. The number of samples is 400.
Figure 9(a) shows the average of anomalous supercurrent,
〈I (0)〉, with its fluctuation,

√
〈[�I (0)]2〉. The average of

anomalous current indicates negative and positive values
alternatively as a function of θB , where |〈I (0)〉| is enlarged
up to about 0.4e�0/�. On the other hand,

√
〈[�I (0)]2〉 is

saturated at about 0.15e�0/�. The inversion of sign of 〈I (0)〉
attributes to the 0-π -like transition. Roughly speaking, the
current phase relation transits from I (ϕ) ∼ sin(ϕ − ϕ0) to
−sin(ϕ − ϕ0). Then, I (0) changes the sign from negative to
positive for ϕ0 > 0.

In Fig. 9(b), we consider the average of δIc ≡ |Ic,+ − Ic,−|.
In the absence of magnetic field, the critical current for
positive and negative direction is equal to each other, 〈δIc〉 = 0.
〈δIc〉 increases with increase of θB . Ic,± sharply changes
around the cusps. Thus 〈δIc〉 becomes maximum around the
0-π -like transition. In the case of N > 1, the oscillation of
critical current is strongly affected by the impurity scattering.
Then, the average and its fluctuation are saturated and almost
constant for θB > π except the vicinity of critical points of
transition.

IV. CONCLUSIONS AND DISCUSSION

We have studied numerically the dc Josephson effect in
quasi-one-dimensional semiconductor nanowire with strong
SO interaction when the Zeeman effect is present. We have
examined the tight-binding model to describe the electron
and hole transport in the normal region in the S/NW/S
junction. The magnetic field and Rashba SO interaction are
considered in the normal region. We have focused on the
case of the short junction, where the length of normal region
is much smaller than the coherent length, L 
 ξ . In the
absence of SO interaction, the Andreev levels are invariant
against the inversion of phase difference ϕ between two
superconductors. As a result, the Josephson current satisfies
I (−ϕ) = −I (ϕ), where no supercurrent is obtained at ϕ = 0.
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FIG. 7. Calculated results for a sample when N = 4 and l0/L = 1. The SO interaction is kα/kF = 0.15. The magnetic field is applied to the
y direction. (a) Andreev levels En as a function of phase difference ϕ between two superconductors. The magnetic field is θB = 0 (left upper),
0.1π (left middle), 0.4π (left bottom), 0.8π (right upper), 1.2π (right middle), and 1.6π (right bottom). At B = 0, two lines are overlapped
with each other, reflecting the Kramers degeneracy. (b) Josephson current I (ϕ) through the nanowire when θB = 0 (solid), 0.4π (broken), 0.8π

(dotted), and 1.6π (dotted broken lines).

The 0-π transition accompanying an oscillation of critical
current is observed when the magnetic field is increased. We
have introduced a parameter θB for the magnetic field, which

FIG. 8. Calculated results for N = 4 and l0/L = 1. The SO
interaction is kα/kF = 0.15. The magnetic field is applied to the y

direction. The sample is same as that in Fig. 7. (a) Phase difference ϕ0

at the minimum of ground-state energy as a function of magnetic field
θB . (b) Anomalous Josephson current I (ϕ = 0). (c) Critical current
in the positive Ic,+ (solid) and in the negative direction Ic,− (broken
lines).

describes the spin-dependent phase shift of electron and hole
transport in the normal region. At θB ≈ (2m + 1)π/2, the
0-π transition takes place and the cusp of critical current
is found. In the presence of Rashba interaction, we have
demonstrated the anomalous Josephson effect. The Andreev
levels does not keep the relation of En(−ϕ) = En(ϕ) when
the magnetic field is applied. As a result, the phase difference

FIG. 9. Calculated results of random average when N = 4 and
l0/L = 1. The SO interaction is kα/kF = 0.15. The magnetic field
is applied to the y direction. The random average is taken for 400
samples. (a) Average of anomalous Josephson current 〈I (ϕ = 0)〉 as
a function of magnetic field, θB . Error bars represent the average
of fluctuation,

√
〈[�I (0)]2〉, where �A ≡ A − 〈A〉. (b) Average of

difference of critical current 〈δIc〉 where δIc ≡ |Ic,+ − Ic,−|. Error
bars are

√
〈[�{δIc}]2〉.

195407-9



TOMOHIRO YOKOYAMA, MIKIO ETO, AND YULI V. NAZAROV PHYSICAL REVIEW B 89, 195407 (2014)

FIG. 10. Schematic views of dispersion relation with SO inter-
action. (a) Spin-splitting due to the pxσy term in Eq. (2). Solid
and broken lines indicate the branches with spin σ = + and −,
respectively. (b) Dispersion relation mixed by pyσx term (solid line).
The broken line indicate the case without pyσx term. (c) Shift of wave
number due to the Zeeman effect in the vicinity of Fermi level.

ϕ0 at the minimum of ground-state energy is deviated from
0 and π (ϕ0 state). The current phase relation becomes
I (−ϕ) �= −I (ϕ), where the anomalous supercurrent at ϕ = 0
is obtained. In addition, the critical current depends on its
current direction when more than one conduction channel
is present in the nanowire. The critical current oscillates as
a function of θB , where the position of cusps also depends
on the current direction. The transition between ϕ ≈ 0 and
ϕ ≈ π takes place between the cusps of positive and negative
currents.

Our calculated results have exhibited the anomalous su-
percurrent, I (ϕ = 0) �= 0, and the direction dependence of
critical current, Ic,+ �= Ic,−, when N > 1, in accordance with
the single scatterer model [52]. I (ϕ = 0) �= 0 is found even
when N = 1, which points out a role of the spin-dependent
Fermi velocity on the anomalous Josephson effect. Krive et al.
also have discussed the role of Fermi velocity in the case
of the long junction [49]. The dispersion relation with SO
interaction is schematically shown in Fig. 10. In the nanowire,
electrons are confined in the y direction. Thus, the pxσy term
in the Rashba interaction in Eq. (2) mainly contributes to
the dispersion relation rather than the pyσx term. The pxσy

term induces the spin-splitting at k �= 0 [Fig. 10(a)]. The spins
are directed in the ±y directions. The term of pyσx mixes
the lowest branch with spin σ = ± and the second lowest one
with −σ . Due to the mixing, the Fermi velocity depends on the
spin direction, as shown in Fig. 10(b). Here, σ = ± is not good
quantum number. However, since the spins are almost directed
to the y axis, we use σ = ± to indicate the spin. We focus on the
vicinity of the Fermi energy in Fig. 10(c). When the magnetic
field is applied in the y direction, the branches with spin σ = ±
go downward and upward, respectively. The wave numbers are
modified spin-dependently, k>

F,± = kF ± kα ± EZ/(�vF,±) for
the positive wave number and k<

F,± = −kF ± kα ∓ EZ/(�vF,∓)
for the negative one. Although kF ± kα is also modified by the
channel mixing, that does not affect the following discussion.
By applying these spin-dependent shifts of wave number, k>

F,±
and k<

F,±, to τ̂B in the single scatter model (see Appendix B),

the Andreev levels for N = 1 are given as

E↑±(ϕ)

= �0 cos

[
θB

2
+ arccos

(
±

√
1 + δB + T cos(ϕ − ϕ0)

2

)]
,

(22)

E↓±(ϕ)

= �0 cos

[
−θB

2
+ arccos

(
±

√
1+δB+T cos(ϕ − ϕ0)

2

)]
,

(23)

where θB = L(k>
F,+ − k<

F,+ − k>
F,− + k<

F,−)/2, δB = (1 − T )
cos{θB(2x0 − L)/L}, and

ϕ0 = −L

2
(k>

F,+ + k<
F,+ + k>

F,− + k<
F,−)

= EZL

(
1

�vF,−
− 1

�vF,+

)
. (24)

T is a transmission probability of the scatterer at x = x0

without the SO interaction. This ϕ0 is proportional to the
magnetic field, and results in the anomalous Josephson effect.
If the pyσx term in Eq. (2) is disregarded, we find no
anomalous Josephson effect even when N > 1 (not shown).
In Ref. [52], the single scatterer model demonstrated the
anomalous current and the direction dependence of critical
current when N > 1. Then, the single scatterer mixes the con-
duction channels spin-dependently, which effectively plays the
same role as the spin-dependent Fermi velocity in the electron
transport.

In this paper, we have assumed kα/kF = 0.15. The typ-
ical value of Rashba constant in experiments is α = 3–4 ×
10−11 eV m for InAs or InGaAs [4–6]. The SO interaction
in InSb tends to be stronger than that in InAs. For m∗ =
0.014me (InSb) and λF = 90 nm, the parameter kα/kF � 0.15
corresponds to α = 5.7 × 10−11 eV m.

In recent experiments for InSb nanowire, the direction
dependence of critical current was observed in the magnetic
field along the nanowire [30]. This situation disagrees with
our results considering the Rashba interaction. Thus an actual
SO interaction in the nanowire is not expressed as Eq. (2). In
the nanowire, the direction of spin quantization axis due to
the SO interaction may depend on the position x. However,
our discussion can be extended to the case of general SO
interaction since the anomalous Josephson effect is observed
when an applied magnetic field has a parallel component
to the spin quantization axis. In the experiments, a few
channels may exist in the nanowire. The spacing between two
superconductors is L � 500–1000 nm, whereas the coherent
length in the nanowire is estimated as ξ ∼ 350 nm. This means
L � ξ . We have exhibited the anomalous Josephson effect
even for L 
 ξ . Therefore, the long- (or intermediate-length)
junction is not an essential condition. For the measurement,
however, the long nanowire is reasonable since ϕ0 in Eq. (24)
is larger as the length L is longer. The spin-relaxation length
due to the SO interaction is estimated as lSO ∼ 200 nm (�L).
Therefore the effect of SO interaction on the Josephson effect
can be observed in experiments. The position of the first cusp
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is located at θB ∼ π/2, which corresponds to B ∼ 0.2 T in
our situation. This order of magnitude is reasonable for the
experiments.
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APPENDIX A: CALCULATION METHOD
OF TIGHT-BINDING MODEL

Here, we explain a calculation method of scattering matrix
using the Green’s function [63]. We consider the matrix
representation of the Hamiltonian in Eq. (16),

H=

⎛
⎜⎜⎜⎜⎜⎜⎝

H̃0 −t T̃0,1

−t T̃1,0 H̃1 −t T̃1,2

−t T̃2,1
. . .

H̃Nx
−t T̃Nx,Nx+1

−t T̃Nx+1,Nx
H̃Nx+1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A1)

where H̃j is a 2Ny × 2Ny matrix describing the j th slice,

H̃j =

⎛
⎜⎜⎜⎜⎜⎝

(vj,1 + 4t)1̂ −t T̂j,1;j,2

−t T̂j,2;j,1 (vj,2 + 4t)1̂

. . .

(vj,Ny
+ 4t)1̂

⎞
⎟⎟⎟⎟⎟⎠ .

(A2)

1̂ is a 2 × 2 unit matrix and vj,l denotes the on-site potential
at (j,l). The hopping term in Eq. (A1) is

T̃j,j±1 =

⎛
⎜⎜⎝

T̂j,1;j±1,1

. . .

T̂j,Ny ;j±1,Ny

⎞
⎟⎟⎠ . (A3)

In an ideal lead, the wave functions of conduction channels
are written as

ψμ(j,l) = exp(ikμaj )uμ(l), (A4)

uμ(l) =
√

2a

W
sin

(
πμla

W

)
. (A5)

The wave number kμ satisfies Eμ(kμ) = EF, where the
dispersion relation is given by

Eμ(k) = 4t − 2t cos

(
πμa

W

)
− 2t cos(ka). (A6)

The band edge, Eμ(k = 0), is located below EF for the
conduction modes. The wave function of evanescent mode
is written as

ψμ(j,l) = exp(−κμaj )uμ(l). (A7)

The band edge is located above EF and κμ is determined
from Eμ(iκμ) = EF. Here, we introduce some matrices for
the calculation of the scattering matrix. U = (u1,u2, . . . ,uNy

)
is a unitary matrix, with uμ = (uμ(1),uμ(2), . . . ,uμ(Ny))T in
Eq. (A5). � = diag(λ1,λ2, . . . ,λNy

), where λμ = exp(ikμa)
for conduction channels and λμ = exp(−κμa) for evanescent
modes.

The retarded Green’s function is defined as

G = 1

EI − H + �
, (A8)

where � is the self-energy representing the coupling with leads,

� =
(

tF (−)−1

tF (+)

)
(A9)

with F (±) = U�±1U−1. The Green’s function connects the amplitudes of incoming and outgoing waves at the slices j =
0,Nx + 1,(

C0(−)

CNx+1(+)

)
=

(−tG0,0[F−1(+) − F−1(−)] − 1 −tG0,Nx+1[F (+) − F (−)]

−tGNx+1,0[F−1(+) − F−1(−)] −tGNx+1,Nx+1[F (+) − F (−)] − 1

)(
C0(+)

CNx+1(−)

)
, (A10)

where Gj,j ′ is the 2Ny × 2Ny matrix for the (j,j ′) component
of G. The vectors C0(±) and CNx+1(±) yield the coefficients
of waves of conduction channels in the ideal leads [Fig. 1(b)] as

aeL =
√

V U−1C0(+), (A11)

aeR =
√

V U−1CNx+1(−), (A12)

beL =
√

V U−1C0(−), (A13)

beR =
√

V U−1CNx+1(+), (A14)

where
√

V ≡ diag(
√

vF,1, . . . ,
√

vF,Ny
) is a diagonal matrix

of square root of velocities in Eq. (20). If the channel is not
conductive, the velocity is zero. By substituting these equations
to Eq. (A10), the scattering matrix Ŝe in Eq. (8) is obtained.

APPENDIX B: SINGLE SCATTERER MODEL

In this Appendix, we explain the single scatterer model in
Ref. [52]. The nanowire is along the x axis and connected
with two superconductors at x < 0 and x > L. The pair
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potential is induced in the nanowire, the absolute value of
which is constant, �(x) = �0e

iϕL at x < 0 and �0e
iϕR at

L < x, whereas �(x) = 0 in the normal region at 0 < x < L.
We consider the short junction, L 
 ξ . A single scatterer
describing an elastic scattering due to impurities and the SO
interaction in the nanowire is introduced at x = x0.

The scattering matrix for electrons by the scatterer is
denoted as Ŝscatt, which is given by the matrix of orthogonal
ensemble in the absence of SO interaction and that of
symplectic ensemble in the limit of strong SO interaction.

In the presence of magnetic field, the Zeeman effect is
taken into account as the spin-dependent phase shift for
electrons and holes in the propagation through the nor-
mal region. The Zeeman effect shifts the wave number as
k>
± = kF + (E ± EZ)/(�vF) for k > 0 and k<

± = −kF − (E ±
EZ)/(�vF) for k < 0 [60]. The propagation of electron with
spin σ = ± and hole with σ = ∓ at 0 < x < x0 acquires the
phase ±θBL = ±2EZx0/(�vF), whereas that at x0 < x < L

is ±θBR = ±2EZ(L − x0)/(�vF). Here, vF is independent of
channels. The terms of 2Ex0/(�vF) and 2E(L − x0)/(�vF) are
safely disregarded for short junctions. The terms of kF are
canceled out by each other. The phases are represented by the
scattering matrix,

τ̂B =
(

1̂ ⊗ τ̂BL

1̂ ⊗ τ̂BR

)
(B1)

with

τ̂BL(R) =
(

eiθBL(R)/2

e−iθBL(R)/2

)
. (B2)

1̂ is an N × N unit matrix.
The Andreev reflection at x = 0,L is also expressed in the

term of scattering matrices r̂he and r̂eh in Sec. II B. The product
of the scattering matrices yields

det(1̂ − τ̂B r̂ehτ̂
∗
BŜ∗

scattτ̂
∗
Br̂heτ̂B Ŝscatt) = 0, (B3)

which determines the Andreev levels En(ϕ).
This simple model demonstrated the anomalous Josephson

effect and the direction dependence of critical current when
N > 1.

APPENDIX C: MAGNETIC FIELD IN THE x DIRECTION:
DISAPPEARANCE OF 0-π TRANSITION

We discuss the case of magnetic field along the x direction,
which is almost perpendicular to the spin quantization axis due
to the Rashba interaction. In this appendix, we consider only
a single conduction channel.

Figure 11 shows a grayscale plots of phase difference ϕ0 at
the minimum of ground-state energy in the plane of magnetic
field and SO interaction. White and black regions mean the 0
and π state, respectively. The gray region corresponds to the
ϕ0 state. In Fig. 11(a), the magnetic field is applied in the y

direction, and the anomalous Josephson effect is obtained in
the gray region. The critical points of transition are shifted
to large θB when the SO interaction is stronger as mentioned
in Sec. III B 1. We find the oscillation of critical points as a
function of kα , which may be attributed to an interference due
to the SO interaction only in the normal region.

FIG. 11. (Color online) Grayscale plot of the phase difference ϕ0

at the minimum of ground-state energy in the plane of magnetic field
θB and SO interaction kα/kF when N = 1 and l0/L = 1. The sample
is the same as that in Fig. 5. The magnetic field is applied in the y (a)
and x directions (b).

In Fig. 11(b), only white and black regions are found. In
the absence of SO interaction, the π state is realized in π/2 <

θB < 3π/2. When kα/kF is increased, the region of the π state
is narrower. Then, the π state vanishes at lSO/L � 1, where
the SO length lSO ≡ π/(2kα) means a distance of π rotation
of spins due to the SO interaction. Figure 12(a) exhibits the
phase difference ϕ0 as a function of θB . The π state around
θB = π disappears with increase of kα . The positions of cusps
of Ic,± are also gradually closer to each other, and finally the
cusps vanish [Fig. 12(b)].

FIG. 12. Calculated results for N = 1 and l0/L = 1. The mag-
netic field is applied to the x direction. The sample is the same as
that in Fig. 5. (a) Phase difference ϕ0 at the minimum of ground-state
energy as a function of magnetic field θB . (b) Critical current Ic,±.
The current in the positive direction Ic,+ is identical to that in the
negative direction Ic,−. Solid and broken lines in each panel indicates
kα/kF = 0.01 and 0.005, respectively.
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The disappearance of the π state is interpreted by a
spin precession due to the SO interaction. When the spin
quantization axis of SO interaction is perpendicular to the
magnetic field, the spin directed to the magnetic field is
rotated by the SO interaction. For simple consideration, we
assume that the SO interaction results in only a spin flip
in electron (hole) transport. The Zeeman effect causes the
spin-dependent phase shift though the shift of wave number.
If the spin flip occurs at the middle point of the normal
region, the phase shift is exactly canceled out. Then, the 0-π

transition can be quenched by the SO interaction. Liu et al.
discussed a similar effect as the π -0 transition by the tuning
of the SO interaction [34]. For in-plane magnetic field, the
disappearance of the π -state coincides with the anomalous
Josephson effect. In our numerical calculation, we find a large
anomalous Josephson current even when the angle between
magnetic field and SO interaction is less than π/4 (not shown).
In experiments, the spin quantization axis may not be fixed.
Thus, the anomalous Josephson effect is observed for arbitrary
direction of magnetic field.
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